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Abstract

Essays on Technology and the Environment from an International Perspective

by

Geoffrey Masters Barrows

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor David Zilberman, Chair

In this dissertation, I present three essays that consider the environmental consequences of
technological change, from an international perspective. The first two chapters use firm-level
production data to estimate the response of CO2 emission intensity to changes in competition
in foreign markets. The first chapter estimates this response with respect to foreign demand
shocks, i.e., a positive shock to exports. The second chapter exploits a specific liberalization
episode to estimate the impact with respect to foreign competition shocks, i.e., a negative
shock to exports. Both papers are co-authored with Hélène Ollivier. The final chapter
analyzes the decision to adopt genetically engineered seeds in different countries around the
world, and the attendant impacts on supply and land-use. This last chapter is co-authored
with David Zilberman and Steven Sexton and was previously published in Environment and
Development Economics.

The first chapter investigates the impact of exporting on the CO2 emission intensity
of manufacturing firms in India. Recent papers have argued that export market access
encourages firms to upgrade technology, which lowers the emission intensity of production;
however, data limitations confound previous attempts to separately identify productivity
impacts from simultaneous changes in prices and product-mix. We present a model of how
these alternative channels could also explain the results documented in the literature. Then,
using a highly detailed production dataset of large Indian manufacturing firms that contains
information on physical units of inputs and outputs by product, we are able to decompose
the overall firm impact into three components – prices, product-mix, and technology. Export
impacts at the firm level are identified from import demand shocks of foreign trading partners.
We find that prices systematically bias down estimates of emission intensity in value, that
firms adjust emission intensity in quantity through changing output shares across products,
but that firms do not lower emission intensity within products over time (technology). The
results imply that the productivity benefits from market integration alone are not enough
to induce clean technology adoption.

The second chapter investigates the “third-party” impact of trade liberalization on the
environmental performance of firms in countries that lose market share as a result of the
liberalization. If competition matters for exporting (as previous research indicates), and
exporting matters for emission intensity, then emission intensity reductions in liberalized
markets may be offset by emission intensity increases in countries peripheral to the liberal-
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ization. To test for this indirect effect, we exploit quasi-natural variation arising from the
elimination of quota constraints on textile and apparel exports to the US between 1994 and
2007. Using a detailed panel of production and emission data at the firm-product level,
we find that Indian exporters in Prowess lost on average 14% export sales as a result of
liberalized trade between the US and India’s competitors. This loss of export sales was
accompanied by an increase in CO2 intensity of 9%. The results do not appear to be due
to fuel-switching, but there is suggestive evidence that capital investments and switching
to higher emission intensity varieties may have played a role. Overall, the results support
the importance of international competition for production and pollution decisions of firms
around the world.

The final chapter uses aggregate data to estimate supply, price, land-use, and greenhouse
gas impacts of genetically engineered (GE) seed adoption due both to increased yield per
hectare (intensive margin) and increased planted area (extensive margin). An adoption
model with profitability and risk considerations distinguishes between the two margins, where
the intensive margin results from direct “gene” impacts and higher complementary input use,
and the extensive margin reflects the growing range of lands that become profitable with
the GE technology. We identify yield increases from cross-country time series variation
in GE adoption share within the main GE crops- cotton, corn, and soybeans. We find
that GE increased yields 34% for cotton, 12% for corn and 3% for soybeans. We then
estimate quantity of extensive margin lands from year-to-year changes in traditional and GE
planted area. If all production on the extensive margin is attributed to GE technology, the
supply effect of GE increases from 5% to 12% for corn, 15% to 20% for cotton, and 2% to
40% for soybeans, generating significant downward pressure on prices. Finally, we compute
“saved” lands and greenhouse gases as the difference between observed hectarage per crop
and counterfactual hectarage needed to generate the same output without the yield boost
from GE. We find that all together, GE saved 13 million hectares of land from conversion to
agriculture in 2010, and averted emissions are equivalent to roughly 1/8 the annual emissions
from automobiles in the US.
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Chapter 1

Does Trade Make Firms Cleaner?
Theory and Evidence From Indian
Manufacturing

With Hélène Ollivier

1.1 Introduction

Economists, policy-makers, and the general public have long been concerned about the
environmental consequences of globalization. A primary fear is that free trade encourages
dirty industries to relocate to poor countries, where environmental regulation is weak and
production less efficient (Antweiler, Copeland, and Taylor, 2001; Frankel and Rose, 2005;
Copeland and Taylor, 2004; Levinson, 2009). Yet, many argue that trade also encourages
profit-maximizing firms to voluntarily increase productivity (Verhoogen, 2008; Lileeva and
Trefler, 2010; Bustos, 2011; De Loecker, 2011; De Loecker et al., 2012), which may reduce
emission intensity at the firm level (Forslid, Okubo, and Ulltveit-Moe, 2011; Cui, Lapan, and
Moschini, 2012; Batrakova and Davies, 2012).1

Despite a large and decidedly mixed empirical literature on the former effect, we still
know very little about the latter. Empirical estimates from both cross-sectional and panel
data seem to support the hypothesis that trade (exporting, in particular) lowers the emission
intensity of firms, but data is usually not detailed enough to identify the underlying channel.
That is, we still don’t now why firm-level emission intensity responds to trade shocks.2 Recent
theoretical models of trade’s impact on emission intensity posit a technological upgrading
mechanism à la Lileeva and Trefler (2010) and Bustos (2011), wherein the prospect of sizable

1The correlation between productivity and emission intensity is not necessarily negative. In general,
the sign of this correlation depends critically on the underlying mechanism through which trade stimulates
adjustments to the production process (a central point of this paper). However, most models (discussed
below) feature Hicks-neutral productivity gains, which would imply trade-induced reductions in emission
intensity as well.

2See Holladay (2010); Forslid, Okubo, and Ulltveit-Moe (2011); Cui, Lapan, and Moschini (2012);
Galdeano-Gómez (2010); Batrakova and Davies (2012) for evidence in the corss-section and Gutiérrez and
Teshima (2011); Martin (2012); Cherniwchan (2013) for within-firm estimates over time.
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export sales induces firms to invest in productivity-enhancing, cleaner technology.3 But with
firm-level datasets usually denominated only in value, not physical quantities, and neither
inputs nor outputs disaggregated to the product-level, the technology channel is usually not
separately identified from other margins of adjustment at the firm-level (as discussed in De
Loecker (2011); De Loecker et al. (2012)).

To fix ideas, consider an accounting decomposition of average emission intensity in value
of a multi-product firm:

Ei
Vi

=
∑
j

Eij
Qij︸︷︷︸

Technology

∗ Qij

Vij︸︷︷︸
Price

∗ sij︸︷︷︸
Product−mix

(1.1)

where Ei and Vi denote the environmental emissions and total sales generated by firm i,
and Eij, Qij, Vij, sij correspond to emissions, sales, output, and (within-firm) sales share
for firm-product ij. If export market access induces firms to adopt new, cleaner technology,
then Eij/Qij should fall with exports. However, the variables that are usually available in
firm-level datasets include only Ei and Vi, so the best measure of emission intensity that can
be constructed is just the left hand side of equation (1.1), Ei/Vi. Gutiérrez and Teshima
(2011); Martin (2012); Cherniwchan (2013) each present evidence of how this measure (Ei/Vi)
evolves within firms over time in response to trade shocks, and mostly find that it falls with
increased export market access.4 But note that if contemporaneous changes to prices and
product-mix (captured in the second and third terms on the right hand side of equation
(1.1)) also adjust endogenously with the export decision, then Ei/Vi could fall with exports
without any change in technology. A growing list of papers illustrates the sensitivity of the
latter two margins to trade shocks (De Loecker, 2011; Harrigan, Ma, and Shlychkov, 2011;
De Loecker et al., 2012; Manova and Zhang, 2012; Bernard, Redding, and Schott, 2011;
Mayer, Melitz, and Ottaviano, 2014), which gives reason to believe that other things could
be happening within the firm beyond technological change.

In this paper, we present new evidence on the underlying channels through which changes
in foreign market access impacts the emission intensity of firms. We first give a theoretical
account of how both prices and product-mix could determine trade’s impact on emission
intensity. While these channels have been explored in other settings (De Loecker, 2011;
De Loecker et al., 2012; Bernard, Redding, and Schott, 2011; Mayer, Melitz, and Ottaviano,
2014), they are novel to the trade and environment literature and bear directly on the
interpretation of firm-level estimates. Next, we test the qualitative predictions of the model
using a uniquely-detailed panel dataset of Indian manufacturers – the Prowess dataset –
which allows us to compute firm-product emission intensity in quantity Eij/Qij without
imposing any functional form assumptions on production. Since these measures are net of
price and product-mix effects by construction, we are able to perform the first direct test of

3Other mechanisms beyond the fixed-cost model of Lileeva and Trefler (2010) and Bustos (2011) could
also explain trade-induced technological change, including bankruptcy costs (Durceylan, 2009), trapped
factors (Bloom, Draca, and Van Reenen, 2011), and searching (Perla, Tonetti, and Waugh, 2012), but the
mechanism mostly cited is the Bustos (2011) model.

4Empirical estimates usually deflate firm-level sales by an industry price index, but this procedure im-
plicitly imposes functional form assumptions and neglects firm-specific deviations in price.
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the clean technology hypothesis (i.e.
∂Eij/Qij
∂exportsi

< 0). Additionally, we present evidence of the
impact of the latter two channels– prices and product-mix.

In the model, firms have a core-competency product (as in Mayer, Melitz, and Ottaviano
(2014)), and firms skew production towards this core-competency for the export market.
Each product has a unique emission intensity associated with its production and unique
destination-specific pricing. With export prices tending towards higher values than domes-
tic prices, demand shocks in the foreign market increase average price, hence lowering Ei/Vi.
However, demand shocks also skew production towards the core-competency, which increases
(decrease) Ei/Qi if core products are dirtier (cleaner) to produce than non-core products.
This correlation is shown to depend on the relative magnitude of parameters of the produc-
tion function. Thus, the sign of the contribution of product-mix to firm-average emission
intensity is theoretically ambiguous, and hence, an empirical question.

In order to compute firm-product emission intensities, we rely on firm-product-specific
energy input data contained in Prowess. It is extremely rare to observe inputs at the firm-
product level because of the reporting burden on firms (in fact, to our knowledge, this is
the only dataset that breaks down inputs by product), but concerns for energy security led
the Indian government to require firms starting in 1988 to issue detailed product-specific
energy input usage data in their publically available annual assessments.5 Since the firm-
product energy data have not been analyzed before, we describe them in detail in the main
text (and in Appendix A.2) and perform several diagnostic checks. We find that the ag-
gregate CO2 trajectory implied by these firm-product energy intensities align with official
India-wide estimates from manufacturing, that implied industry-average emission intensities
correlate strongly with those computed from an independent report (the World Input Out-
put Database), and that implied firm-level emissions match the reported firm-level emissions
from the firm-level aggregate energy consumption data in Prowess. Finally, we can reject
the hypothesis that firms merely apportion energy usage based on ready-to-hand measures
like sales and output.

Based on the energy reports, we compute firm-product CO2 intensities following a stan-
dard procedure in the literature by multiplying physical quantities of energy source (e.g.
coal, diesel, etc) by constant CO2 per quantity coefficients and aggregating across energy
source. We then relate these measures to exporting behavior of the firm over the period
1990-2011.

The key empirical challenge we face is that exporting is an endogenous decision that could
correlate with other determinants of firm and firm-product emission intensity. Kellenberg
(2009) finds that environmental regulation is jointly determined with strategic trade interests,
which could drive both emission intensity and exports. Reverse causality could also play a
role, if foreign consumers have a preference for green production techniques. Or, third-party
consulting from either private firms or government extension officers may encourage both
different production techniques and foreign market strategies simultaneously, which would
mechanically link emission intensity to exporting. Differential changes in trade barriers alone
is not enough to solve the endogeneity problem, because trade barriers often change gradually

5The Center for Monitoring the Indian Economy (CMIE) collected a large subset of these reports and
digitized the information in the dataset Prowess. Energy is the only input reported at the firm-product level.
All other inputs such as labor and capital are reported at the firm level (i.e., aggregated across all products).
See Goldberg et al. (2010); De Loecker et al. (2012) for further descriptions of the output data.
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over time, along with other macro factors, and can even change endogenously to strategic
industry interests (Trefler, 1993).

To address these endogeneity concerns, we follow recent papers in the trade literature
that identify firm-level trade impacts from macroeconomic fluctuations in trading partner
markets (Brambilla, Lederman, and Porto, 2012; Hummels et al., 2014; Bernard, Moxnes, and
Ulltveit-Moe, 2014; Bastos, Silva, and Verhoogen, 2014). Specifically, we instrument export
sales of firms in Prowess with the weighted average import demand for goods from countries
other than India in those foreign destinations that India exports to. The identification
assumption is that foreign demand shocks are exogenous to unobservable factors that impact
Indian firm-level emission intensity. Changes in weighted-average foreign import demands
are shown to vary significantly across product categories, and thus deliver differential changes
to export market opportunities for firms in Prowess operating in different product codes. As
in Hummels et al. (2014); Bernard, Moxnes, and Ulltveit-Moe (2014), we find that foreign
demand shocks have strong predictive power for firm-level exports: a 1% increase in foreign
demand increases firm-level export value by 0.17% on average. The instruments are also
shown to be uncorrelated with prior trends in emission intensity, hence exporting impacts
can be identified from a difference-in-difference-like IV estimation.

We find in our sample that emission intensity in both value and quantity fall as firms
exports more, both in the OLS and when instrumenting with foreign demand shocks. We
estimate that Ei/Vi falls roughly 0.5% with a 1% increase in (instrumented) export value.
This figure is broadly in line with estimates from Gutiérrez and Teshima (2011); Martin
(2012); Cherniwchan (2013). Next, we decompose the firm-level estimate into a price effect
and a quantity effect by replacing nominal sales Vi with real output Qi, and find that 1/3rd
the overall impact is due just to prices. This finding is consistent with the idea that higher
export prices mechanically inflate the denominator in Ei/Vi. Netting out prices, we estimate
that a 1% increase in (instrumented) export value lowers Ei/Qi 0.38%.

These firm-level reductions in emission intensity represent real benefits for the environ-
ment, but they do not necessarily indicate that firms are adopting cleaner technology. Given
that the model predicts product-mix could skew production towards cleaner or dirtier prod-
ucts, the within-product technology channel could, in principle, be either larger or smaller
in magnitude than the 0.38% figure. To distinguish technological change from product-mix,
we disaggregate further to the firm-product level and estimate the technological channel in
isolation. At this level, we find that we can reject negative impacts at the 5% level. This
implies that in this context, all of the real firm-level impact is channeled through changes in
product-mix, not technological upgrading. The results hold for two different energy reports
from the firm, and are robust to restricting the sample to short “quality ladder” industries
(Khandelwal, 2010). We also present direct evidence that the foreign demand shocks increase
average unit value and the share of production devoted to the largest product (i.e., product-
mix). Thus, the empirical estimates support the model: while emission intensity falls with
exports at the firm level, the driving mechanisms seem to be prices and product-mix, not
technological upgrading.

The paper relates to the recent firm-level trade and environment literature discussed
above, as well as the classic pollution haven literature (see Copeland and Taylor (2004)
for a review). In Heckscher-Ohlin-based pollution haven models, trade can also impact
firm-level emission intensity, but only through endogenous environmental regulation. The
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mechanisms investigated in this paper operate independent of regulation, thus represent
a separate (potentially additional) firm-level mechanism. That is, the estimates in this
paper and elsewhere in the recent literature represent a lower bound of trade’s impact on
emission intensity, since they abstract from longer-run endogenous changes to environmental
regulation.

Beyond the trade and environment literature, the paper relates to the broader trade
literature that connects the destination of exports to input and output choices of individual
firms. Verhoogen (2008); Kugler and Verhoogen (2012); Brambilla, Lederman, and Porto
(2012); Bastos, Silva, and Verhoogen (2014) find that exporting to high-income countries
leads firms to increase the skill intensity of production, which thus increases wages. Manova
and Zhang (2012) and Faber (2012) extend the result to imported material inputs. We find
that demand shocks in high-income countries also impact energy inputs (via product-mix),
showing that export destination also matters for environmental effects.

On the output side, several papers find that destination market matters for output prices
and product-mix (Harrigan, Ma, and Shlychkov, 2011; Manova and Zhang, 2012; Goldberg
et al., 2010; Eckel and Neary, 2010; Iacovone and Javorcik, 2010; Bernard, Redding, and
Schott, 2011; Bernard, Redding, and Schott, 2013; Mayer, Melitz, and Ottaviano, 2014).
Our results support these findings and provide the first link between the product-mix and
input-mix directly.

Finally, the paper relates to a nascent literature that studies the causes of high emission
intensity of firms in developing countries (Duflo et al., 2013; Greenstone and Hanna, 2014).
Our results show that firms’ environmental performance do respond to market incentives
(product-mix), but not as strongly as they could (technological upgrading), absent pre-
existing market failures.

The paper proceeds as follows. In section 2, we present a multi-product heterogeneous
firm trade model similar to Mayer, Melitz, and Ottaviano (2014), which allows us to assess
the price and product-mix impacts on firm-level emission intensity. In section 3, we present
the Prowess energy data and the basic correlations with export orientation. In section 4,
we discuss the identification strategy, the aggregate trade data from which we compute the
instruments, and how we merge these statistics to the Prowess dataset. For this merge, we
design a new mapping from CMIE product classification codes to Harmonized System (HS)
6-digit trade data, which we present as another contribution of the paper. Section 5 presents
the results, and section 6 concludes.

1.2 Theoretical Framework

In this section, we present a heterogeneous-firm multi-product general equilibrium trade
model that connects foreign demand shocks to firm-level exports, prices, product-mix and
emission intensity. The model extends the Mayer, Melitz, and Ottaviano (2014)’s multi-
product firm model (henceforth, MMO) to include two factors of production, where the
second factor is emissions (or equivalently, energy). This extension allows us to compute
emission intensity in both quantity and value, while allowing for substitution between factors.

The model delivers four comparative statics that we take to the data. First, foreign de-
mand shocks increase firm-level exports. Second, foreign demand shocks alter the product-
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mix of the firm. In particular, the mix of the export basket skews towards “core com-
petency” (i.e., best product). Third, this change in product-mix in turn alters firm-level
average emission intensity in quantity. The sign of the impact depends on whether the
firms’ core competency is cleaner or dirtier than other varieties within each firm, and on
relative market conditions. Fourth, foreign demand shocks influence firm-level average price,
which in turn impacts firm-level emission intensity in value. In particular, demand shocks in
high-environmental-regulation (rich) countries increase average prices, which lowers emission
intensity in value.

These findings show that exporting can influence firm-level emission intensity in quantity
through the product-mix, and firm-level emission intensity in value via prices, which are
novel predictions in the literature. The full general equilibrium properties of the model are
explored in Barrows and Ollivier (2014), so we move briskly through the model setup to
discuss the firm-level impacts.

Setup of the Model

The world is comprised of H countries, indexed by l ∈ {1, ..., H}, each of which contains
heterogeneous firms that decide whether to enter, what products to produce, and where to
supply these products. Firms supply horizontally differentiated varieties that are substitutes
in demand. Countries are asymmetric in terms of their market sizes (L), bilateral trade costs
(θ), and environmental regulation (τ).

Preferences and Endowments.— The representative agent in each country l has prefer-
ences over a continuum of differentiated varieties indexed by j ∈ Λ, and a homogeneous good
chosen as numeraire:

U = qc0 + α

∫
j∈Λ

qcjdj −
1

2
γ

∫
j∈Λ

(qcj)
2dj − 1

2
η

(∫
j∈Λ

qcjdj

)2

, (1.2)

where qc0 and qcj represent the individual consumption levels of the numeraire good and each
differentiated variety j. The demand parameters α, γ, and η are all positive. An increase in
α and a decrease in η both shift out the demand for the differentiated varieties relative to
the numeraire. The parameter γ indexes the degree of product differentiation between the
varieties. In the limit when γ = 0, varieties are perfect substitutes.

With quasi-linear preferences, demand for each differentiated variety is linear in prices.
Let Λ∗l ∈ Λ be the subset of varieties that are consumed in country l. A linear market
demand system for these varieties in country l is derived:

qjl ≡ Llq
c
jl =

αLl
ηMl + γ

− pjl
Ll
γ

+
ηLlp̄lMl

γ(ηMl + γ)
, ∀j ∈ Λ∗l , (1.3)

where Ml is the measure of consumed varieties in Λ∗l and p̄l = (1/Ml)
∫
j∈Λ∗l

pjldj is their

average price. A consumer may not have positive demand for any particular variety, but she
has positive demand for the numeraire good by assumption. Thus, the set Λ∗l is the largest
subset of Λ that satisfies

pjl ≤
αγ + ηp̄lMl

ηMl + γ
≡ pmaxl , (1.4)
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where the price bound pmaxl represents the price at which demand for a variety is driven
to zero in country l. An increase in the number of varieties and a decrease in the average
price reduces the price bound pmaxl in the destination market l. Both domestic and foreign
producers face the same price bound, and any decrease in pmaxl can be interpreted as the
competitive environment in country l becoming “tougher.”

Production Technology.— The specification of entry and production follows Mayer, Melitz,
and Ottaviano (2014) with the extension made by Barrows and Ollivier (2014). Each econ-
omy is composed of two sectors, one producing a non-polluting homogeneous good, which
takes only labor ` as an input, and the other producing differentiated varieties, which re-
quires both ` and energy z. The consumption of energy generates pollution, so without loss
of generality, z, can also be thought of as emissions. Labor is mobile across sectors and
is inelastically supplied in a competitive market. The numeraire good is produced under
constant returns to scale at unit cost and sold in a competitive market. These assumptions
imply a unit wage. The price of emissions depends on an exogenous environmental tax τ
that is fixed by the national government.6

In order to begin production in the differentiated sector, firms must incur a sunk entry
cost of fE > 0 units of labor, whatever the country of location. This cost is associated with
research and product development, which entails uncertain outcomes. Firms face uncertainty
about their total factor productivity (TFP) denoted by ϕ. Entrants draw their firm ability
from a known Pareto distribution with cumulative function G (ϕ) = 1 − ϕ−k with support
on [0,∞]. The shape parameter k indexes the dispersion of productivity draws. Since the
entry cost is sunk, firms that can cover their marginal cost for at least one good survive and
produce. If the firm is particularly efficient, it can decide to introduce multiple varieties,
each variety being produced with a different technology. Each firm has one core variety with
minimal marginal cost given the tax level τ , and new varieties can be added with higher
marginal costs. We index by m the varieties produced by the same firm in increasing order
of distance from its core variety m = 0.

The production function of a variety m by a firm with total factor productivity ϕ is:

q(ϕ,m) = ϕ[(e−σm`)ε + (e−νmz)ε]1/ε. (1.5)

This function combines “effective” inputs in the standard CES structure where “effective
input” equals actual input scaled by a distance function from core competency. Production
function (1.5) is quasi-concave if ε ≤ 1, which is assumed in the rest of the paper. As
demonstrated in Barrows and Ollivier (2014), we need to impose that ν > 0 and σ > 0 to
ensure that the core competency of a firm corresponds to m = 0. This implies that the unit
cost function of variety m is increasing in m, where the unit cost function is given by

Φ(ϕ,m) = w`+ τz =
1

ϕ

[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
. (1.6)

6alternatively, if z is energy, then τ is the price of energy inclusive of regulation. Either way, τ is fixed
by the government.
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We define the emission intensity of a varietym in physical output, EQ(ϕ,m) (equivalently,
Eij/Qij from (1.1)) as

EQ(ϕ,m) =
z

q
=

1

ϕ

[
e−νmε +

(
τem(εν−σ)

) ε
1−ε
]−1/ε

. (1.7)

and emission intensity in value as

EVlh(ϕ,m) =
z

plh(ϕ,m)qlh(ϕ,m)
=
EQ(ϕ,m)

plh(ϕ,m)
. (1.8)

where p(ϕ,m) denote the price, and subscripts lh denotes variables derived from producing
in l and selling in h. Prices plh(ϕ,m) vary with market conditions in h, hence, emission
intensity in value depends on the conditions of the market where the product is sold. Note
that EQ(ϕ,m) is fixed conditional on environmental regulation τ . Thus, the model abstracts
from technology upgrading at the firm-product level. We make this assumption for simplicity
so we can assess the price and product-mix channels. No additional insight would be gained
by allowing technological upgrading as in Forslid, Okubo, and Ulltveit-Moe (2011); Cui,
Lapan, and Moschini (2012); Batrakova and Davies (2012), but notation would proliferate.

If we further impose ε > 0 and ν > σ, then we have the following lemma:

Lemma 1. The emission intensity of variety m, E(ϕ,m) is increasing (decreasing) in m if
and only if

ε− (1− ε)
(
τem(ν−σ)

) ε
ε−1 < (>)

σ

ν
.

Proof.

dE(ϕ,m)

dm
=

1

ϕ

[
e−νmε +

(
τem(εν−σ)

) ε
1−ε
]−1−ε

ε

[
νe−νmε − εν − σ

1− ε
(
τem(εν−σ)

) ε
1−ε

]
,

which is positive if and only if the LHS of the inequality in Lemma 1 is less than the RHS.
This holds if ε ≤ 0 or if σ > ν.

Lemma 1 suggests that the emission intensity and the unit cost of new varieties are not
necessarily correlated. Whereas the unit cost is increasing in m if parameters ν and σ are
positive, E(ϕ,m) can still be either increasing or decreasing in m depending on production
parameters. If either ε ≤ 0 or σ > ν, then the LHS of the inequality in Lemma 1 is for
certain less then the RHS, which means higher-m varieties are more emissions intensive.7

However, if ε > 0 and ν > σ, then the equality could be reversed (depending on relative

7For example, when the elasticity of substitution between emissions and labor is positive and close to
1 (ε → 0), both unit cost and emission intensity are increasing in m. This corresponds to the standard
framework in the trade and environment literature following Copeland and Taylor (2004) where emissions
are a by-product of production, and where abatement requires labour in such a way that net output can
be represented in a Cobb-Douglas function with emissions and labour as inputs. To illustrate, consider
the following Cobb-Douglas function for variety m: q(ϕ,m) = ϕ(e−σm`)β(e−νmz)1−β . It implies that both
the unit cost function and the emission intensity function can be factorized by em[βσ+(1−β)ν]. Thus these
functions are both increasing in m for σ, ν > 0.
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magnitudes), implying that higher-m products are cleaner. We do not want to assume away
the possibility that trade could increase emission intensity at the firm level, so we restrict
attention to the case ε > 0 and ν > σ for the rest of the paper. These conditions imply
that labor and emissions exhibit a high-degree of substitutability, and higher-m varieties use
even less efficiently emissions than labor. Under these conditions, firms substitute labour for
emissions as they add higher-m products, which might reduce emission intensity.

Firm Behavior.— Firms engage in monopolistic competition on each destination market
and markets are segmented, so their profit maximization problem treats each market sep-
arately, taking the average price level p̄l and total number of varieties Ml as given. Firms
that can cover at least the marginal cost of production of their core competency survive and
produce. All other firms exit the industry. Surviving firms maximize their profits using the
residual demand function (1.3) on each market, subject to a variable “iceberg” trade cost
θlh > 1 ( θll = 1), which drives the delivered marginal cost of a variety m produced by firm
ϕ in country l to the import country h to θlhΦ(ϕ,m).

The profit maximizing price plh(ϕ,m) and output level qlh(ϕ,m) of a variety with marginal
cost Φ(ϕ,m) produced in country l and sold in country h must then satisfy

qlh(ϕ,m) =
Lh
γ

[plh(ϕ,m)− θlhΦ(ϕ,m)] . (1.9)

The variety is supplied to country h if and only if the maximizing price plh(ϕ,m) is below the
price bound pmaxh from (1.4). Let Φlh denote the unit cost of the marginal variety produced
in country l and sent to country h achieving zero sales. Its demand level qlh(Φlh) is driven to
zero as plh(Φlh) = θlhΦlh = pmaxh . For a firm selling its varieties domestically, (1.9) becomes
qll(ϕ,m) = Ll [pll(ϕ,m)− Φ(ϕ,m)] /γ, which implies that the domestic cost cutoff is such
that Φll = pmaxl . Therefore, Φlh = Φhh/θlh: trade barriers make it harder for exporters to
break even relative to domestic producers.

The domestic cutoff Φll and the export cutoff Φlh summarize all the effects of market
conditions relevant for each country l’s firm performance measures. Firms in country l
with marginal cost for their core competency Φ(ϕ, 0) > Φll cannot profitably produce their
core variety for the domestic market and exit. This yields the cutoff productivity for firm

survival: ϕll =
[
1 + τ

ε
ε−1

] ε−1
ε
/Φll. Similarly, firms with marginal cost for their core product

Φ(ϕ, 0) > Φlh cannot profitably sell their products to country h, and this yields the cutoff
productivity ϕlh for exporting to market h.

As in MMO, price, markup, revenue, and profit for a variety produced in cuntry l sold
in country h can be written as functions of Φlh and Φ(ϕ,m):

plh(ϕ,m) =
θlh
2

[Φlh + Φ(ϕ,m)], (1.10)

λlh(ϕ,m) =
θlh
2

[Φlh − Φ(ϕ,m)], (1.11)

rlh(ϕ,m) =
Lhθ

2
lh

4γ
[Φ2

lh − Φ(ϕ,m)2], (1.12)

πlh(ϕ,m) =
Lhθ

2
lh

4γ
[Φlh − Φ(ϕ,m)]2. (1.13)
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Lower marginal cost varieties have lower prices and earn higher profits than varieties with
higher marginal costs. However, lower marginal cost varieties also have higher markups,
which reveals an incomplete pass-through from firms to consumers.

For each producing firm with Φ(ϕ, 0) < Φll, more profits can be earned by diversifying
its product mix. A firm chooses endogenously its product mix by selecting the varieties it
produces for a non-negative domestic profit (πll(ϕ,m) ≥ 0), and the varieties it exports for
a non-negative export profit (πlh(ϕ,m) ≥ 0). The total numbers of varieties produced and
exported by a firm with productivity ϕ in country l are thus

Mll(ϕ) =max

{
m|
[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
/Φll ≤ ϕ

}
+ 1 iff ϕ ≥ ϕll (1.14)

Mlh(ϕ) =max

{
m|
[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
/Φlh ≤ ϕ

}
+ 1 iff ϕ ≥ ϕlh, (1.15)

and zero otherwise.

Free Entry Condition and Equilibrium.— Entry is unrestricted in all countries. Firms
decide where to locate prior to entry and paying the sunk entry cost. We assume that the
entry cost fE and the productivity distribution G(ϕ) are common across countries, and that
all countries produce the homogeneous good. A prospective entrant’s expected profits in
country l are then given by

Πl =
H∑
h=1

∫ ∞
ϕlh

 ∑
{m|Φ(ϕ,m)≤Φlh}

πlh(ϕ,m)

 dG (ϕ)− fE,

which includes the expected profits made in the domestic market h = l and in foreign markets
h 6= l. The free entry condition in country l yields

H∑
h=1

ΩhLh(θlh)
2Φk+2

lh = 2γ(k + 1)(k + 2)fE, (1.16)

where Ωh ≡
∑∞

m=0

[
τ

ε
ε−1

h e
νmε
ε−1 + e

σmε
ε−1

] (1−ε)k
ε

is a sequence that depends exclusively on param-

eters. We find that this sequence converges if and only if ε ≤ 1, ν > 0 and σ > 0, which are
assumed above.8 Hence, Ωh is a constant.

Using Φlh = Φhh/θlh and the symmetry across countries that gives a system of equations,
we obtain

Φll =

(
2γ(k + 1)(k + 2)fE

ΩlLl
Ψ(θ)

) 1
k+2

, (1.17)

where θ is a vector of all country-pair trade costs, and the function Ψ(.) varies depending
on the number of countries. If H = 2 for instance, we have Ψ(θlh, θhl) = (1 − θ−klh )/[1 −

8We have
[
τ

ε
ε−1

h e
νmε
ε−1 + e

σmε
ε−1

] (1−ε)k
ε −→m→∞ 0 if and only if ν, σ > 0 and ε ≤ 1.
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θ−klh θ
−k
hl ]. The domestic cost cutoff thus depends on the domestic market size, on the country’s

environmental regulation, and on the trade costs incurred for imports and exports. Since
the distribution of the exporters’ delivered unit cost θlhΦ(ϕ,m) to country h matches the
distribution of country h’s domestic firms’ cost, it results in a matching price distributions for
both domestic firms in country h and exporters to that country. In Appendix A.1, we show
that Φlh < Φll in the non-specialized equilibrium, so that only a subset of relatively more
productive firms export, and firms only export their more profitable varieties. This selection
into exporting implies that on average exporters are more efficient than non-exporters.

Impacts of Product-Mix and Price Effects on Firm Emission
Intensity

In this subsection, we derive comparative static relationships between foreign demand shocks,
firm-level exports, product-mix, and firm-level emission intensity in value and quantity, which
we then take to the data.

Exports.— Consider an exogenous increase in the size of the foreign market: dLh > 0. In
the model, dLh > 0 implies the population of h literally increases, but one could also think
of it as any increase in the purchasing power of that population, e.g., a shock to income
or exchange rates. With an increase in Lh, there are two effects. First, higher demand
leads country h to buy more of everything, including products manufactured in country l.
However, this demand shock also attracts more firms to sell in h, driving up competition –
i.e., lowering Φhh given equation (1.17) – and in particular, lowering the export cost cutoff
Φlh for country l’s firms. These two forces – a direct effect and a competition effect – pull
in opposite directions, and affect country l’s heterogeneous firms differently. In particular:

Prediction 1. More productive exporters see their export revenues increase when facing a
foreign demand shock whereas less productive exporters see them decrease.

Proof: See Appendix A.1
The average impact in the population of firms depends on the distribution of productiv-

ities, along with trade costs and market conditions of trading partners, though the evidence
suggests that the direct effect tends to dominate the competition effect in aggregate (Hum-
mels et al., 2014; Bernard, Moxnes, and Ulltveit-Moe, 2014). This would suggest that dLh > 0
is a positive shifter of exports.

Product-Mix.— Within the firm, the import demand shock impacts varieties differently
depending on their marginal cost:

Prediction 2. For a firm-product with unit cost Φ(ϕ,m) manufactured in country l and sold
in country h, an increase in Lh lowers (increases) export revenues for less (more) profitable

products with unit cost Φ(ϕ,m) > (<)
√

k
k+2

Φlh.

Proof: See Appendix A.1
This impact on export revenues is mostly driven by changes in exported quantities. With

an increase in Lh, country l’s exporters adjust by dropping some of their most expensive
varieties (extensive margin), as well as by changing the relative output share of each variety
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(intensive margin). Multi-product models with CES demand would also feature the extensive
margin (e.g., Bernard, Redding, and Schott 2011), but they miss the intensive margin effect
because markups are fixed with CES demand. As in MMO, both the intensive and extensive
margin impacts skew production towards the core varieties, whose relative markups and
profits rise.

The impact of product-mix on the firm average emission intensity of production, de-
noted EQlh(ϕ) =

∑Mlh(ϕ)−1
m=0 EQ(ϕ,m)qlh(ϕ,m)/

∑Mlh(ϕ)−1
m=0 qlh(ϕ,m), depends on whether

EQ(ϕ,m) is increasing or decreasing in m. If EQ(ϕ,m) is increasing in m, so core varieties
are cleaner, then these adjustments make firms’ production cleaner; whereas if EQ(ϕ,m) is
decreasing in m, so core varieties are dirtier, then the reverse is true. Hence, we have:

Prediction 3. An increase in Lh reduces (increases) firm-destination-level emission intensity
in quantity EQlh(ϕ) if and only if EQ(ϕ,m) is increasing (decreasing) in m.

Proof: see Appendix A.1
While the impact of dLh > 0 on EQlh(ϕ) is straight-forward once we know the correlation

between m and EQ, it is unfortunately unobservable in most cases. That is, we usually do
not observe inputs broken down by export destination. Instead, we usually observe

EQ(ϕ) =
H∑
h=1

( ∑Mlh(ϕ)−1
m=0 qlh (ϕ,m)∑H

h=1

∑Mlh(ϕ)−1
m=0 qlh (ϕ,m)

)
EQlh(ϕ), (1.18)

i.e., firm-level average emission intensity in quantity, averaged over all destinations markets.
At this level of aggregation, the impact is not as clear because we must aggregate over
multiple products as well as over multiple destinations.

To see the different forces at work, suppose there are only two markets (H = 2): a
domestic market l and a foreign market h. If core varieties are cleaner (i.e., EQ(ϕ,m)
is increasing in m), an increase in Lh lowers EQlh(ϕ) by Prediction 3. Because there is
selection into exporting, the set of exported varieties is smaller than the set of varieties sold
domestically, and product mix in the export basket is more skewed toward core varieties
than in the domestic basket. Therefore, we can infer that EQlh(ϕ) < EQll(ϕ). In this
case, an increase in exporting would decrease the firm emission intensity in quantity EQ(ϕ).
Conversely, if core varieties are dirtier, we expect that EQlh(ϕ) > EQll(ϕ), and an increase
in Lh increases EQlh(ϕ) even further. Exporting more would thus raise the aggregate firm
emission intensity in quantity.

Generalizing this result to many destination markets requires comparing the average
emission intensity of the basket of goods exported to country h where the demand shock
occurs with the average emission intensity of all other baskets. If the former remains lower
(higher) than the latter, even after the demand shock, then the average emission intensity
EQ(ϕ) of efficient firms decreases (increases) with the demand shock, whereas the impact
of the demand shock on less efficient firms is ambiguous.

Prices.— Next, we consider the impact of prices on emission intensity in value for indi-
vidual firm-products (equivalently, single-product firms), and then for multi-product firms.
Price effects derive from both pass-through of the demand shock into pricing, as well as
aggregating sales over destinations. Since the same firm-product is sold at different prices
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across markets, an increase in Lh changes firm-product average price by increasing the share
of exported goods.

Again, for simplicity, suppose there are two markets: l and h. The average emission
intensity in value for a firm-product with unit cost Φ(ϕ,m) is

EV (ϕ,m) =
rll(ϕ,m)

rll(ϕ,m) + rlh(ϕ,m)
EVll(ϕ,m) +

rlh(ϕ,m)

rll(ϕ,m) + rlh(ϕ,m)
EVlh(ϕ,m), (1.19)

where EVll(ϕ,m) and EVlh(ϕ,m) are the emission intensity in value in the domestic and
foreign markets, respectively, as defined by (1.8). We observe that the emission intensity in
value of the export basket is lower than the emission intensity of the domestic basket if and
only if the export price is higher than the domestic price. Using (1.10), we have:

Prediction 4. Firms sell the same products at higher prices in countries with stricter envi-
ronmental regulations.

Proof: see Appendix A.1
Countries with stricter environmental regulations have weaker competition because of

higher factor prices. If the foreign market is therefore less competitive than the domestic
market (Φll < Φhh), the export price will be higher, yielding EVlh(ϕ,m) < EVll(ϕ,m).
Following the trade and environment literature (Copeland and Taylor, 2003), environmental
regulation differences across countries are generally induced by income differences. Thus,
our prediction is consistent with many empirical studies that find that firms sell at higher
prices in wealthier destinations (Harrigan, Ma, and Shlychkov, 2011; Bastos and Silva, 2010;
Manova and Zhang, 2012).

To study the impact of exporting on firm emission intensity in value, we must compare
the prices across markets and the share of products sold in each market, given (1.19). When
exporting increases, the relative share of sales coming from exports increases, whereas sales
in the domestic market are unaffected. A positive shock to Lh also lowers the export price,
which increases EVlh(ϕ,m). Therefore, if the export price remains higher than the domestic
price (i.e., EVlh(ϕ,m) < EVll(ϕ,m)), an increase in exporting would reduce EV (ϕ,m) as
long as the compositional shift (toward country h export basket) outweighs the export price
decrease. Otherwise, a positive demand shock can increase EV (ϕ,m). In the context of
multiple destination markets, the impacts of a demand shock from country h depends on
whether the export price to country h is higher or lower than the average price over all other
destinations.

Finally, for multi-product firms, we must combine the price and product-mix effects to
assess how exporting impacts the emission intensity in value. The impacts of an import
demand shock depend on relative market conditions, relative firm productivity, and whether
core products are cleaner or dirtier than higher-m varieties. In general, the impacts are
ambiguous. However, if we assume that core varieties are cleaner (dirtier) and that the
export price to country h is higher (lower) than the average price over all other markets, then
exporting more decreases (increases) the firm emission intensity in value as both product-mix
and price channels reinforce each other. If these channels have opposite impacts (when core
products are dirtier and export price to country h is higher, for instance), then the net effect
on the firm emission intensity is ambiguous.
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1.3 Data and Preliminary Correlations

To test the predictions of the model, we need production data with both inputs and outputs
reported at the product-level in physical quantities and values. While some datasets exist
that report outputs at the product level (e.g., the US Census of Manufacturers used in
Bernard, Redding, and Schott 2011 or the French Customs data used in Mayer, Melitz,
and Ottaviano 2014), firms rarely report inputs at the product level as well. The production
dataset we use – Prowess – offers precisely this unusual feature for energy inputs, thus offering
a unique opportunity to separately identify the components of equation (1.1). Additionally,
Prowess reports the export share in revenue, which enables us to control for endogenous
selection into exporting. We present the basic correlations between exporting and firm
emission intensity in this section, and discuss identification in Section 4.

Prowess Data Description

As part of the Indian Companies Act of 1956, Indian firms above a given size threshold
are required to issue annual reports on a wide array of economic activity, which the Center
for Monitoring the Indian Economy (CMIE) collected and digitized in the dataset Prowess.
The reporting requirements make the sample well-suited for analyzing trade impacts, since
exporting is generally dominated by large, productive firms (Bernard, Redding, and Schott,
2011; Bernard, Redding, and Schott, 2013; Mayer, Melitz, and Ottaviano, 2014). In the
annual reports, firms list quantity and value of sales by product, thus we observe both prices
(unit values) and product-mix of the firm. Additionally, Prowess contains rich information on
energy use, from which we compute CO2 intensities. While other researchers have exploited
the multi-product dimension of Prowess (De Loecker et al., 2012; Goldberg et al., 2010), the
energy data – especially the product-specific data – have not been analyzed before, so we
describe it in some detail here.9

In accordance with the 1988 amendment to the Companies Act, firms are required to
report energy use in two ways in their annual reports. First, firms report consumption per
unit of production for each product manufactured in each of 140 possible energy sources (see
Appendix Figure A.1 for the legislative language). That is, firms report physical quantity
of each energy source used to generate a single unit of each output product. We provide
a sample report in Figure A.2. From these energy data, we compute emission intensity in
physical amounts of CO2 per physical unit of output by merging CO2 intensity coefficients
and summing over energy sources. We refer to the resulting dataset as the “product-specific”
dataset.

Second, firms also report total physical consumption and expenditure from each energy
source aggregated across all products each year. From these reports, we compute firm-level
CO2 again by converting each energy source with a CO2 intensity coefficients and summing
over energy sources. The “firm-level” reports merge easily with the output data on firm name,
providing a means to distinguish between impacts on Ei/Vi from impacts on Ei/Qi, while
the “product-specific” reports provide independent measures of Eij/Qij – a free-standing

9Lipscomb (2008) also investigates the environmental implications of endogenous portfolio choice of firms
in Prowess, but she characterizes products as either “clean” or “dirty” depending on regulatory criteria, not
the energy data contained in Prowess itself.
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measure of technological efficiency. We will use the two reports in tandem to separate the
components of equation (1.1). For a more detailed descripton of the data, see Appendix A.2.

Descriptive statistics for the two datasets are reported in Table 3.2. The output data
covers 103,451 firm-product-year observations between 1990-2011. For each observation, we
know the 16-digit Prowess product category code, output quantity, output units, and value in
millions of current year rupees. In Panel A, we aggregate outputs to the firm-level and merge
to firm-year CO2 emissions and export revenue shares, as well as firm-level energy prices.
After aggregating to the firm level, we have 42,026 firm-year observations, representing 4,982
firms and 14,958 distinct firm-products. The average firm generates 1.16 billion rupees of
revenue, 0.1 MT (Mega Tons) of CO2 in a given year and earns 11.64% of sales from exports.

A caveat to mention is that while the data matches reasonably well with other better-
known datasets (see below), outlier observations are a significant problem in Prowess, as in
many production datasets. Upon inspection of outlier values, it appears in many cases as if
decimals have been transposed or units mis-reported. We adopt the standard approach of
dropping the top and bottom 1% of values for emission intensity for most of the analysis.
Additionally, we drop firms that exhibit excessive variation in emission intensity over the
period. If a firm’s emission intensity changes by several orders of magnitude over the sam-
ple, we assume this is due to reporting errors (misplaced decimal, misreported units) and
drop it from the analysis (see Appendix A.2). This second data cleaning procedure drops
approximately 3% of the data.

Table 1.1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Panel A: Firm-level Dataset

Sales Value (Bill of Rs) 1.16 2.59 0 26.97 42026
Production (Various Units) 34.48 775.09 0 99599 42026
CO2 Emissions (MT) 0.1 0.44 0 6.60 42026
Export Share 0.11 0.22 0 1 42026
Energy Use (Million mmBTU) 0.95 4.95 0 117.69 42026

Panel B: Product-specific Dataset

Log CO2 Intensity (Kg CO2/unit) 5.87 2.76 -4.33 12.68 48037
Log Energy Intensity (mmBTU/unit) 0.66 2.87 -10.46 8.58 48037

Notes: Annual production data from Prowess covering years 1990-2011. Sales value and production in
Panel A have been aggregated to the firm-level. Production data are reported in various units, e.g. tonnes,
number, etc. CO2 emissions are imputed by multiplying physical quantities of energy source by a source-
specific CO2 intensity coefficients and summing over energy sources (see Appendix A.2 for details). Export
share is defined as the export revenue free on board (f.o.b.) divided by total revenues. In Panel A, we have
dropped 3% of observations with very high variation in emission intensity within the firm over time, and
the top and bottom 1% of sales value and CO2 emissions observations (see Appendix A.2 for details). In
Panel B, we have dropped the top and bottom 1% of CO2 intensity values.

Panel B reports Log CO2 emission intensity and Log mmBTU per quantity of outputs
(various units) for 48,037 firm-product-year observations between 1990-2011, covering 3,483
firms and 6,237 distinct firm-products. Here, we also trim the top and bottom 1% of values
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Table 1.2: Multi-product Firms by Industry

(1) (2) (3) (4) (5) (6)
Industry # Firms 1-Product 2-Product 3-Product ¿3-Product

Panel A: Firm-level Dataset

Agricultural products 348 186 66 42 54
Mineral Products 88 54 21 5 8
Food products, beverages & tobacco 368 116 102 58 92
Textiles 980 428 284 161 107
Wood, Pulp & Paper Products 193 134 33 18 8
Chemicals 988 349 225 142 272
Plastics & Rubbers 387 139 91 77 80
Non metallic mineral products 264 141 69 17 37
Base Metals 620 243 170 93 114
Machinery 459 132 101 53 173
Transport equipment 215 67 56 33 59
Misc. Manufactured Articles 77 8 24 12 33
Total 4987 1997 1242 711 1037

Panel B: Product-specific Dataset

Agricultural products 252 222 20 9 1
Mineral Products 51 46 3 0 2
Food products, beverages & tobacco 236 193 27 9 7
Textiles 709 546 121 24 18
Wood, Pulp & Paper Products 172 145 22 3 2
Chemicals 580 356 106 52 66
Plastics & Rubbers 263 184 45 14 20
Non metallic mineral products 196 127 46 10 13
Base Metals 537 370 88 33 46
Machinery 257 154 43 20 40
Transport equipment 106 70 20 6 10
Misc. Manufactured Articles 192 146 28 11 7
Total 3551 2559 569 191 232

Notes: Total number of firms by industry along with breakdown by “1-product”, “2-product”, etc.
Firms are assigned to an industry based on the product that accounts for the greatest aggregate
sales over the entire period (1990-2011). Firms are then allocated to “1-product”, “2-product”, etc
designations based on the number of Prowess product categories the firm operates in over the entire
period.

and throw out firm-products for which reporting error seems likely. The reported unit of
output varies from product to product, but we restrict the sample to common units within
the firm-product over time so that emission intensities are comparable across periods. Almost
all the firm-products were already reported in consistent units, so this restriction drops very
few observations.

The distributions of firms and products by industry are reported in Table ??. Industry
descriptions based on the Prowess product classification system are listed in the first column.
Column 2 reports the firm count by industry, and columns 3-6 breakdown the total firm count
into 1-product firms, 2-product firms, etc. A “1-product” firm means the firm reports at
most a single product over the period, while a “2-product” firms reports at most 2 distinct
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products etc. In the firm-level dataset (Panel A), we find that about 60% of firms are
multi-product firms. By contrast, in the product-specific dataset (Panel B), only 30% of the
firms are multi-product. Both datasets have a fairly broad coverage across all manufacturing
industries.

Diagnostic Checks of Product-specific Energy Data

The emissions calculated in Table 3.2 constitute the most-detailed measures of environmen-
tal performance of firms available, to our knowledge. With emission intensity in physical
quantity of output at the firm-product level, we can measure changes in pollution inten-
sity via technology directly from the data. While incredibly detailed, the drawback of the
Prowess data is that it is self-reported. Duflo et al. (2013) shows that Indian firms system-
atically under-report pollution emissions, which suggests our emissions estimates could be
biased. While firms obviously have an incentive to under-report local pollutants like NOx

and PM10, it is not clear that firms benefit from under-reporting energy consumption. Even
if there were systematic measurement error in the energy data, it is not obvious how the bias
would correlate with the export decision. Nonetheless, we perform several diagnostic tests
in Appendix A.2 to assess the quality of the data.

First, we compute aggregate emissions by energy source and compare to other external
measures of aggregate emissions. In Figure A.3, we calculate that total CO2 emissions in
Prowess amount to 467 MT in 2009. By comparison, the recently constructed World Input
Output Database (WIOD) database reports total CO2 emissions estimates from the same
12 industry groupings in Prowess to equal 586 MT of CO2 in the same year, so we estimate
that Prowess covers 80% of of manufacturing-based emissions in WIOD. This is a reasonable
figure since Prowess contains most of the large manufacturers in India. Second, we compare
emission intensities by industry in Prowess to the WIOD data in Figure A.4, and find strong
agreement in most cases. Third, we cross-check the firm-level energy reports against the
product-specific energy reports (aggregated to the firm level) in Figure A.5 and find that the
separate reports yield a consistent picture of firm-level emissions.

Finally, even though aggregate and firm-level emissions seem to match external checks,
one might be concerned that the product-specific energy intensity estimates are based not on
actual energy consumption, but some convenient heuristic employed by the firm. The concern
is that perhaps the cost of measuring product-specific energy intensity is prohibitively high.
If production of distinct outputs occurs on the same site on the same machines, then it might
be quite difficult for a firm to assign energy use to each production process. In this case, a
likely candidate explanation for how the firm generates product-specific energy statistics is
that they divide total energy consumption by the revenue shares of each product, not the
actual energy use. Under this hypothesis, the aggregate of product-specific energy use would
match the firm-level energy use, but the product-specific reports would still not reflect true
emission intensity. In Figure A.6, we test for this behavior by estimating the correlation
between energy shares in the product-specific data and revenue share of different products
in the output data. Under the alternative hypothesis that firms merely divide energy share
according to the revenue share, the correlation between these variables should be 1. In
Appendix A.2 we document that we can reject this hypothesis.
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Preliminary Correlations

Previous research into trade’s impact on firms’ environmental performance either reports
cross-sectional correlations between exporting and emission intensity (Holladay, 2010; Forslid,
Okubo, and Ulltveit-Moe, 2011; Cui, Lapan, and Moschini, 2012), or connects changes in
tariffs to changes in firm-level emission intensity over time, without confirming that impacts
channel through the export decision (Gutiérrez and Teshima, 2011; Martin, 2012; Cherni-
wchan, 2013). With our detailed emissions and export panel data from Prowess, we can test
both the cross-sectional and the within-firm correlations. While these estimates should not
be interpreted as causal, they serve as a useful benchmark for subsequent IV estimation.
Additionally, the within-firm results are novel, since previous work lacks either the panel
structure or the export data.

We begin with the cross-section. Previous research has found that exporters have lower
emission intensity than non-exporters, which is consistent with a technology upgrading model
in which firms adopt more-efficient, cleaner technology when they start exporting (Holladay,
2010; Forslid, Okubo, and Ulltveit-Moe, 2011; Cui, Lapan, and Moschini, 2012). Using the
firm-level dataset, we can test for this relationship in Prowess by estimating

EViyt = γ1Wiyt + β1Xiyt + εiyt, (1.20)

where EViyt is the log emission intensity in value of firm i operating in industry y in year
t, Xiyt denotes the exports of firm i, which are measured either in export share (from 0 to
1), export dummy (taking the value 1 if the firm exports positive value in the year and 0
otherwise) or log export value. Wiyt are controls such as year fixed effects and industry fixed
effects, and εiyt is an idiosyncratic error term.

Results are reported in Table 1.3. In columns 1 and 4, we find that exporters are indeed
cleaner than non-exporters. Column 1 reports the unconditional correlation, while column
4 reports estimates that control for primary industry and year fixed effects. Standard er-
rors are clustered at the firm-level. In column 1, we find that exporters have 31% lower
emission intensity in value than non-exporters. The point estimate is statistically significant
at the 1% level. Controlling for industry and year effects, we find that the point estimate
attenuates somewhat (falling to -0.20), though exporters are still significantly cleaner than
non-exporters. In columns 2 and 5, we replicate the analysis using export share (from 0 to 1)
as the measure of export intensity, and in columns 3 and 6, we take the log of export value.
In all specifications, greater export participation is associated with lower emission intensity
in value.

According to the model, the correlation documented in Table 1.3 could owe to many
factors. First, exporters tend to be more efficient than non-exporters (Bernard and Bradford
Jensen, 1999), so one would expect that they are also more efficient at transforming energy
(and hence, CO2 emissions) into outputs. Second, exporters earn a different price on their
goods than non-exporters, since they sell in different markets. If they command a higher
price on average, then emission intensity in value would fall mechanically for exporters due to
the price effect. Third, exporters tend to sell a wider range of products than non-exporters.
If follow-on products tend to be cleaner to produce than core products, this might also
generate a lower emission intensity in value for exporters. These possibilities militate in
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Table 1.3: Exporting and Emission Intensity in the Repeated Cross-Section

Dep Var: Log (E/V)

(1) (2) (3) (4) (5) (6)
Exporter -0.31∗∗∗ -0.20∗∗∗

(0.04) (0.04)
Export Share -0.80∗∗∗ -0.70∗∗∗

(0.08) (0.08)
Log Export Value -0.05∗∗∗ -0.03∗∗∗

(0.01) (0.01)

Year FE N N N Y Y Y
Industry FE N N N Y Y Y
Num of Obs 35665 26381 19359 35665 26381 19359
R squared 0.01 0.02 0.01 0.10 0.10 0.09
Mean Dep. Var 3.11 3.05 2.97 3.11 3.05 2.97

Notes: All regressions include years 1995-2011. Top and bottom 1% of emission intensity
values have been dropped. Observations have also been dropped if emission intensity in
value is several orders of magnitude above or below the rest of the observations for the same
firm. Firms are assigned to an industry based on the product that accounts for the greatest
aggregate sales over the period. Firms Standard errors are clustered on the firm. Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

favor of a fixed effect model to control for time-invariant differences between exporters and
non-exporters.

Exploiting the panel dimension of our data, we estimate:

Yit = αi + αt + γ2Wit + β2Xit + εit, (1.21)

where Yit is firm-year outcome and Xit is exporting activity, εit is an idiosyncratic error
term. Controls include year fixed effects, firm fixed effects, and firm-specific energy prices.
Columns 1-4 of Table 1.4 present impacts on firm-level emission intensity in value. The
impact of exporting is identified from within-firm changes in export value over time. Whether
we measure export activity as the log of export value (columns 1-2) or the export share in
revenue (column 3-4), we find that exporting is associated with lower emission intensity
in value, as in the cross-section. Point estimates are consistently negative and statistically
significant at the 1% level. With the log-log specification in column 1, the point estimate is
directly interpretable as an elasticity. We find that a 1% increase in export value is associated
with 0.14% lower firm emission intensity. These results confirm that, not only are exporters
cleaner, but firms become cleaner (in terms of Ei/Vi) when they export more. These results
are in line with work from Gutiérrez and Teshima (2011); Martin (2012); Cherniwchan (2013),
but previous estimates were based on changes in tarriffs. I.e., Gutiérrez and Teshima (2011);
Martin (2012); Cherniwchan (2013) did not observe exports of the firm. Here, we can see
directly that exporting correlates with lower emission intensity.

Furthermore, using our detailed production data, we can distinguish impacts on Ei/Vi
from impacts on Ei/Qi. The model predicts that exporting also impacts prices (see prediction
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Table 1.4: Exporting and Emission Intensity Within the Firm

Dep Var: Log (E/V) Log (E/Q)

(1) (2) (3) (4) (5) (6) (7) (8)

Log Export Value -0.14∗∗∗ -0.12∗∗∗ -0.09∗∗∗ -0.06∗∗∗

(0.02) (0.02) (0.02) (0.02)
Export Share -0.20∗∗ -0.32∗∗∗ -0.03 -0.19

(0.10) (0.12) (0.10) (0.15)

Year FE Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y Y Y
Includes MP Y N Y N Y N Y N

Num of Obs 12255 4767 17236 6689 12170 4640 17148 6553
R squared 0.09 0.09 0.03 0.06 0.05 0.05 0.02 0.03
Mean Dep. Var 2.89 2.82 3.01 2.97 -1.04 -1.35 -0.99 -1.13

Notes: All data aggregated to the firm-year level. Sample includes only firms that export some positive
value over the period. Odd-numbered columns include single and multi-product firms (“MP”), while even-
numbered columns include only single-product firms. Sample includes only firms that report outputs in
consistent units across products and over time. Columns 1-4 report estimates for emission intensity in value
(Ei/Vi), while columns 5-8 report estimates for emission intensity in quantity (Ei/Qi). All regressions
include years 1995-2011. The same restriction on outliers as throughout applies. Standard errors are
clustered on the firm. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

4), which would mechanically influence emission intensity in value without any change in
emission intensity in quantity. To control for prices, in columns 5-8, we re-estimate (1.21)
taking emission intensity in quantity as the outcome variable. When estimating impacts in
quantities, it is necessary that output units are constant within the firm both over time and
across products. Thus, in columns 5-8, we restrict the sample to firms for which output
units are constant across all products over the period. For comparison, we make the same
restriction in columns 1-4. In column 5, we find that emission intensity in quantity at the
firm-level also falls with exports: a 1% increase in export value lowers Ei/Qi by 0.09%. The
estimate is statistically significant at the 1% level. The point estimate using export share
is also negative (column 7-8), though statistically insignificant. Comparing the results in
columns 1 and 5, we find that the impact on emission intensity in quantity (β2 = -0.09)
is smaller in magnitude than the impact on emission intensity in value (β2 = -0.14). We
can reject the null hypothesis of equality between the two coefficients with a p-value ¡0.01.
This finding is consistent with the hypothesis that firms charge a higher price on the export
market, so that when they export more, emission intensity in value falls mechanically.

Estimates in odd-numbered columns of Table 1.4 are based on the pooled sample of both
multi-product and single-product firms. Thus, estimates could be influenced by endogenously
changing product shares within the firm. While the firm-level dataset is not well-suited to
address product-mix (since we do not know emission intensity by product in this dataset),
we can indirectly address the question by conditioning on single-product firms. If firms
only produce a single product throughout the period, then product-mix does not change (by
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construction), so could not influence emission intensity. We return to distinguishing product-
mix from technology later with the product-specific dataset; but here we find preliminary
evidence using the firm-level energy reports.

Table 1.5: Exporting and Prices and Core Share Within the Firm

Dep Var: Log (UV) Core Share

(1) (2) (3) (4) (5) (6)
Log Export Value 0.06∗∗∗ 0.05∗∗∗ 0.00

(0.01) (0.01) (0.00)
Export Share 0.15∗∗ 0.09 -0.05

(0.06) (0.10) (0.04)

Year FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y
Includes MP Y N Y N Y Y
Num of Obs 12091 4609 17073 6534 7630 10720
R squared 0.07 0.11 0.06 0.09 0.14 0.15
Mean Dep. Var -3.97 -4.17 -4.02 -4.08 0.64 0.66

Notes: All data aggregated to the firm-year level. Sample includes only firms that
export some positive value over the period. Columns 1 and 3 include single and
multi-product firms (“MP”), columns 2 and 4 include only single-product firms, and
columns 5 and 6 include only multi-product firms. Sample includes only firms that
report outputs in consistent units across products and over time. Columns 1-4 report
estimates for average unit value (total sales over total production), while columns
5-6 report estimates for the “core share” of production - the share of sales devoted
to the highest-sales product (0 to 1). All regressions include years 1995-2011. The
same restriction on outliers as throughout applies. Standard errors are clustered on
the firm. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗

levels.

We report results in even-numbered columns in Table 1.4. In column 6, we find that
emission intensity in quantity at the firm-product level also falls with exporting: a 1%
increase in export value lowers emission intensity in quantity 0.06%. The point estimate is
statistically significant at the 1% level. Column 6 rules out both price effects and product-mix
by construction, so the change in emission intensity is purely attributable to a technological
change. As the estimates in column 5 derives from the full sample, and thus combines
both technological and product-mix effects, a comparison of column 6 to column 5 reveals
the product-mix effect. Since the point estimate in column 6 (β2 = -0.06) is smaller in
magnitude than the one in column 5 (β2 = -0.09), it suggests that the product-mix effect
skews the firm towards cleaner products. This could happen if the core products tend to be
cleaner and the firm sells more of the core product when it increases exports. Additionally,
comparing columns 1 and 3, we also find that the impact on Ei/Vi is smaller in magnitude
when the product-mix channel is ruled out. Both comparisons point to a negative impact
on emission intensity via the product-mix channel.
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Finally, we examine the price and product-mix channel directly by regressing unit values
(a proxy for price) and share of revenue derived from core product (“core share”) on the
export measures. We report results in Table 1.5. In the first two columns, we find that
prices rise with exports both at the firm-level (column 1) and the firm-product level (after
restricting to single-product observations) (column 2). This is precisely what we expect from
the comparison of columns 1 and 5 in Table 1.4: higher export prices mechanically inflate
the denominator of Ei/Vi. The result also holds when using export share as the measure of
export orientation (columns 3-4), though the point estimate for single-product observations
is statistically insignificant (column 4). Finally, in columns 5-6 we regress the core share
(our proxy for product-mix) on the endogenous export variables. Here, we cannot reject the
null of no impact on the share of production devoted to the core product. We will return to
the question of product-mix in the next section when we address endogeneity in the export
decision.

1.4 Identification Strategy

Tables 1.3 and 1.4 confirm the endogenous relationship of interest: exporting is associated
with lower emission intensity. The result holds in the cross-section, as well as within the firm
over time. Prices also increase with exports, so part of the effect on emission intensity in
value is due to prices, but even when emission intensity is measured in quantity, firms appear
to improve environmental performance when they export more. While these correlations
support the model predictions, our ability to infer causality from the OLS estimates are
confounded by the fact that exporting is an endogenous decision that could correlate with
many other unobserved factors that also determine emission intensity. To establish the causal
connection between exporting and emission intensity, in this section we compute product-
code-specific instruments for exporting from aggregate trade statistics. We then merge to
Prowess and report evidence in support of the identification assumption.

Exogenous Variation in Exports

The primary endogeneity concern with (1.21) is that time-varying omitted variables could
impact both the emission intensity of production and the export decision of the firm (see
above). A secondary concern stems from observations with zero export value. Since export
volumes cannot be negative, the distribution is censored on the left. This generates selection
bias if unobservable determinants of export participation correlate with export volume. With
exogenous determinants of exporting, and information on the export decision, we can correct
for selection using a two-step Heckman procedure, in which export participation in a given
year is first predicted via probit estimation on the exogenous regressors, and then the inverse
mills ratio is included in the export volume regression. This procedure, while common in the
trade literature (Harrigan, Ma, and Shlychkov, 2011), obviously requires data on the export
decisions of firms.

To generate exogenous determinants of exporting, we follow recent papers that exploit
fluctuations in import demand of foreign trading partners to predict firm-level exports. Hum-
mels et al. (2014); Bernard, Moxnes, and Ulltveit-Moe (2014) show that import demand of
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foreign trading partners from third-party exporters correlates with firm-level exports in the
country of study. That is, as foreign trading partners increase imports from third-party coun-
tries, they tend also to increase imports from firms in the studied country. Changes in import
demand can be attributed to sector specific income shocks, which are likely exogenous to
time-varying unobservable determinants of firm-level productivity in foreign countries. Thus,
foreign import demand from countries other than India provide an exogenous source of ex-
port variation for Indian firms, with which we can identify the causal impact on emission
intensity. The strategy is to compute product-code-specific import demand shocks in desti-
nations served by India (from countries other than India) and then aggregate shocks across
the different destinations. This procedure delivers product-code-specific demand shocks that
can be matched to firm-level export volumes in Prowess.

Formally, we define total import demand for a destination d in product j in time t as
Ddjt =

∑
o∈∆o

Dodjt, where Dodjt is the import value from origin o to import destination d
in product j and year t, and ∆o is the set of all origin countries that export to d in year t
other than India. Aggregating across destinations, we compute:

D̃jt =
∑
d∈∆d

xdj0Ddjt, (1.22)

where export shares xdj0 ≡ Xdj0∑
d∈∆d

Xdj0
with Xdj0 representing Indian exports in product j

to destination d in base year t = 0, and ∆d is the set of destinations importing j from
India in year t = 0. We use base-year shares to weight the demand shocks because current-
year export shares may respond to time-varying omitted variables like cost shocks, while
base-year shares likely do not.10 The weighted-average demand shocks D̃jt represent time-
varying idiosyncratic shocks to demand for exports for Indian firms producing in the different
industries j. We also separate demand shocks for low-income (LI) and high-income (HI)
countries to separately estimate impacts depending on destination environmental regulation
(with income proxying for regulation):

D̃HI
jt =

∑
d∈∆d

xdj0Ddjt1 [d ∈ {HI}] (1.23)

D̃LI
jt =

∑
d∈∆d

xdj0Ddjt1 [d ∈ {LI}] (1.24)

where destinations d belong to either the “high income” set or the “low income” set, which
are both held constant over time.

To compute the demand shocks, we use the CEPII BACI dataset of bilateral national
trade flows. The data is reported at the six-digit harmonized system (HS6) level for the years

1995-2011 for 240 countries.11 For each of the 5,108 HS6 codes, in each year, we compute D̃jt,

10The shares xdj0 may still be endogenous to firm unobservables. For example, Melitz (2003) predicts that
only the most efficient firms can serve distant and more competitive markets; but to the extent that these
differences are time-invariant, they are captured by product or firm-level fixed effects in the regressions.

11Years 1995-1997 are classified according to the 1992 revision, while 1998-2011 are classi-
fied according to 1996 revision. We utilize the UN mapping to convert between the two.
http://unstats.un.org/unsd/trade/conversions/HS%20Correlation%20and%20Conversion%20tables.htm
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Table 1.6: Descriptive Statistics of Weighted Average Demand Shocks

Billions USD N # Countries

Mean St. Dev Min Max
(1) (2) (3) (4) (5) (6)

Total Demand (D̃jt) 0.057 0.416 0 41.32 86,836 222

High Income Demand (D̃HI
jt ) 0.053 0.402 0 41.32 86,836 47

Low Income Demand (D̃LI
jt ) 0.004 0.043 0 6.94 86,836 175

Notes: Statistics derived from CEPII BACI dataset. Total demand (D̃jt) indicates weighted average
demand of India’s trading partners in a given HS6-year, where weights correspond to 1995 India export
shares. “High Income Demand” and “Low Income Demand” assign positive weights only to those des-
tinations in the designated income group, as defined by the world bank categories. All three measures
cover 5,108 HS6 categories over the years 1995-2011.

D̃HI
jt , and D̃LI

jt taking 1995 as the base year (t = 0). I.e., in each year, we aggregate income
shocks over destinations using 1995 Indian export shares as weights. Income groups conform
to the World Bank Development Indicator categories. The list of high-income destinations
are reported in Table A.2.12

Table 1.6 reports descriptive statistics for D̃jt, D̃
HI
jt , and D̃LI

jt based on imports of 222
countries. We identify 47 countries as HI, and the remaining 175 as LI. Average world
demand across the 5,108 HS6 codes and 17 years equals 0.057 Billion USD, with almost all
coming from high-income imports (column 1). Table 1.7 investigates variation in demand

shocks across HS6 codes. For each measure of demand (D̃jt, D̃
HI
jt , and D̃LI

jt ), we compute
within each HS6 the high-low spread and total growth over the period, and the year-on-year
percentage growth. High-low spreads are computed as the difference between the highest
value and the lowest value over the period, normalized by the mean value over the period.
Total growth is the percentage change between 2011 and 1995. We report mean and standard
deviations (below in parenthesis) by quartile and overall. The overall average growth in total
weighted average demand is 1.97, or nearly triple. Variation within the HS6 is even higher
if we look at the normalized high-low spread. Comparing the minimum to the maximum,
the difference is more than 4x. There is also substantial variation in these growth rates
across HS6 categories. In terms of total growth, the bottom quartile (lowest values) shrank
on average by 63%. By contrast, the top quartile grew 675%. There is also substantial
variation in year-to-year growth. Demand can fall by nearly 50% (bottom quartile average)
or more than triple (top quartile average) in a year. These patterns are qualitatively the
same when we break out demand by destination income. All together, the statistics in
Table 1.6 and 1.7 indicate significant variation in growth across HS6 categories, which will
differentially impact Indian firms operating in different product-codes and aid in identifying
the causal impact of exporting.

12The World Bank defines a set of OECD and non-OECD countries as “high income.” For our measure
of HI, we take the union of the two sets. All other countries are classified as LI.
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Table 1.7: Variation in Demand Shocks

Quartile

IV III II I All

Total Demand (D̃jt)

High-Low Spread 0.92 1.60 2.56 7.34 3.11
(0.24) (0.20) (0.42) (3.97) (3.22)

Total Growth -0.63 0.30 1.44 6.75 1.97
(0.26) (0.28) (0.40) (12.56) (6.91)

Year-over-Year Growth -0.46 -0.04 0.13 2.19 0.46
(0.27) (0.05) (0.05) (5.51) (2.94)

Total Demand High Income (D̃HI
jt )

High-Low Spread 0.89 1.54 2.42 6.64 2.88
(0.22) (0.19) (0.38) (3.72) (2.92)

Total Growth -0.58 0.35 1.47 7.63 2.23
(0.27) (0.27) (0.39) (25.39) (13.10)

Year-over-Year Growth -0.42 -0.03 0.12 1.45 0.28
(0.26) (0.05) (0.05) (3.09) (1.71)

Total Demand Low Income (D̃LI
jt )

High-Low Spread 1.49 2.42 3.78 9.57 4.32
(0.35) (0.26) (0.62) (3.94) (3.73)

Total Growth -0.62 0.64 2.43 15.76 4.55
(0.30) (0.40) (0.69) (27.87) (7.57)

Year-over-Year Growth -0.57 -0.06 0.22 5.32 1.24
(0.25) (0.08) (0.09) (14.07) (7.47)

Notes: This table describes the variation within and across HS6 categories in weighted average
total world demand, high-income demand, and low-income demand. Each cell reports the
mean for the quartile or the overall mean with standard deviations listed below. “High-Low
Spread” is the difference between the highest and lowest value within HS6 over the period,
normalized by the mean value over the period. “Total Growth” is the growth rate between
2011 and 1995 within the HS6. “Year-over-year Growth” is the percentage change from one
year to the next within the HS6. The top and bottom 1% of year-over-year growth rates are
excluded.
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Mapping to Prowess

Finally, having computed product-specific trade shocks, we merge the aggregate statistics
to Prowess to test for firm-level impacts. Merging trade data to Prowess is problematic
because CMIE classifies products according to its own 16-digit codes, which do not map
directly to any other classification system at a disaggregated level. Previous researchers
map from HS trade data to 4-digit National Indian Classification (NIC) through the Debroy
and Santhanam (1993) mapping, and then to the 16-digit Prowess ID codes via a NIC
mapping supplied by CMIE (e.g., De Loecker et al. 2012; Goldberg et al. 2010; Chakraborty
2012). This strategy does not fit our purpose because the 4-digit NIC codes are fairly coarse,
and thus obscure much of the variation at the HS6 level in demand shocks.13 To exploit the
detailed variation in the Prowess data, we generate our own mapping that connects the
Prowess ID code directly to HS trade classifications. This mapping allows for a tighter
link between (HS) product-specific shocks and production activity in Prowess firms. As
more researchers are increasingly interested in analyzing the Prowess data, our mapping
represents another contribution of the paper. The details can be found in Appendix A.2.

Testing the Parallel Trends Assumption

The identification strategy is to compare the trend in emission intensity for firms that operate
in product-codes that see large demand changes compared to firms that do not. If the firms
follow common trends before the trade shocks, and if HS6-specific demand shocks abroad
are uncorrelated with unobservable determinants of firm-level emission intensity in Prowess,
then demand shocks identify the causal impact of exporting on emission intensity. While
the latter condition is in principle untestable, the former can be evaluated by regressing
prior trends in emission intensity on future demand shocks, if pre-period data is observed.
Since the production data spans the years 1990-2011, and the trade data starts in 1995, we
can test for correlations between emission intensity over the period 1990-1995 and future
trade shocks without compromising statistical power in the IV estimation. The strategy is
similar to the one proposed by Topalova and Khandelwal (2011) in which the authors test
for correlation between changes in tariffs and industry characteristics.

In particular, we regress the percentage change in emission intensity in firm-products in
the product-specific dataset on the percentage change in demand shocks D̃pt, where D̃pt is

the import shock faced by Prowess product-category p, after passing the HS6 shocks D̃jt

through the mapping. We thus estimate

∆t,rYip = α0 + α1∆s,tD̃p + εip (1.25)

where ∆t,rYip is the percentage change from year r < 1995 to year t = 1995 in firm-product

emission intensity, α0 a constant, and ∆s,tD̃p is the percentage change in the trade shock
in product p between year t = 1995 and future year s > 1995. We compute ∆t,rYip at
different intervals depending on whether we observe the firm-product in the base year r or
not. Results are reported in Table 1.8.

13Additionally, the Debroy and Santhanam (1993) mapping relates much older revisions of the NIC and
the HS, and thus must be passed through several other mappings (between newer and older revisions of the
HS) to generate usable translations.
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Table 1.8: Testing the Parallel Trends Assumption

∆ Shock 95-96 ∆ Shock 96-97

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
∆ E/Q 90-95 0.04 -0.13∗

(0.03) (0.07)
∆ E/Q 91-95 0.04 -0.17

(0.03) (0.10)
∆ E/Q 92-95 0.03 -0.06

(0.03) (0.09)
∆ E/Q 93-95 0.03 -0.03

(0.02) (0.08)
∆ E/Q 94-95 0.04 0.02

(0.04) (0.11)
Num of Obs 625 870 1111 1483 1838 615 855 1094 1465 1821
R squared 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Notes: This table tests for differential trends in emission intensity in the years prior to 1995 for firm-
products in product-codes that see larger foreign demand shocks after 1995. Dependent variable is listed
in the left-most column, with the independent variable reported above the column numbers. Each cell
reports the point estimate α1 from regressing the percentage change in emission intensity between the
years specified in the left-most column on the year-over-year percentage demand shock reported above.

The percentage change in weighted average demand shocks between years 1995 and 1996,
D̃j,1996−D̃j,1995

D̃j,1995

and 1996 and 1997,
D̃j,1997−D̃j,1996

D̃j,1996
, respectively. Emission intensities are specified in quantity of output at

teh firm-product level, based on the product-specific dataset. Top and bottom 1% of emission intensity
values have been dropped. All regressions include industry fixed effects. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

In columns 1-5, the independent variable is the year-over-year percentage change in for-
eign demand between 1995 and 1996, ∆1996,1995D̃p. Each row reports the regression coefficient
α1 from estimating (1.25) taking ∆1995,rYip as the dependent variable for different values of
r. For all the firm-products that we observe in both 1990 and 1995, we compute ∆1995,1990Yip
and report α1 in the top row. For all the firm-products that we observe in both 1991 and
1995, we compute ∆1995,1991Yip and report α1 in the second row, and so on. In all columns

1-5, we find that the correlation between future shocks ∆1996,1995D̃p and pre-1995 trends are

not statistically significant. In columns 6-10, we repeat the exercise taking ∆1997,1996D̃p as
the future shocks. Again, the correlations are not statistically significant. We take these
regressions as confirming evidence that the parallel trends assumption holds.

1.5 Results

In this section, we analyze the relationship between emission intensity, firm exports, and ex-
ogenous foreign demand shocks. When comparing emission intensity in quantity to emission
intensity in value, we use the firm-level dataset, while we use the product-specific dataset to
estimate technological impacts directly. Using the two datasets in tandem, we can separate
the different component channels of equation (1.1).
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Firm-level Evidence

We begin with an analysis of the firm-level dataset. In the previous section, we computed
foreign demand shocks at the HS6 product level and mapped to Prowess codes via the
concordance described in Appendix A.2. Following a standard approach from the literature
(e.g., De Loecker (2011); De Loecker et al. (2012); Bernard, Redding, and Schott (2011)),
we then compute firm-level demand shocks by averaging over the shocks experienced by
different products within the firm, D̃it =

∑
p∈∆i

sp0D̃pt; where sp0 corresponds to the share
of firm i’s total value in product p in base year t = 0 – the first year that the firm appears in
the dataset – ∆i is the set of goods produced by firm i. As in the aggregate exports, while
year-to-year changes in spt may be endogenous to demand shocks D̃pt, base year shares likely
are not.

With foreign demand shocks computed at the firm-level, we estimate the first-stage im-
pact on firm-level exports:

Log Xit = αi + αt + β3Log D̃it + γ3Wit + εit (1.26)

where Xit is export value of firm i in year t and Wit is a vector of controls including firm-
specific energy prices. Since exports are censored at zero, we also include the inverse mills
ratio in Wit, which is recovered from probit estimation of export participation in a given
year.

How should we expect D̃it to impact Xit? Recall that an increase in foreign income
could have two effects. On one hand, the foreign market consumes more of all varieties,
including those from India, which pushes Log Xit up. On the other hand, increased foreign
demand drives up competition, which hurts less-productive suppliers, and could push Log Xit

down. The coefficient β3 captures the average net effect. Using the universe of Danish and
Norwegian exporters respectively, Hummels et al. (2014) and Bernard, Moxnes, and Ulltveit-
Moe (2014) both estimate a positive elasticity with respect to foreign demand shocks, which
suggests that the direct effect dominates. Since Prowess is a sample of large firms, for which
we expect the direct effect to dominate (prediction 1), we also expect β3 > 0.

Next, we estimate the causal impact of exporting on emission intensity

Log Yit = αi + αt + β4L̂og Xit + γ4Wit + εit (1.27)

where Yit is either emission intensity in value or in quantity, and L̂og Xit are instrumented
exports from the first-stage, and Wit is as above. Having purged Xit of the influence of

unobservable co-determinants of export and production efficiency in (1.26), L̂og Xit repre-
sents the exogenous portion of Xit resulting from foreign demand shocks and can be taken
as orthogonal to the error term εit. Thus, β4 can be recovered via OLS. When Yit is emis-
sion intensity in value Ei/Vi, β4 includes price effects, product-mix effects, and technological
effects. When Yit is emission intensity in quantity Ei/Qi, β4 includes just product-mix ef-
fects and technology. If prices respond to foreign demand shocks, we would expect the two
estimates to differ. In particular, if the export price is higher than the domestic prices, we
would expect β4 to be more negative when emission intensity is measured in values.

Finally, we also break out foreign demand shocks by destination market income:

Log Xit = αi + αt + β5Log D̃HI
it + β6Log D̃LI

it + γ5Wit + εit (1.28)
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The point of breaking out demand shocks by destination is to see how price and product-mix
effects vary with the income of the importing market. The model predicts that the export
price is higher for high-regulation destinations (see prediction 4). Since high regulation
countries also have higher income (Copeland and Taylor, 2003), we take income as a proxy
for environmental regulation. The price effect should be comparatively stronger and more
negative for high income countries. We can test for this asymmetry across destination
markets by estimating separate coefficients.

Results are reported in Table 1.9. Columns 1-3 report impacts on Ei/Vi while columns
4-6 report impacts on Ei/Qi. We restrict the sample to firms with constant unit reporting
throughout the period so that emission intensities in quantity are comparable over time.
Units need not be constant across firms, because as long as units do not vary over time or
across products within the firm, the influence of differential unit reporting will be captured
by the firm fixed-effect αi. We also exclude the top and bottom 1% of emission intensities
in value and quantity. With these restrictions, we have 1587 firms and 9008 firm-year
observations.

Panel B reports the first stage (equation 1.26). In column 1, we find that a 1% increase
in foreign demand shocks increases export value at the firm-level by 0.17%. The point
estimate is statistically significant at the 1% level, and the F-stat for joint significance of all
independent regressors is 8.70. Standard errors here, and throughout, are clustered at the
HS6 level to allow for arbitrary correlation in the error term within product-code (potentially
across firms). To interpret the magnitude of this point estimate, we multiply by the median
year-over-year percentage growth of an HS6 product code (3.4%), and find for the median
product code, demand shocks are responsible for 3.4 ∗ 0.17 = 0.6% export growth year-to-
year. For comparison, median year-over-year export value growth over the period was 4.2%,
so foreign demand shocks explain about 14% of the median growth rate. Column 2 breaks
out demand shock impacts by market income (as a proxy for environmental regulation). In
Panel B, we find that most of the impact on exporting is channeled through high-income
demand shocks. The point estimate on D̃HI

it is estimated to be 0.17, statistically significant

at the 1% level, while the coefficient on D̃LI
it is only 0.03, and statistically insignificant.

Panel A reports the second-stage impact of exporting on emission intensity. Columns 1
and 2 instrument the export decision with either D̃it (column 1) or the disaggregated shocks

D̃HI
it and D̃LI

it (column 2). Column 3 reports the endogenous (uninstrumented) correlation
for the same set of firm-years. In column 1, we find that a 1% increase in exporting lowers
Ei/Vi by 0.57%. Compared to column 3, the IV impact is significantly larger in magnitude
than the OLS estimate. If reverse causality or omitted variables biased the OLS estimates,
we would expect that the absolute value of the point estimate in column 3 would be larger
than in column 1. The fact that it is not suggests that measurement error is a bigger problem
for the OLS than endogeneity. To interpret the magnitude of the IV estimate, consider that
the average exporter in the sample earns 9.7% of its revenue from exporting. If exports
double, with no change in its domestic revenues, the export share would increase from 9.7%
to 17.7%. Applying the point estimate from column 1, this increase in exports generates
a 57% decline in emission intensity in revenue. A similar reduction in emission intensity
applied to the median firm-year observation would relocate the firm to the first quartile
(lowest values) of Ei/Vi.
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Table 1.9: IV Estimates of Exporting Impacts on Emission Intensity at the Firm Level

Dependent Variable: Log (E/V) Log (E/Q)

(1) (2) (3) (4) (5) (6)
Panel A: Second Stage
Log Export Value -0.57∗∗∗ -0.47∗∗∗ -0.09∗∗∗ -0.38∗∗∗ -0.33∗∗∗ -0.05∗∗∗

(0.10) (0.07) (0.01) (0.09) (0.07) (0.01)
Panel B: First Stage

Log D̃it 0.17∗∗∗ 0.17∗∗∗

(0.04) (0.04)

Log D̃HI
it 0.17∗∗∗ 0.17∗∗∗

(0.03) (0.03)

Log D̃LI
it 0.03 0.03

(0.03) (0.03)
R2 0.086 0.089 0.086 0.089
F-stat 8.70 9.96 8.70 9.96
Panel C: Reduced Form

Log D̃it -0.10∗∗∗ -0.06∗∗∗

(0.02) (0.02)

Log D̃HI
it -0.08∗∗∗ -0.07∗∗∗

(0.02) (0.02)

Log D̃LI
it 0.03 0.00

(0.03) (0.01)
R2 0.057 0.057 0.035 0.035

Selection Correction Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y
Num of Obs 9008 9008 9008 9008 9008 9008
Num of Firms 1587 1587 1587 1587 1587 1587

Notes: Panel A reports the second stage impact of exporting on emission intensity, Panel B reports
the corresponding first-stage impacts of demand shocks on log export value, and Panel C reports
the reduced form. Columns 1-2, 4-5 report instrumental variable estimates, while columns 3 and
6 report the OLS. All regressions control for the inverse mills ratio of exporting in a given year.
All data aggregated to the firm-year level. Demand shocks are averaged over products produced
within the firm using base year product sales shares (first year the firm appears in the dataset).
Emissions values computed from firm-level energy reports. Sample includes only firms that export
some positive value over the period and firms that report outputs in consistent units across products
and over time. Columns 1-3 report estimates for emission intensity in value (Ei/Vi), while columns
4-6 report estimates for emission intensity in quantity (Ei/Qi). All regressions include years 1995-
2011. The same restriction on outliers as throughout applies. Standard errors are clustered on
the HS6 category of the core product in the base year (first year the firm appears in the dataset).
Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Next, in columns 4 and 6, we estimate the IV and the OLS impacts on Ei/Qi. While
price effects could mechanically influence estimates in columns 1-3, columns 4-6 net prices
out. In column 4, we find that a 1% increase in export value from exogenous foreign demand
shocks lowers emission intensity in quantity 0.38%. Compared to the OLS estimate on the
same sample (column 6), the magnitude of the IV is again larger, which again implies that
endogeneity bias is not a major concern. The same counterfactual as above (increasing export
share from 9.7% to 17.7%) would generate a 38% fall in emission intensity in quantity. While
this is a large reduction in emission intensity, it is 50% smaller in magnitude than the estimate
for Ei/Vi. Controlling for output price makes a large difference. We can reject equality of
the coefficients with a p-value under 1%. This result is consistent with the hypothesis that
export prices are higher on average than domestic prices, so that when Indian firms export
more, average price increases and Ei/Vi fall mechanically.

Panel C estimates the reduced-form, i.e. the direct impact of the foreign demand shocks
on emission intensity. In column 1, we find that a 1% increase in foreign demand lowers
emission intensity in value 0.1%, statistically significant at the 1% level. In column 2, we
confirm that the impact is channeled exclusively through the high-income country shocks:
a 1% increase in import demand from a high-income country lowers Ei/Vi 0.08%, while the
same demand shock from a low-income country increases Ei/Vi 0.03%, and only the former
is statistically significant at conventional levels.

While we find in columns 4-6 of Table 1.9 that exporting causes firms to lower emission
intensity in quantity, we cannot tell from these estimates if the channel is product-mix or
technological upgrading (or some mixture of the two). The estimates in Table 1.9 are based
on firm-level averages for a sample that includes multi-product firms, so both channels could
play a role. As before, we isolate technology from product-mix by restricting the sample
to single-product firms and re-estimate equations (1.26)-(1.28). With this restriction, the
sample size drops to 716 firms and 3751 firm-year observations. Results are reported in Table
1.10. Here, while we find negative impacts in the OLS on both Ei/Vi (column 3) and Ei/Qi

(column 6), we cannot reject the null of no impact in the IV in either measure (columns 1
and 4, respectively). It appears that the negative emission intensity in quantity effects at the
firm-level (Table 1.9, column 4) do not survive disaggregation to the firm-product level. This
suggests that all of firm-level effect can be attributed to product-mix. We will investigate
further with the product-specific dataset to establish the null results more firmly.

Next, we explore the price and product-mix channels directly in Table 1.11. Columns
1-3 report impacts on the firm average log unit value while columns 4-6 report impacts on
the core share of sales. In Panel A, we find in column 1 that the a 1% increase in exporting
induced by foreign demand shocks translates into 0.19% higher unit values, statistically
significant at the 1% level. Again, the impact is stronger than the OLS impact (column 3).

For the product-mix channel, we find in column 4 that an increase in exports leads to a
higher sales share for the core product, statistically significant at the 1% level. To interpret
the point estimate, note that the average sales share for the core product is 85%. If exports
increase 10%, the point estimate in column 4 implies that the core share increases 0.26 * Log
1.1 * 100 = 2.5 percentage points, or from 85% to 87.5%. That is, a 10% increase in exports
increases core share by 3%, for an elasticity of 0.3. Since emission intensity in quantity falls
at the firm level with no corresponding fall in Eij/Qij (Table 1.10, column 4), we can infer
that the increase in core share generates the reductions in Ei/Qi. This result is consistent



CHAPTER 1. DOES TRADE MAKE FIRMS CLEANER? THEORY AND EVIDENCE
FROM INDIAN MANUFACTURING 32

Table 1.10: IV Estimates of Exporting Impacts on Emission Intensity for Mono-product
Firm

Dependent Variable: Log (E/V) Log (E/Q)

(1) (2) (3) (4) (5) (6)
Panel A: Second Stage
Log Export Value -0.16 -0.08 -0.11∗∗∗ 0.01 0.09 -0.05∗∗

(0.11) (0.11) (0.02) (0.11) (0.12) (0.02)
Panel B: First Stage

Log D̃it 0.28∗∗ 0.28∗∗

(0.11) (0.11)

Log D̃HI
it 0.20∗∗ 0.20∗∗

(0.09) (0.09)

Log D̃LI
it 0.05 0.05

( 0.05 ) ( 0.05 )
R2 0.068 0.068 0.068 0.068
F-stat 6.05 5.58 6.05 5.58
Panel C: Reduced Form

Log D̃it -0.04 0.00
(0.04) (0.04)

Log D̃HI
it -0.02 0.00

(0.04) (0.03)

Log D̃LI
it 0.00 0.02

(0.02) (0.02)
R2 0.051 0.050 0.027 0.027

Selection Correction Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y
Num of Obs 3751 3751 3751 3751 3751 3751
Num of Firms 716 716 716 716 716 716

Notes: Panel A reports the second stage impact of exporting on emission intensity, Panel B
reports the corresponding first-stage impacts of demand shocks on log export value, and Panel
C reports the reduced form. Columns 1-2, 4-5 report instrumental variable estimates, while
columns 3 and 6 report the OLS. All regressions control for the inverse mills ratio of exporting
in a given year. Emissions values computed from firm-level energy reports. Sample includes
only firms that export some positive value over the period and firms that report outputs in
consistent units across products and over time, and only single-product firms. Columns 1-3
report estimates for emission intensity in value (Ei/Vi), while columns 4-6 report estimates
for emission intensity in quantity (Ei/Qi). All regressions include years 1995-2011. The same
restriction on outliers as throughout applies. Standard errors are clustered on the HS6 category
of the core product in the base year (first year the firm appears in the dataset). Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 1.11: IV Estimates of Exporting Impacts on Prices and Core Share at the Firm Level

Dependent Variable: Log Unit Value Core Share

(1) (2) (3) (4) (5) (6)
Panel A: Second Stage
Log Export Value 0.19∗∗∗ 0.14∗∗∗ 0.05∗∗∗ 0.26∗∗∗ 0.20∗∗∗ -0.00

(0.05) (0.04) (0.01) (0.05) (0.03) (0.00)
Panel B: First Stage

Log D̃it 0.17∗∗∗ 0.16∗∗∗

(0.04) (0.04)

Log D̃HI
it 0.17∗∗∗ 0.17∗∗∗

(0.03) (0.04)

Log D̃LI
it 0.03 0.03

(0.03) (0.03)
R2 0.086 0.089 0.116 0.102
F-stat 8.70 9.96 8.29 8.60
Panel C: Reduced Form

Log D̃it 0.03∗ 0.04∗∗∗

(0.02) (0.01)

Log D̃HI
it 0.01 0.03∗∗∗

(0.02) (0.01)

Log D̃LI
it 0.02∗∗ 0.01∗∗∗

(0.01) (0.00)
R2 0.072 0.073 0.074 0.076

Selection Correction Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y
Num of Obs 9008 9008 9008 5257 5257 5257
Num of Firms 1587 1587 1587 871 871 871

Notes: Panel A reports the second stage impact of exporting on emission intensity, Panel B
reports the corresponding first-stage impacts of demand shocks on log export value, and Panel
C reports the reduced form. Columns 1-2, 4-5 report instrumental variable estimates, while
columns 3 and 6 report the OLS. All regressions control for the inverse mills ratio of exporting
in a given year. All data aggregated to the firm-year level. Demand shocks are averaged
over products produced within the firm using base year product sales shares (first year the
firm appears in the dataset). Sample includes only firms that export some positive value over
the period and firms that report outputs in consistent units across products and over time.
Columns 1-3 report estimates for average unit value (total sales over total production), while
columns 4-6 report estimates for core share of production. All regressions include years 1995-
2011. The same restriction on outliers as throughout applies. Standard errors are clustered
on the HS6 category of the core product in the base year (first year the firm appears in the
dataset). Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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with the case in which core products require lower emission intensity to produce.
In summary, evidence based on the firm-level energy reports confirm the preliminary

results from section 3, but are robust to endogeneity in the export choice. Exporting lowers
both emission intensity in value and emission intensity in quantity at the firm-level, but not
at the firm-product level. Price effects explain about 1/3rd of the reduction in the emission
intensity in value, with the rest coming from product-mix. The results imply that export
market access induces firms to increase average price and substitute towards producing
cleaner goods. The null result on firm-product emission intensity is based on a restricted set
of single-product firms. It remains to be seen whether firm-product emission intensity adjusts
to foreign demand shocks in the larger product-specific dataset, which includes firm-product
observations of multi-product firms.

Product-Level Evidence

Finally, we estimate the impact of foreign trade shocks on emission intensity in quantity
of individual firm-products from the product-specific dataset. This dataset includes firm-
product observations from both single-product firms and multi-product firms, in contrast
to the results in Table 1.10. Additionally, we no longer must restrict the sample to firms
with constant units reported across products within the firm. As long as units are reported
consistently within the firm-product over time, any remaining influence of differential unit
reporting will be captured by the firm-product fixed effect. Lastly, with the product-specific
dataset, we no longer have to average product-code demand shocks across products within
the firm. Since estimation is at the firm-product level, we can use the product-code shocks
D̃pt directly.

We estimate
Log EQipt = αip + αt + β7Log D̃pt + γ7Wit + εipt (1.29)

where EQipt is the emission intensity in quantity of firm-product ip in year t. β7 captures
the technological impact of foreign demand shocks. The dependent variable is denominated
in quantity, so prices effects are excluded. Also, by taking the firm-product as the unit
of observation, we have ruled out the product-mix channel. If firms in fact adopt cleaner
technology when foreign demand increases, we should have β7 < 0.

Results are reported in Table 1.12. In column 1, we find that a 1% increase in foreign
demand translates into 0.028% higher emission intensity at the firm-product level. The point
estimate is statistically significant at the 10% level (p-value = .091). Standard errors have
been clustered on the HS6 code as before. The estimate is based on a sample of 2,773 firms
and 4,249 firm-products, which is a substantial increase in size over the single-product firm
estimates in Table 1.10, thus, statistical power should be much less of an issue. With a
p-value of 0.091, we can reject null that β7 < 0 with a p-value of 0.091/2 = 0.045. Thus,
at the 5% level, we can reject that foreign demand shocks lowers emission intensity at the
firm-product level. In column 4, we break out demand shocks by destination income, and
again find that, if anything, foreign demand shocks increase emission intensity. The point
estimate on high-income countries is 0.018, statistically significant at the 10% level. The
p-value for the one-tailed test is 0.0365.
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Table 1.12: Product Specific Data

Dep Var: Log (E/Q)

(1) (2) (3) (4) (5) (6)

Log D̃pt 0.028∗ 0.023∗ 0.022
(0.016) (0.014) (0.014)

Log D̃p,t−1 0.013 0.011
(0.011) (0.010)

Log D̃p,t−2 0.012
(0.008)

Log D̃HI
pt 0.018∗ 0.014 0.014

(0.010) (0.008) (0.008)

Log D̃HI
p,t−1 0.013 0.008

(0.008) (0.008)

Log D̃HI
p,t−2 0.017∗∗

(0.007)

Log D̃LI
pt 0.006 0.005 0.003

(0.007) (0.006) (0.006)

Log D̃LI
p,t−1 0.008 0.006

(0.005) (0.005)

Log D̃LI
p,t−2 0.009

(0.008)

Selection Correction Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Firm-Product FE Y Y Y Y Y Y
Num of Obs 27954 27954 27954 27954 27954 27954
Num of Firms 2773 2773 2773 2773 2773 2773
Num of Firm-Products 4239 4239 4239 4239 4239 4239
Mean Dep. Var 6.09 6.09 6.09 6.09 6.09 6.09
R squared 0.01 0.01 0.01 0.01 0.01 0.01

Notes: Emission intensity in quantity computed at firm-product level from product-specific
reports. Sample includes only firms that export some positive value over the period. All regres-
sions control for the inverse mills ratio of exporting in a given year. All regressions include years
1997-2011. Years 1995 and 1996 are excluded so that all observations have two years of lagged
data. The same restriction on outliers as throughout applies. Standard errors are clustered on
the HS6 category corresponding to Prowess product p. Asterisks indicate statistical significance
at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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One explanation why do foreign demand shocks fail to translate into cleaner production
techniques (at the firm-product level) in this context could be that year-to-year foreign
demand shocks are not strong enough to induce firms to adjust behavior. Hummels et
al. (2014) finds that year-to-year changes in foreign demand impacts the hiring and wage
offerings of Danish firms, and Bernard, Moxnes, and Ulltveit-Moe (2014) finds that foreign
demand impacts several sales margins of Norwegian firms. Additionally, we find that the
year-to-year shocks impact exports, prices, and product-mix of the firm, so the evidence
suggests year-to-year demand shocks do influence firm behavior. Finally, we note that the
period captures many episodes of sustained demand shifts, such as the Asian financial crises
and the Great Recession in the US and EU; thus, at least some of the variation in our sample
is likely based on persistent shocks.

Still, perhaps technological investment requires longer lead times to adjust. Managers
may need some time to decide to adjust the capital stock. In addition, securing financing
can take time, especially in the developing world where credit markets are often incomplete.
To capture this time dimension, we estimate the impact of one and two-year lagged shocks in
columns 2-3 and 5-6, in addition to contemporaneous shocks. We find that point estimates
on lagged shocks are also positive, though usually not statistically significant. These results
confirm the initial findings from Table 1.10: in both sets of evidence it does not appear that
emission intensity in quantity at the firm-product level declines with foreign demand shocks.
This result support the theory that firms adjust emission intensity through product-mix.

Alternative Channel: Quality Upgrading

An alternative explanation of the evidence in Tables 1.9 and 1.10 is that the export market
demands higher quality goods, which in turn commands higher prices (Harrigan, Ma, and
Shlychkov, 2011; Manova and Zhang, 2012). If higher quality products require higher energy
intensities, then the quality channel would push up emission intensity at the firm-product
level, despite any technological upgrading. This could explain why the negative impact on
Ei/Qi does not survive to the firm-product level: quality upgrading works against technolog-
ical upgrading, so even if firms invest in cleaner technology, the increase in energy intensity
due to increases in quality makes the impacts difficult to see.

We investigate this possibility by re-estimating equations (1.27)-(1.28) for industries with
low scope for quality differentiation, thus ruling out the quality channel. Khandelwal (2010)
computes the degree of quality differentiation within an industry by estimating variety-
specific quality scores for different products within an industry and taking the difference
between the minimum and the maximum of these scores within the industry. Khandelwal
(2010) refers to the resulting measures as quality “ladders.” Industries with long quality
ladders are industries for which quality differentiation could play an important role, while
industries with short quality ladders leave less room for this channel to matter. To distin-
guish long-ladder industries from short-ladder industries in our sample, we take the HS6-level
quality ladder estimates from Khandelwal (2010) and pass them through our Prowess-HS6
mapping from Appendix A.2. We then take the average quality ladder across Prowess prod-
ucts at the industry-level. Resulting ladder lengths are reported in Table 1.13. Short-ladder
industries, i.e. industries with comparatively lower scope for quality differentiation, include
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Table 1.13: Quality Ladders by Industry

2-Digit Industry Ladder Size

Mineral Products 1.19
Base Metals 1.36
Wood, Pulp & Paper Products 1.53
Food products, beverages & tobacco 1.66
Agricultural products 1.80
Non metallic mineral products 1.84
Plastics & Rubbers 2.02
Machinery 2.09
Misc. Manufactured Articles 2.18
Chemicals 2.21
Textiles 2.40
Transport equipment 2.66

Notes: These estimates of sector-specific quality ladders are ob-
tained by taking the HS6-level quality ladder estimates from
Khandelwal (2010) and passing them through our Prowess-HS6
mapping, and then by computing the sector average.

“Mineral Products,” “Base Metals,” and “Wood, Pulp, & Paper Products.” Industries with
greater scope for quality differentiation include “Textiles” and “Transportation Equipment.”

Table 1.14 reports the results of re-estimating equations (1.27)-(1.28) for industries with
below-median ladder estimates. The firm count drops to 649 for the pooled sample of
multi-product and single-product firms (columns 1-6) and 307 for just single product-firms
(columns 7-9). We find that restricting to short-ladder industries does not change the qual-
itative results. Ei/Vi still falls dramatically with an exogenous increase in export value
(column 1), while we cannot reject the null hypothesis of no impact on Eij/Qij (column
7). If quality explained the null result in Table 1.10 column 4 then we should not be able
to reproduce the findings in these short-ladder industries. Since the result extends to the
restricted sample, we conclude that quality likely does not explain the null result in Table
1.10.

1.6 Conclusion

Many worry that globalization exacerbates environment-related market failures, yet new
evidence suggests that exporting encourages firms to increase productivity, which may lower
emission intensity of production. This latter possibility is difficult to test empirically because
emission intensity is usually measured in value, not quantity, and usually aggregated across
products within the firm. Previous work indicates that prices and product-mix could also
explain firm-level trade impacts. We model how these alternative channels impact emission
intensity theoretically. Then, using a highly detailed dataset on Indian manufacturing firms
and an instrumental variable strategy to address endogeneity, we separately estimate the
different ways that exporting impacts emission intensity of the firm.

First, we find that prices systematically bias estimates when emission intensity is mea-
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Table 1.14: IV Estimates of Exporting Impacts on Emission Intensity in Homogeneous In-
dustries

Dependent Variable: Log (E/V) Log (E/Q) Log (E/Q)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Second Stage
Log Export Value -0.55∗∗∗ -0.37∗∗∗ -0.08∗∗∗ -0.24 -0.30∗∗∗ -0.05∗∗ 0.05 0.11 -0.06

(0.18) (0.10) (0.02) (0.15) (0.11) (0.02) (0.18) (0.19) (0.04)
Panel B: First Stage

Log D̃it 0.14∗∗∗ 0.14∗∗∗ 0.26
(0.05) (0.05) (0.17)

Log D̃HI
it 0.18∗∗∗ 0.18∗∗∗ 0.19∗

(0.04) (0.04) (0.11)

Log D̃LI
it -0.02 - 0.02 -0.03

(0.04) (0.04) (0.12)
R2 0.090 0.095 0.090 0.095 0.050 0.050
F-stat 9.85 11.33 9.85 11.33 4.43 3.95
Panel C: Reduced Form

Log D̃it -0.08∗∗∗ -0.03 0.01
(0.02) (0.03) (0.06)

Log D̃HI
it -0.06∗∗ -0.06∗∗ 0.02

(0.02) (0.02) (0.04)

Log D̃LI
it -0.01 0.02 0.02

(0.02) (0.02) (0.03)
R2 0.057 0.057 0.035 0.035 0.04 0.04

Selection Correction Y Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y
Energy Prices Y Y Y Y Y Y Y Y Y
Includes MP Firms Y Y Y Y Y Y N N N
Num of Obs 3355 3355 3355 3355 3355 3355 1495 1495 1495
Num of Firms 649 649 649 649 649 649 307 307 307

Notes: Panel A reports the second stage impact of exporting on emission intensity, Panel B reports the correspond-
ing first-stage impacts of demand shocks on log export value, and Panel C reports the reduced form. Columns 1-2,
4-5, 7-8 report instrumental variable estimates, while columns 3, 6 and 9 report the OLS. All data are aggregated
to the firm-year level. Columns 1-6 Include multi-product and single-product firms, while columns 7-9 include
just single-product firms. Emissions values computed from firm-level energy reports. Sample includes only firms
that export some positive value over the period and firms that report outputs in consistent units across products
and over time. Columns 1-3 report estimates for emission intensity in value (Ei/Vi), while columns 4-6 report
estimates for emission intensity in quantity (Ei/Qi). All regressions control for the inverse mills ratio of exporting
in a given year. Demand shocks are averaged over products produced within the firm using base year product sales
shares (first year the firm appears in the dataset). All regressions include years 1995-2011. The same restriction
on outliers as throughout applies. Standard errors are clustered on the HS6 category of the core product in the
base year (first year the firm appears in the dataset). Asterisks indicate statistical significance at the 1% ∗∗∗, 5%
∗∗, and 10% ∗ levels.
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sured in value. This is because firms charge higher prices in the export market, especially
when exporting to high-income countries (which proxy for high-regulation countries). Emis-
sion intensity in value at the firm level falls 0.57% with an (instrumented) 1% increase in
export value, but approximately 1/3rd of the effect is purely from higher prices, confirming
the OLS results in section 3. The results caution against interpreting productivity impacts
when outputs are only denominated in value, like De Loecker (2011) and De Loecker et al.
(2012).

Second, we find that firm-level emission intensity in quantity falls 0.38% with an (instru-
mented) 1% increase in export value. The sign is the same as in the OLS, but the effect is
much stronger. However, disaggregating to the firm-product level, we can reject the tech-
nological channel at the 5% level. Thus, all of the firm-level impact can be attributed to
product-mix. The result implies that firms do respond to changes in foreign market condi-
tions, but not through the technological upgrading mechanism advanced by the literature.
Researches and policy-makers should take note of the product-mix effect when measuring
the impact of policies on clean technology investments.

A natural question to ask with respect to the results of this paper would be: why did for-
eign demand shocks fail to induce cleaner technology adoption in this case? One explanation
is that technological change is biased against environmental inputs, so firms do adopt more-
efficient technologies, but these technologies are no cleaner than older processes. Addressing
this possibility with the Prowess dataset is difficult because only energy inputs are broken
down by output product. Thus, estimating the correlation between total factor productivity
and emission intensity would require additional structure. We leave it for future research to
investigate biases either towards or against environmental inputs in technology adoption in
the developing world.

Another possible explanation for the absence of technological upgrading is pre-existing
market failures. Greenstone and Jack (2013) describe how weak environmental regulations
and imperfect capital markets inhibit investments in developing countries. With two pre-
existing market distortions (regulations and capital markets), perhaps the signal from foreign
demand shocks is insufficient on its own to induce clean technology investment. In this case,
the results call for a mixture of trade policy and environmental regulation/credit market
interventions in order to bring firms in the developing world to the technological frontier.
We leave investigation of these market frictions for future research.
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Chapter 2

Clean Clothes: Exporting and the
Environmental Impact of Textile
Production under the MFA

With Hélène Ollivier

2.1 Introduction

A growing body of research finds that trade liberalization leads to better environmental
performance within firms over time.1 While the results support the environmental benefits
of globalization, estimates neglect “third-party” effects on countries that lose market share
due to liberalization. In most standard trade models, when two countries bilaterally re-
duce tariffs with each other, “third-party” countries – peripheral to the liberalization – lose
market share as competition increases. If export market access encourages firms to reduce
emission intensity, then firms whose sales are crowded-out of the newly-liberalized markets
may increase their emission intensity as an indirect result of the liberalization. In this paper,
we provide what we believe are the first estimates of this relationship, and thus offer a new
channel through which trade influences the environmental consequences of production.

The liberalization episode we study comes from a well-known quasi-natural experiment
in global trade in textile and apparel in the late 1990’s and early 2000’s. Prior to 2005,
exports of textile and apparel products from the developing world to the developed world
were restricted under a system of bilateral product-by-country-specific quotas known as the
Multifiber Arrangement (MFA). Under the MFA, different exporting country-product pairs
were subject to different regulations across destination markets, but not all country-product
categories were subject to quota, and not all quotas were binding. Thus, with the complete
dismantling of the MFA between 1995 and 2005, firms operating in different product codes
in different countries experienced differential changes in market access both from reductions
of their own quotas (direct effect) and from reductions of quotas on competing firms in other
countries (third-party effects). This episode has been used to study the impacts of trade

1See Gutiérrez and Teshima (2011), Martin (2012), and Cherniwchan (2013) for evidence that firm-level
emission intensity falls with increased export market access.
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policy in many contexts (Harrigan and Barrows, 2009; De Loecker, 2011; Bloom, Draca, and
Van Reenen, 2011; Khandelwal, Schott, and Wei, 2013; Rotunno, Vézina, and Wang, 2013),
though never the environmental effects before.

To test for environmental impacts of MFA liberalization, we map detailed production and
emission data for Indian firms to product-by-year export quotas to the US for these firms,
along with the weighted-average quota rates for India’s competitors (i.e., quota rates for all
countries other than India to the US). The production dataset – Prowess, a long panel of large
Indian manufacturers – is uniquely well-suited for our purposes because inputs and outputs
are reported with enough granularity that we can circumvent many well-known problems
that arise when estimating productivity measures in firm-level datasets (De Loecker, 2011;
De Loecker et al., 2012). First, Prowess reports outputs in both quantity and value at the
product level, so we can distinguish between physical productivity and revenue productivity.
Second, Prowess contains energy input information at the product level, which enables us
to compute CO2 intensity of production directly from the data. With emission intensity
computed in physical quantities of CO2 per physical quantities of output at the firm-product
level, we can isolate technological effects from across-product substitution effects, which
previous work has shown to be important (Bernard, Redding, and Schott, 2011; De Loecker
et al., 2012; Mayer, Melitz, and Ottaviano, 2014).

The identification strategy is to compare changes in physical emission intensity in quan-
tity within firm-products over time for products that were previously constrained under the
MFA (via binding US-India quota) vs products that were not, and products whose competi-
tors were previously constrained (via binding US-competitor-country quotas) vs products
whose competitors were not. To illustrate the strategy, consider the case of two goods:
“Men’s & Boy’s shirts,” whose exports from India to the US were constrained by binding
quota throughout the late 1990’s/early 2000’s, vs “gloves,” whose exports were not. By 2007,
when all MFA quotas had expired, Indian firms producing Men’s & Boy’s shirts saw market
access to the US increase compared to producers of gloves, since producers of Men’s & Boy’s
shirts in India were no longer constrained by binding quotas. However, at the same time,
throughout the late 1990’s/early 2000’s, 68% of glove exports (on average) to the US from
countries other than India were subject to binding quotas, while the corresponding figure
for Men’s & Boy’s shirts was only 25%. By 2007, both shares dropped to 0, but producers
of gloves saw greater reductions in competitor export constraints relative to producers of
Men’s & Boy’s shirts, since India’s competitors in gloves were initially more constrained. If
export market access induces lower emission intensity, then direct trade effects (reductions
of US-India quotas) should lead to lower emission intensity in Men’s & Boy’s shirt produc-
ers relative to glove producers, whereas third-party effects (reductions in competitor quota
constraints) should lead to higher emission intensity in glove producers relative to Men’s &
Boy’s shirt producers. This is the basic logic of the estimation strategy.

We first demonstrate that MFA liberalization affected the exports of firms in Prowess in
the predicted way. Using a fixed-effect estimator that controls for unobserved time-invariant
firm-product factors and year-specific macro shocks, we find that firm-level exports correlate
positively with our measures of competitor constraints, statistically significant at the 1%
level. This result implies that when the US eliminated quotas for India’s competitors, firms
in Prowess lost market share. We estimate that the average exporter in Prowess lost 14%
export sales as a result of MFA quota liberalization. By contrast, we find that binding India-
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US quotas did not reduce exports to the US, but given that India was relatively unconstrained
under the MFA compared to competitor countries, this is perhaps not too surprising. The
results are consistent with previous research that documents large increases in exports from
India’s competitors after the MFA, especially from China (Harrigan and Barrows, 2009).
Additionally, the results are consistent with firm responses in European and other East
Asia countries documented in previous studies (De Loecker, 2011; Amiti and Khandelwal,
2013; Bloom, Draca, and Van Reenen, 2011), but where previous work infers competition
effects from productivity responses, we can see the crowding-out effects of third-party quota
constraints on exports directly.

Next, we relate the evolution of emission intensity within firm-product over time to
the elimination of quota constraints in the difference-in-difference manner illustrated above.
Consistent with the export effects, we find that emission intensity falls with competitor
constraints, but not India’s own quota constraints. This result implies that third-party
effects of liberalization lead to higher emission intensity for Indian firms, on the order of
about 9%. We also present results from a placebo test of quota impacts on non-exporters,
and find no statistically significant impact on the emission intensity of firms that never export
over the period. This result is what one would expect, if there are no spillover effects from
exporters to non-exporters. In a final section, we consider several possible channels for the
results, including fuel switching, factor-biased productivity gains, and quality adjustments.

This paper relates to a large literature on the impacts of trade on the environment.
Early work assumed homogeneous firms (Copeland and Taylor, 1994; Antweiler, Copeland,
and Taylor, 2001), finding that trade tends to reduce not only emission intensity, but overall
emission levels, through income-induced endogenous environmental regulation. But this lit-
erature did not consider third-party effects in general equilibrium. More recently, another line
of papers relaxes the homogeneity assumption and highlights selection effects and productiv-
ity growth holding regulation fixed (Kreickemeier and Richter, 2014; Holladay, 2010; Forslid,
Okubo, and Ulltveit-Moe, 2011; Cui, Lapan, and Moschini, 2012; Jing Cao and Zhou, 2013;
Galdeano-Gómez, 2010; Gutiérrez and Teshima, 2011; Martin, 2012; Cherniwchan, 2013).
This literature also argues that trade reduces emission intensity in countries that participate
to the liberalization, but again there is no discussion of how bilateral liberalization between
two countries impacts the production decisions of firms elsewhere in the world.

Beyond the trade and environment literature, this paper also relates to a large literature
that investigates the impact of competition on productivity. The emphasis in this litera-
ture tends to be on effects for domestic firms that see increased foreign import competition
from developing countries (see for recent examples De Loecker (2011) Bloom, Draca, and
Van Reenen (2011)). By focusing on third-party effects, we extend the competition results
to markets beyond the developed world, where most of the import penetration occurs. Ad-
ditionally, the previous literature usually requires strong functional form assumptions to
compute the outcome variable – total factor productivity. Instead, we compute productivity
of a single factor directly from the data without imposing any structure at all.

Finally, the paper also relates to a literature on the causes of high emission intensity of
firms in developing countries (Duflo et al., 2013; Greenstone and Jack, 2013; Greenstone and
Hanna, 2014). The literature here focuses mainly on market imperfections in the exporting
country (e.g., weak environmental regulation, corruption). Our results show that firms’
environmental performance also responds to international competition.
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2.2 Background and Empirical Strategy

In this section, we present the quasi-experimental setting and the measures of competitor
constraints. In the following section, we present the production data and test the parallel
trends assumption.

The Multifiber Arrangement

In order to estimate the impact of international competition on the emission intensity of
individual firms, we must observe a large change in competition whose cause is unrelated to
unobservable determinants of the production process. A common strategy is to relate changes
in production to changes in tariff rates across different goods; however, tariffs often change
gradually over time, and potentially endogenously to strategic trade interests (Trefler, 1993).
In this paper, we exploit the rapid and complete dismantling of a large system of import
quotas in textile and apparel between 1995 and 2005 – the end of the MFA – which generates
large and abrupt changes in competition in the destination markets.

Prior to 2005, export flows in different textile and apparel products from developing
countries to the developed world were restricted through a system of bilateral import quotas
known as the Multifiber Arrangement (MFA). The MFA began with US-imposed import quo-
tas on a few Japanese textile products following World War II (under the name “Agreement
on Textile and Apparel”), and then expanded to encompass the entire sector and many devel-
oping countries. Quotas levels were set in physical quantities and applied to fairly aggregate
product groups, e.g., “Dozens of Men’s & Boy’s shirts.” Temporal variation in protection
rates is due to the fact that not all country-by-product categories were subject to quotas
and not all quotas were binding. For example, in Figure 2.1, we find that China had the
most binding quotas by far throughout most of the 1990’s and 2000’s, with on average 60 out
of 167 categories subject to binding quota, while other East Asian countries like Indonesia,
Hong Kong, and Bangladesh were also heavily constrained, though at lower rates.2

As part of the Uruguay Round of the General Agreement on Tariffs and Trade, the
protected countries agreed to eliminate MFA quotas in each of four predetermined phase-out
years – 1995, 1998, 2002, and 2005 – lifting all quota constraints by 2005 (see Figure 2.1).3

Since the agreement mandated the complete removal of all quotas, there was little scope
for differential enforcement across product categories, so endogenous lobbying efforts from

2Quotas are defined as “binding” if the fill rate for the quota in a given year exceeds 90%, following the
majority of the MFA literature. Quota limits and fill rates were tracked by the US Commerce Department’s
Office of Textile and Apparel (OTEXA), and published online by Brambilla, Khandelwal, and Schott (2010).
See Appendix B.1 for details.

3Protected countries were required under the agreement to retire at least 16.7% of all quotas in each
of the years 1995, 1998, and 2002 and the remainder in 2005. Brambilla, Khandelwal, and Schott (2010)
document that the US complied with the agreement, phasing out the required levels in each of the four
years. However, note that the onslaught of cheap textile goods into the US triggered a safeguard mechanism
whereby the US was permitted under the agreement to re-impose temporary quotas on a few categories
that saw particularly high spikes in foreign import activity. The safeguards did not last long, as all quotas
were lifted by 2006. In the results we present, we use the actual binding status of quotas to construct the
instrument, but for robustness, we also consider setting 2005 quota levels to 0, as was intended under the
agreement, and the results are unchanged.
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Figure 2.1: Top 10 Constrained Countries under the MFA
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Notes: Figure plots number of binding quotas in place by year for the ten most constrained
countries under the MFA based on 1994 ranking. A quota is considered binding if the fill-rate
is greater than 90%

specific industries likely did not play a role in the timing or enforcement of the liberalization
across different product groups. Furthermore, initial quota levels set in the 1950’s and 1960’s
depended on bargaining power of different sub-industries at that time, and tended to persist
strongly through the century (Bloom, Draca, and Van Reenen, 2011). Thus, the level of, and
hence the change in, quota protection across different goods in the late 1990’s/early 2000’s
can be taken as exogenous to trends in unobservable determinants of firm-level productivity
at that time.4

If we focus in on two key countries for the analysis, China and India, we can see the
liberalization in action more clearly. Figure 2.2 plots the number of categories subject to
active quota (whether binding or not) and binding quota for these two countries over the
period. The solid lines count the number of binding quotas while the dashed lines count
the number of total active quotas. The four phase-out years are again denoted with vertical
lines. We can see that between 1997 and 1998, i.e., in the second phase of liberalization,
the number of total quotas for China dropped slightly, while staying fairly constant in the
10 years prior. Next, between 2001 and 2002, i.e., the third phase of liberalization, Chinese

4De Loecker (2011), Khandelwal, Schott, and Wei (2013), and Rotunno, Vézina, and Wang (2013) simi-
larly assume exogeneity of regulation-era quota levels, and hence interpret firm responses to quota removal
as causal.
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Figure 2.2: China and India Active and Binding Quotas
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Notes: Figure plots number of active and binding quotas in place by year for India and
China. A quota is considered binding if the fill-rate is greater than 90%

quotas drop suddenly, from 90 to 80. India, by contrast, saw no such discrete drops in
either of these phases. Finally, both countries saw huge drops after 2004, as all quotas were
lifted (subject to the safeguard caveat for China). We exploit the timing of these quota
liberalizations to test for production responses to changes in the competitive environment.

Competitor constraint indices

The expiration of MFA quotas should have both a direct effect on India firm exports from
the removal of binding US-India quotas, and an indirect effect from the removal of binding
US-other country quotas.5 The latter effect is due to the increase in competition in the
destination market: the elimination of India’s competitors’ quota constraints lowers the cost

5Since MFA quotas were specified in quantity, instead of value, the precise impact on sales depends on
the assumption of market structure (see Krishna (1989) for discussion of quantity-based quota regulations
and exporter response). However, virtually any model predicts that the cost of shipping to the regulated
market increases: either a regulatory body imposes a formal apparatus for quota licensing, complete with
permit prices, or an informal market arises where firms negotiate for the rights to use a quota permit. Thus,
the elimination of binding US-India quotas should comparatively reduce the cost of shipping to the US for
Indian firms operating in those product categories that see their quotas reduced, and increase their export
sales. Harrigan and Barrows (2009) find that the expiration of the MFA caused export prices for quota-
constrained products to drop 30% between 2004 and 2005, suggesting that the regulatory cost associated
with quotas was quite large under the MFA.
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of shipping for those firms, and hence lowers the price index in the destination market. In the
language of Anderson and Wincoop (2003), the destination market sees lower “multilateral
resistance” as a result of other-country MFA quota removals, and hence becomes harder to
reach for Indian firms.

To compute an aggregate measure of Indian competitor constraints by product category
under the MFA, we take a weighted average of imports into the US that arrive under binding
quota from countries other than India each year. Let g denote a quota group product
category, t denote year, and j the exporting country to the US. We define an index of
competitor constraints from the rest of the world (ROW) i.e., besides India

ROWgt ≡

∑
i∈Λ

Vgj0 ∗ Igjt∑
i∈Λ

Vgj0
, (2.1)

where Vgj0 is the value of exports in good g from j to the US in some pre-liberalization base
year 0, Igjt is an indicator for whether good g from country j was subject to binding quota in
year t, and Λ is the set of all countries other than India that export to the US. It is important
that import shares Vgj0 are evaluated prior to liberalization because the year-to-year shares
may respond endogenously to the liberalization itself.6 The index ROWgt ranges from 0
to 1, where ROWgt = 0 indicates that none of the exports in g from India’s competitors
to the US were subject to a binding quota in year t (conditional on pre-period weights),
while ROWgt = 1 indicates that all exports to US (other than those from India) in g were
subject to a binding quota in t. As ROWgt increases, Indian firms operating in product
group g enjoy greater comparative access to the US, regardless of the constraint status of
the US-India quota rates, and thus should export more.

The construction of ROWgt in equation (2.1) follows the same logic as the computation of
product-specific instruments in many recent papers. For example, Park et al. (2010) weights
exchange rate movements in currencies of importers of Chinese prodcuts during the Asian
financial crises by base-year export shares, Hummels et al. (2014) weights foreign demand
shocks in importers of Danish products by base-year export shares, and Bloom, Draca, and
Van Reenen (2011) weights Chinese export growth in products to the EU by base-year
exposure to Chinese exports. The common idea is to interact some macro-economic (or
product-specific) shock with pre-period exposure rates to compute idiosyncratic changes in
market access across similar firms. An advantage of our approach is that we utilize discrete
jumps in policy, so pre-existing trends in macro variables are unlikely to contaminate the
results. A disadvantage of our specification relative to say, Hummels et al. (2014), is that we
don’t know which firms sell which products in which markets. With base-year firm-product-
destination trade flows, we could exploit variation in firm-specific exposure to various markets
and compute ROWgt at the firm-product level.

Figure 2.3 plots ROWgt against the India fill rate for each year between 2000-2005.
To compute the ROW index, we aggregate ten-digit harmonized trading system (HS10)

6In the estimation, we take 1994 – the final year before the first phase-out round – as the initial period,
though results are not at all sensitive to the choice of base year. In fact, for robustness, we compute the
ROWgt using both base-year weights and current-year weights and find that in practice, it does not make
much difference which one we use.
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trade flows from Feenstra, Romalis, and Schott (2002) to the g-exporter level, merge quota
indicators indicators Igjt from the Office of Textile and Apparel (OTEXA), and take the
weighted average constraint across OTEXA category (g) as in (2.1). Vertical red lines denote
the critical 90% fill rate, hence any mark to the right of this line signifies a binding quota for
India. Each blue “X” or red “O” corresponds to a product category g. Red “O’s” indicate
that quota coverage for the product will fall below 1% in the following year: red “O’s” are
about to see ROW liberalization. The X’s denote otherwise. For example, in 2001, we see
several categories for which the ROW index will fall to near 0 in 2002, which corresponds to
the third phase of liberalization. Similarly, in 2004, all categories other than those for which
safeguards will be re-imposed on China are marked with O’s.

Figure 2.3: Competition Index and India Fill Rates by Year
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Notes: Each year plots the ROW index against the India fill rates for each 3-digit MFA
category. The red line indicates the 90% threshold for binding status. Red dots indicate
a category whose ROW quota coverage will fall to below 1% in the next year. Blue X’s
indicate otherwise.

Two important facts can be gleaned from Figure 2.3. First, in each year prior to 2005,
there were several categories in which India’s competitors were constrained, but India was
not. This can be seen by the mass of X’s and O’s along the 0 India fill rate mark. This implies
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that India’s competitors will see increased market access in these categories, while India itself
will not. In these categories, the prediction for changes in India exports is unambiguous –
Indian exports should fall. Second, in each year prior to 2005, we see that categories for
which Indian fill rates were high tended also to have high values in the competitor index.
Regressing India fill rates on the competitor index for the years 1994-2004 yields a coefficient
of 0.88 and a t-stat of 23. Most of the categories in which India was constrained in under
the MFA, India’s competitors were constrained as well. When these quotas are liberalized,
the direct impact fights the crowding-out effect, and the overall effect on Indian exports is
ambiguous.

2.3 Prowess Data and Merging to Quota Data

This section presents the output and emissions data contained in the Prowess database. The
dataset is described in detail in Chapter 1, so we keep the presentation brief here and refer
to Chapter 1 for further discussion. Next, we discuss how to merge the Prowess data to the
quota constraint indices.

Production Data

As part of the Indian Companies Act of 1956, Indian firms are required to issue annual reports
detailing a wide array of economic activity, including quantity and value of output by product
and energy inputs by product. The Center for Monitoring the Indian Economy (CMIE)
collected a large subset of these reports, standardized and digitized the information, and
published the resulting database, Prowess, for use by investors and researchers. Most inputs
such as labor or capital are reported at the firm-level, but concerns about energy security
lead the Indian government to mandate greater detail in energy-use reporting. Firms still
report total energy consumption (by energy type) for the year, as they would other inputs,
but they also report product-specific energy intensity (also by energy type), though not total
energy consumption per product. Additionally, firms report the export share in total firm-
year revenue, which we use to check that quota constraints impact exporting behavior in
the predicted way. Previous researchers have exploited the multi-product dimension of the
data (Goldberg et al., 2010; De Loecker et al., 2012), but to our knowledge, no other paper
(beyond Chapter 1) have utilized the product-specific energy reports yet.

The product-specific energy reports are quite important for our purposes because they
allow us to compute CO2 intensities at the firm-product level directly from the data.7 To
generate these values, we multiply product-specific energy-type intensities by CO2 emission
intensities and sum over energy types at the product level (see Chapter 1 for details). One
caveat to mention with regards to the emission intensity data is that they are reported in a
separate module of the dataset, so connecting emission intensity to sales and prices at the
firm-product level requires merging between the two modules. Unfortunately, this process
is not straight-forward because neither product name nor product classification are entirely

7An alternative approach would be to estimate a structural model of production for single-product firms
and then impute product-specific energy intensity based on the estimated coefficients (as in De Loecker et al.
(2012). Our approach requires no functional form assumptions at all.



CHAPTER 2. CLEAN CLOTHES: EXPORTING AND THE ENVIRONMENTAL
IMPACT OF TEXTILE PRODUCTION UNDER THE MFA 49

consistent between the two modules. In Chapter 1, we present an automated process for
merging the two modules, but here, since we are only using the textile and apparel sector,
we chose to map by hand to ensure a tighter link between the emissions and the output data.
See appendix B.1 for details.

Table 2.1: Summary Statistics

Variable Exporters Non-Exporters Diff
Sales Value (Mill of Rs) 872.8 217.6 ***

(2285.0) (423.9)
CO2 Emissions (MT) 0.022 0.006 ***

(0.043) (0.028)
CO2 Intensity (MT/ Real Units Output) 2.94 2.71 ***

(4.05) (3.30)
Export Share (f.o.b.) 20.92 0 -

(26.87)

N 5751 1259
# Firm-Products 814 280
# Firms 523 226

Notes: Annual production data from 1994-2007. An observation corresponds to a firm-product-
year, except for Export share, which is computed at the firm-year level. “Exporters” earn
positive export revenue for at least one year over the period.

Descriptive statistics broken down by exporters and non-exporters are reported for the
years 1994-2007 in Table 2.1. Exporters are defined as those firms that earn positive export
sales for some year over the period. We have an unbalanced panel of 1,094 firm-products
manufactured by 749 distinct firms. The mean sales generated by a firm-product line in a
given year is 872.8 million Rs (roughly 19 million USD) for exporters and 217.6 million Rs
(roughly 5 million USD) for non-exporters. With the mean number of products sold by a
firm in a given year at 1.46, the average firm in the dataset generates 17 million USD in
revenue. By comparison, the average textile firm in the comprehensive ASI dataset generates
only 4 million USD in revenue, so firms in our sample tend to be larger than the average
textile firm in India.8 However, since exporters tend to be larger in general, the sample is
appropriate for studying trade impacts.

Since exporters are bigger than non-exporters, they also generate more pollution. We
calculate that the average exporter product-line generates 0.022 MT of CO2 in a given
year, with the corresponding figure for non-exporters being 0.006 MT of CO2. In terms of
emission intensity, the average product-line generates 0.0256 kg CO2 per Indian rupee. For
comparison, the average textile firm in the US generates 0.005 CO2 per Rs, so the mean firm
in the data is about 5 times less efficient than the mean US textile and apparel plant.9

8In the 2010 ASI, Table 5-A reports output for textile and apparel sector (NIC codes 13-14) as 2720 billion
RS and 766 billion RS, while total establishments equals 13,159 and 2,052. Summing output and dividing
by number of establishments yields 243 Million RS per factory. Converting the USD with an exchange rate
of 62 RS/USD yields 4 million USD of output per plant

9From 2006 MECS data, we compute the average US textile plant use 0.427 KhW of electricity per dollar
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Finally, the average exporter earns a little over 20% of revenue on the export market in
a given year. We observe export share over time within the firm, and thus can check that
quota constraints impact exporting behavior in the predicted ways.

Figure 2.4: Changes in emission intensity
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Notes: Figure plots year-on-year percent changes in emission intensity for the years 1994-
2007 at different levels of aggregation.

To get a preliminary sense of the temporal variation in emission intensity, we plot the dis-
tribution of year-to-year percentage changes within the firm-product in Figure 2.4. Denoted
by transparent bars, we find significant year-to-year variation at the firm-product level: 10%
of the observations register a year-on-year increase of greater than 26%, while 10% of the
observations see a decline of more than 21%. Certainly, these changes reflect some mea-
surement error as well, but the unconditional distributions reflect sufficient variation that
we cannot rule out trade impacts prima facie. Additionally, we plot the kernel density of
changes in emission intensity computed from firm-level energy reports and find a similar
degree of within-firm variation.

Merging Quota Data to Prowess

The last task to perform before estimating the impact of the MFA on exports and emission
intensities is to merge the quota constraints to the Prowess data. This merge presents a

shipped. Multiplying by a constant emission factor of 1.34 lbs of CO2 to KwH and converting to kg per RS,
we estimate average emission intensity of 0.005 kg CO2 per Rs.
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significant challenge in that Prowess organizes products according to an internal classification
system that does not map directly to other known classifications, while OTEXA uses an
idiosyncratic classification system as well (the 167 3-digit categories discussed in section 2.2).
We proceed by first mapping Prowess production codes to HS trade data classifications, and
then mapping to the OTEXA data. Note that competitor constraints ROWgt are defined as
in section 2.2. US-India constraints are denoted Indiagt, and take the value 1 when product
g is subject to a binding US-India quota in year t and 0 otherwise.

The Prowess-HS map was discussed in Chapter 1, so we refer the reader there for details.
But to re-iterate, both Prowess and the HS classifications hew closely to the ISIC system,
so while names and numbering are different between the two, it is fairly straightforward to
map between them by hand. Alternative methods of mapping between Prowess and HS data
exist (De Loecker et al., 2012), but they involve mapping first through the India National
Industry Classification system (NIC), which is fairly aggregate compared to the 6-digit HS
trade classifications.

Next, with our Prowess-HS correspondence, we merge to OTEXA codes via an HS10
mapping published on OTEXA’s website.10 The correspondence assigns each HS10 product
to one of the 167 OTEXA categories (e.g., “Men’s and Boy’s shirts”); however, mapping
from HS4 or HS6 through the OTEXA-HS10 mapping requires a few steps. First, in the
Prowess-HS map, Prowess codes do not always map to unique HS4 or HS6 categories. In
the case that these HS4 or HS6 represent multiple OTEXA categories, then there will not
be a unique OTEXA category for each Prowess code. Additionally, even if the Prowess code
matches to a single HS4 or HS6, these four or six digit classifications may span multiple
OTEXA categories. For example, we map Prowess product “woven fabric of carded wool”
to HS4 code 5111, but this 4-digit HS code contains HS10 codes that map to both OTEXA
410 and 414 ( “wool yarn” and “woven fabric of wool”). To compute a single index value for
each Prowess product code, we take a simple average of Indiagt and ROWgt over possible
OTEXA codes (in example above, we would average Indiagt and ROWgt for codes 410 and
414). In a slight abuse of notation, we continue to refer to product regulation categories
as g, though when we merge to Prowess, they are really averages over multiple OTEXA
categories. See appendix B.1 for details.

Tables 2.2 and 2.3 report the top ten most-constrained and least-constrained Prowess
products under the MFA in terms of Indiagt and ROWgt, respectively. In each table, we list
the products with the ten highest average constraints during the regulation period (1994-
2004) on the left, and the ten products with the lowest constraints on the right. Looking first
at Table 2.2, we find that “Sacks/Bags (Cotton)” had the highest average Indiagt over the
regulation period (Indiagt=1.00), followed by “Textile labels, badges, etc.” (Indiagt=0.50),
and then “Carpets, etc.” (Indiagt=0.33), “Curtains, blinds, etc.” (Indiagt=0.33) and “Cot-
ton fabrics grey (Mill sector)” (Indiagt=0.33). Products initially unconstrained in exports
to the US include “Bedspreads,” “Cotton & blended yarn, texturised,” and “Fishing nets.”11

No clear pattern emerges in terms of types of products that are likely to have have high vs low

10http://otexa.trade.gov/corr.htm
11Note that in fact, 69 of the 95 Prowess product codes take the value Indiagt = 0 throughout the

pre-period, so these products all tie for the lowest Indiagt (0). We just choose ten of these products for
illustration.
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Table 2.2: High vs Low constrained products under MFA from India

High-constraint products Low-constraint products

Product India index Product India index

Sacks/Bags (Cotton) 1.00 Cotton & blended yarn, texturised 0
Textile labels, badges, etc. .50 Textile products for technical uses 0
Carpets, etc. .33 Wool yarn 0
Curtains, blinds, etc. .33 Yarn of artificial staple fibres 0
Cotton fabrics grey (Mill sector) .33 Woven fabrics of made filaments 0
Towels including turkish towels .31 Other synthetic filament yarns 0
Cotton fabrics (Handloom sector) .27 Polypropylene filament yarn 0
Other clothing accessories,
knitted or crocheted .23 High tenacity yarn of viscose rayon 0

Millmade fabric .22 Bedspreads 0
Blankets & travelling rugs .20 Fishing nets 0

Notes: This table reports average values for the India constraint Index for the years 1994-2004 by prowess
product classification. The left panel reports the top-10 highest constraint values, while the right panel
reports a selection of the lowest constraint values.

Table 2.3: High vs Low constrained products under MFA from ROW

High-constraint products Low-constraint products

Product ROW index Product ROW index

Sacks/Bags (Cotton) .63 Cotton & Polypropylene fibre 0
Textile labels, badges, etc. .32 Hessian 0
Curtains, blinds, etc. .28 Wool yarn 0
Other clothing accessories,

knitted or crocheted .25 Other jute products 0
Cotton fabrics (Handloom sector) .23 Rubberised textile fabrics 0
Cotton fabrics (Powerloom sector) .22 Textured yarn of syn filament 0
Cotton fabrics grey (Mill sector) .22 Fishing nets 0
Apparels - knitted / crocheted .21 Polypropylene filament yarn 0
Carpets, etc. .21 Knitted fabrics 0
Woven fabrics,

of man-made filaments .18 Felt 0

Notes: This table reports average values for the ROW constraint Index for the years 1994-2004 by
prowess product classification. The left panel reports the top-10 highest constraint values, while the
right panel reports a selection of the lowest constraint values.
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constraints, which supports the orthogonality of the regulation to unobservable determinants
of emission intensity.

In Table 2.3, we find that Indian product initially heavily shielded from international com-
petition in the US market (high ROWgt) include the same three heavily-regulated products
as in Table 2.2, in addition to “Other clothing accessories,” and “Cotton fabrics (Hand-
loom sector).” Products categories in which India’s competitors were already unconstrained
in their exports to the US under the MFA include “Cotton & Polypropylene fibre,” “Hes-
sian,” and “Wool yarn.”12 Again, there appears to be no clear pattern of difference between
constrained or unconstrained products in Table 2.3.

In Table 2.4, we test formally for endogenous regulation following a strategy from Topalova
and Khandelwal (2011) that relates industry characteristics to the strength of pre-shock reg-
ulation. We regress product-category characteristics averaged over the pre-liberalization
period (1988-1994) on the category’s constraint level prior to the start of the sample (1994)
to see if regulation systematically targets certain kinds of industries. Characteristics we
consider are the average and standard deviation of emission intensity in terms of value and
energy within product codes. To compute these summary statistics, we first regress log
emission intensity (either in value or energy) on a full set of year dummies, compute the
residual, exponentiation, and then compute the mean and standard deviations. We restrict
the sample to product categories with substantial coverage (hence the number of product
categories drops to 53). We find in Table 2.4 that we cannot reject the null hypothesis of
no correlation for any of the product-specific characteristics with either of the constraint
indices, which further supports the exogeneity of the trade shock to firm-level trends.

2.4 Results

In this section, we relate the time-varying MFA regulation variables Indiagt and ROWgt to
firm-level exports and firm-product-level emission intensity in the Prowess dataset. We then
investigate possible channels to explain the results.

Trade Liberalization Impacts on Exports

We begin by estimating the impact of the quota constraint indices on exports of firms in
Prowess. Exports are reported at the firm-level (in contrast to the production data, which
we have at the firm-product level), so we first aggregate Indiagt and ROWgt over all products
produced by the firm. For each firm-year, we weight Indiagt and ROWgt for each product
by base-year output shares within the firm, where the base year corresponds to the first year
the firm appears in the dataset. Denoting base-year-weighted average constraints by Indiaft
and ROWft, we estimate

Export shareft = αf + αt + βX ∗ Indiaft + δX ∗ROWft +W ′
ftΓ + εft (2.2)

where Export shareft represents the share of revenue earned from exporting by firm f in
year t (across all products and all destinations), Wft represents firm-year controls such as

12For ROWgt, 47 of the 95 products are unconstrained throughout the period 1994-2004. Again, we just
take a sample for Table 2.3
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Table 2.4: Correlation of constraint indices with product-code characteristics

Kg CO2 per Rs Kg CO2 per mmBTU

(1) (2) (3) (4)
Mean Sd Dev Mean St Dev

ROW -4.2 7.7 0.5 -0.3
(8.5) (46.7) (0.4) (0.3)

India -3.2 -26.3 0.2 -0.1
(5.7) (31.3) (0.3) (0.2)

Obs 53 53 53 53
R2 0.03 0.02 0.11 0.07

Notes: Dependent variable is the average and standard de-
viation of emission intensity in terms of value (kg CO2 per
Rs) by prowess product code in columns 1 and 2, and av-
erage and standard deviation of emission intensity in terms
of energy ((kg CO2 per mmBTU) in columns 3 and 4.
Firm-year-product values are the residuals from regressions
with year fixed effects. Constraint indices are 1994 values.
Product-code statistics are averaged over the period 1988-
1994. Asterisks indicate statistical significance at the 1%
∗∗∗, 5% ∗∗, and 10% ∗ levels.

energy prices and total sales, εft represents a time-varying unobserved idiosyncratic shock
to exports, and αf and αt denotes firm and year fixed effects. The direct trade impact (βX)
and the indirect competition effect (δX) are identified from year-to-year variation in Indiaft
and ROWft induced by quota expiration under the MFA. This specification is similar to the
one used by De Loecker (2011) to estimate the MFA’s impact on productivity of Belgian
producers, except that we separately estimate βX from δX . The specification is also reminis-
cent of Amiti and Khandelwal (2013) and Bloom, Draca, and Van Reenen (2011), in which
changes in MFA quota restrictions on China were used to instrument competition faced by
firms in other countries. A key conceptual difference is that we allow quota constraints from
all countries to influence the competition levels in the US, while both Amiti and Khandel-
wal (2013) and Bloom, Draca, and Van Reenen (2011) implicitly assign zero weight to all
countries other than China.

We estimate equation (2.2) via OLS for all 523 textile and apparel exporters in the dataset
and report results in Table ??. Column 1 estimates the model without firm-level controls,
while column 2 includes controls for firm-specific energy prices and overall firm-year sales. In
both specifications, we find that higher ROW index values are associated with higher export
shares. Thus, when India’s competitors were more constrained with respect to exporting
to the US, Indian firms’ exports as a share of total revenue increased. Conversely, with
the end of the MFA, Indian firms operating in industries initially protected by third-party
quota constraints saw their privileged access to the US erode. This is exactly what one
would expect if multilateral resistance matters for exports. Point estimates are statistically
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Table 2.5: The Impact of MFA Quotas on Exports of Indian Firms

(1) (2)
ROWft 25.15∗∗∗ 25.31∗∗∗

(8.22) (7.98)

Indiaft 7.13 4.78
(15.16) (14.77)

Controls N Y
Year Fixed Effects Y Y
Firm Fixed Effects Y Y
Obs 4312 4312
# Firms 523 523
R2 (within) 0.02 0.04
Mean Dep. Var 20.92 20.92

Notes: Dependent variable is export share of rev-
enue (0 to 100). Controls in column 2 include
sales and firm-specific energy prices. Standard
errors that allow for clustering at firm level are
reported in parentheses. Asterisks indicate sta-
tistical significance at the 1% ∗∗∗ level.

significant at the 1% level with standard errors clustered on the firm.13

Surprisingly, we find no evidence that US-India quotas restrained Indian exports (no
statistically significant impact on Indiaft). There are at least two interpretations of this null
result. First, it is possible that while some US-India quotas had fill rates over 90% under the
MFA, the quotas did not in fact constrain export sales. I.e., the quota limits could have been
set precisely at equilibrium export supply, so the removal of US-Indian quotas did not relax
a constraint at all. Alternatively, the result may be a statistical artifact stemming from the
small sample of product categories subject to US-India quotas. To see this point, note that
the US tended to coordinate policy across countries within quota categories (Figure 2.3), so
goods that were subject to binding US-India quotas were also subject to binding quotas for
other countries as well. Thus, when the US eliminated all quotas, Indian firms producing
these goods would have been subject to both the direct effect (from lower Indiaft) and the
indirect effect (from lower ROWft), which pull in opposite directions. The simultaneity of
the two effects makes the direct effect difficult to pick up because there are few goods for
which India was constrained while the rest of the world was not.

Overall, the estimates imply that the end of the MFA delivered a positive competition
shock to Indian firms, on net. In terms of magnitude, the point estimates imply that if the
ROW index increases from 0 to 1, then export shares of Indian firms increase 25 percentage

13While we would like to control for correlations across firms operating in the same regulation code,
regulations differ at the firm level due to averaging over multiple categories, which makes it difficult to
cluster at the regulation level. One robustness check we make is to cluster on the regulation of the highest-
sales product within the firm. Results are robust to this procedure, but we report standard errors clustered
at the firm level throughout the paper.
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points, or 120% on a baseline average of 21% percent export share.14 Alternatively, evaluated
at the mean ROW value over the period 1994-2004 (ROWft = 0.1), we calculate the average
firm lost 2.5 percentage points on export sales share as a result of the end of the MFA, or
14% of total export sales.15 With such large export impacts, we should see firms adjusting
emission intensity in response to the elimination of MFA constraints, if exporting matters
for environmental performance.

Trade Liberalization Impacts on Emission Intensity

Next, we estimate the impacts of the quota constraints on emission intensity in physical
quantity (i.e., kg of CO2 per unit of production) at the firm-product level. We estimate

log EQpgft = αpgf + αt + βE ∗ Indiagt + δE ∗ROWgt +W ′
ftΓ + εpgft (2.3)

where log EQpgft represents log emission intensity for product p belonging to product group
g produced by firm f in year t, Wft represents firm or firm-product controls for scale and
energy prices, αpgf and αt denotes firm-product and year fixed effects, and εpgft represents
a time-varying unobserved idiosyncratic shock. We expect δE 6= 0, since we found strong
export impacts from the ROW index in the previous section. In particular, if exporting en-
courages firms to reduce emission intensity, we expect δE ≤ 0. However, with no statistically
significant effect of US-India quotas on Indian firm exports, we expect βE = 0: if US-India
quotas do not impact Indian exports in a statistically significant way, then they should not
impact emission intensity either.

In Table 2.6, we estimate equation (2.3) via OLS for both exporters (columns 3-4, 7-8)
and non-exporters (column 1-2, 5-6) over the period 1994-2007. Estimates are reported based
on firm-product regulations (columns 1-4) and firm-average regulations (columns 5-8), where
the latter are computed from averaging product-specific regulation over products generated
by the firm as in section 2.4. Estimates from non-exporters represent placebo checks, as
foreign competition should not affect domestic-oriented Indian firms, absent spillover effects.

We find in columns 3-4 that higher ROW values are associated with lower emission
intensities for exporters, statistically significant at the 1%, whether we control for output
scale and energy prices (column 4) or not (column 3). There is no corresponding impact from
US-India quotas. Additionally, point estimates for neither ROW nor India are statistically
significant for non-exporters (columns 1-2). The fact that non-exporters do not respond in
the same way is a confirming check that firms operating in product categories that happened
to see quotas eliminated post 2004 were not generally trending differently from other firms.
A qualitatively similar pattern is found in columns 5-8, with statistically significant negative
impacts of ROW on firm-product emission intensity of exporters (columns 7-8), but not
non-exporters (columns 5-6).

14The point estimates are virtually identical between columns 1 and 2, so it doesn’t matter which one we
choose to assess economic significance

15If export share equals 21% before liberalization, then normalized domestic sales equals 79 (unitless).
The change in export sales corresponding to a fall in export share of 2.5 percentage points can be calculated
as x

79+x = (.21− .025) −→ x = 18. Thus, normalized export sales fall from 21 to 18, or by 14%.



CHAPTER 2. CLEAN CLOTHES: EXPORTING AND THE ENVIRONMENTAL
IMPACT OF TEXTILE PRODUCTION UNDER THE MFA 57

Table 2.6: MFA Quota Impact on CO2 Intensity in Output

Product-level Regulation Firm-Average Regulation

Non-Exporters Exporters Non-Exporters Exporters

(1) (2) (3) (4) (5) (6) (7) (8)
ROW 0.049 0.140 -0.857∗∗ -0.860∗∗ -0.225 -0.057 -0.463∗ -0.463∗

(0.763) (0.748) (0.435) (0.435) (0.862) (0.880) (0.270) (0.269)

India 0.773 0.349 0.140 0.119 0.737 0.323 -0.016 -0.036
(0.786) (0.836) (0.379) (0.384) (0.824) (0.863) (0.475) (0.476)

controls N Y N Y N Y N Y
Year FE Y Y Y Y Y Y Y Y
Firm-product FE Y Y Y Y Y Y Y Y
Obs 1243 1243 5621 5621 1243 1243 5621 5621
# Firm-prds. 280 280 802 802 280 280 802 802
# Firms 226 226 517 517 226 226 517 517
R2 (within) 0.02 0.04 0.02 0.02 0.02 0.04 0.01 0.02

Notes: Dependent variable is log CO2 emissions intensity per physical unit of output. Sample includes years
1994-2007. In columns 1-4, ROW and India constraint indices are product-specific, while in columns 5-8 we
have aggregated to the firm-year level. “Exporters” includes all firms that export some value in some year.
Standard errors that allow for clustering at the firm level are reported in parentheses. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

The results imply that the loss in exports found in section 2.4 translated into higher
emission intensity for Indian firms. This is the central result of the paper: trade liberalization
between the US and other countries negatively impacted the environmental performance of
firms in “third-party” countries. In terms of magnitude, the point estimates in columns 3-4
imply that the average exporter, who saw ROW fall from 0.1 to 0 as a result of MFA quota
expiration, increased emission intensity at the firm-product level by e(0.1∗0.86) = 9.0%.

Possible Channels

There are several possible explanations for the environmental results found in the previous
section. First, it may be that increased competition on the export market induced firms to
search for cheaper energy sources, which, for some reason, may have been more intensive in
CO2 emissions (Cicala, 2015). We investigate this possibility in Table 2.7, in which we re-
estimate equation (2.3) replacing log EQpgft with log CO2 emissions per mmBTU of energy.
If firms purchase cheaper and dirtier forms of energy to produce the same level of physical
output, then log CO2 emissions per mmBTU should increase with lower ROW index values.
We find in Table 2.7, that neither for exporters nor non-exporters does this appear to be the
case.
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Table 2.7: MFA Quota Impact on CO2 Intensity in Energy

Product-level Regulation Firm-Average Regulation

Non-Exporters Exporters Non-Exporters Exporters

(1) (2) (3) (4) (5) (6) (7) (8)
ROW -0.190 -0.251 -0.016 -0.007 -0.166 -0.247 0.071 0.086

(0.314) (0.275) (0.087) (0.086) (0.300) (0.262) (0.092) (0.092)

India 0.724∗ 0.723∗ -0.035 -0.024 0.776∗ 0.773∗ 0.039 0.050
(0.425) (0.425) (0.084) (0.083) (0.448) (0.450) (0.118) (0.116)

controls N Y N Y N Y N Y
Year FE Y Y Y Y Y Y Y Y
Firm-product Y Y Y Y Y Y Y Y
Obs 1205 1205 5599 5599 1205 1205 5599 5599
# Firm-prds. 279 279 790 790 279 279 790 790
# Firms 225 225 513 513 225 225 513 513
R2 (within) 0.06 0.09 0.05 0.06 0.06 0.09 0.05 0.06

Notes: Dependent variable is log CO2 emissions intensity per mmBTU of Energy. Sample includes years
1994-2007. In columns 1-4, ROW and India constraint indices are product-specific, while in columns 5-8 we
have aggregated to the firm-year level. “Exporters” includes all firms that export some value in some year.
Standard errors that allow for clustering at the firm level are reported in parentheses. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

Next, several models in the broader trade literature predict that increased competition
induces productivity improvements (Bloom, Draca, and Van Reenen, 2011; Amiti and Khan-
delwal, 2013). If these improvements are Hicks-neutral, then emission intensity should fall
with export market competition. The environmental impacts in section 2.4 go against this
prediction, i.e., we see CO2 intensity increasing with MFA liberalization, which is inconsistent
with Hicks-neutral productivity gains. Thus, we conclude that Hicks-neutral productivity
enhancements could not explain the results.

Still, there is no theoretical reason that productivity growth must be Hicks-neutral. Per-
haps firms adopt technologies that lower variable cost, but increase CO2 intensity of output.
Energy is the only input we have at the firm-product level, so we cannot estimate pro-
ductivity without putting a lot more structure on the estimation (as in De Loecker et al.
(2012)). However, with readily available data, we can assess the possibility of factor-biased
technological change by estimating the impact on firm-level capital stock, a decent proxy
for technology in manufacturing sectors. If firms adopt new technology to combat increased
competition on the export market, we should see it in larger capital stocks.16 In fact, we
find support for this hypothesis in Table 2.8, in which we find that total value of the capital

16A caveat here is that capital stock is not the same things as investment. Also, capital is denominated
in value, so there could be unobserved changes to the quality or price of capital. Finally, since capital is
only reported at the firm level, output has to be denominated in value, so the estimates are inclusive of
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Table 2.8: Capital Investments

Dep Var: Log Capital Log Capital/Sales

(1) (2) (3) (4)
All Firms Exporters All Firms Exporters

ROW -0.8∗∗ -0.9∗∗ -1.1∗∗ -1.4∗∗∗

(0.4) (0.4) (0.5) (0.5)

India 0.4 0.6 -0.7 -0.3
(0.4) (0.4) (0.6) (0.6)

Obs 4702 3831 4702 3831
R2 0.08 0.08 0.02 0.02

Notes: Dependent variable is log capital value in columns 1 and 2 and
log capital per sales value in columns 3 and 4. Estimates in columns
1 and 3 are based on the entire sample of firms, while estimates in
columns 2 and 4 are only for firms that export positive value in some
year through the period. Sample includes years 1996-2007. ROW and
India constraint indices are weighted averages at the firm-year level.
All regressions include firm and year fixed-effects. Standard errors
that allow for clustering at the firm level are reported in parentheses.
Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10%
∗ levels.

stock (columns 1-2) and log capital/sales ratio (columns 3-4) both increase with competition
(lower ROW values). If productivity gains are factor-biased, the increase in capital stock
could increase CO2 intensity of output.

A final potential explanation for the increased emission intensity is that firms sell higher
quality varieties on the export market, and these high-quality varieties generate lower emis-
sion intensities. Thus, when Indian firms are crowded out of the US market, they shift the
variety mix (within product code) towards lower quality, higher-emission intensity outputs.
Verhoogen (2008) finds evidence of a similar mechanism with respect to labor inputs in Mex-
ico, whereby Mexican firms sell relatively higher quality/higher labor-intensity varieties for
the export market relative to the domestic market. We hypothesize that a similar mechanism
could generate the environmental impacts documented in section 2.3, if quality is decreasing
in emission intensity.

To assess this possibility, we estimate the impact of MFA quotas on two different measures
of the quality of firm-product outputs in Prowess. First, we measure quality simply as the
unit value of sales, assuming that higher unit value goods are higher “quality.” This is
a common measure of quality in the literature (Baldwin and Harrigan, 2011). We report
estimates in columns 1-2, 5-6 in Table 2.9.

Second, we implement a procedure from Khandelwal, Schott, and Wei (2013) where

output price effects. With these qualifications in mind though, it appears that capital stocks increase when
the ROW index falls, which is consistent with competition-induced investments.
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Table 2.9: MFA Quota Impact on Quality Measures

Product-level Regulation Firm-Average Regulation

Log Unit Value Log Quality Log Unit Value Log Quality

(1) (2) (3) (4) (5) (6) (7) (8)
ROW 0.360∗ 0.346 0.500 0.461 0.420∗ 0.441∗ 0.690∗∗ 0.589∗

(0.212) (0.215) (0.317) (0.287) (0.232) (0.231) (0.329) (0.308)

India -0.418 -0.375 -0.057 -0.499 -0.182 -0.108 0.348 -0.145
(0.295) (0.283) (0.338) (0.377) (0.485) (0.456) (0.532) (0.608)

controls N Y N Y N Y N Y
Year FE Y Y Y Y Y Y Y Y
Firm-product Y Y Y Y Y Y Y Y
Obs 6308 6308 6308 6308 6308 6308 6308 6308
# Firm-prds. 1015 1015 1015 1015 1015 1015 1015 1015
# Firms 712 712 712 712 712 712 712 712
R2 (within) 0.02 0.02 0.00 0.12 0.02 0.02 0.00 0.12

Notes: Dependent variable is log CO2 emissions intensity per mmBTU of Energy. Sample includes years
1994-2007. In columns 1-4, ROW and India constraint indices are product-specific, while in columns 5-8 we
have aggregated to the firm-year level. “Exporters” includes all firms that export some value in some year.
Standard errors that allow for clustering at the firm level are reported in parentheses. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

quality is computed as the residual of the regression

lnxpgft + σ ln ppgft = αpgf + αt + εpgft (2.4)

where xpgft is quantity, ppgft is price, and σ is the elasticity of substitution between products.
Khandelwal, Schott, and Wei (2013) show how this specification results from CES preference
structure. With enough data, σ could be estimated; however, we follow Khandelwal, Schott,
and Wei (2013) and adopt the mean σ calculated by Broda and Weinstein (2006) for the
textile and apparel sector (σ = 4). Our results are robust to varying σ ∈ [2, 10]. Intuitively,
the procedure assigns higher quality to goods with higher demand, conditional on price.
Hence, netting out price effects, if a product generates more sales, then it has higher quality.
We refer to this second measure as “quality” and report estimates in columns 3-4 and 7-8 of
Table 2.9

Starting in columns 1-4, we estimate MFA impacts on unit values and the Khandelwal,
Schott, and Wei (2013) quality measure using the product-level regulation variables Indiagt
and ROWgt, controlling for scale and energy prices in columns 2 and 4. The point estimate on
the ROW index is positive in columns 1-4, which is consistent with the case in which higher
export share shifts production towards higher quality, though only marginally significant.
Moving to columns 5-8, we re-estimate the model using the firm-average regulation as the
input variables (Indiaft and ROWft). These estimates account for spillovers across product
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groups within the firm, as they take the overall constraints of the firm as the relevant
measure. Here, we find that the point estimate on the ROW index is positive and statistically
significant at the 10% level. Additionally, the results hold both for unit values and the
Khandelwal, Schott, and Wei (2013) quality measure.

Overall, the evidence suggests that the end of the MFA, as measured by a decline in
ROWft, induced quality-downgrading by Indian firms. Evaluating the impact implied by
our preferred specification (column 8) at the average pre-2005 regulation in the sample
(ROW = 0.1), we estimate the average firm lowered quality e(0.1∗0.589) = 11% due to MFA
liberalization. If higher quality products generate lower emissions per unit of output, than
this reduction in quality could explain the results in section 2.3.

2.5 Concluding Remarks

Previous work has argued that trade liberalization reduces emission intensity of production
in participating countries, either through endogenous regulation or productivity growth.
Neither strand of literature considers “third-party” effects on countries peripheral to the
liberalization. If competition matters for exports, and exporting matters for emission inten-
sity, then emission intensity reductions in countries that gain market share may be offset
by emission intensity increases in countries that are crowded-out of the newly liberalized
markets.

We present the first estimates of this effect in the literature and find that it can be quite
large. Exploiting quasi-natural variation arising from the elimination of quota constraints
under the MFA, we find that Indian exporters in Prowess lost on average 14% export sales
as a result of liberalized trade between the US and India’s competitors. This loss of export
sales was accompanied by an increase in CO2 intensity of 9%. The results do not appear to
be due to fuel-switching, but there is suggestive evidence that capital investments and/or
increased output shares devoted to low-quality/high-emission-intensity varieties may have
played a role.
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Chapter 3

The Impact of Agricultural
Biotechnology on Supply and
Land-Use

With Steven Sexton and David Zilberman

3.1 Introduction

Meeting growing agricultural demand despite severe resource constraints is among the great-
est challenges of the 21st century. New evidence on the environmental cost of land-use change
has raised the stakes, suggesting that externalities associated with cropland expansion are
more costly than previously understood (Fargione et al., 2008). Stagnating crop yield and in-
creasing demand from growing populations, rising meat demand in transition economies, and
increasing biofuel production create tradeoffs between environmentally costly land conversion
and higher food prices (Rajagopal et al., 2007). Like manna from heaven, any technology that
boosts yield per hectare helps navigate this neo-Malthusian dilemma by increasing supply
without converting lands to agriculture.

In this paper, we provide new evidence of how genetically engineered (GE) seeds have
increased aggregate supply, reduced the agricultural footprint, eased pressure on prices, and
abated greenhouse gas (GHG) emissions. The principle GE traits of first-generation biotech-
nology were intended to improve pest control. First commercialized in 1996, insect resistant
and herbicide tolerant seeds allow farmers to better control pests at lower cost, generating
higher yields. To the extent the GE gene increases yield per hectare, the technology not
only increases supply and lowers prices, but also reduces demand for new cropland: without
GE technology, greater agricultural land-base would be needed to meet demand. In this
sense, GE can be said to have preserved lands and “saved” GHG emissions associated with
land-use change.

There exists a large literature estimating GE impacts based on small-scale farm trials
or survey data, which finds moderate yield and pesticide impacts, on average.1 But to our

1In two recent surveys, Carpenter (2010) and Finger et al. (2011) review 49 and 203 studies of GE yield
impacts, respectively, all based on farm-level data. Both reviews find substantial yield impacts across all GE
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knowledge, there are no macro-level econometric studies of yield or price effects.2 Two factors
motivate our interest in a macro (i.e., country-level) analysis. First, while micro-level studies
hold other inputs constant in order to estimate internally valid impacts of the GE gene itself,
the full impact of GE adoption also includes induced changes to complimentary inputs,
including variable inputs like fertilizer, water, pesticides etc, and fixed inputs like farmer
education and land quality. For an aggregate assessment of the technology, we want to include
such complimentary inputs effects. Panel analysis controls for time-invariant differences
between adopters and non-adopters, but allows for endogenous changes to complimentary
inputs.

Second, while micro-level analyses focus on the impact of switching from traditional
technology to GE (i.e., the intensive margin), aggregate data allow us to analyze an extensive
margin owing to expansion of production onto previously unprofitable lands. The extensive
margin has important implications for supply and commodity prices. If GE technology
enables production on extensive margin lands, then the change in supply caused by GE
includes not only the yield gain on the intensive margin, but all of the production on the
extensive margin as well. Thus, taking the extensive margin into account, the supply and
price of GE technology are larger than previously realized. It is beyond the scope of the paper
to attribute increased land-use to the GE technology empirically, but we can decompose
overall GE adoption into intensive margin lands that switch from traditional technology,
and extensive margin lands that were previously devoted to some other purpose. This
decomposition allows us to assess the potential importance of this previously unrecognized
source of supply gains.

In terms of land-use, though the extensive margin means that more (marginal) lands
enter production, overall land inputs would still have to increase to meet a fixed demand
if the intensive margin yield boost from GE were not available. Abstracting from the ex-
tensive margin effect, we can compute “saved” lands as the difference between hectarage
needed to meet observed demand without the GE yield boost and the observed hectarage.
The extensive margin has implications for land-use as well, though the predictions are not
unambiguous. If extensive margin lands come from previously marginal lands, then land-
use saving impacts are larger with the extensive margin effects. Our reasoning here is that
without these marginal lands, extensive margin production would have had to come from
converting nonmarginal lands, which generate more GHG emissions when converted to crop-
land. If, however, extensive margin lands come from deforestation, then GHG emissions
savings might be smaller with the extensive margin, or even negative, as converting forest
to agriculture releases considerable GHG emissions.

We explain both the intensive and extensive margins with a simple adoption model that
yields clear predictions and guides estimation. As in Lichtenberg and Zilberman (1986),
damage control agents (here, GE) raise the marginal product of complementary inputs and
reduce risk, thus increasing yield per hectare. Additionally, marginal lands – on which pest
pressure is initially too high to farm profitably without the GE technology – will be brought
into production once GE becomes available.

We first estimate the yield effect of GE using a cross-country panel of annual hectarage

crops, for the most part.
2Other than a related paper from two of the same authors (Sexton and Zilberman, 2011).
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and output that takes into account complimentary input effects. Our approach builds on the
work of Sexton and Zilberman (2011), which also estimates yield, price, and land-use-saving
effects of different GE crops from a country-level panel. The novel features of our work
here is that we use a longer panel and estimate a different specification from Sexton and
Zilberman (2011) that controls for inter-temporal variation in crop area and land devoted
to GE technology. Endogenous input-use and technology adoption at the farmer level does
not threaten identification as long as the timing of changes in national regulation does not
correlate with trends in variables that correlate with both yield and adoption – education,
risk preferences, etc – and so long as individual farmer adoption decisions are not correlated
with time-specific idiosyncratic deviations in yield-effecting characteristics, e.g., rainfall. We
argue that access to the technology is exogenous, since the licensing of GE technology is
largely driven by political concerns (Just, Alston, and Zilberman, 2006). Furthermore, based
on results from Imbens and Wooldridge (2007), we argue that farmer-level adoption is un-
likely correlated with time-varying shocks, since adoption for the most part monotonically
increases.

Next, we derive an algorithm for quantifying the extensive margin based on the adoption
model and decompose total GE hectarage into intensive margin and extensive margin lands.
We then compute supply and price effects with and without the extensive margin, and
land-use and GHG effects from just the intensive margin. We estimate that in 2010, GE
technology increased the world supply of corn between 5-12%, cotton 15-20%, and soybeans
2-40%. Given a range of estimated elasticities of demand and supply in the literature,
these supply impacts translate into 5-19% lower corn prices, 19-33% lower cotton prices,
and 3-66% lower soybean prices. We also compute the same effects based on other yield
estimates from the literature and find that our estimates imply somewhat higher impacts,
which is to be expected since we take complementary-input and extensive margin effects into
account. Furthermore, we find that absent the intensive margin yield effects, farmers would
have needed to convert another 5 million hectares, 6 million hectares, and 2 million hectares
to corn, cotton, and soybeans, respectively, to match observed 2010 output. Employing
the oft-cited Searchinger et al. (2008) land-use-change GHG release figure, these hectarage
conversions translate into 0.15 Gt of averted GHG emissions, which is, for comparison,
equivalent to about 1/8th the annual emissions from automobiles in the US.

Together, these results suggest that the first generation of GE technology significantly
increased crop production, lowered crop prices, and preserved natural land. These effects
imply the poor likely disproportionately benefit from GE technology since they spend a
relatively large share of their incomes on food. Additionally, as Schelling (1992) famously
argued, the poor are predicted to suffer the most from climate change because they live
in exposed areas and lack the means to adapt. To the extent GE technology lowers GHG
emissions, it also benefits the poor by averting costs related to climate change.

3.2 Model

The first generation of agricultural biotechnology introduced insect resistant (IR) and her-
bicide tolerant (HT) traits into 3 principle row crops in order to mitigate crop damage from
insects and weeds, respectively. There have been several applications of the IR trait thus far,
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having been inserted into corn, cotton and soybean.3 The most notable trait causes plants
to produce the naturally occurring chemical Bacillus thuringiensis (Bt), which is toxic to
common agricultural pests, like the European corn borer, but harmless to humans and rel-
atively environmentally benign. In producing the toxin, which has been applied to plants
for nearly a century and is employed in modern organic farming, GE crop plants fend off
pests without chemical applications by farmers. HT crops express tolerance to glyphosates,
a class of broad-spectrum, low toxicity herbicides that includes Round-Up, a Monsanto prod-
uct employed also in residential settings. Such tolerance, introduced into corn, soybeans and
canola, allows farmers to more easily control weeds. Absent HT varieties, farmers must rely
more heavily on pre-emergence weed control, like tilling operations, and on more toxic and
narrow spectrum chemicals that can target weeds without impacting the crop plant.

The IR and HT traits can be modeled as damage control agents that reduce the fraction of
crop lost to pests. The framework was first introduced by Lichtenberg and Zilberman (1986)
to model pesticide adoption, and subsequently applied to GE by Qaim and Zilberman (2003).
A wide range of applications followed and are reviewed by Qaim et al. (2009) and Benjamin,
Sithole-Niang, et al. (2013). We apply the generalized framework from Sexton and Zilberman
(2011) to show how adoption boosts supply on the intensive margin through both a gene
effect and complementary-input effects, and along the extensive margin by expanding the
range of land that can be profitably farmed.

Production occurs on lands that differ only with respect to pest pressure, denoted by n.
The pest pressure at a location may be measured by the average number of pests absent the
use of any mitigating agents (like pesticide). Farmers have access to two seed technologies
indexed by i with i = 0 denoting traditional seed varieties, and i = 1 denoting GE vari-
eties. GE varieties are considered damage control inputs that affect yields only indirectly by
reducing the fraction of crops lost to pests, which affects both the mean and risk of produc-
tion. We assume a Just and Pope (1978) and constant return to scale production function
following Just and Zilberman (1988). Thus production per unit of land with technology i is
denoted by

yi = f (zi) g (i;xi, n) + h (zi, i;xi, n) ε (3.1)

The deterministic part of the production function is the product of expected potential out-
put f (zi), the average output without pest damage, and the expected efficacy of production
g (i;xi, n), the share not lost to pest damage. Expected potential output is a concave func-
tion of inputs like fertilizer per unit of land zi that increases output directly.4 Expected
efficacy g (i;xi, n), lies between 0 (complete crop destruction) and 1 (no pest damage) and
is increasing in pesticide use and decreasing in pest pressure.5 It is assumed that on aver-
age pest damage is lower under the GE technology than under the traditional technology
g (0;x, n) < g (1;x, n). The stochastic element of the per unit of land production function,
h (zi, i;xi, n) ε, is multiplicative in ε a random variable with zero mean and variance σ2. It

3Another substantial feed crop that has adopted GE is rapeseed, but the hectarage and impact is much
less substantial and therefore it is not addressed in this paper

4We assume that when the farmers evaluate the GE technology they consider the number of seeds to be
constant under both technologies. This seems reasonable because seeding density tends to depend heavily
on cultural practices exogenous to the seed technology choice.

5xi is a measure of the pesticides that are substitute to the GE technology, the pesticides that are part
of the GE technology (roundup in the case of herbicides tolerant varieties) are considered part of it.
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is assumed that risk is increasing with fertilizer use, i.e, ∂h
∂zi
≥ 0, and the pest infestation

∂h
∂n
≥ 0 and declining with the level of the pesticides use ∂h

∂xi
≤ 0. It is also reasonable to

assume that the risk is smaller after adoption of GE technology (Bennett et al., 2013) so
that h (z, 0;x, n) > h (z, 1;x, n).

Let p, w and v denote exogenous prices of outputs, pesticides, and productive inputs,
respectively.6 When farmers initially evaluate the GE technology, they assume seed density
per hectare to be constant under both technologies, because changes in seeding density is
associated with exogenous cultural practices. The seed cost per unit for technology i is
denoted by ki and it is assumed that k1 > k0, since seed companies assess technology fees
for access to proprietary GE varieties.7

Because of the concern for segregation between GE and non-GE products we assume
that a small producer makes a choice between the two. As in Just and Zilberman (1988) we
assume constant absolute risk aversion, with a coefficient denoted by r, and a normal distri-
bution of risk. Under these conditions, the maximization of expected utility is equivalent to
maximization of expected profit adjusted for expected risk cost:

Vi = max
zi,xi

pf (zi) g (i;xi, n)− wxi − vzi − ki − .5rp2 [h (zi, i;xi, n)]2 σ2 (3.2)

The first term of Vi is expected revenue, followed by the costs of pesticides, fertilizers and
seeds, minus the expected costs of risk – the product of variance of profits multiplied by
the marginal cost of risk per unit of variance of profits. Solving this optimization problem,
where the optimal outcomes are denoted by z∗i and x∗i respectively suggests that the optimal
fertilizer level under the ith technology is determined by

∂f (zi)

∂zi
g (i;xi, n) = v + rp2 ∂h

∂zi
h (zi, i;xi, n)σ2 (3.3)

Equation (3.3) states that optimal level of the fertilizer z∗i is where marginal contribution
of fertilizers to expected revenue is equal to the price of fertilizers plus the marginal increase
in risk because of added fertilizer. Comparative static analysis suggests that more fertilizer
will be applied with GE than without z∗1 ≥ z∗0 . Also, as the pest pressure (n) increases,
the expected marginal gain from fertilizers declines, and the marginal risk costs of fertilizers
increases, so that application of fertilizers declines (dzi/dn ≤ 0). This impact on fertilizer
contributes to the decline of expected profits adjusted for risk with the pest population.
Since pest damage increases less under GE, the reduction in fertilizer use as pest pressure
increases is lower with GE than without it (dz0/dn ≤ dz1/dn ≤ 0).

The optimal level of the pesticide x∗i is where the marginal contribution of pesticides to
expected revenue is equal to their price less the marginal increase in the cost of risk because
of pesticides use, i.e.,

∂g (i;xi, n)

∂xi
f (zi) = w + rp2 ∂h

∂xi
h (zi, i;xi, n)σ2. (3.4)

6Results would be qualitatively the same if we allowed output prices to differ across the two technologies,
so we assume identical prices for simplicity.

7Pesticides that are complementary to the GE variety are assumed to be applied at a fixed quantity and
are considered part of the technology, hence adding to its costs.
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Because the GE combats pests, the marginal productivity of the pesticides it substitutes
is smaller for every level of pest damage, and, thus, less of these pesticides are applied
with GE, i.e., x∗0 ≥ x∗1. Because the expected marginal gain from pesticides increases and
the marginal risks costs of pesticides declines, application of fertilizers increases with pest
pressure (dx∗i /dn ≥ 0). This increase is likely to be greater with the non GE (dx0/dn ≥
dx1/dn) which will further increase its relative costs.

Introduction of GE technology has several effects in comparison to the traditional tech-
nology. First, there is a “gene” effect of reducing pest damage. Second, there is a related
effect of increasing seed cost. Third, GE induces a substitution effect, reducing pesticides
use (altogether we assume that “gene” effect dominate the substitution effect on pest dam-
age). Finally, there is an indirect (complementarity) effect of increasing fertilizer use. The
“gene” effect (net of substitution) is likely to increase (expected) yield and reduce risk.8 The
indirect effect on fertilizers is likely to increase expected yield and risk further. Furthermore,
our analysis suggests that since the GE technology is more capable of addressing the pest
pressure, the reduction in expected profits adjusted for risk with GE is smaller than without
it (dV ∗0 /dn ≤ dV ∗1 /dn ≤ 0).

The model enables assessment of the impact of risk and risk aversion on various outcome
measures. Without risk (σ2 = 0) or under risk neutrality (r = 0), conditions (3.3) and (3.4)
do not include the risk component. That means that under these conditions fertilizers use
will increase and use of pesticides will decline.9 This means higher (expected) yield and
higher variance of profits under risk neutrality. This also means that the net gain from
adoption of the GE technology with (d (V ∗1 − V ∗0 ) /dn ≥ 0) increases with pest pressure.

Producers adopt the technology that yields highest expected profits (adjusted for risk).
Their problem is solved recursively. First, conditional on seed technology choice and pest
pressure, they choose variable inputs (pesticides and fertilizer). Then they choose the seed
that yields highest expected profits, conditional on optimal input use and provided expected
profits are non-negative. Given heterogeneity in pest conditions, adoption follows the thresh-
old model (David, 1969; Feder, Just, and Zilberman, 1985), in which more vulnerable farmers
who gain most from a new technology adopt first and aggregate adoption increases over time
as the technology improves or costs of adoption fall.

For a given period, the adoption pattern predicted by the model can be depicted as in
Figure 1. Line segment AB depicts profit per hectare as a function of initial pest pressure
under the traditional technology and line segment CD depicts the same for the new tech-
nology. At locations with low pest pressure, it is profitable (from now on we will use the
term profitable to mean expected profitability adjusted for risk) to farm under either seed
technology, but the conventional technology yields higher profits because crop losses are too
small to compensate for the technology fee. Thus, below a threshold nl, farmers produce
using the traditional technology. For pest pressure greater than nl and less than a threshold

8The gene effect need not be positive. Adoption of GE tends to reduce damage of pests targeted by
the GE trait. On the other hand if the trait is not introduced in the best local variety there is a yield loss.
For example, Benbrook (1999) found that adoption of HT yield tolerance variety may result in ”yield drag”.
We expect that if adoption occurs the damage reduction effect is greater than the variety effect (Qaim and
Zilberman, 2003).

9This is consistent with the Just and Pope (1978) prediction that use of risk increasing (decreasing)
inputs declines ( increases) under risk neutrality and when risk is increasing.
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Figure 3.1: Adoption of GE Technology
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Notes: The figure plots optimized profits on the y-axis against initial pest pressure on the x-axis.

nm, it is profitable to use either technology, but higher crop losses from greater pest pressure
make damage abatement more valuable so that the new technology yields higher profits.
Above nm and below a high threshold of pest pressure, nh, it is not profitable to produce
under the conventional technology, but it is profitable to produce under the new technology.
Above nh, it is not profitable to produce under any technology; such land is unfarmed.

The area between nm and nh is where farmers adopt the new technology and recruit into
production land that was too marginal to be profitably farmed under the old technology. This
area represents the extensive margin, which we are particularly interested in quantifying. The
pest pressure levels nl, nm, nh determine the adoption decision, but the overall magnitude of
adoption depends on the amount of land associated with each level of pest damage. If, for
example, there is a small amount of hectarage between nl and nm and large amount of land
between nm and nh, then the intensive margin is small in magnitude while the extensive
margin is large. On the other hand, if there is no land with pest damage below nm, then



CHAPTER 3. THE IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON SUPPLY
AND LAND-USE 69

there is no extensive margin and all the impact is intensive. We return to this issue when
we decompose adoption into intensive and extensive margin lands.

3.3 Estimation

To compute supply, price, land-use, and GHG impacts of GE technology, we first compute
intensive margin yield impacts from real-world (i.e. non-experimental) production data.
While a vast literature estimates yield parameters from farm-level survey or experimental
data, we use a cross-country time series of adoption and yield to assess the overall impact
of the technology. Our estimates can be interpreted as the average treatment on the treated
effects and are inclusive of all complimentary input effects. One reason that previous work
has focused on farm-level data is that until recently, there has not been enough annual
observations with positive adoption levels at the country level to consistently estimate macro
yield parameters; however, with initial commercialization in 1996, we now have sufficient
“treatment” exposure to estimate impacts from within-country time series variation in GE
adoption.

In Figure 3.2, we plot world aggregate adoption by crop over time. Area planted to GE
varieties was provided by Graham Brookes, who compiled the data from the International
Service for the Acquisition of Agri-Biotech Applications. We can see that GE adoption scaled
incredibly fast. In 2010, 15 years after the commercialization of GE technology, GE corn
accounted for 42 million ha worldwide across 14 countries, representing 25% of world corn
hectarage, GE cotton accounted for 19 million ha worldwide across 10 countries, representing
60% of total cotton hectarage, and GE soybeans accounted for 72 million ha worldwide across
9 countries, representing 70% of total soybean hectarage.

Though GE adoption was rapid, enthusiasm for GE was not shared equally across crops
and countries. In Table A.3, we report adoption by crop and country for the years 2000
and 2010. The table includes all 26 countries that planted any GE seed from 1996 to 2010.
Cumulative hecatres over the entire adoption period planted to GE seed in any of the three
crops is reported in the last column. The US is by far the largest adopter, accounting for
58% of total cumulative adoption, with Argentina and Brazil following with a combined 30%
of total adoption, mostly in soybeans. India and China follow next, with a combined 7% of
total adoption, mostly in cotton. Outside of these 5 major adopters, 21 other countries had
planted some GE seeds in at least one of the 3 crops by 2010, though at much lower levels.
Our strategy is to exploit this variation in adoption rates over time to estimate yield effects.

While country-level data are well-suited to estimating global effects – where “global”
means inclusive of all corresponding changes induced by adoption – estimating production
function parameters at the aggregate level is problematic. Felipe and Fisher (2003) show
aggregate production function are weighted sum of micro level production function that may
change over time and reflect spatial and dynamic variability. Thus, estimating parametric
coefficients with aggregate data is feasible only under restrictive assumptions. In agriculture,
however, a large literature uses macro data to identify nonparametric productivity coefficients
(Huffman and Evenson, 1992). Following this tradition, we develop a simple method to
recover the yield effects of adoption from aggregate national data by decomposing aggregate
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Table 3.1: Area Planted to GE seeds (Millions of Ha) by Country

Cotton Corn Soybeans All Crops

2000 2010 2000 2010 2000 2010 1996-2010

United States 3.83 4.11 8.05 28.19 18.21 29.35 579.51
Argentina 0.03 0.44 0.58 2.75 8.64 18.02 188.78
Brazil 0.00 0.37 0.00 7.51 1.30 18.36 110.63
India 0.00 9.40 0.00 0.00 0.00 0.00 36.30
China 1.22 3.45 0.00 0.00 0.00 0.00 34.38
Canada 0.00 0.00 0.45 1.13 0.21 1.03 17.53
Paraguay 0.00 0.00 0.00 0.00 0.09 2.67 16.47
South Africa 0.02 0.01 0.08 1.88 0.00 0.31 11.73
Uruguay 0.00 0.00 0.00 0.10 0.00 0.86 3.61
Bolivia 0.00 0.00 0.00 0.00 0.00 0.78 3.06
Australia 0.17 0.21 0.00 0.00 0.00 0.00 2.04
Philippines 0.00 0.00 0.00 0.54 0.00 0.00 1.81
Mexico 0.03 0.05 0.00 0.00 0.00 0.02 0.68
Spain 0.00 0.00 0.03 0.08 0.00 0.00 0.61
Romania 0.00 0.00 0.00 0.00 0.04 0.00 0.44
Burkina Faso 0.00 0.26 0.00 0.00 0.00 0.00 0.38
Colombia 0.00 0.04 0.00 0.04 0.00 0.00 0.25
Honduras 0.00 0.00 0.00 0.01 0.00 0.00 0.05
France 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Czech Republic 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Portugal 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Bulgaria 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Germany 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Slovakia 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Egypt 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Poland 0.00 0.00 0.00 0.00 0.00 0.00 0.00
# Adopting Countries 6 10 6 14 7 9 26

Notes: Table values represent millions of Ha planted to GE technology in the given crop-country-
year. Countries are sorted on cumulative adoption over the entire period, which is reported in the
last column. Data comes from Graham Brookes.
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Figure 3.2: World Area Planted to GE Seeds by Crop
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output into sources of variability in the data. This decomposition approach is similar to
the one used in Just et al. (1990). We use the land share of GE as a measure of adoption,
while dummy variables allow for variation over crops, countries, and time (Feder, Just, and
Zilberman, 1985). Statistical power constrains our ability to estimate parameters beyond
average effects, but with more data one would be able to further investigate the impact of
interaction between factors.

According to equation (3.1), yield per hectare depends on prices, pest pressure, and the
technology choice, with no scale effects. The assumption of perfect input and output markets
implies prices effects are captured by year dummy variables. The time-invariant component
of pest pressure is likewise absorbed by country dummies, along wth all other time-invariant
unobservable determinants of adoption. Remaining agnostic on the precise functional form
in (3.1), the model implies we can write the deterministic component of yield per hecatre
ycti in country c, in year t with technology i as the sum of a technology effect βi country
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effect αc and time effect γt:
ycti = βi + αc + γt (3.5)

where γt absorbs the intertemporal impact of prices common to all countries and αc absorbs
time-invariant determinants of yield, such as land quality and pest pressure. The structural
technology parameters βi are the parameters of interest.

Total output for a given crop per country-year (Qct) can be written as the sum of output
produced with technology i ∈ 0, ...I:

Qct =
I∑
i=0

Qcti =
I∑
i=0

yctiLcti (3.6)

where Lcti is land planted to technology i in country c in time t. Substituting for ycti, we
have:

Qct =
I∑
i=0

[βi + αc + γt]Lcti (3.7)

Sexton and Zilberman (2011) estimate the technology parameters with a fixed effect model:

Qct = δ0Lct + δ1Lct1 + γtDt + αcDc + νct (3.8)

with i = 0 denoting traditional seed technology i = 1 denoting GE technology and Dt

and Dc representing dummies for years and countries. While the fixed-effect model (3.8)
controls for country and time specific unobservables that correlate with adoption, it sub-
sumes country-time specific hectarage deviations in the error term, which correlate with the
adoption decision.10 This correlation generates bias in the δi’s, as they pick up some of
the country and time specific effects, which multiply the deviations in νct. The direction of
the bias is ambiguous, but since bigger countries adopted GE more heavily, it is likely that
Sexton and Zilberman (2011) overestimate the technology effect.

Departing from Sexton and Zilberman (2011), we divide (3.7) through by total hectarage
and simplify:

yct = β0sct0 + β1sct1 + γt + φc + εct (3.9)

10To see this, note that time and country dummies can be rescaled with time and country averages

Qct = δ0Lct + δ1Lct1 + γtDtL̄t + αcDcL̄c + νct

but that a direct derivation from (3.7) delivers

Qct = δ0Lct0 + δ1Lct1 + γtDtLct + αcDcLct + εct

The use of Lct instead of Lct0 does not matter, since it just alters the definition of the excluded category.
But multiplying the time and country effects γtDt and αcDc by L̄t instead of Lct means that country-time
specific deviations appear in the error term multiplied by the time and country effects γt and αc:

Qct = δLct0 + δ1Lct1 + γtDtL̄t + +φcDcL̄c + γtDt

(
Lct − L̄t

)
+ φcDc

(
Lct − L̄c

)
+ εct︸ ︷︷ ︸

=νct

The country-time deviations from averages Lct − L̄t and Lct − L̄c in νct are obviously correlated with Lct0
and Lct1.
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where yct is yield per hectare, sct0 and sct1 represent shares of hectarage devoted to traditional
and GE technology, respectively (again, i = 0 denoting traditional seed technology i = 1
denoting GE technology), and εct represents an idiosyncratic shock to country-level yield per
hecatre. Coefficients β0 and β1 correspond directly with the structural parameters in (3.5)
and are recovered by estimating (3.9) via OLS.

In estimating (3.9), as in Sexton and Zilberman (2011), the key identification assump-
tion is that country-level adoption shares sct0 and sct1 are orthogonal to the time-varying
shocks εct. Though adoption is not randomly assigned, we argue that unconfoundedness
is likely to hold. There are two components of country-level adoption. First, governments
have to approve the technology crop by crop. Just, Alston, and Zilberman (2006) argue that
this process is driven largely by political concerns, and hence can be taken as exogenous to
unobservable determinants of yield. Second, conditional on government approval, farmers
adopt. While it has been shown that GE-adopting farmers are more educated (Crost et al.,
2007), and less risk-averse (Liu, 2013), and so should have systematically higher yields, to
the extent that unobservable farm or farmer characteristics are time-invariant, they are ab-
sorbed by the country dummies. Given endogenous selection at the farm-level, our aggregate
estimates should be interpreted as average treatment on the treated (ATT) measures, where
the “treated” here refer to adopting farmers within adopting countries.

One remaining concern is that time-varying shocks to prices or pest pressure – possibly
through weather – could bias estimates in equation (3.9). But because adoption tends
to monotonically increase over the sample, time-varying shocks likely do not influence the
adoption decision too much. As Imbens and Wooldridge (2007) noted, if sct1 > scr1 for
r < t, then strict exogeneity is a reasonable assumption. Intuitively, if farm-level adoption
in period r were induced by a stochastic positive shock to an underlying characteristic, like
weather, then a stochastic negative shock to the same characteristic at a time t > r should
induce switching back to traditional technology in period t. Since reductions in sct1 are
rare (only 79 instances out of 4989 possibly country-crop-year observations since 1996), we
conclude idiosyncratic shocks to farm or farmer characteristics are unlikely to bias estimates
in (3.9).11

For each GE crop ∈ {corn, cotton, soybeans}, we estimate equation (3.9) with the same
data sources as in Sexton and Zilberman (2011), though we extend the panel to include
more years. Output and area by crop-country-year for 1990-2010 come from FAO Stat.
Descriptive statistics are reported by crop and adopting vs non-adopting countries in Table
3.2, where “adopting countries” have positive GE area for some year for the given crop. The
panel for each crop includes all GE adopters and all other 100 top-producing countries.12 We
drop observations with 0 output (134 for cotton, 43 for corn, 151 for soybeans) generating
an unbalanced panel for each crop. We find in Table 3.2 that adopting countries have higher
yields per hectare and higher harvested area in all three crops. Some of the difference is
attributable to selection bias into adoption at the country-level, while some (potentially) is

11A similar justification based on sequential exogeneity was made in Sexton (“Automatic Bill Payment,
Price Salience, and Consumption: Evidence from Residential Electricity Consumption”)

12There are only 93 soybean producers and 95 cotton producers in the FAO data, so for these crops, we
keep the entire sample. There are 173 corn producers, so we censor to only keep the top 100, which includes
all 19 GE adopters
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due to adoption of GE. We control for country fixed-effects in order to distinguish between
the two.

In Table 3.3 we report estimates of equation (3.9) by crop. The regression coefficients
for traditional and GE technology correspond directly with the structural yield parameters
β0 and β1. In Panel A, we begin in columns 1, 4, and 7 by estimating (3.9) via OLS for
cotton, corn, and soybeans, respectively. All regressions include year and country fixed-
effects. Standard errors are clustered at the country level, so estimates are robust to serial
correlation in the error term. For all crops, the coefficients for both traditional and GE yield
are individually significant, jointly significant, and statistically different, all at the 1% level.
The yield effect can be computed as β1−β0

β0
∗100 and is reported in Panel B.13 We find that the

yield effect for cotton is 34%, corn is 12%, and soybeans is 3%. By contrast, the yield effects
from Sexton and Zilberman (2011) are 65% for cotton, 45% for corn, and 13% for soybeans,
again all significant at the 1% level. Our estimates here are smaller than those from the
Sexton and Zilberman (2011) specification, but still mostly larger then other studies in the
literature (see Qaim et al. (2009)). This is likley due to the fact that our estimates are based
on real-world outcomes, and hence are inclusive of all complimentary input effects. The one
exception is that we find almost no yield impact of GE soybeans. The small impact on
soybeans are possibly explained by “yield drag” resulting from the HT trait. Indeed much
of the benefits from planting HT crops is due not to any inherent yield advantage but the
lower cost of managing weeds. Considerable evidence exists that the presence of HT traits in
a crop actually lowers yield (Benbrook, 1999). However as we show in latter sections, even if
the yield gain from GE soybeans is low, GE may still boost soybean supply via the extensive
margin.

Next, in columns 2, 5, and 8 of Table 3.3, we estimated weighted regressions to account
for difference in country size. Weights correspond to total agricultural area of the country.
Point estimates are still all significant, jointly significant, and different from each other.
Implied yields increase substantially for all crops, reflecting the correlation between country-
level adoption and country size: larger countries adopted more heavily (eg US, China, India,
Brazil), and their yields increased due to GE, so the average GE effect seems larger when we
weight by size. Finally, in columns 3, 6, and 9, we log the dependent variable and weight by
size. While the model does not call for logs, it is a common specification in the literature,
so we include it for comparison (Lobell, Schlenker, and Costa-Roberts, 2011).

All three specifications deliver significant GE yield impacts. The specifications reported in
columns 1, 4, and 7 provides yield effects estimates that are below those reported in columns
2, 5, and 8 and somewhat above those in columns 3, 6, and 9. As our baseline specification
corresponds directly with the statistical model and the results lie between the two other
specifications, we prefer the baseline and use the implied yield impacts in columns 1, 4,
and 7 to derive supply, price, and land-use effects, though we note that other specifications
common in the literature (i.e., columns 2-3, 5-6, 8-9) also deliver positive GE yield impacts,
though at significantly different magnitudes.

13In the case of logged dependent variable, the yield impact is expβ1 − expβ0

expβ0
∗ 100
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3.4 Extensive Margin

The previous section estimates the increase in yields associated with switching from tra-
ditional technology to GE (intensive margin switching), though the adoption model also
predicts that GE brings more land into production by extending the range of land that can
be profitably farmed. If this relationship is causal, as the model predicts, then output on
the extensive margin should be credited to the GE technology, thereby increasing the supply
effect of GE seeds. As mentioned in the introduction, we estimate the quantity of new land
converted to a given crop since GE was introduced, though we cannot attribute this extensi-
fication to the GE technology. We will compute supply and price effects under the bounding
assumptions that none (all) of the production on the extensive margin is attributable to GE
to understand how important the effect could be.

With plot-level data, the task of decomposing the supply effect into intensive and exten-
sive margins is a simple matter of separating the plots that switched from traditional to GE
from those newly planted to GE and summing over the yield increases in each group. Since
our data is country-level, additional structure is needed to guide the calculation. We appeal
to the adoption model from Section 2 again to generate the necessary structure.

To illustrate the strategy, consider again Figure A.3. In some base year – prior to GE
entry – the profit curve with traditional technology is given by line segment AB. In a future
period, GE becomes available and generates profit curve CD. Suppressing time and country
indices, let ∆L0 and ∆L1 denote the change in traditional and GE hectarage between two
periods, with the total change in area ∆L = ∆L0 + ∆L1. Total hectareage expands in the
figure by ∆L = D − B, and GE hectareage expands by ∆L1 = D −X, where X indicates
the break-even point on GE technology. As described in Section 2, the extensive margin,
denoted ext, is given by nh − nm, or

ext = ∆L = D −B (3.10)

Furthermore, the intensive margin, denoted int, is given by nm − nl, or

int = ∆L0 = B −X (3.11)

Thus, in this case, all we need to compute the intensive and extensive margins are the change
in total hectareage ∆L and the change in traditional technology hectareage ∆L0, which are
figures readily computed from the data.

While this simple example illustrates how the adoption model generates enough structure
to calculate intensive and extensive hectareage from the aggregate data, the example is not
sufficiently general to handle all cases. In particular, we have assumed that the traditional
technology profit curve does not change over time. In this case, we have ∆L1 > ∆L > 0,
and thus equations (3.10) and (3.11) yield the intensive and extensive margins. However,
in reality, prices, growing conditions, and policy all change from year to year, which shifts
the traditional technology profit curve. If this profit curve shifts concurrently with the
entry of GE technology, we could observe ∆L > ∆L1 > 0, for example. In this case,
the switchover point X would exceed the x-intercept of the original traditional technology
profit curve, implying that all traditional technology hectares from the base year remain
traditional technology hectares in the future year. I.e., in such a case there is no intensive
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margin switching. All GE hectares should be counted as extensive margin. Furthermore,
it’s possible that the traditional technology curve shifts in such that ∆L < 0. In this case,
no new lands enter production in the future year, so there can be no extensive margin. In
this case, all GE lands should be considered intensive margin.

The general structure for these three cases are presented in Table 3.4. The three cases are
distinguished by the ordering of ∆L1, ∆L, and 0. In the first case (which includes the first
example above), ∆L1 > ∆L > 0, and there is adoption on both the extensive and intensive
margins.14 For this ordering to occur, it is possible that the traditional profit technology
curve shifts in or out, but it must be that X

′
, the observed break-even point in the future

period, lies to the left of the initial x-intercept, B. That is, in order for the change in GE
hectarage to exceed the change in total hectarage, there must be some intensive margin
switching, which implies the break-even point exceeds the initial marginal hectare. In Table
3.4, we illustrate this case in the first row with a small outward shift of the line segment
AB to A

′
B
′
. The column labeled “Ordering” describes the case, and the columns “int”

and “ext1” give the calculation of the intensive and extensive margins (“ext1” indicates
extensification with GE technology, while “ext0” indicates extensification with traditional
technology, and ext = ext1 + ext0). We find that the intensive margin is computed as the
negative of the change in traditional technology hectarage (B − X

′
), while the extensive

margin is computed as the change in total hectarage (D−B). In the second case, illustrated
in row 2, we have a large outward shift in AB such that X

′
> B. In this case, the total

extensive margin is given by the change in total hectarage D − B, but these hectares are
divided between extensive margin traditional hectares, ext0 = X

′−B, and extensive margin
GE hectares ext1 = D−X ′ . There are no intensive margin hectares.15 In the final case, AB
shifts in such that the total hectarage decreases. With no new hectares entering production,
ext = 0, and any GE hectares come from the intensive margin int = ∆L1 = D −X ′ .

The three cases in Table 3.4 exhaust the possible outcomes when comparing any post-
adoption year to the pre-adoption base year.16 Using the data described in Section 3, for
every country c and year t, we compute the change in total area and GE area (for each crop)
between year t and some pre-adoption base year b as ∆Lct = Lct−Lcb and ∆Lct1 = Lct1−Lcb1,
where the base year is defined as the year immediately prior to the first positive value for
GE hectarage for the given country-crop observation. Given ∆Lct and ∆Lct1, we classify
every country-crop-year as belonging to one of the three cases in Table 3.4 and compute
the corresponding intensive and extensive margins according to the formulas in columns 3
and 4.17 We then sum over the given year to generate world hectarage by crop, divided be-

14This will only occur if there is land available on the extensive margin and the land with the highest
pest damage has more pest damage than nh in Figure 1. See Section 2.

15Of course, extensification only occurs if there exists lands with pest damage that is greater than point
B

16A fourth case corresponds to the possibility that AB shifts out so much that traditional technology
profits dominate GE profits for any initial pest pressure. In this case, GE hectarage equals 0, so trivially
ext = int = 0. We leave this case out of Table 3.4 to reduce clutter, but we allow it in the empirical exercise.

17The model predicts extensification onto marginal lands that presumably were not used for anything
before the introduction of GE. In this sense, the extensive margin is extensive to agriculture overall. However,
we want to quantify the extensive margin to a given crop so that we can compute supply effects by crop.
Defining the extensive margin as crop-specific means that extensive margin lands might be coming from any
previous employment other than the production of the given crop, including the production of other crops.
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Table 3.4: Computation of the Intensive vs Extensive Margins

(1) (2) (3) (4)

Case Ordering
Intensive

Margin (int)
Extensive

Margin (ext1)
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Notes: Intensive and extensive margin lands are computed based on the ordering of ∆L1,∆L, 0. The three
cases are summarized in the different rows here. The first column depicts the case graphically. Column 2
reports the ordering. Column 3 reports the formula for the intensive margin. Column 4 reports the formula for
the extensive margin.
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tween traditional seed technology, GE intensive margin hectarage, and GE extensive margin
hectarage. We present results for corn, cotton and soybeans in Figure 3.3.

In Figure 3.3, we find that for corn, most adoption of GE occurred on the intensive margin,
with the extensive margin only accounting for 16% of total GE hectarage in 2010. The share
of GE corn hectarage in total corn hectarage is not very large (26%), but because total corn
hectarage is so large (the largest world hectarage of all crops) absolute extensification is still
substantial. In cotton, overall GE cotton adoption rates are much higher (57%), though
mostly still on the intensive margin (only 12% extensive margin). By contrast, adoption of
GE soybeans has been high (70%) and more concentrated on the extensive margin than the
other crops (49%). As a result, soybean hectarage grew more than 50% since the introduction
of the GE seed.

The data shows that much of the potential of GE has been realized in cotton and soybean.
In the case of cotton, there is a relatively small extensive margin effect, and the adoption of
most of the GE has occurred on land previously in production. However, GE cotton is the
only GE crop that has been adopted globally, as it did not suffer from bans that apply to
corn and soybean. In the case of soybean, the high rate of adoption of GE is attributable
to an expansion of the hectarage of the crop (thus the large extensive margin effect), and
virtually all of the adoption of GE soybean occurs in the U.S., Brazil, and Argentina. In the
case of corn, a majority of corn in the world is located in countries in Europe and Africa
that have banned the adoption of GE corn, and therefore overall adoption is below 30% of
global hectarage. Because yield per hectare of adopters is higher than that of non-adopters,
the GE share of corn is about 43%. Nevertheless, there is a large potential for increased
adoption of GE corn if practical bans on the technology are removed.

Breaking down GE area by country, we find that our estimates of extensification are
broadly in line with country-specific aggregates. For example, in the case of cotton, 70%
of adoption occurred in India and China in 2010, where total agricultural area has actually
declined slightly since the introduction of GE seeds.18 However, we estimate that only 20%
and 4% of GE cotton adoption respectively for India and China occurred on the extensive
margin. With such low GE cotton extensification, it is entirely possible that declining
footprints in other crops contributes to overall lower agricultural land base. By contrast,
72% of the extensification effect in soybeans in 2010 is estimated to have come from Brazil
and Argentina, where total agricultural land base has increased since 1995. In fact, 86%
of extensification across all crops is estimated to have originated in Brazil, Argentina and
the US, where total agricultural area has increase by a combined 2 million hectares since
1995. Thus, while total agricultural area has not increased in all GE adopting countries, it
has increased where our model predicts large extensifications from GE. While a complete
analyses of these transition dynamics would require a deeper structural model, it seems the
aggregate flows of country-level agricultural area are consistent with our estimates of GE
extensification.

This definition of the extensive margin is broader than the one proposed by the model, however, absent plot-
level time-series data, it is impossible to know from where the extensive margin is recruited. Thus, defining
the extensive margin as all hectarage not previously devoted to a specific crop is as precise as we can be given
data constraints.

18We thank an anonymous referee for pointing this out to us.
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Figure 3.3: World hectarage of GE Crops by Technology and Intensive/extensive Margins
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Notes: For each crop cotton, corn, and soybeans, we plot total world area broken down by traditional
technology, GE adopted on the intensive margin, and GE adopted on the extensive margin. Area is millions
of Ha harvested. Intensive margin indicates lands that switched from traditional technology to GE in the
same crop, while extensive margin indicates lands that switched from some other crop or purpose into
producing the given crop with GE seeds. GE area is divided between intensive margin and extensive margin
by the algorithm described in Section 4.
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As discussed above, the model predicts that the extensive margin draws from lands
that were previously too low-quality (high pest pressure) to farm profitably. In the data,
extensive margin lands could draw from marginal land or any other land that was not
previously employed in the given crop. Without plot-level data, it is difficult to determine
from which uses extensive margin lands are recruited. Given that most of the extensification
occurred in Brazil and Argentina, there is some concern that extensive margin lands result
from deforestation, rather than the incorporation of marginal lands. In fact, the stock of
forested lands has declined since the introduction of GE seeds, but recent research fails to
establish a causal link between soybean expansion and deforestation (Hausman, 2012).

An alternative explanation of the extensive margin owes to particularities of the data
collection process. Total harvested area from FAO generally counts physical plots, but the
GE data counts plot-seasons, i.e. the number of plot-seasons using GE seeds over the year.
Thus, if farmers plant multiple seasons within the year using GE technology, it would look like
extensification in the data, though really the physical footprint has not increased. Trigo and
Cap (2006) attribute some of the 9.9 million-hectare expansion of soybean area in Argentina
to such “double-cropping” activity.19 It is consistent with our model that GE technology
permits double-cropping by extending the range of initial pest pressures accommodated by
profitable farm operations. In one example, HT varieties permit control of weeds after the
crop plant has emerged from the ground, which speeds up production and allows time for
follow-on crops to maturate. A fuller description of land-use change dynamics resulting from
GE seeds is the subject of ongoing research.

3.5 Estimated Impacts

What do the intensive and extensive margin mean for supply, prices, land-use, and GHG
emissions? While it is beyond the scope of this paper to conduct a full general equilibrium
analysis, we can assess magnitudes of these impacts in partial equilibrium in two thought
experiments. First, we construct a counterfactual supply curve for each crop assuming that
GE technology had not been available in 2010. The impact is the horizontal shift in the
supply curve caused by the technology. Then, conditional on assumptions of the elasticity
of supply and demand, counterfactual equilibrium quantities and prices are computed. The
price impact is the percentage difference between counterfactual price and observed price.
Next, to assess the land-use impacts, we calculate how much more land would have been
needed to meet observed 2010 demand if GE technology were not available. Finally, we
multiply the land-saving figure by a constant GHG per hectare emission rate to compute
averted GHG emissions. All impacts are estimated country by country (for each crop) and

19Quoting from Trigo and Cap (2006) p. 24: “The second source of benefits has its source in the expansion
of the area planted with soybeans, above the trend pre-existing before 1996. This occurred through two
mechanisms: the first one was the increase in double-cropping, especially through the combination no-
till farming – GE soybeans. This implies that this segment of the area expansion took place without
substitution for other crops. The second one is the widening of the ‘agricultural frontier’ of soybeans towards
non-Pampean regions where it substituted for other crops, especially cotton and also ventured into areas
considered, until then, ‘marginal’ for agriculture, where it substituted for livestock production, resulting in
an increase in the stock of arable land, induced by a technological innovation.”
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then aggregated to global figures. We relegate most of the details to the online appendix
and just present the results here.

We define the supply effect as the horizontal shift in the supply curve due to GE technol-
ogy. Only considering the intensive margin yield impact, the supply effect is the percentage
difference between observed supply and the counterfactual supply that would have obtained
from planting all harvested lands with the lower-yielding traditional technology. However,
if one attributes production on the extensive margin to GE technology as well, then the
counterfactual supply should subtract production on extensive margin lands as well. We
calculate supply effects under these two bounding cases using both our own estimated yield
impacts of from section 3, and a range of other yield impacts from the literature.

As shown in Figures C.1 in the online appendix, we find that GE technology increased
the supply of corn in 2010 between 5-12% based on our preferred yield effects from column
4 of Table 3.3, depending on how much of the extensive margin is attributed to GE. Thus,
even though extensive margin lands represent a small share of total GE corn hectarage,
accounting for the extensive margin can potentially make a large difference for the supply
effect. We also estimate supply effects based on Sexton and Zilberman (2011) along with all
the studies reviewed in Qaim et al. (2009) and find that our supply effects are usually larger,
since our estimated yield effects were larger, but the supply effects computed from other
yield estimates still generate significant impacts. Estimates range from 2-14% without the
extensive margin, and 9-19% with the extensive margin. The notable exceptions are Sexton
and Zilberman (2011) and Yorobe and Quicoy (2006), which generates slightly larger supply
estimates than ours.

Our estimates imply that GE technology increased the supply of cotton between 15-20%
in 2010, depending on the extensive margin. These results are shown in Figure C.2 in the
online appendix. Again, these estimates are larger than what would be implied from the
yield effects in the Qaim et al. (2009) review. Finally, for soybeans, we find that because the
estimated yield effect is small and the estimated extensive margin effect is large, almost all
of the supply effect comes from the extensive margin. We estimate that the supply effect was
only 2% without the extensive margin, but as large as 40% with the full extensive margin.

The supply effect from GE technology can be translated into price effects using a method-
ology from De Gorter and Zilberman (1990) and Alston, Norton, Pardey, et al. (1995), where
the percentage change in equilibrium price is equal to the supply effect divided by the differ-
ence between price elasticity of supply and price elasticity of demand (see online Appendix).
In our estimates we assume an elasticity of supply to be 0.3, while we allow elasticity of
demand could be either low (-0.3), or high (-0.5).20 For each elasticity scenario, we also vary
the assumption on the extensive margin as before. For each of these 4 scenarios {low elastic-
ity, no extensive margin ; low elasticity with extensive margin; high elasticity, no extensive
margin; high elasticity, with extensive margin} price effects are computed conditional on
yield estimates from section 3, Sexton and Zilberman (2011), and all the studies reviewed in
Qaim et al. (2009).

20Roberts and Schlenker (2010) suggest that supply elasticities vary between 0.08 and 0.13 for supply of
grain calories and demand elasticities vary between -0.05 and -0.08. Thus, the magnitude of the price effect
should be greater than five times the magnitude of the supply effect, which are greater than the impacts
estimated here.
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In Figure C.3 in the online Appendix, we find that corn prices would have been between
5-19% higher, depending on the assumption of elasticity and extensive margin effect (using
our own yield estimates). The price effects in Yorobe and Quicoy (2006) and Sexton and
Zilberman (2011) are higher than our estimates, while other studies are roughly 5 percentage
points lower. We find that in all cases, the estimates are more sensitive to the inclusion of the
extensive margin than the assumption of demand elasticity. In Figure C.4, we find cotton
prices would have been 19-33% higher without GE technology. Again, the estimates are
higher using our yield impacts instead of others in the literature, but even low yield estimates
as in Traxler and Godoy-Avila (2004) and Falck-Zepeda, Traxler, and Nelson (2000) predict
that cotton prices would have been 7-19% higher.21 Finally, for soybeans, the price effect
depends heavily on the extensive margin assumption. Without the extensive margin, the
price effect is between 3-4%. Including the extensive margin, the price effect is between
50-66%.

Lastly, we estimate land-use saving effects and the corresponding GHG emissions savings
due to GE technology as the difference between observed hectarage in 2010 and counterfac-
tual hectarage that would be needed to produce the same output without the GE supply
effects. In this thought experiment, the impact of the intensive margin is unambiguous:
without the yield boost from GE, more lands would have been recruited to meet observed
demand. However, the impact of the extensive margin is not clear. If extensive margins
lands come from truelly marginal lands that could not have been used for anything else,
then the extensive margin contributes to GHG savings, because without the GE technology,
supply from those marginal lands wold have been unavailable and more productive lands
would have had to have been converted to agriculture. However, if extensive margin lands
come from forest, for example, then their conversion (owing to the GE technology) increases
GHG emissions because converting forest to agriculture is highly damaging to the environ-
ment. Here, we remain agnostic on the source, and hence GHG impacts of extensive margin
lands, and only consider the intensive margin impact. In Table C.1 of the online Appendix,
we estimate the land use savings associated with GE cotton are 6 million Ha, or roughly
18% of observed 2010 cotton hectarage. Corn land-use savings equals 5 million Ha, or 3%
of observed corn hectarage. Finally, soybean land-use savings are small, at less than 2% of
total soybean hectarage.

In the last column of Table C.1, we translate land-use savings into Gt of averted GHG
emissions by multiplying the hectares saved by GHG emissions per hectare of land-use change
per year. Searchinger et al. (2008) estimates that converting land to cropland generates on
average (across the world) 11.7 metric tonnes (t) of GHG per Ha per year.22 The US EPA
estimates a similar figure and other studies have also applied the Searchinger et al. (2008)
figure to estimate GHG impacts of various activities (Avery and Avery, 2008; EPA, 2012).
Multiplying hectares saved by this GHG impact, we find that across all three crops, GE
technology saved 0.15 Gt of GHG emissions in 2010. To put this figure in perspective, the
total emissions from all passenger cars in the US in 2010 was roughly 1.28 Gt of GHG23,

21Of course, the estimates from Fitt (2003) yield even lower price effects, but that is because Fitt (2003)
estimate no yield impact

22The total stock of GHG released is 351t, amortized over 30 years, for an annual figure of 11.7t per year.
23The EPA calculates that the average passenger vehicle in the US generates 5.1 metric tons of GHG

per year, and the National Transportation Statistics table 1-11 reports there were 250,272,812 passenger
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which means the land-use savings effects of GE technology was roughly 1/8th the size of all
emissions from automobiles in the US.

3.6 Conclusion

Growing demand for food, feed, fiber and energy means that without new sources of yield
gains, new lands must be recruited into production, or else prices must rise to equilibrate the
market. Rising prices disproportionally hurt the poor, while clearing lands generates harm-
ful environmental emissions. Agricultural biotechnology can potentially increase yields per
hectare, thus boosting supply and preserving lands. In this paper, we generate new estimates
of the yield effect that takes account of complementary input use and find larger impacts
than most studies in the literature. We also develop a methodology for decomposing ob-
served hectarage into intensive and extensive margin. While we cannot say if GE technology
has caused the increase in the range of lands that can profitably be farmed, we have found
that hectarages have increased since the introduction of GE technology, and counterfactual
supply scenarios suggest that the extensive margin effect could make a large difference in
computing supply, price, and land-use saving effects. Future research using experimental
variation to identify the causal link between GE adoption and the extensive margin would
constitute a significant contribution.

We find that adoption of GE has significant impact on the price of cotton, corn, and
soybeans. As corn and soybeans are used extensively in the production of food, these price
effects likely translate into lower food prices, benefiting the poor (Hochman et al., 2011). The
analysis suggests that while high adoption rates of GE cotton and soybean has contributed
to a significant price reduction in these commodities, bans and other regulations limited the
adoption of GE corn to less than 30% of total corn hectarage, reducing its total price effect.
If adoption of corn is expanded globally, we expect much larger increases in supply both
because of reduction in pest damage as well the complementary input effect, resulting in
further corn price reductions. The use of GE is practically banned everywhere for major
food grains like wheat and rice, even though existing traits could reduce pest damage in
these two crops. Our analysis suggests that developing new GE varieties in these crops has
the potential to reduce their prices as well as the environmental side effects from producing
these crops.

Finally, we find that GE has had significant environmental benefits, even considering just
the intensive margin. We estimate that GE technology slowed land-use change and prevented
GHG emissions on the order of 1/8 the annual GHG emissions caused by driving in the US.
As the poor are expected to suffer the most from climate change, these environmental gains
also mean distributional gains for the poor.

vehicles in the US in 2010, which implies that total GHG emissions from passenger vehicles equaled 5.1 ∗
250, 272, 812 ∗ 1

1,000,000,000 = 1.28Gt.
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Appendix A

Appendix to Chapter 1

A.1 Theory

Proof of Selection into Exporting

Consider for simplicity a world with two countries: l and h. As in Melitz and Ottaviano
(2008), the price distributions in country l of domestic firms producing in l, pll(ϕ,m), and
exporters producing in h, phl(ϕ,m), are identical. Thus, as in the closed economy, the
threshold price condition in country l (1.4), along with the resulting Pareto distribution of
all prices for varieties sold in l, yield a zero-cutoff profit condition linking the domestic cost
cutoff to the mass of varieties consumed in country l:

Ml =
2γ(k + 1)(α− Φll)

ηΦll

. (A.1)

Given a positive mass of entrants NE,l in country l, there will be NE,l[1 − G(ϕll)] firms
producing in country l, and NE,l[1−G(ϕlh)] firms exporting ρlhΦ

k
llΩlNE,l varieties to country

h, where ρlh ≡ θ−klh < 1 is a measure of ‘freeness’ of trade from country l to country h.
Summing over all varieties from countries l and h sold in country l, we get

Ml = NE,lΦ
k
llΩl + ρhlNE,hΦ

k
hhΩh. (A.2)

Combining the two expressions for Ml, and similarly for Mh, gives the number of entrants
in each country (by symmetry):

NE,l =
2γ(k + 1)

η(1− ρlhρhl)Ωl

[
α− Φll

Φk+1
ll

− ρhl
α− Φhh

Φk+1
hh

]
. (A.3)

Assuming a non-specialized equilibrium where both countries produce the differentiated good
(NE,l > 0) implies that only a subset of relatively more productive firms choose to export in
either country, since NE,l > 0 is equivalent to

α− Φll

Φk+1
ll

> ρhl
α− Φhh

Φk+1
hh

⇔ α/θhl − Φhl

α− Φhh

(
Φhh

Φhl

)k+1

> 1, (A.4)

which is incompatible with Φhl ≥ Φhh. Therefore, Φhl < Φhh.
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Predictions for the Product-Mix and Price Effects

The comparative statics analysis focuses on foreign demand shocks to match our empirical
exercise. We thus consider a foreign demand shock such that dLh > 0. This shock makes
market h less competitive for its domestic firms: given (1.17),

dΦhh

dLh
= − Φhh

(k + 2)Lh
< 0. (A.5)

The demand shock also impacts country l’s firms through the export cost cutoff, which is
Φlh = Φhh/θlh. We derive the endogenous adjustments made by country l’s firms in this
section.

Proof of Prediction 1

Let Rlh(ϕ) denote the export revenue of firm ϕ located in country l exporting to country h.
We have

Rlh(ϕ) =

M(ϕ)−1∑
m=0

rlh(ϕ,m) (A.6)

=

M(ϕ)−1∑
m=0

Lhθ
2
lh

4γ
[Φ2

lh − Φ(ϕ,m)2]. (A.7)

For a fixed product scope M with 1 < M ≤M(ϕ), this can be written as

Rlh(ϕ) =
Lhθ

2
lh

4γ
MΦ2

lh −
Lhθ

2
lh

4γ

M−1∑
m=0

Φ(ϕ,m)2, (A.8)

subject to ϕ being in the range of TFP that allows firms to produce optimally M products.
The impact of a foreign demand shock is such that

dRlh(ϕ)

dLh
=

MkΦ2
hh

4γ(k + 2)
− θ2

lh

4γ

M−1∑
m=0

Φ(ϕ,m)2. (A.9)

Because MΦ2
lh ≥

∑M−1
m=0 Φ(ϕ,m)2, we find that the most efficient firms (with higher ϕ) are

affected positively (dRlh(ϕ)/dLh > 0) whereas the less efficient firms are affected negatively
(dRlh(ϕ)/dLh < 0) by the demand shock. This can be explained by the fact that only
the most profitable products see their revenue increase whereas the less profitable products
either see their revenue decrease or are dropped by the firm (see prediction 2). Allowing for
a variable product scope implies that products with high marginal costs are no longer sold
by the firm on market h. Only the less profitable products are dropped; and by continuity,
it should not modify the result.
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Proof of Prediction 2

Using (1.12), we get

drlh(ϕ,m)

dLh
=
θ2
lh

4γ

[
k

k + 2
Φ2
lh − Φ(ϕ,m)2

]
, (A.10)

which is positive for firm-product cost Φ(ϕ,m) ≤
√
k/(k + 2)Φlh, and strictly negative for

firm-product cost Φ(ϕ,m) >
√
k/(k + 2)Φlh.

Proof of Prediction 3

Let EQlh(ϕ) denote the average emission intensity in quantity for a firm ϕ producing M(ϕ)
varieties in country l that are exported to country h. We have

EQlh(ϕ) =

∑M(ϕ)−1
m=0 EQ(ϕ,m)qlh(Φ(ϕ,m))∑M(ϕ)−1

m=0 qlh(Φ(ϕ,m))
. (A.11)

For a fixed product scope M with 1 < M ≤M(ϕ), this can be written as

EQlh(ϕ) =
Φlh

∑M−1
m=0 EQ(ϕ,m)−

∑M−1
m=0 EQ(ϕ,m)Φ(ϕ,m)

MΦlh −
∑M−1

m=0 Φ(ϕ,m)
, (A.12)

subject to ϕ being in the range of TFP that allows firms to produce optimally M products.
The only impact that a foreign demand shock has on EQlh(ϕ) comes from its impact on the
export cost cutoff Φlh = Φhh/θlh described in (A.5). Thus,

dEQlh(ϕ)

dΦlh

=
M
∑M−1

m=0 EQ(ϕ,m)Φ(ϕ,m)−
∑M−1

m=0 EQ(ϕ,m)
∑M−1

m=0 Φ(ϕ,m)[
MΦlh −

∑M−1
m=0 Φ(ϕ,m)

]2 (A.13)

For all M ∈ N∗, denote the numerator as

DQM ≡M
M−1∑
m=0

EQ(ϕ,m)Φ(ϕ,m)−
M−1∑
m=0

EQ(ϕ,m)
M−1∑
m=0

Φ(ϕ,m), (A.14)

where (Φ(ϕ,m))m∈N and (EQ(ϕ,m))m∈N are real positive sequences. First, consider some
examples such as M = 2. Simplifying notations using EQm and Φm, we have

DQ2 = 2(EQ0Φ0 + EQ1Φ1)− (EQ0 + EQ1)(Φ0 + Φ1) = (EQ1 − EQ0)(Φ1 − Φ0). (A.15)

Now for M = 3,

DQ3 = 3(EQ0Φ0 + EQ1Φ1 + EQ2Φ2)− (EQ0 + EQ1 + EQ2)(Φ0 + Φ1 + Φ2) (A.16)

= (EQ1 − EQ0)(Φ1 − Φ0) + (EQ2 − EQ0)(Φ2 − Φ0) + (EQ2 − EQ1)(Φ2 − Φ1).
(A.17)
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Using a recursive argument, we thus deduce that

DQM =
∑

0≤i<j≤M−1

(EQj − EQi)(Φj − Φi) (A.18)

By assumption (Φm)m∈N is strictly increasing, thus for all 0 ≤ i < j ≤ M − 1 we have
Φj > Φi. Thus DQM is positive, hence EQlh(ϕ) increases in Φlh if and only if (EQm)m∈N
is also strictly increasing whereas it decreases in Φlh if and only if (EQm)m∈N is strictly
decreasing.

Even when product scope M drops due to the decrease in Φlh, the average emission
intensity must still have the same variation as EQ(ϕ,m) due to the continuity of EQlh(ϕ)
with respect to Φlh (both total emissions and Q(ϕ) are continuous in Φlh as the firm produces
zero units of a variety right before it is dropped when competition gets tougher).

Product-Mix Effects

Let EQ(ϕ) denote the firm emission intensity in quantity for a firm ϕ producing Mll(ϕ)
varieties in country l, and exporting Mlh(ϕ) varieties to each country h. We first get

EQ(ϕ) =

∑H
h=1

∑Mlh(ϕ)−1
m=0 EQ(ϕ,m)qlh(Φ(ϕ,m))∑H
h=1

∑Mlh(ϕ)−1
m=0 qlh(Φ(ϕ,m))

. (A.19)

Suppose, for simplicity, that H = 2: a firm located in country l can either sell its products
to consumers from country l or to consumers from country h. The aggregate firm emission
intensity in quantity is

EQ(ϕ) = [1− xlh(ϕ)]EQll(ϕ) + xlh(ϕ)EQlh(ϕ), (A.20)

where

xlh(ϕ) ≡
∑Mlh(ϕ)−1

m=0 qlh (ϕ,m)∑Mll(ϕ)−1
m=0 qll (ϕ,m) +

∑Mlh(ϕ)−1
m=0 qlh (ϕ,m)

. (A.21)

xlh(ϕ) denotes the share of exports to country h in total outputs. From Prediction 3, we know
the impact of an import demand shock on EQlh(ϕ), whereas EQll(ϕ) remains unaffected.
For a fixed domestic product scope Mll with 1 < Mll ≤Mll(ϕ), and a fixed exported product
scope Mlh with 1 < Mlh ≤Mlh(ϕ), xlh(ϕ) can be written as

xlh(ϕ) =
MlhLhθlhΦlh − Lhθlh

∑Mlh−1
m=0 Φ (ϕ,m)

MllLlΦll − Ll
∑Mll−1

m=0 Φ (ϕ,m) +MlhLhθlhΦlh − Lhθlh
∑Mlh−1

m=0 Φ (ϕ,m)

subject to ϕ being in the range of TFP that allows firms to produce optimally Mll products.
Given the equilibrium export cost cutoff, we have

dLhΦlh

dLh
= Φlh

k + 1

k + 2
> 0. (A.22)
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Thus,

dxlh(ϕ)

dLh
=

[
MlhθlhΦlh

k+1
k+2
− θlh

∑Mlh−1
m=0 Φ(ϕ,m)

] [
MllLlΦll − Ll

∑Mll−1
m=0 Φ (ϕ,m)

]
[
MllLlΦll − Ll

∑Mll−1
m=0 Φ (ϕ,m) +MlhLhθlhΦlh − Lhθlh

∑Mlh−1
m=0 Φ (ϕ,m)

]2 ,

whose sign only depends on MlhΦlh
k+1
k+2
−
∑Mlh−1

m=0 Φ(ϕ,m). If k+1
k+2

were close to 1 (k tend to
infinity), then dxlh(ϕ)/dLh would be positive. In general, dxlh(ϕ)/dLh is positive for efficient
firms, but negative for less efficient firms. This result can be derived from Prediction 1.
Changing the product scope of exported goods would not modify this result.

We further need to compare EQlh(ϕ) with EQll(ϕ) to assess the impact of a demand
shock on EQ(ϕ). Selection into exporting implies that Φlh < Φll: only the most efficient firms
export and only the most profitable products are exported. Therefore, Mlh(ϕ) < Mll(ϕ): the
export basket is skewed toward the core products even more so than the domestic basket.
The relative emission intensity of these baskets thus depends on whether the core products
are cleaner or dirtier than higher-m products. Hence,

i/ If EQ(ϕ,m) is increasing in m (i.e., core products are cleaner), then EQlh(ϕ) <
EQll(ϕ) and EQlh(ϕ) is decreasing in Lh. Thus, the average firm emission inten-
sity EQ(ϕ) of efficient firms decreases with a demand shock whereas the impact is
ambiguous for less efficient firms.

ii/ If EQ(ϕ,m) is decreasing inm (i.e., core products are dirtier), then EQlh(ϕ) > EQll(ϕ)
and EQlh(ϕ) is increasing in Lh. Thus, the average firm emission intensity EQ(ϕ) of
efficient firms increases with a demand shock whereas the impact is ambiguous for less
efficient firms.

Generalizing this result requires to compare the average emission intensity of the basket
of goods exported to country h where the demand shock occurs with the average emission
intensity of the other baskets. If EQlh(ϕ) remains lower (higher) than the average emission
intensity of all other baskets of products for firm ϕ, even after the demand shock modifies
it, then EQ(ϕ) of efficient firms decreases (increases) with the demand shock. The impact
of the demand shock on less efficient firms is ambiguous.

Proof of Prediction 4

Consider first a mono-product firm. The average emission intensity in value for a firm-
product with unit cost Φ(ϕ,m) is

EV (ϕ,m) =
H∑
h=1

(
rlh(ϕ,m)∑H
h=1 rlh(ϕ,m)

)
EVlh(ϕ,m), (A.23)

where EVlh(ϕ,m) is the emission intensity in value in market h as defined by (1.8), and
rlh(ϕ,m)/

∑H
h=1 rlh(ϕ,m) corresponds to the share of revenues made in country h. From

Prediction 2, we know that a demand shock in country h would raise rlh(ϕ,m) for the
most profitable products, and decrease rlh(ϕ,m) for more expensive products, while leaving



APPENDIX A. APPENDIX TO CHAPTER 1 97

rlj(ϕ,m), j 6= h unaffected. A positive shock to Lh also lowers plh(ϕ,m), which increases
EVlh(ϕ,m).

We observe that EVlh(ϕ,m) < EVll(ϕ,m) is equivalent to plh(ϕ,m) > pll(ϕ,m). Using
(1.10), it is also equivalent to Φ(ϕ,m) (θlh − 1) > Φll −Φhh. Hence, if country h’s market is
less competitive than country l’s market (Φll < Φhh), then EVlh(ϕ,m) < EVll(ϕ,m). Given

Ωh =
∞∑
m=0

e−σmk
[
1 + τ

ε
ε−1

h e
mε(ν−σ)
ε−1

] (1−ε)k
ε

(A.24)

we have

dΩh

dτh
= −kτ

1
ε−1

h

∞∑
m=0

e
m[(ν−σ)ε+σk(1−ε)]

(ε−1)

[
1 + τ

ε
ε−1

h e
mε(ν−σ)
ε−1

] k(1−ε)−ε
ε

< 0. (A.25)

This implies, given (1.17),

dΦhh

dτh
> 0. (A.26)

Thus, countries with stringent environmental regulations are less competitive. If firms export
to a country with higher regulations, the export price will be higher, and EVlh(ϕ,m) will be
lower than EVll(ϕ,m).

In a multiple destination setting, we must compare EVlh(ϕ,m) with the average emission
intensity in value across all other destinations. If the export price to country h is higher
(lower) than the average price over other destinations, then EVlh(ϕ,m) is lower (higher)
than the average emission intensity in value across other destinations. If EVlh(ϕ,m) is
lower, an increase in exporting (for profitable products) would reduce EV (ϕ,m) as long
as the compositional shift (toward country h’s import basket) outweighs the export price
decrease. For less profitable products, there is no ambiguity; hence, a demand shock from
country h increases EV (ϕ,m).

Consider next a multi-product firm operating in several destination markets. The firm
average emission intensity in value is

EV (ϕ) =

∑H
h=1

∑Mlh(ϕ)−1
m=0 EQ(ϕ,m)qlh(Φ(ϕ,m))∑H
h=1

∑Mlh(ϕ)−1
m=0 rlh(Φ(ϕ,m))

. (A.27)

We must combine the impacts of a demand shock in country h on both the product-mix
and the price channels. When both channels reinforce each other – when core products
are cleaner (dirtier) and the export price to country h is higher (lower) – we conclude that
exporting more (for efficient firms) tend to reduce the average emission intensity in value.
When both channels counteract each other, however, the impacts of a demand shock on
country l’s firms are ambiguous.
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A.2 Data Appendix

Supporting Materials Relating to Product-Specific Energy
Reports

Figure A.1: Amendments to Section 217(1)(e) of the Indian Companies Act, 1988

Notes: Figure presents the 1988 amendments section 217 (1)(e) to the In-
dian Companies Act of 1956 relating to the disclosure of energy-use reporting.
Emphasis added by the authors to highlight the language specific to product-
specific energy-use. Source is Ministry of Corporate Affairs, Government of India
http://www.mca.gov.in/Ministry/actsbills/rules/CDoPitRoBoDR1988.pdf
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Figure A.2: Sample Product-Specific Energy Intensity Report, Form-A Part B

Notes: Figure presents sample Annexure to Directors’ Report Form-A, Part B for
Ballarpur Industries Limited fiscal year 2000-2001. Report is publically available at
http://www.bilt.com/annual/photo/img/pic70.pdf
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Computing Emission from Energy-Use Data

Firms in Prowess report energy-use in two ways. First, firms report the total quantity
consumed each year by energy source (e.g., liters of diesel, KwH of electricity, etc.). Second,
firms report energy intensity of production by output product. That is, for each product
sold, firms report the amount of each energy source used to generate a single unit of the
good. We refer to the first report as the “firm-level” energy data, while the second we call
the “product-specific” energy data. For both reports, we translate physical quantities of
energy consumed into physical quantities of CO2 emissions, which we take as our measure
of pollution.

For each energy source reported by a firm (in either the firm-level or the product specific
data), we assign a CO2 intensity measure based on emission factors from the US EPA 2012
Climate Registry Default Emissions Factors. CO2 intensities are reported per unit of energy
source (e.g., short ton of Lignite), and per mmBTU of energy. The list of energy types and
CO2 emissions factors are listed in Table A.1. There are 25 energy sources described by the
EPA report, to which we add electricity generation, for a total of 26 emission intensities. We
take the emission intensity of electricity purchased from the grid from X. We assign by hand
each of the 140 energy sources reported in Prowess to one of the 26 energy types in Table
A.1.

Energy-use is reported in physical quantities of the energy source, while CO2 emissions
factors are also reported in physical quantities of CO2 per physical quantity of energy source.
In order to translate the energy-use into CO2 emissions, the units of energy consumption
in Prowess must match the units of energy used in Table A.1 (i.e., the denominator of
the CO2 emissions factor). Units of energy in the EPA data are either scf, short ton,
or gallon, but firms in Prowess report units in a much wider range of measurements. In
the firm-level data, firms report in any of 55 different units, for a total of 412 source-unit
combinations. We standardize units when possible to match to the EPA data, but some
source-unit combinations cannot be converted to a usable figure. For example, one firm
reports cubic meters of biomass consumed. While it seems reasonable to assign “biomass”
to “Agricultural Byproducts” in Table A.1, the unit in Prowess is denominated in volume,
while the unit from the EPA is in mass. Without assuming a density of the “biomass”,
there is no way to convert the energy source quantity into CO2. We drop all such cases,
which amounts to a little under 1% of the data. After standardizing units, we multiply the
consumption of physical units of energy source in Prowess by the CO2 intensity in Table A.1.
We then sum across energy sources in a year to compute CO2 pollution for each firm-year.

One refinement we make is to leverage information about own-generation of electricity
contained in Prowess itself. In the product-specific data, sometimes the firm reports “Elec-
tricity” as an output. In this case, we know the firm-specific CO2 emission intensity of
electricity production from above. We merge in this firm-specific CO2 emission intensity...

Finally, we clean the data for outliers. Upon inspection of excessively large emissions or
emission intensity values, it appears in many cases as if decimals have been transposed or
units mis-reported. We adopt the standard approach of dropping the top and bottom 1% of
values for emission intensity for most of the analysis. Additionally, to address the problem
of egregious measurement errors, we drop firms that exhibit excessive variation in emission
intensity over the period. If a firm’s total emission intensity in value increases by more than
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a factor of 10 between two years, than we drop the firm from the sample.

Table A.1: CO2 emission factors

Energy Source Kg CO2 per Unit Unit of Kg CO2 per MMBTU
of Energy Source Energy Source of Energy Source

Acetylene .1053 scf 71.61
Agricultural Byproducts 974.9 short ton 118.17
Anthracite 2597.82 short ton 103.54
Biogas (Captured Methane) .0438 scf 52.07
Coke 2530.59 short ton 102.04
Coke Oven Gas .0281 scf 46.85
Distillate Fuel Oil No. 1 10.18 gallon 73.25
Distillate Fuel Oil No. 2 10.21 gallon 73.96
Electricity 278
Fuel Gas .0819 scf 59
Kerosene 10.15 gallon 75.2
Kraft Black Liquor 1131.11 short ton 94.42
LPG 5.79 gallon 62.98
Lignite 1369.28 short ton 96.36
Lubricants 10.69 gallon 74.27
Motor Gasoline 8.78 gallon 70.22
Naptha (<401 deg F) 8.5 gallon 68.02
Natural Gas (US average) .0545 scf 53.02
Petroleum Coke (Liquid) 14.64 gallon 102.41
Petroleum Coke (Solid) 3072.3 short ton 102.41
Propane (Liquid) 5.59 gallon 61.46
Residual Fuel Oil No. 6 11.27 gallon 75.1
Solid Byproducts 2725.32 short ton 105.51
Wastewater Treatment Biogas 52.07
Waxes 9.57 gallon 72.6
Wood and Wood Residuals 1442.64 short ton 93.8

Notes: The first column lists the energy source as named by the EPA. Prowess does not use exactly the same
naming convention, so we mapped by hand these energy types to the energy types listed in Prowess. The
second column reports kg CO2 associated with a given unit of energy type in column 1, where the unit is
reported in column 3. For most energy types, we use the CO2 intensity listed in column 2. However, for some
observations, we were unable to standardize units across the two datasets. In some cases, we were able to use
an alternative CO2 intensity reported per mmBTU. We list this alternative CO2 intensity in column 4.
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Table A.2: High Income Countries

OECD Other
Australia Andorra
Austria Antigua and barbuda
Belgium-Luxembourg Aruba
Canada Bahamas
Denmark Bahrain
Finland Bermuda
France Brunei darussalam
Germany Cayman islands
Greece Cyprus
Iceland French polynesia
Ireland Greenland
Italy Guam
Japan Hong kong
Korea, republic of Israel
Netherlands Kuwait
New zealand Macau
Norway Malta
Portugal Netherlands antilles
Spain New caledonia
Sweden Qatar
Switzerland, Liechtenstein Saudi arabia
USA, Puerto Rico and US Virgin Islands Singapore
United kingdom Slovenia

United arab emirates

Notes: This table reports the countries identified as “High Income” destina-
tions. The designations come from the World Bank, based on 2006 GNI per
capita. The first columns reports high-income OECD countries. The second
column reports “other” countries defined by the World Bank as “High Income.”
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Analysis of Emissions data

Aggregate Emissions in Prowess

The distribution of CO2 emissions produced by energy source, derived from the firm-level
energy consumption data, are reported in Figure A.3. We have aggregated all 140 energy
sources into 5 broad groupings. We calculate that total CO2 emissions in manufacturing
increased from 119 MT to 482 MT between 1990 and 2010 using the firm-level dataset.
By comparison, over the same period, total CO2 from India have increased from 690 MT to
2,009 MT, so the firms in Prowess account for about 1/4 total CO2 emissions from India.1 In
terms of distribution, we calculate that in 2010 coal accounts for 45% of total CO2 emissions
in the firm-level energy reports, gas, diesel, and electricity each account for between 15-20%,
and biofuel only 2%.

Comparison to WIOD

We also compare emission totals and intensities by industry to the recently constructed
World Input Output Database (WIOD) database, which reports emission and output by
industry for most large countries. Comparing the overall figure to the total CO2 emissions
estimates from the same 12 industry groupings in the WIOD, we find that Prowess firms
account for 80% of manufacturing-based emissions in WIOD.2 Furthermore, in Figure A.4
we compare emission intensities by industry in both the firm-level database and the product-
specific database to the WIOD database. The x-axis records the average emission intensity
in value from the WIOD database, while the y-axis reports the median emission intensity of
production for either the firm-level dataset (blue diamonds) or the product specific dataset
(red dots). Most industries lie very close to the 45-degree line, indicating a high correlation
between the three reports. The two outliers are “Paper, Pulp, and Wood products”, for which
we compute a much higher emission intensity in Prowess than in WIOD, and “Minerals,”
for which we compute a much lower emission intensity in Prowess. These comparisons gives
us reassurance that the data cleaning procedure generates plausible values.

Comparison between Firm-level and Product-level

While the aggregate quantities and intensities in the firm-level and product-specific datasets
match fairly well to other known datasets, a natural concern with respect to the product-
specific dataset is how the firms assess the energy intensity of individual product. Though
the firms are required by law to report these data, how could they actually compute them?
If production happens at the same location on the same machines, it seems unlikely that a
firm would be able to meaningfully distinguish between the energy intensity used to make
one product versus another. However, if production of different goods happens sequentially,
or is segregated between machines, or plant, or time of year, then it seems much more likely
that a firm could compute different energy intensities per product. For example, in the case
presented in Appendix Figure A.2, we see that Ballarpur Industries Limited in the fiscal
year 2000-2001 reports separate amounts of electricity, coal, furnace oil, and other/internal

1World Development Indicators Table 3.9, http://wdi.worldbank.org/table/3.9
2WIOD reports 586 MT of CO2 in 2009, compared to 467 MT in Prowess
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Figure A.3: Total CO2 Emissions by Energy Source
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Notes: Figure reports total CO2 emissions by year broken down by energy source as computed
from the firm-level dataset. Energy sources have been aggregated into five major groupings.

generation each to make 1 tonne of paper, caustic soda, and rayon grade pulp. If paper is
manufactured at a different time of day than rayon grade pulp, and the firm used machinery
40 percent longer to make a tonne of paper compared to rayon grade pulp, then it does
not seem implausible that the firm could deduce that it requires roughly 40 percent more
electricity to produce a tonne of paper compared to rayon grade pulp, as Ballarpur in fact
reports. Still, one might be concerned about the signal to noise ratio in these data. To
address this concern, we present several diagnostic tests that further bolster our confidence
in the data.

First, we cross-check the implied emissions profile from the product-specific energy with
the firm-level energy reports. The product-specific energy data requires some calculation
on the part of the firm to determine energy intensity, while the firm-level energy report is
a mere inventory of fuels consumed. If the two reports yield similar emissions profiles, we
take it as evidence that there is some signal in the data. Aggregating the emissions in the
product-specific dataset to the firm-year level and merging to the firm-level dataset, we have
7,777 firm-year pairs of emissions values to compare. We take the log ratio of the two values,
order from lowest to highest, and plot in Figure A.5. Data points along the 0-line indicate
agreement between the two datasets. Points off the 0-line indicate divergence between the
two datasets. We find that 72% of the firm-year pairs have a ratio between 0.5 and 2, which
we find reassuring, especially since some of the disagreement in the tails is due to differential
cleaning procedures (see Appendix A.2).
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Figure A.4: Emissions Intensity Across Datasets
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the median firm-product value in the product-specific database (circles). All values include
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Testing Alternative Hypothesis

Finally, we examine alternative explanations for how firms compute product-specific energy
shares. Even if the firm-level emissions reports match fairly well with the product-specific
energy reports, it could be that firms still do not actually know the product-specific energy
intensity, but instead just divide total energy-use along some convenient heuristic. Under
this hypothesis, the aggregate of product-specific energy use would match the firm-level
energy use, but the product-specific reports would still not reflect true emission intensity. In
Figure A.6, we test the null hypothesis that energy shares in the product-specific data are
based purely on the revenue share of different products within the firm. If it were the case,
then the energy share should correlate perfectly with the revenue share.

Let Zeij indicate the quantity of energy (in physical units - e.g., tons of coal, KwH of
electricity, etc.) firm i uses from energy source e (e.g., coal, electricity, etc.) to manufacture
Qij units of product j. The revenue earned from product j is Rij = Qij ∗ Pij. Denote the
revenue share and energy-type share associated with each product j:

rij =
Rij∑
j∈∆i

Rij

, zeij =
Zeij∑
j∈∆i

Zeij
(A.28)

for each energy source e, and where ∆i is as before the set of products manufactured by a
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Figure A.5: Comparing Emissions Profiles From Different Energy Reports

-2
0

-1
0

0
10

Lo
g 

Ra
tio

 o
f E

m
is

si
on

s 
fro

m
 D

iff
er

en
t M

od
ul

es

0 2000 4000 6000 8000
Firm-Year Observation

Notes: Each observation is a firm-year for which we have an emissions value from both the
product-specific dataset and the firm-level dataset. Firm-year emission from the product-
specific dataset are aggregated over products produced within the firm-year. Observations
are ordered by the ratio of the two reports product-specific/firm-level. Y-axis reports the
log ratio.

firm in a given year. If the firm assigns energy shares zeij purely based on the revenue share
rij, then the two should be perfectly correlated. To test this hypothesis, we estimate a linear
regression model

rijt =
∑
e∈Γit

φezeijt + γ′Weijt + εijt, (A.29)

where t denotes years and Γit represents the set of energy sources used by the firm in year t,
and Weijt represents fixed effect controls for year, energy source, and product category j. We
merge the product-specific dataset to the output data according to the algorithm described
in Appendix A.2, and estimate (A.29) for multi-product observations only. Under the null
hypothesis, φe = 1 for all e.

We present results graphically in Figure A.6. We estimate the model separately for
products using 1, 2, or 3 different types of energy. That is, a firm uses only one energy source
to produce a 1-source product, two sources of energy to produce a 2-source product, etc. The
point estimate for the raw correlations are depicted with round dots, while squares indicate
that the regression controls for the full suite of fixed effects. In each case, standard errors
have been clustered at the firm-level and 95% confidence interval are depicted graphically by
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Figure A.6: Correlation Between Revenue Share and Energy Shares in Product-Specific Data
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Notes: Point estimates from linear regressions are depicted by circles (for the regressions
without controls) and squares (for regressions with controls). 95% confidence intervals are
plotted by whiskers. Regressions are estimated separately depending on the number of energy
sources utilized by the firm in the given year to produce the good.

the whiskers. In the case a firm uses more than one energy type to manufacture a product,
the “First Energy Source,” corresponds to the energy-type that accounts for the largest share
of millions of British Thermal Units (mmBTU) in the production of the good, while “Second
Energy Source” corresponds to the next largest, etc. Point estimates resulting from the same
regression are connected by solid lines (for the raw correlations) and dashed lines (for the
model with controls).

Figure A.6 shows that, in every case, we can reject a unit elasticity at the 1% level.
Additionally, for the case of 2-source products, we can reject the equality of coefficients. The
estimates for 3-source products becomes quite noisy as the sample size drops to less than
2000 data points, so we can no longer reject a null of equality, but we can still reject the null
of unity. The estimates are in each case greater than 0, as one would expect that output
share is increasing in input share, but it does not appear as though product-specific energy
intensities merely reflect the revenue share of the product, which one might conclude from
failing to reject φe = 1. We consider Figure A.6 a reassuring check that the product-specific
data is based on actual input usage.
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Merging Product-specific data to Output data

In Figure A.4 in the main text, we compare emission intensity in value in the product-specific
energy reports to the industry average emission intensity in value reported in the WIOD. In
order to compute emission intensity in value, we must merge the product-specific energy data
to the output data. As described in the main text, the merge is problematic because often
times, neither product names nor Prowess product ID’s are consistent between the input
data and the output data. Lacking a common unique identifier, we design an alternative
strategy for merging the two datasets.

To illustrate the problem, consider an example from the data. In 1994 ABT Industries
Ltd reports “Fruit Juices” as an output in the output module (and no other output products),
but reports energy intensity for manufacturing “Fruit & vegetable juices, concentrates” in
the product-specific energy module (and no other output products). CMIE codes the former
as Prowess ID 0511050100000000, while it codes the latter as Prowess ID 0511050000000000.
When we merge on Prowess ID, we fail to merge these data, since they have different iden-
tifying codes, though clearly they describe the same product. If cases such as this were rare
in the data, we could proceed by merging on the Prowess ID, but we find that near merges
such as these represent a large share of the data.

Our strategy for dropping as little information as possible while merging the two datasets
is to leverage the tree-structure of the CMIE Prowess ID. In the product classification,
similar products share the same beginning digits. For example, in the fruit juice case, both
products are given prids that begin with “051105.” Thus, from information contained within
the Prowess ID, we can assess the similarity of products. If two products do not merge for
a firm-yr initially, we try successively to merge on higher levels of aggregation as indicted
in the Prowess ID. For example, in the Fruit Juice case we would ultimately merge on the
6-digit identifier 051105. This procedure increases the sample size by about 30%.
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Merging Trade Data to Prowess

In this section, we discuss how we merge the trade instruments to Prowess. Merging trade
data to Prowess is problematic because CMIE classifies products in Prowess according to
its own 16-digit codes, which do not map directly to any other classification system at
a disaggregated level. We generate our own mapping that connects the Prowess ID code
directly to HS trade classifications. This mapping allows for a tighter link between (HS)
product-specific shocks and production activity in Prowess firms.

There are 3,340 distinct 16-digit Prowess ID codes in the Prowess dataset which we aim to
map to 5,108 HS6 revision 1996 codes in the trade data. We assign correspondences between
the two by hand, exploiting the fact that both Prowess and the HS system hew fairly closely
to the ISIC classification. Since both classification systems spring from a common source,
names and orderings are fairly similar between the two.

To begin, we map every one of the 16-digit Prowess ID that we could to HS trade classi-
fications at either the 2-digit, 4-digit or 6-digit level. The mapping utilizes both the product
name in the two datasets as well as the numerical ordering to generate correspondences. For
example, consider the six products recorded in Prowess under the heading “Silk and silk
textiles”:

Prowess ID Product Name

601010000000000 Silk worm cocoons
601020000000000 Raw silk
601030000000000 Silk waste
601040000000000 Silk yarns
601050000000000 Woven fabrics of silk
601060000000000 Silk fabrics, processed

Now consider the seven HS4 products reported under the heading “Silk” in the HS trade
data:

HS4 product name

5001 Silk-worm cocoons suitable for reeling
5002 Raw silk (not thrown)
5003 Silk waste (including cocoons

unsuitable for reeling, yarn waste and garneted stock)
5004 Silk yarn (other than yarn spun from silk waste)

not put up for retail sale
5005 Yarn spun from silk waste, not put up for retail sale
5006 Silk yarn and yarn spun from silk waste,

put up for retail sale; silk-worm gut
5007 Woven fabrics of silk or of silk waste

Examining the names of the products in the two classifications, it seems obvious that there
is a correspondence and that order is well preserved: in both systems, “Silk worm cocoons”
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comes first, directly followed by “Raw silk”, directly followed by “Silk waste”, etc. The
mapping is not simply a matter of harmonizing names, however. We can see, for example,
that the HS system distinguished between three kinds of silk yarn (HS4 5004, 5005, 5006),
whereas CMIE lumps them all together into a single category (Prowess ID 601040000000000).
And disaggregating the opposite way, CMIE discriminates between “Woven fabrics of silk”
(601050000000000) and “Silk fabrics, processed” (601060000000000), whereas HS aggregates
to the single HS4 “Woven fabrics of silk or of silk waste” (5007). Mapping requires some
judgment, but it seems fairly obvious that the correspondence should be:

Prowess ID Product Name HS4

601010000000000 Silk worm cocoons 5001
601020000000000 Raw silk (not thrown) 5002
601030000000000 Silk waste 5003
601040000000000 Silk yarn 5004, 5005, 5006
601050000000000 Woven fabrics of silk 5007
601060000000000 Silk fabrics, processed 5007

In the case of silk, products map relatively well on HS4. However, in other cases, the
finer HS6 classification is needed. For example, CMIE distinguishes between “Floor coverings
of coir” (608010000000000) and “Floor coverings of wool” (608020000000000). The logical
HS4 category would be “Carpets & other textile floor coverings, woven, of pile construction,
not made up” (5702). However, moving to the finer HS6 classification, we find that “Floor
coverings of coconut fibres (coir)” are coded as HS 570220, whereas “Carpets...of wool/fine
animal hair” are coded HS 570231. At this level of disaggregation, we can properly map:

Prowess ID Product Name HS6

608010000000000 Floor coverings of coir 570220
608020000000000 Floor coverings of wool 570231

The procedure works as follows: First, we map each Prowess ID (if possible) to the
appropriate HS2, HS4, or HS6 code. Note that there could be more than one HS code that
maps to a given Prowess ID, as in the case of “silk yarn” above. We have enough detail to
match 1,497 Prowess IDs to either one or possibly multiple HS codes. When the matched
HS code is at the 2-digit or 4-digit level, we take the simple average of D̃jt over the HS2
or HS4. When there are multiple HS codes that merge to the same Prowess ID, we take
the simple average over all HS codes to compute a unique demand shock for each Prowess
ID-year. When the demand shocks have been computed at the Prowess ID level, we will
denote them D̃pt, as opposed to D̃jt when they are at the HS6-level.
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Appendix B

Appendix to Chapter 2

B.1 Data Appendix

Trade Data

Quota restrictions under the MFA for textile and apparel imports into the US were managed
by the Commerce Department’s Office of Textile and Apparel (OTEXA). Quota limits were
product-country-year specific and tended to persist through time, so if a quota was binding
when it was first established, it tended to bind until liberalization. OTEXA kept annual
“progress reports” on each quota going back to 1984, listing the exporting country and year
along with the quota limit and fill rate, i.e. how much of the quota was used. All progress
reports were obtained in text file by Peter Schott, digitized, and published on his website
along with the code book (Brambilla, Khandelwal, and Schott, 2010).

OTEXA assigned each textile and apparel import product, classified according to HS10,
to one of 167 3-digit quota category groups (g). The raw data from Brambilla, Khandelwal,
and Schott (2010) report fill rates for 16,416 quota group-country-year observations, across 64
countries and 21 years, where “quota group” could signify a single 3-digit OTEXA category,
or a partial or merged category. In most cases, these 3-digit categories constitute the unit
of quota administration, with a single quantity restriction applied to each category-country
pair in each year, though in some cases quotas were assigned to partial or merged categories.
In some cases, quotas were assigned to subsets or aggregates of the 167 3-digit categories.
For example, in 2004, the US restricted imports from India in the partial category “341-
Y”, where the parent category “341” indicates “Women’s cotton non-knitted blouses” and
the “-Y” indicates that the quota only applies to “blouses of warp/fill material.” In another
example, in 2004, imports from India in the categories “Men and Boy’s cotton trousers”(347)
and “Women and Girl’s cotton trousers”(348) were regulated together with a joint quota
applied to merged category “347/348.”

Computing Indiagt is a simple matter of assigning any quota-group-year observation
from India with a fill rate greater than 90% to take the value 1, and 0 otherwise. However,
computing ROWgt requires merging the quota data with trade flows, which are classified
at the HS10 level. Additionally, both variables must then be merged to production data.
A problem arises here in that while 3-digit quota categories map to HS10 products (via a
mapping published on the OTEXA website), partial categories do not. For example, in the
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case above, there is no way to know precisely which HS10 products in the 3-digit category
341 map to the partial category “341-Y.” There is no straightforward way to map this quota
group to trade data or production data. Thus, for the purposes of calculating ROWgt and
for merging to production data, we must translate raw fill rates at the quota-group level
(e.g. 341-Y) into fill rates at the 3-digit category level (e.g. 341). Protection indicators can
then be merged to trade and production data.

We proceed in two steps, treating first partial then merged quota-groups. In the event
that a partial group is subject to a quota, there are two cases. In one case, both the partial
group and the full “parent” quota group are both subject to quotas for a given country-year.
For example, in 2001, Taiwan was constrained in both the partial category “mmf not-knit
shirts, mb, yn-dyed” (640-Y), and the parent category “m&b not-knit mmf shirts” (640). In
this case, we drop the “child” category 640-Y and assign the fill rate from the parent 640
to all HS10s in the 3-digit category. Our reasoning here is that regardless of the fill rate
for the partial category, all HS10s in 640 (even those from 640-Y) are subject to the quota
from the higher level of aggregation. Thus, we know at minimum, if the parent quota is
binding, then the HS10s covered by the partial-category quota are also binding. In a second
case, the child group is regulated, but the parent group is not. For example, in 2002 in
Bangladesh, 369-S is subject to quota, while the parent category 369 is not. In this case, we
know at minimum that the HS10s comprised by the partial 369-S are subject to the quota
from 369-S. However, not knowing precisely which HS10s within 369 those are, we assign
the fill rate from the partial 369-S to all HS10s in the parent 369.

Next, when OTEXA merges two categories and assigns a single quota level to the merged
group, again, two cases might occur. In one case, OTEXA assigns a quota to both the merged
quota group and one or both of the individual component groups. For example, imports from
South Korea in 2003 were constrained in category 347 individually, and the merged group
“347/348.” In this case, we take the maximum of the fill rate between these two quotas. The
logic here is that products in 347 can only be subject to one level of restraint. If the quota
347 is binding, even if the quota 347/348 is not binding, products in 347 are still constrained
(through the individual quota). Whereas if the quota 347/348 is binding and 347 is not,
products in 347 are still subject to binding constraints (through 347/348). In the final case,
in which products are regulated under a merged quota and there is no corresponding quota
for the individual categories in the country-year, we simply assign the fill rate from the
merged category to each component category.

Production Data

In this section, we describe how we map between firm-product output data and firm-product
energy input usage. In this step, the main challenge is that product names are often incon-
sistent across the two modules (output and energy). Treating the inconsistency as reporting
error (e.g., different people within the firm entered data for the differnt modules and did not
apodt a common naming convention), we seek to reconstruct the true production information
from the data available.

A candidate procedure would be to merge on the Prowess classification ID (“prid”).
However, while prid helps in some cases, there can be multiple products within a firm-
year assigned to the same prid, so merging on prid does not provide a unique mapping.
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Additionally, assignment of product names to prids appears to be fairly inconsistent across
the two modules as well, even for similarly named products.

Lacking a pre-existing variable on which to merge the datasets, we investigate each firm
in the dataset and match the energy data to the output data by hand. We utilize both the
reported names and sometimes the prid for guidance. An important point to note is that
the dimension of the output data and the energy data is not always the same. Based on the
naming and coding conventions, we infer in some cases that a single entry in the energy data
refers to multiple products in the output data and vice versa. We illustrate the procedure
with an example.

Consider the products reported in the output data by the firm Arihant Industries Ltd:

prid product name (output data)
601060000000000 Processing Of Art Silk Fabrics
602060000000000 Worsted Yarn
603070101010000 Grey Cloth
605010203000000 Polyester Filament Yarn
605010203000000 Texturised Yarn
605010204040000 Acrylic Yarn

compared to the products reported in the energy data

prid product name (energy data)
603050000000000 Texturised Yarn
605010200000000 Polyester/Viscose & Acrylic Worsted Yarn
603080000000000 Processed Cloth
603070500000000 Synthetic Fabrics

Neither prids nor product names provide direct matches for any products beyond one –
“Texturised Yarn.” Also, the dimensions of the datasets are not the same: we have 6 products
in the output data, but only 4 products in the energy data. Clearly, some judgment will be
required to merge these two reports.

We proceed as follows. We assume “Texturised Yarn” refers to the same product in the
two datasets, eventhough CMIE coded the two entries with different prids. We suppose
“Polyester/Viscose & Acrylic Worsted Yarn” in the energy data is an aggregate of “Worsted
Yarn,” “Polyester Filament Yarn,” and “ Acrylic Yarn” in the output data and assign its
energy intensity to all three of these products. With energy intensities assigned to 4 of the
6 output data products, we have left “Grey Cloth” and “Processing Of Art Silk Fabrics”
in the output data and “Processed Cloth” and “Synthetic Fabrics” in the energy data. We
match “Grey Cloth” to “Processed Cloth” and ‘Processing Of Art Silk Fabrics” to “Synthetic
Fabrics,” noting that silk fabric is a synthetic. To each product in the output data, we assign
a firm-product idenitfyier (“id”) and match the appropriate energy product name as follows:
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id Output product name Energy product name
220 Acrylic Yarn Polyester/Viscose & Acrylic Worsted Yarn
222 Grey Cloth Processed Cloth
223 Polyester Filament Yarn Polyester/Viscose & Acrylic Worsted Yarn
224 Processing Of Art Silk Fabrics Synthetic Fabrics
226 Texturised Yarn Texturised Yarn
228 Worsted Yarn Polyester/Viscose & Acrylic Worsted Yarn

We construct analogous mappings for every firm in the dataset and merge energy inten-
sities to the output data. Finally, we again need to standardize output units between the
two datasets, dropping observations for which units cannot be converted (less than .01% of
the data). The resulting dataset contains 12,071 firm-product-year observations, comprising
813 firms and 1,436 firm-products.

Mapping Prowess to MFA Categories

To estimate trade impacts, we must merge the quota constraints constructed in section 2.2
to the production data from section 3. The merging procedure is nontrivial, so we describe it
here in detail. The challenge is that no mapping exists between Prowess product codes and
the OTEXA 3-digit classification system. However, in constructing the Prowess classification
system, CMIE hewed very close to the ISIC nomenclature, which itself maps to four or six
digit HS codes (“HS4” or “HS6”). Our strategy is to map Prowess product codes (“prids”)
to HS4 or HS6 by hand, and then map to the OTEXA categories through the OTEXA-HS10
map listed on the OTEXA website. As one might imagine, the mapping will not be one-to-
one. In many cases, multiple OTEXA categories will map to the same prid. This feature
of the mapping introduces noise into the estimation, though we argue there is no reason to
suspect the measurement error biases results in any direction.

To begin, we mapped every one of the 394 textile and apparel products in the Prowess prid
classification that we could to HS trade classifications at either the 4-digit or 6-digit level.
The mapping utilizes both the product name in the two datasets as well as the numerical
ordering to generate correspondences.

For example, consider the six products recorded in prid under the heading “Silk and silk
textiles”:

prid product name
601010000000000 Silk worm cocoons
601020000000000 Raw silk
601030000000000 Silk waste
601040000000000 Silk yarns
601050000000000 Woven fabrics of silk
601060000000000 Silk fabrics, processed
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Now consider the seven HS4 products reported under the heading “Silk” in the HS trade
data:

HS4 product name
5001 Silk-worm cocoons suitable for reeling
5002 Raw silk (not thrown)
5003 Silk waste (including cocoons

unsuitable for reeling, yarn waste and garneted stock)
5004 Silk yarn (other than yarn spun from silk waste)

not put up for retail sale
5005 Yarn spun from silk waste, not put up for retail sale
5006 Silk yarn and yarn spun from silk waste,

put up for retail sale; silk-worm gut
5007 Woven fabrics of silk or of silk waste

Examining the names of the products in the two classifications, it seems obvious that
there is a correspondence and that order is well preserved: in both systems, “Silk worm
cocoons” comes first, directly followed by “Raw silk”, directly followed by “Silk waste,”
etc. The mapping is not simply a matter of harmonizing names, however. We can see, for
example, that the HS system distinguished between three kinds of silk yarn (HS4 5004, 5005,
5006), whereas prid lumps them all together into a single category (prid 601040000000000).
And disaggregating the opposite way, pird discriminates between “Woven fabrics of silk”
(601050000000000) and “Silk fabrics, processed” (601060000000000), whereas HS aggregates
to the single HS4 “Woven fabrics of silk or of silk waste” (5007). Mapping requires some
judgment, but it seems fairly obvious that the correspondence should be:

prid prid name HS4
601010000000000 Silk worm cocoons 5001
601020000000000 Raw silk (not thrown) 5002
601030000000000 Silk waste 5003
601040000000000 Silk yarn 5004, 5005, 5006
601050000000000 Woven fabrics of silk 5007
601060000000000 Silk fabrics, processed 5007

In the case of silk, products map relatively well on HS4. However, in other cases, the finer
HS6 classification is needed. For example, Prowess distinguishes between “Floor coverings
of coir” (608010000000000) and “Floor coverings of wool” (608020000000000). The logical
HS4 category would be “Carpets & other textile floor coverings, woven, of pile construction,
not made up” (5702), however, this level of aggregation does not respect the coir vs wool
distinction that we have in the prid. However, moving to the finer HS6 classification, we find
that “Floor coverings of coconut fibres (coir)” are coded as HS 570220, whereas “Carpets...of
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wool/fine animal hair” are coded HS 570231. At this level of disaggregation, we can properly
map:

prid prid name HS6
608010000000000 Floor coverings of coir 570220
608020000000000 Floor coverings of wool 570231

The procedure works as follows: First, we map each prid (that we can) to the appropriate
HS6 or HS4. We have enough detail to match 318 of the 394 prids to either an (or possibly
multiple) HS4 or HS6 in the trade classification (we discuss the remaining 76 prids below).
Next, we take the OTEXA mapping from 3-digit categories to HS10 and collapse to the
HS4 and HS6 level. The first four or six digits of the HS10 code identifies the HS4 or HS6.
While this truncation procedure maps each HS4 and HS6 in the trade data to the OTEXA
categorization, it does not necessarily map to a unique category. Out of 812 HS6 codes, 397
map to a unique category. The median number of categories is 2 with a standard deviation
of 3.2. At the HS4 level, 33 codes map to a unique category (out of 130 HS4). The median
number of categories is 3 with a standard deviation of 8. We then map categories to prids
through either the HS6 (when possible) or HS4 (when not) and take the simple average of
Indiagt and ROWgt over the matched categories.

The non-uniqueness of HS-OTEXA mapping is the largest source of noise generated by
the mapping. The multiplicity means that some prids have several potential protections
rates that could characterize their trade barriers with the US. The uncertainty is not a true
feature of the world, but rather a byproduct of mismatched data aggregation. However, as
long as the noise enters randomly, the multiplicity is only a problem for statistical power,
and does not bias the estimates. Furthermore, the multiplicity is again only a problem if
the multiple categories in question have substantially different protection values. In many
instances, this is not the case. For example, prid 603030100000000 ”Cotton yarn” matches
through HS4s 5205 and 5206 to OTEXA categories 300 and 301, “Carded cotton yarn”
and “Combed cotton yarn.” In 2002, India was subject to quota in neither category, so it
does no violence to take the simple average of Indiagt in this case. The competition index
scores 0.04 for Carded cotton yarn in this year and 0.09 in Combed cotton yarn. Assigning
ROWgt = 0.065 (ie the simple average) does not seem unreasonable. While this example was
chosen to illustrate that averaging over multiple categories need not introduce noise into the
instruments, obviously, in some cases it will. However, we mention it to impress the point
that actual noise generated by averaging should be lower than might by inferred from the
sheer count of non-unique matches.

Lastly, we must treat the remaining 76 prids that did not map to an HS4 or HS6. Most
cases in which we cannot map an HS code to a prid occur because the prid classification is
too broad. For example, 25 observations in the Prowess dataset are classified as simply “Silk
& silk textiles” (601000000000000). We showed above that silk products map exclusively
to one of six disaggregated prid codes, but sometimes, the firm does not give enough detail
in it’s description of the product for CMIE to distinguish among the finer disaggregated
categories, though it can identify the product as “Silk.” In such cases, we can either drop
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the observation entirely, or assign it an average protection value of all possible disaggregated
product codes. For example, in the case CMIE codes a product 601000000000000, we assign
the simple average of Indiagt and ROWgt from the six silk products that share the same
3-digit heading as the observation in question (ie “601”). We chose to impute averages
instead of dropping observations because while category-averages are not as informative as
precisely matched values, they still carry some information; and there’s no harm in imputing
averages. At worst, it introduces more noise, but the increased sample size due to inclusion
likely makes the estimate less noisy, rather than more noisy.
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Appendix C

Appendix to Chapter 3

In this Appendix, we present the methodology for computing supply, price, land-saving, and
GHG impacts of the GE technology. We also present the results in 4 Figures and 1 table
that are discussed in the main text.

C.1 Supply Effect

We compute the supply effect of GE technology for the three principle GE crops as the
percentage difference between observed 2010 production and two different counterfactual
supplies corresponding to different assumptions about the extensive margin. Counterfactual
supplies are computed country by country and then aggregated to a world figure.

We first compute the implied traditional variety yield ŷit0 by solving

Qct = yct0Lct0 + yct1Lct1

= yct0

(
Lct0 +

(
1 + β̂

)
Lct1

)
=⇒ ŷct0 =

Qct

Lct0 +
(

1 + β̂
)
Lct1

(C.1)

where β̂ represents the estimated yield effect of the GE technology for the given crop. In the
estimated impacts that follow, we use both our own estimated yield impacts from section
3, and a range of other yield impacts from the literature. Assuming that production would
have occurred on extensive margin lands even without the use of GE technology, then the
counterfactual supply is given by

Q̃ct = ŷct0Lct (C.2)

We sum over country-specific counterfactual supplies to find the world total counterfactual

supply Q̃t and compute supply effect s̃ = Qt−Q̃t
Qt

. If however, it is assumed that production
on the extensive margin would not have occurred without the GE technology, i.e., that GE
seeds cause the increase in hectarage, then the production on the extensive margin would
have to be subtracted from Q̃ct to yield counterfactual supply:˜̃

Qct = ŷct0
[
Lct − Lext1ct

]
(C.3)
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Figure C.1: Supply Effect of GE Corn

0%	
  

5%	
  

10%	
  

15%	
  

20%	
  

25%	
   Barrows,	
  Sexton,	
  Zilberman	
  

Sexton	
  &	
  Zilberman	
  2010	
  

Brookes	
  &	
  Barfoot	
  2005	
  

Gouse	
  et	
  al.	
  2006	
  

Yorobe	
  &	
  Quicoy	
  2006	
  

Gomes-­‐Barbero	
  et	
  al	
  2008	
  

Nasem	
  &	
  Pray	
  2004,	
  
Fernandez-­‐Cornejo	
  et	
  al	
  2005	
  

Barrows,	
  Sexton,	
  Zilberman	
  	
  
(Log	
  specificaRon)	
  

Without	
  
Extensive	
  
Margin	
  Effect	
  

With	
  
Extensive	
  
Margin	
  Effect	
  	
  

Notes: Supply effect of GE corn calculated as percentage difference between observed supply and counter-
factual supply without GE technology. Estimate without extensive margin effect allow that production on
the extensive margin would have occurred with the traditional technology as well. Estimates with extensive
margin effect subtract all production on extensive margin in the counterfactual supply. Each point corre-
sponds to estimates based on the yield effect from different studies in the literature. The “Barrows, Sexton,
Zilberman” estimates are derived from our preferred yield estimates in Table 3.3 (column 4). “Barrows,
Sexton, Zilberman (Log specification)” estimates are derived from the log specification in column 6 of Table
3.3.

where Lext1ct denotes the extensive margin computed in Section 4. The corresponding supply

effect is defined analogously as above ˜̃s = Qt−
˜̃
Qt

Qt
.

In Figures C.1 and C.2, we report world supply effect for GE corn and cotton for the
year 2010 conditional on yield effects from several different studies. Supply effects based on
our estimates from section 3 are denoted with large red triangles. Other markers correspond
to the supply effects based on yield effects from Sexton and Zilberman (2011) along with all
the studies reviewed in Qaim et al. (2009). Estimates are reported according to the extensive
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Figure C.2: Supply Effect of GE Cotton
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Notes: Supply effect of GE cotton calculated as percentage difference between observed supply and counter-
factual supply without GE technology. Estimate without extensive margin effect allow that production on
the extensive margin would have occurred with the traditional technology as well. Estimates with extensive
margin effect subtract all production on extensive margin in the counterfactual supply. Each point corre-
sponds to estimates based on the yield effect from different studies in the literature. The “Barrows, Sexton,
Zilberman” estimates are derived from our preferred yield estimates in Table 3.3 (column 1). “Barrows,
Sexton, Zilberman (Log specification)” estimates are derived from the log specification in column 3 of Table
3.3.
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margin assumption. The left column, labeled “Without Extensive Margin Effect,” reports
the resulting supply effects when we assume that extensive margin lands could have been
profitably farmed with traditional seeds. The right column, labeled “With Extensive Margin
Effect,” reports supply effects after subtracting all production on extensive margin lands.
Results are discussed in the main text.

C.2 Price Effects

The supply effect from GE technology can be translated into price effects using a methodol-
ogy from De Gorter and Zilberman (1990) and Alston, Norton, Pardey, et al. (1995). Suppose
that without GE technology, the supply curve shifts in by a factor of η, where η corresponds
to the supply effect from the previous section. In the new equilibrium:

(1− η)Qs (p) = Qd (p) (C.4)

where Qs (p) and Qd (p) represent quantities supplied and demanded, respectively, as a func-
tion of output price p. Totally differentiating with respect to η and p, yields

(1− η)
∂Qs (p)

∂p
dp−Qsdη =

∂Qd (p)

∂p
dp

=⇒ dp

[
(1− η)

∂Qs (p)

∂p
− ∂Qd (p)

∂p

]
= Qsdη

=⇒ dp

p
=

∂η

εs − εd
(C.5)

where the last line follows from setting η = 0. Equation (C.5) states that the percentage
change in equilibrium price (the price effect) is equal to the supply effect divided by the
difference between price elasticity of supply and price elasticity of demand. Thus, estimat-
ing the price effect simply involves scaling the supply effect from the previous section by
elasticities parameters readily obtained from the literature. In our estimates, εs = 0.3, a
low elasticity scenario is parameterized with εd = −0.3, and a high elasticity scenario uses
εd = −0.5.1 For each elasticity scenario, we also vary the assumption on the extensive margin
as before. For each of these 4 scenarios {low elasticity, no extensive margin ; low elasticity
with extensive margin; high elasticity, no extensive margin; high elasticity, with extensive
margin} price effects are computed conditional on yield estimates and plotted in Figure C.3
for corn and Figure C.4 for cotton. We discuss results in the main text.

C.3 Land-Use Saving Effects

Lastly, we estimate land-use saving effects and the corresponding GHG emissions savings due
to GE technology. We compute saved hectares as the difference between observed hectarage

1Roberts and Schlenker (2010) suggest that supply elasticities vary between 0.08 and 0.13 for supply of
grain calories and demand elasticities vary between -0.05 and -0.08. Thus, the magnitude of the price effect
should be greater than five times the magnitude of the supply effect, which are greater than the impacts
estimated here.
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Figure C.3: Price Effect of GE Corn
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Notes: Price effect of GE corn calculated as percentage difference between observed price and counterfac-
tual price without GE technology. Estimate without extensive margin effect allow that production on the
extensive margin would have occurred with the traditional technology as well. Estimates with extensive
margin effect subtract all production on extensive margin in the counterfactual supply. “Low elasticity”
scenario sets elasticity of demand to -0.3, “high elasticity” scenario sets elasticity of demand to -0.5. Each
point corresponds to estimates based on the yield effect from different studies in the literature. The “Bar-
rows, Sexton, Zilberman” estimates are derived from our preferred yield estimates in Table 3.3 (column 4).
“Barrows, Sexton, Zilberman (Log specification)” estimates are derived from the log specification in column
6 of Table 3.3.
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Figure C.4: Price Effect of GE Cotton

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  
Barrows,	
  Sexton,	
  Zilberman	
  

Sexton	
  &	
  Zilberman	
  2010	
  

Fi=	
  2003	
  

Falck-­‐Zepeda	
  2000,	
  
Carpenter	
  et	
  al	
  2002	
  

Pray	
  et	
  al	
  2002	
  

Qaim	
  &	
  de	
  Janvrey	
  2003,	
  
2005	
  

Sadashivappa	
  &	
  Qaim	
  2009	
  

Traxler	
  et	
  al	
  2003	
  

Barrows,	
  Sexton,	
  Zilberman	
  
(Log	
  specificaPon)	
  

Notes: Price effect of GE cotton calculated as percentage difference between observed price and counter-
factual price without GE technology. Estimate without extensive margin effect allow that production on
the extensive margin would have occurred with the traditional technology as well. Estimates with extensive
margin effect subtract all production on extensive margin in the counterfactual supply. “Low elasticity”
scenario sets elasticity of demand to -0.3, “high elasticity” scenario sets elasticity of demand to -0.5. Each
point corresponds to estimates based on the yield effect from different studies in the literature. The “Bar-
rows, Sexton, Zilberman” estimates are derived from our preferred yield estimates in Table 3.3 (column 1).
“Barrows, Sexton, Zilberman (Log specification)” estimates are derived from the log specification in column
3 of Table 3.3.
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Table C.1: Land-Use Saving Effects in 2010

(1) (2) (3)
2010 Harvested Area Area Saved GHG Saved

(Millions of Ha) (Millions of Ha) (Gt)

Cotton 32 6 0.07
Corn 160 5 0.06
Soybeans 102 2 0.03
Total 294 13 0.15

Notes: 2010 Harvested Area are world aggregate from FAO Stat. “Area Saved”
in column 2 represents the difference between observed area (column 1) and
counterfactual area needed to meet observed 2010 demand without the intensive
margin yield impact of GE. Column 3 multiplies “Area Saved” by a constant
GHG/Ha/yr value of 11.7 metric tonnes, taken from the land-use literature
(Searchinger et al., 2008).

in 2010 and counterfactual hectarage that would be needed to produce the same output
without the GE supply effects.

Formally, counterfactual hectarage without considering the extensive margin effect is
computed as

L̃ct =
Qct

ŷct0
(C.6)

Country-specific hectarages are aggregated to the world level and observed 2010 hectarage
is subtracted to compute world hectarage savings

L̃t =
∑
c

(
L̃ct − Lct

)
(C.7)

Estimates are reported by crop in the second column of Table C.1 and discussed in the
main text. In the last column of Table C.1, we translate land-use savings into Gt of averted
GHG emissions by multiplying the hectares saved by GHG emissions per hectare of land-use
change per year.




