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When subjected to a sufficiently strong magnetic field, the properties of elec-

tronic quantum matter change dramatically. This is especially true in the “ex-

treme quantum limit” (EQL), in which the spacing between quantized energy

levels of the electron cyclotron motion becomes larger than any other relevant

energy scale. Here we probe deeply into the EQL in the three-dimensional

Dirac semimetal ZrTe5. We measure the bulk thermoelectric properties, and
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we find them to be greatly enhanced over their zero-field values. Most strik-

ingly, the thermoelectric Hall conductivity αxy acquires a universal, quantized

value deep in the EQL, which is independent of magnetic field or carrier con-

centration. We explain this quantization theoretically and show how it is a

unique signature of three-dimensional Dirac or Weyl electrons in the EQL.

Strong magnetic fields can have a profound influence on quantum matter. In electronic sys-

tems, this influence arises primarily from the Lorentz force, which bends the trajectories of

itinerant electrons and forces them to turn in tight cyclotron orbits. These orbits are quantized

into discrete energy levels (Landau levels) in an analogous way to the quantization of electron

orbitals within an atom. When the magnetic field is sufficiently strong, a many-electron sys-

tem enters the “extreme quantum limit” (EQL), in which the spacing between Landau levels

becomes larger than any other energy scale in the problem, such as the Fermi energy EF or the

thermal energy kBT . In this limit all itinerant electrons occupy only the lowest Landau level,

which means that their motion in the plane perpendicular to the magnetic field is locked into a

single, highly degenerate quantum state, while only the electron motion parallel to the magnetic

field remains free.

In typical metals, the Fermi energy is so large that achieving the EQL requires enormous

magnetic fields on the order of ∼ 105 T. Such large fields seem to exist only in astrophysical

scenarios such as neutron stars, [1] and are implausible for laboratory experiments. In doped

semiconductors one can achieve low Fermi energy, but electrons in semiconductors are prone

to localization effects, which arise from the disorder that is inevitably introduced by doping. [2]

Since strong magnetic field tends to facilitate electron localization, the EQL can generally be

probed in doped semiconductors only over a limited range of field (see, e.g., [3, 4, 5, 6]). These

limitations can be circumvented, however, by studying the EQL in three-dimensional nodal

semimetals, such as the recently-discovered Dirac or Weyl semimetals. [7] In such materials
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the Fermi energy can, in principle, be made arbitrarily small, while the absence of a band gap

prevents electron localization.

It was recently suggested theoretically that the thermopower of nodal semimetals can be

enormously enhanced in the EQL [8], which implies a potential new pathway for achieving

efficient platforms for waste heat recovery or solid state refrigeration. [9] In a follow-up work, it

was shown that this result can be understood in terms of a quantized value of the thermoelectric

Hall conductivity [10]. Motivated by these predictions, in this work we study the thermoelectric

effect in strong magnetic fields in the Dirac semimetal ZrTe5.

In terms of its electronic properties, bulk ZrTe5 lies somewhere between a strong topological

insulator and a weak one, sensitively depending on the crystal lattice constant. [11] At this

phase boundary the band structure realizes a gapless Dirac dispersion around the Γ point. Many

previous studies have shown that ZrTe5 is a Dirac semimetal with at most a small band gap

(see, e.g., [12, 13, 14, 15, 16]). Since ZrTe5 possesses a single Dirac cone and can be grown

with very low carrier density and very high mobility, it represents an ideal platform for studying

three-dimensional (3D) Dirac electrons in the EQL.

Our samples are single crystals of ZrTe5 grown by the Tellurium flux method [17]. We

should point out that our samples are n-type and have only a single (and small) electron pocket,

which is significantly different from samples grown by the chemical vapor transport method.

Relatively large crystals, with a typical size of 3 mm × 0.4 mm × 0.3 mm, were used for trans-

port measurements. The longest dimension is along the a axis and the shortest dimension is

along the b axis. In our measurements, either the electrical current or the temperature gradient

was applied along the a axis, while the magnetic field was perpendicular to the ac plane. For

the thermoelectric measurements, one end of the sample is thermally anchored to the sample

stage, while the other end is attached to a resistive heater. The temperature difference between

the two ends is measured by a type-E thermocouple. This difference is in the range of 100 to
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160 mK, which is always much smaller than the sample temperature.

The electron concentration in our samples, as measured by the Hall effect, is nHall ≈

5× 1016 cm−3 at low temperature. As we show below, at such low densities the EQL is reached

already at fields & 2 T. The Hall effect remains linear in the magnetic field B up to 6 T at low

temperatures, which is much higher than the quantum limit field. This linearity reflects a single

band of carriers, indicating that we have a simple Dirac system. As in previous studies of ZrTe5

[18, 19], the Hall concentration nHall is seen to evolve with temperature, with the sample chang-

ing from n-type to p-type as T is increased above ≈ 83 K. Previous studies suggest that this

change results from a temperature-dependent Lifshitz transition [17, 19]; a more thorough dis-

cussion of the electron and hole concentrations as a function of temperature is presented in the

Supplementary Information. The shift from n- to p-type transport with increasing temperature

is also reflected in the behavior of the zero-field resistivity ρxx and the zero-field thermopower

Sxx as a function of temperature, which are shown in Fig. 1a.

As the magnetic field is increased from zero, the resistivity undergoes Shubnikov-de Haas

(SdH) oscillations associated with depopulation of high Landau levels. These oscillations are

plotted in Fig. 1b, which show that the EQL is achieved at all fields > 2 T. The appearance

of SdH oscillations at very low field (≈ 0.1 T) reflects the high mobility of our samples, µ ≈

640, 000 cm2V−1s−1. A previous study reported measurements of the SdH oscillations for the

magnetic field oriented along the x, y and z axes, from which the Fermi surface morphology is

obtained [18]. The Fermi surface is an ellipsoid with the longest principal axis in the z direction.

The carrier density estimated from SdH oscillations is in good agreement with nHall, confirming

the dominance of a single band at the Fermi level at low temperature. The corresponding Fermi

level is only 11 meV above the Dirac point at T = 1.5 K.

Because of the low carrier density, the system enters the lowest (N = 0) Landau level at

B > 2 T at low temperature. As the temperature is increased, the Fermi level shifts towards the
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Figure 1: a Temperature dependence of the electrical resistivity and the thermopower. b Mag-
netoresistance at 1.5 K. On top of a strong positive magnetoresistance, SdH oscillations are
evident (upper inset). The onset field of the oscillations is 0.13 T, indicating a high mobility.
The system enters the EQL at ≈ 2 T. The lower inset shows the index n of the minima and
maxima of each oscillation as a function of 1/B.
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Dirac point, implying that the quantum limit is reached at an even lower field. Therefore, the

system is well within the EQL for a large range of magnetic field, which we sweep up to 14 T.
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Figure 2: Longitudinal and transverse thermoelectric coefficients as a function of the magnetic
field at different temperatures. a b Sxx. c d Sxy.

Our measurements of the longitudinal (Seebeck, Sxx) and transverse (Nernst, Sxy) thermo-

electric coefficients are shown in Fig. 2 as a function of magnetic field. There is a general

increase in the magnitude of both Sxx and Sxy with magnetic field in the EQL. Indeed, at

T ≈ 90 K, where the carrier density is the lowest, Sxx becomes as large as 800 µV/K, while

Sxy becomes larger than 1200 µV/K. The theoretical interpretation of Sxx and Sxy, however, is

complicated by the variation of the carrier density with T and B. Indeed, the change in sign of

Sxx with B at higher temperatures is likely related to the proximity of the system to a transi-

tion from n-type to p-type conduction, as is the sharp variation in Sxx with B at low fields and

T ≈ 90 K. This variation of the carrier concentration with B seems to blunt the large, linear

enhancement of Sxx with B predicted in Ref. [8] for higher temperatures.

These complications lead us to examine a more fundamental quantity, the thermoelectric
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conductivity α̂ = ρ̂−1Ŝ. Here ρ̂ and Ŝ denote the resistivity and thermoelectric tensors, respec-

tively, so that both the longitudinal and transverse components of the tensor α̂ can be deduced

from our measurements. We focus, in particular, on the thermoelectric Hall conductivity αxy,

which is plotted in Fig. 3 for the EQL. While αxy depends in general on both T and B, Fig. 3b

shows that deep in the EQL αxy achieves a plateau that is independent of magnetic field. Fur-

thermore, this plateau value of αxy is linear in temperature at temperatures T . 100 K, which

suggests that αxy/T is a constant in the EQL, independent of B or T (Fig. 3a).
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Figure 3: Transverse thermoelectric conductivity. a αxy/T as a function of B at different
temperatures. αxy is independent of B at high fields. b αxy as a function of temperature at
different fields. The red dashed line is a guide to the eye.

This strikingly universal value of αxy/T can be understood using the following argument.

The thermoelectric Hall conductivity can be defined by αxy = JQ
y /(TEx), where JQ

y is the heat

current density in the y direction under conditions where an electric field Ex is applied in the

x direction and the temperature T is uniform. In the limit of large magnetic field (large Hall

angle), electrons drift perpendicular to the electric field via the ~E × ~B drift, and thus the heat
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current density JQ
y = vdQ, whereQ is the internal energy per unit volume of the electron system

and vd = Ey/B is the magnitude of the ~E × ~B drift velocity. In a system with constant density

of states ν, the internal energy Q = (π2/6)k2BT
2ν [20]. Crucially, for a gapless Dirac system in

the EQL, the density of states becomes an energy-independent constant, ν = NfeB/(2π
2~2vF ),

where ~ is the reduced Planck constant, vF is the Dirac velocity in the field direction, and Nf

is an integer that counts the number of Dirac points multiplied by the degeneracy of each Dirac

cone. (In our system Nf = 2.) Inserting this expression for ν into the relations for Q and αxy

gives

αxy =
1

12

T

vF

ek2B
~2

Nf . (1)

In other words, the value of αxy/T is determined only by the Dirac velocity, by the integer

degeneracy factor Nf , and by fundamental constants of nature. In this sense one can say that

αxyvF/T is a quantized and universal quantity in the EQL of Dirac or Weyl materials. Equation

(1) was predicted in Ref. [10], where it was derived in terms of quantum Hall-like edge states.

Notice, in particular, that Eq. (1) has no dependence on the carrier concentration. Thus,

changes in the carrier concentration or even a transition from n-type to p-type conduction do not

affect the value of αxy. This surprising independence apparently enables the universal plateau

that we observe in αxy, even though the behavior of Sxx and Sxy in the EQL is more complicated.

Figure 3a shows that the plateau in αxy/T ≈ 0.01 AK−2m−2. We can compare this to the

theoretical prediction of Eq. (1) using the previously-measured Dirac velocity vF ≈ 3×104 m/s

[18]. Inserting this value into Eq. (1) gives αxy/T ≈ 0.015 AK−2m−2, which is in excellent

agreement with our measurement.

It is worth emphasizing that in conventional gapped systems, such as doped semiconductors,

αxy varies with both the carrier concentration n and the magnetic field B in a nontrivial way

[10]. In this sense the quantized plateau in αxy/T is a unique Hallmark of three-dimensional

Dirac and Weyl semimetals, and it can potentially be used as a litmus test for detecting Dirac
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and Weyl materials or as a method for measuring the Dirac velocity vF .

In summary, in this Report we have demonstrated, for the first time, a universal, quantized

plateau in the thermoelectric Hall conductivity of Dirac or Weyl semimetals in the EQL. This

plateau is related to the large, field-enhanced thermoelectric response that we observe at strong

magnetic field. Our findings imply that ZrTe5, and three-dimensional nodal semimetals more

generally, may serve as unprecedented platforms for achieving large thermopower and for ex-

ploring quantum matter in extreme magnetic field conditions.
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Fig. S1 shows the magnetoresistance and the Hall resistance of the sample presented in

the main text. The resistivity strongly increases with field, e.g., by two to three orders of

magnitude at B = 14 T. Such a large magnetoresistance is typical for Dirac semimetals[S1].

At low temperatures, the Hall resistivity is rather linear below 6 T, indicating single band

conduction. The linearity persists deep into the quantum limit. However, a strong deviation

appears above 6 T. We believe that such a nonlinear Hall in the extreme quantum limit is

the result of two-carrier contributions, as expected when the Fermi level shifts towards the

Dirac point with increasing magnetic field. This shifting of the Fermi level is precisely the

mechanism that gives rise to the non-saturating thermopower and transverse thermoelectric

conductivity plateau, which are the main focus of this work. The low field slope of ρxy

shows a sign-reversal at about 90 K, indicating the change of carrier from electron to hole,

as expected by the Liftshitz transition in this material.

At temperatures that are much lower or much higher than 90 K, the Fermi level is not

so close to the Dirac point and the transport is more or less one-carrier dominated at low

fields. Correspondingly, the low field Hall is relatively linear and carrier density is simply

calculated from the Hall slope. On the other hand, around 90 K, where the Fermi level is

in the vicinity of the Dirac point, a significant amount of electrons and holes are thermally

excited. The existence of two types of carriers with comparable densities causes ρxy to

become non-linear even at relatively low fields. Consequently, a two-carrier model such that

ρ̂−1tot = ρ̂−1e + ρ̂−1h , is necessary to describe the mangetotransport and extract the carrier

density. Here ρ̂tot, ρ̂e and ρ̂h are the resistivity tensors of the total, electron contribution

and hole contribution, respectively. For the longitudinal component of the resistivity tensor,

ρxx, we need to take into account the strong magnetoresistance that a Dirac semimetal often

exhibits. Since ρxx(B) at low temperatures displays a quadratic dependence when only one

type of carriers dominate, it is reasonable to assume that it remains so for both electrons

and holes at higher temperatures. Therefore, the following expressions are used to describe

the electron and hole transport,




ρxx(B) = ρ0 + a |B|+ bB2

ρxy(B) = RHB
, ρ̂ =


 ρxx ρxy

−ρxy ρxx


 (S1)

By fitting data round 90 K, the carrier densities of holes and electrons, nh and ne, are

obtained. Their difference, nh − ne, which reflects the Fermi level, is plotted in Fig. S1e.
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FIG. S1. Electrical transport. a, b Longitudinal electrical resistivity ρxx and transverse electrical

(Hall) resistivity ρxy versus the magnetic field at different temperatures. Curves are shifted for
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The temperature dependence of the carrier density is consistent with the Lifshitz transition

observed in the angle resolve photo-emission spectroscopic study[S2].
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FIG. S2. Quantum oscillations of magnetoresistance at 1.5 K. a Oscillations of the magnetoresis-

tance after subtraction of a background. b Fast Fourier transformation analysis of the quantum

oscillation.

Fig. S2 shows the oscillatory part of the magnetoresistance at 1.5 K, which one can see

is periodic in 1/B. At least six periods of oscillations can be identified. The FFT spectrum

displays a sharp peak at about 0.82 T, which agrees well with the slope of the Landau plot

shown in Fig. 1 of the main text. From the oscillation frequency, we estimate the carrier

density 4.3×1016 cm−3.
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