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Abstract

In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and
polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited.
Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic
associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants
identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested
these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these
polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the
computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple
comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02610206) region. We observed that the loci shared
among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside
of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical
clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis
and Crohn’s disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For
many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several
established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This
study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–
MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and
highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.
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Introduction

Systemic lupus erythematosus (SLE [MIM 152700]) is a chronic

and severe systemic autoimmune disease characterized by the

production of high titers of autoantibodies directed against native

DNA and other cellular constituents. It is a prototypic autoim-

mune disease with heterogeneous clinical manifestations that may

involve many different organs and tissues, including skin, kidney,

lungs, heart, and brain. The prevalence of SLE in the U.S. is

estimated to be between 0.05% and 0.1% of the population,

disproportionately affecting women and African Americans

(0.009% of white men, 0.066% of white women, 0.038% of

African-American men, and 0.282% of African-American women)

[1]. A genetic etiology for SLE is unequivocal, as recent genome-

wide association studies (GWAS) have identified nearly 40

validated susceptibility loci and implicated a broad array of

biological pathways [2]. Nevertheless, recent estimates suggest that

these risk loci collectively explain between 8%–15% of the genetic

risk for SLE [3,4], highlighting the fact that much of the heritable

basis for SLE remains to be identified.

The clustering of multiple autoimmune diseases (ADs) within

families, including families with SLE [5,6], suggests some degree of

common genetic susceptibility [7–9]. This genetic overlap is

exemplified by the well-known associations of certain Human

Leukocyte Antigen (HLA) loci with multiple human ADs, as well

as non-HLA risk loci in diverse pathways such as IL2RA, STAT4,

PTPN22 and IFIH1 [10]. This phenomenon where a single

mutation or gene can affect multiple traits is known as pleiotropy.

Murine studies have similarly identified many susceptibility loci

that are shared across different autoimmune mouse models [11].

However, evidence for specific shared risk variants is modest, and

consequently the genetic mechanisms that may explain the

patterns of disease aggregation remain unclear.

To date, there is no large-scale, comprehensive assessment of

the genetic overlap between SLE and other ADs. Multiple genes

have been reported to be associated with both SLE and other ADs,

but analyses of such shared autoimmune loci have been limited to

specific loci and few diseases (reviewed in [12]). Criswell et al. [13]

analyzed a collection of 265 multiplex families with at least two

ADs. Based on findings concerning PTPN22, they suggest that

multiple sclerosis (MS) may have a pathogenesis that is distinct

from SLE, rheumatoid arthritis (RA) and type 1 diabetes (T1D).

Several genome-wide association studies (GWAS) have been

conducted in multiple ADs, providing an opportunity to assess

genetic similarity at the genome-wide scale. These include studies

of SLE, RA, T1D, MS, ankylosing spondylitis (AS), inflammatory

bowel disease (IBD), Crohn’s disease (CD), ulcerative colitis (UC),

celiac disease (CelD), psoriasis (PS), psoriatic arthritis (PsA),

juvenile idiopathic arthritis (JIA), Kawasaki disease (KA), systemic

sclerosis (SScl), sarcoidosis (SA), vitiligo (VI), alopecia areata (AA)

and Behçet’s disease (BeD). Several studies have evaluated

pleiotropic effects between two or three diseases, but have been

limited to a few dozen variants in a few loci [14–18]. Exceptions

include that of Sirota et al. [19], which used over 500 SNPs to

analyze allele-specific similarities and differences across six ADs,

and Thompson et al. [20], which evaluated the association of over

500 reported autoimmune loci with JIA. Wang et al. [21] similarly

performed a genome-wide comparative analysis of CD, UC and

T1D, and Festen et al. [22] of CD and CelD. Only Cotsapas et al.

[23] have recently analyzed shared variation of 107 immune SNPs

between seven Ads including SLE.

In order to assess the genetic overlap between SLE and other

ADs, potentially unveiling novel contributors to SLE pathogenesis,

we comprehensively tested all non-HLA variants implicated in

other ADs through large GWA approaches with P,1.061025, in

a large SLE cohort consisting of 1500 cases and 5706 controls [24–

27]. The primary advantages of this approach include the

opportunity to identify consistent or contrasting allelic risk, the

potential to more clearly identify common pathways, and a more

focused, narrow hypothesis space that generates more statistical

power due to fewer statistical tests. We did not include MHC

variants because they were not reported in all the GWAS. The

comparison and contrast of shared and distinct AD risk loci

provide the potential to improve diagnosis and prognosis and help

identify plausible pharmacological targets. Our data suggests that,

compared to other ADs, SLE exhibits modest overlap of associated

loci with other ADs. We have also uncovered novel shared SLE

loci. This study helps better understand the non-MHC genetic

architecture of ADs. Identification of novel SLE genes and shared

genetic pathways can contribute to a better understanding of

common genetic mechanisms, and eventually the development of

improved diagnosis, prognosis and targeted therapies.

Results

We compiled a list with 446 non-Major Histocompatibility

Complex (MHC) variants identified as significant in 74 Caucasian

GWAS of 17 autoimmune diseases (ADs) (Table 1) using a

publically available database [28]. Please see Materials and

Methods for further details regarding the selection of the AD

variants. Note that for the results herein discussed, we have

excluded loci reported from joint analyses of particular ADs, such

as the combined phenotype of inflammatory bowel disease (see

Materials and Methods). While this may exclude legitimate shared

risk loci, it was done so as not to structurally impose a greater

degree of genetic overlap amongst the handful of ADs that have

been directly analyzed together. Based on a block partitioning

approach using LD estimated from the CEU sample of the

International HapMap Project, we then mapped these SNPs to

337 genomic regions.

In order to identify novel SLE loci and assess the extent of

pleiotropy between SLE and other ADs, we tested the 446

aforementioned non-MHC variants for association with SLE in a

Author Summary

It is well known that multiple autoimmune disorders
cluster in families. However, all of the genetic variants that
explain this clustering have not been discovered, and the
specific genetic variants shared between systemic lupus
erythematosus (SLE) and other autoimmune diseases (ADs)
are not known. In order to better understand the genetic
factors that explain this predisposition to autoimmunity,
we performed a comprehensive evaluation of shared
autoimmune genetic variants. First we considered results
from 17 ADs and compiled a list with 446 significant
genetic variants from these studies. We identified some
genetic variants extensively shared between ADs, as well
as the ADs that share the most variants. The genetic
overlap between SLE and other ADs was modest. Next we
tested how important all the 446 genetic variants were in
our collection with a minimum of 1,500 SLE patients.
Among the most significant variants in SLE, the majority
had already been identified in previous studies, but we
also discovered variants in two important immune genes.
In summary, our data identified diseases with common
genetic risk factors and novel SLE effects, and this supports
a relatively distinct genetic susceptibility for SLE. This study
helps delineate the genetic architecture of ADs.

Analysis of Shared Autoimmune Variants
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large cohort of 1500 SLE cases and 5706 controls. This cohort

consists of the joint-analysis of previously described cohorts [24–

27], which haven’t previously been analyzed together. Of the 424

available SNPs based on direct genotyping or imputation, 237

(55.9%) met all quality control criteria. We employed a simple

strategy to address the multiple testing issue: we computed a False

Discovery Rate (FDR)-adjusted P-value [28] in joint analysis

results (PFDR), and discarded any variants that did not meet a

FDR-adjusted P-value (that is, PFDR$0.05) as likely false positives.

Therefore, we herein report the unadjusted P-values in the joint-

analysis and only report variants that survived a FDR [29]

correction for the number of comparisons in the joint-analysis

(PFDR). We have also elected to report the genomic control (GC)-

adjusted P-value. Of the 237 SNPs that met quality control (QC)

criteria, 39 survived a FDR adjustment with P,0.05. If a variant

failed quality control criteria in the joint-analysis, but met them in

the Lupus Large Association Study (LLAS) replication cohort, we

report the LLAS cohort results, as indicated in the tables. Finally,

if a SNP met quality control criteria in all cohorts, we additionally

report the meta-analysis results.

Novel SLE loci
Our first goal was the identification of novel pleiotropic regions

associated with SLE. An intronic variant in the V-set domain

containing T cell activation inhibitor 1 (VTCN1) showed the smallest P-

value in the joint-analysis (rs12046117, P = 2.02610206,

PFDR = 5.33610205) (Table 2). This variant was one of the most

significant reported in a GWAS of JIA [28]. Unfortunately, the

risk allele was not reported.

We have also observed association with the zinc finger, CCCH-type

with G patch domain (ZGPAT) region, identified in GWAS of CD and

UC [28]. The most significant SNP (rs2297441, P = 7.63610204,

PFDR = 8.22610203) (Table 2) is located in both the 59 UTR of the

tumor necrosis factor receptor superfamily member 6B (TNFRSF6B) and the

39 UTR of the regulator of telomere elongation helicase 1 (RTEL1). The

risk allele is the same as the one reported in UC.

The CD40 gene, which was reported as significant in GWAS of

MS and RA [28], showed evidence for association at several

variants in linkage disequilibrium (LD) (r2.0.70), the most

significant being rs6074022 (P = 1.41610203, PFDR = 1.24610202)

(Table 2), upstream of CD40. The risk allele for this variant is the

same in SLE as the one reported in MS. All the variants lie within

a known CNV region.

The IL12A region, identified in GWAS of MS and CelD [28],

showed association with SLE at two variants not in LD with each

other (r2 = 0.04). The most significant association was with

rs17810546 (Pmeta = 9.39610203) (Table 2), upstream of IL12A,

but the risk allele is different from that reported in CeID.

Shared SLE loci
One of our goals was to specifically evaluate pleiotropy between

SLE and other ADs. In Table 3 we report our most significant

findings in regions previously reported to be associated with SLE.

The ADs that reported a GWA P,1.061025 at any variant in

these regions are shown.

The IL10 locus, which has not been previously reported in our

independent SLE cohorts, has been reported in GWAS of T1D,

BeD, CD and UC [28]. The rs3024493 variant, which was

reported in two GWAS of UC, was significant in all cohorts

(Pjoint = 4.38610205). The reported risk allele is the same as we

report. This is not a novel effect in SLE; although it has not been

reported in a GWAS of SLE, IL10 has been recently identified in a

large-scale replication study [3]. This locus harbors a known copy

number polymorphism/variation (CNV) (http://genome.ucsc.

edu).

Similarly, the IRF8 locus, which has not been previously

reported in our independent SLE cohorts nor been reported in a

GWAS of SLE, has also been identified in a large-scale replication

study [3]. This region has been reported in GWAS of MS and UC

[28]. The rs16940202 variant, which was reported in UC, showed

association with SLE (Pjoint = 4.76610207), but the alleles show

opposing effects.

The KIAA1109 region also showed association (rs13119723,

Pmeta = 4.97610205) (Table 3). This SNP was reported in a GWAS

of RA, where the risk allele is consistent with our study of SLE

[28]. Other SNPs in this region have also been reported in GWAS

of T1D and CelD [28]. Interestingly, this region is adjacent to the

IL2–IL21 region, where several SNPs have been reported in

GWAS of T1D, UC, CelD and AA. Variation in these regions has

never been reported to have met genome-wide significance in

SLE. Association has been reported in 200 Colombian patients for

a SNP in LD with rs13119723 (rs6822844; r2 = 0.71) [30].

Association with SLE has also been reported in two studies of

mixed ethnicities for other variants in IL2/IL21 that lack LD

(r2,0.30) with rs13119723 [31,32].

For the vast majority of SNPs in Table 3, there is consistency

between the SLE risk allele and that reported in other ADs. For

example, the IRF5 variant has the same risk allele as RA, and SScl,

and the TNFAIP3 variant has the same risk allele as in four

different GWAS of RA [27]. There are two variants that exhibit

opposite effects, namely in FCGR2A and IKZF1, with UC and CD,

respectively [28].

Table 1. Data compiled from published GWA studies of
autoimmune diseases (ADs).

Disease Number of

Associated
loci

Associated
SNPs GWAS

Alopecia areata (AA) 7 7 1

Ankylosing spondylitis(AS) 8 8 1

Juvenile idiopathic arthritis (JIA) 1 1 1

Behcet’s disease (BeD) 2 2 1

Celiac disease (CelD) 42 (53) 42 (55) 3 (5)

Crohn’s disease (CD) 79 (84) 103 (111) 9 (14)

Kawasaki disease (KA) 2 2 1

Multiple sclerosis(MS) 37 41 9

Psoriasis (PS) 27 30 6

Psoriatic arthritis (PsA) 2 2 1

Rheumatoid arthritis (RA) 39 (48) 42 (55) 7 (8)

Sarcoidosis (SA) 1 1 1

Systemic lupus erythematosus
(SLE)

31 36 5

Systemic sclerosis (SScl) 3 3 1

Type 1 diabetes (T1D) 56 64 8

Ulcerative colitis (UC) 59 (64) 77 (86) 6 (9)

Vitiligo (VI) 12 12 2

Counts in parentheses include GWAS of combined ADs including inflammatory
bowel disease (CD+UC), CelD+RA, CD+CelD, and CD+SA (see Materials and
Methods).
doi:10.1371/journal.pgen.1002406.t001

Analysis of Shared Autoimmune Variants
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Table 2. Association results in novel pleiotropic regions associated with SLE.

Joint-Analysis Meta-Analysis

SNP1 Ch Pos (Mb)
MAF
case

MAF
control MA P-value2

GC P-
value

FDR P-
value OR [95%CI] P-value2 OR [95%CI] Region

Diseases
associated
with region
in GWAS3

rs12046117SMU 1 117.463 0.07 0.01 T 2.02E-06d 2.15E-06 5.33E-05 1.65[1.34–2.03] NA NA VTCN1 JIA

rs6738825SMU 2 198.722 0.45 0.48 G 3.12E-03d 3.32E-03 2.12E-02 0.82[0.72–0.94] NA NA PLCL1 CD

rs17810546M 3 161.148 0.10 0.11 G 2.47E-03 2.63E-03 1.89E-02 0.82[0.72–0.93] 9.39E-03 0.89[0.81–0.97] IL12A MS, CelD

rs7672826 4 182.775 0.31 0.33 G 1.90E-03d 2.02E-03 1.56E-02 0.83[0.74–0.93] NA NA RPL19P8 MS

rs881375SMU 9 120.732 0.36 0.33 T 3.89E-03 4.14E-03 2.49E-02 1.14[1.04–1.24] NA NA VEGFA UC, CD

rs1953126SMU 9 120.720 0.36 0.33 T 2.93E-03d 3.12E-03 2.17E-02 1.20[1.06–1.35] NA NA TRAF1 RA, CelD

rs7221109SU 17 36.024 0.41 0.38 T 2.21E-03d 2.35E-03 1.74E-02 1.21[1.07–1.36] NA NA CCR7 T1D

rs6074022SM 20 44.174 0.28 0.26 C 1.41E-03r 1.50E-03 1.24E-02 1.45[1.15–1.82] NA NA CD40 RA, MS

rs2297441SU 20 61.798 0.20 0.23 G 7.63E-04 8.11E-04 8.22E-03 0.84[0.76–0.93] NA NA ZGPAT UC, CD

Only the most significant variant in each region is presented. All variants met a FDR-adjusted threshold of significance in the joint-analysis (FDR P,0.05), as described in
the Materials and Methods. The genomic control-adjusted (GC) P-value is also shown. When both joint and LLAS1 results available, a meta-analysis between all cohorts
is presented. The smallest P-value is presented and, unless noted otherwise, it is under the additive model. OR and CI calculated under the model presented.
Ch – chromosome; Mb – Megabases; MA – minor allele; MAF – Minor allele frequency; OR – odds ratio; CI – confidence interval; NA – not available.
1The initials after the marker denote that this marker was imputed in a cohort: SSLEGEN, MMN, UUCSF.
2The superscript after the P-value denotes its genetic model, when other than the additive: ddominant, rrecessive.
3Diseases that reported any associated SNP with P-value,1.061025 in the regions indicated (not necessarily the same SNP reported in this table) through the GWA
approach [28].

Disease abbreviations are the same as for Table 1.
doi:10.1371/journal.pgen.1002406.t002

Table 3. Shared loci: Association results for SLE susceptibility loci associated with another autoimmune disease.

Joint-Analysis* Meta-Analysis

SNP1 Ch Pos (Mb)
MAF
case

MAF
control MA P-value2

GC P-
value

FDR P-
value OR[95%CI] P-value2 OR[95%CI] Region

Diseases
associated
with region
in GWAS3

rs10800309* 1 159.739 0.30 0.33 A 5.03E-05 5.35E-05 NA 0.85[0.78–0.92] NA NA FCGR2A UC

rs3024493SMU 1 205.011 0.18 0.15 C 4.38E-05 4.66E-05 6.48E-04 1.26[1.13–1.41] NA NA IL10 T1D, CD, UC,
BeD

rs6445975M 3 58.345 0.32 0.29 T 4.51E-04 4.79E-04 5.09E-03 1.18[1.07–1.29] 5.27E-09 1.20[1.13–1.27] PXK SLE

rs13119723MU 4 123.438 0.11 0.13 G 5.56E-03d 5.91E-03 3.47E-02 0.82[0.71–0.94] 4.97E-05d 0.83[0.76–0.91] KIAA1109 RA, T1D,
CelD

rs11747270SMU 5 150.239 0.05 0.02 G 1.12E-03d 1.19E-03 1.15E-02 1.39[1.14–1.70] NA NA IRGM CD

rs5029939S 6 138.237 0.06 0.03 G 1.51E-14d 1.61E-14 8.94E-13 2.40[1.92–3.00] NA NA TNFAIP3 RA, CelD, UC,
PS, SLE

rs1456893S 7 50.204 0.33 0.30 G 3.01E-03 3.20E-03 2.10E-02 1.14[1.05–1.25] NA NA IKZF1 CD

rs10488631M 7 128.381 0.19 0.11 T 2.55E-27 2.71E-27 6.05E-25 1.97[1.74–2.22] NA NA IRF5 RA, SLE, UC,
SScl

rs2618476SU 8 11.390 0.30 0.25 T 1.10E-07 1.17E-07 4.34E-06 1.29[1.18–1.42] NA NA BLK SLE, RA

rs16940202SMU 16 84.572 0.09 0.02 T 4.76E-07 5.06E-07 1.41E-05 1.53[1.30–1.81] NA NA IRF8 UC, MS

rs181359M 22 20.27 0.22 0.18 T 3.37E-06 3.58E-06 7.27E-05 1.28[1.15–1.41] 1.15E-09 1.23[1.15–1.33] UBE2L3 CD, SLE

Only the most significant variant in each region is presented. All variants met a FDR-adjusted threshold of significance in the joint-analysis (FDR P,0.05), as described in
the Materials and Methods. The genomic control-adjusted (GC) P-value is also shown. When both joint and LLAS1 results available, a meta-analysis between all cohorts
is presented. The smallest P-value is presented and, unless noted otherwise, it is under the additive model. OR and CI calculated under the model presented.
Ch – chromosome; Mb – Megabases; MA – minor allele; MAF – Minor allele frequency; OR – odds ratio; CI – confidence interval; NA – not available.
*This marker failed quality control or was unavailable in the joint-analysis, here we are presenting the LLAS results.
1The initials after the marker denote that this marker was imputed in a cohort: SSLEGEN, MMN, UUCSF.
2The superscript after the P-value denotes its genetic model, when other than the additive: ddominant, rrecessive.
3Diseases that reported any associated SNP in Caucasians with P-value,1.061025 in the regions indicated (not necessarily the same SNP reported in this table) through
the GWA approach [28].

Disease abbreviations are the same as for Table 1.
doi:10.1371/journal.pgen.1002406.t003
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SLE–specific loci
In addition to significant associations in regions previously

implicated in other ADs, we have also identified significant

associations in established SLE regions that do not meet a GWA

P,1.061025 in other ADs. Table 4 shows the established SLE-

specific variants and their association results in our combined

cohorts. These variants have not been reported in GWAS of any

AD except SLE, hence suggesting that these may be SLE-specific

genetic risk factors or that their magnitude of effect in other ADs is

more modest. Established SLE loci that are not strongly associated

with other ADs include the integrin-aM (ITGAM), tumor necrosis factor

superfamily member OX40L (TNFSF4), pituitary tumor-transforming 1

(PTTG1), PHD and ring finger domains 1 (PHRF1), WDFY family

member 4 (WDFY4), and B-cell scaffold protein with ankyrin repeats 1

(BANK1) regions.

With the exception of BANK1, all of these effects have been

previously reported based on individual analyses of the cohorts

considered here.

Autoimmune loci not associated with SLE
Our study was well powered to detect effect sizes (as measured

by the odds ratio (OR)) similar to those reported in other ADs.

Under the assumptions described in the Materials and Methods,

we were powered to detect: OR.1.45 for variants with minor

allele frequency (MAF) = 0.05, OR.1.30 for variants with

MAF = 0.10, or OR.1.20 for variants with MAF.0.30. The

power for each of the SNPs herein reported is shown in Table S1.

For many of the shared GWAS autoimmune loci we found no

evidence for association with SLE in these cohorts. We scrutinized

all variants that met QC criteria and whose smallest P-value was

P.0.05 in any (joint-, replication- , or meta-) analysis. Amongst

the loci shared between the most diseases, we found no evidence of

association for IL23R, FASLG, REL, IL18RAP, MST1, RBPJ, IL7R,

PTGER4, BACH2, PVT1, PTPN2, and C1QTNF6 regions.

As in all studies a definitive answer is not possible for all loci.

Specifically, we note that in several of the AD loci shared between

the largest number of diseases, we did not find SNPs that met the

FDR-adjusted threshold in the joint-analysis, but met all the QC

criteria and had an unadjusted P-value,0.05: these include

SPRED2 (rs934734, P = 1.41610202), AFF3 (rs10865035,

P = 3.04610202), CTLA4 (rs3087243, P = 1.66610202), IL12B

(rs2082412, P = 1.02610202), IL2RA (rs12251307, P = 2.216
10202), LRRC32 (rs7927894, P = 2.32610202), C14orf81 (rs4899

260, P = 1.48610202), and GSDMB (rs8067378, P = 2.17610202).

Further work is necessary to determine if these loci contribute

modestly or conditionally to the risk of SLE.

Shared autoimmune loci
An important goal of our study was to assess the extent of

pleiotropy between all 17 ADs using their reported GWAS results.

Figure 1 shows the loci shared between GWAS of ADs. The

regions shared across the largest number of ADs include IL2RA

(MS, T1D, RA, VI, AA and CD), IL23R (CD, UC, PS, BeD and

AS), OLIG3/TNFAIP3 (RA, PS, SLE, UC, and CelD), PTPN22

(CD, RA, T1D, and VI), IL10 (CD, T1D, UC, and BeD), and an

intergenic region between ZPBP2 and GSDMB (CD, RA, UC, and

T1D).

We also sought to better understand the relationships among

different diseases given the common and unique regions reported

in their respective GWAS. In order to identify which diseases

cluster together based on the reported shared regions (i.e., binary

yes/no), we performed hierarchical clustering analysis of ADs also

including reported risk loci from 4 control traits/diseases including

height, breast cancer, coronary heart disease, and bipolar disorder

(Figure 2). This analysis provides a visual characterization of the

similarities among diseases based on the number of shared regions.

The diseases that share the largest number of genomic regions

include CD and UC (BSN/APEH/MST1, C11orf30/LRRC32,

C1orf81/KIF21B, CARD9, DAB2/PTGER4, GOT1/NKX2-3, IL10,

IL23R, NAIP1/CYCSP42, PUS10, RCL1/JAK2, TNFSF15, ZGPAT,

ZPBP2/GSDMB), followed by T1D and RA (AFF3/LONAF2,

C4orf52/RBPJ, CTLA4, DKFZp667F0711, IL2RA, KIAA1109,

PTPN22, RPS2P14/RSBN1, SH2B3/ATXN2, UBASH3A, ZPBP2/

GSDMB).

We observed that SLE shares the largest number of loci with

RA (FAM167A/BLK, IRF5/TNP03, and STAT4). It is noteworthy

that SLE appears isolated from the other ADs (i.e., shares the least

with the other ADs despite being among the ADs with the most

Table 4. SLE–specific loci: Association results for established SLE–specific regions in our joint cohorts.

Joint-Analysis* Meta-Analysis

SNP1 Ch Pos (Mb)
MAF
case

MAF
control MA P-value2 GC P-value

FDR P-
value OR [95%CI] P-value2 OR [95%CI] Region

rs10798269M 1 170.041 0.31 0.36 G 2.02E-05 2.15E-05 3.42E-04 0.83[0.76–0.90] 4.04E-10 0.83[0.78–0.88] TNFSF4

rs10516487 4 103.108 0.27 0.32 G 4.88E-05 5.19E-05 6.81E-04 0.83[0.76–0.91] NA NA BANK1

rs2313132 4 139.050 0.13 0.11 G 2.93E-03 3.12E-03 2.11E-02 1.21[1.07–1.38] NA NA SLC7A11

rs2431697* 5 159.813 0.39 0.44 G 9.68E-08 1.03E-07 NA 0.80[0.74–0.87] NA NA PTTG1

rs11101442SU 10 49.606 0.30 0.34 T 4.16E-05 4.42E-05 6.57E-04 0.83[0.76–0.91] NA NA WDFY4

rs7927370M 11 54.893 0.04 0.06 T 1.13E-03 1.20E-03 1.12E-02 0.74[0.62–0.89] NA NA OR4A51

rs4963128* 11 0.58 0.30 0.35 A 7.77E-07 8.26E-07 NA 0.81[0.74–0.88] NA NA PHRF1

rs11150610 16 31.242 0.37 0.43 C 1.16E-08 1.23E-08 5.51E-07 0.79[0.72–0.85] NA NA ITGAM

Only the most significant variant in each region is presented. All variants met a FDR-adjusted threshold of significance in the joint-analysis (FDR P,0.05), as described in
the Materials and Methods. The genomic control-adjusted (GC) P-value is also shown. When both joint and LLAS1 results available, a meta-analysis between all cohorts
is presented. The smallest P-value is presented and, unless noted otherwise, it is under the additive model. OR and CI calculated under the model presented.
Ch – chromosome; Mb – Megabases; MA – minor allele; MAF – Minor allele frequency; OR – odds ratio; CI – confidence interval; NA – not available.
*This marker failed quality control or was unavailable in the joint-analysis, we are presenting the LLAS results.
1The initials after the marker denote that this marker was imputed in a cohort: SSLEGEN, MMN, UUCSF.
2The superscript after the P-value denotes its genetic model, when other than the additive: ddominant, rrecessive.
doi:10.1371/journal.pgen.1002406.t004
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identified risk loci). In contrast, despite only having 12 reported

loci, VI clusters more closely with other ADs, suggesting more

genetic overlap. However, we strongly caution against over-

interpretation of this clustering result, as bootstrapping only

revealed strong statistical support (Bootstrap Probability Val-

ue$0.95) for differentiating height from the ADs and the other

control diseases (see Materials and Methods).

Discussion

The clustering of multiple autoimmune disorders in families and

evidence for autoimmune pleiotropic loci are well known.

Nevertheless, no comprehensive assessment of the specific shared

variants between SLE and other autoimmune diseases (ADs) has

yet been performed in a single large-scale study based on GWAS

data. Analyses of shared SLE loci have been limited to specific loci

and few diseases (reviewed in [12]). In this study we used findings

from published GWAS to assess the extent of genetic overlap

between SLE and seventeen autoimmune diseases, testing if

variants implicated in other ADs show association in our large

SLE cohort. Given that the MHC is unquestionably a universal

risk region for autoimmunity, and some GWAS did not report

their results in this region, we excluded HLA loci from our

analyses.

The loci that were associated with the largest number of ADs

include IL23R, TNFAIP3, and IL2RA, supporting an important

role for T cell and innate immune response pathways in

autoimmunity. Nevertheless, these loci are not implicated in all

ADs, suggesting that, with the exception of the HLA region, there

seem to be no universal genetic risk factors for autoimmunity. It is

commonly accepted that there is a common genetic background

predisposing to autoimmunity and inflammation, and that further

combinations of more disease-specific variation at HLA and non-

HLA genes, in interaction with epigenetic and environmental

Figure 1. Shared loci between GWAS of ADs. Gene regions are below each chromosome, diseases where it was reported are above, represented
by a colored circle.
doi:10.1371/journal.pgen.1002406.g001
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factors, contribute to disease and its clinical manifestations [33].

Our data additionally suggests that, instead of resulting from

common risk factors, autoimmunity may result from specific and

multiple different pleiotropic effects. This is consistent with a

recent report showing that genomic pleiotropy is relatively low, as

most genes affect only a small number of traits [34]. The authors

suggest that genes displaying a high degree of pleiotropy also

exhibit an individually larger effect on each trait [34]. It is likely

that different population genetic factors (e.g., natural selection,

migration/isolation, random mutation) in similar or distinct

environments led to the establishment of different autoimmune

loci and subsequent migrations and interbreeding have led to the

current plethora of loci that predispose to autoimmunity.

Based on our analyses of shared non-HLA loci across ADs, the

most genetically similar diseases appear to be CD with UC, and

T1D with RA, sharing 15 and 11 loci, respectively. While the

former pair is clearly supported by overlapping clinical manifesta-

tions, since both CD and UC are subsets of IBD, the overlap

between the latter pair is not entirely clear based on their organ

involvement. The clustering patterns do not seem biased by the

number of reported loci for each disease. As such, while the genetic

overlap between CD and UC may reflect the prevalence of more

specific IBD genes, the genetic overlap between T1D and RA may

reflect the existence of general, nonspecific autoimmunity genes.

Despite being a prototypic AD, the non-HLA genetic overlap

between SLE and the ADs herein investigated is more modest

than we anticipated. The disease with which it shares the most loci

is RA, which is potentially interesting due to the common clinical

presentation of arthritis. The number of reported SLE loci is

similar to other ADs and does not explain its relative distance from

other ADs. The clinical heterogeneity of SLE may, at least in part,

account for the relatively modest number of shared loci. Different

SLE loci are likely differentially associated with specific clinical

criteria, as was recently shown in GWAS of anti-RNA binding

proteins [35], and anti–dsDNA autoantibody production [36] in

SLE. It should also be noted that SLE may share more loci with

systemic diseases not included or not well represented in our

analyses. Our data included 49 loci reported for RA, two for BeD,

three for SScl, but Sjögren’s syndrome and antiphospholipid

syndrome lack GWAS. Interestingly, two of the three loci reported

in the GWAS of SScl, IRF5 and STAT4, also show association in

GWAS of SLE. Similarly, Anaya et al. [37] recently analyzed the

association of the SLE predisposing risk variant (rs1143679) for

ITGAM-ITGAX across 7 other ADs, only showing a suggestive

association for SScl. For many of the shared GWAS autoimmune

loci we found no evidence for association with SLE, including for

IL23R, in spite of having enough power to detect the effects

reported in other diseases. Although we cannot exclude the

Figure 2. Hierarchical clustering of ADs and four non-ADs. Analysis was restricted to diseases with .10 reported loci in their GWA studies, to
associations reported from populations of European ancestry, and excluded those reported from the aggregate phenotype of IBD, as well as those
with MS severity or age of onset. Dendrogram and heatmap are shown.
doi:10.1371/journal.pgen.1002406.g002
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possibility that 1) other variants in these loci predispose to SLE, or

2) that these loci have weaker effects in SLE implying a potential

lack of statistical power, or 3) that their effects are conditional on

other unknown loci, it is plausible that the lack of these common

genetic factors contributes to SLE being a distinct disease. Also,

several established SLE loci are apparently not associated with

other ADs, including the ITGAM-ITGAX region, TNFSF4,

PTTG1, PHRF1, WDFY4 and BANK1 regions. Obviously, these

risk variants may simply have weaker effects in other ADs and the

studies lacked power to detect them. This situation was recently

illustrated in a meta-analysis of CD and CelD, where the increased

power of the combined datasets allowed the detection of shared

loci with a relatively small effect, hence undetectable in the

individual diseases [22].

Our analyses identify novel shared SLE loci. The results that we

report were adjusted for the number of comparisons, which

decreases the likelihood of a false positive result. The V-set domain

containing T cell activation inhibitor 1 (VTCN1) region, which has been

reported in a GWAS of JIA, showed the strongest novel

association with SLE. Evidence suggests that this gene plays a

role in the negative regulation of T cell responses. The zinc finger

ZGPAT region also shows a significant association with SLE.

Despite being clearly strong candidates because of their association

with other ADs, the new SLE loci require validation. It is worth

noting that we discovered associations consistent with and in

contrast to the same risk allele in other ADs. This observation was

recently confirmed by Wang et al. [34], who suggests that

susceptibility loci involved in the pathogenesis of ADs may have

antagonistic pleiotropic effects, where risk alleles for one disease

may confer selective advantage for another disease or infection

resistance. Given that the functional variant is not known, we

cannot rule out that the inverse association arises from different

LD patterns.

A limitation of our study is the fact that we restricted our

analyses to variants reported from GWAS in populations of

European Ancestry. Although we have certainly missed shared

variants identified in large candidate gene studies or targeted

meta-analyses, many ADs lack such studies. Thus, given the

increasing coverage of the genome with modern SNP chips, we

preferred to restrict our analyses to a directly comparable set of

results based on GWAS. These agnostic scans help to minimize

the extent of potential methodological and publication biases. We

should note that our analyses do not provide an unbiased estimate

of the total degree of genetic overlap amongst ADs, given that the

application of stringent significance thresholds in GWAS certainly

overlooks true risk loci. Future studies using all variants in these

GWAS will be required to directly estimate the degree of shared

susceptibility. Finally, it is important to note that some of the

genetic overlap with SLE may have been missed in our analyses

because a large proportion of candidate SNPs failed our quality

control thresholds, and thus could not be effectively tested for

association in our samples.

Much remains to be done before the genetic etiology of the

autoimmunity spectrum is resolved. Continued studies of popu-

lations beyond those of European ancestry are certainly needed. A

catalog of all shared and distinct risk loci requires that these

regions be thoroughly resequenced in suitably large population

samples, with additional genotyping of the resulting comprehen-

sive set of variants in order to confirm and fully characterize the

extent of genetic risk. The examination of the patterns observed

here generates an appreciation for potential interplay between

population genetic factors (e.g., natural selection, migration) and

environmental factors and calls for the interrogation of these loci

in significant numbers of samples from different ethnic popula-

tions.

This study represents the most comprehensive evaluation of

shared autoimmune loci to date. In addition, we provide further

evidence for previously and newly identified pleiotropic genes in

SLE. These findings support a relatively distinct genetic

susceptibility for SLE, a genetic basis for the shared pathogenesis

of ADs, and the value of studies of potentially pleiotropic genes in

autoimmune diseases.

Materials and Methods

Ethics statement
Written informed consent was obtained from all study

participants and the institutional review board at each collaborat-

ing center approved the study.

Autoimmune disease loci
We constructed a list of reported risk variants for ADs using

data from the National Human Genome Research Institute’s

Catalog of Published Genome-Wide Association Studies (http://

www.genome.gov/gwastudies) accessed on June 4th, 2011 [28].

Briefly, this database contains all identified SNPs with

P,1.061025 from GWAS that attempted to assay at least

100,000 SNPs in the initial analysis stage, thus excluding studies

focused on candidate genes. We extracted any reported risk

variants for the following ADs: SLE, rheumatoid arthritis (RA),

type 1 diabetes (T1D), ankylosing spondylitis (AS), Crohn’s disease

(CD), ulcerative colitis (UC), celiac disease (CelD), multiple

sclerosis (MS), systemic sclerosis (SScl), psoriasis (PS), psoriatic

arthritis (PsA), juvenile rheumatoid arthritis (JIA), Kawasaki

disease (KA), sarcoidosis (SA), vitiligo (VI), alopecia areata (AA)

and Behçet’s disease (BeD). Given that not all of these GWAS

reported their Major Histocompatibility Complex (MHC) or

Human Leukocyte Antigen (HLA) results, we opted for excluding

this region, in order to avoid biases due to missing HLA data from

some studies. We excluded inflammatory bowel disease and MS

severity or age of onset, and have only included results published

in samples of European ancestry. After removing SNPs that map

to the MHC and those with reported associations based on

haplotypes, our final list of reported risk variants included 446

SNPs. We then mapped these SNPs to genomic regions using a

block partitioning approach [38], based on LD-information

estimated from the CEU (Utah residents with ancestry from

northern and western Europe) sample of the International

HapMap Project.

Clinical samples
Samples used in this study have been previously described [24–

27]. Briefly, we combined 743 SLE cases and 3566 controls from

the International Consortium for Systemic Lupus Erythematosus

Genetics (SLEGEN; www.slegen.org) GWAS [25], with 244 SLE

cases and 2140 controls from the Minnesota (MN) cohort GWAS

[24], and with 513 SLE cases from the University of California

San Francisco (UCSF) Lupus Genetics Project [26,27]. These 513

cases were included and are also described in a GWAS of SLE

[39]. Exclusion of duplicates and first-degree relatives yielded a

total sample of 1500 cases and 5706 controls. Quality control was

performed as described [25]. We included males and females of

European ancestry.

In addition, we used data from the Lupus Large Association

Studies (LLAS) [25], when available, as a replication cohort. The

LLAS replication study consists of an independent cohort of 2085

SLE cases and 2854 controls, and was used to replicate 8230 SNPs
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from the SLEGEN GWAS [25]. This study consists of males and

females of European ancestry.

Statistical analysis
Genotypes from all subjects were imputed using the program

IMPUTE [40] version 0.5 for SNPs not genotyped or poorly

genotyped. Imputation was performed using high quality genotype

data from the corresponding study (SLEGEN, MN and UCSF)

and phased HapMap Phase II (NCBI B35 assembly) genotype

data from 60 CEU HapMap founders. We used SNPs that met the

following quality criteria: 1) no statistically significant differences in

the proportions of missing genotype data between cases and

controls (i.e., P.0.05); 2) overall ,10% missing genotype data; 3)

Hardy-Weinberg Expectations (HWE) in controls P.0.01, HWE

in cases P.0.0001; and 4) minor allele frequencies (MAFs) of

controls within a 95% or 99.99% confidence interval for ethnicity

matched HapMap MAFs, for genotyped and imputed SNPs,

respectively. Retained SNPs had an estimated MAF.0.01 in the

control samples, an information score .0.50 and a confidence

score .0.90. Imputed SNPs were analyzed using SNPTEST with

probabilistic genotypes [40].

We combined the genotypic and imputed data from the three

cohorts described above and performed a joint- and a meta-

analysis. In the tables with the results we report which SNPs and

cohorts were imputed vs. directly genotyped. We used SNPs that

met the same quality criteria as described above. To account for

potential population stratification, we computed Principal Com-

ponents (PCs) and adjusted these analyses for four PCs, as

described [25]. The genome-wide inflation factor in the joint

analysis was l= 1.15. We include the joint analysis of these loci

after applying quality control to each individual cohort as the joint

analysis can provide increased power for some genetic models for

more modest allele frequencies (e.g., recessive model). From our

list with 446 autoimmune SNPs, 424 total unique SNPs were

genotyped or imputed in our SLE cohorts. Of these, 237 (55.9%)

met our QC thresholds, while 187 (44.1%) failed as follows: 6

(1.4%) have 10–20% missing genotype data, 1 (0.2%) have

MAF,0.01 in controls, 3 (0.7%) failed Hardy-Weinberg Equilib-

rium thresholds, 91 (21.5%) have .20% missing genotype data,

and /or have significant differences in missingness between cases

and controls, and 86 (20.3%) did not meet imputation QC

thresholds. We report uncorrected P-values, though we also

corrected for multiple comparisons using a False Discovery Rate

(FDR) procedure [29] for the 237 SNPs that passed QC. As such,

our multiple comparison strategy consisted of only selecting those

variants that met FDR significance, that is, with a FDR-adjusted

P-value,0.05. Although we computed the FDR-adjusted P-value

for the smallest P-value (under the additive, dominant or recessive

model), this smallest P-value is virtually always within one order of

magnitude different from the additive P-value, which is hence

comparable to computing the FDR for P-values under the same

model. We performed a weighted Z-score meta-analysis as

implemented in METAL (www.sph.umich.edu/csg/abecasis/met-

al), with weights being the square root of the sample size for each

dataset; thus, the meta-analysis incorporates direction, magnitude

of association and sample size. We report the minimum P-value

based on hypothesis tests considering additive, dominant and

recessive modes of inheritance; however, because these tests can be

affected by low genotype counts, we required at least 30

homozygotes for the minor allele to consider the recessive, and

15 to consider the additive model, otherwise the results under the

dominant model are reported. All genetic models were defined

relative to the minor allele. Associations with SLE susceptibility

were considered statistically significant if they met a FDR-adjusted

threshold of P,0.05.

We used Quanto (http://hydra.usc.edu/gxe/) to calculate the

power of our sample size. We assumed an additive genetic model,

population risk of 0.1%, and a= 0.001.

In order to examine the global similarity between ADs based on

their reported risk loci (defined based on LD, as described above),

we performed a hierarchical clustering analysis of ADs with at least

10 reported loci (binary yes/no). ADs with less than 10 reported

loci were excluded as their lower count of reported loci may reflect

a less intensive assessment of genetic risk factors (i.e. fewer

genome-wide investigations often with smaller sample sizes). We

restricted the analysis to associations reported from populations of

European ancestry, and excluded those reported for MS severity

or age of onset. So as not to inform the clustering of ADs based on

the presence of joint analyses, we excluded associations from

studies of pooled phenotypes including IBD, RA with CelD, CD

with CelD, and CD with SA. This produced a final dataset of 330

loci reported across nine ADs. We also included loci reported from

the GWAS catalogue for 4 control diseases (height, breast cancer,

coronary heart disease, and bipolar disorder), similarly using LD

to define specific genomic loci. We computed the dissimilarity

between ADs and the control diseases using distance metric

appropriate for binary data, performing hierarchical clustering

using the hclust function for the R Statistical Programming

Language [41]. We evaluated the uncertainty in the clustering

analyses using a multiscale bootstrap resampling approach

implemented within the pvclust package for R [42].

Supporting Information

Table S1 First tier shows the SNPs presented in Table 2 of the

manuscript, followed by Table 3 in the middle and Table 4 at the

bottom. The power was computed in the joint-analysis of 1,500

cases and 5,706 controls, under the genetic model presented,

assuming a population risk of 0.1% and a= 0.001. OR – odds

ratio; CI – confidence interval; MAF – Minor allele frequency.

The smallest P-value is presented and, unless noted otherwise, it is

under the additive model. OR and CI calculated under the model

presented. * The superscript after the P-value denotes its genetic

model, when other than the additive: ddominant, rrecessive.
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