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ABSTRACT OF THE THESIS 

Modeling and Experimentation of a Ribbed Caudal Fin With Applications in Aquatic 

Robots 

 

by 

 

Ardavan Amini 

 

Master of Science in Engineering Sciences (Mechanical Engineering) 
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Professor Hidenori Murakami, Chair 

 

Presented in this study is a mathematical model and preliminary experimental results 

of a ribbed caudal fin to be used in an aquatic robot. The ribbed caudal tail is comprised 

of two thin beams separated by ribbed sectionals as it tapers towards the fin. By 
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oscillating the ribbed caudal fin, the aquatic robot can achieve forward propulsion and 

maneuver around its environment. The fully enclosed system allows for the aquatic robot 

to have very little effect on marine life and fully blend into its respective 

environment.  Because of these advantages, there are many applications including 

surveillance, sensing, and detection. 

Because the caudal fin actuator has very thin side walls, Kirchhoff-Love’s large 

deformation beam theory is applicable for the large deformation of the fish-fin 

actuator.  In the model, it is critical to accurately model the curvature of beams. To this 

end, 𝐶! beam elements for thin beams are developed by specializing the shear-

deformable beam elements, [19], based upon Reissner’s shear-deformable nonlinear 

beam model. Furthermore, preliminary experiments on the ribbed fin are presented to 

supplement the FE model. 

Uses for underwater robots are widespread, impacting many engineering and 

commercial sectors. To achieve maximum maneuverability, several means of propulsion 

have been discussed and implemented in existing robots. Presented in this research is an 

alternative method of generating propulsion through the use of gyroscopes. Gyroscopes 

have been widely known as a means of stabilization or attitude control. In the work 

presented, a gyroscopically driven robot design is shown and validated through 

experiments. The robot was shown to swim along a straight path and perform both left 

and right 90 and 180 degree turns, allowing it to successfully maneuver along the water 

surface plane. 
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CHAPTER 1: INTRODUCTION 

Uses for aquatic robots are widespread, impacting military, commercial, 

oceanographic, and engineering research. To achieve maximum maneuverability, several 

means of propulsion and fin designs have been discussed and implemented in existing 

technology. Previous works in aquatic biomimetic robots have been able to actuate the 

caudal and or the posterior of the robot enclosed in either a hard casing or soft membrane. 

The tails proposed all include jointed segments, where each joint is driven by a servo to 

achieve the oscillatory motion needed for forward propulsion [1-3]. While the proposed 

ideas provide the results needed, they don’t exemplify the natural motion and movement 

of a fish. Other methods of actuation and tail designs have been proposed that are able to 

use pneumatics and hydraulics to actuate a soft single body [4,5]. Although these robotic 

fish driven by fluidic elastomer actuation or pressurized air can perform quick maneuvers 

and achieve motion that closely resembles that of a fish, the manufacturing of these soft 

bodied actuators can be time consuming. Proposed in this paper is a ribbed caudal fin that 

is comprised of two thin beams separated by a varying number of webs or ribbed 

sectionals to increase or decrease the stiffness. By actuating the first web through a servo, 

as done in the preliminary experiments presented below, or by any other mechanism 

design, a large oscillatory motion is created that produces the necessary forward thrust. 

To properly model the caudal fin, the Kirchhoff-Love beam equations, which neglect 

the transverse shear deformation, will be used. To systematically show the derivation of 

the equations, the moving frame method will be first used to derive Reissner’s shear 

deformable equations from which we will then simplify to obtain the Kirchhoff-Love 
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equations. To solve the nonlinear equations numerically, the principal of virtual work and 

the nonlinear finite element equations, through the use of 𝐶!beam elements, are derived. 

The development of autonomous underwater vehicles (AUVs) and aquatic 

biomimetic robotics, is of great importance for the field of engineering. Uses for 

underwater robots in general are widespread, impacting military, commercial, 

oceanographic, and engineering research. To achieve maximum maneuverability, several 

means of propulsion have been discussed and implemented in existing technology. 

Previous works in aquatic biomimetic robots have been able to use servos to actuate the 

caudal and or the posterior of the robot enclosed in either a hard casing or soft membrane 

[1-3]. Other previous work was able to use pneumatics and hydraulics to actuate the soft-

bodied exterior [4,5]. Presented in this research is an alternative and novel method of 

generating propulsion through the use of gyroscopes. 

Previous work has shown and proven gyroscopes as a means of stabilization and 

ocean wave energy harvesting [17-20]. Traditionally, gyroscopic stabilization is achieved 

by rotating the gimbal to create a reactionary torque on the outer body; however, 

gyroscopes may be used in a different manner. In this paper, rather than to orient, 

gyroscopes will be presented as a mean of generating propulsion and as a means of 

maneuvering.  

There are several benefits of using gyroscopes as a means of propulsion. The systems 

is self-contained and completely enclosed, allowing for control of noise and visual 

appearance. The use of gyroscopes more importantly provides various parameters that 

can be controlled to optimize output torque and maneuverability. With a gyroscopic 

design, we avoid the use of linkages, providing little maintenance needs and moving 
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components. Also, the use of a gyroscopes allows for a more flexible design that can be 

continually improved upon with respect to the programming, fin design, and overall body 

design.  

An important factor in the implementation of this underwater robot is working 

through the iterative design process. On this end, a prototype of a gyroscopically driven 

aquatic robot is developed and tested. Results were measured and observed that lead to 

continually improving multiple aspects of the device. This way, a more efficient 

underwater robot can be created, which is optimized with respect to the programming and 

overall design of the system. In these initial iterations, the device is remotely controlled 

while in the water. An XBee module is connected to an Arduino microcontroller, which 

allows commands to be sent to the robot without the need of tethering.  

Initial water tank tests were conducted to demonstrate the capabilities of the 

gyroscopically driven robot. The robot was shown to successfully maneuver anywhere 

along the water surface. It was capable of performing precise turns and move in fairly 

straight path when moving forward. Tests were conducted with a small, semi-rigid fin 

and a flexible caudal fin. From the water tank tests, several improvements to the system 

can be considered for future designs: Better features to maintain the correct orientation of 

the robot for maximum propulsion, more efficient use of programming to ensure less 

power is lost, and deciding on the most effective fin design. With the results of the 

experiments conducted, a more complete robot can be designed and implemented, which 

can have broad applications from data acquisition to surveilling. Also, future iterations of 

the design will shift toward autonomous control rather than remotely controlled, as it is 

currently.
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CHAPTER 2: CAUDAL FIN 

2.1 Ribbed Caudal Fin 

The ribbed caudal fin that will be analyzed consists of two thin beams separated by 

webs. The webs are assumed to be thin, rigid, and always perpendicular to the beams as 

the fin is actuated. Shown in Fig. 2.1 are three different views of the caudal fin that will 

be analyzed with zero, one, and two webs. The proximal web is driven to induce large 

elastic oscillations of the caudal-fin actuator to induce a thrust for an aquatic fish robot. 

In the sections to follow, the mathematical model of the ribbed caudal fin will be derived 

along with the finite element equations. 

 

Figure 2.1: Plan and elevation views of zero, single, and dual-ribbed caudal fins 

2.2 A Mechanical Model of a Caudal-Fin Actuator 

A caudal fin actuator, illustrated in Figure 2.1, consists of a pair of thin curved 

beams joined at the distal end to attach a tail fin, which is bridged by rigid webs toward 

its proximal end. A proximal web is driven to induce large elastic oscillations of the 
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caudal-fin actuator to induce a thrust for an aquatic fish robot. To simulate the planar 

model-experiments in air that are driven by an oscillating proximal web (without 

distributed fluid interaction loading), finite element (FE) models are developed for 

caudal-fin actuators using three models: (a) without a web, (b) with one web, and (c) with 

two webs, as shown in Fig. 1. In FE models, thin flexible beams are modeled by using 1C

- beam elements based upon the Kirchhoff-Love beam theory [6] while rigid webs are 

modeled as rigid mass elements. ( 1C - beam elements indicate that both beam deflection 

and it derivative with arc-parameter are continuous.) The FE equations of motion of the 

caudal-fin actuator, validated in air, may be utilized to evaluate the fluid interaction 

loading on the curved actuator walls by measuring their deformation in water. This 

approach mimics the inverse dynamics method employed in robotics.  

In this report, the principle of virtual work is presented for the Kirchhoff-Love 

beam model for the first time. The principle of virtual work is utilized to develop FE 

beam elements, whose curve of centroids are expressed by continuous 1C -curves 

including the tangent to the curve at each FE node. In the presentation, it is crucial to 

clarify the effect of neglecting transverse shear deformation in the Kirchhoff-Love beam 

model and the resulting FE implementation of the zero-transverse shear constraint. 

Therefore, in the following, Reissner’s shear-deformable beam equations [7] are fist 

derived from a free-body diagram, which includes the inertial terms. Then, the transverse 

shear deformation is neglected to reduce to the Kirchhoff-Love beam model, where the 

reactive-beam shear force is expressed by other beam stress variables. Afterward, starting 

from the principle of virtual work for Reissner’s curved beam model obtained by the 

authors [8, 9], the principle of virtual work for the Kirchhoff-Love beam model is 
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derived. Finally, 1C -beam elements are introduced for the FE discretization of the 

principle of virtual work to obtain a nonlinear system of FE equations of motion, which is 

integrated with time by using the Newmark integration method [10, 11] 

The application of FE models is confined in this report to capturing the nonlinear 

vibration of caudal-fin actuators in air. (The application of the FE equations of motion for 

inverse dynamics will be deferred to a future publication.) 

 

2.3 Curved Beam Models and Their Assumptions 

Plane beams carry internal axial force 1N and transverse shear force 2N  (per unit 

length of the reference curve of centroids) as well as bending moment 3M acting on each 

cross section, as illustrated in Fig. 2.2.  Beams may be subjected to external transverse 

loading to the curved axis.  To prepare for the derivation of beam equations of motion, 

the kinematic representation of curved beams is discussed first. 

 

Figure 2.2: Plane beam showing internal axial force 𝑁!, transverse shear force, 𝑁! and 

the bending moment 𝑀! 
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2.3.1 Kinematics of Curved Beams 

Let a plane beam deform in a Euclidean 2-space, spanned by an inertial Cartesian 

coordinate system { }21 zz  whose coordinate vector basis is: ( )III
21 eee ≡ . It is assumed that 

beam cross sections are symmetric with respect to the 1z , 2z -planes. The geometry of a 

beam in a reference or natural configuration at time t=0 is expressed as stacked cross 

sections with centroids that are joined by a curve of centroids, whose tangent is normal to 

each cross section. The arc length of the reference curve of centroids, )0,(SCr , is 

expressed by S.  

At time t, the deforming curve of centroids of cross sections, ),( tSCr , is parameterized 

by the arc parameter S, which was the arc length at the reference curve of centroids, 

),( 0SCr . Using the coordinates, the position vector of the curve of centroids, ),( tSCr , at 

time t is expresses as 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡=

),(
),(

),(),(
tSz
tSz

tSztS
C2

C1I
2

I
1C

I
C eeer .                               (1) 

Both Euler and James Bernoulli observed that for initially straight beams, each cross 

section does not deform in the plane of the cross section during deformation (i.e., planar 

normal strains and shear strain are negligible), but rigidly translates and rotates, see 

Historical Introduction in Love’s monograph [6]. The assumption of rigid cross sections 

was also adopted by Kirchhoff [12] and Love [6] for thin curved beams under large 

deformation. (Exceptional cases include, for example, a soft core sandwich beam or a 

beam with thin open channels which are not used for the side beams of the fin actuator.) 



   8 
 

 

For a plane beam, a line defines each cross section, which is one of the principal axes 

of the cross section. At time t=0, each cross section, represented by a line, is normal to 

the reference curve of centroid. To define beam stress vectors and strains, as well as the 

rotation of cross sections at the arc-parameter S, an orthonormal vector basis: 

( )),(),(),( tStStS 21 eee ≡  is defined, where ),(1 tSe is the unit normal vector to the cross 

section and ),(2 tSe  is the unit vector of the principal axis of the cross section at S, as 

illustrated in Fig. 2.3. The rotation angle ),( tSψ of the normal vector ),(1 tSe of cross 

section is measured from I
1e  in the counterclockwise direction (after parallel translating 

the inertial frame ( )I2I
1

I eee ≡  to ),( tSCr ). 

 

Figure 2.3: Beam section in the reference and actuated configuration 

At t=0, )0,(1 Se is the unit tangent vector to the reference curve of centroids, )0,(SCr , 

and )0,(2 Se  is the unit vector along one of the principal axes of the cross section. Since 

the cross section remains rigid, the normal strain in the ),(2 tSe -direction vanishes. 
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However, due to transverse shear deformation, ),(1 tSe  may not remain tangent to the 

deforming curve of centroids. 

The attitude of ( )),(),(),( 21 tStStS eee ≡ , measured from the inertial frame ( )III
21 eee ≡ , 

is expressed symbolically by a rotation matrix )),(( tSR ψ  as:  

e(S, t) = eI R(ψ(S, t)) ,                                           (2a) 

where the rotation matrix )),(( tSR ψ  by angle ),( tSψ in the counter clockwise 

direction is 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

),(cos),(sin
),(sin),(cos

)),((
tStS
tStS

tSR
ψψ

ψψ
ψ .                         (2b) 

In expanded form, Eq. (2a) is written as: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
=

),(cos),(sin
),(sin),(cos

),(),(
tStS
tStS

tStS I
2

I
121 ψψ

ψψ
eeee .                  (2c) 

Eq. (2a) may be interpreted as: “the moving frame ( )),(),(),( 21 tStStS eee ≡  is 

obtained by rotating the inertial frame ( )I2I
1

I eee ≡  by )),(( tSR ψ .” The inverse of the 

rotation matrix is expressed by its transpose as shown below: 

⎥
⎦

⎤
⎢
⎣

⎡

−−

−−−
=−=−

)),(cos()),(sin(
)),(sin()),(cos(

)),(()),((
tStS
tStS

tSRtSR 1

ψψ

ψψ
ψψ  

)),((
),(cos),(sin
),(sin),(cos

tSR
tStS
tStS T ψ

ψψ

ψψ
≡⎥

⎦

⎤
⎢
⎣

⎡

−
= . 

Therefore, the inverse attitude relation to Eq. (2a) is expressed as: 

)),((),( tSRtS TI ψee = .                                            (3) 
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The S-derivative of ),( tSe in Eq. (2a) expresses how the moving frame rotates as one 

moves along the curve of centroids. This relation takes a simple form when it is 

expressed by itself using Eq. (3).  

              
)),(()),((),()),((),( tSR

S
tSRtStSR

S
tS

S
TI ψψψ

∂
∂

=
∂
∂

=
∂
∂ eee . 

The simple result gives 

⎥
⎦

⎤
⎢
⎣

⎡ −

∂
∂

=
∂
∂

01
10

S
tStStS

S
),(),(),( ψee ,                                  (4a) 

where  

)),(()),((),( tSR
S

tSR
01
10

S
tS T ψψ

ψ
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡ −

∂
∂

.                            (4b) 

Let the infinitesimal arc length be CC ddds rr ⋅= of the current deformed curve of 

centroids, ),( tSCr , defined by the infinitesimal arc-parameter dS . Then, s∂∂ /ψ  is the 

curvature of the moving frame ),( tSe . As a result, )/()/(/ dSdssS ∂∂=∂∂ ψψ expresses the 

curvature of the moving frame, multiplied by the stretch ratio dSds / . For initially curved 

beams, the initial curvature is expressed by S∂∂ /ψ  since 1dSds =/  at t=0. 

Similarly, the time derivative of ),( tSe in Eq. (2a) shows the time-rate of frame 

rotation whose amplitude is expressed by angular velocity t∂ψ∂ / . Again, the expression 

takes a simple form when it is expressed by itself using Eq. (3).  

)),(()),((),()),((),( tSR
t

tSRtStSR
t

tS
t

TI ψψψ
∂
∂

=
∂
∂

=
∂
∂ eee . 

The result gives 

⎥
⎦

⎤
⎢
⎣

⎡ −

∂
∂

=
∂
∂

01
10

t
tStStS

t
),(),(),( ψee ,                                    (5a) 
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where  

)),(()),((),( tSR
t

tSR
01
10

t
tS T ψψ

ψ
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡ −

∂
∂

.                               (5b) 

Geometrically, the curve of centroids with an orthonormal vector basis, ),( tSe , 

attached at each point, forms a frame bundle [13]. As a result, the deformed configuration 

of a beam is described by three coordinates or displacements: { }),(),(),( tStSztSz C2C1 ψ , 

as illustrated in Fig. 2.3. These displacement functions are continuous and differentiable 

with respect to both the arc-parameter S and time t.  Let the tangent vector to the current 

curve of centroid be denoted by ),(ˆ tSγ : 

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂

∂
∂

∂

≡
∂

∂
=

∂

∂
≡

S
z
S
z

S
ztS

S
tS

C2

C1

I
2

I
1

CIC eeerγ ),(),(ˆ .                           (6a) 

The components of the tangent vector ),(ˆ tSγ is also expressed by the moving frame 

),( tSe as 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡=

),(ˆ
),(ˆ

),(),(),(ˆ),(),(ˆ
tS
tS

tStStStStS
2

1
21 γ

γ
γ eeeγ .                     (6b) 

In general, the unit normal ),(1 tSe  of cross section is not parallel to the tangent 

),(ˆ tSγ to the deformed curve of centroids, ),( tSCr : 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂

∂
∂

∂

≠ −

S
z
S
z

tS
C1

C2
1tan),(ψ .                                             (7) 
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In Eq. (6b), ),(ˆ tS1γ  shows the stretch ratio in the normal direction of cross section.  

The term ),(ˆ tS2γ indicates the transverse shear strain, indicating that the angle reduction 

between ),(2 tSe , and ),(ˆ tSγ from 2/π [8]. 

For thin straight beams under small deformation, both Euler and Bernoulli [14] 

observed that each cross-section normal to the line of centroids remains normal during 

deformation. The observation indicates that 0),(ˆ2 ≈γ tS . Their beam model, incorporating 

0tS2 =),(γ̂ , is known as the Euler-Bernoulli beam model, which is presented in the 

Appendix. 

For curved beams, both Kirchhoff [12] and Love [6] observed that the normality 

assumption of cross sections during beam deformation, 0tS2 ≈),(γ̂ , also applies to curved 

thin beams under large deformation. Their curved beam model is known as the Kirchhoff-

Love beam model. Since the unit normal ),(1 tSe of cross section remains parallel to the 

tangent vector ),(ˆ tSγ to the curve of centroids, ),( tSCr , the tangent vector for the 

Kirchhoff-Love beam model becomes: 

),(),(ˆ),(ˆ 11 tStStS eγ γ=  and 0tS2 =),(γ̂ .                              (8a, b) 

The angular displacement ),( tSψ of the cross section at S is expressed by the S-

derivatives of ),( tSzC in Eq. (1) for the Kirchhoff-Love beam model as: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂

∂
∂

∂

= −

S
z
S
z

tS
C1

C2
1tan),(ψ .                                               (8c) 

As a result of the constraint, 0tS2 =),(γ̂ , the deformed configuration of a beam is 

described by using only the S-derivatives of the two coordinates or displacements, ),( tSzC
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. This reduction of independent displacement fields leads to simpler equilibrium 

equations for analytical solutions and a smaller number of total nodal displacements in a 

nonlinear FE model. 

Following Reissner [15], in the next section, the equations of motion for curved 

beams are derived, including axial and transverse shear deformation, which were 

neglected in the earlier curved beam models. Subsequently, Reissner’s curved beam 

equations will be specialized for the Kirchhoff-Love beams introducing the constraint, 

0tS2 =),(γ̂ , to clarify the effect of reactive shear force.  

The current presentation of various beam models is in reverse chronological order, to 

expediently present the principle of virtual work, which is essential for the development 

of FE beam models, with a focus on the Kirchhoff-Love beam theory. Unfortunately, 

earlier beam models were obtained by introducing as many legitimate assumptions as 

possible to obtain analytical solutions since computational tools such as FE analyses were 

not available in the 19th century and the first half of the 20th century. Therefore, 

alternative weak form presentations of the earlier beam models, such as the principle of 

virtual work, were not presented for numerical computations. 

 

2.3.2 Derivation of Reissner’s Curved-Beam Equations 

Beam stress vector ),( tSN  represents the normal force ),(1 tSN and the transverse 

shear force ),(2 tSN per unit length of the reference curve of centroids: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(
),(

),(),(
2

1

tSN
tSN

tStS eN .                                             (9) 
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The bending moment acting on the cross section at S on the deformed curve of 

centroids, ),( tSCr , is denoted by ),(3 tSM .  

To represent the effect of gravitational body force and distributed surface tractions, 

external distributed force ),(ˆ tSn and distributed couple ),(ˆ3 tSm are also considered along 

the curve of centroids. The components of the distributed force ),(ˆ tSn  are expressed with 

the moving frame as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(ˆ
),(ˆ

),(),(ˆ
2

1

tSn
tSn

tStS en .                                           (10) 

 

 

Figure 2.4:  A free body diagram of a beam element with the arc-parameter increment of 

DS 

To acquire a geometrical picture, a free-body diagram of an infinitesimal beam 

element is shown, between the arc parameter S and S+ SΔ  in Fig. 2.4. The element is 

subjected to the beam stress vector ),( tSN , moment ),(3 tSM , the distributed force ),(ˆ tSn , 

and distributed couple ),(ˆ3 tSm . In the figure, the tangent vector ),(ˆ tSγ to the deformed 

curve of centroids is also shown. 
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The free-body-diagram was originally employed by Reissner to derive equilibrium 

equations [7]. By adding inertial forces, the same diagram enables the derivation of the 

equations of motion for the dynamic loading. 

Let the mass per unit length of the reference curve of centroids be expressed by mA(0),.  

For translational motion Newton’s second law applies: 

0),(),(ˆ),(1lim 2

2

)0(0
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Δ−Δ+Δ

Δ→Δ
tS

t
SStStS

S CS
rnN Am .                 (11a) 

For the rotational motion of the cross section, time rate of angular momentum 

becomes the external torque applied to the element, according to Euler. Let the mass 

moment of inertial of the cross section be denoted by )(0C3J . The free-body-diagram, 

considering the moment with the 3z -axis, normal to the 1z , 2z  planes, one obtains 

0),(),(ˆ)),(),(ˆ(),(1lim 2

2

)0(33330
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψ

∂

∂
Δ−Δ+×Δ+Δ

Δ→Δ
tS

t
SJStSmtSStStSM

S CS
Nγ . (11b) 

The cross product in Eq. (11b) with respect to ),( tSe is evaluated using Eqs. (6b) 

and (9) and find 

{ }),(),(ˆ),(),(ˆ)),(),(ˆ( 21123 tSNtStSNtSStSStS γ+γ−Δ=×Δ Nγ .         (11c) 

From Eq. (11a), the beam equations of motion for translational motion is 

),(),(ˆ),( 2

2

)0( tS
t

tStS
S CrnN

∂

∂
=+

∂
∂

Am .                          (12) 

From Eqs. (11b, c), the beam rotational equation of motion becomes 

),(),(ˆ),(),(ˆ),(),(ˆ),( 2

2

)0(3321123 tS
t

JtSmtSNtStSNtStSM
S C ψ

∂

∂
=+γ+γ−

∂
∂

.   (13) 
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The component expression of Eq. (12) is obtained by substituting Eqs. (9) and (10) 

into the left-hand side and using Eq. (4): 

( ) n
S
NN

S
nN

S
LHS ˆˆ eeeee +

∂
∂

+
∂
∂

=+
∂
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=  
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⎝
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2
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ˆ

01
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N
N

SN
N

S
e ,                            (14a) 

The right-hand side of Eq. (12) is computed by taking the time derivative of Eq. 

(1) twice as: 

2

2

)0( t
zRHS CI

∂

∂
= Ame .                                           (14b) 

The resulting translational equations of motion are expressed with respect to the 

inertial frame as follows: 
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⎜
⎜
⎜

⎝

⎛

∂

∂
∂

∂

=

2
2

2

)0(

2
1

2

)0(

),(

),(

t
tSz

t
tSz

C

C

A

A

m

m
.                           (15) 

For static problems, Eqs. (12), (13), and (15) reduce to the equilibrium equations 

presented by Reissner [7]. Although Reissner left the moving frame be undefined, it was 

identified to be the moving frame defined in this report [8,9]. 

For elastic beams under large deformation, but small strains, Hooke’s law relates the 

beam axial force, shear force, and bending moment (per unit reference line of centroids) 

to axial strain, 11 −γ̂ , shear strain, 2γ̂ , and the relative curvature, ),(/),(/ 0SStSS ∂∂−∂∂ ψψ , 
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respectively.  For a homogeneous beam with Young’s modulus E, shear modulus G, area 

of cross section A, and areal moment of inertia 3I , Hooke’s law yields 

( )1tSEAtSN 11 −= ),(ˆ),( γ ,                                         (16a) 

),(ˆ),( tSGAtSN 2s2 γ= ,                                          (16b) 

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
−

∂

∂
= ),(),(),( 0S

S
tS

S
IEtSM 33 ψψ ,                             (16c) 

where sA is the area of cross section for shear deformation (to incorporate the 

shear correction factor). For a rectangular cross section, a shear correction factor of 5/6 is 

used after Reissner [9] 

In summary, the large deformation of an initially curved beam under small strain is 

described by the equations of motion, Eqs. (15) and (13) , Hooke’s law, Eqs. (16a-c), the 

definition of the tangent vector ),(ˆ tSγ in Eqs. (6a, b), and the evolution of moving frames 

),( tSe with respect to S, Eq. (4) and with respect to t, Eq. (5), both of which define the 

attitude of the moving frame, Eq. (2a). 

Next, the principle of virtual work associated with the above beam equations is 

presented. Considering virtual displacement of the curve of centroids ),( tSCrδ and the 

virtual angular displacement ),( tSδψ , where 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

δ

δ
≡δ=δ

),(
),(

),(),(
2

1
21 tSz

tSz
tSztS

C

CII
C

I
C eeer .                         (17) 

The principle of virtual work, which yields Eqs. (15) and (13) as the Euler-

Lagrange equations, has already been presented [3,4]: 
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The left-hand side represents the virtual strain energy of the beam, induced by the 

resultant stress vector ),( tSN working on the components of virtual normal and shear 

strains and moment ),(3 tSM on the virtual angular displacement.  

On the right-hand side of Eq. (18), the two integrals show, respectively, the virtual 

work done by the distributed load ),(ˆ tSn and the inertial force on the virtual displacements 

),( tSCrδ and the virtual work of the distributed torque ),(ˆ 3 tSm and the inertial torque on the 

virtual angular displacement ),( tSδψ . The terms in the last pair of braces are virtual work 

done by the boundary force En̂ on the boundary virtual displacement Crδ and the 

boundary couple Em̂ on the boundary virtual angular displacement δψ . Since there are 

three displacements including the angular displacement, at each boundary, two traction 

components and moment can be prescribed.  

In the Kirchhoff-Love beam model, the transverse shear deformation is neglected,

0),(ˆ2 =γ tS , as a result, beam displacements reduce two (without angular displacement). 

Therefore, the virtual angular displacement δψ  must be expressed by the virtual 

displacements and their S-derivatives. In the next section, the Kirchhoff-Love beam 
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equations are obtained by imposing 0ˆ2 =γ on Reissner’s curved beam equations, Eq. (15) 

and (13). 

 

2.3.3 Reduction to the Kirchhoff-Love Beam Equations 

The constraint, 02 =γ̂  in Eq. (8a) makes the shear force constitutive equation, Eq. 

(16b), invalid. Observing that nonzero shear force exists in deforming beams regardless 

of the constraint 02 =γ̂ , Eq. (16b) only makes sense at the simultaneous limits of ∞→sGA

and 02 →γ̂ . This indicates that shear force become a reactive force, for which the shear 

constitutive relation, Eq. (16b), does not hold, (but equilibrium equations and equations 

of motion hold). 

For thin beams, both transverse shear strain, 2γ̂ , and the mass moment of inertia, C3J , 

become negligible.  Further, neglecting the distributed couple 3m̂ in Eq. (13), the shear 

force ),( tSN2 is expressed as: 

⎟
⎠

⎞
⎜
⎝

⎛
∂
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−= ),(

),(ˆ
),( tSM

StS
1tSN 3

1
2 γ

.                                    (19) 

The definition of the tangent vector to the curve of centroids, ),(ˆ tSγ , in Eqs. (6a, 

b) with 02 =γ̂ , indicates ),(),(ˆ),(ˆ tStStS 11 eγ γ= .  

2
2

2
1

1 ),(ˆ),(ˆ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
≡⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
≡=γ

S
z

S
z

S
z

S
ztStS CCC

T
Cγ .                    (20a) 

The direction cosine of ),(ˆ tSγ is from Eq. (6a) 
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which may be written, when Sz C1 ∂∂ / does not vanish as: 
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Let ds be the infinitesimal arc length of the deformed curve of centroids, which 

corresponds to dS on the reference curve of centroids, ),( 0SCr . Then, axial strain 1̂γ

expresses a stretch ratio dSds1 /ˆ =γ . Therefore, if the arc-length ds on the current curve of 

centroids were used, Eq. (19) could be written as: stSMtSN 32 ∂−∂= /),(),( . (Since the arc 

length s changes each time, it is easier to deal with the arc-parameter S in FE analyses.)   

Using Eq. (19) in Eq. (15), the equations of motion for the Kirchhoff-Love beam 

model are obtained: 
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For static problems, Eq. (21) agrees with the planar equilibrium equations 

presented by Love [1]. 

In Eq. (21), only ),( tSN1 and ),( tSM3 appear. Next, their constitutive relations are 

considered. Eq. (16a) holds for ),( tSN1 . However, in the moment constitutive relation, Eq. 
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(16c), the relative curvature term: ),(/),(/ 0SStSS ∂∂−∂∂ ψψ must be rewritten imposing

0ˆ2 =γ . 

Equations (6a) and (6b) expressed with the moving frame ),( tSe  yield 
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By taking the S-derivative of the first row of Eq. (22) and using the second row, 

S1 ∂∂ /γ̂ is expressed by the S-derivatives of ),( tSz C1 and ),( tSz C2 as: 
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By taking the S-derivative of the second row of Eq. (22) and using the first row, 

S∂∂ /ψ is expressed by the S-derivatives of ),( tSz C1 and ),( tSz C2 as: 
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where the following compact notation is employed: 
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The initial curvature is, observing that 10S1 =),(γ̂ : 
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Using Eqs. (24a) and (25) for the relative curvature terms in Eq. (16c), the 

moment constitutive relation becomes: 
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In summary, the Kirchhoff-Love planar beam equations consist of the following: 

(i) equations of motion, Eq. (21) for ),( tSz C1 and ),( tSz C2 , and  (ii) the constitutive 

relations for ),( tSN1 , Eq. (16a), and ),( tSM3 , Eq. (26). The shear force (per unit reference 

curve of centroids) becomes a reactive stress variable and is computed using Eq. (19) 

after ),( tSM3 is found. In those equations, ),(ˆ tS1γ , ),(cos tSψ , and ),(sin tSψ are expressed 

by the S-derivatives of ),( tSz C1 and ),( tSz C2 , using Eq. (20a-c). 

 

2.3.4 The Principle of Virtual Work for the Kirchhoff-Love Beams 

The principle of virtual work facilitates a guiding equation for the development of 

nonlinear FE codes for the Kirchhoff-Love beams. The principle is obtained from Eq. 

(18) by incorporating the same assumptions: (i) zero transverse shear strain, 02 =γ̂ , zero 

mass moment of inertia of cross section, 0J 0C3 =)( , and zero distributed couple, 0m3 =ˆ , 

which were utilized to reduce the Kirchhoff-Love equations from Reissner’s curved beam 

equations. Due to 0ˆ2 =γ , ),( tSδψ  will depend on the S-derivatives of ),( tSz C1δ  and 

),( tSz C2δ . The resulting principle of virtual work for the Kirchhoff-Love beams is 

obtained from Eq. (18) as: 
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For arbitrary variations of ),( tSz C1δ  and ),( tSz C2δ , the Euler-Lagrange equations of Eq. 

(27) must yield Eq. (21). As a by-product, in the computation of the Euler-Lagrange 

equations, “variationally consistent” boundary conditions will be obtained. 

 

2.3.5 The Euler-Lagrange Equations 

First, the beam virtual strain energy term is rewritten by expressing the virtual axial 

strain ),(ˆ tS1γδ and the virtual curvature StS ∂∂ /),(δψ in terms of the S-derivatives of 

),( tSz C1δ  and ),( tSz C2δ . In the computations, one observes that the variational δ -

operator and the S-differential operator commute, such as ( )StS ∂∂ /),(ψδ = StS ∂∂ /),(δψ . 

Since the Kirchhoff-Love beam equations have not been derived from the principle of 

virtual work, the computational steps of the derivation are presented in what follows. 

The virtual axial strain ),(ˆ tS1γδ is computed by taking the variation of the first row of 

Eq. (22) and using the second row as: 
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where the following compact notation is used: 
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Next, taking the variation of the second row of Eq. (22) and using its first row, 

),( tSδψ is expressed by SzC ∂∂ /δ and the direction cosines, which are expressed by 

SzC ∂∂ / in Eq. (21b, c): 
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The S-derivative of Eq. (29) becomes 
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where the following compact notation is employed: 
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The left-hand side of Eq. (27) expresses the virtual strain energy of the beam. This 

integral is rewritten using Eqs. (28a) and (30a) as: 
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The integration by parts is repeated until all the S-derivatives of Czδ are removed: 
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Another integration by part is applied to the last term in the integrand and simple 

computations yield: 
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Finally, Eq. (31c) is rewritten using the rotation matrix defined in Eq. (2b) as: 
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The integrand of the equation above is evaluated using Eq. (4b) as 

[

( )∫
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂

γ
−⎥

⎦

⎤
⎢
⎣

⎡ −

∂

ψ∂
+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂

γ
−∂

∂
ψδ−

γ⎥⎦

⎤
⎢
⎣

⎡

ψ

ψ−

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
δ+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂

γ
−ψδ=

=

+

=

=

L
T

C

LS

s

T
C

LS

s

T
C

dS
S
M

N

SS
M

N

S
tSRtSz

M
S
z

S
M

N
tSRzLHS

0

3

1

1

3

1

1

0
3

1
0

3

1

1

ˆ
1

01
10

ˆ
1),((),(

ˆ
1

cos
sin

ˆ
1),(()(

.     (32) 

The right-hand side of Eq. (27) becomes in components, using Eq. (10) for ),(ˆ tSn

and Eq. (29) for ),( tSδψ : 
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Using Eqs. (32) and (33), the principle of virtual work, Eq. (27), gives 
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For arbitrary variations of ),( tSz C1δ  and ),( tSz C2δ , the first integral of Eq. (34) 

yields Eq. (21) as it should. The beam boundary conditions are:  

(i) Either specify axial displacement or 1N  

(ii) Either specify transverse displacement or )(
ˆ 2

3

1
N

S
M1

=
∂

∂
−
γ

 

(iii) Either specify the tangent of the curve of centroid or 3M  

 

2.3.6 Development of C1 Kirchhoff-Love Beam Elements 

In finite element analyses, a curve of centroids is discretized by using two-node beam 

elements. To achieve a 1C -representation of the curve of centroids using for the 

Kirchhoff-Love beam elements, the continuity of the z-coordinates and their S-derivatives 

must be satisfied at each node, which joins two adjacent elements. A representative two-
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node, Kirchhoff -Love beam element (e) with elemental node 1̂  and node 2̂ , is shown in 

Fig. 2.5.  

 

Figure 2.5: C1 beam element 

At time t=0, the reference curve of centroids is discretized into elN  elements, 

whereby the element number ranges from (e) =1 to elN . In element (e), arc length 

increases from )(eS =0 to the element length )(e
0L , i.e., )()( e

0
e LS0 ≤≤ .  

At time t, the same )(eS  is used as an arc-parameter in element (e).  To accomplish 1C

-connection of the discrete curve of centroids of adjacent elements, which meet at a 

shared node, four nodal displacements: ( )Tj
C2

j
C2

j
C1

j
C1 zzzz ˆˆˆˆ '' for node 21j ˆandˆˆ = , where 

the prime denotes the S-derivative of the primed variable, for example, Szz j
C1

j
C1 ∂∂≡ /' ˆˆ at 

node ĵ . In element (e) with the element length )(e
0L at t=0, the z-coordinates of the 

position vector, ),(),( tSztS C
I

C er =  are interpolated by using the elemental nodal 

displacements ( ))(ˆ )( td e  and the matrix of shape functions
⎥⎦
⎤

⎢⎣
⎡N  as: 
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The elemental nodal displacements ( ))(ˆ )( td e
 are grouped for each z-component as: 
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The matrix of shape functions 
⎥⎦
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⎢⎣
⎡N  is defined as: 
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where 
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and the four shape functions, which enable 1C -interpolation of the curve of 

centroids are defined as: 
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They are plotted in Fig. 2.6. 

The 1C -cubic shape functions, ),(~ )()( e
0

e LSN , have been used for the interpolation of 

transverse displacement in linear Euler-Bernoulli beam elements [16]. In the curved 

Kirchhoff-Love beam elements, the 1C -shape functions are utilized for both Cz1 -

interpolation and C2z -interpolation of the element curve of centroids, as shown in Eq. 

(35). 
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Figure 2.6: 1C -cubic shape functions used for the Kirchhoff-Love beam elements 

Using the coordinates of the curve of centroids, in element (e), their S-derivatives are 

also expressed by the nodal coordinates as: 
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where ⎥
⎦
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⎢
⎣

⎡ ʹ
N  denotes the S-derivative of the matrix of shape functions as: 
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Similarly, the second derivative of the curve of centroids are expressed by the 

nodal coordinates as: 
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where 
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In FE codes, elemental integrations are performed by using the Gauss quadrature. 

Therefore, beam strain variables and beam stress variables are all evaluated at the 

integration points, not at every point on the curve of centroids [10, 16]. In the Kirchhoff-

Love beam elements, four-point Gauss quadrature is utilized. 

At each integration point in element (e), ),( )( tSz e
C , StSz e

C ∂∂ /),( )( , and 2e
C

2 StSz ∂∂ /),( )(

, are now expressed by the matrix of shape functions
⎥⎦
⎤

⎢⎣
⎡N , its S-derivatives, and elemental 

nodal displacements, ( ))(ˆ )( td e .  More specifically, Eq. (39a) enables the evaluation of the 

beam strain variables, ),(ˆ tS1γ in Eq. (20a), as well as ),(cos tSψ and ),(sin tSψ in Eq. (20b), 

using the nodal displacements.  
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Next, Eq. (38a) facilitates the computations of  StS ∂∂ /),(ψ  in Eq. (23a) and 

S0S ∂∂ /),(ψ in Eq. (24) using the nodal displacements ( ))(ˆ )( td e  and ( ))(ˆ )( 0d e , respectively. 
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At each integration point of element (e), beam axial force ),( )( tSN e
1 is computed using 

Eq. (16a) with Eq. (41) as: 
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The beam moment ),( )( tSM e
3 is evaluated using Eq. (26) with Eqs. (43a, b) as: 
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The virtual displacements, ),( tSzCδ , of the curve of centroids is also interpolated 

using virtual nodal displacements )(ˆ )( td e
1δ and )(ˆ )( td e

2δ in element (e) as: 
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where elemental virtual displacements are 
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Similarly, the S-derivatives of virtual displacements Czδ  are expressed in element 

(e) in terms of the S-derivatives of shape functions, defined in Eqs. (39b) and (40b), and 

virtual nodal displacements: 
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Now, in a generic element (e), all the functions of the virtual displacements and their 

S-derivatives are expressed by nodal virtual displacements in Eq. (43b). Next, the virtual 

strain variables, which appear in the principle of virtual work, Eq. (27), are expressed 

using the nodal virtual displacements. 

The virtual axial strain ),(ˆ )( tS e1γδ at a Gauss integration point in element (e) is 

expressed in terms of the virtual nodal displacements by substituting Eq. (39a) into Eq. 

(28a) as: 
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⎦

⎤
⎢
⎣

⎡ ʹ
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Equation (49) is also obtained by taking the variation of Eq. (41) and using Eq. 

(42), as it should. 

The virtual curvature in Eq. (30a) is expressed by nodal virtual displacements using 

both Eqs. (47) and (48) as: 
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The S-derivative in the second term on the right-hand side is evaluated using Eqs. 

(23) and (4a) together with Eq. (40a) as follows: 
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where 
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It is easily checked that Eq. (48b) is also obtained by taking the variation of Eq. (23a) 

using Eqs. (28a) and (29) with Eq. (47). 

 

2.3.7 Nonlinear FE Equations of Motion 

The global (arbitrary) virtual-displacements ( ))(tdδ are assembled from elemental 

virtual displacements ( ))(ˆ )( td eδ  utilizing the element connectivity input data and 

excluding vanishing virtual displacements since virtual nodal displacements vanish when 
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their nodal values are prescribed. Corresponding to ( ))(tdδ , the global, unknown nodal-

displacements are defined as ( ))(td  from ( ))(ˆ )( td e , see for example, [10, 16]. 

The virtual work equation, Eq. (27) is reordered, and integration over the entire curve of 

centroids is performed on each element using the Gauss quadrature as: 
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where ( ))(tFE , acting on ( ))(tdδ , is the nodal forces, which express the virtual work in Eq. 

(26) induced by the boundary forces and couple, such that 
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2.3.8 Element Mass Matrix 

The first integral in Eq. (51a) represents the negative of the virtual work by inertial 

forces and defines element mass matrices. The acceleration in element (e) is expressed 

from Eq. (35) by the nodal acceleration as: 
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The first integral is written using Eqs. (44a) and (52) as 
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where the element mass matrix [ ])(eM  is a constant matrix, reflecting the conservation of 

mass: 
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2.3.9 Element Internal Force Vector 

The second integral in Eq. (51a) represents the virtual strain energy and defines 

internal force vector ))(ˆ( )( tP e when it is evaluated on element (e) as: 
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The above integration is performed by using the Gauss quadrature.  To compute the 

internal force vector, the virtual beam strains are expressed by virtual nodal 

displacements through ][ )(eB -matrix at each integration point: 
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where )]([ )( tB e is defined from Eqs. (47) and (48b) as 
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in which the submatrices are all functions of current nodal displacements: 
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As a result, the internal force vector is defined by substituting Eqs. (55a), (44), and 

(45) into Eq. (54): 
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2.3.10 Element External Force Vector due to Distributed Loads 

The third integral of Eq. (51a) represents the virtual work by the distributed load 

),(ˆ tSn decomposed with respect to the moving frame. This integral defines the effective 
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nodal force due to the distributed load, where ),(ˆ tSn is prescribed at the integration points 

of element (e). 
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The substitution of Eq. (46a) into the above with the components of the rotation 

matrix evaluated using Eq. (42) defines the effective nodal force vector: 
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Equation (51a) is now written as 
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When Eq. (59) is assembled for global degrees of freedom, a system of nonlinear FE 

equations of motion is finally obtained: 

( ) [ ]( ) ( ) ( ) ( ){ } 0tFtFtPtdMtd EB
T =−−+ )()()()()( !!δ ,                      (60) 

where [ ]M denotes the global mass matrix, ( ))(tP expressed the internal force, ( ))(tFB  

represents the nodal force due to the distributed loads ),(ˆ tSn , and ( ))(tFE is the nodal force 

by the boundary forces and couples, defined in Eq. (51b). 

The FE equations of motion at time 𝑡 becomes 

[ ]( ) ( ) ( ) ( ) ( )0tFtFtPtdM EB =−−+ )()()()(!! .                               (61) 

For the time integration, the Newmark method is employed, and at each time step, the 

Newton method is utilized to iterate to reduce residual forces. Both the Newmark time 
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integration method and the Newton method to solve time-dependent nonlinear FE 

equations are expertly presented by Belytschko, Liu, and Moran [11]. Therefore, the 

solution process of Eq. (61) is not shown in the report. 

 

2.4 Preliminary Experiments 

Preliminary experiments were conducted to test and compare the ribbed caudal fin 

with the results of the FE code, which will be published at a later time.  

 

2.4.1 Experimental Setup 

To observe the effects of webs in a caudal fin, a rig was designed and implemented to 

generate consistent deformation of a flexible acrylic caudal fin at varying frequencies. On 

the caudal fin, notches are placed to add and remove webs at different locations along the 

length of the fin. Attached at the front-end of the base is a servomotor that actuates the 

caudal fin, and a second rotation point gives more structural support across the rest of 

said fin. Also, the attachments offer a separation between the fin segments, which can be 

seen in Fig. 2.7.  

 

Figure 2.7: Separation of flexible caudal fin segments 
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The complete device is shown in Fig. 2.8, which includes the acrylic caudal fin connected 

to the actuation device driven by an Arduino microcontroller. It is important to note that 

the portion of the caudal fin after the rotational attachments (in white) is only considered 

in the experiments. To measure the amplitudes, a camera recorded multiple experiments 

with differing rotational speeds. Afterwards, the video was analyzed using MATLAB.  

 

Figure 2.8: Caudal fin testing device 

 

2.4.2 Experimental Results 

Several preliminary tests at a fixed frequency were conducted to observe the behavior 

of the caudal fin with zero and one web. For each test, the radius of curvature at the frame 

of maximum amplitude was computed for highlighted points. The displacement data was 

recorded at various frames in the footage, fitted to a quadratic polynomial, and was then 

used to calculate the radius of curvature using the expression below: 
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                                                       (61) 

The first test conducted was for a ribbed caudal fin with zero added webs at a 1.7167 Hz 

frequency. As can be shown from Fig. 2.9, the oscillatory motion caused a large tail 

displacement of ≈ 10′′, or 63% of the length, not including the white structural elements. 

 

Figure 2.9:  Zero web testing of the actuated caudal fin showing maximum displacement 

and points (red) for curvature calculation 

By analyzing the displacement at several points across the beam, the radius of 

curvature can be calculated at the red points after the fitting the points to a quadratic 

polynomial. The quadratic polynomial used: −0.6287𝑥! + 0.122𝑥 + 0.0104, results in 

the following radius of curvature values for the points shown above: 

𝜅 =0.4157,1.892,11.8666,23.4826 and 33.7692 respectively.  

The second set of experiments conducted included a ribbed caudal fin with a single 

web. As shown below in Fig. 2.10, the maximum displacement with a single web was 

≈ 4′′ or approximately 25% of the length. The web caused a decrease in amplitude of 

≈ 6′′ or 60% of the maximum displacement measured without a rib. The calculated radii 



   42 
 

 

of curvature for the shown red points below were as follows: 𝜅 = 3.7874, 4.1584, 4.7484, 

4.9916, and 5.1413 using the following quadratic polynomial fit: −0.07𝑥! − 0.1406𝑥 −

0.0223. 

 

Figure 2.10: Single web testing of the actuated caudal fin showing maximum 

displacement and points (red) for curvature calculation 

The addition of the web was shown to cause much higher stability, especially at higher 

frequencies of oscillation. Also, various tests featuring additional ribs closer to the 

actuation point had the same amount of deflection as the farthest back rib. 

2.5 Appendix 

For linear beams, it is possible to obtain analytical solutions. Such solutions may be 

used to validate nonlinear FE codes for small deformation at some equilibrium 

configuration. Furthermore, the analytical solutions give guidelines for time increment or 

load increment as well as the contributions of transverse shear deformation. 

2.5.1 Equations of Motion for Small Deformation of Initially Straight Beams 
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For initially straight beams in the 1z -direction, parameterized by its coordinate S, the 

deformed configuration, Eq. (1) may be expressed by using displacement components 

),( tSu1 in the 1z -direction and ),( tSu2 in the 2z -direction as 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

),(
),(

),(
tSu
tSuS

tS
2

1I
2

I
1C eer .                                    (A.1) 

The transverse shear strain ),(ˆ tS2γ  is the reduction of the angle between the principal axis 

),( tS2e and the tangent vector, ),(ˆ tSγ , from 2/π radian. Observing that the angle of ),(ˆ tSγ

from I
1e is expressed by Su2 ∂∂ / , while the angle of ),( tS1e from I

1e  is ),( tSψ , the reduction 

of the angle between ),( tS2e  and ),(ˆ tSγ from 2/π  is written as: 

ψγ −
∂

∂
≡
S
u2

2ˆ .                                                       (A.2) 

In the Timoshenko beam model, transverse shear deformation is included, 02 ≠γ̂ , the 

deformed configuration of Timoshenko beams are expressed by { }),(),(),( tStSutSu 21 ψ  

including ),( tSψ . For small deformation of straight beams adopting the normality of rigid 

cross sections during deformation is known as the “Euler-Bernoulli beam model”.  In the 

Euler-Bernoulli beam, ),( tSψ is expressed by the S-derivative of the transverse 

displacement: 
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As a result, the deformation of the Euler-Bernoulli beam is described by using just axial 

displacement ),( tSu1  and transverse displacement ),( tSu2 , without ),( tSψ . 
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By linearizing Reissner’s curved beam equations, in what follows, the Timoshenko 

beam equations are first derived. Subsequently, by incorporating the assumption of 

negligible transverse shear deformation, the Euler-Bernoulli beam equations are derived. 

 

2.5.2 Timoshenko Beam Equations 

Using Eq. (A.1) for straight beams, the linearization of Eq. (15) for small deformation 

yields:  

2
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2

011 t
tSutSntSN

S ∂
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∂

∂ ),(),(ˆ),( )(Am ,                               (A.4a) 
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Linearization of Eq. (13) further incorporates the assumption: 11 ≈γ̂ .  

),(),(ˆ),(),( )( tS
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For elastic beams, Hooke’s law relates the beam axial force, shear force, and bending 

moment (per unit reference line of centroids) to axial strain, Su1 ∂∂ / , shear strain, 

ψγ −∂∂= Su22 /ˆ from Eq. (9b), and curvature, S∂∂ /ψ .  For a homogeneous beam with 

Young’s modulus E, shear modulus G, area of cross section A, and areal moment of 

inertia 3I , Hooke’s law yields 
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∂
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where sA is the area of cross section for shear deformation (to incorporate the shear 

correction factor).  

For static problems, the Timoshenko beam equations can be solved analytically and 

results can be compared to those of the Euler-Bernoulli beam equations, which neglects 

the effect of transverse shear deformation. The analytical solution of Timoshenko beams 

under uniform distributed loads was available for both cantilever beams and simply 

supported beams [8, 9]. 

In the small deformation analyses, the axial and transverse deformations are 

decoupled. The axial deformation of the beam or rod is governed by Eqs.(A.4a) and 

(A.6a), while the transverse deformation of the beam is solved by using Eq. (A.4b)  and 

(A.5) with Eqs. (A.6b) and (A.7). (For small deformation of beams, the coupling of the 

transverse and axial deformation of beams was first included for linear plate analyses by 

von Karman, see for example, Fung [14].) 

Next, the Euler-Bernoulli beam equations are derived by neglecting the transverse 

shear stain. 

 

2.5.3 The Euler Bernoulli Beam Equations 

In the beam model, the transverse shear strain ψγ −∂∂= Su22 /ˆ is neglected: 

S
tSutS 2

∂

∂
=

),(),(ψ .                                                    (A.8) 
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The constraint of zero transverse shear strain in Eq. (A.8) makes the shear force 

constitutive equation, Eq. (A.6b) invalid. Since nonzero shear force always exists in 

deforming beams, Eq. (A.6b) only makes sense at simultaneous limits of ∞→sGA and 

02 →γ̂ . This indicates that shear force become a reactive force, for which the shear 

constitutive relation, Eq. (A.6b), does not hold, (but equilibrium equations hold).  

For thin beams, both transverse shear strain, 2γ̂ , and the mass moment of inertia, 

)(0C3J , become negligible.  Further neglecting the distributed couple 3m̂ in Eq. (A.5), the 

shear force ),( tSN2 is expressed by the S-derivative of moment: 

),(),( tSM
S

tSN 32 ∂

∂
= .                                             (A.7) 

Rewriting Eq. (A.4b) using Eq. (A.9), the equation of motion for ),( tSu2 becomes 
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The constitutive relation for moment is obtained by substituting Eq. (A.7) into Eq. 

(A.8): 

),(),( tSu
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= .                                      (A.11) 

The axial equation of motion for ),( tSu1 remains the same as that for the Timoshenko 

beam: Eq. (A.4a) and Eq. (A.6a), which are decoupled from the transverse deformation of 

the beam. 

 The analytical solutions are available for the Euler-Bernoulli beams to validate 

nonlinear FE beam codes and comparing the solutions with those of the Timoshenko 
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beams, one can assess the validity of neglecting the effect of transverse shear 

deformation. 

Chapter 2, in part, has been submitted for publication of the material as it may appear 

in the International Mechanical Engineering Congress and Exposition 2017. Rios, Oscar; 

Amini, Ardavan; Murakami, Hidenori.  
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CHAPTER 3: AQUATIC ROBOT 

3.1 Initial Prototype 

3.1.1 Design 

The robot, unlike other previously proposed methods, uses gyroscopes as a means of 

propulsion. By securing a gyroscope within the robot and operating the rotor at relatively 

high angular velocities, the rocking of the gimbal creates a gyroscopic moment on the 

body. By oscillating the gimbal while the rotor is spinning, the body can be made to 

oscillate, moving the caudal-like fin attached to the end of the body. These oscillations 

can be controlled to achieve maneuverability along the water surface plane.  

As shown in Fig. 3.1 below, assuming the rotor is spinning counter clockwise (red 

arrow demonstrating the angular velocity vector), exciting the gimbal either with an 

angular velocity vector (green arrow) to the left or to the right will result in the body 

rotating to the left and right respectively. 
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Figure 3.1: Model of the gyroscopically driven robot showing the basic principles used in 

turning and driving the robot 

The robot has three major parameters that can be used to optimize both the speed and 

accuracy of its movements: the RPM of the rotor, the frequency of excitation, and the 

amplitude of the excitation. By controlling the three inputs, the robot can achieve precise 

turns and control the speed at which it moves in the forward direction.  

The interior of the initial prototype as shown in Fig. 3.2 consists of an acrylic frame, 

an off-the-shelf gyroscope with an attached motor to operate the rotor, a servo to excite 

the gyroscope, a microcontroller along with an XBee module for wireless 

communication, and lithium-polymer batteries.  
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Figure 3.2: Interior of the robot containing an acrylic frame with a gyroscope and motor 

for the rotor, servo, microcontroller, XBee module, and Li-ion batteries. 

The exterior of the body consists of a hard but lightweight cylindrical casing as shown in 

Fig. 3.3. To waterproof the cylinder, two end caps are used at either end. On one of the 

end caps is a 3D printed clamp that allows the fin to be easily interchanged for testing. As 

shown in Fig. 3.3, the blue strip placed down the middle allows for the correct orientation 

of the interior components. Since we are using the gyroscopic moment created around the 

third axis perpendicular to the two excited axes, it is important to properly align the 

gyroscope as shown in the model in Fig. 3.1. To further aid in keeping the robot 

stabilized and the gyroscope correctly aligned, small outriggers were 3D printed and 

attached to the cylinder. The fully assembled robot weighs 3.4 lbs. and is approximately a 

foot in length with a casing outer diameter of four inches.  
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Figure 3.3: Fully assembled initial prototype 

 

3.1.2 Experimental Results 

Experiments were conducted to test the capabilities of the gyroscopically driven 

robot. The goals of the experiments were to see if we could accurately maneuver the 

robot anywhere along the water surface plane of the pool. The first task was to examine if 

the robot could accurately rotate 90 degrees in both directions so it could be maneuvered 

once moving in the forward direction. The first test conducted, as can be seen by the three 

snapshots of the video in Fig. 3.4, was a 90 degree right turn. The right turn was achieved 

by moving the gyroscope as shown on the right picture in Fig. 3.1. Holding the angular 

velocity of the rotor constant, the full 90 degree turn can be achieved in a time ranging 

from four to six seconds, depending on the rate at which the gimbal is moved. Moving 

the servo with and without a delay surprisingly led to a very small difference in the rate at 

which the robot reached the 90 degrees. When the gimbal was excited at a faster rate, the 
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robot experienced a higher initial acceleration, but the higher fluid resistance led to a 

faster deceleration once the gyroscope reached the maximum angle allotted. Exciting the 

gyroscope slowly not only provided a smooth 90 degree turn, but also allowed for very 

accurate turning when smaller angles were needed. 

 

Figure 3.4: Three snapshots of the video file showing the 90 degree right turn 

The left 90 degree turn was also completed successfully as shown in Fig. 3.5 below. 

To achieve the left turn, the gimbal was moved as shown on the left picture in Fig. 3.1. 

As with the right turn, the left 90 degree turn was performed at the same rate.  

 

 

Figure 3.5: Three snapshots of the video file showing the 90 degree left turn 
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The next tests conducted were for a complete right and left 180 degree turn with a single 

excitation. If the angular velocity of the rotor is kept at very high speeds, the robot 

becomes very sensitive to any gimbal excitation. This not only aids in achieving very 

precise rotations, but it can also aid in completing higher degree turns. By exciting the 

gimbal slowly, full 180 degree turns were achieved in both direction as can be seen below 

in Figs. 3.6a and 3.6b. Both turns took on average 15 seconds to complete. Unlike with 

the smaller turns performed, the robot occasionaly slightly drifted from its initial starting 

position. 

 

Figure 3.6: Snapshots (a) Showing a left 180 degree turn and (b) 180 degree turn to the 

right allowing the robot to reverse in direction 

The third test conducted was for the forward capabilities of the robot. To move along a 

straight path, the gimbal was rocked sinusoidally. The frequency of the oscillations was 

very important in achieving forward motion along a straight path. The nominal period for 

the tests of this initial prototype was approximately two seconds. Shown in Fig. 3.7 are 
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the snapshots of the robot as it traveled along the pool. On average, the robot completed 

the straight path test run at a rate of 1.5 in/sec.  

 

Figure 3.7: Snapshots of the test demonstrating the gyroscopically driven robot moving 

forward in a straight path  

As the last test conducted, the robot was made to swim a lap around the pool, 

combining both the 90 degree right turns and the forward motion. It was able to finish the 

lap around the pool measuring 6ft×3ft in approximately 2 minutes and 30 seconds.  

The robot can be greatly improved from the initial design, but it showed great promise, 

as it was able to maneuver along a 2D plane. The body, especially the end caps, can be 

more hydrodynamically designed to aid when swimming along a straight path. The initial 

design was wirelessly controlled but work is being conducted on making it autonomous. 

 

3.2 Aquatic Robot With Caudal Fin 
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To increase the efficiency of propulsion from the initial design, an acrylic ribbed 

caudal fin is attached to the body.  

3.2.1 Design 

Since the initial test proved accuracy in rotation but inefficiency for forward motion, 

the final design focuses on optimizing the propulsive force of the aquatic robot. Using the 

acrylic fin used for the initial, in-air, caudal fin experiments, a final prototype was 

developed. The body and fin were connected using a 3D printed ABS rig. This allowed 

for rotation at the edge of the fin (similar to the initial experiments of the ribbed caudal 

fin). In Fig. 3.8, the final prototype can be seen. 

 

Figure 3.8: Final fish prototype including ribbed caudal fin 

Because of this longer overall design, the robot had to be tested in a larger body of 

water rather than the original water tank. 
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3.2.2 Experimental Results 

Experiments were conducted to test the efficiency of the aquatic robot including the 

ribbed caudal fin. The main focus was to achieve a faster speed than the initial tests, 

which yielded an average of 1.5 in/s, and having a more natural fish-like motion. Two 

tests were conducted, and the first test can be seen in Fig. 3.9.  

 

Figure 3.9: Snapshots of final prototype with a single rib moving forward in a straight 

path 

The single-rib configuration achieved an average speed of 1.7 in/s. With this result, 

there were a few issues: The experiment was not as controlled as the initial water tank 

tests, there was mid-fin deflection that was not apparent in the in-air experiments for the 

caudal fin, and drag played a huge factor. In the initial water tank tests, the only waves 

reflecting back were due to the fish body’s propulsive force, but the final prototype tests 
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had small waves propagate from multiple sources. In addition, the mid-fin deflection 

pointed to a lack of rigidity in the caudal fin, which was not an issue in the caudal fin 

experiments. Drag was also caused because the fin was not enclosed, so water filled the 

mid-section and prevented more propulsive force from being exerted. Also due to the 

drag, the accuracy of rotation was lessened. Although these issues prevented a much 

faster speed, the consistency of movement was adequate (i.e. it did not drift from its 

straight path).  

To lessen the mid-fin deflection, a second test was conducted using a multi-rib 

configuration. In Fig. 3.10, the multi-rib test can be seen as it progressed through the 

water at a rate of 1.9 in/s.  

	

	

 

Figure 3.10: Snapshots of final prototype with multiple ribs moving forward in a straight 

path 



   58 
 

 

The slight increase in speed shows that the deflection from the single-rib test did affect 

the propulsive force of the fin itself, which was not an apparent issue in the in-air fin 

tests, which led to conclusions that the locations of the ribs were more of a factor than the 

number of ribs. This realization pointed to a lack of focus on fluid-structure interaction in 

the initial caudal fin modeling and experiments. 

Another revelation from these experiments was that the design could have been 

improved by changing the fin’s point of actuation. The final prototype had the rotation 

point of the fin at the end of the gyroscopically driven robot body. However, the 

gyroscope generating the moment to propel the body back and forth rotated around the 

center of the body, so having the fin rotate closer to the center of the body may have 

yielded better results closer to that of the in-air fin experiments. Then, the deflections 

could have matched better. In any case, the addition of the caudal fin increased the speed 

by a maximum of 26.7%.  
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CONCLUSION 

In chapter 2, it was shown that curved-beam models could be developed for a ribbed 

caudal fin, which was defined as two thin beams. The models were then compared to 

real-world experiments that actuated an acrylic ribbed caudal fin with multiple rib 

configurations at specified frequencies. Both the models and the experiments were done 

in-air assuming they would translate to water tank tests appropriately. However, that 

assumption was challenged in chapter 3. 

Chapter 3 featured the design and experimentation of a gyroscopically driven aquatic 

robot without, and with, the ribbed caudal fin. The initial tests with a semi-rigid rubber 

fin achieved an average speed that could have been improved, so the ribbed caudal fin 

was implemented. Even though the speed only increased by 26.7% with the ribbed caudal 

fin, the experiments gave a lot of insights into how to optimize the system and hopefully 

create a system that could be used for surveillance and data collection as it was intended. 

Some takeaways from the experiments included having to account for the fluid-

structure interactions for more realistic results, as the in-air experimental deflection did 

not match up with the in-water experiments. Additionally, the accurate rotations of the 

robot were achieved with the initial design that did not have much drag, but the final 

prototype had issues, again, due to drag. 

For future iterations of the aquatic robot, it will be important to incorporate the 

following design and experimental features: Having the rotation point of the fin closer to 

the gyroscope, which is where the moment is generated; using multiple ribs for the caudal 
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fin and/or enclosing said fin to reduce the drag within; testing the fish in a controlled 

environment without outside waves interfering in the data collection process; optimizing 

the stiffness/thickness of the material through the modeling to see what is most efficient.  

This work has shown that there is a future for aquatic robots not just driven the 

conventional ways using multiple servos, hydraulics, and so on. Also, the combination of 

mathematical modeling and experimentation will be vital to the field’s success with 

respect to validation and optimization.  
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