
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Incorporating Individual Activity Arrival and Duration Preferences within a Time-of-day 
Travel Disutility Formulation of the Household Activity Pattern Problem (HAPP)

Permalink
https://escholarship.org/uc/item/0nj6184q

Author
Yuan, Daji

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nj6184q
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA, 

IRVINE 

 

 

 

Incorporating Individual Activity Arrival and Duration Preferences within a Time-of-day Travel 

Disutility Formulation of the Household Activity Pattern Problem (HAPP) 

 

DISSERTATION 

 

 

submitted in partial satisfaction of the requirements  

for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

in Civil Engineering 

 

 

by 

 

 

Daji Yuan 

 

 

 

 

 

 

 

 

 

 

 

Dissertation Committee: 

Professor Will Recker, Chair 

Professor Michael G. McNally 

Professor R. Jayakrishnan 

 

 

 

 

 

2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© 2014 Daji Yuan 

  



ii 
 

DEDICATION 
 

 

 

To 

 

 

my family 

  



iii 
 

TABLE OF CONTENTS 
 

                                 Page 

LIST OF FIGURES ..................................................................................................................... V 

LIST OF TABLES ...................................................................................................................... VI 

ACKNOWLEDGEMENTS .................................................................................................... VIII 

CURRICULUM VITAE ............................................................................................................. IX 

ABSTRACT OF THE DISSERTATION .................................................................................. X 

CHAPTER 1 INTRODUCTION AND RESEARCH MOTIVATION .................................... 1 

CHAPTER 2 LITERATURE REVIEW ..................................................................................... 4 

LITERATURE IN ACTIVITY-BASED DEMAND MODELING ................................................................. 4 

PREVIOUS LITERATURE RELATED TO HAPP ................................................................................. 8 

CHAPTER 3 THE TIME OF DAY HOUSEHOLD ACTIVITY PATTERN PROBLEM . 12 

INTRODUCTION ........................................................................................................................... 12 

TIME ALLOCATION THEORY AND HAPP ..................................................................................... 13 

ACCOUNTING FOR TIME-OF-DAY ACTIVITY UTILITY ................................................................. 14 

ACCOUNTING FOR DURATION EFFECTS IN ACTIVITY PARTICIPATION ........................................ 17 

MODEL FORMULATION ............................................................................................................... 20 

HYPOTHETICAL EXAMPLES ......................................................................................................... 29 

CONCLUSION .............................................................................................................................. 43 

CHAPTER 4 A TRAFFIC DEPENDENT HOUSEHOLD ACTIVITY PATTERN 

PROBLEM MODEL .................................................................................................................. 45 

INTRODUCTION ........................................................................................................................... 45 

MODEL FORMULATION ............................................................................................................... 48 

HYPOTHETICAL EXAMPLE .......................................................................................................... 55 

INPUT OF DIFFERENT TRAFFIC CONDITIONS ................................................................................. 59 

CONCLUSION .............................................................................................................................. 68 

CHAPTER 5 DEVELOPMENT OF ACTIVITY-BASED DEMAND MODELING 

FRAMEWORK ........................................................................................................................... 70 

INTRODUCTION ........................................................................................................................... 70 

SURVEY DATA AND ACTIVITY PATTERN STATISTICS ................................................................... 71 

STATISTICAL INFERENCES OBTAINED FROM SURVEY DATA ......................................................... 82 

THE OBJECTIVE FUNCTION OF TUHAPP .................................................................................... 89 

CALIBRATION OF WEIGHT DISTRIBUTION .................................................................................... 90 

CONCLUSION ............................................................................................................................ 101 



iv 
 

CHAPTER 6 CONCLUSION AND FUTURE RESEARCH................................................ 103 

CONCLUSION ............................................................................................................................ 103 

FUTURE RESEARCH ................................................................................................................... 104 

REFERENCES .......................................................................................................................... 107 

  



v 
 

LIST OF FIGURES 

Figure 3.1 The utility of activity 𝒊 starts at 𝑻𝒊𝜶 of person 𝜶 ........................................................ 16 

Figure 3.2 Utility on duration of activity i of person α ................................................................. 20 

Figure 3.3 Arrival utility on activity 1 (blue) and activity 3 (red) of person 1 ............................. 35 

Figure 3.4 Duration utility on activity 1 (blue) and activity 3 (red) of person 1 .......................... 36 

Figure 3.5 Arrival utility on old activity 1 (blue), new activity 1 (green) and activity 3 (red) of 

person 1 ......................................................................................................................................... 37 

Figure 3.6 Duration utility on old activity 1 (blue), new activity 1 (green) and activity 3 (red) of 

person 1 ......................................................................................................................................... 39 

Figure 4.1 the dimension of travel time or travel cost matrixes ................................................... 47 

Figure 4.2 the time of day travel times and travel costs ............................................................... 48 

Figure 4.3 TUHAPP solution on hypothetical example ............................................................... 59 

Figure 4.4 TUHAPP solution of proposal A ................................................................................. 66 

Figure 4.5 TUHAPP solution of proposal B ................................................................................. 68 

Figure 5.1 Structure of TUHAPP (UHAPP) Application ............................................................. 71 

Figure 5.2 Distribution of number of trips of every household .................................................... 73 

Figure 5.3 Distribution of household size ..................................................................................... 74 

Figure 5.4 Distribution of number of vehicles of every household .............................................. 75 

Figure 5.5 Histogram of arrival time on shopping (return home) and work (return home) 

activities (divide 24 hours into 1440 minutes) .............................................................................. 80 

Figure 5.6 Histogram of activity duration for shopping and work activities ................................ 81 

Figure 5.7 Histogram of departure home time at the beginning of day  (divide 24 hours into 1440 

minutes)......................................................................................................................................... 81 

Figure 5.8 Histogram of arrive home time at the end of day  (divide 24 hours into 1440 minutes)

....................................................................................................................................................... 82 

Figure 5.9 Procedures of obtaining UHAPP (TUHAPP) parameters of each activity ................. 84 

Figure 5.10 Arrival time utility function of shopping, return home from shopping, work and 

return home from work activities, respectively (divide 24 hours into 1440 minutes) .................. 84 

Figure 5.11 Departure time utility function of leaving home at the start of day (divide 24 hours 

into 1440 minutes) ........................................................................................................................ 85 

Figure 5.12 Arrival time utility function of arrive home at the end of day (divide 24 hours into 

1440 minutes)................................................................................................................................ 86 

Figure 5.13 Utility of duration on shopping and work activity .................................................... 88 

Figure 5.14 TUHAPP as a part of the activity-based model ....................................................... 101 

 

 

  

file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946110
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946111
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946112
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946113
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946114
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946114
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946115
file:///C:/Users/Daji/Dropbox/Dissertation/HAPP/Dissertation/Dissertation_Daji_Final_draft_1.docx%23_Toc397946115


vi 
 

LIST OF TABLES 

Table 3.1 Hypothetical data set ..................................................................................................... 30 

Table 3.2 Linear utility function of each person on each destination 𝒂𝒊𝜶, 𝝁𝒊𝜶, 𝒃𝒊𝜶, 𝑲𝒊𝒆𝜶 and 

𝑲𝒊𝒍𝜶 .............................................................................................................................................. 30 

Table 3.3 Utility function of duration 𝑼𝒊_𝒎𝒊𝒏𝛂,  𝒔𝒊_𝒎𝒊𝒏𝛂, 𝒔𝒊_𝒎𝒂𝒙𝛂 and 𝑲𝒊𝒔𝜶 .................... 31 

Table 3.4 Travel times for each node to node pair (minutes) ....................................................... 31 

Table 3.5 Travel costs for each node to node pair (dollar) ........................................................... 31 

Table 3.6 Vehicle flows and person flows from HAPP ................................................................ 32 

Table 3.7 Arrival time and activity duration rom HAPP .............................................................. 33 

Table 3.8 Vehicle flows and person flows from UHAPP at base case scenario ........................... 33 

Table 3.9 Arrival time and activity duration from UHAPP at base case scenario........................ 34 

Table 3.10 Linear utility function of person on activity 1 ............................................................ 37 

Table 3.11 Vehicle flows and person flows from UHAPP case 1 scenario .................................. 37 

Table 3.12 Arrival time and activity duration from UHAPP case 1 scenario............................... 38 

Table 3.13 Utility function of duration 𝑼𝒊𝛂_𝒎𝒊𝒏,  𝒔𝒊_𝒎𝒊𝒏𝛂, 𝒔𝒊_𝒎𝒂𝒙𝛂 and 𝑲𝒊𝒔𝜶 .................. 39 

Table 3.14 Vehicle flows and person flows from UHAPP case 2 scenario .................................. 40 

Table 3.15 Arrival time and activity duration from UHAPP case 2 scenario............................... 40 

Table 3.16 Vehicle flows and person flows from UHAPP case 3 scenario .................................. 41 

Table 3.17 Arrival time and activity duration from UHAPP case 3 scenario............................... 41 

Table 3.18 Arrival time and activity duration of different input in HAPP and UHAPP .............. 43 

Table 4.1 Initial cost of each mode ............................................................................................... 55 

Table 4.2 Periods time window .................................................................................................... 56 

Table 4.3 Travel time matrix of every mode in every time period ............................................... 56 

Table 4.4 Travel cost matrix of every mode in every time period ................................................ 56 

Table 4.5 Vehicle flows and person flows of TUHAPP example ................................................ 57 

Table 4.6 Arrival time and activity duration of TUHAPP example ............................................. 58 

Table 4.7 Two different transportation enhancement proposals ................................................... 60 

Table 4.8 Initial cost of each mode ............................................................................................... 60 

Table 4.9 Travel time and cost matrix of mode auto in proposal A and proposal B .................... 60 

Table 4.10 Travel time and cost matrix of mode transit in proposal A ........................................ 62 

Table 4.11 Travel time and cost matrix of mode transit in proposal B ........................................ 63 

Table 4.12 Vehicle flows and person flows in Proposal A ........................................................... 65 

Table 4.13 Arrival time and activity duration in Proposal A ........................................................ 65 

Table 4.14 Vehicle flows and person flows in Proposal B ........................................................... 67 

Table 4.15 Arrival time and activity duration in Proposal B ........................................................ 67 

Table 5.1 Data set households by county of residence ................................................................. 72 

Table 5.2 Number of trips ............................................................................................................. 73 

Table 5.3 Household size statistics ............................................................................................... 75 

Table 5.4 Number of vehicles statistics ........................................................................................ 76 



vii 
 

Table 5.5 Primary trip purpose with statistics .............................................................................. 76 

Table 5.6 Mode of trip .................................................................................................................. 77 

Table 5.7 Linear demand curve parameters .................................................................................. 86 

Table 5.8 Linear demand curve statistics ...................................................................................... 86 

Table 5.9 Utility function of shopping, and work duration .......................................................... 88 

Table 5.10 Linear utility duration function statistics .................................................................... 88 

Table 5.11 Sample household ID 12023859 travel diary data ...................................................... 95 

Table 5.12 Travel times for each node to node pair in every time period (minutes) household ID 

12023859....................................................................................................................................... 95 

Table 5.13 Different beta scenarios on household ID 12023859.................................................. 96 

Table 5.14 TUHAPP solutions on each case scenario at household ID 12023859 ...................... 97 

Table 5.15 Sample household ID 12048694 travel diary data ...................................................... 98 

Table 5.16 Travel times for each node to node pair in every time period (minutes) household ID 

12048694....................................................................................................................................... 98 

Table 5.17 Different beta scenarios on household ID 12048694.................................................. 98 

Table 5.18 TUHAPP solution on each case scenario at household ID 12048694 ...................... 100 

 

 

 

 

 

  



viii 
 

ACKNOWLEDGEMENTS 

I would like to express the deepest appreciation to my committee chair Professor Will Recker for 

advising me and guiding me through the completion of this dissertation. It was my great fortune 

that my advisor was one of the pioneers of activity-based demand modeling. Without his 

guidance and persistent help this dissertation would not have been possible. There were many 

occasions where found myself struggling with implementing the HAPP model and Professor 

Recker was always available to push me past these obstacles. I would like to thank Professor 

Joseph Chow for the initial discussions about a dynamic HAPP model that eventually led to the 

traffic-dependent HAPP model developed in my dissertation. I would also like to thank my 

committee members, Professor Michael G. McNally and Professor R. Jayakrishnan for the many 

discussions on activity-based demand models during the early stages of my dissertation work. I 

would like to thank Professor Robert Fourer for answering my questions about coding in AMPL. 

Through his online discussion group I was able to ask numerous questions regarding AMPL and 

he always provided helpful and thoughtful responses. I would like to thank Sarah Hernandez for 

helping with edits to my dissertation and continued discussion on my research. I would like to 

thank Qijian Gan for his guidance on the particulars of coding in Matlab. I would like to thank 

Hsi-Hwa Hu, Hao Cheng, Yongping Zhang, Mana Sangkapichai and other staff at SCAG for 

their insights into developing practice oriented activity-based models. My valuable experience as 

an intern at SCAG opened my eyes to the current and future obstacles faced in regional 

transportation planning and modeling. This dissertation came to fruition as a result of my 

complementary experiences in the transportation research and practice arenas. This dissertation 

represents a connection between HAPP as a research product and an implementable tool used in 

practice. I hope this dissertation can narrow that common gap that exists in so many research 

areas by guiding valuable research products into practice. More than anything, I would like to 

thank my parents for supporting me through my PhD studies. Without their continued support, I 

would not have been able to pursue my PhD and their help tremendously alleviated the stresses 

of everyday life. 

  



ix 
 

CURRICULUM VITAE 

EDUCATION 

2014 Ph.D. in Civil Engineering (Transportation Systems Engineering) 

University of California, Irvine, USA 

 

2008 MS in Civil Engineering 

University of California, Irvine, USA 

 

2005 BS in Civil Engineering 

South China University of Technology, China 

 

 

WORK EXPERIENCE 

2006 – 2014 Graduate Student Researcher 

Department of Civil and Environmental Engineering, UC Irvine, USA 

 

2012 – 2013 Temporary Transportation Modeler 

Southern California Association of Governments, Los Angeles, USA 

 

2011 – 2012 Intern 

Southern California Association of Governments, Los Angeles, USA 

 

 

SCHOOL SERVICE 

2010 – 2012 Associated Graduate Student (AGS) Council Member  

UC Irvine, USA 

 

 



x 
 

ABSTRACT OF THE DISSERTATION 

 

Incorporating Individual Activity Arrival and Duration Preferences within a Time-of-day Travel 

Disutility Formulation of the Household Activity Pattern Problem (HAPP) 

 
By 

 

Daji Yuan 

 

Doctor of Philosophy in Civil Engineering 

 

University of California, Irvine, 2014 

 

Professor Will Recker, Chair 

 

 

 

This dissertation provides modifications and extensions to the Household Activity Pattern 

Problem (HAPP) to help move existing formulations from a laboratory prototype toward a more 

useable activity-based demand modeling product. Previous research on HAPP has been based on 

a pickup and delivery problem with time window constraints (PDPTW), which does not lend 

itself easily to application that is compatible with an activity-based forecasting model. 

Meanwhile, other research on activity-based modeling lacks of the integration of household 

decisions regarding time-of-day arrival, activity duration and traffic congestion effects on travel. 

We borrow concepts from economic research and consider that each household member tries to 

obtain maximum utility by choosing arrival time of activities, choosing activity duration while 

minimizing travel times and travel costs throughout the course of the day. Chapter 1 provides the 

introduction and motivation of this research. Chapter 2 reviews pertinent literature relative to the 

activity-based approach, the HAPP model, and positions the dissertation research relative to the 
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existing state-of-the-art. In Chapter 3 we propose extensions to HAPP (UHAPP) that incorporate 

time of day activity arrival utility and the utility of activity duration into HAPP as decision 

variables. In Chapter 4 we introduce the travel time-dependent household activity pattern 

problem model (TUHAPP), which extends the ability of HAPP to capture the time-of-day (TOD) 

difference in travel times and costs. In Chapter 5 we develop a framework using TUHAPP 

(UHAPP) as a regional activity-based demand model with a household travel survey. Chapter 6 

provides conclusions and future research. 
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Chapter 1 INTRODUCTION AND RESEARCH MOTIVATION 

The foundation of activity-based travel models (ABM) is that travel demand derives from 

people’s needs and desires to participate in activities where in many cases are located outside 

their homes, resulting in the need to travel. Most activity-based models are based on economic 

consumer behavioral theories about making decisions on activity participation in the presence of 

constraints, including decisions on where to participate in activities, when to participate in 

activities, how to get to these activities, and how long to stay at these activities. Because they 

represent decisions at the level of individual persons, and replicate the agenda of these people 

across the entire day, activity-based models are often better at representing how investments, 

policies, or other changes will impact people’s travel behavior comparing to the trip-based four-

step model, where the traditional transportation planning is typically based. Transportation 

planning in the US (Davidson, et al., 2007) and some developed countries in the world has 

changed from ‘build and supply’ to policy-oriented development. This change has in turn spurred 

a change in the methodology that forms the basis of the transportation planning process. The trip-

based four-step model estimates aggregated zone to zone trips that result from the supply of 

facilities. As the ‘build and supply’ policy is not in favor after enactment of several laws, such as 

the Clean Air Act Amendments of 1990 (CAAA) (Clean Air Act Amendments of 1990, 1990), 

the Transportation Equity Act for the 21st Century (TEA-21) (TEA-21 - Transportation Equity 

Act for the 21st Century, 1998), the Moving Ahead for Progress in the 21st Century Act (MAP-

21) (Moving Ahead for Progress in the 21st Century Act (MAP-21), 2012), the Senate Bill 375 

(Senate Bill No. 375, 2008) in California, and the theoretical advantage of ABMs, many 

metropolitan planning organizations (MPOs) are either developing or are transitioning from the 
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traditional trip-based four-step model to a process incorporating an activity-based demand 

model. In the past 40 years, activity-based demand modeling has evolved from a theoretical 

framework to a number of practical demand modeling packages, such as CEMDAP, FAMOS, 

ALBATROSS, TASHA (Pinjari & Bhat, 2011). There are two main approaches to the current 

state of activity-based demand modeling (Pinjari & Bhat, 2011): “utility maximization-based 

econometric model systems, and rule-based computational process model systems”. The former 

approach is widely used in today’s ABM modeling by many Metropolitan planning organizations 

(MPO), such as Portland METRO, San Francisco SFCTA, New York NYMTC, Columbus 

MORPC, Sacramento SACOG, Atlanta ARC, Southern California SCAG, etc.  

This dissertation provides extensions to the Household Activity Pattern Problem (HAPP) 

(Recker W. W., 1995) to help move existing formulations from a laboratory prototype toward a 

more useable activity-based demand modeling product. Among the activity-based demand 

approaches currently available, HAPP has the advantage of a consistent internal structure that 

captures an individual’s simultaneous decision of activity chaining, scheduling and activity 

people/vehicle assignment. However, there are several limitations in using HAPP as a basis for 

an activity-based demand modeling approach. Although the original HAPP can estimate or 

predict activity chaining, scheduling and ride sharing option, it treats travel times and travel costs 

as constant throughout the day under hard time window constraints. Moreover, its objective is 

based solely on travel time considerations (disutility) and ignores the actual utility gained from 

activity performance. Thus, it cannot reflect the arrival time preference of different people for 

different activities, nor the trade-offs between these preferences and adjustments to the duration 

of activities. Furthermore, it is not clear whether the hard time window constraints, a required 

input to the model, reflect boundaries on the person’s preference or are only the business hours 
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of the restaurants or stores. Not only do the hard time window constraints not reflect of the 

reality of people’s travel outcomes, nor is activity duration a fixed, rigid constant—the duration 

of most activities is a decision variable that may reflect changes in the transportation facility and 

policies. Because a constant travel time and a constant travel cost do not reflect the reality of the 

traffic conditions for many people, HAPP cannot capture people’s travel decision responses to 

changes in traffic conditions during a day. Thus, it cannot evaluate policies that regulate time-of-

day traffic conditions, e.g., congestion.  Based on the aforementioned limitations of HAPP, we 

first propose modifications and extensions to HAPP in chapter 3, presenting UHAPP, which 

incorporates activity utility specifications in the form of both an arrival time preference 

triangular demand function to address the limitation imposed by using hard time window 

constraints and an activity duration utility function to release the constant activity duration and, 

instead, treat activity duration as a decision variable. In chapter 4, we further extend UHAPP as 

TUHAPP to be capable of reflecting time-of-day traffic conditions on people’s travel decisions. 

In chapter 5, we develop a framework for using TUHAPP (UHAPP) as an activity-based demand 

forecasting model, using household travel survey data, and present example results. We present 

conclusions and future research in chapter 6 where we point out the limitation of the TUHAPP 

and propose several ideas for addressing them. 
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Chapter 2 LITERATURE REVIEW 

In this chapter we present the state-of-the-art in activity-based modeling and the limitations of 

current activity-based models and, in particular, the limitations of the HAPP model. 

Literature in activity-based demand modeling 

Activity-based demand modeling (ABM) can be traced back to the original work by Hägerstrand 

(Hägerstraand, 1970) in which regional science disaggregate individuals in terms of facing three 

large aggregations of constraints: ‘capability constraints,’ ‘coupling constraints,’ and ‘authority 

constraints.’ The individual movement through time-space was viewed as a prism. The demand 

for travel was derived from the demand for activities, which was associated with space and time 

constraints. Jones et al. (Jones, Dix, Clarke, & Heggie, 1983) provided a comprehensive study on 

better understanding of household travel behavior and initial attempts to model complex travel 

behavior under the activity-based demand model framework were first completed. The first 

operational activity-based model, STARCHILD (Recker, McNally, & Root, 1985) (Recker, 

McNally, & Root., 1986a) (Recker, McNally, & Root., 1986b), was designed for research 

purposes and it required data that were not usually available, so it was not suitable for general 

application. 

Bowman and Ben-Akiva (Bowman & Ben-Akiva, 2001) presented an integrated activity-based 

discrete choice model system of an individual’s activity and travel schedule, and used a 1991 

Boston travel survey and transportation system level of service data to demonstrate the prototype 

concept. A person’s choice of activities and associated travel were modeled using a nested logit 

model. In the prototype, the activity pattern includes: (a) the primary – most important – activity 

of the day, with one alternative being to remain at home for all of the day’s activities; (b) the 
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type of tour for the primary activity, including the number, purpose and sequence of activity 

stops; and (c) the number and purpose of secondary – additional – tours. Tour models included 

the choice of time of day, destination and mode of travel, and were conditioned by the choice of 

activity pattern. The choice of activity pattern was influenced by the expected maximum utility 

derived from the available tour alternatives. The principal limitation of this model system was 

that the level of service data used were not sufficiently accurate for a disaggregate activity-based 

model. Consequently, the time-of-day models were not accurate, and more detailed time-of-day 

travel times and costs data were required to get an acceptably accurate estimation. Also, due to 

the inherent limitation of discrete choice models to have a countable (small) set of alternative 

choices, coarse classification and choice dimensions were introduced to the model. This limited 

the advantage of activity-based model as a disaggregate forecast model to better evaluate 

different alternatives. 

ALBATROSS: A Learning-based Transportation Oriented Simulation system (ALBATROSS) 

was developed by Arentze and Timmermans (Arentze & Timmermans, 2004) simulated 

individual’s decisions related to each facet of activity schedules generally considered relevant for 

activity-travel analysis. The facets included: activity type, duration, travel party, start time, trip 

type, location and transport mode. The system was designed as a rule-based model in which 

situational, household, institutional and space–time constraints as well as choice heuristics of 

individuals were explicitly represented in the system. Although ALBATROSS was a 

comprehensive set of choice heuristics of individual’s travel and scheduling decisions, it was still 

lacking the ability of modeling household members’ joint decision making and personal 

interaction relationships, activity scheduling and in-home versus out-of-home activity 

substitution choice behavior. 
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Arentze and Timmermans (Arentze & Timmermans, 2004) also introduced a multi-state 

supernetwork approach to model multi-activity, multimodal trip chains. Their approach extended 

the least-cost path methods to model complete trip chains that might involve multiple transport 

modes and multiple activities. The results could generate an optimal sequence of traveling, 

transferring, parking, conducting activities and dropping off activities. Liao et al. (Liao, Arentze, 

& Timmermans, 2013) extended such an approach to incorporate space-time constraints in a way 

that the multi-state supernetworks were time-dependent, and allowed modeling choice of mode, 

route, parking and activity locations in a simultaneous and time-dependent manner and more 

accurately capturing interdependences of the activity-travel trip chaining. However, this 

approach did not consider interaction within a household and the illustration example was too 

simple to draw broad conclusions.  

TASHA: the Toronto Area Scheduling for Household Agents (TASHA) (Miller & Roorda, 2003) 

was a prototype activity scheduling microsimulation model that generated activity schedules and 

travel patterns for a 24-hour typical weekday for each person within a household. The prototype 

model was developed based on conventional trip diary data and therefore it was easier to transfer 

to other areas for which conventional trip diary data were already available. The model made use 

of the concept of the “project,” which was defined as a coordinated set of activities tied together 

by a common goal or outcome. Projects were the “containers” to organize activity episodes into 

the schedules of persons in a household. A heuristic, or rule-based, method was used to organize 

activities into projects and then to form schedules for interacting household members. Activity 

generation and scheduling components of TASHA were validated using 1996 and 2001 travel 

survey data for the Greater Toronto Area (GTA), Canada (Roorda, Miller, & Habib, 2008). The 

validation proceeded with: (a) verification that TASHA replicated the 1996 base case upon 
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which the model was originally built; and (b) comparison of TASHA’s forecast of 2001 daily 

travel behavior with observed travel survey data for 2001. TASHA activity generation and 

scheduling model components replicated observed activities with close precision and accuracy 

for the base year. The distribution of activities in the day was forecasted with relatively high 

accuracy but TASHA was not able to predict an observed increase in activity participation rate in 

a five-year forecast. Although the verification and validation results were promising, attention 

needed to be addressed to reproducing differences in travel behavior in different areas of the 

Great Toronto Area, in different demographic groups, in different mode choices by time of day, 

and in different responses to land use and policy scenarios.  

FAMOS: The Florida Activity Mobility Simulator (FAMOS) (Pendyala, Kitamura, Kikuchi, 

Yamamoto, & Fujii, 2005) was a comprehensive multimodal activity-based system for 

forecasting travel demand. The Household Attributes Generation System (HAGS) and the Prism-

Constrained Activity–Travel Simulator (PCATS) were the two main modules composed in 

FAMOS. HAGS was primarily a population synthesizer and PCATS modeled activity and travel 

patterns for each person synthesized by HAGS. FAMOS was developed and estimated with 2000 

Southeast Florida Household Travel Survey. The basic data requirements for FAMOS included 

zonal socioeconomic data, zonal network LOS data and household travel survey. FAMOS 

simulated activity–travel patterns along the continuous time axis while accounting for the 

interdependency among trips as a result of trip chaining. Since level of service data were used in 

FAMOS, the forecast output will also have coarse estimation. 

CEMDEP: The Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns 

(CEMDAP) (Bhat, Guo, Srinivasan, & Sivakumar, 2004) used land-use, socio-demographic, 

activity system, and transportation level-of-service attributes to provide a complete daily 
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activity-travel pattern for each individual in every household of the region. Bhat (Bhat, 2005) 

(Bhat, 2008) derived a utility theory-based model for discrete/continuous choice that assumed 

diminishing marginal utility as the level of consumption of any particular alternative increases. 

The multiple discrete-continuous extreme value (MDCEV) model could capture the discrete–

continuous probability of not consuming certain alternatives and consuming given levels of the 

remaining alternatives better than traditional discrete choice models. However, it only evaluated 

the time use allocation decisions without considering the time-of-day traffic conditions and 

considering space and time constraints of the network. Time allocation was the only constraint in 

the optimization problem in MDCEV.  

SimAGENT, the recently developed large scale spatio-temporal simulator of activities and travel 

for SCAG (Goulias, et al., 2012), was a full-fledged operational activity-based model, that 

consisted of: PopGen (Ye, Konduri, Pendyala, Sana, & Waddell, 2009), which created the entire 

resident population of the region, MDCEV, which simulated combinations of joint and solo 

activities for all persons, CEMDAP, which simulated activity-travel patterns of all individuals in 

the region for a 24 hour period along a continuous time axis, and other sub models. Thus, the 

limitation of MDCEV and CEMDAP will be carried over to SimAGENT. 

 

Previous literature related to HAPP 

The main concerns regarding the utility maximization-based discrete choice approach are that 

(Recker, Duan, & Wang, 2008) “(1) the set of feasible solutions (alternatives) in the choice set is 

infinite, whereas that for standard discrete choice models is countable (and, usually small), (2) 

the solution vector comprises continuous, as well as discrete variables, (3) although the overall 
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solution represents a mutually exclusive choice, the solution vector itself is composed of 

components that are not generally mutually exclusive, (4) the components of the utility function 

are not directly interpretable as utility weights of attributes, but rather are related to these weights 

through a transformation matrix, and (5) the complexity of the constraint space generally 

precludes the type of closed-form probability result achievable with standard discrete choice 

models.” A purportedly better approach to address the continuous (time) variables and discrete (a 

combination of any persons, vehicles, locations, activities) variables, the Household Activity 

Pattern Problem (HAPP) model, which adopts some well-known network-based formulations in 

operation research, was proposed by Recker (Recker W. W., 1995). The HAPP model 

analyzed/predicted the optimal path of household members fulfilling the need of out of home 

travel knowing a priori the agenda. The most general case of HAPP could estimate vehicle 

transfer, selective activity participation, and ride sharing options. A number of research efforts 

have followed this ground breaking research since the introduction of HAPP by Recker (Recker 

W. W., 1995). 

The first attempt at application of HAPP was done by Recker and Parimi (Recker & Parimi, 

1999). They evaluated the potential environmental impact on efficient trip chaining, ridesharing 

and fleet technology. The conclusions shed some light on the advantage of using HAPP when 

traditional trip based modeling could not model complex travel behavior. Recker et al. (Recker, 

Chen, & McNally, 2001) used HAPP to measure the impact of efficient household travel 

decisions on potential travel time savings and accessibility gains. Because HAPP could 

incorporate spatial-temporal constrains and household interaction effects into household travel 

decisions, it expands the applicability of accessibility considerations to a variety of real-world 

policy options. Recker (Recker W. W., 2001) demonstrated how HAPP as a mathematical 
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programming formulation could fit into the activity-based demand modeling framework while 

sustaining utility-maximization principles. Recker et al. (Recker, Duan, & Wang, 2008) 

introduced a sophisticated estimation procedure to estimate the relative importance of factors 

associated with HAPP. The method used a genetic algorithm to estimate coefficient values of the 

utility function, based on a particular multidimensional sequence alignment method to deal with 

the nominal, discrete attributes of the activity/travel pattern. The estimation procedure was tested 

on the 1994 Southwest Washington and Oregon Area activity and travel behavior survey. The 

procedure was very complicated on the top of the complex mathematical programming problem. 

The complexity of such a methodology prevented further progress in the practical application of 

HAPP. 

Gan and Recker (Gan & Recker, 2008) extended HAPP to be able to capture such activity 

rescheduling problems as activity cancellation, insertion, and duration adjustment. Chow and 

Recker (Chow & Recker, 2012) introduced a parameter estimation method to calibrate HAPP so 

that it could be used for activity-based forecasting. Inverse optimizations for calibrating 

coefficient of objective function along with goal arrival times were jointly estimated. Although 

the methodology was innovative and could be used as a reference for application of HAPP, no 

attention was paid to limitations imposed by the structure of HAPP, which did not incorporate 

the consideration of difference of activity durations and the difference of travel times and costs 

by time of day. Kang and Recker (Kang & Recker, 2013) extended HAPP to incorporate location 

choice (LSP-HAPP) capability and introduced column generation with dynamic programming 

algorithm to solve LSP-HAPP. However, the application of HAPP was still limited in some 

simple scenarios due to its focus on the form of the original pickup and delivery problem. 

Further extension and adjustments are needed to be made for consideration of being an activity-
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based demand model. Thus, our research will try to close the gap between a practical HAPP and 

a laboratory HAPP and propose some simple solutions for it. 

The body of literature concerning HAPP is already well developed, overcoming barriers against 

using HAPP as an activity-based forecasting model is still challenging. This research is an effort 

to incorporate some well-known economic theory into HAPP, such as utility of arrival time 

preference, utility of activity duration, and by adding time-dependent travel times and travel 

costs to HAPP by extending the dimension of decision variables. 
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Chapter 3 THE TIME OF DAY HOUSEHOLD ACTIVITY PATTERN 

PROBLEM  

Introduction 

Activity-based modeling approaches are increasingly viewed as a viable alternative to the 

traditional four-step modeling process, partly, as pointed out by Rasouli and Timmermans 

(Rasouli & Timmermans, 2013), lack of integration was a serious concern for traditional four-

step models. Such integration posed serious difficulties in defining and considering all of the 

possible combinations of linkages among ’packages’ of decisions affecting travel for the purpose 

of engaging in activities. But, according to Hägerstrand, (Hägerstraand, 1970) ‘With a suitable 

technique for grouping constraints in time-space terms, one could perhaps hope to be able to boil 

down their seemingly tremendous variety into a tractable number.’ HAPP (Household Activity 

Pattern Problem) has the capability of integrating many decision variables within the space-time 

constraints described by Hägerstrand. HAPP is a simultaneous decision model, where the 

solution has considered time and space constraints along with household members, vehicles and 

time windows. HAPP is adapted from the pickup and delivery problem with time windows 

(PDPTW), which is a special case of resource constrained shortest path problems. It bears the 

linearity and also the NP-hard complexity from the original pickup delivery problem. In this 

chapter, we introduce extensions to the HAPP framework to account for the variation of utility of 

activity participation both with time-of-day as well as with activity duration. Specifically, we 

incorporate two important decision considerations into HAPP: 1) the time-of-day activity utility, 

and 2) the activity duration utility. We propose that there should be three components in the 

objective function in HAPP: 1) the utility of undertaking an activity 𝑖 at a particular time of day, 



13 
 

2) the disutility of travel times and costs associated with accessing that activity, and 3) the utility 

of the duration of participation in the activity. Throughout this research, we will maintain the 

linearity of HAPP so as not to extend the complexity of the problem, while still keeping it robust 

enough to address the problem. 

 

Time allocation theory and HAPP 

The principal difference between the original HAPP model and that proposed here is that the 

objective function includes utilities of specific arrival time for participation and utilities of 

activity duration, together with constraints that reflect arrival time and activity duration 

preferences. The simplest version of the Household Activity Pattern Problem (HAPP) is one in 

which the household tries to maximize a cardinal utility function of the form 

𝑢 = 𝑈(𝑋, 𝑇, 𝑆) (3-1) 

where 𝑋 denotes the combination of out-of-home activities in which the person participates 

during the day and their travel linkages, 𝑇 denotes the vector of arrival times of each activity, 𝑆 

denotes the vector of durations of each activity. Utility 𝑢 is specified as a function of 𝑋, 𝑇, 𝑆. 

Without explicitly considering the price of undertaking an activity, this formulation is similar to 

DeSerpa’s (DeSerpa, 1971) work, where a theory of consumer behavior related to time allocation 

was presented. The household member’s utility of travel during the day is related to: in which 

activity the consumer decides to participate; when the consumer wants to arrive, and how long 

the consumer wants to spend his/her time in that activity, minus the negative benefit (disutility) 

of travel required to access the activity. The original formulation of HAPP is concerned only 
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with the latter component, and does not address positive aspects of utility gained from activity 

performance, but rather treats this aspect as invariant. 

The individual is subject to constraints under which choices among all possibilities must be 

made—this is a constrained optimization problem. We assume that there is a list of mandatory 

and voluntary activities that belongs to the person to be scheduled for completion. In economic 

terms, we assume that each activity is a perfect complement to all others—which means that one 

activity cannot be substituted for by another. Each activity has an independent predetermined 

ideal utility that may be related to activity types, personal preference, age, gender and other 

socio-demographic data. We assume that the utility of each activity is independent of each 

other—undertaking activity A has nothing to do with whether or not the utility of undertaking 

activity B will change. The feasibility of undertaking both activities A and B may force the 

person to choose to participate in only one, but choosing either one will not change the utility of 

the other. Subject to its arrival time, the utility function of the activity is assumed to be 

dependent only on duration; i.e., the ideal utility of performing that activity will not change 

during the day, no matter when it starts. Although there are preferences related to arrival times 

and duration of activities, each household member may face different traffic conditions during 

the day which may force the change of arrival times and duration of activities. 

 

Accounting for Time-of-day Activity Utility 

The utility of arrival time to each activity is related to when the person chooses to arrive at the 

activity location. Wang (Wang, 1996) estimated that the utility of undertaking an activity varies 

over the course of the day. Although the estimation shed light on the time preference for activity 
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scheduling, neither time-space constraints nor activity duration decision are incorporated in the 

analysis, and travel time is estimated in a second-stage decision. Small (Small, 1982) 

demonstrated a model that can evaluate on-time arrival differences for work trips. However, the 

arrival time was evaluated independently without considering such other components as time-of-

day travel and activity duration. For example, Small’s model could evaluate the sensitivity of on-

time arrival for work activities, but the model could not estimate what would happen if the 

consumer arrived early (late). Would the consumer decide to stay at work for a little longer 

(shorter) or would all of the remaining activities be scheduled earlier (later)? To address these 

shortcomings, a model that can simultaneously consider arrival time, activity duration, activity 

assignment, activity chaining and mode choice is required. As pointed out by Ashiru et al. 

(Ashiru, Polak, & Noland., 2004), ‘The choices of timing and duration of activities are closely 

interrelated; however, few researchers have attempted to study this relationship. Instead strong 

separability assumptions have been made concerning the timing and duration dimensions.’  We 

will show that HAPP can be extended to incorporate all of these components and generate an 

optimal solution.  

The original time window constraints in HAPP treat the activity arrival utility function as a 

uniform distribution function that has no preference for arrival time as long as it is within the 

pre-specified time window constraints. Here, we assume that activity arrival utility functions are 

given and identically perceived by the same behaviorally homogeneous group. Activity arrival 

utility functions are time dependent. Assume that the utility of undertaking the activity i at the 

time of day for person α is a function of the arrival time Ti
α, i.e., is 𝑓(Ti

α). For simplicity, we 

hypothesize that the utility function 𝑓(Ti
α) can be represented by a triangular distribution with 

mode arrival time 𝜇𝑖
𝛼, earliest arrival time 𝑎𝑖

𝛼, latest arrival time 𝑏𝑖
𝛼 , and shape parameters Kie

α  
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and Kil
α (Figure 3.1). We do not set up a hard time window constraint on arrival time, but if the 

person arrives earlier than 𝑎𝑖
𝛼, or later than 𝑏𝑖

𝛼, it will have zero utility. The utility function 

𝑓(Ti
α) of arrival time on any activity is  

𝑓(𝑇𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 0 ≤ 𝑇𝑖

𝛼 < 𝑎𝑖
𝛼   (3-2a) 

𝑓(𝑇𝑖
𝛼) = 𝐾𝑖𝑒

𝛼 (𝑇𝑖
𝛼 − 𝑎𝑖

𝛼), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑎𝑖
𝛼  ≤ 𝑇𝑖

𝛼 ≤ 𝜇𝑖
𝛼  (3-2b) 

 𝑓(𝑇𝑖
𝛼) = 𝐾𝑖𝑙

𝛼(𝑇𝑖
𝛼 − 𝑏𝑖

𝛼),          𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂,         𝑖𝑓 𝜇𝑖
𝛼 < 𝑇𝑖

𝛼 ≤ 𝑏𝑖
𝛼  (3-2c) 

𝑓(𝑇𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑏𝑖

𝛼 < 𝑇𝑖
𝛼 (3-2d) 

 

Although other probability distributions (such as using a bell-shaped temporal utility profiles as 

the time of day activity utility (Ashiru, Polak, & Noland., 2004)) can be chosen, we choose a 

triangular distribution to maintain the linearity of HAPP. 

 

 

 

 

 

 

 

Utility 

Time of day 
𝑇𝑖

𝛼 𝑎𝑖
𝛼  𝑏𝑖

𝛼  𝜇𝑖
𝛼 

𝐾𝑖𝑒
𝛼  𝐾𝑖𝑙

𝛼 

Figure 3.1 The utility of activity 𝒊 starts at 𝑻𝒊
𝜶 of person 𝜶  
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Accounting for Duration Effects in Activity Participation 

Utility is not associated just with arrival time; the activity gain of each activity is highly related 

to its duration. In most current activity-based models, activity arrival time and activity duration 

are estimated in separate models. The hazard duration function is the most pervasive model to 

evaluate activity duration. Bhat (Bhat, 1996) examined the factors affecting shopping activity 

duration during the return home trip from work and developed a comprehensive methodological 

framework to estimate a stochastic hazard-based duration model from grouped (interval-level) 

failure data. However, as pointed out by Ettema et al. (Ettema, Bastin, Polak, & Ashiru, 2007), 

‘A drawback of hazard modelling, however, is that it provides only a statistical approach to 

modelling distributions of durations, which lacks an underlying behavioral theory.’ With the 

hazard duration model it is not easy to set up linkages among different activities and household 

members and their relation to traffic conditions. More specifically, each activity is evaluated in 

isolation without considering the activity chaining and the activity arrival time choices. Although 

the relationship between activity durations and the complex decision process of ending an 

activity at any time can be represented using a time allocation model, to our knowledge only 

HAPP can incorporate a time allocation model in a way that brings components together within a 

travel constraint space to generate a simultaneous solution.  

In economics, Becker (Becker, 1965) presented a theory of the allocation of time between 

different activities. The theory assumed that households were producers and consumers, where 

they produced commodities by combining inputs of goods and time according to the cost- 

minimization rule of the traditional theory of the firm. Commodities (activities) were produced in 

quantities determined by maximizing a utility function of the commodity set subject to prices and 

a constraint on resources. Resources were measured by what was called full income, which was 
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the sum of money income and that forgone or ‘lost’ by the use of time and goods to obtain 

utility, while commodity prices were measured by the sum of the costs of their goods and time 

inputs. DeSerpa (DeSerpa, 1971) developed a model to handle economic problems wherein a 

time dimension was relevant. The essential features of the model include: ‘1) utility is a function 

of commodities and also the allocation of time; 2) a money constraint and a time constraint are 

two resource constraints of consumer decisions; 3) any commodity requires an allocation of a 

minimum amount of time, but consumers can spend more time on that activity if he/she desires.’ 

Although Becker was the first to propose to attach a value to the time that was allocated to an 

activity and Deserpa established the theoretical relationship between those three features in time 

allocation theory, according to Mackie et al. (PJ Mackie, 2001), two dimensions of a value 

attached to travel savings were missing: ‘the variation in goods consumption due to the 

substitution of travel for other activities,’ and ‘the possibility of re-timing activities in order to 

undertake them according to a preferred schedule’. With that being said, we try to combine 

Deserpa’s time allocation model with Small’s work on trip departure estimation as well as 

Wang’s arrival time utility estimation, into HAPP. 

In the original HAPP model, the activity duration (𝑠𝑖
𝛼) is a fixed, given constant, which cannot 

reflect changes of other components of the decision process relative to changes in activity 

duration. To incorporate flexible activity duration and the heterogeneity of personal 

characteristics into HAPP, we introduce a new decision variable  

𝑆𝑖
𝛼 ≥ 𝑠𝑖_𝑚𝑖𝑛

𝛼 , 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂 

where 𝑆𝑖
𝛼 is the actual activity duration, 𝑠𝑖_𝑚𝑖𝑛

𝛼  is the minimum activity duration, both of which 

vary depending on the specific person 𝛼 and activity 𝑖, and 𝐿 and 𝜂 are the lists of activities in 

the agenda and the set of persons in the household, respectively. Here, we introduce a piecewise 
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linear activity duration function (Figure 3.2). For an activity 𝑖,  there is a minimum time 𝑠𝑖_𝑚𝑖𝑛
𝛼  to 

undertake the activity for person 𝛼 and the person may get more utility if he/she spends more 

time on it. The simplest case is assuming that the utility gain from each unit of time spent is 

linear, up to a maximum (or ideal) duration, with a requirement of minimum duration. 

Depending on the characteristic of the activity, different shapes of the linear duration function 

can be introduced. The slope of 𝐾𝑖𝑠
𝛼 determines how flexible the duration of activity is. As 

pointed out by Jara-Diaz (Jara-Díaz, 2003), ‘one cannot work continuously’, there will be an 

upper bound on the maximum utility gain. Thus, the slope of utility gain on activity duration will 

be flat after the maximum utility gain. Also, the person may not be able to spend more time on 

any particular activity because he/she may have commitments on other activities or may lose the 

opportunity to undertake other activities. This may relate to the concept of satiation effect or 

opportunity cost in economics—the gain in spending more time on one activity may not be as 

valuable as spending the time on an additional activity that requires a minimum amount of time 

𝑠𝑗_𝑚𝑖𝑛
𝛼 . Of course, depending on the activity and the person, the minimum utility of undertaking 

that activity can also be different. As shown in Figure 3.2, the utility characteristics can be 

determined by the minimum utility 𝑈𝑖_𝑚𝑖𝑛
𝛼 , maximum utility 𝑈𝑖_𝑚𝑎𝑥

𝛼 , the slope 𝐾𝑖𝑠
𝛼, the minimum 

spending time 𝑠𝑖_𝑚𝑖𝑛
𝛼  and the maximum spending time 𝑠𝑖_𝑚𝑎𝑥

𝛼 . This form is very close to the S-

Shaped activity utility function proposed by Joh et al. (Joh, Arentze, & Timmermans, 2004) and 

Bladel (Bladel, Bellemans, Wets, Arentze, & Timmermans, 2006). The assumed utility function 

𝑔(𝑆𝑖
𝛼) of activity duration for any activity can thus be represented as: 

𝑔(𝑆𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖

𝛼 = 0,  
(3-3a) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝛼 , 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖
𝛼 < 𝑠𝑖_𝑚𝑖𝑛

𝛼 , 
(3-3b) 
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𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝛼 + 𝐾𝑖𝑠
𝛼(𝑆𝑖

𝛼 − 𝑠𝑖_𝑚𝑖𝑛
𝛼 ), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑠𝑖_𝑚𝑖𝑛

𝛼 ≤ 𝑆𝑖
𝛼 < 𝑠𝑖_𝑚𝑎𝑥

𝛼 , (3-3c) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝑠 + 𝐾𝑖𝑠
𝛼(𝑠𝑖_𝑚𝑎𝑥

𝛼 − 𝑠𝑖_𝑚𝑖𝑛
𝛼 ), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖

𝛼 ≥ 𝑠𝑖_𝑚𝑎𝑥
𝛼 , (3-3d) 

 

 

 

 

 

 

 

Model formulation 

The formulation of HAPP with consideration of time-of-day activity utility and duration utility 

(UHAPPP) is  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈(𝑿𝑖) = 𝜷𝑖
′ ∙ 𝑿𝑖 (3-4) 

subject to 𝑩𝑿𝑖 ≤ 0, (3-5) 

where 

𝑿𝑖 = [𝑿𝑣 𝑯𝜶 𝑻𝜶 𝑺𝜶]′, 𝑿𝑣 = [𝑋𝒊𝒋
𝒗 = {

0
1

], 𝑯𝜶 = [𝐻𝒊𝒋
𝜶 = {

0
1

], 𝑻𝜶 = [𝑇𝑖
𝛼 ≥ 0], 𝑺𝜶 =

[𝑆𝑖
𝛼 ≥ 0], 𝜷𝒊 = [𝛽𝑖

𝛼], 𝑋𝑣 is the decision variable on vehicle flow; 𝐻𝛼 is the decision variable on 

person flow; 𝑇𝛼 is the decision variable on arrival time; 𝑆𝛼 is the decision variable on activity 

𝐾𝑖𝑠
𝛼 

𝑈𝑖_𝑚𝑖𝑛
𝛼  

𝑈𝑖_𝑚𝑎𝑥
𝛼  

𝑠𝑖_𝑚𝑖𝑛
𝛼  𝑠𝑖_𝑚𝑎𝑥

𝛼  Duration 

Figure 3.2 Utility on duration of activity i of person α 
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duration; 𝛽𝑖
𝛼 is the weight of objective imposed by each person and each activity. Equation (3-4) 

and (3-5) define UHAPP in matrix format. A detail version of UHAPP is defined as follow. 

𝐴 = {1, 2, … , 𝑖, … , 𝑛} Set of out-of-home activities scheduled to be completed 

by travelers in the household. 

𝜂 = {1, 2, … , |𝜂|} Set of household members with driver license. 

𝑉 = {1, 2, … , 𝑣, … , |𝑉|} Set of vehicles used by travelers in the household to 

complete their scheduled activities. 

𝐿+ = {1, 2, … , 𝑖, … , 𝑛} Set of designating location at which each activity is 

performed. 

𝐿− = {𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑖, … , 2𝑛} Set of designation the ultimate destination of the return-

to-home trip for each activity. (It is noted that the 

physical location of each element of 𝐿− is home.) 

Ω𝐻
𝛼 ⊂ 𝐴 The subset of activities that cannot be performed by 

person 𝛼 

[𝑎𝑖, 𝑏𝑖] The hard time window of activity 𝑖 can be performed 

𝑆𝑖
𝛼 The amount of time spent on activity 𝑖 by household 

member 𝛼. 

𝑡𝑖𝑗
𝑣  The travel time from the location of activity 𝑖 to the 

location of activity 𝑗 using vehicle 𝑣. 

𝑐𝑖𝑗
𝑣  The travel cost from the location of activity 𝑖 to the 

location of activity 𝑗 using vehicle 𝑣. 

𝐿 = 𝐿+ ∪ 𝐿− Set of nodes comprising completion of the household’s 
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scheduled activities. 

𝑂 = {0, 𝐿−, 2𝑛 + 1} Set of home nodes 

𝐷 = {𝐿+, 𝐿−, 2𝑛 + 1} Set of destination nodes 

𝑁 = {0, 𝐿, 2𝑛 + 1} The set of all nodes, including those associated with the 

initial departure and final return to home. 

𝑋𝑖𝑗
𝑣 , 𝑖, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑖 ≠ 𝑗 Binary decision variable equal to unity if vehicle 𝑣 

travels from activity 𝑖 to activity 𝑗, and zero otherwise. 

𝐻𝑖𝑗
𝛼 , 𝑖, 𝑗 ∈ 𝑁, 𝛼 ∈ 𝜂, 𝑖 ≠ 𝑗 Binary decision variable equal to unity if household 

member 𝛼 travels from activity 𝑖 to activity 𝑗, and zero 

otherwise. 

𝑇𝑖
𝛼, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂 The time at which household member 𝛼 participation in 

activity 𝑖 begins. 

𝐾𝑣, 𝑣 ∈ 𝑉 The initial cost of using vehicle 𝑣 of performing out-of-

home activities 

𝛽𝑖
𝛼 The weight of objective imposed by each person and 

each activity. 

𝑀 A large positive number 

 

With these definitions, the objective function of UHAPP can be represented as 
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𝑀𝑎𝑥 𝑈 = ∑ ∑ 𝛽1𝑖
𝛼 𝑓(𝑇𝑖

𝛼) ∑ 𝐻𝑖𝑗
𝛼

𝑗∈𝑁𝛼∈𝜂𝑖∈𝐷

− ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣 𝑋𝑖𝑗

𝑣 ∑ 𝛽2
𝛼𝐻𝑖𝑗

𝛼

𝛼∈𝜂𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

− 𝛽3 ∑ ∑ ∑ 𝐾𝑣𝑋𝑖𝑗
𝑣

𝑗∈𝐿+𝑖∈𝑂𝑣∈𝑉

− ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣 𝑋𝑖𝑗

𝑣 ∑ 𝛽4
𝛼𝐻𝑖𝑗

𝛼

𝛼∈𝜂𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

+ ∑ ∑ 𝛽5𝑖
𝛼 𝑔(𝑆𝑖

𝛼)

𝛼∈𝜂

∑ 𝐻𝑖𝑗
𝛼

𝑗∈𝑁𝑖∈𝐿+

 

(3-6a) 

 

Under the assumption that the utility functions for arrival time and duration do not vary over 

individuals within the household, Equation (3-6a) becomes 

 

𝑀𝑎𝑥 𝑈 = ∑ ∑ ∑ 𝛽1𝑖𝑓(𝑇𝑖
𝛼)𝐻𝑖𝑗

𝛼

𝑗∈𝑁𝑖∈𝐷𝛼∈𝜂

− 𝛽2 ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣 𝑋𝑖𝑗

𝑣

𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

− 𝛽3 ∑ ∑ ∑ 𝐾𝑣𝑋𝑖𝑗
𝑣

𝑗∈𝐿+𝑖∈𝑂𝑣∈𝑉

− 𝛽4 ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣 𝑋𝑖𝑗

𝑣

𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

+ ∑ ∑ ∑ 𝛽5𝑖𝑔(𝑆𝑖
𝛼)𝐻𝑖𝑗

𝛼

𝑗∈𝑁𝑖∈𝐿+𝛼∈𝜂

 

(3-6b) 

 

where ∑ ∑ ∑ 𝛽1𝑖𝑓(𝑇𝑖
𝛼)𝐻𝑖𝑗

𝛼
𝑗∈𝑁𝑖∈𝐷𝛼∈𝜂  is the total utility of arrival time for the household, 

𝛽2 ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣 𝑋𝑖𝑗

𝑣
𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉  is the total disutility of time spent traveling during the day, 

𝛽3 ∑ ∑ ∑ 𝐾𝑣𝑋𝑖𝑗
𝑣

𝑗∈𝐿+𝑖∈𝑂𝑣∈𝑉  is the total initial cost of using a vehicle for out of home activities, (of 

course, we can include the parking cost for the other end of travel, but for simplicity reasons, we 

do not include the parking cost in the objective function; however, we note that UHAPP is 

capable on evaluating travel decisions related to parking cost policies). 𝛽4 ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣 𝑋𝑖𝑗

𝑣
𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉  

is the total disutility of travel cost during the day; this includes any tolls, fuel consumption and 

other monetary costs. ∑ ∑ ∑ 𝛽5𝑖𝑔(𝑆𝑖
𝛼)𝐻𝑖𝑗

𝛼
𝑗∈𝑁𝑖∈𝐿+𝛼∈𝜂  is the total utility of time spent participating 

in the activity. The sum of these objective components is subject to the following constraints: 

∑ ∑ 𝑋𝑖𝑗
𝑣

𝑗∈𝑁𝑣∈𝑉

= 1, 𝑖 ∈ 𝐿+ (3-7) 
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∑ 𝑋𝑖𝑗
𝑣

𝑗∈𝑁

− ∑ 𝑋𝑗𝑖
𝑣

𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿, 𝑣 ∈ 𝑉 (3-8) 

∑ 𝑋0𝑗
𝑣

𝑗∈𝐿+

≤ 1, 𝑣 ∈ 𝑉 (3-9) 

∑ 𝑋𝑗,2𝑛+1
𝑣

𝑗∈𝐿−

≤ 1, 𝑣 ∈ 𝑉 (3-10) 

∑ 𝑋𝑗𝑖
𝑣

𝑗∈𝑁

− ∑ 𝑋𝑗,𝑛+𝑖
𝑣

𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿+, 𝑣 ∈ 𝑉 (3-11) 

𝑋𝑖𝑗
𝑣 = {

0
1

;    𝑖, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉 (3-12) 

∑ 𝑋0,𝑗
𝑣

𝑗∈𝐿−

= 0, 𝑣 ∈ 𝑉 (3-13) 

∑ 𝑋𝑖,0
𝑣

𝑖∈𝑁

= 0, 𝑣 ∈ 𝑉 (3-14) 

∑ 𝑋𝑖,2𝑛+1
𝑣

𝑖∈𝐿+

= 0, 𝑣 ∈ 𝑉 (3-15) 

∑ 𝑋2𝑛+1,𝑗
𝑣

𝑗∈𝑁

= 0, 𝑣 ∈ 𝑉 (3-16) 

∑ 𝑋𝑖+𝑛,𝑖
𝑣

𝑖∈𝐿+

= 0, 𝑣 ∈ 𝑉 (3-17) 

∑ 𝑋𝑗,𝑗
𝑣

𝑗∈𝑁

= 0, 𝑣 ∈ 𝑉 (3-18) 

𝑋𝑖,𝑗
𝑣 + 𝑋𝑗,𝑖

𝑣 ≤ 1, 𝑖, 𝑗 ∈ 𝐿−, 𝑣 ∈ 𝑉 (3-19) 

∑ ∑ 𝐻𝑖𝑗
𝛼

𝑗∈𝑁𝛼∈𝜂

= 1, 𝑖 ∈ 𝐿+ (3-20) 

∑ 𝐻𝑖𝑗
𝛼

𝑗∈𝑁

− ∑ 𝐻𝑗𝑖
𝛼

𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂 (3-21) 
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∑ 𝐻0𝑗
𝛼

𝑗∈𝐿+

≤ 1, 𝛼 ∈ 𝜂 (3-22) 

∑ 𝐻𝑖,2𝑛+1
𝛼

𝑗∈𝐿−

≤ 1, 𝛼 ∈ 𝜂 (3-23) 

∑ 𝐻𝑗𝑖
𝛼

𝑗∈𝑁

− ∑ 𝐻𝑗,𝑛+𝑖
𝛼

𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿+, 𝛼 ∈ 𝜂 (3-24) 

𝑎𝑖 − 𝑇𝑖
𝛼 ≤ (2 − ∑ 𝐻𝑖𝑗

𝛼

𝑗∈𝐿

− ∑ 𝑋𝑖𝑗
𝑣

𝑗∈𝐿

) 𝑀, 𝑖 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-25a) 

𝑇𝑖
𝛼 − 𝑏𝑖 ≤ (2 − ∑ 𝐻𝑖𝑗

𝛼

𝑗∈𝐿

− ∑ 𝑋𝑖𝑗
𝑣

𝑗∈𝐿

) 𝑀, 𝑖 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-25b) 

𝑇𝑖
𝛼 + 𝑆𝑖

𝛼 + 𝑡𝑖,𝑛+𝑖
𝑣 −𝑇𝑛+𝑖

𝛼 ≤ (2 − ∑ 𝑋𝑘,𝑖
𝑣

𝑘∈𝑁

− ∑ 𝐻𝑗,𝑖
𝛼

𝑗∈𝑁

) 𝑀, 𝑖 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-26) 

𝑇𝑖
𝛼 + 𝑆𝑖

𝛼 + 𝑡𝑖𝑗
𝑣 − 𝑇𝑗

𝛼 ≤ (2 − 𝐻𝑖𝑗
𝛼 − 𝑋𝑖𝑗

𝑣 )𝑀, 𝑖, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-27a) 

𝑇𝑖
𝛼 + 𝑆𝑖

𝛼 + 𝑡𝑖𝑗
𝑣 − 𝑇𝑗

𝛼 ≥ −(2 − 𝐻𝑖𝑗
𝛼 − 𝑋𝑖𝑗

𝑣 )𝑀, 𝑖, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-27b) 

𝑇𝑗
𝛼 ≤ ∑ 𝐻𝑖𝑗

𝛼

𝑖∈𝑁

𝑀, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂 (3-28) 

𝑆𝑗
𝛼 ≤ ∑ 𝐻𝑖𝑗

𝛼

𝑖∈𝑁

𝑀, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂 (3-29a) 

𝑆𝑖
𝛼 ≤ (1 − ∑ 𝐻𝑖𝑗

𝛼)

𝑗∈𝐿−

𝑀, 𝑖 ∈ 𝐿−, 𝛼 ∈ 𝜂 (3-29b) 

𝑆𝑗
𝛼 − 𝑠𝑗_𝑚𝑖𝑛

𝛼 ≥ (∑ 𝐻𝑖𝑗
𝛼

𝑖∈𝑁

− 1)𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂 (3-30) 

𝑇0
𝛼 + 𝑡0𝑗

𝑣 − 𝑇𝑗
𝛼 ≤ (2 − 𝐻0𝑗

𝛼 − 𝑋0𝑗
𝑣 )𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-31a) 

𝑇0
𝛼 + 𝑡0𝑗

𝑣 − 𝑇𝑗
𝛼 ≥ −(2 − 𝐻0𝑗

𝛼 − 𝑋0𝑗
𝑣 )𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-31b) 
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𝑇𝑖
𝛼 − 𝑇2𝑛+1

𝛼 ≤ (2 − 𝐻𝑖,2𝑛+1
𝛼 − 𝑋𝑖,2𝑛+1

𝑣 )𝑀, 𝑖 ∈ 𝐿−, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉 (3-32) 

𝑓(𝑇𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 0 ≤ 𝑇𝑖

𝛼 < 𝑎𝑖
𝛼   (3-33a) 

𝑓(𝑇𝑖
𝛼) = 𝐾𝑖𝑒

𝛼 (𝑇𝑖
𝛼 − 𝑎𝑖

𝛼), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑎𝑖
𝛼  ≤ 𝑇𝑖

𝛼 ≤ 𝜇𝑖
𝛼  (3-33b) 

 𝑓(𝑇𝑖
𝛼) = 𝐾𝑖𝑙

𝛼(𝑇𝑖
𝛼 − 𝑏𝑖

𝛼),          𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂,         𝑖𝑓 𝜇𝑖
𝛼 < 𝑇𝑖

𝛼 ≤ 𝑏𝑖
𝛼  (3-33c) 

𝑓(𝑇𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑏𝑖

𝛼 < 𝑇𝑖
𝛼 (3-33d) 

𝑓(𝑇2𝑛+1
𝛼 ) = 0, 𝛼 ∈ 𝜂, 𝑖𝑓 0 ≤ 𝑇2𝑛+1

𝛼 < 𝑎2𝑛+1
𝛼  (3-34a) 

𝑓(𝑇2𝑛+1
𝛼 ) = 𝐾2𝑛+1,𝑒

𝛼 (𝑇2𝑛+1
𝛼 − 𝑎2𝑛+1

𝛼 ), 𝛼 ∈ 𝜂, 𝑖𝑓 𝑎2𝑛+1
𝛼 ≤ 𝑇2𝑛+1

𝛼 ≤ 𝜇2𝑛+1
𝛼 , (3-34b) 

𝑓(𝑇2𝑛+1
𝛼 ) = 𝐾2𝑛+1,𝑙

𝛼 (𝑇2𝑛+1
𝛼 − 𝑏2𝑛+1

𝛼 ), 𝛼 ∈ 𝜂, 𝑖𝑓 𝜇2𝑛+1
𝛼 < 𝑇2𝑛+1

𝛼 ≤ 𝑏2𝑛+1
𝛼 , (3-34c) 

𝑓(𝑇2𝑛+1
𝛼 ) = 0, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑏2𝑛+1

𝛼 < 𝑇2𝑛+1
𝛼 , (3-34d) 

𝑔(𝑆𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖

𝛼 = 0,  
(3-35a) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝛼 , 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖
𝛼 < 𝑠𝑖_𝑚𝑖𝑛

𝛼 , 
(3-35b) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝛼 + 𝐾𝑖𝑠
𝛼(𝑆𝑖

𝛼 − 𝑠𝑖_𝑚𝑖𝑛
𝛼 ), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑠𝑖_𝑚𝑖𝑛

𝛼 ≤ 𝑆𝑖
𝛼 < 𝑠𝑖_𝑚𝑎𝑥

𝛼 , (3-35c) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝑠 + 𝐾𝑖𝑠
𝛼(𝑠𝑖_𝑚𝑎𝑥

𝛼 − 𝑠𝑖_𝑚𝑖𝑛
𝛼 ), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖

𝛼 ≥ 𝑠𝑖_𝑚𝑎𝑥
𝛼 , (3-35d) 

∑ 𝐻0,𝑗
𝛼

𝑗∈𝑃−

= 0, 𝛼 ∈ 𝜂 (3-36) 

∑ 𝐻𝑖,0
𝛼

𝑖∈𝑁

= 0, 𝛼 ∈ 𝜂 (3-37) 

∑ 𝐻𝑖,2𝑛+1
𝛼

𝑖∈𝐿+

= 0, 𝛼 ∈ 𝜂 (3-38) 

∑ 𝐻2𝑛+1,𝑗
𝛼

𝑗∈𝑁

= 0, 𝛼 ∈ 𝜂 (3-39) 

∑ 𝐻𝑖+𝑛,𝑖
𝛼

𝑖∈𝐿+

= 0, 𝛼 ∈ 𝜂 (3-40) 

∑ 𝐻𝑗,𝑗
𝛼

𝑗∈𝑁

= 0, 𝛼 ∈ 𝜂 (3-41) 
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𝐻𝑖,𝑗
𝑣 + 𝐻𝑗,𝑖

𝑣 ≤ 1, 𝑖, 𝑗 ∈ 𝐿−, 𝑣 ∈ 𝑉 (3-42) 

∑ ∑ 𝐻𝑖𝑗
𝛼

𝑖∈𝐿

= 0, 𝛼 ∈ 𝜂

𝑗∈Ω𝐻
𝛼

 (3-43) 

𝐻𝑖𝑗
𝛼 = {

0
1

;    𝑖, 𝑗 ∈ 𝑁, 𝛼 ∈ 𝜂 (3-44) 

∑ 𝐻𝑖𝑗
𝛼 = ∑ 𝑋𝑖𝑗

𝑣

𝑣∈𝑉𝛼∈𝜂

, 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿 (3-45) 

∑ 𝐻0𝑗
𝛼 = ∑ 𝑋0𝑗

𝑣

𝑣∈𝑉𝛼∈𝜂

, 𝑗 ∈ 𝐿+ (3-46) 

∑ 𝐻𝑖,2𝑛+1
𝛼 = ∑ 𝑋𝑖,2𝑛+1

𝑣

𝑣∈𝑉𝛼∈𝜂

, 𝑖 ∈ 𝐿− (3-47) 

 

Relationships (3-6)-(3-47) define the Utility-based Household Activity Pattern Problem 

(UHAPP). Constraints (3-7) and (3-20) guarantee that every activity will be performed and at 

most visited by one vehicle and one person. Constraints (3-8) and (3-21) ensure that every 

vehicle and every person that go into the node have to leave the same node. Constraints (3-9), (3-

10), (3-22), (3-23) mean not every vehicle and every person have to connect to one activity 

location; they can stay at home if desired. Constraints (3-11) and (3-24) warrant that every 

activity location is associated with one drop off location which is home connected by vehicle 

flow and person flow. Constraints (3-12) and (3-44) ensure the integer solution on vehicle flow 

and person flow. Constraints (3-13)-(3-19) and (3-36)-(3-42) sort out of those unreasonable 

vehicle flows and person flows to make sure the solution makes sense. Constraints (3-25) are 

time window constraints which represent operation (business) hours for offices, restaurants, 

stores, where hard time windows are set up. Constraints (3-26) ensure every drop off activity 

happens later than the pickup activity. Constraints (3-27) define the arrival time relationship for 
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two consecutive nodes. Constraints (3-28)-(3-29) assign activity arrival time and activity 

duration to persons staying at home. Constraints (3-30) guarantee the minimum activity duration. 

Constraints (3-31)-(3-32) assign leave home time at the beginning of the day and arrival time at 

the end of day to each person. Because there is no duration for at home activities and no travel 

time between the last drop of node and home, constraints (3-31)-(3-32) are separated from 

constraints (3-27). Constraints (3-33)-(3-34) define the utility function of arrival time. To convert 

the ‘if statements’ to integer linear programming format, we need to add more integer variables. 

We define 

𝐼1, 𝐼2, 𝐼3 = {
0
1

;  

Constraints (3-33) can be transformed to constraints (3-48) 

𝑎𝑖
𝛼 − 𝑇𝑖

𝛼 ≤ (1 − 𝐼1)𝑀 (3-48a) 

𝑇𝑖
𝛼 − 𝜇𝑖

𝛼 ≤ (1 − 𝐼2)𝑀 (3-48b) 

𝑇𝑖
𝛼 − 𝑏𝑖

𝛼 ≤ (1 − 𝐼3)𝑀 (3-48c) 

𝑓(𝑇𝑖
𝛼) = [𝐾𝑖𝑒

𝛼 (𝑇𝑖
𝛼 − 𝑎𝑖

𝛼)𝐼2 + 𝐾𝑖𝑙
𝛼(𝑇𝑖

𝛼 − 𝑏𝑖
𝛼)(1 − 𝐼2)] ∙ 𝐼1 ∙ 𝐼3, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂 (3-48d) 

The same treatment can be applied to constraints (3-34). Constraints (3-35) define the utility 

function of activity duration. We also transform the ‘if statements’ in constraints (3-35) to 

integer linear programming constraints the same way as constraints (3-48). By transforming the 

arrival time utility function and utility function of duration to linear expressions and by 

reformulating these constraints as integer linear programming constraints, we escape the 

assumption of nonlinear functions that would significantly increase the complexity of the 

solution algorithm. Unlike the original HAPP model, where most of the constraints are related to 

vehicle flows, we focus more on persons and put scheduling constraints on persons as the core of 
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the activity-based model. For more details on the role of each constraint, readers can refer to the 

original HAPP case 4 in Recker’s (Recker W. W., 1995) paper. 

 

Hypothetical examples 

To demonstrate how solutions to UHAPP can differ from those obtained using the original 

HAPP, we first apply the UHAPP model to some hypothetical case scenarios. We generate a 

sample dataset that includes a two-person household with two vehicles available for use during 

the day. Three activities with their utility functions for arrival time and duration specified are to 

be undertaken by the end of the day. Each person has a mandatory activity to perform. One 

voluntary activity needs to be assigned to one person. We assume one mode (auto) is available 

for this household from which to choose. Table 3.1 contains the basic demographic data of the 

household and activities. 𝛺𝐻
𝛼  has the same meaning as the original HAPP; 𝛺𝐻

1 = {2} means 

activity 2 cannot be performed by person 1. Table 3.2 specifies the earliest arrival time (the 

intersection of 0 utility in the utility function on the left of mode arrival time), peak arrival time 

(mode arrival time), the latest arrival time (the intersection of 0 utility in the utility function on 

the right of mode arrival time), the coefficient for each linear utility function. Table 3.3 contains 

the minimum activity duration utility, minimum activity duration, maximum activity duration 

and the coefficient for each linear utility function. Table 3.4 and Table 3.5 are travel times and 

travel cost for each pair of nodes, respectively. We divide the 24-hour day into 1440 minutes to 

simplify the analysis. We will assume 𝛽1i = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5i = 1, and set M = 1500 in all 

the following numerical examples. We first run this input data using the original HAPP model. 

We set this data set as the base case scenario to run UHAPP. Then we change some parameters 

on arrival utility function as case 1 scenario. We change the coefficient of the duration utility 
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function as case 2 scenario, and change the relative weight 𝛽αi in the objective function as case 3 

scenario. We want to compare different solutions by different models (HAPP and UHAPP) and 

different utility function on arrival and duration as well as the relative weight 𝛽αi in the objective 

function in order to further understand how each component will change the solution 

respectively. 

 

Table 3.1 Hypothetical data set 

Known variables Variable set 

Household members 𝜂 = {1,2} 

Available vehicles V = {1,2} 

Out-of-home activities 𝐴 = {1,2,3} 

Activity compatibility 𝛺𝐻
1 = {2}, 𝛺𝐻

2 = {1} 

Activity hard time windows [𝑎𝑖, 𝑏𝑖] = [
6: 00
6: 00

10: 00
   

24: 00
24: 00
21: 00

] 

Initial cost of vehicles 𝐾1 = 𝐾2 = 10 

 

Table 3.2 Linear utility function of each person on each destination 𝒂𝒊
𝜶, 𝝁𝒊

𝜶, 𝒃𝒊
𝜶, 𝑲𝒊𝒆

𝜶  and 𝑲𝒊𝒍
𝜶  

Destination (𝐢) 𝐚𝐢
𝟏 𝐚𝐢

𝟐 𝛍𝐢
𝟏 𝛍𝐢

𝟐 𝐛𝐢
𝟏 𝐛𝐢

𝟐 𝐊𝐢𝐞
𝟏  𝐊𝐢𝐞

𝟐  𝐊𝐢𝐥
𝟏  𝐊𝐢𝐥

𝟐  

1 5:30 0 8:20 0 15:00 0 0.16 0 -0.068 0 

2 0 6:00 0 9:00 0 15:00 0 0.18 0 -0.09 

3 9:00 8:30 15:30 16:00 18:00 18:30 0.04 0.05 -0.104 -0.15 

4 15:00 0 16:00 0 18:40 0 0.08 0 -0.03 0 

5 0 15:00 0 16:00 0 18:40 0 0.09 0 -0.03375 

6 10:30 11:00 17:00 17:30 21:00 21:30 0.02 0.025 -0.0325 -0.040625 

7 15:00 15:00 17:30 18:00 21:40 22:00 0.1 0.1 -0.06 -0.075 
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Table 3.3 Utility function of duration 𝑼𝒊_𝒎𝒊𝒏
𝛂 ,  𝒔𝒊_𝒎𝒊𝒏

𝛂 , 𝒔𝒊_𝒎𝒂𝒙
𝛂  and 𝑲𝒊𝒔

𝜶  

Activity (𝐢) 𝐔𝐢_𝐦𝐢𝐧
𝟏  𝐔𝐢_𝐦𝐢𝐧

𝟐  𝐬𝐢_𝐦𝐢𝐧
𝟏  𝐬𝐢_𝐦𝐢𝐧

𝟐  𝐬𝐢_𝐦𝐚𝐱
𝟏  𝐬𝐢_𝐦𝐚𝐱

𝟐  𝐊𝐢𝐬
𝟏  𝐊𝐢𝐬

𝟐  

1 7 0 300 0 540 0 0.1 0 

2 0 7 0 360 0 570 0 0.12 

3 3 3 15 20 90 120 0.08 0.06 

 

Table 3.4 Travel times for each node to node pair (minutes) 

NODES 0 1 2 3 4 5 6 7 

0 0 30 35 40 0 0 0 0 

1 30 0 20 15 30 30 30 30 

2 35 20 0 25 35 35 35 35 

3 40 15 25 0 40 40 40 40 

4 0 30 35 40 0 0 0 0 

5 0 30 35 40 0 0 0 0 

6 0 30 35 40 0 0 0 0 

7 0 30 35 40 0 0 0 0 

 

Table 3.5 Travel costs for each node to node pair (dollar) 

NODES 0 1 2 3 4 5 6 7 

0 0 3 3.5 4 0 0 0 0 

1 3 0 2 1.5 3 3 3 3 

2 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 4 1.5 2.5 0 4 4 4 4 

4 0 3 3.5 4 0 0 0 0 

5 0 3 3.5 4 0 0 0 0 

6 0 3 3.5 4 0 0 0 0 

7 0 3 3.5 4 0 0 0 0 

 

We first run the original HAPP with activity duration 𝑠1
1 = 300, 𝑠2

2 = 360, 𝑠3
1 = 𝑠3

2 = 15 in 

AMPL, which is a modeling language for linear and nonlinear optimization problems. We call 

CPLEX 12.5.1 in AMPL and, after 58 MIP and 0 branch-and-bound nodes, we have an optimal 
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solution of U=-190.5. (It is negative because the objective function in original HAPP is to 

minimize the disutility in travel times and travel costs, which has been transformed to maximize 

the negative disutility in UHAPP.) The solutions of vehicle flows and person flows are posted in 

Table 3.6. The solutions of arrival time and activity duration are posted in Table 3.7. The 

solution shows that person 1 leaves home at 9:20, arrives to activity 3 at 10:00, spends 15 

minutes at activity 3, arrives at activity 1 at 10:30 and spends 300 minutes in activity 1. Person 2 

leaves home at 5:25, arrives at activity 2 at 6:00, and spends 360 minutes in activity 2. Because 

there is no utility on the arrival time and no utility on activity duration, person 1 and person 2 

both arrive at their activities as early as the activity operation time windows become available 

(10:00 and 6:00), and the activity duration is known (300, 360 and 15) as an input before we run 

HAPP. Thus, without considering utilities of activity arrival and utilities of activity duration, the 

original HAPP cannot estimate (has no preference for) arrival time and activity duration, as well 

as their interactions. 

 

Table 3.6 Vehicle flows and person flows from HAPP 

Nodes (𝐍) Nodes (𝐍) Vehicles(𝐕) Persons (𝛈) 𝐗𝐢𝐣
𝟏 𝐗𝐢𝐣

𝟐  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 2 2 2 0 1 0 1 

0 3 1 1 1 0 1 0 

1 4 1 1 1 0 1 0 

2 5 2 2 0 1 0 1 

3 1 1 1 1 0 1 0 

4 6 1 1 1 0 1 0 

5 7 2 2 0 1 0 1 

6 7 1 1 1 0 1 0 
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Table 3.7 Arrival time and activity duration rom HAPP 

Nodes (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐒𝐢

𝛂 

0 1 9:20 - 

0 2 5:25 - 

1 1 10:30 300 

2 2 6:00 360 

3 1 10:00 15 

4 1 16:00 0 

5 2 12:35 0 

6 1 16:00 0 

7 1 16:00 - 

7 2 12:35 - 

 

Now, let’s run the UHAPP model with assumed known utility functions for activity arrival and 

activity duration, specified in Table 3.2 and Table 3.3, in AMPL. We set these input as the base 

case scenario. We call CPLEX 12.5.1 in AMPL and after 6763 MIP simplex iterations and 1614 

branch-and-bound nodes, we have an optimal solution of U=-19.35. We note that the objective is 

negative because the weight of travel times and travel costs in this artificial scenario are 

dominant in the objective function. The solutions of vehicle flows and person flows are posted in 

Table 3.8. The solutions of arrival time and activity duration are posted in Table 3.9 with the 

reduce cost in the optimal solution.  

 

Table 3.8 Vehicle flows and person flows from UHAPP at base case scenario 

Nodes (𝐍) Nodes (𝐍) Vehicles(𝐕) Persons (𝛈) 𝐗𝐢𝐣
𝟏 𝐗𝐢𝐣

𝟐  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 1 1 1 0 1 0 

0 2 2 2 0 1 0 1 

1 3 1 1 1 0 1 0 

2 5 2 2 0 1 0 1 
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3 4 1 1 1 0 1 0 

4 6 1 1 1 0 1 0 

5 7 2 2 0 1 0 1 

6 7 1 1 1 0 1 0 

 

Table 3.9 Arrival time and activity duration from UHAPP at base case scenario 

Nodes (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐓𝐢

𝛂. 𝐑𝐂 𝐒𝐢
𝛂 𝐒𝐢

𝛂. 𝐑𝐂 

0 1 7:50 0 - - 

0 2 8:25 0 - - 

1 1 8:20 0 415 0 

2 2 9:00 0 570 0 

3 1 15:30 0.02 80 0 

4 1 17:30 0 0 0 

5 2 19:05 0 0 0 

6 1 17:30 0.0325 0 -0.0475 

7 1 17:30 0.0175 - - 

7 2 19:05 0.075 - - 

 

From Table 3.8, we can see person 1 and person 2 both paticipate in their mandatory activities. 

Person 1 takes vehicle 1 while person 2 takes vehicle 2. Table 3.9 shows that person 2 is able to 

spend the maximum amount of time 570 minutes in activity 2 while Person 1 can only spend 415 

minutes on activity 1 because Person 1 is assigned to particiate in activity 3 for 80 minutes. 

Person 1 arrives at destination 1 at time 8:20 which is the peak time (8:20) because this will yield 

the maximum utitily gain on arrival time. Person 2 also arrives at the peak time 9:00 for the same 

reason. In this example, the scale of utility (coefficient in Table 3.2 and Table 3.3) on arrival 

time is higher than that for activity duration; thus, person 1 can spend only 415 and 80 minutes at 

activities 1 and 3, respectively, in order to obtain the maximum arrival utility from arriving at 

peak preferred times for those activities. Compared to the orginal HAPP, UHAPP can take 

consideration of the utility for arrival time and utility for activity duration. Because there is no 
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consideration of utility of arrival time and utility on duration, the solution in original HAPP 

assigns person 1 to undertake activity 3 before paticipating in activity 1 and the duration of every 

activity is known before running the model. Unlike HAPP, arrival times in the UHAPP model 

are not determined by the hard time windows. Instead, people will try to arrive at the peak hours 

if other constraints are satisfied. Activity duration is determind after running UHAPP and with 

consideration of activity chaining and activity assignment, the best activity duration will be 

assigned to each person. To better illustrate the activity gain for paticipating each activity, we 

illustrate the utility gain from activity arrival in Figure 3.3 and from activity druation in Figure 

3.4, respectively for person 1. 

 

 

 

 

 

 

 

 

 

 

  

Time of day in minutes 

starts from midnight 

Utility 

0.16 -0.068 

9:00 15:00 5:30 8:20 18:00 15:30 

0.04 
-0.104 

End of Day 

Figure 3.3 Arrival utility on activity 1 (blue) and activity 3 (red) of person 1 
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To see how the arrival time utility function will affect people’s travel decisions, let’s change  

Person 1’s μ1
1 from 8:20 to 10:00, which means person 1 has a later arrival preference than 

before. Also, assuming the peak utility of activity 1 arrival remains the same, we change K1e
1  to 

0.1 and K1l
1  to -0.09 (see Figure 3.5 and Table 3.10). We name this input as the case 1 senario. 

After 13465 MIP simplex iterations and 4049 branch-and-bound nodes running in AMPL, we 

have a new objective -29.1875. New solutions (Table 3.11 and Table 3.12) show that person 1 is 

not assigned to participate in activity 3 anymore (see Table 3.12). Instead, person 1 spends the 

maximum amount of time (540 minutes) at activity 1 and arrives home later at 19:30, which is 

outside of the drop off node 4 arrival time window (15:00-18:40) due to the later arrival 

preference on activity 1. Person 2 is assigned to participate on activity 3 and spend 50 minutes on 

it while activity 2 is shortening to 395 minutes comparing to the maximum 570 minutes. Thus, 

Utility 

7 

3 

0.1 

0.08 

15 90 300 540 Duration 

Figure 3.4 Duration utility on activity 1 (blue) and activity 3 (red) of person 1 
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UHAPP can predict how the change of one arrival time preference on one person will effect 

changes on each person in the whole household with respect to activity assignment, activity 

arrival time and activity duration. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.10 Linear utility function of person on activity 1 

Destination (𝐢) 𝐚𝐢
𝟏 𝐚𝐢

𝟐 𝛍𝐢
𝟏 𝛍𝐢

𝟐 𝐛𝐢
𝟏 𝐛𝐢

𝟐 𝐊𝐢𝐞
𝟏  𝐊𝐢𝐞

𝟐  𝐊𝐢𝐥
𝟏 𝐊𝐢𝐥

𝟐 

1 5:30 0 10:00 0 15:00 0 0.1 0 -0.09 0 

 

Table 3.11 Vehicle flows and person flows from UHAPP case 1 scenario 

Nodes (𝐍) Nodes (𝐍) Vehicles(𝐕) Persons (𝛈) 𝐗𝐢𝐣
𝟏 𝐗𝐢𝐣

𝟐  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 1 1 1 0 1 0 

Time of day in minutes 

starts from midnight 

Utility 

0.16 -0.068 

9:00 15:00 5:30 8:20 18:00 15:30 

0.04 
-0.104 

End of Day 

10:00 

0.1 -0.09 

Figure 3.5 Arrival utility on old activity 1 (blue), new activity 1 (green) and 

activity 3 (red) of person 1 
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0 2 2 2 0 1 0 1 

1 4 1 1 1 0 1 0 

2 3 2 2 0 1 0 1 

3 5 2 2 0 1 0 1 

4 7 1 1 1 0 1 0 

5 6 2 2 0 1 0 1 

6 7 2 2 0 1 0 1 

 

Table 3.12 Arrival time and activity duration from UHAPP case 1 scenario 

Nodes (𝐍) Person (𝛈) 𝐓𝐢
𝛂 𝐓𝐢

𝛂. 𝐑𝐂 𝐒𝐢
𝛂 𝐒𝐢

𝛂. 𝐑𝐂 

0 1 9:30 0 - - 

0 2 8:25 0 - - 

1 1 10:00 0 540 0 

2 2 9:00 0 395 0 

3 2 16:00 0.06 50 0 

4 1 19:30 0 0 0 

5 2 19:10 0 0 -0.02625 

6 2 17:30 0.02625 0 0 

7 1 19:30 0.06 - - 

7 2 18:00 0 - - 

 

To see how the utility of duration of one activity for one person will affect the arrival times and 

duration of other activities and other persons, let’s change K1s
1  from 0.1 to 0.12 (see Figure 3.6 

and Table 3.13), and all other inputs remain the same (Table 3.2 and Table 3.3). We name this 

input as case 2 scenario. After 7670 MIP simplex iterations and 1897 branch-and-bound nodes 

running in AMPL, we have a new objective -16.6875. The solutions are as shown in Table 3.14 

and Table 3.15. As increasing one minute duration of activity 1 has more utility than before (an 

increase to 0.12 from 0.1), the duration of activity 1 correspondingly has been increased from 

415 minutes to 540 minutes, which is the maximum utility of duration of activity 1. Also, 

activity 3 is assigned to person 2 for 50 minutes and the duration on activity 2 has been reduced 

to 395 minutes. Thus, compared to the hazard-based duration model (Bhat, A hazard-based 
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duration model of shopping activity with nonparametric baseline specification and nonparametric 

control for unobserved heterogeneity, 1996), which is used prevalently in activity-based 

modeling, UHAPP offers a more explicit comparison of how duration of one activity of one 

person affects the household activity assignment, activity chaining, activity arrival time and 

activity duration with consideration of time and space constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.13 Utility function of duration 𝑼𝒊
𝛂_𝒎𝒊𝒏

,  𝒔𝒊_𝒎𝒊𝒏
𝛂 , 𝒔𝒊_𝒎𝒂𝒙

𝛂  and 𝑲𝒊𝒔
𝜶  

Activity (𝐢) 𝐔𝐢_𝐦𝐢𝐧
𝟏  𝐔𝐢_𝐦𝐢𝐧

𝟐  𝐬𝐢_𝐦𝐢𝐧
𝟏  𝐬𝐢_𝐦𝐢𝐧

𝟐  𝐬𝐢_𝐦𝐚𝐱
𝟏  𝐬𝐢_𝐦𝐚𝐱

𝟐  𝐊𝐢𝐬
𝟏  𝐊𝐢𝐬

𝟐  

1 7 0 300 0 540 0 0.12 0 

2 0 7 0 360 0 570 0 0.12 

3 3 3 15 20 90 120 0.08 0.06 

Utility 

7 

3 

0.1 

0.08 

15 90 300 540 
Duration 

0.12 

Figure 3.6 Duration utility on old activity 1 (blue), new activity 1 (green) and 

activity 3 (red) of person 1 
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Table 3.14 Vehicle flows and person flows from UHAPP case 2 scenario 

Nodes (𝐍) Nodes (𝐍) Vehicles(𝐕) Persons (𝛈) 𝐗𝐢𝐣
𝟏 𝐗𝐢𝐣

𝟐  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 1 1 1 0 1 0 

0 2 2 2 0 1 0 1 

1 4 1 1 1 0 1 0 

2 3 2 2 0 1 0 1 

3 5 2 2 0 1 0 1 

4 7 1 1 1 0 1 0 

5 6 2 2 0 1 0 1 

6 7 2 2 0 1 0 1 

 

Table 3.15 Arrival time and activity duration from UHAPP case 2 scenario 

NODES (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐓𝐢

𝛂. 𝐑𝐂 𝐒𝐢
𝛂 𝐒𝐢

𝛂. 𝐑𝐂 

0 1 7:50 0 - - 

0 2 8:25 0 - - 

1 1 8:20 0 540 0 

2 2 9:00 0 395 0 

3 2 16:00 0.06 50 0 

4 1 17:50 0 0 0 

5 2 17:30 0 0 -0.02625 

6 2 17:30 0.02625 0 0 

7 1 17:50 0.06 - - 

7 2 18:00 0 - - 

 

To see how different weights on the objective function will affect peoples’ travel decision, we 

change the uniform utility component weights to β1i = β2 = β3 = β4 = 1, β5i = 2, which 

means that this household puts more weight on the utility of activity duration. We keep all other 

inputs the same as base case scenario. We name this input as case 3 scenario. We run UHAPP in 

AMPL calling CPLEX 12.5.1. After 7547 MIP simplex iterations and 2545 branch-and-bound 

nodes, we have a new objective 44.925. We have a positive optimal objective value after 
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increasing the relative weight of the utility on activity duration—ostensibly the objective would 

be required to be positive if the household were to be assumed economically rational. The 

solutions are as shown in Table 3.16 and Table 3.17. Since this household considers the utility of 

activity duration as more important, we can see every person participates in each activity at its 

maximum duration and the arrival time has been shifted to obtain such a solution. These results 

indicate that further attention needs to be paid to choose/estimate an appropriate set of weights 

on each objective. Because the betas are subjective to different persons, we have further 

discussion related to betas in Chapter 5. 

 

Table 3.16 Vehicle flows and person flows from UHAPP case 3 scenario 

Nodes (𝐍) Nodes (𝐍) Vehicles(𝐕) Persons (𝛈) 𝐗𝐢𝐣
𝟏 𝐗𝐢𝐣

𝟐  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 1 1 1 0 1 0 

0 2 2 2 0 1 0 1 

1 3 1 1 1 0 1 0 

2 5 2 2 0 1 0 1 

3 4 1 1 1 0 1 0 

4 6 1 1 1 0 1 0 

5 7 2 2 0 1 0 1 

6 7 1 1 1 0 1 0 

 

Table 3.17 Arrival time and activity duration from UHAPP case 3 scenario 

NODES (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐓𝐢

𝛂. 𝐑𝐂 𝐒𝐢
𝛂 𝐒𝐢

𝛂. 𝐑𝐂 

0 1 5:45 0 - - 

0 2 8:25 0 - - 

1 1 6:15 0 540 0 

2 2 9:00 0 570 0 

3 1 15:30 0.0375 90 0 

4 1 17:40 0 0 0 

5 2 19:05 0 0 0 

6 1 17:40 0.0325 0 -0.09 
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7 1 17:40 0.06 - - 

7 2 19:05 0.075 - - 

 

We combine solutions from HAPP as well as solutions from UHAPP in base case, case1, case 2 

and case 3 in Table 3.18. In addition to what we have shown in Table 3.18, we also run several 

cases and we find out because the original HAPP has limitations on estimating arrival time and 

activity duration, we will not see differences in solutions as long as we do not change the arrival 

time windows and known activity duration. Because UHAPP has incorporated utility functions 

with respect to activity arrival and activity duration, by changing different peak arrival times, and 

coefficients defining the linear utility functions associated with arrival times and durations, as 

well as coefficients on objective function, UHAPP will generate different solutions (Table 3.18). 

According to our experiments, changing the (statistical) mode of arrival times as well as the 

lower bound and upper bound of the activity duration will significantly affect the arrival time 

solution. This suggests that policy makers address transportation policies that will diversify 

people’s peak arrival time to activities. The coefficients defining the linear utility functions as 

well as the values of weighting coefficients of the terms of the objective function play a lesser 

role in changing activity arrival times and activity durations. This limitation comes from the 

rough time interval linearity assumption on the utility activity arrival function and utility 

duration function. Because in our examples there is only one 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 and 𝐾𝑖𝑠
𝛼 to generate the 

optimal solution, like many linear programming problems, the optimal solution will always 

happen at the corners of the feasible region. For a long time interval, if there is only one 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 

and 𝐾𝑖𝑠
𝛼, the sensitivity on activity arrival and activity duration is lost as these are continuous 

variables. Although UHAPP has extended unique solutions compared to the original HAPP, 

more unique solutions can be introduced by having more 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 and 𝐾𝑖𝑠
𝛼, which means we 
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should divide smaller time intervals to have more lines to maintain piecewise linearity, or to 

more extreme, they will become non-linear functions. How changes of coefficients of 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 

and 𝐾𝑖𝑠
𝛼 throughout the full horizon will affect every single unit change on solutions on activity 

arrival time and activity duration may be ascertained through specification of 𝛽𝑖
𝛼. 𝛽𝑖

𝛼 is only 

another version of changing 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 and 𝐾𝑖𝑠
𝛼. If we divide the objective function small enough, 

we may not need to have 𝛽𝑖
𝛼 because 𝛽𝑖

𝛼 can be calibrated within 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 and 𝐾𝑖𝑠
𝛼 as a multiplier. 

 

Table 3.18 Arrival time and activity duration of different input in HAPP and UHAPP 

NODES 

(𝐍) 

Original 
HAPP 

UHAPP in 
base case  

UHAPP in 
case 1 

UHAPP in 
case 2 

UHAPP in 
case 3 

𝐓𝐢
𝛂 𝐒𝐢

𝛂 𝐓𝐢
𝛂 𝐒𝐢

𝛂 𝐓𝐢
𝛂 𝐒𝐢

𝛂 𝐓𝐢
𝛂 𝐒𝐢

𝛂 𝐓𝐢
𝛂 𝐒𝐢

𝛂 

0 9:20 - 9:30 - 7:50 - 7:50 - 5:45 - 

0 5:25 - 8:25 - 8:25 - 8:25 - 8:25 - 

1 10:30 300 10:00 540 8:20 415 8:20 540 6:15 540 

2 6:00 360 9:00 395 9:00 570 9:00 395 9:00 570 

3 10:00 15 16:00 50 15:30 80 16:00 50 15:30 90 

4 16:00 0 19:30 0 17:30 0 17:50 0 17:40 0 

5 12:35 0 19:10 0 19:05 0 17:30 0 19:05 0 

6 16:00 0 17:30 0 17:30 0 17:30 0 17:40 0 

7 16:00 - 19:30 - 17:30 - 17:50 - 17:40 - 

7 12:35 - 18:00 - 19:05 - 18:00 - 19:05 - 

 

Conclusion 

Here we build on the capabilities of HAPP to generate an extension, UHAPP, that evaluates 

simultaneously activity assignment, activity chaining, activity arrival time and activity duration. 

We use a piecewise (triangular) linear function as the arrival time utility function and a 

piecewise linear step function as the activity duration utility function. We have demonstrated 

how the solution will change when the arrival utility function and the activity duration function 
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are changed, as well as the change based on the weights of the various components of the 

objective function. Our hypothetic examples show that using a single value for 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 and 𝐾𝑖𝑠
𝛼 

throughout the full horizon will limit the solution space (i.e., will result in the same corner 

solutions for a range of options), and that perhaps smaller time intervals should be applied to 

produce more continuous solutions. Even nonlinear functions can be considered in order to have 

a full set of 𝐾𝑖𝑒
𝛼 , 𝐾𝑖𝑙

𝛼 and 𝐾𝑖𝑠
𝛼 throughout the full horizon. Although the current format of UHAPP 

may work well for some highly homogeneous groups, we believe that inhomogeneous behaviors 

are more common in day to day basis. Well-calibrated arrival utility functions, activity duration 

functions and the weights of each objective are essential for practical application of our analysis. 

We have extended the capability of handling demand on HAPP. The next chapter will extend 

HAPP on the supply side by extending its capability of handling time-of-day traffic congestion. 
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Chapter 4 A TRAFFIC DEPENDENT HOUSEHOLD ACTIVITY PATTERN 

PROBLEM MODEL 

Introduction 

In Chapter 3, we extended the HAPP formulation to include the consideration of utility of 

activity arrival time and the utility of activity duration, in which we expand/eliminate time 

window constraints along with changing the objective function of HAPP to include the utility of 

the activities performed (rather than simply the disutility of travel, as in the original formulation 

of HAPP)—UHAPP. However, to consider different traffic conditions on peoples’ activity 

scheduling, chaining and duration, we need to further extend UHAPP to handle time-dependent 

traffic conditions that may result in the scheduling of activities to avoid traffic congestion. In this 

chapter, a traffic-dependent utility- based household activity pattern problem (TUHAPP) model 

is proposed to address changes in travel behavior due to changes in travel time and travel cost 

during a day. TUHAPP provides a tool to analyze people’s decisions regarding activity chaining, 

scheduling, and mode choice under consideration of the evolving traffic conditions during the 

day. Our hypothetical examples will show that TUHAPP is capable of being an operational 

activity-based demand modeling tool for planning agencies for meeting the transition to activity-

based demand modeling in evaluating such policy changes as congestion pricing on existing 

facilities and other improvements that depend on sensitivity of peoples' travel decisions on 

different travel times and travel costs throughout a day.  

 

Previous research related to HAPP has failed to take into account differences of travel time and 

travel cost during the day—HAPP can handle only a single (static) travel time and travel cost 
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matrix throughout the day as the input. In reality, travel times and travel costs are time dependent 

during the day, as there are peak hours and off peak hours of traffic as many traffic management 

systems and transportation pricing schemes work on the time of day mechanism, activity-based 

models like HAPP should be able to accommodate changes of traffic during a day on people’s 

travel decision. Furthermore, as originally formulated, HAPP focuses only on one travel mode 

(auto), preventing consideration of options of many people’s travel decision in terms of mode 

choice. To address these limitations of HAPP, here we propose a traffic-dependent utility based 

household activity pattern problem (TUHAPP) model that can reflect changes in travel behavior 

due to changes in travel time and travel cost during the day; we further include explicit 

consideration of travel modes other than auto. We treat the travel time and travel cost as an 

aggregate zone-to-zone travel time and travel cost, which means we do not consider the detail of 

exact travel time from door to door for each mode. For example, for auto travel modes, we do 

not consider how long the vehicle stops in one intersection or if the driver is an aggressive driver 

who changes lane as much as possible to get to the destination. For public transit modes, we do 

not consider which stop the person chooses to get on the bus or get off the train, or whether this 

person drives to the bus station or somebody drops him/her off. We assume these data are 

available at the level of aggregate zone-to-zone travel times and travel costs data by mode 

because they are usually available at the current 4-step model. Figure 4.1 shows the dimension of 

travel time and travel cost compared to the original form of HAPP (in yellow color), which only 

tackles one travel time and one travel cost throughout the day. Figure 4.2 shows the hypothetical 

change of travel times and travel costs during the day with the approximation of the data input 

for HAPP and TUHAPP. Compared to the original form of HAPP, which can only tackle one 
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travel time and one travel cost throughout the day, TUHAPP can tackle as many time periods of 

travel times and travel costs as long as data are available. 

 

Figure 4.1 the dimension of travel time or travel cost matrixes 
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Figure 4.2 the time of day travel times and travel costs 

 

Model formulation 

We adopt the notation from Chapter 3. The general formulation of TUHAPP is  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈(𝑿𝒊) = 𝜷𝑖
′ ∙ 𝑿𝒊 (4-1) 

subject to 𝑩𝑿𝒊 ≤ 0, (4-2) 

where 

𝑿𝒊 = [𝑿𝑣𝑝 𝑯𝜶𝒑 𝑻𝜶 𝑺𝜶]′, 𝑿𝒗𝒑 = [𝑋𝒊𝒋
𝒗𝒑

= {
0
1

], 𝑯𝜶𝒑 = [𝐻𝒊𝒋
𝜶𝒑

= {
0
1

], 𝑻𝜶 = [𝑇𝑖
𝛼 ≥ 0], 𝑺𝜶 =

[𝑆𝑖
𝛼 ≥ 0], 𝜷𝒊 = [𝛽𝑖

𝛼]. 𝑋𝑣𝑝 is the decision variable on vehicle flow; 𝐻𝛼𝑝 is the decision variable 

on person flow; 𝑇𝛼 is the decision variable on arrival time; 𝑆𝛼 is the decision variable on activity 

duration; 𝛽𝑖
𝛼 is the weight of objective imposed by each person and each activity. Equation (4-1) 

and (4-2) define TUHAPP in matrix format. A detail version of TUHAPP is defined as follow. 
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𝑃 = {1, 2, … , 𝑖, … , 𝑛} Set of consecutive periods 

𝑉𝐴 = {1, 2, … , 𝑣} Set of available auto vehicles in the household 

𝑉𝑇 = {𝑣 + 1, 𝑣 + 2, . . , 𝑣 + |𝜂|} Set of available transit modes in the household 

𝑉 = 𝑉𝐴 ∪ 𝑉𝑇 Set of available modes used by travelers in the 

household to complete their scheduled activities. 

[𝑎𝑝, 𝑏𝑝], 𝑝 ∈ 𝑃 The time window for the period p 

𝑡𝑖𝑗
𝑣𝑝

 The travel time from the location of activity i to the 

location of activity j in time period p by mode v. 

𝑐𝑢𝑤
𝑣𝑝  Travel cost from location of activity i to the location of 

activity j in time period p by mode v. 

𝑋𝑖𝑗
𝑣𝑝, 𝑖, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑖 ≠ 𝑗 Binary decision variable equal to unity if mode v travels 

from activity i to activity j in time period p, and zero 

otherwise. 

𝐻𝑖𝑗
𝛼𝑝, 𝑖, 𝑗 ∈ 𝑁, 𝛼 ∈ 𝜂, 𝑖 ≠ 𝑗 Binary decision variable equal to unity if household 

member α travels from activity i to activity j in time 

period p, and zero otherwise. 

 

Along with other notations in Chapter 3, the TUHAPP can be represented as 

𝑀𝑎𝑥 𝑈 = ∑ ∑ 𝛽1𝑖
𝛼 𝑓(𝑇𝑖

𝛼) ∑ ∑ 𝐻𝑖𝑗
𝛼𝑝

𝑝∈𝑃𝑗∈𝑁𝛼∈𝜂𝑖∈𝐷

− ∑ ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝 ∑ 𝛽2
𝛼𝐻𝑖𝑗

𝛼𝑝

𝛼∈𝜂𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

− 𝛽3 ∑ ∑ ∑ ∑ 𝐾𝑣𝑋𝑖𝑗
𝑣𝑝

𝑝∈𝑃𝑗∈𝐿+𝑖∈𝑂𝑣∈𝑉

− ∑ ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝 ∑ 𝛽4
𝛼𝐻𝑖𝑗

𝛼𝑝

𝛼∈𝜂𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

+ ∑ ∑ 𝛽5𝑖
𝛼 𝑔(𝑆𝑖

𝛼)

𝛼∈𝜂

∑ ∑ 𝐻𝑖𝑗
𝛼𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝐿+

 

(4-3a) 
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Under the assumption that the utility functions for arrival time and duration do not vary over 

individuals, Equation (4-3a) becomes 

𝑀𝑎𝑥 𝑈 = ∑ ∑ ∑ ∑ 𝛽1𝑖𝑓(𝑇𝑖
𝛼)𝐻𝑖𝑗

𝛼𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝐷𝛼∈𝜂

− 𝛽2 ∑ ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

− 𝛽3 ∑ ∑ ∑ ∑ 𝐾𝑣𝑋𝑖𝑗
𝑣𝑝

𝑝∈𝑃𝑗∈𝐿+𝑖∈𝑂𝑣∈𝑉

− 𝛽4 ∑ ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

+ ∑ ∑ ∑ ∑ 𝛽5𝑖𝑔(𝑆𝑖
𝛼)𝐻𝑖𝑗

𝛼𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝐿+𝛼∈𝜂

 

(4-3b) 

 

where ∑ ∑ ∑ ∑ 𝛽1𝑖𝑓(𝑇𝑖
𝛼)𝐻𝑖𝑗

𝛼𝑝
𝑝∈𝑃𝑗∈𝑁𝑖∈𝐷𝛼∈𝜂  is the total utility of arrival time for the household, 

𝛽2 ∑ ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝
𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉  is the total disutility of time spent traveling during the day, 

𝛽3 ∑ ∑ ∑ ∑ 𝐾𝑣𝑋𝑖𝑗
𝑣𝑝

𝑝∈𝑃𝑗∈𝐿+𝑖∈𝑂𝑣∈𝑉  is the total initial cost of using a vehicle for out of home 

activities. (As we mention before, we can include the parking cost for the other end of travel. We 

can even include time of day parking cost in TUHAPP, which is one of the hot topics in parking 

demand estimation, but for simplicity, we do not include parking cost in our following analysis) 

𝛽4 ∑ ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝
𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉  is the total travel cost during the day; this includes any tolls, 

fuel consumption and other monetary costs. ∑ ∑ ∑ ∑ 𝛽5𝑖𝑔(𝑆𝑖
𝛼)𝐻𝑖𝑗

𝛼𝑝
𝑝∈𝑃𝑗∈𝑁𝑖∈𝐿+𝛼∈𝜂  is the total 

utility of time spent participating in the activity. The sum of these objective components is 

subject to the following constraints: 

 

∑ ∑ ∑ 𝑋𝑖𝑗
𝑣𝑝

𝑗∈𝑁𝑝∈𝑃𝑣∈𝑉

= 1, 𝑖 ∈ 𝐿+ (4-4) 

∑ ∑ 𝑋𝑖𝑗
𝑣𝑝

𝑝∈𝑃 𝑗∈𝑁

− ∑ ∑ 𝑋𝑗𝑖
𝑣𝑝

𝑝∈𝑃𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿, 𝑣 ∈ 𝑉 (4-5) 
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∑ ∑ 𝑋0𝑗
𝑣𝑝

𝑝∈𝑃𝑗∈𝐿+ 

≤ 1, 𝑣 ∈ 𝑉 (4-6) 

∑ ∑ 𝑋𝑗,2𝑛+1
𝑣𝑝

𝑝∈𝑃𝑗∈𝐿− 

≤ 1, 𝑣 ∈ 𝑉 (4-7) 

∑ ∑ 𝑋𝑗,𝑖
𝑣𝑝

𝑝∈𝑃𝑗∈𝑁

− ∑ ∑ 𝑋𝑗,𝑛+𝑖
𝑣𝑝

𝑝∈𝑃𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿+, 𝑣 ∈ 𝑉 (4-8) 

𝑋𝑖𝑗
𝑣𝑝 = {

0
1

;      𝑖, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃  (4-10) 

∑ 𝑋0,𝑗
𝑣𝑝

𝑗∈𝐿−

= 0, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-11) 

∑ 𝑋𝑖,0
𝑣𝑝

𝑖∈𝑁

= 0, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-12) 

∑ 𝑋𝑖,2𝑛+1
𝑣𝑝

𝑖∈𝐿+

= 0, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-13) 

∑ 𝑋2𝑛+1,𝑗
𝑣𝑝

𝑗∈𝑁

= 0, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-14) 

∑ 𝑋𝑖+𝑛,𝑖
𝑣𝑝

𝑖∈𝐿+

= 0, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-15) 

∑ 𝑋𝑗,𝑗
𝑣𝑝

𝑗∈𝑁

= 0, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-16) 

𝑋𝑖,𝑗
𝑣𝑝 + 𝑋𝑗,𝑖

𝑣𝑝 ≤ 1, 𝑖, 𝑗 ∈ 𝐿−, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-17) 

∑ ∑ ∑ 𝐻𝑖𝑗
𝛼𝑝

𝑝∈𝑃 𝑗∈𝑁𝛼∈𝜂

= 1, 𝑖 ∈ 𝐿+ (4-18) 

∑ ∑ 𝐻𝑖𝑗
𝛼𝑝

𝑝∈𝑃𝑗∈𝑁

− ∑ ∑ 𝐻𝑗𝑖
𝛼𝑝

𝑝∈𝑃𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂 (4-19) 

∑ ∑ 𝐻0𝑗
𝛼𝑝

𝑝∈𝑃𝑗∈𝐿+

≤ 1, 𝛼 ∈ 𝜂 (4-20) 
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∑ ∑ 𝐻𝑖,2𝑛+1
𝛼𝑝

𝑝∈𝑃𝑖∈𝐿−

≤ 1, 𝛼 ∈ 𝜂 (4-21) 

∑ ∑ 𝐻𝑗𝑖
𝛼𝑝

𝑝∈𝑃𝑗∈𝑁

− ∑ ∑ 𝐻𝑗,𝑛+𝑖
𝛼𝑝

𝑝∈𝑃𝑗∈𝑁

= 0, 𝑖 ∈ 𝐿+, 𝛼 ∈ 𝜂 (4-22) 

𝑎𝑖 − 𝑇𝑖
𝛼 ≤ (2 − ∑ 𝐻𝑖𝑗

𝛼𝑝

𝑗∈𝐿

− ∑ 𝑋𝑖𝑗
𝑣𝑝

𝑗∈𝐿

) 𝑀, 𝑖 ∈ 𝐿+, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-23a) 

𝑇𝑖
𝛼 − 𝑏𝑖 ≤ (2 − ∑ 𝐻𝑖𝑗

𝛼𝑝

𝑗∈𝐿

− ∑ 𝑋𝑖𝑗
𝑣𝑝

𝑗∈𝐿

) 𝑀, 𝑖 ∈ 𝐿+, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-23b) 

𝑇𝑖
𝛼 + 𝑆𝑖

𝛼 + 𝑡𝑖,𝑛+𝑖
𝑣𝑝 −𝑇𝑛+𝑖

𝛼 ≤ (2 − ∑ 𝑋𝑘,𝑖
𝑣𝑝

𝑘∈𝑁

− ∑ 𝐻𝑗,𝑖
𝛼𝑝

𝑗∈𝑁

) 𝑀,

𝑖 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 

(4-24) 

𝑇𝑖
𝛼 + 𝑆𝑖

𝛼 + 𝑡𝑖𝑗
𝑣𝑝 − 𝑇𝑗

𝛼 ≤ (2 − 𝐻𝑖𝑗
𝛼𝑝 − 𝑋𝑖𝑗

𝑣𝑝)𝑀, 𝑖, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-25a) 

𝑇𝑖
𝛼 + 𝑆𝑖

𝛼 + 𝑡𝑖𝑗
𝑣𝑝

− 𝑇𝑗
𝛼 ≥ −(2 − 𝐻𝑖𝑗

𝛼𝑝
− 𝑋𝑖𝑗

𝑣𝑝
)𝑀, 𝑖, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-25b) 

𝑇𝑗
𝛼 ≤ ∑ ∑ 𝐻𝑖𝑗

𝛼𝑝

𝑖∈𝑁

𝑀

𝑝∈𝑃

, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃  (4-26) 

𝑆𝑗
𝛼 ≤ ∑ ∑ 𝐻𝑖𝑗

𝛼𝑝

𝑖∈𝑁

𝑀

𝑝∈𝑃

, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃  (4-27a) 

𝑆𝑖
𝛼 ≤ (1 − ∑ 𝐻𝑖𝑗

𝛼𝑝)

𝑗∈𝐿−

𝑀, 𝑖 ∈ 𝐿−, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-27b) 

𝑆𝑗
𝛼 − 𝑠𝑗_𝑚𝑖𝑛

𝛼 ≥ (∑ ∑ 𝐻𝑖𝑗
𝛼𝑝

𝑖∈𝑁𝑝∈𝑃

− 1) 𝑀, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂 (4-28) 

𝑇0
𝛼 + 𝑡0𝑗

𝑣𝑝 − 𝑇𝑗
𝛼 ≤ (2 − 𝐻0𝑗

𝛼𝑝 − 𝑋0𝑗
𝑣𝑝)𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-29a) 

𝑇0
𝛼 + 𝑡0𝑗

𝑣𝑝 − 𝑇𝑗
𝛼 ≥ −(2 − 𝐻0𝑗

𝛼𝑝 − 𝑋0𝑗
𝑣𝑝)𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-29b) 
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𝑇𝑖
𝛼 − 𝑇2𝑛+1

𝛼 ≤ (2 − 𝐻𝑖,2𝑛+1
𝛼𝑝

− 𝑋𝑖,2𝑛+1
𝑣𝑝

)𝑀, 𝑖 ∈ 𝐿−, 𝛼 ∈ 𝜂, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-30) 

𝑓(𝑇𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 0 ≤ 𝑇𝑖

𝛼 < 𝑎𝑖
𝛼   (4-36a) 

𝑓(𝑇𝑖
𝛼) = 𝐾𝑖𝑒

𝛼 (𝑇𝑖
𝛼 − 𝑎𝑖

𝛼), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑎𝑖
𝛼  ≤ 𝑇𝑖

𝛼 ≤ 𝜇𝑖
𝛼 (4-36b) 

 𝑓(𝑇𝑖
𝛼) = 𝐾𝑖𝑙

𝛼(𝑇𝑖
𝛼 − 𝑏𝑖

𝛼),          𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂,         𝑖𝑓 𝜇𝑖
𝛼 < 𝑇𝑖

𝛼 ≤ 𝑏𝑖
𝛼  (4-36c) 

𝑓(𝑇𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑏𝑖

𝛼 < 𝑇𝑖
𝛼 (4-36d) 

𝑓(𝑇2𝑛+1
𝛼 ) = 0, 𝛼 ∈ 𝜂, 𝑖𝑓 0 ≤ 𝑇2𝑛+1

𝛼 < 𝑎2𝑛+1
𝛼  (4-37a) 

𝑓(𝑇2𝑛+1
𝛼 ) = 𝐾2𝑛+1,𝑒

𝛼 (𝑇2𝑛+1
𝛼 − 𝑎2𝑛+1

𝛼 ), 𝛼 ∈ 𝜂, 𝑖𝑓 𝑎2𝑛+1
𝛼 ≤ 𝑇2𝑛+1

𝛼 ≤ 𝜇2𝑛+1
𝛼 , (4-37b) 

𝑓(𝑇2𝑛+1
𝛼 ) = 𝐾2𝑛+1,𝑙

𝛼 (𝑇2𝑛+1
𝛼 − 𝑏2𝑛+1

𝛼 ), 𝛼 ∈ 𝜂, 𝑖𝑓 𝜇2𝑛+1
𝛼 < 𝑇2𝑛+1

𝛼 ≤ 𝑏2𝑛+1
𝛼 , (4-37c) 

𝑓(𝑇2𝑛+1
𝛼 ) = 0, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑏2𝑛+1

𝛼 < 𝑇2𝑛+1
𝛼 , (4-37d) 

𝑔(𝑆𝑖
𝛼) = 0, 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖

𝛼 = 0,  
(4-38a) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝛼 , 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖
𝛼 < 𝑠𝑖_𝑚𝑖𝑛

𝛼 , 
(4-38b) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝛼 + 𝐾𝑖𝑠
𝛼(𝑆𝑖

𝛼 − 𝑠𝑖_𝑚𝑖𝑛
𝛼 ), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑠𝑖_𝑚𝑖𝑛

𝛼 ≤ 𝑆𝑖
𝛼 < 𝑠𝑖_𝑚𝑎𝑥

𝛼 , (4-38c) 

𝑔(𝑆𝑖
𝛼) = 𝑈𝑖_𝑚𝑖𝑛

𝑠 + 𝐾𝑖𝑠
𝛼(𝑠𝑖_𝑚𝑎𝑥

𝛼 − 𝑠𝑖_𝑚𝑖𝑛
𝛼 ), 𝑖 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑖𝑓 𝑆𝑖

𝛼 ≥ 𝑠𝑖_𝑚𝑎𝑥
𝛼 , (4-38d) 

∑ 𝐻0,𝑗
𝛼𝑝

𝑗∈𝐿−

= 0, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-39) 

∑ 𝐻𝑖,0
𝛼𝑝

𝑖∈𝑁

= 0, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-40) 

∑ 𝐻𝑖,2𝑛+1
𝛼𝑝

𝑖∈𝐿+

= 0, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-41) 

∑ 𝐻2𝑛+1,𝑗
𝛼𝑝

𝑗∈𝑁

= 0, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-42) 

∑ 𝐻𝑖+𝑛,𝑖
𝛼𝑝

𝑖∈𝐿+

= 0, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-43) 

∑ 𝐻𝑗,𝑗
𝛼𝑝

𝑗∈𝑁

= 0, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-44) 
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𝐻𝑖,𝑗
𝑣𝑝

+ 𝐻𝑗,𝑖
𝑣𝑝

≤ 1, 𝑖, 𝑗 ∈ 𝐿−, 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 (4-45) 

∑ ∑ ∑ 𝐻𝑖𝑗
𝛼𝑝

𝑝∈𝑃𝑖∈𝐿

= 0, 𝛼 ∈ 𝜂

𝑗∈Ω𝐻
𝛼

 (4-46) 

𝐻𝑖𝑗
𝛼𝑝 = {

0
1

; 𝑖, 𝑗 ∈ 𝑁, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-47) 

∑ 𝐻𝑖𝑗
𝛼𝑝 = ∑ 𝑋𝑖𝑗

𝑣𝑝

𝑣∈𝑉𝛼∈𝜂

, 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿, 𝑝 ∈ 𝑃 (4-48) 

∑ 𝐻0𝑗
𝛼𝑝

= ∑ 𝑋0𝑗
𝑣𝑝

𝑣∈𝑉𝛼∈𝜂

, 𝑗 ∈ 𝐿+, 𝑝 ∈ 𝑃 (4-49) 

∑ 𝐻𝑖,2𝑛+1
𝛼𝑝 = ∑ 𝑋𝑖,2𝑛+1

𝑣𝑝

𝑣∈𝑉𝛼∈𝜂

, 𝑖 ∈ 𝐿−, 𝑝 ∈ 𝑃 (4-50) 

We incorporate the time period dependence to UHAPP by adding one time-of-day dimension to 

each vehicle flow and person flow. The following additional constraints are introduced to 

TUHAPP, 

∑ ∑ 𝑋𝑗𝑘
𝑣𝑝

𝑘∈𝑁𝑝,𝑞∈𝑃: 𝑝<𝑞

≤ (1 − 𝑋𝑖𝑗
𝑣𝑞)𝑀, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝐿, 𝑣 ∈ 𝑉 (4-9) 

∑ ∑ 𝐻𝑗𝑘
𝛼𝑝

𝑘∈𝑁𝑝,𝑞∈𝑃: 𝑝<𝑞

≤ (1 − 𝐻𝑖𝑗
𝛼𝑞)𝑀, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂 (4-35) 

𝑎𝑝 − (𝑇𝑖
𝛼 + 𝑆𝑖

𝛼) ≤ (1 − 𝐻𝑖𝑗
𝛼𝑝)𝑀, 𝑖, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-31) 

𝑎𝑝 − 𝑇0
𝛼 ≤ (1 − 𝐻0𝑗

𝛼𝑝)𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-32) 

(𝑇𝑖
𝛼 + 𝑆𝑖

𝛼) − 𝑏𝑝 ≤ (1 − 𝐻𝑖𝑗
𝛼𝑝)𝑀, 𝑖, 𝑗 ∈ 𝐿, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-33) 

𝑇0
𝛼 − 𝑏𝑝 ≤ (1 − 𝐻0𝑗

𝛼𝑝)𝑀, 𝑗 ∈ 𝐿+, 𝛼 ∈ 𝜂, 𝑝 ∈ 𝑃 (4-34) 

Relationships (4-3)-(4-50) define the traffic-dependent utility based household activity pattern 

problem (TUHAPP). Compared to UHAPP in Chapter 3, constraints (4-9) and (4-35) are added 

to the constraints in UHAPP to force the condition that vehicle flows and person flows are time-
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period dependent. If a node has been visited, the visit has to have happened at least in the same 

or before the time period to which the next node belongs. Constraints (4-31)-(4-34) are added to 

assign the time window to each time period depending on availability of traffic condition data. 

The time windows of each time period are defined by transportation planning practice—common 

practice defines 4 or 5 time periods of a day—and the more time periods within a day, the longer 

it takes to obtain the optimal solution in TUHAPP.  

 

Hypothetical example 

To demonstrate how the change of travel times and travel costs during a day can affect peoples’ 

travel decision, we generate a sample dataset based on Chapter 3’s hypothetical example which 

includes a 2 person household with 2 automobile vehicles (𝑉1, 𝑉2) and 1 transit mode (𝑉3, 𝑉4) 

available. Here, the transit mode is identical for each person in the household. We divide the day 

into 1440 minutes. We keep the same input data from Table 3.1 to Table 3.3, but add an initial 

cost for transit mode in Table 4.1. We assign a lower initial cost to the ‘transit mode’ in this 

“baseline” example to see whether or not people change to the use of the transit mode because of 

this lower cost. We divide a day into 5 time periods based on traffic conditions in this example. 

Table 4.2 shows the time window for each time period. Table 4.3 and Table 4.4 are the travel 

time and travel cost tables for each mode in each time period. In the current example, they are 

the same for each mode in each time period. 

Table 4.1 Initial cost of each mode 

Modes (𝐕) 𝐊𝐯 

1 10 

2 10 
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3 5 

4 5 

 

Table 4.2 Periods time window 

Periods (𝐏) Time window ([𝐚𝐩, 𝐛𝐩]) 

1 (NT) [0:01, 6:00] [1, 360] 

2 (AM) [6:01, 9:00] [361, 540] 

3 (MD) [9:01, 15:00] [541, 900] 

4 (PM) [15:01, 19:00] [901, 1140] 

5 (EVE) [19:01, 24:00] [1141, 1440] 

 

Table 4.3 Travel time matrix of every mode in every time period 

NODES 0 1 2 3 4 5 6 7 

0 0 30 35 40 0 0 0 0 

1 30 0 20 15 30 30 30 30 

2 35 20 0 25 35 35 35 35 

3 40 15 25 0 40 40 40 40 

4 0 30 35 40 0 0 0 0 

5 0 30 35 40 0 0 0 0 

6 0 30 35 40 0 0 0 0 

7 0 30 35 40 0 0 0 0 

 

Table 4.4 Travel cost matrix of every mode in every time period 

NODES 0 1 2 3 4 5 6 7 

0 0 3 3.5 4 0 0 0 0 

1 3 0 2 1.5 3 3 3 3 

2 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 4 1.5 2.5 0 4 4 4 4 

4 0 3 3.5 4 0 0 0 0 

5 0 3 3.5 4 0 0 0 0 

6 0 3 3.5 4 0 0 0 0 

7 0 3 3.5 4 0 0 0 0 
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We run TUHAPP model with these inputs in AMPL and call CPLEX 12.5.1. After 50546 MIP 

simplex iterations and 9835 branch-and-bound nodes, we have an optimal solution of -9.35. The 

total travel time is 155 minutes and the total travel cost is $15.50. The solutions for the vehicle 

flows and person flows are posted in Table 4.5. The solutions of arrival time and activity 

duration are posted in Table 4.6. Because travel time and travel cost of each pair of nodes are the 

same throughout the day, we obtain the same solution for the arrival times and durations as 

UHAPP base case scenario in Chapter 3. We also draw the travel diary of the household in 

Figure 4.3. The only difference is the optimal objective of -9.35 (compared to -19.35), because 

the transit mode has a lower initial cost—people in the household all use transit to complete all 

out of home activities. Thus, TUAHPP can evaluate mode choice by their aggregate zone-to-

zone travel times and travel costs It takes longer (compared to using UHAPP) to obtain the 

optimal solution because the dimension of the problem is extended to include five time periods 

travel times and travel costs.  

Table 4.5 Vehicle flows and person flows of TUHAPP example 

Nodes (𝐍) Nodes (𝐍) Modes (𝐕) Persons (𝛈) Periods (𝐏) 𝐗𝐢𝐣
𝟑 𝐗𝐢𝐣

𝟒  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 3 1 2 1 0 1 0 

0 2 4 2 2 0 1 0 1 

1 3 3 1 4 1 0 1 0 

2 5 4 2 4 0 1 0 1 

3 6 3 1 4 1 0 1 0 

4 7 3 1 5 1 0 1 0 

5 7 4 2 5 0 1 0 1 

6 4 3 1 4 1 0 1 0 
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Table 4.6 Arrival time and activity duration of TUHAPP example 

Nodes (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐒𝐢

𝛂 Modes (𝐕) Periods (𝐏) 

0 1 7:50 - 3 2 

0 2 8:25 - 4 2 

1 1 8:20 415 3 2 

2 2 9:00 570 4 2 

3 1 15:30 80 3 4 

4 1 17:30 0 3 4 

5 2 19:05 0 4 5 

6 1 17:30 0 3 4 

7 1 17:30 - 3 4 

7 2 19:05 - 4 5 
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Figure 4.3 TUHAPP solution on hypothetical example 

 

Input of different traffic conditions 

Next, we change the travel times and travel costs for different time periods and different modes 

to see how travel time and travel cost differences during a day can change peoples’ ‘optimal’ 

travel decisions. We compare two different transportation enhancement proposals (Table 4.7) 

affecting people’s travel decisions on activity assignment, arrival times and activity durations in 

this demonstration. We assume that there is an enhancement to the transit network in proposal B. 
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This enhancement, for example, can be achieved either by increasing the frequency of the current 

transit service or by giving a higher signal priority to transit mode, which can result in a lower 

aggregate zone to zone travel times for transit mode. We assume that there is no improvement in 

the auto network in both proposals. Thus, scenarios for both proposals have the same travel time 

and travel cost for each pair of nodes for autos. The same transportation mode will have the same 

travel time and travel cost for each person. We also give both modes the same initial cost as 

shown in Table 4.8. Table 4.9, Table 4.10 and Table 4.11 list the travel time and travel cost of 

each mode in each period in Proposal A and Proposal B. The enhancement on Proposal B has a 

decrease only on the travel time for transit mode, while the travel costs are the same in both 

proposals.  

Table 4.7 Two different transportation enhancement proposals 

Proposal A Proposal B 

Basic transportation 
network 

Enhancement on transit service, lower travel time on 
transit mode 

 

Table 4.8 Initial cost of each mode 

Modes (𝐕) 𝐊𝐯 

1 10 

2 10 

3 10 

4 10 

 

Table 4.9 Travel time and cost matrix of mode auto in proposal A and proposal B 

  Travel time matrix Travel cost matrix 

NT 
NODES 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

0 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 
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1 30 0 20 15 30 30 30 30 3 0 2 1.5 3 3 3 3 

2 35 20 0 25 35 35 35 35 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 40 15 25 0 40 40 40 40 4 1.5 2.5 0 4 4 4 4 

4 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

5 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

6 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

7 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

AM 

0 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

1 60 0 40 30 60 60 60 60 3 0 2 1.5 3 3 3 3 

2 70 40 0 50 70 70 70 70 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 80 30 50 0 80 80 80 80 4 1.5 2.5 0 4 4 4 4 

4 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

5 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

6 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

7 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

MD 

0 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

1 30 0 20 15 30 30 30 30 3 0 2 1.5 3 3 3 3 

2 35 20 0 25 35 35 35 35 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 40 15 25 0 40 40 40 40 4 1.5 2.5 0 4 4 4 4 

4 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

5 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

6 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

7 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

PM 

0 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

1 60 0 40 30 60 60 60 60 3 0 2 1.5 3 3 3 3 

2 70 40 0 50 70 70 70 70 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 80 30 50 0 80 80 80 80 4 1.5 2.5 0 4 4 4 4 

4 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

5 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

6 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

7 0 60 70 80 0 0 0 0 0 3 3.5 4 0 0 0 0 

EVE 

0 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

1 30 0 20 15 30 30 30 30 3 0 2 1.5 3 3 3 3 

2 35 20 0 25 35 35 35 35 3.5 2 0 2.5 3.5 3.5 3.5 3.5 

3 40 15 25 0 40 40 40 40 4 1.5 2.5 0 4 4 4 4 

4 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

5 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

6 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 

7 0 30 35 40 0 0 0 0 0 3 3.5 4 0 0 0 0 
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Table 4.10 Travel time and cost matrix of mode transit in proposal A 

  Travel time matrix Travel cost matrix 

NT 

NODES 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

0 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

1 60 0 40 30 60 60 60 60 2 0 2 2 2 2 2 2 

2 70 40 0 50 70 70 70 70 2 2 0 2 2 2 2 2 

3 80 30 50 0 80 80 80 80 2 2 2 0 2 2 2 2 

4 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

AM 

0 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

1 36 0 24 18 36 36 36 36 2 0 2 2 2 2 2 2 

2 42 24 0 30 42 42 42 42 2 2 0 2 2 2 2 2 

3 48 18 30 0 48 48 48 48 2 2 2 0 2 2 2 2 

4 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

MD 

0 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

1 60 0 40 30 60 60 60 60 2 0 2 2 2 2 2 2 

2 70 40 0 50 70 70 70 70 2 2 0 2 2 2 2 2 

3 80 30 50 0 80 80 80 80 2 2 2 0 2 2 2 2 

4 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

PM 

0 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

1 36 0 24 18 36 36 36 36 2 0 2 2 2 2 2 2 

2 42 24 0 30 42 42 42 42 2 2 0 2 2 2 2 2 

3 48 18 30 0 48 48 48 48 2 2 2 0 2 2 2 2 

4 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 36 42 48 0 0 0 0 0 2 2 2 0 0 0 0 

EVE 

0 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

1 60 0 40 30 60 60 60 60 2 0 2 2 2 2 2 2 

2 70 40 0 50 70 70 70 70 2 2 0 2 2 2 2 2 

3 80 30 50 0 80 80 80 80 2 2 2 0 2 2 2 2 
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4 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 60 70 80 0 0 0 0 0 2 2 2 0 0 0 0 

 

Table 4.11 Travel time and cost matrix of mode transit in proposal B 

  Travel time matrix Travel cost matrix 

NT 

NODES 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

0 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

1 48 0 32 24 48 48 48 48 2 0 2 2 2 2 2 2 

2 56 32 0 40 56 56 56 56 2 2 0 2 2 2 2 2 

3 64 24 40 0 64 64 64 64 2 2 2 0 2 2 2 2 

4 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

AM 

0 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

1 28.8 0 19.2 14.4 28.8 28.8 28.8 28.8 2 0 2 2 2 2 2 2 

2 33.6 19.2 0 24 33.6 33.6 33.6 33.6 2 2 0 2 2 2 2 2 

3 38.4 14.4 24 0 38.4 38.4 38.4 38.4 2 2 2 0 2 2 2 2 

4 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

MD 

0 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

1 48 0 32 24 48 48 48 48 2 0 2 2 2 2 2 2 

2 56 32 0 40 56 56 56 56 2 2 0 2 2 2 2 2 

3 64 24 40 0 64 64 64 64 2 2 2 0 2 2 2 2 

4 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

PM 

0 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

1 28.8 0 19.2 14.4 28.8 28.8 28.8 28.8 2 0 2 2 2 2 2 2 

2 33.6 19.2 0 24 33.6 33.6 33.6 33.6 2 2 0 2 2 2 2 2 

3 38.4 14.4 24 0 38.4 38.4 38.4 38.4 2 2 2 0 2 2 2 2 

4 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 
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5 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 28.8 33.6 38.4 0 0 0 0 0 2 2 2 0 0 0 0 

EVE 

0 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

1 48 0 32 24 48 48 48 48 2 0 2 2 2 2 2 2 

2 56 32 0 40 56 56 56 56 2 2 0 2 2 2 2 2 

3 64 24 40 0 64 64 64 64 2 2 2 0 2 2 2 2 

4 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

5 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

6 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

7 0 48 56 64 0 0 0 0 0 2 2 2 0 0 0 0 

 

We run TUHAPP with Proposal A data and call CPLEX 12.5.1.0 in AMPL; after 30546 MIP 

simplex iterations and 8007 branch-and-bound nodes, we have an objective -39.175. The total 

travel time is 172 minutes and the total travel cost is 13 dollars. The solutions of vehicle flows 

and person flows are posted in Table 4.12. The solutions of arrival time and activity duration are 

posted in Table 4.13. Each household member’s choice of travel mode is based on their arrival 

time utility and the travel time on using that mode. Household member 1 chooses transit mode as 

the transportation mode and is assigned to perform activity 3. Because transit has a faster travel 

time during the time period 2 and time period 4, which can yield a lower total travel time for 

household member 1, household member 1 chooses to use transit to complete all his/her out of 

home activities. Because household member 2 chooses to use mode auto and time period 2 and 

time period 4 have longer travel times for auto vehicles, household member 2 chooses to depart 

at time period 3 (9:01) which has shorter travel times by auto vehicles. Figure 4.4 shows the 

optimal solutions travel agenda for this household in Proposal A transportation settings. Thus, 

TUHAPP captures the impact of changes in travel time by time of day and by mode which can 

significantly change peoples’ daily agenda compared to examples we have shown in Chapter 3.  
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Table 4.12 Vehicle flows and person flows in Proposal A 

Nodes (𝐍) Nodes (𝐍) Modes (𝐕) Persons (𝛈) Periods (𝐏) 𝐗𝐢𝐣
𝟑 𝐗𝐢𝐣

𝟐  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 3 1 2 1 0 1 0 

0 2 2 2 3 0 1 0 1 

1 3 3 1 4 1 0 1 0 

2 5 2 2 5 0 1 0 1 

3 6 3 1 4 1 0 1 0 

4 7 3 1 5 1 0 1 0 

5 7 2 2 5 0 1 0 1 

6 4 3 1 4 1 0 1 0 

 

Table 4.13 Arrival time and activity duration in Proposal A 

Nodes (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐒𝐢

𝛂 Modes (𝐕) Periods (𝐏) 

0 1 7:44 . 3 2 

0 2 9:01 . 2 3 

1 1 8:20 412 3 4 

2 2 9:36 570 2 5 

3 1 15:30 72 2 4 

4 1 17:30 0 2 5 

5 2 19:41 0 2 5 

6 1 17:30 0 3 4 

7 1 17:30 . 3 4 

7 2 19:41 . 2 5 
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Figure 4.4 TUHAPP solution of proposal A 

 

Similarly, we run TUHAPP with proposal B data and call CPLEX 12.5.1.0 in AMPL. After 7565 

MIP simplex iterations and 1929 branch-and-bound nodes, we have an objective -7.357. Because 

of the improvement of transit service, the objective -7.357 of proposal B is greater than -39.715 

of proposal A. The total travel time is 149 minutes (compared to 172 minutes) and the total travel 

cost is $10.00. The solutions of vehicle flows and person flows are posted in Table 4.14. The 

solutions of arrival time and activity duration are posted in Table 4.15. Not only do both 
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members in the household use transit service to finish their out of home activities, the 

improvement of transit service has also changed the duration on activities 1 and 3 for person 1. 

The duration on activities 1 and 3 has been increased from 412 minutes to 416 minutes and from 

72 minutes to 82 minutes, respectively. Also, person 2 can arrive at activity 2 at the peak hour 

9:00 compared to using Proposal A transportation system. Figure 4.5 shows the optimal solutions 

of Proposal B. Thus, the improvement of transportation service on one mode will change this 

household’s daily agenda as long as their daily life style is fixed. TUHAPP can evaluate how 

different transportation improvement alternatives affect people’s daily agenda, so it can provide 

suggestions to policy makers regarding time-of-day congestion pricing and mode choice. 

Table 4.14 Vehicle flows and person flows in Proposal B 

Nodes (𝐍) Nodes (𝐍) Modes (𝐕) Persons (𝛈) Periods (𝐏) 𝐗𝐢𝐣
𝟑 𝐗𝐢𝐣

𝟒  𝐇𝐢𝐣
𝟏 𝐇𝐢𝐣

𝟐 

0 1 4 1 2 1 0 1 0 

0 2 3 2 2 0 1 0 1 

1 3 4 1 4 1 0 1 0 

2 5 3 2 4 0 1 0 1 

3 6 4 1 4 1 0 1 0 

4 7 4 1 5 1 0 1 0 

5 7 3 2 5 0 1 0 1 

6 4 4 1 4 1 0 1 0 

 

Table 4.15 Arrival time and activity duration in Proposal B 

Nodes (𝐍) Persons (𝛈) 𝐓𝐢
𝛂 𝐒𝐢

𝛂 Modes (𝐕) Periods (𝐏) 

0 1 7:51 . 4 2 

0 2 8:26 . 3 2 

1 1 8:20 416 4 2 

2 2 9:00 570 3 2 

3 1 15:30 82 4 4 

4 1 17:30 0 4 4 

5 2 19:03 0 3 5 
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6 1 17:30 0 4 4 

7 1 17:30 . 4 4 

7 2 19:03 . 3 5 

 

 

Figure 4.5 TUHAPP solution of proposal B 

 

Conclusion 

The original HAPP model can evaluate only one travel time and travel cost throughout the day. It 

cannot reflect changes in travel times and travel costs during the day on people’s activity agenda. 
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By adding time-period traffic conditions into HAPP, we can evaluate different travel times and 

travels costs at different time periods to see how traffic congestion can actually change people’s 

activity agenda. One of the key roles in activity-based demand modeling is to evaluate different 

time-of-day congestion pricing schemes in the network. Our hypothetical results demonstrate 

how lowering travel time on transit mode would be expected to encourage people to switch from 

auto vehicles to transit so that they can enjoy their activities longer (or maintain the same arrival 

time) by saving travel times. Compared to other activity-based models, TUHAPP can ‘read’ 

time-of-day traffic conditions so it can reflect policy changes affecting time-of-day pricing 

explicitly. However, because we use discontinuous step functions to represent the time-of-day 

travel times and travel costs, it could violate the ‘first come first serve’ rule. If there are dramatic 

decreases in travel times and travel costs between two consecutive time periods, this limitation 

will be severe.  

So far, we have only tested TUHAPP (UHAPP) on hypothetical data. In the next chapter, we will 

use a household travel survey (as much as possible, depending on what data are available) to see 

how TUHAPP can fit into a regional activity-based demand modeling framework.
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Chapter 5 Development of activity-based demand modeling framework 

Introduction 

Although we have developed the TUHAPP model such that it can reflect consideration of 

peoples’ activity arrival time and activity duration preferences as well as interference between 

household members and time of day traffic conditions, and tested it on hypothetical data, the 

purpose of developing such a complicated model is for its application to forecasting people’s 

travel decisions relative to transportation network and policy changes. This chapter proposes a 

procedure for using TUHAPP (UHAPP) as part of an activity-based modeling framework. Under 

known (or assumed) distributions of the demand of peoples’ activities arrival times and 

durations, as well as the weight distributed of each objective component, the model can evaluate 

how conveniences or inconvenience resulting from transportation policy change will affect 

people’s travel decisions with respect to: activity arrival time, activity assignment, activity 

duration, travel mode and scheduling. In this demonstration application, we use the 2001 SCAG 

household travel survey (HTS) data for estimating the distributions of activity arrival time 

preferences, activity duration functions and the relative utility weight of each objective. Here, we 

only provide the skim on how to use TUHAPP (UHAPP) in a practical real-world planning 

application because the data quality and some required data are missing; our results are 

significantly influenced by the data and the assumptions we make. Solutions obtained from 

TUHAPP (UHAPP) give options to stakeholders in making decisions, but we emphasize the 

limitations of our methodology. Figure 5.1 shows the input-output flow chart of TUHAPP 

(UHAPP) model. 
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Figure 5.1 Structure of TUHAPP (UHAPP) Application 

 

Survey data and activity pattern statistics 

In previous chapters, we have demonstrated that TUHAPP (UHAPP) can handle activity 

scheduling and its interaction with activity duration and activity assignment under the time-of-

day traffic conditions. However, without a statistical reference, what we have shown is based 

only on an arbitrary characterization of people’s preferences with regard to activity arrival time 

and duration. To further demonstrate how TUHAPP (UHAPP) can be used as a regional 

transportation planning tool, we use the 2001 SCAG HTS data to establish a statistical reference 

for these preferences. The 2001 SCAG HTS data collection was conducted during Spring 2001, 

Fall 2001, and Spring 2002. The main data set contains 16,939 households distributed by county 

as follows: 

Input

• OD travel times 𝑡𝑖𝑗
𝑣𝑝

(2001 SCAG HTS data)

• Parameters and coefficients for each activity, 𝑎𝑖
𝛼 , 𝑏𝑖

𝛼 , 𝜇𝑖
𝛼 , 𝐾𝑖𝑒

𝛼 , 𝐾𝑖𝑙
𝛼 ,

𝑈𝑖_𝑚𝑖𝑛
𝛼 , 𝑈𝑖_𝑚𝑎𝑥

𝛼 , 𝑠𝑖_𝑚𝑖𝑛
𝛼 , 𝑠𝑖_𝑚𝑎𝑥

𝛼 , 𝐾𝑖𝑠
𝛼 , (2001 SCAG HTS data) 

• Distributed weight on each objective, 𝛽𝑖 (calibrate from 2001 SCAG HTS data)  

TUHAPP 
(UHAPP)

• 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈 𝑋𝑖 = 𝛽𝑖′ ∙ 𝑋𝑖 (5-1)

• subject to 𝐵𝑋𝑖 ≤ 0 (5-2)

Output

• Vehicle flow 𝑋𝑖𝑗
𝑣𝑝

, Person flow 𝐻𝑖𝑗
𝛼𝑝

, Arrival time 𝑇𝑖
𝛼, Activity duration 𝑆𝑖

𝛼
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Table 5.1 Data set households by county of residence 

County Number of households Percent 

Imperial 915 5.4 

Los Angeles 7,262 42.9 

Orange 2,316 13.7 

Riverside 2,341 13.8 

San Bernardino 2,172 12.8 

Ventura 1,933 11.4 

Total 16,939 100 

 

The 16,939 sampled households were used to represent all 5,386,491 occupied housing units and 

15,904,849 persons in the study area. More than 40 million trips were made within the SCAG 

region on an average weekday according to the survey. 

There is no direct number of activities performed by each household in the survey. Instead, the 

survey uses number of trips to define household’s daily activities. Figure 5.2 and Table 5.2 show 

that more than 75% of households have less than 10 trips per day. Figure 5.3 and Table 5.3 show 

that more than 95% of households in the region have fewer than 5 persons within the household. 

Figure 5.4 and Table 5.4 show that about 95% of households have fewer than 3 vehicles within 

the household. These statistics give us a general sense of the region. Thus, for simplicity reason, 

we define our research domain using the 75%, 95% and 95% samples as the total number of 

activities, number of household members, and number of available vehicles within a household, 

respectively, to represent this region. 
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Figure 5.2 Distribution of number of trips of every household 

 

Table 5.2 Number of trips 

Number of trips Counts Percent Cumulative Percent 

0 1680 9.9 9.9 

1 101 .6 10.5 

2 2262 13.4 23.9 

3 767 4.5 28.4 

4 2042 12.1 40.5 

5 911 5.4 45.8 

6 1455 8.6 54.4 

7 811 4.8 59.2 

8 1229 7.3 66.5 

9 665 3.9 70.4 

10 861 5.1 75.5 
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11 460 2.7 78.2 

12 623 3.7 81.9 

13 345 2.0 83.9 

14 441 2.6 86.5 

15 295 1.7 88.2 

16 309 1.8 90.1 

17 189 1.1 91.2 

18 238 1.4 92.6 

19 152 .9 93.5 

>=20 1103 6.5 100 

Total 16939 100.0  

 

 

Figure 5.3 Distribution of household size 
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Table 5.3 Household size statistics 

Household size Counts Percent Cumulative Percent 

1 5108 30.2 30.2 

2 5929 35.0 65.2 

3 2393 14.1 79.3 

4 2045 12.1 91.4 

5 946 5.6 96.9 

6 362 2.1 99.1 

7 109 .6 99.7 

8 37 .2 99.9 

9 10 .1 100.0 

Total 16939 100.0  

 

 

Figure 5.4 Distribution of number of vehicles of every household 
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Table 5.4 Number of vehicles statistics 

Number of vehicles Counts Percent Cumulative Percent 

0 1059 6.3 6.3 

1 5977 35.3 41.5 

2 6745 39.8 81.4 

3 2232 13.2 94.5 

4 663 3.9 98.4 

5 177 1.0 99.5 

6 49 .3 99.8 

7 16 .1 99.9 

8 21 .1 100.0 

Total 16939 100.0  

 

In the survey data, there is no direct field for activity types. However, there is an indication of 

primary trip purpose that we can use as activity types, as shown in Table 5.5.  

Table 5.5 Primary trip purpose with statistics 

Reference ID Primary trip purpose Counts Percent 

1 Change mode of transportation 2361 1.2 

2 Pick up someone or get picked up 6240 3.3 

3 Drop off someone or get dropped off 8072 4.2 

4 ATM, buy gas, quick stop for coffee, 
newspaper, etc. 

3005 1.6 

5 Shopping 14084 7.4 

6 Banking, post office, pay bills 3305 1.7 

7 Work (include regular scheduled volunteer 
work) 

14815 7.8 

8 Work-related (sales call, meeting, errand, 
etc.) 

5114 2.7 

9 School (attending classes) 5836 3.1 

10 Other school activities (sports, extra-
curricular) 

615 .3 

11 Childcare, daycare, after school care 369 .2 

12 Eat meal (restaurant, drive through, take out) 7524 4.0 

13 Medical 2268 1.2 

14 Fitness activity (playing sports, gym, bike 2426 1.3 
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ride) 

15 Recreational (vacation, camping, etc.) 1331 .7 

16 Entertainment (watching sports, movies, 
dance, bar, etc.) 

2652 1.4 

17 Visit friends/relatives 5448 2.9 

18 Community meetings, political/civic event, 
public hearing 

495 .3 

19 Occasional volunteer work 381 .2 

20 Church, temple, religious meeting 1493 .8 

21 With another person at their activity out of 
home 

2576 1.4 

22 Other personal (specify) 6291 3.3 

23 Working at home (related to main or second 
job) 

691 .4 

24 Other at home activities 91955 48.4 

97 Other activity 444 .2 

99 DK/RF (Don’t know or refuse to answer) 378 .2 

 Total 190169 100.0 

 

We select shopping, and work activities as our main focus of interest in our research. We 

consider work activities as mandatory activities while shopping activities are voluntary activities. 

The majority of travel modes in the data set are ‘Drove’ and ‘Passenger in car/truck/van’ (see 

Table 5.6). There are 23.9% of trips that did not report what mode was used in the survey. For 

purposes of demonstration, we select data that reported using mode ‘Drove’ and ‘Passenger in 

car/truck/van’.  

Table 5.6 Mode of trip 

Travel modes Counts Percent Valid 
Percent 

Cumulative 
Percent 

1 Walk 11258 5.9 7.8 7.8 

2 Bicycle 838 .4 .6 8.4 

3 Drove 93489 49.2 64.6 72.9 

4 Passenger in car/truck/van 34344 18.1 23.7 96.6 

5 Local bus or community bus 1883 1.0 1.3 97.9 

6 Express bus 76 .0 .1 98.0 
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7 Metro Blue Line 86 .0 .1 98.0 

8 Metro Green Line 17 .0 .0 98.1 

9 Metro Red Line 98 .1 .1 98.1 

10 Commuter Rail (Metrolink, 
Amtrak) 

98 .1 .1 98.2 

11 Dial-A-Ride/Paratransit 33 .0 .0 98.2 

12 School Bus 1511 .8 1.0 99.3 

13 Greyhound Bus 14 .0 .0 99.3 

14 Taxi/Shuttle Bus/Limousine 257 .1 .2 99.4 

15 Motorcycle/Moped 71 .0 .0 99.5 

97 Other 541 .3 .4 99.9 

99 DK/RF 188 .1 .1 100.0 

Total 144802 76.1 100.0  

No value 45367 23.9  

Total records 190169 100.0 

 

Because some people report performing the same activity multiple times in one day — activities 

performed multiple times are too complicated for analysis, so we filter out the data and keep only 

those who record the same activity only one time during the day. (These people can do many 

activities in a day, but each activity can be performed only one time.) We further subcategorize 

some activities with respect to the time-of-day. For example, ‘Work’ activities can be divided 

into ‘morning work’, ‘afternoon work’, ‘evening work’, and ‘eat meal’ can be divided into 

‘breakfast’, ‘lunch’, ‘dinner’ , etc., depending on the range of time-of-day. For simplicity, we 

only consider data that record only one occurrence of any particular activity throughout the entire 

day and filter out data records containing the same type of activity multiple times. The following 

figures and results are generated by Matlab. There are 590 individuals who reported one 

shopping activity during the day and 3696 individuals who reported one work activity in the 

survey’s day using mode ‘Drove’ and ‘Passenger in car/truck/van’. These individuals are drawn 

from single person households in order to negate any effects pertaining to household interaction. 

Histograms of arrival time for shopping activities (trip purpose= 5), work activities (trip 
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purpose=7) and their arrival time of return home are shown in Figure 5.5. Each band width is 30 

minutes in the figure. From these figures, we can see that each activity has a peak arrival time. 

Because we are using a triangular linear function, a perfect data set should have a continuous 

increase before the peak arrival time and a continuous fall after the peak arrival time. We use 30-

minute intervals as the time interval for the arrival time histogram, principally because we find 

that 30-minute interval has fewer missing representations. The missing drops between time 

intervals may be caused by people reporting rounded up arrival times forcing fewer 

representations in finer time intervals. We can see that the work activity has a clear peak arrival 

time compared to shopping activities. Also, work activities are more concentrated with respect to 

arrival time than to their return home arrival times. Figure 5.6 shows the activity duration 

histogram for shopping and work activities. Each band width is 5 minutes. The duration of 

shopping activity is very concentrated to less than 100 minutes, while the duration of work 

activity has a wider range with longer duration than shopping activity. Figure 5.7 shows the 

leave home times at the start of day for every person in the survey (except for those who never 

leave home for the whole day). Figure 5.8 shows the arrival time at the end of day of every 

person in the survey (except for those who never leave home for the whole day). These data 

include all activity purposes, all travel modes and people performing one or multiple activities 

during the day. Each band width is 30 minutes. A continuous increase before the peak arrival 

time and a continuous fall after the peak arrival time is clearly observed. Statistical information 

regarding the arrival times and activity durations are needed in our analysis. 
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Figure 5.5 Histogram of arrival time on shopping (return home) and work (return home) 

activities (divide 24 hours into 1440 minutes) 
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Figure 5.6 Histogram of activity duration for shopping and work activities 

 

Figure 5.7 Histogram of departure home time at the beginning of day  (divide 24 hours into 

1440 minutes) 
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Figure 5.8 Histogram of arrive home time at the end of day  (divide 24 hours into 1440 

minutes) 

 

Statistical inferences obtained from survey data 

In this section, we will use linear regression to obtain parameters and coefficients for each 

activity, i.e., 𝑎𝑖
𝛼 , 𝑏𝑖

𝛼, 𝜇𝑖
𝛼, 𝐾𝑖𝑒

𝛼 , 𝐾𝑖𝑙
𝛼 , 𝑈𝑖_𝑚𝑖𝑛

𝛼 , 𝑈𝑖_𝑚𝑎𝑥
𝛼 , 𝑠𝑖_𝑚𝑖𝑛

𝛼 , 𝑠𝑖_𝑚𝑎𝑥
𝛼 , 𝐾𝑖𝑠

𝛼,   needed for TUHAPP 

(UHAPP). Figure 5.9 shows the data processing procedures for obtaining TUHAPP (UHAPP) 

parameters and coefficients. Based on the data we have shown in Figure 5.5, Figure 5.6, Figure 

5.7 and Figure 5.8, we will infer the distribution to be triangular linear demand function. In the 

inferences, we select individuals who perform only one out-of-home activity throughout the day. 

Our assumption here is that, because there presumably are no other activity scheduling 

constraints there will be fewer constraints on activity arrival times and activity duration, and 
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people will choose arrival times and activity durations closer to their maximum utility values. 

We apply a ‘one person one vote’ policy to evaluate the “demand” for arrival time preference for 

each 30-minute slot throughout the day. To derive a better linear demand curve we eliminate the 

time slots that have less than 15% of the representation of the whole data. We also filter out the 

spike from the early morning arrival which is shown in the histogram of “arrive home from work 

activity” in Figure 5.5. Figure 5.10 shows the arrival time utility function from linear regression 

for shopping, return home from shopping, work and return home from work activates. Figure 

5.11 and Figure 5.12 show the departure time and the arrival time utility functions obtained from 

linear regression for the start of the day and the end of day, respectively. Each departure or 

arrival utility function consists of two linear functions. The blue line before the peak departure 

(arrival) time has a continuous utility increase until the peak departure (arrival) time. 

Alternatively, the red line after the peak departure (arrival) time has a continuous utility decease 

until it reaches zero utility. Table 5.7 shows the linear demand curve parameters for these six 

activities. Table 5.8 shows the linear demand curve statistics of each activity. Although the 

sample size of each activity is relatively small (due to 30-minute interval and data filtering), we 

still have a good confidence statistic on this linear demand function. Unlike our examples on 

Chapter 3 and Chapter 4, the linear demand curve is discontinuous and we have calculated the 

gap (utility drop after the peak arrival time) of the discontinuity. The utility drop of work arrival 

is relatively large compared to shopping activity arrival times. This may help to explain why 

people tend to concentrate the arrival time and put more utility before the peak hour than after 

the peak hour. The assumption of using triangular linear demand curve may not be accurate, but 

it does simplify our analysis on using TUHAPP (UHAPP), which is a linear optimization 

problem. 
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Figure 5.9 Procedures of obtaining UHAPP (TUHAPP) parameters of each activity 

 

Figure 5.10 Arrival time utility function of shopping, return home from shopping, work 

and return home from work activities, respectively (divide 24 hours into 1440 minutes) 
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Figure 5.11 Departure time utility function of leaving home at the start of day (divide 24 

hours into 1440 minutes) 
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Figure 5.12 Arrival time utility function of arrive home at the end of day (divide 24 hours 

into 1440 minutes) 

 

Table 5.7 Linear demand curve parameters 

Activity type 𝒂𝒊 𝝁𝒊 𝒃𝒊 𝑲𝒊𝒆 𝑲𝒊𝒍 Gap 

Shopping 408 670 1302 0.173 -0.0591 7.9813 

Work 250 480 916 2.4405 -0.5995 299.2445 

Return home from shopping 436 720 1419 0.1322 -0.0506 2.1630 

Return home from work 762 1050 1428 1.2764 -0.8419 48.3892 

Depart home at the start of day 255 450 1009 17.9119 -4.795 817.4829 

Arrive home at the end of day 624 1050 1496 4.1439 -3.8099 67.7345 

 

Table 5.8 Linear demand curve statistics 

Activity type 𝑹𝟐 𝑭𝒕𝒆𝒔𝒕 𝒑 value 

Shopping (blue) 0.7253 15.8449 0.0073 

Shopping (red) 0.5968 28.1190 4.0613× 10−5 
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Work (blue) 0.9542 125.0099 3.0549× 10−5 

Work (red) 0.5224 17.5038 7.0194× 10−4 

Return home from shopping (blue) 0.9422 114.0702 1.3841× 10−5 

Return home from shopping (red) 0.8253 99.1902 2.0803× 10−9 

Return home from work (blue) 0.9036 84.3559 7.2296× 10−6 

Return home from work (red) 0.7545 43.0362 1.2696× 10−5 

Depart home at the start of day (blue) 0.8691 33.2110 0.0022 

Depart home at the start of day (red) 0.6104 34.4736 6.5827× 10−6 

Arrive home at the end of day (blue) 0.8428 69.7226 1.395× 10−6 

Arrive home at the end of day (red) 0.9902 1312.9 1.9176× 10−14 

 

In order to run TUHAPP (UHAPP) using survey data, we also need to have a linear activity 

duration function. Figure 5.13 shows the linear utility duration function of shopping and work 

activities, respectively. Table 5.9 shows those linear parameters of utility duration function. We 

approximate the cumulative distribution function of the duration to obtain the linear utility 

duration function. Table 5.10 shows the linear statistics of these utility duration function. 

Because the duration of work activity is more scatter than the duration of shopping activities, the  

𝑅2 is not as significant as duration of shopping activity. We set up the minimum duration of 

shopping as 5 minutes and obtain the minimum duration utility as 0. We set up the minimum 

duration of work as 400 minutes and obtain the minimum duration utility as 0. 
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Figure 5.13 Utility of duration on shopping and work activity 

 

Table 5.9 Utility function of shopping, and work duration 

Activity (𝒊) 𝑼𝒊_𝒎𝒊𝒏
𝜶  𝒔𝒊_𝒎𝒊𝒏

𝜶  𝒔𝒊_𝒎𝒂𝒙
𝜶  𝑲𝒊𝒔

𝜶  

Shopping 0 7 65 0.0111 

Work 0 300 640 0.0034 

 

Table 5.10 Linear utility duration function statistics 

Activity (𝒊) 𝑹𝟐 𝑭𝒕𝒆𝒔𝒕 𝒑 value 

Shopping 0.9637 31.3876 0.7648 

Work 0.8673 27.3845 2.174× 10−2 
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The objective function of TUHAPP 

Based on the availability of data, we have the objective function of TUHAPP as follow 

𝑀𝑎𝑥 𝑈 = ∑ ∑ ∑ ∑ 𝛽1𝑖𝑓(𝑇𝑖
𝛼)𝐻𝑖𝑗

𝛼𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝐷𝛼∈𝜂

+ ∑ ∑ ∑ ∑ 𝛽2𝑖𝑔(𝑆𝑖
𝛼)𝐻𝑖𝑗

𝛼𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝐿+𝛼∈𝜂

− 𝛽3 ∑ ∑ ∑ ∑ 𝑡𝑖𝑗
𝑣𝑝𝑋𝑖𝑗

𝑣𝑝

𝑝∈𝑃𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

 

(5-1) 

Because we do not have travel costs of each OD pair of nodes and the initial cost of using 

vehicles of out of home activities, we only consider three objectives in our forecasting model. 

∑ ∑ ∑ ∑ β1if(Ti
α)Hij

αp
p∈Pj∈Ni∈Dα∈η  is the first objective of the TUHAPP forecasting model. This 

objective means arrival time gives certain amount of utility to each person and the sum of all 

activity arrival time utility of each person in the household weighted by β1i. Ti
α is a continuous 

variable and f(Ti
α) is a discontinuous piecewise linear function based on Figure 5.10 and Figure 

5.12. These values ai
α, bi

α, μi
α, Kie

α ,  Kil
α will determine the shape of f(Ti

α). We have shown the 

process of getting ai
α, bi

α, μi
α, Kie

α ,  Kil
α in last section. The value of Ti

α will determine the value of 

∑ ∑ f(Ti
α)α∈ηi∈D . If there is no constraint on Ti

α, Ti
α will be equal to μi

α. β1i is the relative weight 

of ∑ ∑ ∑ ∑ f(Ti
α)Hij

αp
p∈Pj∈Ni∈Dα∈η  compared to other objectives.  

∑ ∑ ∑ ∑ β2ig(Si
α)Hij

αp
p∈Pj∈Ni∈L+α∈η  is the second objective of the model. It means the duration of 

activities will give certain amount of utility to each person. Si
α is a continuous variable and g(Si

α) 

is a piecewise linear function based on Figure 5.13. The values Ui_min
α , Ui_max

α , si_min
α , si_max

α , Kis
α  

will determine the shape of g(Si
α) and we have shown the methodology of obtaining these values 

in 0. The value of Si
α will determine the value of ∑ ∑ g(Si

α)α∈ηi∈L+  . If there is no constraint on 

Si
α, Si

α will be greater than or equal to si_max
α , and ∑ ∑ g(Si

α)α∈ηi∈L+  will be equal to 
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∑ ∑ Ui_max
α

α∈ηi∈L+ . β2i is the relative weight of ∑ ∑ ∑ ∑ g(Si
α)Hij

αp
p∈Pj∈Ni∈L+α∈η  compared to 

other objectives.  −β3 ∑ ∑ ∑ ∑ tij
vp

j∈N Xij
vp

i∈Np∈Pv∈V  is the third objective of the model. It is 

negative because we assume travel between activities and home has only a cost. tij
vp

Xij
vp

 is not a 

continuous function because Xij
vp

 is an integer variable and it is equal to either 0 or 1. tij
vp

 is in 

general a step function based on time periods and it is also not a continuous function. β3 is the 

relative weight of ∑ ∑ ∑ ∑ tij
vp

j∈N Xij
vp

i∈Np∈Pv∈V  compared to other objectives. We assume β3 is 

uniform distributed for every activity and every person. If β1i and β2i are 0, then TUHAPP is just 

a shortest path problem and β3 becomes irrelevant because −β3 ∑ ∑ ∑ ∑ tij
vp

j∈N Xij
vp

i∈Np∈Pv∈V  is 

the only objective. The optimal solution of the shortest path problem is the optimal solution of 

TUHAPP. If β2 is 0 but β1 and β3 are not 0, then the problem becomes to be a shortest path 

problem with resource constraints. The solution for the shortest path problem may not be the 

optimal solution for TUHAPP anymore. If β1i is very small, but β3 is very big, then the optimal 

solution of TUHAPP should be very close to the solution of a shortest path problem. Vice versa, 

if β1 is very big, but β3 is very small (or even 0), then TUHAPP becomes closer to a linear 

optimization problem. Based on the availability of data, we have Ti
α, Si

α, tij
vp

Xij
vp

, Hij
αp

 as we have 

shown in last section. Because we assume those three objectives are the main forces driving the 

solution, what we observe from the data should also reflect this assumption.  

 

Calibration of weight distribution 

Even though we have relative utility functions of activity arrival and activity duration, we still 

need to have the distributed weights for each component of the objective as explained in the last 
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section. With the input we have in Table 5.7, Table 5.9 and the survey data, we can start to 

calibrate β1i, β2i and β3. However, we note that for a given observation, β1i, β2i and β3 are not 

unique, which means many combination of β1i, β2i and β3 can give the same solution. But, 

because utility is an abstract concept, a utility of any quantity will have no meaning, only when 

there is a relative difference then the utility will generate a preference alternative that the 

consumer will choose. Thus, we only care about the relative differences in each distributed 

weight, not the absolute value of the betas and the absolute value of optimal objective value. We 

use the recorded travel times from the survey rather than network times so as not to introduce 

more errors to the calibration process. There are many reasons behind the difference of reported 

travel times comparing to the model output travel times, such as model forecasting inaccuracy 

(Parthasarathi & Levinson, 2010), the shortest path is not chosen (Zhu & Levinson, 2010), and 

the time perception of different people (Grondin, 2010). For the purpose of calibration, we will 

use the reported travel time and use the model network travel time for validation purpose. 

Because the travel survey has only one reported travel time for each trip the person makes, we 

assume the reported travel time is the same for every time period. We drop the α index because 

our example application involves a one-person household. The following example shows 

calibrating a single household with one work and one shopping activity. The objective function 

of TUHAPP (because travel time is the same for every period, this is the same as calibrating 

UHAPP) we try to calibrate is 
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𝑀𝑎𝑥 𝑈 = 𝛽0 ∑ ∑ 𝑓(𝑇0)𝐻0,𝑖
𝑝

𝑖∈𝐿+𝑝∈𝑃

+ 𝛽𝑤𝑜𝑟𝑘_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∑ ∑ 𝑓(𝑇𝑤𝑜𝑟𝑘)𝐻𝑤𝑜𝑟𝑘,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁

 

+ 𝛽𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∑ ∑ 𝑓(𝑇𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔)𝐻𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁

+ 𝛽𝑟𝑒𝑡𝑢𝑟𝑛 ∑ ∑ ∑ 𝑓(𝑇𝑖)𝐻𝑖𝑗
𝑝

𝑗∈𝑁𝑖∈𝐿−𝑝∈𝑃

+ 𝛽2𝑛+1 ∑ ∑ 𝑓(𝑇2𝑛+1)𝐻𝑖,2𝑛+1
𝑝

𝑖∈𝐿−𝑝∈𝑃

+ 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∑ ∑ 𝑔(𝑆𝑤𝑜𝑟𝑘)𝐻𝑤𝑜𝑟𝑘,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁

+ 𝛽𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∑ ∑ 𝑔(𝑆𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔)𝐻𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁

− 𝛽𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒 ∑ ∑ ∑ 𝑡𝑖𝑗
𝑝

𝑗∈𝑁

𝑋𝑖𝑗
𝑝

𝑖∈𝑁𝑝∈𝑃

 

(5-2) 

where 𝛽0 ∑ ∑ 𝑓(𝑇0)𝐻0,𝑖
𝑝

𝑖∈𝐿+𝑝∈𝑃  is the utility of departure time at the start of day. 

𝛽𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∑ ∑ 𝑓(𝑇𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔)𝐻𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁  and 

𝛽𝑤𝑜𝑟𝑘_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∑ ∑ 𝑓(𝑇𝑤𝑜𝑟𝑘)𝐻𝑤𝑜𝑟𝑘,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁  are the utility of arrival time of the activity. 

𝛽𝑟𝑒𝑡𝑢𝑟𝑛 ∑ ∑ ∑ 𝑓(𝑇𝑖)𝐻𝑖𝑗
𝑝

𝑗∈𝑁𝑖∈𝐿−𝑝∈𝑃  is the utility of drop off arrival time of the activity. 

𝛽2𝑛+1 ∑ ∑ 𝑓(𝑇2𝑛+1)𝐻𝑖,2𝑛+1
𝑝

𝑖∈𝐿−𝑝∈𝑃  is the utility of arrival time at the end of day. 

𝛽𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∑ ∑ 𝑔(𝑆𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔)𝐻𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁  and 

𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∑ ∑ 𝑔(𝑆𝑤𝑜𝑟𝑘)𝐻𝑤𝑜𝑟𝑘,𝑗
𝑝

𝑝∈𝑃𝑗∈𝑁  is the utility of activity duration. 

𝛽𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒 ∑ ∑ ∑ 𝑡𝑖𝑗
𝑝

𝑗∈𝑁 𝑋𝑖𝑗
𝑝

𝑖∈𝑁𝑝∈𝑃  is the disutility of the total travel time during the day. We 

separate the pickup and drop-off objectives because this will allow different weights on arrival at 

activities and arrival home. Compared to previous research (Chow & Recker, Inverse 

optimization with endogenous arrival time constraints to calibrate the household activity pattern 

problem, 2012) on calibrating 𝛽i, we calibrate the weight of arrival time utility of each activity 
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location where each person has visited during the day instead of treating them equal and 

calibrating the sum of the objectives. Our objective is to find a set of betas that can give optimal 

solutions in the sense that they are closest to the observed data. Because each household is 

different, we will focus our attention on calibrating betas for each household. The objective of 

the calibration is 

𝑀𝑖𝑛 ∑ 𝐿𝑖

𝑖

 =  ∑(|𝑇𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 − 𝑇𝑖

𝑂𝑏𝑠|)

𝑖

+ ∑(|𝑆𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 − 𝑆𝑖

𝑂𝑏𝑠|)

𝑖

 (5-3) 

where ∑ 𝐿𝑖𝑖  is the Manhattan distance of the sum of observation values and predicted values by 

TUHAPP. We follow the same criteria from Chow (Chow & Recker, Inverse optimization with 

endogenous arrival time constraints to calibrate the household activity pattern problem, 2012) to 

choose 𝐿1norm as our perturbation distance. 𝑇𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 is the predicted activity arrival time from 

TUHAPP of each observation 𝑖. 𝑇𝑖
𝑂𝑏𝑠 is the reported activity arrival time from survey data of 

each observation 𝑖. 𝑆𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 is the predicted activity duration from TUHAPP of each observation 

𝑖. 𝑆𝑖
𝑂𝑏𝑠 is the reported activity duration from survey data of each observation 𝑖. The optimal 

solution will be the 𝛽 combination that can predict a result that is the closest to the observation. 

Because the above objective function is not linear, we need to transfer this function to a linear 

function by adding the following constraints. 

𝐿𝑖 ≥ 𝑇𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 − 𝑇𝑖

𝑂𝑏𝑠 + 𝑆𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 − 𝑆𝑖

𝑂𝑏𝑠 (5-4) 

𝐿𝑖 ≥ −𝑇𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 + 𝑇𝑖

𝑂𝑏𝑠 + 𝑆𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 − 𝑆𝑖

𝑂𝑏𝑠 (5-5) 

𝐿𝑖 ≥ 𝑇𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 − 𝑇𝑖

𝑂𝑏𝑠 − 𝑆𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 + 𝑆𝑖

𝑂𝑏𝑠 (5-6) 

𝐿𝑖 ≥ −𝑇𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 + 𝑇𝑖

𝑂𝑏𝑠 − 𝑆𝑖
𝑇𝑈𝐻𝐴𝑃𝑃 + 𝑆𝑖

𝑂𝑏𝑠 (5-7) 

For each household, we will perform the calibration process as the following steps: 
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1. Initiate 𝛽0 = 𝛽𝑤𝑜𝑟𝑘_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 𝛽𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 𝛽𝑟𝑒𝑡𝑢𝑟𝑛 = 𝛽2𝑛+1 = 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =

𝛽𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝛽𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒 = 1. 

2. Run TUHAPP to get a predicted activity patterns of 𝑇𝑖
𝛼 and 𝑆𝑖

𝛼. 

3. Calculate the edit distance (multidimensional scaling) between the predicted and actual, 

𝐿𝑖. 

4. Go back to step 2 with a new set of betas. 

5. Keep doing this until a minimum (or acceptable) edit distance is reached. 

Here we assume that each household is independent of others—one combination of betas may 

work perfectly for one particular household, but it may give no information on other households. 

In economics, utility is a representation of preferences over some set of goods and services. 

There are two types of utilities, cardinal utilities and ordinal utilities. Because we choose cardinal 

utilities in the objective function of UHAPP and TUHAPP, we need to be careful in explaining 

the absolute value of the optimal objective value. Usually the absolute optimal objective value 

gives no meaning to the consumer because utility is an abstract concept. Only the relative 

differences in the distributed weights can give us some idea on how much the tradeoff among the 

utility components the consumer considers is important. Each household has a unique utility 

which is an abstract figure we try to quantify. For example, if household A puts more weight on 

shopping duration, it may give a higher utility for household A, so we may have an optimal 

objective value 100 for this household, but this means absolutely nothing to household B even if 

household B only has an optimal objective value 20. Household B may still think their objective 

is optimal given the fact that they may put more weight on arrival on the peak hour at work. We 

cannot use the distributed weights from household A to household B directly because we assume 

each household is independent in terms of choosing activity arrival time and activity duration. 
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Thus, using a set of betas to represent inhomogeneous households will have no credibility to the 

analyst. By calibrating betas for each household, we will generate a matrix that contains betas for 

each household. Then by using population synthesis, which is a process of replicating identical 

households to generate a synthetic population, we can have a matrix of betas that represent the 

whole region population. 

Let’s choose one sample household to see how we can calibrate betas. We select a single 

household (ID 12023859) that performs two out-of-home activities, namely: one work and one 

shopping activity. Table 5.11 shows the travel diary of this selected household. This individual 

leaves home at 8:00 (480), and arrives at work at 8:17 (497) spends 591 minutes at work then 

arrive to shopping at 18:38 (1118) and spends 18 minutes there. We use the travel time data from 

the travel diary and symmetrically fill in the unknown travel times as shown in Table 5.12.  

Table 5.11 Sample household ID 12023859 travel diary data 

Activities 𝐓𝒊 𝐭𝒊𝒋 𝐒𝒊 

0 480 17 - 

1 497 30 591 

2 1118 28 18 

3 1164 - - 

 

Table 5.12 Travel times for each node to node pair in every time period (minutes) 

household ID 12023859 

NODES 0 1 2 3 4 5 

0 0 17 28 0 0 0 

1 17 0 30 17 17 17 

2 28 30 0 28 28 28 

3 0 17 28 0 0 0 

4 0 17 28 0 0 0 
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5 0 17 28 0 0 0 

 

Table 5.13 Different beta scenarios on household ID 12023859 

Betas Base case Case 1 Case 2 

𝜷𝟎 1 1 1 

𝜷𝒘𝒐𝒓𝒌_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 1 1 20 

𝜷𝒔𝒉𝒐𝒑𝒑𝒊𝒏𝒈_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 1 1 1 

𝜷𝒓𝒆𝒕𝒖𝒓𝒏 1 1 1 

𝜷𝟐𝒏+𝟏 1 1 1 

𝜷𝒘𝒐𝒓𝒌_𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 1 18 1500 

𝜷𝒔𝒉𝒐𝒑𝒑𝒊𝒏𝒈_𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 1 1 200 

𝜷𝒕𝒓𝒂𝒗𝒆𝒍𝒕𝒊𝒎𝒆 1 1 1 

 

We first run TUHAPP in base case scenario where all betas are 1. We have a solution as shown 

in Table 5.14. Our objective is to  

𝑀𝑖𝑛 ∑ 𝐿𝑖

𝑖

 =  ∑(|𝑇𝑖
𝑈𝐻𝐴𝑃𝑃 − 𝑇𝑖

𝑂𝑏𝑠|)

𝑖

+ ∑(|𝑆𝑖
𝑈𝐻𝐴𝑃𝑃 − 𝑆𝑖

𝑂𝑏𝑠|)

𝑖

 (5-3) 

Let’s see how TUHAPP solution comparing to the observation. ∑ 𝐿𝑖𝑖  = |450 − 480| +

|467 − 497| + |797 − 1118| + |1050 − 1164| ∗ 3 + |300 − 591| + |225 − 18| = 30 + 30 +

321 + 114 ∗ 3 + 291 + 207 = 1221. It seems the base case scenario has a lot of room to 

narrow this gap, especially given the fact that work duration is neither the minimum nor the 

maximum and shopping duration is much greater than observation. It seems that this person 

spends more time on work so he arrives to shopping later than what TUHAPP model has 

predicted, also the solution has a longer duration for shopping, so let’s increase 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 to 

generate another solution. We increase 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 by 1 increments until 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 18 

then we have a new set of solutions as shown in Table 5.14. Let’s see how this solution compares 
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to the observation. ∑ 𝐿𝑖𝑖  = |450 − 480| + |467 − 497| + |957 − 1118| + |1050 − 1164| ∗

3 + |460 − 591| + |65 − 18| = 30 + 30 + 161 + 114 ∗ 3 + 131 + 65 = 741 < 1221. It 

seems case 1 fits this survey data better than base case scenario, but it may still have room to 

narrow the gap. It seems this individual prefers leaving home late at the beginning of the day, 

which will push all of the arrival times on all activities later than the social norm. After a few 

more trials and errors, we have case 2 betas and solutions in Table 5.14. Although case 2 betas 

are likely not the unique combination of betas (because we arbitrarily just stop on the trial) that 

minimize the error between predicted and actual, it has the best fit to the observation thus far 

(this is a heuristic process so far). But as we mentioned, we are only interested on the relative 

difference of each distributed weight. Let’s see how this solution compares to the observation. 

∑ 𝐿𝑖𝑖  = |463 − 480| + |480 − 497| + |1150 − 1118| + |1185 − 1164| ∗ 3 + |640 − 591| +

|7 − 18| = 17 + 17 + 32 + 21 ∗ 3 + 49 + 11 = 189 < 741. We conclude that case 2 provides 

the best beta combination to generate the closest solution compared to survey data. Of course, 

other beta combinations may also generate the same solution, but our purpose is not to list all the 

possible betas here; nor is it to develop an appropriate heuristic to search for ‘optimal’ betas.  

Table 5.14 TUHAPP solutions on each case scenario at household ID 12023859 

 Observation Base case Case 1 Case 2 

Activities Ti Si Ti Si Ti Si Ti Si 

0 480 - 450 - 450 - 463 - 

1 497 591 467 300 467 460 480 640 

2 1118 18 797 225 957 65 1150 7 

3 1164 - 1050 - 1050 - 1185 - 

4 1164 - 1050 - 1050 - 1185 - 

5 1164 - 1050 - 1050 - 1185 - 

Difference 0 1221 741 189 
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Let’s choose another single person household (ID 12048694) and calibrate betas. According to 

the travel diary (Table 5.15), this person leaves home at 8:30 (510) travel 45 minutes to work at 

9:15 (555), and spends 495 minutes at work. Then this person travels 60 minutes and arrives at 

shopping activity at 18:30 (1110) and spends 20 minutes there. After that this person travels 10 

minutes and gets home at 19:00 (1140). We use the travel time data from the travel diary and 

symmetrically fill in the unknown travel times as shown in Table 5.16.  

Table 5.15 Sample household ID 12048694 travel diary data 

Activities 𝐓𝒊 𝐭𝒊𝒋 𝐒𝒊 

0 510 45 - 

1 555 60 495 

2 1110 10 20 

3 1140 - - 

 

Table 5.16 Travel times for each node to node pair in every time period (minutes) 

household ID 12048694 

NODES 0 1 2 3 4 5 

0 0 45 10 0 0 0 

1 45 0 60 45 45 45 

2 10 60 0 10 10 10 

3 0 45 10 0 0 0 

4 0 45 10 0 0 0 

5 0 45 10 0 0 0 

 

Table 5.17 Different beta scenarios on household ID 12048694 

Betas Base case Case 1 Case 2 Case 3 

𝜷𝟎 1 1 1 1 

𝜷𝒘𝒐𝒓𝒌_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 1 1 10 20 

𝜷𝒔𝒉𝒐𝒑𝒑𝒊𝒏𝒈_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 1 1 1 1 
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𝜷𝒓𝒆𝒕𝒖𝒓𝒏 1 1 1 1 

𝜷𝟐𝒏+𝟏 1 1 1 1 

𝜷𝒘𝒐𝒓𝒌_𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 1 18 200 1500 

𝜷𝒔𝒉𝒐𝒑𝒑𝒊𝒏𝒈_𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 1 1 8 200 

𝜷𝒕𝒓𝒂𝒗𝒆𝒍𝒕𝒊𝒎𝒆 1 1 1 1 

 

We first run TUHAPP in base case scenario where all betas are 1. We have solutions showing in 

Table 5.18. Let’s see how base case betas TUHAPP solution comparing to the observation. 

∑ 𝐿𝑖𝑖  = |450 − 510| + |495 − 555| + |855 − 1110| + |1050 − 1140| ∗ 3 + |300 − 495| +

|185 − 20| = 60 + 60 + 255 + 90 ∗ 3 + 195 + 165 = 1005. It seems the base case scenario 

fits the observation better than our last example. We also increase 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 by 1 

increments until 𝛽𝑤𝑜𝑟𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 18 to have a new set of solutions as shown in Table 5.18. This 

illustrates that the relative difference on betas are not tied to the data but to the model itself 

which is TUHAPP (UHAPP) given the known utility on arrival time and utility on duration. 

Let’s see how this solution compares to the observation. ∑ 𝐿𝑖𝑖  = |450 − 510| + |495 − 555| +

|975 − 1110| + |1050 − 1140| ∗ 3 + |420 − 495| + |65 − 20| = 60 + 60 + 135 + 90 ∗ 3 +

75 + 45 = 645. It seems case 1 betas fit this reported household’s travel diary better than does 

the base case scenario. Work duration and arrival time on shopping fit closer to observation. 

Base case betas and case 1 betas both fit better in household ID 12048694 than household ID 

12023859. Because leave home time at the start of day and arrival time at the end of day are 

already at peak hours, which are 450 and 1050, we may move the work duration and shopping 

duration a little bit more to fit the observation better. We have case 2 scenario ∑ 𝐿𝑖𝑖  =

|450 − 510| + |495 − 555| + |1033 − 1110| + |1050 − 1140| ∗ 3 + |478 − 495| +

|7 − 20| = 60 + 60 + 77 + 90 ∗ 3 + 17 + 13 = 497. We may conclude that case 2 provides 

the best beta combination to generate the closest solution compared to survey data. We also 
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compare the difference if this household ID 12048694 using case 3 betas, which are the best set 

of betas for household ID 12023859. ∑ 𝐿𝑖𝑖  = |450 − 510| + |495 − 555| + |1090 − 1110| +

|1080 − 1140| + |1207 − 1140| + |1207 − 1140| + |640 − 495| + |7 − 20| = 60 + 60 +

20 + 60 + 67 + 67 + 145 + 13 = 492. This solution seems a better fit than case 2 but this 

solution introduces a new travel pattern. The case 3 betas solution suggests that this person will 

go home after work instead of directly going to shopping. As we mentioned before, we do not 

have travel data from each node to node, we only implicitly interpret the travel time for 

unobserved nodes to nodes. Thus, we cannot conclude that case 3 betas fit better than case 1 at 

current stage.  

In theory, we can continue the same process of getting a set of betas for every household then we 

will have a matrix of betas for the whole survey. Figure 5.14 shows how TUHAPP can be apply 

in the whole region for every household. 

Table 5.18 TUHAPP solution on each case scenario at household ID 12048694 

 Observation Base case Case 1 Case 2 Case 3 

Activities Ti Si Ti Si Ti Si Ti Si Ti Si 

0 510 - 450  450 - 450 - 450 - 

1 555 495 495 300 495 420 495 478 495 640 

2 1110 20 855 185 975 65 1033 7 1090 7 

3 1140 - 1050 - 1050 - 1050 - 1080 - 

4 1140 - 1050  1050 - 1050 - 1207 - 

5 1140 - 1050  1050 - 1050 - 1207 - 

Difference 0 1005 645 497 492 
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Figure 5.14 TUHAPP as a part of the activity-based model 

 

Conclusion 

In this Chapter, we outline how to use TUHAPP as an activity-based model by using 2001 

SCAG household travel survey data as an example. We first use linear regression to obtain the 

parameters of assumed utility functions of activity arrival and utility functions of activity 

duration. Then, we use heuristic methods to calibrate betas. When we calibrate betas for the 

examples, we use reported travel times rather than using travel times from the SCAG 2008 RTP 

model in order not to bring more errors to the calibration process; in actual application these 

latter values would be assumed. The process of using TUHAPP (UHAPP) is that we first obtain 

utility functions of activity arrival and utility functions of activity duration, and then we calibrate 

betas for each household. Once we have betas for each household in the survey, in principle, we 

can use a population synthesizer to generate betas for the full population in the region. We have 

shown how TUHAPP (UHAPP) can be used as part of an activity-based demand model. Future 
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research is needed to come up a faster algorithm to calibrate betas; at this point we rely only on a 

simple heuristic.   
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Chapter 6 CONCLUSION AND FUTURE RESEARCH 

Conclusion 

Spurred by the transition from a trip-based four-step model to an activity-based model, a number 

of activity-based models have been developed and are increasingly being used by MPOs. Our 

introduction in Chapter 1 has outlined the reasons for choosing HAPP and the problems we need 

to address in using HAPP as a regional travel demand forecasting tool. In Chapter 2, we compare 

the differences between our approach toward activity-based demand modeling and that of other 

researchers. We modify and extend HAPP to UHAPP to incorporate the utility of activity arrival 

and utility of activity duration in Chapter 3. We extend and reformulate UHAPP as TUHAPP to 

be able to handle different travel times and travel costs during a day in Chapter 4. We develop a 

framework for how to use TUHAPP as part of an activity-based demand model in Chapter 5. In 

this process, the HAPP model has grown from solving a pickup delivery problem with time 

windows to be a customized, tailored activity-based model, TUHAPP. The linear assumption on 

utility of activity arrival and utility of activity duration has provided a convenient mechanism for 

modeling and obtaining solutions for changes in the transportation environment that are policy 

sensitive. But, the assumed linear form of the utility functions also limits the solution space to be 

at the intersections of those linear functions. The different distributions of the weight of each 

objective extend our understanding on modeling inhomogeneous households. A more advanced 

systematic algorithm is needed to calibrate the distributed weights of each objective. However, 

even with all of these limitations, TUHAPP is still a far more integrated activity-based demand 

model than other discrete choice type activity-based demand models. As we have shown in 
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Chapter 3 and Chapter 4, the methodology of extending HAPP is relatively simple and similar 

extensions can be adopted to customize TUHAPP to meet special needs.  

 

Future research 

TUHAPP is still a linear optimization problem and we know that the linear assumption on utility 

of arrival time and activity duration preferences may not be accurate. To change TUHAPP into a 

nonlinear optimization problem is our future research and the difficulty will be put on solution 

algorithms since nonlinear optimization problems are significantly harder to solve. A middle 

ground is to divide the utility formulations into finer time intervals to obtain more coefficients 

for utility functions of activity arrival and activity duration. Also, since TUHAPP can handle 

time-of-day travel times and travel costs, a feedback loop can be set up which can load the 

aggregate data of people’s departure time, route choice and mode choice from TUHAPP. 

Moreover, TUHAPP is a deterministic model, in contrast to the uncertainty that is the nature of 

transportation planning and forecasting. It would be useful to introduce some stochastic elements 

into TUHAPP. One future research would be to replace the deterministic static travel times with 

stochastic travel times. Because even though we have time-of-day travel times, actual travel 

times are never constant for the same time-of-day; a stochastic travel time matrix can address the 

nature of stochastic traffic conditions and give a more reliable solution than those determined by 

static travel time inputs. Although we have extended the HAPP models from the demand side 

and supply side, incorporating other research on HAPP can significantly improve the quality of 

estimation and the efficiency on getting an optimal solution. The original HAPP formulation uses 

hard time window constraints to force vehicles or people to arrive in a predetermined time 

window. We have modified HAPP to be able to capture the utility of people’s arrival time 
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preferences, and at the same time, we have given a hard time window constraint for the supply 

side in the form of business or operation hours for activities. A further extension which is related 

to transportation accessibility estimation is that, given the same type of candidate locations with 

different business hours or operation hours, which to choose from. Unlike Kang and Recker’s 

(Kang & Recker, 2013) approach, travel times and travel costs between different location 

candidates may not be the only location selection criteria, the business hours or operation hours 

are also important factors for location selection decisions. If most candidate locations are within 

the same traffic analysis zone, the travel times and travel costs will be the same and no difference 

will be made in the optimal solution. An extension involving modifying constraints (4-23) with 

capability for comparing different business hours and operation hours for activities can give 

policy makers options on regulating commercial business and regular public events. Not only 

incorporating the location selection problem into TUHAPP, but also with the extension of 

selecting locations based on their business hours and operation hours are future research 

directions. Another future research goal is to use a well-designed algorithm to calibrate the 

distributed weights for each objective component in TUHAPP. Chow and Recker (Chow & 

Recker, 2012) have shown an inversed optimization approach to estimate parameters on HAPP, 

but since TUHAPP is more suitable as an activity-based demand model, we will need to make 

effort to develop a systematic algorithm to calibrate the distributed weights for each household of 

TUHAPP for the whole survey. The last and the most common issue for most NP-hard problems 

is finding a faster solution algorithm. Kang and Recker (Kang & Recker, 2013) have introduced 

a column generation with dynamic programming algorithm to solve the location selection HAPP. 

Because TUHAPP is an extension and modification of HAPP, we can also introduce similar 

algorithms to solve TUHAPP. To our best knowledge, Lagrange relaxation can also be 
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introduced to solve TUHAPP due to the existence of inequality constraints. Also, due to the size 

of TUHAPP, we can decompose the problem to a smaller size, such as by household members. 

By decomposing a household by members and running TUHAPP for each household member as 

a subproblem, we can use multithread computing to solve the problem in a more efficient way. 

There are many issues and questions to be addressed in HAPP before it can be effectively 

deployed as an activity-based demand model. The growing trend towards activity-based demand 

models in practice will undoubtedly uncover more questions for researchers to answer. We are 

looking forward to applying TUHAPP in one of the MPOs regional transportation forecasting 

models and we believe that the time is near.
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