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Systems/Circuits

A Variable Clock Underlies Internally Generated
Hippocampal Sequences

Xinyi Deng,1 Shizhe Chen,2 Marielena Sosa,3 Mattias P. Karlsson,3 Xue-Xin Wei,4 and Loren M. Frank3,5,6
1Department of Data Science, Beijing University of Technology, Beijing 100124, People’s Republic of China, 2Department of Statistics, University of
California, Davis, Davis, California 95616, 3Center for Integrative Neuroscience and Department of Physiology, University of California, San
Francisco, San Francisco, California 94158, 4Department of Neuroscience, University of Texas at Austin, Austin, Texas 78751, 5Howard Hughes
Medical Institute, University of California, San Francisco, San Francisco, California 94158, and 6Kavli Institute for Fundamental Neuroscience,
University of California, San Francisco, San Francisco, California 94158

Humans have the ability to store and retrieve memories with various degrees of specificity, and recent advances in reinforce-
ment learning have identified benefits to learning when past experience is represented at different levels of temporal abstrac-
tion. How this flexibility might be implemented in the brain remains unclear. We analyzed the temporal organization of
male rat hippocampal population spiking to identify potential substrates for temporally flexible representations. We examined
activity both during locomotion and during memory-associated population events known as sharp-wave ripples (SWRs). We
found that spiking during SWRs is rhythmically organized with higher event-to-event variability than spiking during locomo-
tion-associated population events. Decoding analyses using clusterless methods further indicate that a similar spatial experi-
ence can be replayed in multiple SWRs, each time with a different rhythmic structure whose periodicity is sampled from a
log-normal distribution. This variability increases with experience despite the decline in SWR rates that occurs as environ-
ments become more familiar. We hypothesize that the variability in temporal organization of hippocampal spiking provides a
mechanism for storing experiences with various degrees of specificity.

Key words: flexibility; hippocampus; learning; memory; replay; sharp-wave ripple

Significance Statement

One of the most remarkable properties of memory is its flexibility: the brain can retrieve stored representations at varying lev-
els of detail where, for example, we can begin with a memory of an entire extended event and then zoom in on a particular
episode. The neural mechanisms that support this flexibility are not understood. Here we show that hippocampal sharp-wave
ripples, which mark the times of memory replay and are important for memory storage, have a highly variable temporal
structure that is well suited to support the storage of memories at different levels of detail.

Introduction
The human brain has the remarkable ability to call up memories
with different levels of temporal specificity, including experien-
ces that range in extent from seconds to perhaps years. The
potential utility of this ability has been demonstrated by a
recently proposed theoretical reinforcement learning framework
(Levy et al., 2019). This work showed that hierarchical agents
that operate at different levels of temporal abstraction by using
“multilevel hindsight experience replay” can learn tasks more
quickly, both because they can divide the work of learning
behaviors among multiple policies and because they can also
explore internal representations of the environment at varying
levels of temporal resolution. This result highlights the utility of
variable temporal abstraction in the theoretical framework of
deep reinforcement learning (Schmidhuber, 1992; Sutton et al.,
1999; Bakker and Schmidhuber, 2004; Kulkarni et al., 2016;
Konidaris, 2019). How the brain might implement this flexibility
remains unknown.
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A potential mechanism for this flexibility would involve stor-
ing experiences with different levels of temporal specificity to
facilitate subsequent retrieval at different levels of specificity. To
determine whether the brain might engage such a mechanism,
we can examine activity patterns in the rodent hippocampus, a
structure critical for storing and retrieving memories for spatial
experiences (Eichenbaum and Cohen, 2004). As an animal
moves through its environment, individual hippocampal neu-
rons (place cells) are active when the animal occupies specific
regions of space, known as the place fields of cells (O’Keefe and
Dostrovsky, 1971). In the context of this “on-line” state (Buzsáki,
1989, 2002, 2019; Kay and Frank, 2019), a traversal through a
given environment results in the sequential activation of a series
of these place cells. This sequential activation is modulated in
association with the ;8Hz theta oscillation, with the result that
firing is most prevalent at the trough and least prevalent at the
peak of each theta cycle (Buzsáki, 2002). Importantly, the fre-
quency of theta varies across a range of only ;1Hz, with higher
frequencies associated with higher running speeds (Hinman et
al., 2011). Thus, theta can be understood as stable internal clock-
ing mechanism that organizes spiking activity in the hippocam-
pal network (Buzsáki, 2002).

Hippocampal spiking is also organized within each theta
cycle. Gamma frequency (;40Hz) oscillations often occur to-
gether with theta oscillations in the hippocampal local field
potential (LFP) and these gamma oscillations modulate hippo-
campal spiking as well (Bragin et al., 1995; Lisman and Buzsáki,
2008; Colgin et al., 2009; Kemere et al., 2013; Lisman and Jensen,
2013; Lopes-Dos-Santos et al., 2018). This modulation has been
proposed to help maintain a further level of organization of spik-
ing within each theta cycle that is known as a “theta sequence”
(Lisman, 2005): within each cycle, sets of cells with overlapping
fields will typically fire in a compressed sequence that often reca-
pitulates the longer timescale sequential activity associated with
the serial order of the place fields (Skaggs et al., 1996; Foster and
Wilson, 2006; Colgin et al., 2009; Gupta et al., 2012).

Time-compressed versions of these sequences are also seen
during hippocampal sharp-wave ripple (SWR) events (Lee and
Wilson, 2002; Foster and Wilson, 2006; Davidson et al., 2009;
Karlsson and Frank, 2009). This replay serves as a mechanism
for the reinstatement of previously stored representations (e.g.,
retrieval) that is thought to promote the longer-term storage and
updating of these representations in distributed cortical networks
(consolidation; Buzsáki, 2015; Joo and Frank, 2018; Gillespie et
al., 2021).

Could SWRs support the storage of memories in a way that
would allow for temporally flexible retrieval? If so, then we might
expect the temporal structure of these events to vary from event
to event. SWRs are named in part because of the associated high-
frequency (150–250Hz) ripple oscillation, but this oscillation is
generated locally in hippocampal area CA1 and does not coordi-
nate the replay of experience across the hippocampal network
(Sirota et al., 2003; Carr et al., 2012). This coordination may
instead be mediated by a slower process. Consistent with that
possibility, during SWRs there are transient increases in slow-
gamma (20–50Hz) power and synchrony across dorsal CA3 and
CA1 networks of both hemispheres (Carr et al., 2012; Gillespie et
al., 2016; Oliva et al., 2018). The slow-gamma phase also provides
a reliable internal temporal organization (“clock”) for replay
events (Carr et al., 2012), and it has been suggested that these
gamma oscillations govern the temporal segmentation of spatial
content in the following replay sequences: during phases of high
neural activity within the gamma cycle, spatial representations

are often focused on a single location, whereas during phases of
low neural activity, the spatial representation is more likely to
move to adjacent locations (Pfeiffer and Foster, 2015).

Slow gamma varies over a wide range, but precisely how this
variation manifests in hippocampal network during SWRs has
not been examined. Moreover, whether this variability is related
to the representational content of SWRs is also unknown. To
address these issues, we examined the temporal organization of
population-spiking events on an event-to-event basis during
locomotion and awake immobility as rats learned to perform a
memory-guided task. We found that population spiking underly-
ing SWR events had rhythmic structure and exhibited much higher
event-to-event variability in periodicity than locomotion-associated
spiking sequences. Events with varying periodicity could represent
similar spatial experiences, and, surprisingly, variability increased
rather than decreased as the environment became more familiar.
We hypothesize that this experience-dependent variability in SWR
rhythmic organization supports memory storage in support of tem-
porally flexible memory retrieval.

Materials and Methods
Subjects, neural recording, and behavioral task
The experimental methods are described in detail in the studies by
Karlsson and Frank (2008, 2009) and Kay et al. (2016). In brief, data
were taken from four male Long–Evans rats (weight range, 500–600 g)
that had been implanted with a microdrive array containing between 14
and 30 independently movable tetrodes, respectively, targeting CA1 and
CA3. Tetrodes that never yielded clusterable units across the recordings
(11, 10, 8, and 12d for animals 1–4) were excluded from analysis.
Following histologic verification, tetrodes that ended up in areas other
than CA1 and CA3 were excluded from analysis. In the analyses pre-
sented here, multiunit activity (MUA) from 16, 18, 14, or 17 simultane-
ously recorded tetrodes, respectively, were included. Unsorted spikes
with peak-to-trough width of,0.35ms were identified as from putative
inhibitory interneurons, and unsorted spikes with peak-to-trough width
of.0.35ms were identified as from putative pyramidal neurons.

The MUA recorded from one tetrode was defined as all detectable
spike waveforms that cross a minimum amplitude threshold, usually set
between 40 and 100mV. Through standard manual clustering techni-
ques, between 0 and 10 well isolated units were extracted per tetrode in
the dataset described here. An average of 23, 53, 30, and 45 single units
across all recording epochs, respectively, were clustered. Importantly,
the activity of these sorted putative units includes a minority of detecta-
ble spikes; an average of 92.94, 89.13, 94.80, and 91.12% of spikes across
all recording epochs, respectively, remain “unclassified” because they
could not be confidently assigned to a single unit. Thus, a large fraction
of the data collected in these recordings would not be used for standard
decoding analyses. This exclusion of the majority of the spiking event
motivated our use of clusterless decoding analyses (see below).

The hippocampal data in this article were collected as animals
learned to perform a continuous alternation task on a W-shaped maze
(76 � 76 cm with 7-cm-wide track; Fig. 1A) for liquid reward (con-
densed milk). Each task epoch lasted, on average, for 15min. The animal
was rewarded each time it visited the end of an arm in the correct
sequence. On each “outbound trial,” the animal would start at the food
well in position O (“origin”) and run toward the intersection, or position
CP (“choice point”), at the top of the center stem, where a choice would
need to be made. The correct choice is to alternate between left and right
on successive outbound trials. If a correct choice is made, for example,
to turn right, the animal would continue to run toward position W
(right) (“right food well”) to receive a reward, and then return to the cen-
ter well at position O (“inbound trial”) to move on to the next outbound
trial. If an error is made, the rat is not given a reward and must return to
the center well to initiate the next trial. All animal procedures and sur-
gery were reviewed and approved by the University of California, San
Francisco, Institutional Animal Care and Use Committee and were in
accordance with National Institutes of Health guidelines.
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We linearized the actual two-dimensional coordinate position of the
rat to a single coordinate. The one-dimensional coordinate indicates the
total distance from the center well (position O) in centimeters, with neg-
ative numbers indicating trajectories that include a left turn and positive

numbers indicating trajectories that include a right turn. When the rat
was on the center arm of the maze, the region to which its position was
mapped was determined by the direction from which the rat came dur-
ing inbound trajectories and by the direction it would turn next when it
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Figure 1. SWR-associated temporal organization of population spiking is rhythmic and exhibits higher event-to-event variability than locomotion-associated population spiking. A, 2D repre-
sentation of the W-maze. B, Rhythmicity of spiking across traversals of an inbound (W ! O) trajectory in the W-maze (run laps) from Animal 2. Each column represents one run lap. Top,
Peak-normalized Gaussian-smoothed autocorrelation function of population spiking. Middle, Autocorrelation function of population spiking. Bottom, Decoded trajectory where the heat plot
shows the estimated posterior density at each time step. Theta (;125 ms) modulation of autocorrelation is clearly visible across different laps. C, Rhythmicity of spiking across theta cycles,
with rows as in B, taken from inbound runs on Animal 2. Each column represents one theta cycle. Population spiking within each theta cycle was also rhythmically organized with a periodicity
within the gamma range (mean period, ;18ms). D, Rhythmicity of spiking across SWR events from an example epoch of Animal 2. SWRs were chosen to illustrate inbound spatial content.
Each column represents one SWR. Top three rows, Raw and filtered LFP signals from one CA1 tetrode for a corresponding SWR event (from first to third row: raw LFP trace; slow-gamma band,
20–50 Hz; ripple band, 150–250 Hz; the colored highlighted area of each LFP trace denotes the entire duration of the associated SWR event). The bottom three rows are as in B.
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reached the choice point (position CP) during outbound trajectories.
Throughout this report, to facilitate ease of visualization, when plotting
we label the linearized maze at position O, CP, or W (left or right)
instead of the corresponding signed one-dimensional coordinate.

SWR detection
We performed ripple detection using all tetrodes targeting the CA1 region.
SWRs were detected on 4, 11, 7, or 5 tetrodes located in from CA1, respec-
tively, by using an aggregated measure of the root mean square (rms) power
in the 150–250Hz band across the tetrodes (Nádasdy et al., 1999). The
aggregated rms power was then smoothed with a kernel (4 ms SD), and
SWR events were detected as lasting at least 15ms .2 SDs of the mean.
The entire SWR time was then set to include times immediately before and
after the power exceeded the mean. SWR events were further restricted to
those that occurred while the animal was moving,4cm/s. Recording
epochs with,50 SWR events were excluded from analysis; under this crite-
rion, 3, 0, 0, and 2 epochs, respectively, were excluded.

Experimental design and statistical analyses
All analyses were conducted using custom software written in MATLAB
(MathWorks).

Rhythmic organization of population spiking underlying individual
SWRs. The temporal organization of population spiking underlying
individual SWR event was defined using multiunit spiking activity. The
population spiking activity was calculated by summing up unsorted
spikes recorded on tetrodes that had yielded clusterable units across all
days of experiments. We then computed the autocorrelation function of
this summed spike train binned at 1ms with lags up to 200ms. When
sorting spike autocorrelation across events (Fig. 2), we first smoothed
the autocorrelation function with a 20ms Gaussian kernel and then cal-
culated the lag of the first positive side peak.

Rhythmic organization of population spiking underlying individual
run laps. The temporal organization of population spiking underlying
the individual run lap was defined using multiunit spiking activity. The
population spiking activity was calculated by summing up unsorted
spikes recorded on tetrodes that had yielded clusterable units across all
days of experiments. We then computed the autocorrelation of this
summed spike train binned by 1ms with lags up to 400ms. When sort-
ing spike autocorrelation across events (Fig. 2), we first smoothed the
autocorrelation function with a 100ms Gaussian kernel and then calcu-
lated the lag of the first positive side peak.

Rhythmic organization of population spiking underlying individual
theta cycles. We first defined theta cycles as follows: LFP was filtered at
5–11Hz. Peaks and troughs of the filtered LFP were detected and used
to define half-cycles by linear interpolation. Theta cycles were identified

as individual cycles whose duration was consistent with the 5–11Hz fre-
quency range [,200ms (5Hz), .90ms (11Hz)]. The temporal organi-
zation of population spiking underlying individual theta cycles was
defined using multiunit spiking activity, similar to SWRs: the population
spiking activity was calculated by summing up unsorted spikes recorded
on tetrodes that had yielded clusterable units across all days of experi-
ments. We then computed the autocorrelation function of this summed
spike train binned by 1ms with lags up to 200ms. When sorting spike
autocorrelation across events (Fig. 2), we first smoothed the autocorrela-
tion function with a 15ms Gaussian moving kernel and then calculated
the lag of the first positive side peak.

Parameter estimation for the distributional fit. We first computed
the histogram of the timings of the first positive side peak lag of SWR-
associated population spike autocorrelations across events. We then fit
log-normal distribution to this histogram whose parameters, m and s ,
were estimated with maximum likelihood.

Clusterless decoding of representational content. We decoded the
spatial representation content of an individual SWR event using a clus-
terless decoding method (Deng et al., 2015) that does not require multiu-
nit spiking waveforms to be sorted into single units and instead
incorporates waveform information of unsorted spikes, by using the
theory of marked point process. Briefly, any point process representing
neural spiking can be fully characterized by its conditional intensity
function. A conditional intensity function describes the instantaneous
probability of observing a spike, given previous spiking history. By relat-
ing the conditional intensity to specific biological and behavioral signals,
we can specify a spike train encoding model. The conditional intensity
also generalizes to the marked case, in which a random vector, termed a
mark, is attached to each point. Here we use the mark to characterize
features of the spike waveform. In the case of tetrode recordings, the
mark used was a length-four vector of the maximum amplitudes on each
of the four electrodes at every spike time.

Briefly, we characterizes the instantaneous probability of observing a
spike with mark ~m at time t as a function of some underlying internal
state variable x(t), such as the location of an animal in space that varies
across time, using the joint mark intensity function l ðt; ~mjHtÞ, where
Ht is the history of the spiking activity up to time t, as follows:

l ðt; ~mjHtÞ
¼ limD!0

Prða spike withmark vector~m in ðt; t1D�jHtÞ
D¼ gðxðtÞ; ~mjHtÞ:

(1)

Our decoding algorithm, using discrete-time state-space adaptive fil-
ters, computes, at each time point, the un-normalized posterior
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Figure 2. Rhythmic spiking organization of spiking across event types. A, Normalized autocorrelations of multiunit spiking activity during individual run laps (left), theta cycles (middle), and
SWR events (right) from an example epoch of Animal 3, sorted in ascending order by the timing of the first positive side peak lag. Every horizontal line is the autocorrelation function of an
individual lap, theta cycle, or SWR, respectively; only non-negative lags are displayed. Positive and negative correlation coefficients are plotted in shades of red and blue, respectively. B,
Histogram of the timing of the first positive side peak lag of the multiunit spike autocorrelation lags across run laps (left), theta cycles (middle), or SWR events (right), respectively, for an exam-
ple epoch.
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distribution of the state variable given observed marked spiking activity,
as follows:

pðxkjDNk; ~mk;HkÞ / pðDNk; ~mkjxk;HkÞ

�
ð
pðxkjxk�1Þpðxk�1jDNk�1; ~mk�1;Hk�1Þdxk�1:

(2)

The pðDNk; ~mkjxk;HkÞ term is the likelihood or observation distri-
bution at the current time, as follows:

pðDNk; ~mkjxk;HkÞ

/
exp½�DkKðtkjHkÞ�; DNk ¼ 0;
YDNk

i¼1

½l ðtk; ~mki jHkÞDk�exp½�DkKðtkjHkÞ�; DNk.0:

8><
>:

(3)

The
YDNk

i¼1

½l ðtk; ~mki jHkÞDk� term characterizes the distribution of fir-

ing DNk spikes, such that the mark value of the ith spike in the
interval ðtk�1; tk� is mki , where i = 1,..., DNk. The probability of
observing a spike regardless of the mark values is denoted by

KðtjHtÞ ¼
ð
M
l ðt; ~mjHtÞd~m.

Classification of representational content.We extended the state vari-
able in the clusterless decoder to jointly include a discrete decision state,
I, which identifies whether each SWR event represents an outbound or
inbound trajectory as well as whether the temporal order of activity
occurs forward or backward in time (Deng et al., 2016). In our analyses,
I is an indicator function for a replay event being one of the following
four categories: “outbound, forward,” “outbound, reverse,” “inbound,
forward,” or “inbound, reverse.” We categorized the representational
content of example replay events using a marked point process filter
with the joint state variable x(t), I. Finally, if the posterior probability of
the decision state Pr(I) of an individual SWR event first passes a thresh-
old of 98% for 10 consecutive temporal bins for a particular category of
I, we assigned the event to that category. SWR events whose decision
state probabilities did not pass the threshold and whose representational
content cannot be classified into one of the four categories were assigned
to a fifth category as unclassified.

SWR-triggered spectrogram and local field frequency measures.
SWR-triggered spectrograms were computed using the multitaper
method and a 100ms sliding windows with a 10ms step size. A z score
was computed for each frequency band using the mean and SD of the
power calculated across the entire behavioral session for each tetrode.
For each 100ms bin, we obtained a normalized measure of power for
each frequency band (sharp wave, ,20Hz; slow gamma, 20–50Hz; rip-
ple, 150–250Hz) in units of SD from the mean. To quantify gamma-
phase locking during SWRs, the phase of coherence for the gamma band
was averaged across all CA3–CA1 tetrode pairs for each SWR. Thus,
each SWR contributed a single value for each 100ms temporal bin rela-
tive to SWR detection. We combined values across SWRs to obtain a dis-
tribution of gamma-phase offsets in each bin. The angular variance of
this distribution was taken as a measure of phase locking for each epoch.

Hypothesis testing. Bootstrap methods (1000 iterations) were used to
test the homogeneity of variances between peak lags of two behavioral
states, Wilcoxon rank-sum tests were used when comparing two groups
of peak lags of spike autocorrelation within the same epoch, Kruskal–
Wallis tests were used when comparing across multiple groups, and
Student’s t tests were used when comparing the mean of a variable across
all lags with zero. Across all epochs for an individual animal, a summary
of p-values was reported either in text or in supplementary figures.
Rayleigh’s test for detecting unimodal deviation from circular uniformity
was used to evaluate the phase locking of CA3 multiunit spiking to CA1
slow gamma. To evaluate the effects of multiple covariates on the peak
lag of the spike autocorrelation across all epochs for an individual ani-
mal, linear mixed-effects models were used to account for random
effects of epoch. Student’s t tests were used to estimate the statistical

significance of individual fixed-effects coefficients. To provide more in-
terpretable values, standardized coefficients for discrete independent
covariates were computed by centering; standardized coefficients for
continuous independent covariates are computed by first centering and
then dividing by 2 SDs (Gelman, 2008).

Results
Event-to-event variability in population spiking structure
To examine the temporal organization of hippocampal popu-
lation spiking, we analyzed previously recorded electrophysiolog-
ical data from four male Long–Evans rats implanted with a
microdrive array containing multiple independently movable
tetrodes targeting CA1 and CA3 (Karlsson and Frank, 2008,
2009; Kay et al., 2016). Data were collected as animals learned to
perform a memory-guided alternation task in a W-shaped envi-
ronment (Fig. 1A). The animal was rewarded each time it visited
the end of an arm in the correct sequence, starting in the center
and then alternating visits to each outer arm and returning to the
center (see Materials and Methods).

Our first goal was to identify regularities in the timing of spik-
ing during locomotion and awake immobility. The standard
approach, using “clustered” spikes that have been assigned to
individual single units, discards the much larger number of
spikes that cannot be confidently assigned to a single unit, and
the resulting sparse data may not be sufficient for inferring tem-
poral structure. As such, we used the unclustered multiunit spik-
ing data collected across all CA1 and CA3 tetrodes for our
analyses (Kloosterman et al., 2014; Deng et al., 2015).

The rhythmicity of the hippocampal spiking activity during a
specific period of time was determined by calculating the auto-
correlation function of the multiunit spiking activity. Specifically,
the “clock speed” for each event was defined as the lag of the first
positive side peak of the autocorrelation function using only
spikes within the event. This reflects the average time between
troughs (or peaks) of spiking activity. Note that clock speed and
the timing of the first positive peak lag of the SWR autocorrela-
tion function are inversely correlated, with a lower value of peak
lag denoting faster clock speed. We also note that focusing on
the structure of the autocorrelation helps avoid challenges associ-
ated with the superposition of oscillations with different phases
in LFP analyses. In parallel, we decoded the spatial representa-
tion expressed during those times using a clusterless decoding
method (see Materials and Methods; Deng et al., 2015) that does
not require multiunit spiking waveforms to be sorted into single
units and instead incorporates waveform information from all
spikes.

We first computed the autocorrelation function of hippocam-
pal population spiking during individual runs from one reward
site to another (laps) on the track (Fig. 1B, five example inbound
laps). As expected, the autocorrelation function had a peak at the
stereotypical theta lag of ;125ms. We then computed the auto-
correlation function of hippocampal population spiking during
individual theta cycles (for the cycle detection approach, see
Materials and Methods). Once again, as expected, population ac-
tivity within each theta cycle was rhythmically organized with a
periodicity within the gamma range (Fig. 1C; Lisman, 2005;
Lisman and Buzsáki, 2008; Colgin et al., 2009; Lisman and
Jensen, 2013; Lopes-Dos-Santos et al., 2018).

Finally, we computed the autocorrelation function of hippo-
campal population spiking during each SWR event, considering
only spikes within the extent of that event. We observed that
population spiking activity during individual SWRs is strikingly
rhythmically modulated (Fig. 1D), consistent with previous
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demonstrations that SWR events include slow-gamma oscilla-
tions that modulate spiking intensity (Carr et al., 2012; Pfeiffer
and Foster, 2015). We also observed that the SWR-associated
spiking organization appeared to exhibit very high event-to-
event variability, even across replay events that express similar
spatial representations.

The periodicity of SWR-associated spiking follows an approxi-
mate log-normal distribution
To examine the temporal structure of spiking across both loco-
motion-associated and SWR-associated hippocampal population
events, we plotted the autocorrelation functions of spiking activ-
ity of all hippocampal spiking events within each recording
epoch and ordered the events by the timings of the first positive
peak lag of the autocorrelation function (Fig. 2A).

As expected, the periodicity of the spiking seen during run
laps clusters tightly around ;125ms, consistent with the ;8 Hz
theta (Fig. 2B, left), while periodicity for theta cycles clusters
tightly at ;18ms, consistent with the high end of the typical
;20–55Hz slow-gamma range (Fig. 2B, middle), respectively.
We also observed that, when grouped by movement speed,
theta cycles with lower speeds were more likely to be associated
with larger mode values of the empirical distributions [Fig. 3;
correlation coefficient (and corresponding p-value) between the
mode of the empirical distribution and speed: animal 1, �0.80
(0.0092); animal 2,�0.95 (0.0001); animal 3,�0.93 (0.0003); ani-
mal 4, �0.94 (0.0002)], consistent with an increased prevalence
of slow gamma at lower movement speeds (Kemere et al., 2013).

In contrast, the periodicity of the rhythmic SWR-associated
population spiking spanned a wide and continuous range
between;6 and;50 Hz (Fig. 2B, right). This continuous distri-
bution was seen across the multiple run sessions within each day,
across days, and across animals (Fig. 4A). The distribution was
also visible in both CA1 and CA3, although the organization was
clearer in CA1, perhaps because of the larger proportions of
active neurons in CA1 compared with CA3 (Fig. 4B; Karlsson
and Frank, 2008). The distribution was also visible across both
putative excitatory and inhibitory cell types (Fig. 4C).

The periodicities underlying SWRs spanned a much wider
range than those seen during run laps or theta cycles. To quantify
this difference in spread, we fit parametric distributions to each
empirical distribution (Fig. 4D). We found that the periodicities
of SWR events were approximately log-normal, with the distri-
bution median at the low end of the slow-gamma range: exp
(m) = 48ms. Such a log-normal distribution creates a periodicity
spectrum with a wide dynamic range, spanning from the major-
ity of SWR events with a period between 25 and 75 ms to a
small fraction of events with either a slower or a faster
rhythmic organization. Importantly, the SWR-associated
log-normal distributions had significantly larger SDs than
locomotion-associated log-normal distributions (Fig. 4E;
across all four animals, p, 10– 242, bootstrap tests).

If this broad range of clock speeds serves an important func-
tion, it should be preserved throughout experiences in a given
environment. Previous work has demonstrated that novel experi-
ences drive high SWRs rates (O’Neill et al., 2006; Cheng and
Frank, 2008), which then fall by about half as the environment
becomes more familiar. To determine whether the range of clock
speeds is preserved as the environment becomes more familiar
and SWR rates decrease, we constructed a linear mixed-effects
model (random intercept and random slope for exposure with
animal-specific random effects). This model captures the modu-
lation of the SD of the log-normal distribution by the number of
exposures to each track environment, where exposure 1 means
the first ever experience the rat has on a given maze [Fig. 5A (but
see Fig. 5B, empirical distributions)].

Strikingly, we found that the SD that characterizes the distri-
butional spread increased with familiarity. The SD was consis-
tently and significantly positively correlated with the number of
track exposures for SWRs (across four animals, coefficient = 0.50
and corresponding p= 4.91� 10–7, t test for fixed effects), but
not for locomotion-associated spiking events (across four ani-
mals, coefficient = –0.16 and corresponding p=0.21 for run laps;
and coefficient = –0.04 and corresponding p=0.35 for theta
cycles, t test for fixed effects; median of empirical SWR event
durations and proportion of SWR duration.100 ms showed no
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consistent trend across the track environment or across animals;
Fig. 5C,D). For visualization purposes, we plotted the regression
lines for each track environment for each animal and observed
that in the case of SWRs, they were approximately parallel to
each other (Fig. 5A, right). This indicates a consistent change
across environments and across animals, where the log-normal
distribution of SWRs, but not locomotion-associated events,
becomes broader as the environment becomes more familiar.

In our experiments, the rat experienced each environment
across multiple days, and on each day there were multiple
epochs. We therefore asked whether we could identify the peri-
ods when the distribution changed. Specifically, we asked
whether there were detectable changes within a day, from one
epoch to the next (consistent with within-epoch plasticity) and
whether there were detectable changes across days, from the last
epoch on day n to the first epoch on day n1 1, consistent with
the plasticity during the ;18 h of sleep and with the home cage
experience between days. We used a simple linear mixed-effects
model (random intercept with animal-specific random effects),

applying a separate model for each environment. Since the over-
all distribution changes across days, we normalized the difference
in the distributional spread to allow combining the data across
days. We found that when comparing epochs within the same
day, there is no statistically significant difference in the SD that
characterizes the distributional spread (across four animals,
intercept = –0.0077, p=0.87, t test for fixed intercept), while
when comparing the last epoch of a day with the first epoch of
the next day, there is a statistically significant increase in distri-
butional spread (across four animals, intercept = 0.12, p=0.039, t
test for fixed intercept). This suggests that the increase in the dis-
tributional spread across familiarity that we observed more likely
occurred as a function of off-line plasticity outside of the maze.

The periodicity of SWR-associated rhythmic organization is cor-
related with LFP ripple power
How does this the periodicity of the SWR clock relate to the
LFP? To address this question, we grouped all detected SWR
events in a recording epoch into five categories based on the
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timing of the first positive peak lag of the SWR autocorrelation
functions, from events with a fast rhythmic organization with pe-
riodicity ,25ms, to events with a stereotypical slow-gamma or-
ganization with periodicity between 25 and 50ms, to events with
a slow rhythmic organization with periodicity .100ms. We
then computed the average SWR-triggered spectrum of the LFP,
normalized by the baseline spectrogram across an entire record-
ing epoch (see Materials and Methods) for each of the five
groups of SWR events (Fig. 6A). We observed that the strongest
concentration of power in the slow-gamma band emerges in the
groups whose autocorrelation lags have peaks between 25 and
75ms. This concentration of power gradually shifts to lower fre-
quencies as the peak lag of the SWR autocorrelation increases.
We also observed increased power at ripple band as the peak lag
of the autocorrelation increases.

We then quantified these relationships. We first measured the
strength of the slow-gamma phase locking of the multiunit spik-
ing activity and confirmed that across all lags, there was signifi-
cant phase locking to slow gamma (t test, p= 3.6� 10–73; across
all four animals, t tests for 100% of epochs, p, 0.001). We also
observed that slow-gamma phase locking decreased as the clock
speed increased [Pearson’s r = �0.27, p=1.69� 10– 21, n= 262
pairs; Fig. 6B (but see Fig. 6D, analyses across all four animals)].
Importantly, this phase locking was also present for CA3 spikes
alone (across all four animals: p ¼ 5:502� 10�76; 4:901�
10�142; 1:828� 10�21; 9:787� 10�72; Rayleigh’s test for unim-
odality; Fig. 6F), as expected given previous results (Carr et
al., 2012). In contrast, there was a significant inverse rela-
tionship between ripple power and clock speed, with lower
normalized ripple power at higher clock speed [Pearson’s
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r = 0.43, p = 2.52� 10–29, n = 262 pairs; Fig. 6C (but see Fig.
6E, analyses across all four animals)].

These initial analyses identified covariates of the clock speed,
and motivated a more comprehensive model. We therefore con-
structed a multiple linear mixed-effects regression model with
random effects of epochs that captured the modulation of the
SWR-associated spiking organization with a set of parameters
defining the influence of the mean population spiking rate, SWR
event duration, LFP ripple power, LFP slow-gamma power, and
LFP slow-gamma peak frequency (Fig. 7A). We estimated the
values of these parameters that maximize the likelihood of the
observed SWR population spiking. Here we focus on the param-
eters that were significant predictors across all four animals.

We found that LFP slow-gamma frequency was significantly
negatively correlated with the peak lag of the autocorrelation (across
all epochs for four animals: coefficient = –7.19, –2.70, –7.82, –2.44;

corresponding p=1.57� 10– 11, 0.016, 6.80� 10– 8, 1.78� 10– 4,
respectively; t tests for fixed effects), which is consistent with the
qualitative observations from the previous spectrogram analysis
(Fig. 6A). The regression analysis further showed that, after
accounting for the effects of other SWR temporal and frequency
components, LFP ripple power remained significantly positively
correlated with a peak lag of (across epochs for four animals:
coefficient=8.16, 23.72, 14.73, 10.81; corresponding p ¼ 3:83�
10�4; 6:89� 10�34; 2:33� 10�9; 2:63� 10�16, respectively; t tests
for fixed effects).

The duration of individual SWR events was also significantly
positively correlated with the peak lag (across all epochs for four
animals: coefficient = 21.41, 15.49, 21.27, 18.82; corresponding
p¼ 2:582� 10�29; 4:163� 10�26; 1:575� 10�21; 1:606� 10�39,
respectively; t tests for fixed effects). Thus, as one might expect,
the slower the hippocampal rhythmic organization underlying
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Figure 7. Periodicity of SWR-associated spiking organization is correlated with LFP ripple power and event duration. A, Regression coefficients and confidence intervals for six SWR-associated
covariates as predictors for peak lag for each animal. Vertical line segments indicate 95% confidence intervals of the standardized coefficients for fixed effects of event mean firing rate (plotted
in blue), event duration (green), LFP ripple power (yellow), LFP slow-gamma power (purple), LFP slow-gamma frequency (brown), and LFP sharp-wave power (red) in a multiple linear mixed-
effects regression model with random effects for epochs. Across animals, the duration of SWR events and LFP ripple power were significantly positively correlated with the peak lag of the spike
autocorrelation, while LFP slow-gamma frequency was significantly negatively correlated with the peak lag of the spike autocorrelation. B, Periodicity of SWR-associated spiking organization
versus event duration. Note the density of events near the diagonal (x= y) line reflecting events with a peak lag only slightly shorter than the event itself. Also note that a small number of
points (n= 177, 126, 65, and 438 for animals 1-4, respectively) are above the x= y line. These values are a result of the Gaussian smoothing of the autocorrelations, which can occasionally
result in autocorrelation mass outside the event duration. C, Empirical distribution of inter-SWR interval clusters around the theta frequency (;120 ms).
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an individual SWR event is, the longer the duration of the event.
An SWR cannot have a peak lag longer than its duration, and
indeed many SWRs had a peak lag only slightly shorter than
their duration (Fig. 7B). We therefore repeated the quantification
of the correlation considering only events.100ms. This yielded
the following mixed results: for one animal, event duration was
no longer significant (p=0.88), but for the other three animals,
event duration was still a significant predictor at the a level of
�0.1 (p=0.0064, 0.086, 0.0013, respectively; t tests for fixed
effects).

The peak lags of SWRs ranged from ;25 to ;125ms with
the most common values near 50ms. To determine how the dis-
tribution of peak lags we measured related to the typical intervals
between SWRs, we plotted the empirical distribution of inter-
SWR intervals (Fig. 7C). We found that, consistent with previous
experimental observations (Yamamoto and Tonegawa, 2017),
the time between SWRs was typically.100 ms, and this empiri-
cal distribution clusters around theta frequency (;120 ms) and
its harmonics. This period is much longer that the period of the
internal SWR clock, suggesting that a different process governs
intra-SWR versus inter-SWR activity.

Periodicity of SWR-associated rhythmic organization is corre-
lated with classifiability, but not types of sequential representa-
tional content
Finally, we asked whether the rhythmic spiking organization of
an SWR event relates to its representational content. We applied
a previously developed and validated discrete decision state point
process filter (see Materials and Methods; Deng et al., 2016) to
classify the representational content of SWR events frommultiunit
spiking activity into four categories (an outbound, forward path; an
outbound, reverse path; an inbound, forward path; or an inbound,
reverse path), based on the direction and temporal order of the spa-
tial trajectory and computed our confidence about the classification.
Events whose decision state probabilities did not pass the confi-
dence threshold and cannot be classified into any of the four afore-
mentioned categories are denoted as unclassified (Fig. 8A, example
SWRs). When we examined all SWRs, we found there was a statisti-
cally significant difference between the peak lag of the spiking auto-
correlation of the unclassified group and that of each of the
classified groups [Fig. 8B, example epoch: Wilcoxon rank-sum one-
sided tests with Bonferroni correction, p(unclassified vs outbound,
forward)=0.035, p(unclassified vs outbound, reverse)=0.008, p
(unclassified vs inbound, reverse)=0.021, and p(unclassified vs
inbound, reverse)=0.0027, for analyses across all four animals; Fig.
8C]. This result suggests that SWRs with unclassified content (i.e.,
SWRs that do not represent a trajectory through space) tend to
have a faster rhythmic organization, while SWRs with classifiable
content tend to have a slower one. We then examined only SWRs
with classifiable content and found no statistically significant differ-
ences (Kruskal–Wallis tests; for analyses across all four animals; Fig.
8D). The same was true when we restricted the analyses to classified
events and compared those that contained extended trajectories
(decoded position displacement,.50 cm) with those that did not:
there was no statistically significant difference in peak lags (Fig. 8E).
Thus, among SWRs with classifiable content consistent with repre-
sentations of trajectories, there is no correlation between the perio-
dicity of rhythmic spiking organization and the type of trajectory-
related spatial content.

Discussion
We explored the structure of spiking activity across periods of
locomotion and during hippocampal SWR events. We found

that the periodicity of SWR-associated hippocampal rhythmic
spiking has much higher event-to-event variability than that of
locomotion-associated spiking. This SWR-associated clocking
variability was observed across recording epochs, experiment
days, and animals. The wide range of periodicities (e.g., the
many different periods of the SWR clock) was clearly visible in
novel environments where SWRs are very prevalent (O’Neill et
al., 2006; Cheng and Frank, 2008) and actually increased in more
familiar environments. No such changes were present for loco-
motion-associated spiking. The large variability in the spiking or-
ganization within SWRs, combined with the observation that the
brain can maintain less variable timing during locomotion, dem-
onstrates that lower variability is within the capacities of the sys-
tem and suggests that the higher variability seen during SWRs
serves a function.

SWR periodicity, slow gamma, and theta
We found that the periodicity of the clock within theta cycles
seen during locomotion has low variability and clusters around
the fast-gamma range. This is consistent with two recent studies
that have investigated hippocampal subsecond dynamics during
locomotion on a cycle-by-cycle basis using frequency domain
tools (Lopes-Dos-Santos et al., 2018; Zhang et al., 2019). Zhang
et al. (2019) analyzed cycle-to-cycle changes during locomotion
theta oscillations using frequency decomposition methods on
LFP recordings, and found that fast-gamma states were domi-
nant. Lopes-Dos-Santos et al. (2018) designed an unsupervised
framework to extract the spectral content of individual theta
cycles and found that “theta-nested spectral components were
differentially altered by behavioral stages of a memory task; the
80 Hz mid-gamma component was strengthened during learn-
ing, whereas the 22 Hz beta, 35 Hz slow-gamma, and 54 Hz mid-
gamma components increased during retrieval. These four com-
ponents correspond to peak lags of 12.5, 45.5, 28.6, and 18.5 ms,
all of which were present in the empirical distribution of peak
lags in our analyses for theta cycles, although not with uniform
frequency, as follows: 12.5 ms (80Hz) and 18.5 ms (54Hz) peak
lags are most frequently observed in theta cycles in our datasets;
28.6 ms (35Hz) peak lags are observed relatively less frequently;
and 45.5 ms (22Hz) peak lags are observed the least frequently.
Nonetheless, as all four frequency ranges were observed, and as
we did not attempt to separate learning from retrieval, our results
should not be seen as contradicting those of Lopes-Dos-Santos et
al. (2018).

We also found that the periodicity of this clock during awake
immobility is related to the frequency of the slow-gamma
rhythm in each SWR. This is consistent with prior work (Carr et
al., 2012; Pfeiffer and Foster, 2015) and also with the results pre-
sented in a recent report from Oliva et al. (2018), although those
authors came to a different conclusion about the data. They
claimed that the slow-gamma power increase underlying SWRs
is a “spurious” oscillation because “slow gamma power is specifi-
cally associated with longer SPW-Rs [sharp-wave/ripple com-
plexes] produced by the overlap of multiple ripple events” (Oliva
et al., 2018). This conclusion was partially based on a replication
of the observation of coupling between slow-gamma phase and
ripple amplitude (Carr et al., 2012), indicating bursts of ripple
power at slow-gamma frequency. The authors did not present a
definition of an actual oscillation that would allow for a clear sep-
aration from spurious oscillations, however, making it difficult to
evaluate their conclusion. Their conclusion is also puzzling given
the well established presence of slow gamma as a reflection of
CA3 input to CA1 (Colgin et al., 2009; Kemere et al., 2013), the
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locking of CA3 and CA1 spikes to slow gamma during SWRs
(Carr et al., 2012), and the known role of CA3 input in driving
SWRs in CA1 (Buzsáki, 2015).

We suggest instead that the question should be whether an
oscillation extracted from the wideband LFP reflects a real physi-
ological process (in this case, CA3 input to CA1) and is useful in
understanding information processing in the brain. Using that
criterion, our findings corroborate previous work (Carr et al.,
2012; Pfeiffer and Foster, 2015) and indicate that measuring
power and phase in the slow gamma provides important infor-
mation about SWR characteristics, including the presence of se-
quential content (Carr et al., 2012). We found that, despite the
wide range of clock speeds resulting in different numbers of
clock cycles for each individual SWR event, multiunit spiking in
CA3 was significantly phase clocked to the slow-gamma clock in
CA1. We further showed that, even after accounting for event
duration, mean firing rate, and other local field frequency com-
ponents, the periodicity of this slower, rhythmic spiking process
that underlies SWR events remains significantly correlated with
LFP ripple power, which relates to pyramidal cell synchrony
(Csicsvari et al., 2000). These findings strengthen the association
between the temporal structure of SWRs and the robustness of
spiking activity within the events, suggesting that modulation in
a slow-gamma range facilitates the expression of longer SWRs.
At the same time, we identified a small number of events with a
clock as slow as;6 Hz. This suggests that the slow-gamma range
may better be defined as a log-normal distribution that extends
to lower and higher frequencies.

We additionally found that the interval between SWRs was
most often .100 ms. Consistent with prior work (Yamamoto
and Tonegawa, 2017), this empirical distribution of inter-SWR
intervals peaked near the period of the theta rhythm (;125ms)
with some suggestion of peaks at harmonics of theta. Thus, dur-
ing awake immobility, SWRs and their associated slow-gamma
periodicity might ride on top of low-amplitude theta oscillations.
Theta–gamma coupling has long been observed occurring to-
gether in the hippocampal circuits during locomotion (Colgin et
al., 2009). Our results here, together with previous experimental
and theoretical work, suggest that theta and slow-gamma oscilla-
tions provide a more general organization scheme for learning
and memory in the hippocampal circuits, both during locomo-
tion and during awake immobility (Lisman, 2005; Lisman and
Buzsáki, 2008; Lisman and Jensen, 2013).

A changing hippocampal clock is a potential mechanism for
flexible memory retrieval
Is there a possible functional role of the SWR-associated rhyth-
mic organization and of its variability? There are two possibil-
ities. One is that the brain wishes to impose a uniform temporal
structure when storing or updating representations, but, because
of intrinsic variability (Atallah and Scanziani, 2009; Hemberger
et al., 2019), it fails to do so and produces variably timed replay
events. The other possibility is that replaying the same spatial
content with varying degrees of rhythmic organization is benefi-
cial for flexible storage. In this scenario, the goal would be to
store memories with a more flexible temporal structure that
would provide for different degrees of “chunking” in the hippo-
campus and, presumably, in downstream cortical networks that
are engaged during SWRs (Buzsáki et al., 2013).

Our data are more consistent with the second of these two
possibilities. We found that the hippocampus can express
sequences with very low temporal variability, both across and
within theta cycles seen during locomotion. This indicates that

the hippocampus can generate spiking patterns that are tightly
locked to a given frequency. By contrast, the temporal variability
of SWR-related spiking is high during new experiences and
increases as the environment becomes more familiar. In other
words, as an animal learns the task in an environment, hippo-
campal circuits replay spatial representations with an underlying
internal periodicity (clock) sampled from an increasingly broad
log-normal distribution. We note that, in our dataset, this is not
associated with a consistent experience-dependent trend for its
median or tail probability (proportion of an event .100 ms;
Fernández-Ruiz et al., 2019).

This increasing variability indicates that the variability in the
clock is not solely a result of instability associated with recent
learning and suggests that the variability could be a feature rather
than a bug. Indeed, individual experiences could be replayed
with very different temporal organization, and that the identifi-
ability of SWRs as content-full representations was similar across
a wide range of clocks. At the same time, events with a shorter
period tended to be less classifiable using out model, but even
these events could serve a purpose. Here we defined classifiable
events as those that contain sequential activation of adjacent spa-
tial elements. Recent work from our group has expanded this
definition to include events that can include stationary dynamics
(e.g., representations of a place or a small snippet of a trajectory)
as well as fragmented dynamics (e.g., spatially disorganized rep-
resentations; Denovellis et al., 2021). We therefore suggest that
the more nonclassifiable events could serve to create either more
focused associations relevant to a particular location or more dif-
fuse associations across nonadjacent locations that could be use-
ful to grouping experiences that occur within the same overall
context. This would further suggest that SWR-associated replay
is not a simple, uniform compression of experience, but rather
an instantaneous, random sample (Foster, 2017; Stella et al.,
2019), and such a random sampling scheme allows for an
unbiased, efficient representation of experience. This sampling
hypothesis is also consistent with a recent study that showed hip-
pocampal replay can represent Brownian diffusion-like random
trajectories that cover positions over wide ranges of spatiotempo-
ral scales (Stella et al., 2019).

More broadly, human cognition is characterized by its
extreme flexibility—the ability to transfer past learning to new
contexts and to form abstract thoughts, such as analogies and
inferences, to guide behaviors (Behrens et al., 2018). One crucial
prerequisite of this flexibility is the ability to remember past
experiences at different levels of specificity. In particular, advan-
ces in reinforcement learning showed that there are advantages
to learning and memory when past experience is represented at
different levels of temporal abstraction (Schmidhuber, 1992;
Sutton et al., 1999; Bakker and Schmidhuber, 2004; Kulkarni et
al., 2016; Konidaris, 2019; Levy et al., 2019). More recently, a
human imaging study observed that speed of time-compressed
forward replay flexibly changes in human episodic memory
(Michelmann et al., 2019). Our observations suggest that the hip-
pocampal circuits replay spatial experiences at multiple levels on
an event-to-event basis during SWRs. We propose that such a
variable clock might constitute a general mechanism for flexible
memory storage that could enable subsequent flexibility in be-
havioral choices.
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