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Introduction
Functional imaging techniques have been progressively used in 
oncology to improve tumor detection, characterization, stag-
ing, prognosis, and treatment of cancer patients.1 In parti cular, 
computed tomography perfusion (CTp) has recently emerged 
as a widely available, inexpensive and noninvasive, imaging 
technique to evaluate changes in tumor vascular physiology 
and tumor biology. CTp can potentially lead to biomarkers 
for tumor characterization, as well as for early assessment of 
therapeutic response in multiple cancers.2,3 Any modern CT 
scanner system can perform CTp: a small bolus of iodine-based 
intravenous contrast is injected rapidly over a target region, and 
repeated images are taken at regular frequent time points before, 
during, and after the passage of the contrast agent through the 
tumor vasculature. Hence, this dynamic acquisition allows to 
measure temporal changes in tissue density after injection with 
the contrast agent. Tissue perfusion can then be estimated in 
the target region through the use of different kinetic models.4

The importance of assessing tumor perfusion and  vascular 
permeability is related to their association with tumor angio-
genesis, ie, the formation of new blood vessels, in several 
tumors.5–8 Neovascularization is considered an important pro-
cess in  cancer progression and tumor growth. For example, high 
tumor angiogenesis activity has been often associated with dis-
tant metastases and adverse clinical outcomes.9–11

The angiogenic vasculature of malignant solid tumors is 
usually characterized by dense, dilated, and tortuous microve-
ssels. In particular, blood volume (BV) and blood flow (BF) 
are higher in malignant tumors due to the proliferation of new 
blood vessels through the process of tumor angiogenesis.12,13 
Therefore, it has been suggested that perfusion imaging 
can yield biomarkers of angiogenesis and tumor growth 
and thereby greatly enhance the clinical development of 
antiangiogenic therapies. This is because changes in tumor 
perfusion appear to occur soon after therapy initiation with 
antiangiogenic drugs.14–16
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CTp parameters are commonly calculated after the scan 
session by using commercially available postprocessing soft-
ware platforms (CT Perfusion 4, version 4.3.1, Advantage 
Windows 4.4; GE Healthcare). Typical CTp para meters 
include BF (mL/100 g/minute), BV (mL/100 g), mean transit 
time (MTT, seconds), and permeability surface area product 
(PS, mL/100 g/minute), which are obtained using standard 
deconvolution physiological modeling, based on the cen-
tral volume principle (BF = BV/MTT) first described in the 
context of cerebral perfusion.17,18 PS is a measure of capil-
lary permeability and it reflects the flux of solutes from blood 
plasma to the interstitial space.19 As an illustration, Figure 1 
reports the time course of the PS parameter observed during 
the imaging session for two representative normal and tumor 
regions of interest (ROIs) in a single patient. The disruption 
and decline in PS values within the first 100 seconds of the 
scan in Figure 1B are usually the result of neoangiogenesis 
and microvascular attenuation.

The trajectory of the perfusion parameters over the scan 
period can be affected by many factors, which may pertain to 
patient and tumor characteristics. For example, in squamous 
cell carcinoma, BF and PS values have been shown to be 

 significantly higher in subjects with longer local tumor control 
than in subjects with local recurrence.20 This consideration 
highlights the heterogeneity of the perfusion parameter–time 
curves both between ROIs within a patient as well as between 
patients, in addition to the fact that the temporal resolution 
and duration of the CT acquisition can also impact the CT 
perfusion parameter values.21,22 Yet, heretofore, the clinical 
implications that have been inferred from perfusion CT stud-
ies have predominately relied on simple hypothesis testing 
approaches, which discard much of the acquired information. 
By way of contrast, more advanced statistical approaches that 
facilitate characterization of distinct perfusion signatures that 
are attributable to different types of tissues (eg, normal tissues 
vs different stages of tumor growth), as well as similar cluster 
patterns of responses within and between patients, could pro-
vide new insights for enhancing the use of this technology in 
diagnostic settings. Moreover, analytical tools that facilitate 
the study of CTp heterogeneity could be critical for the devel-
opment and effective application of perfusion-based surrogate 
markers of therapeutic response.23

In this manuscript, we consider a functional data analytic 
approach24 and assume that the observations collected on each 
CTp parameter during the scan period are a realization, up 
to a measurement error, of an underlying perfusion process. 
The corresponding perfusion curves are estimated in a flexible 
way through the use of Gaussian processes (GP),25 which are 
characterized by possibly different parameters for the normal 
and tumor tissues. In order to take into account the heteroge-
neity of the functional CTp responses, we further propose to 
borrow strength in the estimation of the inferred time course 
patterns by using a Bayesian nonparametric mixture model, 
more specifically by employing a functional Dirichlet pro-
cess prior.26–28 This modeling choice also allows us to achieve 
dimension reduction by clustering the observed dynamics of 
the CTp parameters into a smaller set of canonical response 
curves. On the contrary, estimation of the CTp parameters 
using any parametric higher order polynomial basis func-
tion would suffer from nonlocal influence, and thus would be 
unable to accommodate the inherently local temporal trends 
that are exhibited in the data.

Bayesian hierarchical models and Dirichlet Process 
(DP) mixtures have been successfully exploited to represent 
functional curves, eg, clustering spline coefficients in Bayes-
ian multivariate adaptive regression splines models.29 In 
computer modeling30 and machine learning,25 Gaussian pro-
cess realizations are often used as a basis to model random 
functions.31 Finite mixtures and Dirichlet process mixtures 
of Gaussian processes have also been proposed to model a 
sample of curves, possibly encoding complex spatiotemporal 
or covariate dependencies.32–37

With respect to those contributions, the method we 
propose for the analysis of functional CTp responses takes 
explicitly into account prior information about the perfusion 
imaging experiment and the vascular physiology of normal 
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figure 1. Illustrative plot of the observed measurements on the Ps 
perfusion characteristic in two ROIs for a representative patient, as 
a function of scan time, zoomed in the first 100 seconds of the scan: 
(A) normal tissue and (B) tumor tissue.
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and tumor tissues. Because the time course mappings of CT 
perfusion parameters are expected to stabilize some time after 
injection of the contrast agent, in order to obtain a reliable 
quantification of the perfusion characteristics,21 our proposal 
accommodates change-points in the distribution of the func-
tional responses over time, namely, in their temporal covariance 
structure. Moreover, since the perfusion time courses may vary 
across tissue types, we also allow for distinct change-points in 
the curves characterizing the normal and tumor tissues.

In addition, we demonstrate how to use the results from 
the posterior inference obtained from our Bayesian model-
ing framework to characterize ROIs from future patients as 
malignant tumor tissues to reflect diagnostic clinical settings. 
The classification is based on posterior predictive computations 
and the use of the Bayes factor, which weights the evidence 
in the data for the tested hypotheses.38 More specifically, we 
describe how the classification can be conducted by com-
pounding the contribution of time courses from multiple per-
fusion parameters. Figure 2 summarizes the main features of 
our contribution.

The remainder of the manuscript is organized as follows. 
The “Methods” section describes the details of Bayesian non-
parametric approach. Methods for posterior inference and 
classification are succinctly described in “Gaussian processes 
with varying autocorrelation” and “Posterior inference” sec-
tions. In the “Results” section, we describe the posterior and 
clustering results for analysis of tissue permeability in a sam-
ple of 16 patients with neuroendocrine liver metastases. We 
also provide an illustration of the classification performance 
of our algorithm on the basis of two studies: one aimed at 
comparing the predictive ability of our model with respect 
to commonly used classifiers in our small dataset, and a more 
comprehensive simulation study that further illustrates its 
general properties. We provide some concluding remarks in 
the “Discussion” section.

Methods
bayesian mixture for modeling the heterogeneity of 

ctp characteristics. Without loss of generality in this sec-
tion, we detail our modeling strategy for a single perfusion 

characteristic. More specifically, let Yij = (Yij(t1ij), …, Yij(Tij))T  
denote the vector of perfusion values collected on each ROI  
j = 1, …, ni, and on each patient i = 1, …, n. Notice that 
we allow for scans obtained at different temporal frequencies 
across regions and patients. Furthermore, let zij be a binary 
variable, such that zij = 1 if the jth ROI corresponds to a 
tumor region, and zij = 0 if the jth ROI is from normal tissue. 
In this section, we assume to know the tissue type (ie, tumor 
or normal) of each sampled region. However, this might not 
always be the case. In the “Classification performance” sec-
tion, we provide a way to predict from the perfusion data if a 
tissue is normal or tumor based on the knowledge accumu-
lated from previous data within the two conditions.

Following the typical functional data analysis frame-
work,24 we envision that for either the normal or tumor tis-
sue, the CTp responses can be formally described by the 
following model,

 Y i nij ij ij= + =θ ∈ , , ..., ,1

where the ∈ij are independent realizations of a Gaussian white 
noise process with variance σ zij

2  dependent on the tissue type, 

ie, ∈ij z dN I
ij ij

∼ 0 2, ,σ( )  with dij indicating the number of ele-

ments in the observation vector, Yij, and Idij a dij-dimensional 
identity matrix. Equivalently, given the θij, we can write

 
Y N I zij ij d ij z d ijij ij ij

 θ θind∼ , , , .σ 2 0 1( ) =
 

(1)

Arguably, the inferential interest often pertains to the 
modeling of the mean vector θij, which can be seen as the 
realization of a random function θ(t) on the observation 
points, ie, the data are supposed to be noisy realization of 
the underlying perfusion curves, yij(t) = θij(t) + ∈ij(t), with 

∈ij zt N t
ij

( ) , , .i.i.d.∼ 0 2σ( ) ∈ +  A typical assumption specifies 

θij(t)’s as independent realizations of a Gaussian process. 
Instead, we propose to borrow strength in the estimation by 
introducing probabilistic dependence across the θij ’s. More 
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figure 2. General scheme of our modeling framework and inferential objectives.
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specifically, we assume that the θij ’s are sampled from a prior 
(unknown) probability measure Gzij

 on +, which is also  
tissue-dependent, that is, θij z zG G

ij ij
| i.i.d.∼ , zij= 0, 1. The vector 

of observed CTp parameter values can then be described by 
the following location mixture of Gaussian densities,

 Y Iij z d ij z d z ij ijG N G d z
ij ij ij ij ij

| |i.i.d. , , , ,∼ ⋅( ) ( ) =∫ θ σ θ2 0 1
 

(2)

where, for notational simplicity, we have used the  
symbol Gzij

( )⋅  to also indicate the finite-dimensional distribu-
tion of the random function θ ij

zij t( ) observed at time points  
t1ij , …, Tij.

Functional dirichlet process priors. We follow a 
Bayesian nonparametric approach and further assign a prior 
probability to the mixing distributions G zz ijij

( ), ,⋅ = 0 1. More 
specifically, we assume a functional Dirichlet process prior,27 
by taking Gzij

 as the realization of a Dirichlet process.26 The 
Dirichlet process has been widely employed in Bayesian non-
parametric (BNP) models due to its various properties. For 
example, the use of a Dirichlet process prior allows borrow-
ing of information across observations in the estimation of the 
parameters of the model by automatically providing an unsu-
pervised clustering of the data. More formally, the Dirichlet 
process formulation implies that Gzij

 is almost surely a discrete 
probability measure of the form,

 
G pz l

l
ij l
( ) ( ),*⋅ = ⋅

=

∞

∑
1

δθ  (3)

where δθ denotes a probability measure degenerate on the atom 
θl*. In our framework, this implies that Gzij

 concentrates prob-
ability masses pl on a set of canonical perfusion curves θl* in +, 
so that curves characterized by similar trajectories can be clus-
tered together. Both the weights pl ’s and the curves θl* are ran-
dom functions, with probability laws specified as follows. For 
the sequence of weights (p1, p2, …), we assume a stick-breaking 
prior with parameter a, ie, p V p V Vl l rr

l
1 1 1

1
1= = −

=

−∏, ( ), Vr
i.i.d.∼

Beta (1, α).39 The θl*’s are i.i.d. from a nonatomic probability 
measure G0 on Θ, independent of the pl ’s. In particular, G0 
is commonly regarded as a parametric centering (base) dis-
tribution, since E(G) = G0, whereas the parameter α . 0 is 
a precision parameter, since it controls the variability of G 
around G0, with larger values of a resulting in realizations 
of G that are closer to G0. By assuming a random mixing 
distribution G with a DP prior, we do not restrict the model 
to a specific parametric form, and we increase its flexibil-
ity to capture different types of trajectories of the perfusion 
values. In the following, we denote our functional prior by 
G ∼ f DP(α, G0).

Gaussian processes with varying autocorrelation. 
We further take G0 as a stationary Gaussian process, that 
is, we assume that the distribution of the canonical curves θl* 
on any finite set of time points in + is Gaussian.25 Just as a 
 multivariate Gaussian distribution is fully specified by its mean 

and covariance matrix, a Gaussian process is also specified by 
the mean and a covariance function. In symbols, we write 

θ θ φl G R* , ( )i.i.d. GP∼ 0 0= ( ), where θ0 may be either known (eg, 

a constant function) or itself assigned a prior. In the follow-
ing, we assume θ0 ∼ N(0, 2), with 2 large so to encode vague 
information on the marginal expectation of the process. R(φ) 
represents the covariance function of the process, as a function 
of a set of parameters φ. The covariance function encodes the 
smoothness properties of the process (eg, mean square con-
tinuity and differentiability). A class of covariance functions 
that has proven to be attractive in various respects is the so-
called Matérn covariance function.40 Let φ = (ψ, v τ), with  
ψ . 0, v . 0, and τ . 0, and let ∆t . 0 denote a time inter-
val of length ∆t from t. Then, the covariance function can be 
written as

 
R

v
Hv t

v

t
v

v t, ( )
( )

( ) ( )ψ
τ ψ ψ∆

Γ
∆ ∆=

− +2 1 2

where Hν() is the modified Bessel function of order v.,41 ch. 9. 
The parameter ψ can be viewed as a decay parameter, since it 
governs the rate at which the covariance drops as a function of 
the distance, and v is a parameter that controls the degree of 
smoothness of the process. For v = 1

2
, we get the exponential 

covariance function, Rv t t, expψ τ ψ∆ ∆( )= −( )2 . The resulting 

stochastic process is continuous but not differentiable at the 
origin; thus, it may be appropriate for modeling curves that 
can possibly vary abruptly in their gradients. Finally, τ rep-
resents a variance term. In Bayesian inference for Gaussian 
processes, it is often common to assume τ = 1, due to the poor 
identifiability of the model parameters, especially when the 
inferential interest is on estimating the correlation structure 
of the data.42

In order to obtain a reliable quantification of the perfu-
sion characteristics, since the perfusion values are expected to 
show low autocorrelation soon after injection of the contrast 
agent, but subsequently they become more stable and highly 
correlated,21 we allow for changes in the correlation structure 
of the process over time. More specifically, we assume that 
the decay parameter in the correlation function may vary with 
time. Mathematically, we could describe these changes as dif-
ferent states sk of the process, for k = 1, …, K (K finite). Each 
state would be characterized by a specific correlation function 
Rsk

(φ), and we would allow the process to move across the dif-
ferent correlation states by employing a general hidden Markov 
model framework.43,44 However, based on our knowledge 
of the perfusion characteristics, we only expect one change 
point during the scan period. Let t  indicate such (unknown) 
change point. Therefore, we consider two states s1 and s2 and 
assume that, for t t> , the process cannot revert anymore to 
the preceding state. We further assume that the change point 
may be typically different for the normal and tumor tissues 
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due to the different environment the contrast agent faces. Let 
T t T t T1 20= =[ , ], [ , ], where we set T = maxij Tij for notational 
simplicity. Then, we assume that the base distribution of the 
functional Dirichlet prior (3) is characterized as

 
G GP Rz z z

z
ij ij ij

ij0 0= ( )( )θ φ, , (4)

where R zij
φ( )  is a block diagonal matrix of the form

 
R

R

R
z

z

z
ij

ij

ij

φ
φ

φ
( ) =

( )
( )

















1

2

0

0
,

with R zij
φ1( ) defined on T1 and R zij

φ2( ) defined on T2. Note 
that our formulation implicitly assumes conditional indepen-
dence of the observations before and after the change point. 
For zij = 0, 1, we can summarize our model as follows

 

Y N I j n i n

G G

G

ij ij ij i

ij

ij ij

ij ij

i

|

|

θ θ, , ; , , ,σ σ

θ
z z

z z

z

,∼ … …

∼

2 1 1( ) = =

jj ij

ij

ij ij ij ij ij ij

f G

p t p p p

∼

∼

DP z
z

z z z z z z

α

σ φ α σ φ α

, ,

, , ,

0( )
( ) ( ) ( ) zz zij ij

p t( ) ( ) ,

 (5)

where G Rij ij ij

ij0 0
z z z

zGP= ( )( )θ , φ , and p
ij

σ z( ) is typically an 

inverse gamma prior, p
ij

α z( ) is a gamma distribution, and  

p
ij

φz( ) and p t
ijz( ) are both (independent) uniform 

distributions.
Posterior inference. Lai and Xiang45 have recently 

considered a simple Bayesian model for multiple parameter 
changes in a multiparameter exponential family, developing 
explicit formulas for the estimators of the change-points. Our 
Dirichlet process formulation does not allow the use of the 
formulas of Lai and Xiang. Thus, we rely on a Markov chain 
Monte Carlo (MCMC) algorithm to obtain samples from the 
posterior distribution of the parameters of interest and con-
duct posterior inference. In this section, we provide a very 
brief description of the basic steps of the MCMC algorithm. 
Since perfusion parameters can be acquired at different time 
points across patients, we start by considering the union set 
of all observed time points. We then treat the values of the 
perfusion parameters at the times not observed as missing at 
random.46,47 Following the standard Bayesian approach,48 we 
impute the missing values within each MCMC iteration by 
drawing from the relevant posterior predictive distributions 
conditionally on the observed data and the currently sampled 
values of the parameters. Due to the normality and conjugacy of 
the model, the corresponding posterior predictive distribution 
is multivariate normal. More precisely, let Yij

obs denote the set 
of observed values for ROI j and patient i, and let Yij

mis indicate 

the missing values, which need to be imputed at each iteration. 
Let H R i

ij
= + ( )( )σ φ2I z

z , with Hmis,mis, H obs,obs, and H mis,obs 
denoting the corresponding submatrices. Then, the distribu-

tion of Yij
mis conditional on Yij

obs is multivariate normal with 

mean µij ij
ij ijH H Y= + [ ] −( )−θ θ0

1
0

z miss miss,obs obs,obs obs z obs, ,  and 

covariance matrix ∑ = − [ ]{ −
ij ij

H H Hσ z
obs,obs miss,obs obs,obs2 1

H miss,obs T[ ] }. The remainder of the model parameters is 
updated as described below, where, for notational simplicity, 
we omit the subscript zij.

a. Sampling the canonical curves θl*. We update the canon-
ical curves using the algorithm in Ref. 49, which is based 
on the Pólya urn representation of the Dirichlet pro-
cess.26,50 The canonical curves are then resampled within 
each cluster to improve the mixing of the chain, similar 
to the algorithm originally described in Ref. 51.

b. Updating the change point t . We use a Metropolis–
Hastings step to update t. Since the set of time points is 
discrete, we consider a multinomial proposal, such that 
the proposed change point is sampled with probability 
proportional to the values of the unnormalized likeli-
hoods at each time t, calculated assuming t t= .

c. Updating the covariance parameters φ φ1 2z zij ij
,{ }. The 

update of φ φ1 2z zij ij
,{ } depends on the particular form of 

the covariance function we specify. For the data analysis 
described in “Discussion” section, we use a Matérn with 
parameter v = 1/2. Then, the resulting exponential cor-
relations are parameterized by the decay parameters ψ1zij

 
and ψ 2zij

 for the process in states s1 and s2, respectively. 
Conditional on the current sampled value of t  at the 

MCMC iteration, ψ ψ1 2z zij ij
,{ }  are updated with stan-

dard Metropolis–Hastings techniques.

The updates of the other model parameters are stan-
dard.52 For example, the full conditional of θ0 is multivari-
ate normal and that of σ 2 is an inverse gamma. The update 
of a follows the procedure described in Ref. 49. We refer to 
the Supplementary File for a more detailed description of the 
MCMC algorithm.

The posterior samples so obtained can be used to provide 
posterior estimates of the parameters of interest, as well as 
highest posterior credible intervals. For example, the MCMC 
sample average provides an ergodic estimate of the post-
erior expected value of a parameter. Let θ ij

b t b B( ) ( ), , ..., ,= 1  
indicate the posterior draws of θij at time t after burn-in. Then 

E t
B

tij ij
b

b
Bθ θ( ) ( ).( )| data( ) ≈
=∑1

1
 The accuracy of the estimate 

will increase as B, the length of the chain, increases. We found 
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that in our applications, assuming B = 10, 000 was generally 
enough to produce good estimates. Similarly, we can acquire 
95% posterior credible intervals of the parameters by estimat-
ing the posterior density of the MCMC draws and determin-
ing the corresponding 2.5% and 97.5% quantiles.

classification via bayes factors. We can use the infor-
mation obtained from posterior inference to classify new 
observations, eg, from ROIs for which the tissue class is here-
tofore unknown. Let Ym

new indicate the CT perfusion time 
courses, measured for a characteristic m = 1, …, M on a given 
ROI. A clinician may be interested to classify the correspond-
ing tissue based on the values of Ym

new and the knowledge 
gathered from previous datasets. This can be accomplished by 
taking advantage of the updating scheme typical of the Bayes-
ian framework. More specifically, we can compute the Bayes 
factor [BayesF, 38] to discriminate between normal and tumor 
tissues. The Bayes factor is related to the posterior odds of one 
hypothesis relative to another (eg, tumor vs normal tissue), and 
it actually coincides with them if the prior probability of each 
hypothesis is the same. The log10 of the Bayes factor has been 
traditionally referred to as the weight of evidence in the data 
for the tested hypothesis.53 Then, if log10(BayesF) . 0, the 
data indicate some evidence against the hypothesis, with val-
ues log10(BayesF) . 0.5 and higher denoting substantial and 
increasing evidence. Let znew be a binary indicator, such that 
znew = 1 if the newly examined tissue is classified as tumor, and 
znew = 0 if normal. Then, we can compute the Bayes factor for 
each characteristic m = 1, …, M as follows,
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where the quantities Pr ,Y zm
new data|( ) and Pr(θz | data) denote, 

respectively, the posterior predictive density of Ym
new and the 

posterior probability of the model parameters if we assume 
that the data are from tissue type z, based on the already avail-
able CT perfusion data.

For clinical purposes, the classification of targeted ROIs shall 
rely on the Bayes factor computed either on a single perfusion char-
acteristic (eg, blood flow) or from a combination of the perfusion 
characteristics, eg, only those which have been previously found in 
the literature to be associated with angiogenesis and tumor growth. 
For M different characteristics, the decision will be based on the 
evaluation of the following compound log-Bayes factor,

 
log log ,BayesF BayesF new= ( )

=
∑ w Ym m
m

M

1

 (7)

where wm $ 0 represent weights that can be chosen to reflect 
the relative importance that a clinician might attribute to 
the different perfusion parameters in the decision process. If 

wm = 0, then the mth perfusion characteristic will not con-
tribute to the classification. Due to the lack of available prior 
information, the choice w1 = w2 = … = wm = 1 effectuates 
equivalence among the perfusion parameters. The choice of 
the weights could also be informed by existing knowledge 
about the dependence between perfusion characteristics, eg, 
by choosing weights inversely proportional to the strength of 
association of each CTp parameter with the others.

results
A case study from patients with neuroendocrine liver 

metastases. In this section, we apply our Bayesian nonpara-
metric approach to a retrospective clinical study. Both our 
study and the retrospective clinical study were approved by 
the MD Anderson Institutional Review Board (IRB). The 
study included 16 patients (6 men and 10 women) with meta-
static neuroendocrine tumors who received optional CT per-
fusion imaging between April 2007 and September 2009 as 
part of two IRB approved clinical trials. CT perfusion was 
performed for a target lesion in the liver, which was clinically 
or radiologically determined to be malignant. Images were 
obtained with a 64-row multidetector CT scanner (VCT; GE 
Healthcare) and with acquisition time of 12–590 seconds.21 
We consider the time courses of four perfusion characteris-
tics, as follows: BF, BV, MTT, and PS. The measurements 
were obtained on 27 separate ROIs in liver metastases and 
25 separate ROIs in normal liver tissue. More specifically, for 
each of the eight axial slice locations of each dataset, a liver 
tumor ROI was drawn free hand around the periphery of the 
primary target lesion, using an electronic cursor and mouse, 
with reference to the source cine CT images and perfusion 
parametric maps, displaying the images at soft tissue win-
dows (width = 350 HU, level = 40 HU). Wherever possible, 
a second tumor ROI was delineated, provided it was greater 
than 1.5 cm in diameter. ROIs were placed in the abdominal 
aorta and in the portal vein on the source images to provide 
these vascular inputs. Refer to Ref. 21 for more details. In this 
section, we illustrate the results of our analysis for the time 
courses of the PS characteristic, since PS values have been pre-
viously associated with the markers of angiogenesis.54 More 
specifically, we apply model Equation (5) to a normalizing 
log-transformation of the PS perfusion values, and then per-
form posterior inference as described in the “Posterior infer-
ence” section. The log scale is frequently used in CT perfusion 
analysis to adjust for conditionally asymmetric residual error 
at a given acquisition time and to alleviate the effect of het-
eroskedasticity as a function of time. In terms of prior choices, 
we assume that the mean of the base G0 θ0zij

, is the null vec-
tor 0 with diagonal variance–covariance matrix 4I. Given the 
range of values observed in CT perfusion data, this setting 
corresponds to a vague (noninformative) prior on the ele-
ments of θ0zij

. The prior on the range parameter of the Matérn  
covariance function, ψ zij

, is taken to be uniform over the values 
from 0 to 10. The prior specification is completed by  assuming 
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a gamma prior α ∼ Ga(l, 1) on the precision para meter of the 
functional Dirichlet process, a vague inverse gamma prior on 
the sampling variance, σ zij

2 5 5∼ Inv-Ga( , ), and a uniform prior 
across the full range observed time domain (0, 600) for the 
change point, tzij

.
Figure 3 displays the posterior distributions of the num-

ber of clusters for the normal (left panel) and the tumor liver 
tissue (right panel). In both cases, the posterior is characterized 
by high variance and long tails. However, the modal number 
of clusters is estimated around 5 in the normal tissue and 6 in 
the tumor tissue type. Hence, we may conclude that there is 
evidence of heterogeneous clustering patterns among the CT 
perfusion time courses. The MCMC algorithm typically sam-
ples possibly different cluster configurations at each iteration. 
Several methods have been used in the literature to obtain a 
single-point estimate of clustering draws from the posterior 
distribution.55,56 In the following, we consider the maximum 
a posteriori (MAP) estimate. The MAP clustering is the clus-
tering estimate that maximizes the posterior density.

Figure 4 (top) displays a cubic spline interpolation of the 
original PS values, with different colors to highlight the dif-
ferent MAP clusters. In both normal and tumor samples, the 
clusters appear to represent different time course trajectories, 
either because of their behavior within the first 300 seconds of 
acquisition or because of the resultant level that they achieve 
at the end of the scanning period. Figure 5 shows the posterior 
distribution of the change point in the covariance structure 
of the CT perfusion values. It is well known that for many 
of the correlation functions typically used for Gaussian pro-
cesses, the decay parameters are only weakly identifiable.57,58 
Accordingly, the posterior distribution of the change-points is 

quite diffuse. Nevertheless, one can recognize a mode within 
the first 100 seconds of the acquisition time. More specifically, 
the posterior expectation is 89.6 seconds (67.8 SD) for the nor-
mal tissue and 93.6 seconds (68.4 SD) for the tumor tissue. 
These values reflect the heteroskedasticity patterns typically 
observed in CT perfusion values.

classification performance. In order to assess the clas-
sification performance of our Bayesian nonparametric model-
ing approach, we devise two different strategies. First, we 
consider the dataset analyzed in “A case study from patients 
with neuroendocrine liver metastases” section and we select 
one normal and one tumor curve for each of the 16 patients. 
We then use formula (6) to classify the selected curves either 
as normal or tumor, separately for each perfusion parameter. 
Ng et al.21 have recently discussed the minimal acquisition 
duration that is necessary to attain stability and good quanti-
fication of the CT perfusion parameter values. There is clear 
motivation to reduce the overall duration of CT acquisition to 
the shortest time possible to reduce radiation exposure without 
compromising quantification of the CT perfusion parameter 
values. A few studies have suggested that acquisition times of 
30–60 seconds might be satisfactory for some of the CT perfu-
sion parameters.59,60 However, Ng et al.21 suggest that for most 
parameters stabilization with moderate confidence is attained 
only between 220 and 360 seconds of acquisition. Those stud-
ies did not address the predictive ability of the measurements 
collected over the different acquisition times to discriminate 
between tissue types. For this reason, in the following, we will 
evaluate the predictive ability of observations collected over 
30–100 seconds in addition to the full-time courses over the 
complete 590 seconds of acquisition duration.
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figure 3. Posterior of the number of clusters of Ps time courses for the normal (left) and tumor (right) liver roIs.
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For comparison, we also implement the commonly 
used classifiers, linear discriminant analysis (LDA), qua-
dratic discriminant analysis (QDA), and support vector 
machine (SVM) algorithms. LDA assumes that the mea-
surements from each class are normally distributed with the 

same variance–covariance matrix for both tumor and normal 
tissues, whereas QDA relaxes the homoskedasticity assump-
tion. As these classifiers require the same number of time 
points for each observation, we first fit cubic spline interpola-
tions to the data in order to be able to evaluate all the classifiers 

5

PS normal

4

3

2

1

0 100 200 300

Time

400 500 600

C
T

p
 t

im
e 

co
u

rs
es

PS tumor

0 100 200 300

Time

400 500 600

figure 4. Posterior clustering: cubic spline interpolation of the observed log-Ps values, color coded according to the maP estimate for normal tissue type 
(left) and tumor tissue type (right).
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figure 5. Posterior distribution of the change point in the correlation structure of log Ps values for the normal (left) and tumor (right) liver tissues.
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on the same acquisition intervals. This is particularly true for 
the PS and the BF parameter, which is consistent with previ-
ous literature. The discriminant analysis techniques (run after 
curve interpolation) do not appear to perform consistently 
well, especially when using the first 30–100 seconds of the 
acquisition scans. This is particularly relevant considering 
that higher acquisition duration would require high overall 
radiation exposures.

Table 1 shows the true negative and true discover rates 
for the prediction of normal and tumor curves, separately for 
the four CT perfusion parameters. The BNP method we pro-
pose generally seems to perform better than the alternative 
methods in most cases.

To further test our classification method, we also devise 
a simulation strategy where we consider a larger dataset, 
obtained by generating 1,000 distinct time courses for each 
of the four CT perfusion parameters, as follows. First, we 
obtain spline interpolations of the observed time courses in 
the liver metastases case study considered in “A case study 
from patients with neuroendocrine liver metastases” section. 
The spline interpolations are fit using the R package spline 
on each of the 52 curves and for each of the four characteris-
tics.61 Then, we select one of the 52 original observations by 
sampling with repetition, separately for each characteristics. 
A new time course is generated as a draw from a multivari-
ate normal distribution with the selected interpolation as the 
mean and a diagonal covariance matrix, with variance 2. This 
simulation scheme allows us to evaluate the effect of the noise 

2 on the prediction and also to more accurately assess the 
asymptotic performance of our classifier under multiple real-
izations of the generating models.

Tables 2 and 3 report the results of the classification 
for varying degrees of the noise 2 ( 2 = 0.1, 0.2, 0.5) using 
the first time frame of 30–100 seconds of acquisition dura-
tion and the full scanning period, respectively. The column 
corresponding to Combination refers to the compound log-
Bayes factor in equation (7), where we assume all weights 

w1 = w2 = w3 = w4 = 1. Such a choice can be considered as 
default, unless prior information leads to alternative choices. 
As expected, the prediction accuracy decreases with higher 
values of noise. The best predictor appears to be represented 
by the PS values, whose performance also appears more robust 
to higher levels of noise. Interestingly enough, the accuracy of 
the prediction with PS values increases slightly when using 
the full acquisition duration from 0 to 590 seconds, whereas 
for all other perfusion characteristics, a relatively better per-
formance is obtained by considering the values between 30 
and 100 seconds. This is consistent with the findings in the 
study by Ng et al.21, where it is shown that the PS values 
require longer acquisition times than do BF, BV, and MTT 
to reach comparable levels of stabilization in CT perfusion 
values. Among the other parameters, the BF and the MTT 
also appear to be relatively robust to higher values of noise. BV 
appears to be the less informative of the parameters in terms of 
prediction performance. Finally, the compound Bayes factor 
(7) appears to be the best classifier only when considering the 
first 30–100 seconds of acquisition duration. If the full-time 
course is considered, the performance is notably reduced. This 
result appears to be mainly due to the negative accuracy of the 
BV, and therefore, one might consider assigning a weight wm 
close to zero to this perfusion parameter.

discussion
With the advances of the contrast-enhanced functional imag-
ing technology, the development of noninvasive perfusion 
imaging biomarkers for tissue characterization, cancer prog-
nostication, and detection has emerged as an area of recent 
focus in clinical cancer research. Moreover, these imaging 
features have the potential to enhance quantitative evalua-
tions for measuring therapeutic response to antiangiogenic 
treatment strategies. Future endeavors to further develop 
and translate this technology should rely on appropriate ana-
lytical models for characterizing the multiple sources of vari-
ance that are inherent to the acquisition and measurement 

Table 1. Prediction true negative (normal) and true discover (tumor) rates using LDA, QDA, and the proposed BNP between 30–100 seconds 
and 0–590 seconds.

LdA LdA QdA QdA SVM SVM BNP BNP

Normal (30–100 sec) (0–590 sec) (30–100 sec) (0–590 sec) (30–100 sec) (0–590 sec) (30–100 sec) (0–590 sec)

logBf 75% 94% 81% 94% 75% 63% 100% 100%

logBV 69% 88% 63% 88% 75% 50% 94% 75%

logmtt 75% 88% 69% 94% 50% 56% 100% 100%

logPs 69% 88% 88% 94% 69% 69% 100% 100%

Tumor

logBf 50% 88% 56% 94% 63% 56% 75% 56%

logBV 81% 88% 81% 88% 75% 50% 69% 56%

logmtt 69% 88% 88% 82% 50% 56% 82% 63%

logPs 94% 100% 94% 94% 69% 56% 100% 82%
 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Fronczyk et al

160 CanCer InformatICs 2015:14(s5)

of temporal changes in contrast enhancement obtained from 
dynamic CT.

In this article, we presented a Bayesian nonparametric 
functional analytic approach for the analysis of CT perfu-
sion time courses, which allows for heterogeneity observed 
across patients and tissues, by clustering the measurements of 

perfusion characteristics into groups characterized by similar 
temporal behavior. Our approach takes explicitly into account 
prior information about the perfusion imaging experiment and 
the vascular physiology of normal and tumor tissues, by accom-
modating change-points in the temporal covariance structure 
of responses over time in order to appropriately describe the 

Table 3. Classification results for the large simulation with 1,000 simulated time courses described in the “Classification performance” section, 
for varying degree of noise ŋ2 = 0.1, 0.2, 0.5 and considering the full acquisition duration.

0–590 seCs BF Bv MTT Ps CoMbINATIoN

ŋ2 = 0.1

normal 331/503 (66%) 236/503 (47%) 377/503 (75%) 448/503 (89%) 247/503 (49%)

,0.001 0.49 ,0.001 ,0.001

tumor 338/497 (68%) 203/497 (41%) 362/497 (73%) 457/497 (92%) 268/497 (54%)

,0.001 ,0.001 ,0.001 ,0.001

ŋ2 = 0.2

normal 312/503 (62%) 221/503 (44%) 352/503 (70%) 411/503 (82%) 226/503 (45%)

,0.001 0.75 ,0.001 ,0.001

tumor 313/497 (63%) 189/497 (38%) 337/497 (68%) 442/497 (89%) 238/497 (54%)

,0.001 0.002 ,0.001 ,0.001

ŋ2 = 0.5

normal 261/503 (52%) 150/503 (30%) 277/503 (55%) 352/503 (70%) 211/503 (42%)

0.002 ,0.001 ,0.001 ,0.001

tumor 278/497 (56%) 129/497 (26%) 278/497 (56%) 358/497 (72%) 249/497 (50%)

0.07 ,0.001 0.07 ,0.001

Note: the P-values of the comparison of each individual CT characteristics and the combination (two-sample test for equality of proportions) are reported under 
each result.

Table 2. Classification results for the large simulation with 1,000 simulated time courses described in the “Classification performance” section, 
for varying degree of noise ŋ2 = 0.1, 0.2, 0.5 and considering the first 30–100 seconds of acquisition duration.

30–100 seCs BF Bv MTT Ps CoMbINATIoN

ŋ2 = 0.1

normal 342/503 (68%) 332/503 (66%) 397/503 (79%) 412/503 (82%) 423/503 (84%)

,0.001 ,0.001 0.03 0.36

tumor 357/497 (72%) 333/497 (67%) 378/497 (76%) 402/497 (81%) 442/497 (89%)

,0.001 ,0.001 ,0.001 0.07

ŋ2 = 0.2

normal 337/503 (67%) 322/503 (64%) 377/503 (75%) 357/503 (71%) 392/503 (78%)

,0.001 ,0.001 ,0.001 0.01

tumor 338/497 (68%) 323/497 (65%) 347/497 (70%) 400/497 (80%) 407/497 (82%)

,0.001 ,0.001 ,0.001 0.57

ŋ2 = 0.5

normal 287/503 (57%) 206/503 (41%) 292/503 (58%) 312/503 (62%) 347/503 (69%)

,0.001 ,0.001 ,0.001 0.02

tumor 293/497 (59%) 193/497 (39%) 293/497 (59%) 318/497 (64%) 359/497 72%)

,0.001 ,0.001 ,0.001 0.005

Note: the P-values of the comparison of each individual CT characteristics and the combination (two-sample test for equality of proportions) are reported under 
each result.
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temporal heteroskedasticity observed in such measurements. 
We demonstrate how our approach can lead to improved per-
formance with respect to commonly used classification meth-
ods for classifying ROIs in future patients, especially when 
considering the typical length of acquisition times. Therefore, 
our approach can assist in discriminating malignant from 
healthy tissue regions in diagnostic settings.

The clinical study was limited only to metastases to the 
liver from a specific tumor (metastases arising from neuroen-
docrine tumors) and consisted of a relatively small number of 
patients. The extent to which the conclusions of our case study 
might be generalizable to other tissues and tumors requires 
future exploration. However, we expect that the proposed 
methodology for functional data classification is generalizable 
to any perfusion study. Our data were obtained using a specific 
acquisition protocol based on relatively high temporal sam-
pling initially (in the first 30s), and more sparsely sampled data 
in its second phase (out to 590s). While one would not expect 
more widely spaced temporal sampling in the second phase 
to have substantial impact on analyses, an ideal dataset might 
be the one that was acquired at a high temporal sampling in 
the second phase as well. However, obtaining such data would 
require high overall radiation exposures and present practical 
challenges in acquisition because of the constraints of breath-
ing motion and registration.

Furthermore, we should note that our study does not char-
acterize treatment-induced changes in the perfusion values. 
Using data from a larger randomized clinical trial, the cluster-
ing detection could be informed by treatment information, eg, 
by using an ANOVA-dependent Dirichlet process.62 Finally, 
our modeling formulation is more computationally demanding 
than competing approaches. While our extensive simulation 
studies suggest that computations do not slow down substan-
tially for datasets comprising a few hundred patients’ samples, 
for larger datasets, computational speed could be improved 
through the use of variational Bayes approaches.63 The preci-
sion of the classification, when considering the full acquisition 
duration, is dramatically decreased, as presented in Table 3. 
Scarpa and Dunson64 have recently proposed enriched stick-
breaking processes for functional data, which enable incor-
poration of prior information about attributes of the curves 
in the classification. A similar feature selection-based strategy 
could be used to guide the classification of the curves so that 
specific characteristics of each perfusion parameter are taken 
into account and/or relevant portions of the time courses can 
contribute to the inference more than others.

Additionally, while our framework considered ROI-level 
inference, which is perhaps most prevalent in clinical practice, 
the methodology could be adapted to accommodate voxelwise 
analysis following image registration. The methods, when 
implemented in this context, could be leveraged to create 
spatial–temporal posterior probability maps, providing diag-
nostic tools that could potentially be used to enhance existing 
tumor segmentation approaches.
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