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Abstract

In a major theoretical paper, Gigerenzer and Goldstein
(1996a) argue that classical rationality should be rejected
as a norm of good reasoning, and that this thesis
undermines both rational models of human thought and the
alternative heuristics-and-biases program. They illustrate
their argument by proposing that a specific cognitive
estimation problem may be carried out by the “Take the
Best” algorithm, which is “fast and frugal,” but not
rational. We argue: (1) that “fast and frugal” cognitive
algorithms may approximate rational norms, and only in
this way can their success be explained; and (2) that new
computer simulations, and considerations of speed and
generality, suggest that other algorithms are at least as
psychologically plausible as Take the Best.

Introduction

Gigerenzer and Goldstein (1996; henceforth G&G; see also
Goldstein & Gigerenzer, 1996) argue that human reasoning
violates classical norms of rationality but nonetheless is
adapted to the problems that it faces in the real world.
Human reasoning is fast, frugal and effective—but not
rational. They illustrate this proposal in the setting of a
cognitive estimation problem: Deciding which is the larger
of two cities, based on a list of features of each city. They
present computer simulations comparing a very simple
decision procedure, Take the Best, based on Gigerenzer’s
probabilistic mental models account (Gigerenzer, Hoffrage &
Kleinbdlting, 1991), with a range of alternative algorithms.

G&G have taken important steps in developing theories of
“fast and frugal” reasoning, and provided a stimulating
discussion of the relationship between human reasoning and
rational norms. However, we believe their conclusions to be
mistaken. In this paper, we put forward two challenges to
G&G’s arguments. First, we argue that human reasoning
must be compared against rational norms, in order to explain
why people’s “fast and frugal” reasoning strategies are
successful. Specifically, we suggest that G&G’s radical
rejection of classical rationality stems from conflating two
levels of explanation: the level of rational analysis
(Anderson, 1990, 1991a; Oaksford & Chater, 1994, 1995)
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where classical rationality holds; and the level of cognitive
algorithms which are bounded by cognitive limitations, but
which may serve as approximations to rational norms.
Second, we present simulations comparing Take the Best
against a range of alternative models which have been widely
used in psychology or artificial intelligence. All these
algorithms have similar levels of performance on the
estimation problem G&G consider, which indicates that this
problem does not usefully discriminate between cognitive
algorithms. We argue that considerations of generality and
speed suggest that other algorithms are at least as
psychologically plausible as Take the Best.

Bounded Rationality and

the Explanation of Human Inference
Almost all aspects of cognition involve uncertain inference,
from word perception to learning to motor control. All of
these inferences are provisional and uncertain, and may be
revised in the light of more information (e.g., Oaksford &
Chater, 1991). But, overall, human uncertain inference is
spectacularly successful—the cognitive system vastly
outperforms the most sophisticated artificial intelligence
systems in almost every real-world domain. Explaining how
this success is possible requires (1) specifying the cognitive
algorithms underlying human uncertain inference. But it also
requires (2) explaining why these algorithms lead to
successful inference. This second issue is the center of
controversy in G&G's paper. G&G argue that there are three
possible viewpoints:

1. The “classical” view that the algorithms involved in
human reasoning follows the laws of probability theory and
statistics, which define normative canons for uncertain
reasoning. This view is held to claim that the mind is “...a
Laplacian demon equipped with unlimited time, knowledge,
and computational might...carrying around the collected
works of Kolmogoroff, Fisher, or Neyman...” (p. 650; all
page references to G&G, 1996 unless otherwise stated)

2. The “heuristics and biases” program (e.g., Kahneman,
Slovic & Tversky, 1982) which suggests that “human
inference is systematically biased and error-prone, suggesting
that the laws of inference are quick-and-dirty heuristics™ (p.
650). G&G claim that this viewpoint “has retained the
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normative kernel of the classical view” as defining the
standard against which success in reasoning should be
judged.

3. The “"bounded rationality” approach, which assumes
that the cognitive system must sarisfice rather than
optimize. Moreover, G&G state that this approach implies
that “the minds of living systems should be understood
relative to the environment in which they evolved rather
than to the tenets of classical rationality..” (p. 651)
(emphasis added). G&G claim that this viewpoint is a radical
departure from both the classical view and its traditional
opponents, because it rejects classical theories of rationality
not only as descriptions of human reasoning, but also as
normative standards. G&G illustrate and argue for this third
position.

We believe that the bounded rationality approach should
not be formulated as a radical alternative to the classical
viewpoint or to the heuristics and biases programs. Rather it
should be viewed as a synthesis of the insights of both
approaches, and to be continuous with both.

What is Bounded Rationality?

We argue that bounded rationality, as its name implies,
should be viewed as an approximation to (unbounded)
rationality. That is, bounded rationality involves rationality,
subject to constraints. These constraints typically involve
resource limitations, including computational restrictions
imposed by time and memory space restrictions, and more
generally by the capacities of the computational architecture
of the cognitive system.

Simon (1955) introduced the idea of bounded rationality to
be contrasted with optimization-based models of individual
behavior then being developed primarily within economics,
operations research, and decision theory rather than in
psychology. These models assumed that people can be
viewed as choosing between courses of action to maximize
their subjective expected utility, as scheduling multiple
activities to maximize productivity and so on. Simon points
out that these optimization problems are typically
computationally intractable. Hence, assuming that thought
is a kind of computation, people are not capable of such
optimization; at best they can satisfice—find an acceptable,
though typically not optimal, solution. Notice that the very
idea of satisficing implies that there is some standard which
is being approximated—maximum expected utility,
productivity, and the like; but it also implies that to
understand how well this standard is achieved, we must
consider the mechanisms by which it is approximated.

Rationality may be bounded to various degrees, depending
on the nature and severity of the constraints. At one
extreme, a computational system exhibiting bounded
rationality might carry out the same kind of calculation as
would be required by an unbounded rational system, except
that the calculations are simplified in some way. For
example, in an optimization problem, the system might not
attempt to find a global optimum, but might settle for the
any solution which is satisfactory, according to some
criterion; or probabilistic calculations might be simplified
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by making strong independence assumptions (e.g., Pearl,
1988). At the other extreme, a computational system might
exhibit bounded rationality by relying on simple heuristics,
which are easy to implement, and will typically (although
by necessity not always) give an outcome in line with
unbounded rationality. Such heuristics are familiar in
cognitive modelling in a wide range of domains. For
example, in models of problem solving, for example,
heuristics range from general purpose “weak” heuristics,
such as means-ends analysis (Newell & Simon, 1972) to
specific heuristics tailored to the problem domain (in chess,
for example, these might concern the values of the pieces or
features of the board position conferring strategic advantage),
and heuristics based on pattern-matching with large numbers
of past exemplars (Chase & Simon, 1973). These heuristics
are very ecasy to apply, and can provide useful
approximations to the information that would be gained
from the rationally justified, but computationally
intractable, process of exhaustively searching the entire
problem space.

At all points on this continuum of bounded rationality,
understanding the system’s performance requires specifying
at least (i) what rational goal is being approximated; (ii)
what algorithms are being used, and how they serve to
approximate the rational goal (subject to the relevant
constraints). These two aspects of the explanation of the
system suggest how understanding a system as exhibiting
bounded rationality can reconcile the intuitions behind the
classical rationality and the heuristics and biases approaches.
The specification of (i) takes the form of an (unbounded)
rational analysis; and (ii) describes the particular algorithms,
which may be the “fast and frugal™ heuristics that Gigerenzer
and Goldstein suggest, which approximate the rational goal.
Thus bounded rationality can be seen as integrating the two
previous approaches to understanding human uncertain
reasoning, rather than as third option, opposed to both.

Notice that there are possible extreme positions, connected
with the classical rationality and the heuristics and biases
programs, which would not fit within the framework of
bounded rationality. The first is that the cognitive system
implements unbounded rationality - and hence part (ii) of the
bounded rationality explanation is unnecessary. We know of
no cognitive scientist who advocates this position— indeed,
it would be untenable on purely computational grounds: The
computational intractability of most rational accounts of
thought, including probability theory, decision theory and
logic (e.g., Paris, 1992; Reiner, 1995) implies that no
physical device could implement unbounded calculations in
the time-scales relevant for human cognition.

The second extreme position is that the cognitive system
consists of algorithms, which do not approximate any
rational standard—and hence part (i) of the bounded
rationality explanation is unnecessary. It is not clear how
many theorists would advocate this position, but we suspect
that very few would do so. The very word “heuristic”
implies a shortcut to achieving some goal by longer,
optimal means. Theorists, such as Kahneman and Tversky,
who describe cognitive processes as heuristics, are thereby



implicitly recognizing that some kind of normative rational
explanation is being approximated, if imperfectly (as G&G
affirm in their characterization of the heuristics and biases
program). Moreover, the very idea that human thought can
be understood as reasoning rather than as a collection of
uninterpreted procedures involves the assumption that some
rational norms are being approximated (see Oaksford &
Chater, 1995). Giving up the idea that thought involves
reasoning has catastrophic implications, not just within
psychology, but more broadly: assumptions of
(approximate) human rationality are at the core of “rational
choice” explanations in the social sciences (e.g., Elster,
1986), micro-economics, and appear to be underpin the
attribution of meaning both to mental states and to natural
language (Davidson, 1984).

G&G claim that the cognitive system is fast and frugal,
but not rational. But we have seen that all or almost all
theorists concerned with human or animal behavior, whether
from the “classical rationality” or “heuristics and biases”
viewpoints agree on the framework of bounded rationality,
where this is understood as integrating rational and
algorithmic styles of explanation. Thus they agree that the
cognitive system is fast, frugal, and, contra G&G, rational.
G&G provide no reason to deviate from this consensus.

Recognizing that developing rational accounts of
cognition is an empirical enterprise, Anderson (1990, 1991)
has proposed an important methodology for discovering a
“rational analysis” of bounded rational systems. His
methodology involves six steps:

1. Specify precisely the goals of the cognitive
system.

2. Develop a formal model of the environment to
which the system is adapted.

3. Make minimal assumptions about
computational limitations,

4. Derive the optimal behavior function given 1-3
above.

5. Examine the empirical evidence to see whether
the predictions of the behavior function are
confirmed.

6. Repeat, iteratively refining the theory.

Notice that the first two steps explicitly address the two
empirical factors determining the correct rational theory
mentioned above: 1. deals with what the cognitive system
takes the task to be, and 2. concerns the structure of the
environment. The third point explicitly addresses the
bounded character of cognitive processes. Because
Anderson’s emphasis is on the rational theory, rather than
how the cognitive system approximates that theory, he
emphasizes cases where these assumptions are “minimal,” to
place the burden of explanation as much as possible on the
rational theory. Moreover, Anderson (in the tradition of
economists and zoologists mentioned above) also
recommends that theorists should push purely rational
accounts as far as possible before introducing cognitive
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constraints, because these constraints are relatively poorly
understood,

These steps are the basis on which the optimal behavior
function is calculated, and compared against the empirical
evidence. Note that Anderson is not committed to the idea of
perfect optimality, rather than satisficing, with respect to
this function, merely that it provides an ideal to which the
cognilive  system approximately conforms. Hence,
Anderson’s method of rational analysis is a blueprint for
attempting to understand the “rational” theory underlying
systems exhibiting bounded rationality, and has been
fruitfully applied across a range of cognitive domains (e.g.,
Anderson, 1991). This approach to understanding bounded
rational systems stands in direct contrast to the approach that
G&G advocate, because it places a rational standard at the
center of psychological explanation, rather than dispensing
with such a standard entirely.

How Plausible is Take the Best?

We now turn from general questions concerning rationality,
to the specific question of the plausibility of Take the Best
as a psychological hypothesis concemning cognitive
estimation, Specifically, G&G consider the problem of
estimating answering questions such as “Which city has the
larger population? (a) Hamburg (b) Cologne. They assume
that the participant does not know the answer, but must
decide on the basis of facts that they know about the two
cities: e.g., whether the cities have a major professional
soccer team, whether it is in East or West Germany).
Because correlations can be found between some of these
features and population size (e.g., major soccer teams tend to
be in large cities), these features can be used as a basis for
answering questions concerning which of a pair of cities is
larger. Specifically, G&G's simulations involve answering
these questions on the basis of nine binary features
associated with each city.

G&G argue for the cognitive plausibility of their “fast and
frugal” algorithm, Take the Best, the core of which is as
follows. People are assumed to rank features in order of how
reliable they determining city size. Comparison of two cities
then involves running through each the features from the
most to the least reliable, until a feature is found on which
the two cities differ—this feature then determines which city
is judged to be the larger. This algorithm thus makes a
decision purely on the basis of a single feature, rather than
integrating information from all features. This is one of the
reasons that G&G claim that their algorithm is non-rational.
G&G’s original competition showed that this simple
algorithm performed just as well in judging city populations
as algorithms such as multiple linear regression, and
algorithms based on tallying (see G&G, 1996 for details).

G&G argue that the good performance of Take the Best in
their competition, and its speed, is evidence for its cognitive
plausibility. In this section, we (1) present results of a new
competition, between Take the Best and a range of general
purpose learning algorithms from psychology and artificial
intelligence, in which all algorithms obtain similar levels of
performance; (2) we argue that these other approaches are to



be preferred on grounds of their generality, in particular
regarding their ability to integrate information; (3) we argue
that G&G’s claim that Take the Best is preferable to other
algorithms on grounds of speed depends on implicit
assumptions about the cognitive architecture. We conclude
that general purpose learning algorithms are at least as
plausible as Take the Best.

A New Competition

G&G’s Take the Best algorithm is specially tailored for the
city population problem. We compare its performance with
three kinds of general purpose algorithms, which have all
been used extensively in cognitive science and artificial
intelligence research: (1) exemplar-based algorithms, which
assume that people store previous examples, and judge new
examples in relation to their similarity to stored examples;
(2) multilayered, feedforward neural networks, trained by
back-propagation; (3) the decision tree classifier.

One difference between G&G’s simulations and those
reported here is that we have assumed that people only have
to compare between familiar cities. G&G also use a
“recognition principle:” that cities which are recognized are
assumed to be larger than cities which are not recognized.
This principle could be combined with any of the algorithms
in our competition and hence does not help distinguish
between them. We have therefore left out this aspect of
G&G’s analysis below.

Representation of data. G&G represent each city as a
vector of nine binary (0 or 1) cue values. To facilitate
comparison between algorithms, we represented a pair of
two cities by nine features representing the difference
between the nine cue values for each city. For example, for
the cities with features (1,1, 0, 0, 1, 0, 0, 1, 1) and (1, O,
1,1,1,0, 1, 1, 0), the corresponding training pattern would
be (0, 1, -1, -1, 0, 0, -1, 0, 1). A tenth value for each
pattern indicated whether the population of the first of each
pair was smaller, equal to, or larger than the population of
the second. Taking all pairs of distinct cities in both orders
yielded a possible 83 x 82 = 6806 training patterns.
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Figure 1. Results of the Competition.
Percentage of correct inferences about the
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population of German cities as a function of the
percentage of comparisons seen during training.

In order to capture the effects of limited knowledge, we
trained each of the algorithms on a subset of the 6806
comparisons. In Figure 1, the percentage of training
examples refers to the percentage of these comparisons
presented during the training of each algorithm. The values
shown in Figure 1 are for generalisation performance, for
predicting the outcome of all 6806 comparisons. This
approach allowed the algorithms to be assessed on an equal
footing.

Take the Best. As described by G&G, we took a subset of
the 6806 comparisons and treated them as training examples.
The cue validity for each feature was calculated as the
fraction of cases in which the feature was larger in value for
the larger city divided by the total number of training
examples. This gave the same cue validities as those
calculated by G&G when the entire data set was used for
training. Having found the cue validities, the test set was
evaluated in the rank order specified by the cue validities, and
the first feature in this order that discriminated between the
two cities was taken to be the model's answer,

Nearest neighbor. The response of the model on test
examples was that of the nearest neighbour in the nine
dimensional space of training examples, using a Euclidean
distance metric.

Generalised Context Model. The Generalised Context
Model (Nosofsky, 1990) is similar to Nearest Neighbor, but
the response is determined by all training examples, rather
than just the nearest neighbor, in proportion to their
similarity to the test example. Specifically, this method
uses a Euclidean distance metric, and the influence of each
training example is a Gaussian function of its distance from
the test example. Nosofsky’s model has adjustable
parameters concerning the relative weighting of each feature,
and also allows bias terms for different response. For
simplicity we did not include such parameters, and thus each
feature was weighted equally, and there were no biases
between responses. We included just one adjustable
parameter, the standard deviation of the Gaussian, which was
optimised straightforwardly by measuring generalisation
score for many different values and choosing the best.

Feedforward connectionist network. We used a three-layer
feedforward network with nine input units, two hidden units,
and one output, trained using the backpropagation
algorithm. The inputs were the difference patterns, and the
output corresponded to the decision about which city is
larger. The target values for the output were 0, 0.5, and 1,
for smaller, equal to, and bigger, respectively. Weights were
initialised to random values within the range (-.5,.5). The
net was trained for 100 epochs (passes through each training
sample), with a learning rate of 0.01, and a momentum of
0.9. The order of the training examples was randomised
within each epoch. During test, output values less than 0.5
were classed as “smaller,” and values greater than 0.5 were
classed as bigger.



Decision trees: C4.5. The decision tree building algorithm
C4.5 (Quinlan, 1993) was used to construct a decision lree
on the basis of the nine feature training vectors, and then
used to classify the comparison vectors in the test set. See
Quinlan (1993) for a detailed description and source code for
the C4.5 algorithm.

Results and discussion. The results shown in Figure |
show similar levels and patterns of performance for all the
algorithms tested. The only substantial difference between
algorithms is that Take the Best is most successful with a
small number of training examples, and least successful
with a large number of training examples. The overall levels
of performance between Take the Best and the other
algorithms are very similar. Combined with G&G's
observation that Take the Best had almost exactly the same
performance profile as tallying, weighted tallying and
multiple regression, this suggests that this population
estimation task is a poor discriminator between algorithms.
Thus, from the results of the competition, there seems no
reason to favor Take the Best over standard and widely used
learning methods from psychology and artificial intelligence.
We now argue that Take the Best is implausible on grounds
of generality, and that, despite G&G, there is no reason to
favor it on grounds of speed.

Generality

Take the Best is a highly specialized algorithm, along two
dimensions. First, it is specialized with respect to domain: it
applies only to the very restricted class of problems, in
which some magnitude must be compared between pairs of
items, where those items are represented by binary features.
Second, it is specialized because it makes strong
assumptions about the structure of the data that it can solve
successfully: Specifically, Take the Best will succeed only
for problems in which individual features can be
meaningfully be considered independently. The other
algorithms in the competition are more general than Take
the Best, on both dimensions. They have all been used
across a wide range of domains, including the modelling of
disparate psychological processes. They also make weaker
assumptions about the structure of the data—specifically,
they can integrate information in complex way.

These general algorithms are able to perform as well as
Take the Best in the competition we have reported.
According to the standard principles of scientific
methodology (e.g., Howson & Urbach, 1989), other things
being equal, more general algorithms, which might
potentially be common to many other cognitive processes,
should be preferred.

Speed
G&G discuss one feature of Take the Best, which may
appear to provide grounds for favoring this algorithm over
the general purpose algorithms we have considered: that
Take the Best draws inferences faster than the other
algorithms in their competition, “measured by the amount
of information searched in memory” (p. 658).
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We note simply that the appropriateness of this measure
depends on assumptions about the architecture of the
cognitive system. On a serial architecture, in which it may
be presumed that information is searched in memory at a
constant rate, Take the Best would be more rapid than, for
example, multiple regression, or the neural network model
and exemplar accounts we have considered here. But in a
parallel architecture, speed of processing will not generally
be related to the amount of information searched in memory,
because large amounts of information can be searched in
memory simultaneously. So, for example, both the leaning
and application of multiple regression can be implemented
in parallel using a connectionist network with a single layer
of connections. This implementation could operate very
rapidly—in the time it takes to propagate activity across one
layer of connections. Similarly the back-propagation account
could also be rapidly implemented in parallel, in
connectionist hardware. In the same way, an instance-based
architecture, in which instances can be retrieved in parallel,
the nearest neighbor and general context model algorithms
would be the quickest.

Only by making specific assumptions about the cognitive
architecture that runs an algorithm is it possible to usefully
compare the speed of Take the Best against the alternatives
we have discussed. There are extensive research programs
aimed at establishing the viability of instance-based and
connectionist architectures as general accounts of cognitive
architecture (e.g., Kolodner, 1993; Rumelhart &
McClelland, 1986). Although the success of these
programmes is yet to be decided, we should not apply a
measure of speed, such as amount of information searched in
memory, which assumes that the appropriate standard by
which simplicity is to be judged is given by a serial
architecture.

In this section, we have argued that general purpose
learning methods give comparable results to Take the Best
on G&G’s population estimation task, are preferable on
grounds of generality, and equally plausible on grounds of
speed. We conclude that the cognitive plausibility of Take
the Best remains to be established.

Conclusions

In this paper, we have argued for two claims. First,
cognitive processes exhibiting bounded rationality should be
understood as approximating some rational standard that may
need to be discovered. Second, a range of general purpose
learning algorithms are at least as plausible as the highly
specialized Take the Best algorithm.

We hope that the approach we have advocated regarding
the relation between rationality and algorithmic accounts
may have broad application in understanding cognition in
psychology, animal behavior and the social sciences. It
promises to reconcile rational and mechanistic constraints in
a range of contexts where the debate focuses on the different
emphasis placed on these constraints. Both rational and
mechanistic factors are important, because the system under
study is presumed only to approximate, perhaps quite
accurately or perhaps very coarsely, a rational solution.



Within this framework, the debate between rationality-based
versus mechanistic explanation becomes a matter of
emphasis and degree, rather than a fundamental divide. We
suggest that in any debate of this kind, there should be a
methodological imperative to explore rationality-based
explanations —only by doing so can the scope of this level
of explanation be assessed; and we caution that rationality-
based explanation cannot be abandoned wholesale, without
losing the ability to explain why the system under study is
adaptive or successful.
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