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The Cyclical Behavior of Interest rates
Abstract

This paper investigates the behavior of the term structure of interest rates over the
business cycle. In contrast to the simple change in aggregate economic activity used in
previous research, we use a more appropriate measure of the business cycle: the deviation of
aggregate economic activity {from its potentially stochastic trend. Stochastically detrending
Gross Domestic Product (GDP) by Watson’s {1936] UC-ARIMA methodology significantly
improves the term spread’s mmformativeness regarding future economic activity. We also
investigate the implications of the UC-ARIMA representation of aggregate consumption
dynamics for a linear consumption based model of the term structure. The presence of an
unobserved but independent cyclical component in aggregate consumption also allows for

the more efficient estimation of consumption asset pricing models.



1 Introduction

The notion of systematic variation in interest rates over the business cycle is a familiar one
in economics and finance. Beginning with the work of Kessel [1965] describing the variation
of long and short term interest rates with respect to (fC(-)IJOIDiC activity, numerous authors
have investigated the relationship between the term structure of interest rates and changes
fundamental macroeconomic variables such as gross domestic product (GDP), consumption,

and inflation.

More recent theories of the term structure, like Cox, Ingersoll, and Ross [1985], are
based on a general equilibrium approach in which real interest rates depend, through the
representative investor’s marginal utility, on conswmption. lFaced with changing consump-
tion opportunities, the representative investor uses financial asscts to smooth out lifetime
consumption. Given specific assumptions on the representative investor’s utility function as
well as the dynamics of the underlying state variables, explicit bond pricing formulae are
obtained which link the behavior of long and short term interest rates. Harvey [1988], for
example, uses this framework to investigate the relationship between real interest rates and

consumption changes, the latter taken to be a proxy for the business cycle.

However, Lucas [1976] more precisely defines the business cycle as the deviation of aggre-
gate output from its potentially stochastic trend. Such a definition underlies the real business
cycle literature in macroeconomics (see, among others, Kydland and Prescott [1982]) as well
as the construction of recent business cycle indicators (Boldin [1994]). The purpose of this
paper is to investigate, both theoretically and empirically, the implications of this more

appropriate measure of the business cvcle on the behavior of interest rates.



Recognizing that the business cycle is unobservable, we use Watson’s [1986] UC-ARIMA
(unobserved components ARIMA) methodology to stochastically detrend U.5. macroeco-
nomic data and estimate its corresponding cyclical component. UC-ARIMA models are
nested cases of ARIMA models. However, as noted by Watson, the estimated versions of
these alternative business Cycle specifications may display different properties at different
frequencies. We find that the term spread of nominal interest rates is significantly related to
the UC-ARIMA cyclical component of GDP, while there exists no relationship whatsoever

with GDP’s ARIMA cyclical component.

We further investigate the relationship between interest rates and the business cycle in the
context of a consumption based equilibrium model of the term structure of real interest rates.
We do so by incorporating our business cycle measure into Harvey’s [1988] term structure
framework. This allows us to theoretically demonstrate a more precise relationship between
the real term structure and aggregate consumption’s cyclical component. We also consider
the empirical plausibility of various real term structure models. For example, assuming
aggregate consumption’s cyclical component follows an AR(1) specification results in the
procyclical behavior of the real term spread which is inconsistent with extant empirical
evidence. However, higher order real term structure models are shown to be consistent with

observed countercyclical behavior.

Finally, we investigate the maximum likelilood estimation of consumption asset pric-
ing models (Hansen and Singleton {1983]). Following Watson’s UC-ARIMA approach, our
multivariate estimation methodology explicitly recognizes the presence of an independent
but unobservable cyclical component in aggregate consumption. We compare this estima-

tion methodology to that proposed by Hansen and Singleton and find that the precision



of the estimated coefficients, in particular, the cocflicient of velative risk aversion, increases
dramatically. In addition, we provide new insights into the lack of variability in aggregate

consumption which plagues the performance of consumption asset pricing models.

The plan of this paper is as follows. In Section 2 we introduce a more precise measure
of the business cycle by stochastically detrending U.S. GDP data. We demonstrate that the
superiority of the term spread in forecasting the UC-ARIMA estimated business cycle, as
opposed to the ARIMA estimated business cycle or simple growth rates in GDP. Assuming
that the representative individual’s utility function is characterized by constant relative risk
aversion and that the logarithm of aggregate consumption is normally distributed, Section
3 develops a model of real interest rates. Corresponding real term structure models are also
derived for the case in which consumption’s unobservable bhut independent cyclical compo-
nent follows an autoregressive process. In Section 4 we usc a multivariate Kalman filter
to simultaneously estimate aggregate consumption’s cyclical component as well as its rela-
tionship to interest rates. We find a statistically significant relationship between real bond

returns and our estimate of the business cycle. Section 5 concludes the paper.

2 The Term Structure of Interest Rates and the Busi-
ness Cycle

Interest rates should vary with the business cycle. Intuitively, if an investor expects a
recession (expansion), he or she will be more (less) willing to demand a bond today, thereby
decreasing (increasing) prevailing interest rates. As a consequence, the current term structure
of interest rates should provide information about the business cycle. For example, Harvey

(1988] finds that yield spreads can reliably forecast the growth in the real consumption of



nondurables and services. Estrella and Hardouvelis [1991] also find the slope of the yield

curve forecasts future growth in real GNP.

However, growth rates in consumption and other macrocconomic variables are impre-
cise measures of the business cycle. Most macrocconomic time serics trend over time and
the business cycle is more properly viewed as stationary deviations about this potentially
stochastic trend (Lucas [1976]). Simply first differencing a macrocconomic time series which
contains both growth (non-stationary) and cyclical (stationary) components confounds the
contribution of each (Stock and Watson [1988]). As a result, by imprecisely measuring
the business cycle, previous empirical rescarch may not have thoroughly characterized the

relationship between interest rates and the business cyele.

2.1 Estimating the Business Cycle

Empirical evidence suggests that macroeconomic time series are integrated of order one
(I(1)); that is, their first differences are stationary. However, as noted by Beveridge and
Nelson [1981], integrated series contain a stochastic trend. In particular, any ARIMA(p, 1,9)

model can be represented as a stochastic trend plus a stationary component.

In this paper we recognize that while the logarithm of a macroeconomic variable, y,, 1s
itself observable, its additive components, the trend. 7, and the cycle, ¢, are individually
unobservable:

yt:Ct+Ti' (1)

The cycle ¢, is assumed characterized by a stationary autoregressive process,

O(L)e, =€ var(ef) = o? (2)

c?



where ®(L) denotes a polynomial in the lag operator L. The trend 7, is assumed to follow

a random walk with drift,
=T e, var(c]) = ol (3)

This specification implies that the macroeconomic variable’s logarithmic average growth rate
is constant at j. We assume that ¢] and ¢ are normally distributed. More significantly, we
follow Watson [1986] and decompose the observed series using a UC-ARIMA model which

assumes that the trend and stationary innovations are uncorrelated
cov(e] e;_ ) =0 Vi

That is, the economic factors giving rise to trend imnovations are assumed to be unrelated to
the economic sources of business cycle movements. In contrast, if we assume that e] and ef

are perfectly correlated then, from Beveridge and Nelson {1981], an ARIMA model obtains.

2.2 Data

To investigate the relationship between interest rates and the cyclical component of aggregate
economic activity requires a comprehensive measure of economic activity. To that end, we
use quarterly seasonally adjusted data on Gross Domestic Product (GDP) over the sample
period 1960:1 to 1992:4, expressed in constant (1987) dollars. We take the natural logarithm

of this series as our measure of aggregate economic activity.

The interest rate data are quarterly observations on 3-, 6-, 9-, and 12-month Treasury
bills from CRSP’s Fama file, and on 1-, 2-, 3-, 4-, and 5-year Treasury bonds from CRSP’s
Fama-Bliss file. The interest rates are based on an average of bid and ask prices. We align

the data so that the interest rate corresponding to a particular quarter is given by that rate

§



quoted on the last date of the quarter and, as such. corresponds to the consumption flow
over the quarter. To deflate returns in a particular quarter, we use the logarithmic change
in the Consumer Price Index (CPI) from the final montl in that quarter to the month in

which the return is realized.

2.3 Univariate Estimation of the Cyclical Component

We cast the UC-ARIMA model in state-space form and evaluate the resultant log-likelihood
function using the Nalman filter initialized at a vague prior (see Harvey [1939a]). Since a
warm-up period of 16 quarters is assumed, estimation begins in the first quarter of 1964. In
addition, given maximum likelihood parameter estimates. the Kalman filter estimates the
business cycle at each time point in our sample, with the cyele estimated at time ¢ based

only on information available up to time 1.

Results of the maximum likelihood estimation of the UC-ARIMA model for log real GDP

are as follows!:

Yyt = ¢+ T, (4)

¢, = 1.67897 ¢i_q — 0.72118 ¢y, o. = 0.0040882, (5)
(0.178) (0.180)

e = 0.0082472 + 1,_4, o, = 0.0070415, (6)
(0.0007)

with the following summary statistics

SE=0.0088752,

1A specification analysis confirms that log real GDP’s cyclical component follows an AR(2) process. In
particular, we estimated the UC-ARIMA model assuming different AR(p) specifications, p =1, 2, 3, 5, and
10. We selected that specification which maximized the Akaike Information Criterion (AIC) defined by
2(Loglikelihood — p). The same model is chosen by Watson [1986] for GNP, although for a slightly different
sample period.

~1



Log-likelihood= 383.488.

Figure 1 plots the UC-ARIMA estimated business cycle. Notice that this estimated business
cycle appears broadly consistent with recent 1.S. macroeconomic behavior. . In particular,
the estimated business cycle implies a significant. economic expansion in the mid-1960s, and

significant economic downturns in the mid-1970s, the carly 1980s, as well as the late 1980s.

Since the UC-ARIMA model is a special case of an ARIMA specification, we also fit an
ARIMA model to the log real GDP scries. The results over the 1964:1 to 1992:4 sample

period are as follows:

Ay, = 0.00173872 + 0.293234 Ay, (7)
(0.0010276)  (0.088096)

with the following summary statistics

SE=0.00856467.

Log-likelihood= 384.591.

In comparison, notice that the ARTMA model fits the log real GDP series marginally better
as measured by its lower standard error as well as its higher maximized log-likelihood value.
However, the resultant estimated business cycle, plotted in Figure 2, displays a more erratic
behavior which does not appear to be consistent with the long-run persistence characterizing

the business cycle.?

20ur estimation results for quarterly log real GDP data are similar to Watson’s results for quarterly log
real GNP data over his 1949 to 1984 sample period. In particular, Watson fits a UC-ARIMA model with
an AR(2) cyclical component as well as an ARIMA(1,1,0) model. As noted by Watson, the ARIMA(1, 1,0)

[v'4]



As these figures make clear, the ARIMA and UC-ARIMA business cycle models have quite
different long-run properties. To see this more clearly, we follow Watson and compare the
moving average representations implied by the two models. For the ARIMA model the sum of
the corresponding moving average coeflicients is 1.415, while for the UC-ARIMA model this
sum is only 0.811.% In other words, according to t,h;,* ARIMA model, a one-unit innovation will
eventually increase log real GDP by 1.415, while the same innovation eventually increases log
real GDP by only 0.811 according to the UC-ARIMA model. Therefore, the ARIMA model
predicts an impact nearly twice as large, generating a more erratic cyclical component. As we
shall see below, this result will have significant implications for the Jong term informativeness

of the term spread.

2.4 Misspecification of Previous Tests

The presence of a stochastic trend in log real GDP has implications for testing the relation-
ship between real returns and expected changes in log real GDP. This empirical analysis
has been traditionally carried out (Harvey [1988], [1989bh]) by regressing ex post realized
changes in aggregate economic activity against either a measure of real mterest rates or term
spreads. However, in the presence of a stochastic trend, these tests may be adversely affected

by consequent measurement errors.

Without loss of generality, we illustrate this by considering one period changes in log real

model implies that it is inappropriate to decompose the change in log real GDP into an independent ran-
dom walk and stationary component. IHowever, when we include the 16 quarters of warm-up data in our
ARIMA estimation, giving a sample period of 1960:1 to 1992:4, an ARIMA(2,1,0) model obtains. More
significantly, the business cycle estimated by the ARIMA(2,1,0) niodel is almost indistinguishable from the
ARIMA(1,1,0) estimated business cycle.

3Lippi and Reichlin [1991] show that in UC-ARIMA models this sun 1s constrained to be less than 1.



GDP. FFrom (1), (2), (3), we have:
e = Yo = ot Bilew — a4+ cn e (8)

Notice that in the presence of a stochastic trend, the ex post change in log real GDP will be
g g

a noisy proxy for the predictable component ££[cy — ¢ since it includes both disturbance

terms €5, and ef,,. The latter source of measurement error 1s related to the change in

trend and may be quite relevant. Recall that in fitting the UC-ARIMA model to the real

log GDP series, the standard deviation of ¢ is approximately twice as large as the standard
; Pl > )

deviation of €. Over longer horizons, say j periods. the measurement error, .- ey, -, will be

& Y71 s 2j S0

increasingly important as its variance grows lincarly with the length of the forecast horizon

j. By contrast, in the UC-ARIMA specification, ¢ and ¢ are independent, implying that

the unanticipated change, ¢], may be climinated by exclusively relying on the estimated

cycle.
2.5 Univariate Evidence

Figures 1 and 2 also plot the spread between 5-year and 1-year default-{ree nominal interest
rates against the UC-ARIMA and ARIMA estimated business cycles, respectively. The
countercyclical behavior of this term spread is especially evident in the case of the UC-

ARIMA estimated cycle.

To confirm this, Table 1 presents univariate regression evidence investigating the term
spread’s informativeness regarding future economic activity using our quarterly log real GDP
data. If the term spread provides information about the business cycle, a more precise

measure of the business cycle should result in a more accurate assessment of this relationship.

10



We run regressions of the form:

bse = aj + by Aey i+ (9)

where ts, is the term spread prevailing at quarter t, and Aef,4; the i-quarter change from
quarter t in the jth measure of the business cycle. The term spread is measured by the
difference between 5-year and l-year default-frce rates. We use i-quarter changes in the
level of log real GDP (Panel A), as well as i-quarter changes in the ARIMA (Panel B) and

UC-ARIMA (Panel C) business cycle estimates.

As can be seen in Table 1, the informativeness of the term spread varies across these
alternative measures of the business cycle. In general, we expect a positive relationship
between the term spread and subsequent changes in economic activity as the steepening

(flattening) of the term structure implies that an expansion (recession) is imminent.

From Panel A, consistent with previous evidence, we sce a statistically significant rela-
tionship between the term spread and subsequent changes in log real GDP. The regressions’
adjusted R?s initially increase with the forecasting horizon, peak in the vicinity of 8-quarters,
then subsequently decline. In contrast, Pancl B indicates cither a negative or non-existant
relationship between the term spread and subsequent changes in the ARIMA business cycle
estimate. For all of the forecasting horizons, the adjusted R%s in Panel B are much lower
than those of Panel A, indicating that the term spread provides more information about
changes in the level of log real GDP than changes in the ARIMA estimates of the business

cycle.

Turning our attention to Panel C of Table 1, we sce a statistically significant positive

relationship between the term spread and subsequent changes in the UC-ARIMA business

11



cycle estimate. The adjusted R?s increase with the forecasting horizon throughout so that
at 10 quarters the term spread explains approximately 50% of the subsequent change in this
business cycle estimate. The goodness ol fit of the regressions in Panel €, as measured by
their adjusted R?s, exceed those of panel A at all forecasting horizons beyond 6 quarters,
indicating that the term spread provides reliable information about subsequent long run

changes in economic activity as proxied by the UC-ARIMA business cycle estimate.

To explore the empirical relationship between the term spread and the contemporaneous
business cycle, Table 2 presents the results of regressing various term spreads against the
change in log real GDP (panel A), as well as the ARIMA (Panel B) and UC-ARIMA (Panel
C) estimated business cycles. Notice that a statistically significant countercyclical relation-
ship is evident only in the case of the UC-ARIMA model. No relationship whatsoever exists
in the case of the ARIMA model, while a procyclical relationship obtains for changes in log

real GDP.

3 The Term Structure of Real Interest Rates and the
Business Cycle

Our empirical evidence suggests a statistically significant relationship between the term
spread and the UC-ARIMA estimated business cycle. We now explore the nature of the the-
oretical relationship between the term structure of real interest rates and the business cycle
in the context of a consumption based framework which explicitly recognizes the presence

J

of an independent cyclical component in consumption dynamics.

We consider a discrete-time exchange model (Lucas [1978]) where the representative

12



mvestor solves

nax I Z(’v((',ﬂ) . (10)

=0

with U(Ciy;) denoting the utility of consumption at time £ + j. Irom the representative
investor’s first order conditions, the price at time { of a real zero coupon bond paying one

unit at time ¢t + J is given by:

-

Bt +))=E | == (11)
g

‘v/ . vy .
where Uy denotes marginal utihity.

To provide a simple yet testable model linking changes in consumption to real returns, we
follow Harvey [1988] and make the following two assumptions which are retained throughout:
conditional on information available at time £, [,. (/) the logarithm of aggregate consump-
tion, y.4;, is normally distributed, with the variance of y,4, — y denoted by aj(j); (i1) the
representative investor has utility function U(Cry;) = ¢ (Ctilj,-_“) —1)/(1 — «), where a is

the coeflicient of relative risk aversion and § is the rate of paticuce.

Given assumptions (4) and (i), the yield at time ¢ on a j-period zero coupon bond, r(¢, 7)
1s:

InB(t+7)
J

6 (/) Bl — il — 5(02/1)020). (12)

<

71(t7j) =

Expression (12) represents a simple linear version of a consumption asset pricing model. More
generally, Breeden [1986] demonstrates that (12) holds as a second order approximation if

consumption is not lognormally distributed.

4The implications of observed asset returns for the parameters of the utility function in (77), without
distributional assumptions, have been tested extensively by, among others, llansen and Singleton [1982],
and Ferson and Harvey {1992].

13



Unfortunately, expression (12) is not a term structure formula per se, as it does not
specify how interest rates of different maturities are related, nor does it link real interest
rates to the business cvele. To provide both these additional implications, we adopt the
UC-ARIMA model for consumption dynamics. In particular, the stochastic model given
by expressions (1), (2). and (3) is consistent with expression (12), since the logarithm of

consumption is normally distributed.

From (1) and (3) it is clear that

In B+ )
~—~———j

r{tg) =

an o, S\ ge 2y 2, .
= otap— ot (af e - alld = $(02)0 ) (13)

<

|

where 02(j) = var(c,y; — ¢;). Expression (13) implies that real interest rates (as well as re-
turns) are related to the expected change in the cyclical component, noton (log) consumption
itself. The intuition behind this result is that under constant relative risk aversion and ho-
moscedastic optimal consumption, the representative investor smooths only the fluctuations

of consumption around its trend, and not the random walk component itself.

Once a particular autoregressive specification for the cyclical component is chosen, a term
structure formula obtains which parametrizes interest rates for any maturity. This analysis
extends the discussion of Campbell [1936] by allowing a stochastic trend in consumption and

by computing explicit term structure formulae.

However, in this framework, the consol rate will be constant at ( = § + ap — (a?/2)0?.
This constant consol rate can be avoided by assuming that the consumption drift, u, follows

a stochastic process (say, a random walk), or by simply assuming that j is not known by the



investor who then must estimate it every period.® Tn either case, the spread r(t,2)—r(t,5),2 >
7, will be a linear function of current and past values of the cycle, and will not depend on

the consol rate (.

3.1 The Countercyclical Behavior of the Term Spread

Since under the autoregressive cvelical specification, expression (2), the expectation in ex-
pression (13) may be written as a lincar [unction of current and past values of the cyclical
component, real interest rates may also be expressed as a lincar function of known values
footnoteA related model making a similar point is that of Balvers, Cosimano and McDonald
[1990], although its implications are derived only for stock returns. Under the additional
assumptions of logarithmic utility and a single input, time varying Cobb-Douglas technol-
ogy, they derive an equilibrinm model in which the logarithm of production (output) follows
the process yiy1 = @ + il + py, + £141 and aggregate consumption is a constant fraction of
output. Due to the predictability of output, the real interest rate will be a linear function
of the contemporaneous value of the logarithm of output (or consumption). The Markovian
structure of its evolution implies that the current value of y is the only relevant information
for evaluating its expected value.

In contrast, we argue that the trend of consumption is stochastic, and that the real inter-

est rate depends only on the predictable cyclical component of output (or consumption). of

5The possibility that the representative investor does not observe the exogenous cyclical and permanent
components in consumption implies that the investor, like the econometrician, will filter information regard-
ing the state of the economy in a Bayesian fashion. The term structure will depend on the estimated cycle,
and the variance term U;’(j) will now be larger as it will include the uncertainty surrounding the cycle and
trend estimates. This variability will become constant as time elapses. If we carry out a two-step estimation
procedure in which we first estimate the UC-ARIMA model (1), (2), (3), and then test the relationship
between interest rates and the resultant consumption cycle, we will not be faced by an errors in variable
problem. The estimate of the cycle obtained by the econometrician coincides with that of the representative
investor and, as such, is the correct state variable to be used. Models with unobservable state variables

include, among others, Williams [1977], Dothan and Feldman [1986], Gennotte [1986], Feldman [1992].



(67

: T . Lo .
ML) = L= 502 )apld) + (/7)Y by (et (14)
= =1
where @,(j) = var{ee; — ¢, and p is the order of the autoregressive process. Given the

stationarity of this process, lim; ., «,(j)/7 =0, 1im; . b, (J)/] = 0.

Under these assumptions, we require a non-Markovian representation of the cyclical com-
ponent (i.e. an autoregressive process of order p > 1) to generate the countercyclical behavior

of the term spread observed empirically.®

The key to understanding why higher order term structure models imply countercyclical
term spread behavior, at least for finite maturities, lies in the behavior of the terms Elcyy; —

e h]/7 and (1/7)an(y) to which j-period interest rates are proportional to. In particular,

5For the special case p = 1, that is, consumption’s cyclical component follows an AR(1) process, we have
(assuming complete information) the simple terin structure formula

In By(t+j)

r(t,j) = (= 1/2 («®/§ar(j) + (a/5)bi(j)er, (15)

where  a)(j) = o2(1 = p¥)(1 = p*)7 ",

bi(j) = —(1=p7),

and b1(7) < 0,limj—s ay(5)/7 = 0, limj_eo b1(y)/j = 0. Under incomplete information, we would simply
add a constant to a;(j).

Expression (15) corresponds to Vasicek’s {1977] termi structure model in which bond prices are lognor-
mally distributed and interest rates follow an AR(1) process. This term structure formula will obtain from
expression (12) if the logarithm of consumption, in addition to being normally distributed, is also assumed
to be Markovian with a stationary distribution. If the logarithm of consumption is not stationary, the term
structure will necessarily be flat.

The AR(1) model implies that the real term structure is steeper at business cycle peaks and flatter at
business cycle troughs. This is inconsistent with the empirical evidence of Kessel and others that the term
spread tends to narrow at cyclical peaks and widen at cyclical troughs. To see the procyclical behavior of
the term spread in the AR(1) model, note that the difference between the real rate for maturity 7 > 1 and
the one period real rate is given by:

r(t,3) — (6, 1) = (a2/2) («1(1) - ‘”f”) ta ((i_ b ",(i”_”{)> e

1

. . . . . "
where the coefficient on ¢; is > 0. Given the assumption of constant o2 and o2, the AR(1) model’s real term
structure is upward sloping at a business cycle peak (¢, > 0) and vice versa. Similarly, Breeden’s [1986] term
structure model in a single good economy also implies procyclical belavior in the term spread.

16



consider the behavior of the first order term

E[("rﬂ’ - “zl/r]/] .

If. for example, we are at a business troueh (¢, negative), to generate an upward sloping term
) ple, ) t g g I )
structure, we must expect business conditions (¢i4;) to improve fast enough, i.c. faster than
j. I ¢ follows an AR(1) process, this first order term is always decreasing in absolute value.
In other words, under the AR(1) specification, we expect business conditions to improve
; ] ; | )

but not fast enough to generate an upward sloping term structure.

Therefore, under the assumptions that ¢, is gaussian and homoscedastic, we require a
non-Markovian process to generate expectations of a sulliciently strong business recovery.
For example, an AR(2) specification is more appropriate. The behavior of Efegy;ler, ¢l
when ¢; is negative is displayed in Figure 4. It is clear that while under the Markovian
assumption this expectation increases at a decreasing rate, under the AR(2) specification 1t
increases at an increasing rate for a mumber of quarters. As a result, Eleg; — ¢ lfi]/j (and

the term structure) will be increasing at the business trough.

4 Kalman Filter Estimation of the Consumption As-
set Pricing Model

The consumption asset pricing model has traditionally been estimated by either the gener-
alized method of moments (Hansen and Singleton [1982]), maximum likelihood estimation
of an appropriately restricted vector autoregression (VAR) (Hansen and Singleton [1983]),

linear regression (Harvey [1988]), or simple calibration (Mechra and Prescott [1985]).

Under our maintained assumptions of lognormality and constant relative risk aversion,

17



Hansen and Singleton [1983] (HES) posit a consumption asset pricing model in which returns
are proportional, through the coeflicient of relative risk aversion, to changes in the logarithm
of real consumption. In their framework. the investor’s information sct. consisting of past
changes in the log of consumption and past returns, is assumed to follow a VAR with gaussian
disturbances. In particular, changes in the logarithm of real consumption are described by
the VAR, while one period realized returns on the single asset are proportional to the change
in the logarithm of consumption plus an crror term. Defining Ay as the change in the
logarithm of real consumption from quarter £ to quarter 141, and R4y as the corresponding
one-quarter holding period return on a zero coupon bond with maturity 7, H&ES consider the

following

Rippn = o +a Ay + "}"+1- (16)
Ay = 4+ ¢idyp—i+ Z Yi Rjgimi + vl (17)
i=1 =1

The white noise disturbances v™ and v¥ are normally distributed with constant covariance ma-

trix . The H&S procedure requires the estimation of this system by maximum likelihood.”

However, as previously argued, the decomposition of the changes in the logarithm of real
consumption into independent temporary and permanent components implies that changes
in real consumption are a noisy proxy for the relevant state variable. Since real rates and
changes in consumption are both lincarly related to the business cycle, this suggests the fol-
lowing statistical efficient bivariate strategy for estimating the parameters of the consumption

asset pricing model.

“In the single asset example s, and p may be concentrated out.



Consumption dynamics, defined by expressions (1), (2), and (3), may be written as ®:

Ayipr = 4+ Do + ¢4y (18)
Aoy = Z PiNCi—, —%-((,;H. (]9)
(=1

The theoretical assct pricing model provides an additional measurement equation which links
the business cycle to interest rates. In particular. it can casily be scen from expression (13)
that the term structure model implies a lincar relationship between expected changes in the

business cycle and expected real returns. Tor vealized veturns, we have

B =1+ 0 Neg + 241 s (20)

where z is a white noise crror, assumed gaussian. The effect of = on the estimation procedure

will be discussed below.?

Our model may be estimated by maximum likelihood using the multivariate Kalman
filter: equations (18) and (20) provide two measurement equations, while equation (19) is the
transition equation. This estimation strategy explicitly recognizes measurement error due to
the presence of an independent random walk component i the logarithm of real consumption

and, furthermore, that the relevant explanatory variable, Ac, is not observable.!?

According to our specification, real returns and changes in consumption have a common

predictable factor, Ac. However, real rates and consumption are not cointegrated: while y

8Given equation (2), c;®(L) = ef, where ®(L) is a lag polyuoniial, we assume that we can factor ®(L) so
that ®(L) = ®(L)(1 — L), and this yields (19),c,P(L)(1 — L) = ¢;. See Stock and Watson [1991].

®In the case of nonlinear and/or non-gaussian models, (20) may be interpreted as the result of linearizing
the model. However, more general numerical procedures could be used to handle a nonlinear relationship
between returns, the business cycle, and stochastic trend, as well as incorporating different distributional
assumptions (see Kitagawa [1987]). If only the normality assuwinption is violated, the Kalman filter remains
the optimal hinear estimator.

10In the case of a single asset, we can concentrate the parareter 4, out of the likelihood function, while for
more than one asset this parameter cannot be concentrated out as it will be a function of the consumption
variance.
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contains a stochastic trend and is stationary only in first differences, real rates do not contain

a stochastic trend and are stationary in levels.

Stock and Watson ([1989], [1991]) also use the multivariate Kalman filter to estimate a
common stationary component from sceveral macroeconomic time series, including nominal
interest rates. In contrast, we use the Kalman filter to estimate the parameters of a specific
assct pricing model. In fact, we must allow for correlation hetween the error made in fore-
casting the business cycle, ¢, and the pricing crror, z. However, we still maintain that the

trend and cycle disturbances are independent. '

In comparison with 11&S, our model includes an additional measurement equation with
a disturbance component arising from the presence of a stochastic trend in consumption,
€™, which may be filtered out. Also. in HES's framework (expression (14)), the conditional

expectation of Ay, is a direct function of past asset returns. Inour case, past asset returns

indirectly influence the conditional expectation of Ac¢,y; by determining past values of Ac.

UThat is, cov(e],ef_;) = 0 Yk and cov(e],z_) = 0 Yk, cov(z,ey) # 0. The model, (18), (20), and
(19), as it stands does not satisfy the assumption of independence between the transition and measurement
equations required by the Kalman filter. This necessitates a modification of the standard filtering procedure.
To see this, write the model in compact form as

)1 = Z(l1 + Et, (21)
apy = Ty + 1, (22)

where the vector Yy = [(Rj 41 — jtr) (Ayrg1 — /1)]1, Var(e) = H and Var(n) = @, both diagonal matrices.
In general, however,
G=F [’I]E(] = [Uéc 8] )

To accommodate the correlation between e and 1, we follow Harvey {1989a, p. 113] and use the equivalent
transition equation:
e =T o+ GH™ Y+ )7, (23)

where T* = T — GH™'Z and ] = 1, — GH " 'e,. By construction, the error terms in the measurement
and transformed transition equation are now independent, permitting the application of the Kalman filter
in calculating the corresponding likelihood function.



4.1 Data

We use the logarithmic transform of quarterly scasonally adjusted data on the consumption of
non-durables and services from the National Income and Product Accounts over the sample
period 1964:2 to 1993:3, expressed in constant (1937) dollars. The interest rate data is as

before.!?

4.2 Empirical Results

A specification search resulted i an AR(3) model for log consumption’s cvelical component,

expression (19)."% Prior to estimation, we de-meaned the observable series and concentrated

both s and 4, out of the likelihood function. After normalizing o2 to equal 1 (see Stock and

Watson [1991]). we then estimated the parameter veetor W = {o.. 0., p1, p2, p3, @, ez } - 14

Table 3 reports the results of our maximum likelihood estimation for 3- and 12-month
Treasury bills as well as for 3- and 5-year Treasury bonds. The average (annualized) real
return on the sampled bills and bouds is between 1.83% and —5.7%, while the average (annu-

alized) growth rate in real consumption is estimated to he 2.9%. The estimated coeflicient

I2The Fama file starts in 1964:2. We used deflated 3-month interest rates from the Federal Reserve
Quarterly Bulletin as a proxy for returns in the warm-up period. These rates are not used in the subsequent
estimation.

13The resulting model in the state-space form is:

: , Alei .
sl-f) b [E] e
Y1 1 1 0 0 Acr_ L
Acey PP P Acy €41
Acy | =41 0 0 Acioy |+ 0 . (25)
A('t_] 0 1 0 ACl_g 0

We then modify (25) to take into account the correlation between the transition and measurement
disturbance.
140tter [1988, Theorem 1] provides conditions for model identification.
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of relative risk aversion. &, lies between 5.7, for 3-month bills, and 7.9, for 5-year bonds.
Compared to previous research, the precision of these parameter estimates is remarkable.
By comparison, Table 4 sunnmnarizes the corresponding results of the HLS estimation pro-
cedure, both without (Panel A) and with (Pancl B) the use of past returns. Notice that in
Table 4 the estimated coefficients of relative risk aversion are always statistically insignificant,

while the standard errors of the bond return equations are consistently high.

While the fit of the return equation appears to be superior using our UC-ARIMA ap-
proach, the consumption cquation performs slightly worse as the standard errors of changes
in consumption arc consistently higher in Table 3 than in Table 4. This follows from the
fact that our estimation of the implied cyclical component is heavily influenced by the highly

variable bond returns.

This result highlights a deficiency of consumption assct pricing models. The problem
plaguing consumption asset pricing models is that the variability of aggregate consumption
is considerably lower than the observed variability of real returns. The relevant explanatory
variable in our model is consumption’s cyclical component and unfortunately we estimate an
implausibly volatile cyclical component. In other words, it is not consumption per se which
is not variable enough but, more precisely, it is the variability of consumption’s cyclical

component which is too low to satisfactorily explain asset returns.

To see this clearly, consider Figure 5 where we plot the estimated cycle against the
demeaned changes in consumption as well as real returns on the 3-month Treasury bill
(Figure 5a) and real returns on the 3-year Treasury hond (Figure 51). The estimated cyclical
component represents the predictable variation in consumption required to explain observed

bond returns. Notice that as the bond maturity increases from 3 months (Figure 5a) to 3

[N}
o



years (Figure 5b). the variability of returns increases, causing the variability of the estimated
cyclical component to actually be higher than the variability of the original consumption

series.
5 Summary and Conclusions

This paper investigates the hehavior of the term structure of interest rates over the business
cycle. As compared 1o previous rescarch, we use a more appropriate measure of the business
cycle: the deviation of aggregate cconomic activity (GDP and aggregate consumption) from
its stochastic trend. Using this more precise measure, as opposed to the simple growth in ag-

regate economic activity, sienificantly improves the term spread’s informativeness regardin
S o o o

future economic activity.

We exploit this measure of the business cycle in investigating a consumption based model
of the real term structure. The empirical evidence of Kessel and others suggests that the
spread between long and short rates of interest widens at cyclical troughs and narrows at
cyclical peaks. However, we demonstrate that a non-Markovian model of the real term

structure is required to capturc this countercyclical hehavior.

We also explore the implications of an unobservable but independent cyclical component
in consumption dynamics on the estimation of consumption asset pricing models. Compared
to previous maximum likelihood procedures which ignore the presence of this cyclical com-
ponent, the coefficient of relative risk aversion is estimated far more precisely. However, the
resultant fit of the consumption assct pricing model is not completely satisfactory as the

required variability of consumption’s cyclical component is implausibly high.



Table 1A

Lstimation of the Regressions

tsy = «;+0; N+
Quarters a b Sl [? N. Obs.

1 00219 S1628 0 .00813 10099 1A
(.00188)  (.09498)

2 00093 26297 0 .00786 0 119599 114
(.00195)  (.075H85)

3 00008 21002 00757 23204 113
(.00192)  (.06029)

4 -.00071 A8066 0 .00729 26102 112

(.00190)  (.05013)

00145 16356 00708 29526 111
(.00194)  (.01618)

6 00200 15026 00698 31236 110
(.00193)  (.01140)

~00266 13936 .00639 32412 109
(.00193)  (.03842)

(2}

-1

8 00326 13216 .00683 33211 108
(.00195)  (.03512)

9 00385 12743 00688 32818 107
(.00202)  (.03381)

10 00446 12340 .00693 32207 106

(.00216)  (.03372)

This table reports the results of a regression of the term spread on subsequent changes
in the logarithm of GDP. Changes arc computed over an increasing number of quarters.
The estimation period is 64-1 to 92-4. In parentheses arve the Newey-West (1987) adjusted
standard errors of the coeflicients (20 lags).



Table 1B

Estimation of the Regressions

lsg = aj+ b Ay +

Quarters a B D) 1?? N. Obs.
1 00167 16268 0 .0036G0 06354 115

(.00189)  (.03165)

2 00154 13816 00827 .10990 114
(L00181)  (.02066)

3 00138 10752 00828 L0138 113
(.00182)  (.01907)

4 00120 07918 00829 01801 112
(.00180)  (.02513)

5 00109 -.06824 00828 03636 111

(.00180)  (.02436)
6 00100 -.03330 00833 01994 110
(00181} (.02469)

7 00389 -.03309  .00836 00337 109
(.00182)  (.02183)

8 00379 01699 .00838  -.00583 108
(.00133) (.02193)

9 00372 00065 .00843  -.00952 107
(.00185)  (.02333)

10 00363 01860 00845 -.00627 106

(.00187)  (.02730)

This table reports the results of a regression of the term spread on subsequent changes in the
cycle component of GDP estimated from the ARIMA model. Changes are computed over
an increasing number of quarters. The estimation period is 64-1 to 92-4. In parentheses are
the Newey-West (1987) adjusted standard ervors of the coelficients (20 lags).



Table 1C

Istimation of the Regressions

lsi, = a;+ 0 A¢; + uy
Quarters a b Sk 1R? N. Obs.

1 00169 S2119 0 00856 00782 115
(00191} (.30016)

2 00155 27048 00865 02708 L1
(.00185)  (.17105)

3 00444 1591 00827 08501 113
(00176) (12779 )

| 00131 Ah2 L 00772 1769 [12
(.00167) (‘I(J(rl»l)

H 00130 S3948 0 00729 25428 111
(.00160)  (.08703)

6 00125 S06162 00638 33137 110
(00151)  (L06312)

7 00418 36293 00650 39824 109
(.00148)  (.05113)

3 00110 36196 00617 15501 108
(.00144)  (.01310)

9 00405 35387 00606 47849 107
(.00143)  (.03936)

10 00399 A1681 .00600 49160 106
(.00113)  (.03519)

This table reports the results of a regression of the term spread on subsequent changes in
the cycle component of GDP estimat ted from the UC-ARIMA model. Changes are computed
over an increasing number of quarters. The estimation period is 64-1 to 92- 1. In parentheses
are the Newey- \V( st (1987) adjusted standard errors of the coeflicients (20 lags).



Table 2A

Estimation of the Regressions

(s = a; + b,y + u
Spread a b Sk 1?* N. Obs.
Syr.-lyr. b 00219 31628 00813 10099 115
(.00138)  (.0919y)
yr-lyvi 00161 21015 .00593  .09033 115
(.00128)  (.06116)
Syr.-2v1 00161 18929 00501 10218 115
(.00121)  (.06311)
This table reports the results of a regression of different definitions of the term spread on

one-quarter changes in the logarithm of GDP. The estimation period is 64-1 to 92-4. In
parentheses are the Newey-West (1987) adjusted standard crrors of the coeflicients (20 lags).

Table 2B

Estimation of the Regressions

Lsq; = a;+ bje+uy
Spread a b SE R? N. Obs.
Syr-lyr. | .00556  -.02873  .00906 -.00531 116
(.00267) (.04693)
3yr.-lyr. | 00340 -.00954  .00632  -.00799 116
(.00178) (.02754)
Syr.-2yr. | 00369 -.02637 .00539 -.00059 116
(.00140) (.02853)
This table reports the results of a regression of different definitions of the term spread on

-

the cycle component of GDP estimated from the ARIMA model. The estimation period
is 64-1 to 92-4. In parentheses are the Newey-West (1987) adjusted standard errors of the

coefficients (20 lags).



Table 2C

Fstimation of the Regressions

Lse, = a;+bje+uy
Spread a b Sl 1?? N. Obs.
Syr.-lyr. | 00196 -43601 00777 25921 116
(.00249)  (.129383)
Jyr-lye. | 00109  -31613 00531 28097 116
(.00173)  (.03869)
Syr-2ye | 00138 21797 00488 17923 116
(.00143)  (.08105)
This table reports the results of a regression ol different definitions of the term spread on

the cycle component, of GDP estimated from the UC-ARTIMA model. The estimation period
is 64-1 to 92-4. In parentheses are the Newey-West (1987) adjusted standard errors of the

coefficients (20 lags).



Table 3

Kalman filter estimation of the model:

Ayepr = j0+ Aepr + (';H
Rjupr = e + 0dcyr + 20
Acipr = A + pr Ay + padea + ¢y

3-month [2-month 3-vear D-vea
a 5.731012 1.602343 5.636200 7.856265
(1.73915) (0.18277) (0.02927)  (0.06229)

m 0.239837 0.812837 0299911 0.292930
(0.24157)  (0.07015)  (0.01590)  (0.27357
P2 0.214667  -0.179018  0.033919  -0.007196
(0.23428)  (0.07511)  (0.01051)  (0.12731)
ps 0.356732 0160023  0.215169  0.217392

(0.08105)  (0.06G387)  (0.00131)  (0.11597)

0. 0.003569 0.016653 0.035992 0.016395

O 0.000010 0.001220 0.000101 0.000072
cov(ef, z) 0.87182 -0.27915 -0.36536 -0.28943
SE(R) 0.001059 0.023905 0.022257 0.025401

o )
SE(Ay) | 0.020803  0.019933  0.027837  0.028137

I 0.018794 0.000:31
3 7

4 4 i
ji 0.029078 0.029078 0.029078 0.029078

Log Lik. | -262.692413 -181.149200 -77.425812 -40.067268

In the model specification, Ay denotes the logarithm of consumption of nondurables and
services; R is the one-quarter return on the j-maturity bond; Ac denotes the change in
the unobservable cyclical component. The estimation is carried out on data from 1964:2 to
1992:3. To take account of the correlation between z and ¢, a modified transition equation
is used in the estimation, and o, is the standard deviation of the modified equation. The
variance of the trend disturbance ¢ is normalized to 1. SI(R) and SI(Ay) denote the
sample standard deviation of the prediction error of the two observable series.



Table 4a

Hansen and Singleton (1983) ML estimation of the relationship between one-quarter real

returns and changes in consumption (data {from 61:2 to 92:3). The model used is:

Nyogr = p+ a1 Ay + ax Ny iy + azAyy + v/,

Rjw1 =t + oDy + vy

3-month  12-month 3-vear H-year
« -0.921698  -0.367309  -1.615150  -2.191430
(0.36907)  (0.60089)  (1.33160) (1.79932)

a 0346778 0.360372 0318777 0.318729
(0.09009) (0.09620) (0.09807) (0.09815)
@ _0.018080  -0.009269 -0.006630 -0.002558
(0.08200) (0.09274) (0.10061) (0.09936)
as 0.278088  0.253571  0.299603  0.296512

(0.09005)  (0.09997)  (0.10253)  (0.10277)

SE(R) 0.038192  0.056:192  0.128321  0.176842
SE(Ay) 0.016906  0.016913  0.016393  0.016895
cov(v™,v¥) | 0.000311  0.000329  0.000493  0.000633




Table 4b
Hansen and Singleton (1983) ML estimation of the relationship between one-quarter real

returns and changes in consumption (data from 6.1:2 10 92:3). The model used is:

Ayigr = j+ @Dy + ay Dy + ag Dy o+ 0 B + 0 R + by IR s + vl

Ry = ptr + @Ay + 04,

3-month 12-month 3-vear 5-vear
a 3.877390 I AXT00  -1.213130  -L.771170
(L42011)  (0.51353)  (1.02963)  (1.44062)
(1 -0.06677S 0.120956 0.302313 0.302985
(0.04809)  (0.11671)  (0.10424)  (0.10410)
(g 0.0767385 0.100425 0.011263 0.038817
(0.04733)  (0.11353)  (0.10254)  (0.10169)
a3 -0.010265  0.203831 0.274867 0.277278
(0.03863)  (0.09729)  (0.10249)  (0.10421)
b, 0.113327 0.103515 0.03-1989 0.022906
(0.04451)  (0.03411)  (0.01462)  (0.01013)
by 0.013285 0.006199 0.03-1989 0.012619
(0.02431)  (0.03377)  (0.01497)  (0.01101)
b 0.072394 0.055527  -0.003085  -0.002159
(0.034915)  (0.033126) (0.015529) (0.010848)
SE(R) 0.085196 0.057115 0.126953 0.175525
SE(Ay) 0.019823 0.016:113 0.016158 0.016264
cov(v™,v¥) | -0.001629  -0.000370  0.000324 0.000175
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Figure 1

This figure illustrates the UC-ARIMA business cycle estimated with U.S. GDP data and

the nominal term spread.

0.04
5 yr.-1 yr. term spread
0 1’
.02 -
0 L M /
R 'v/\ lv ‘\' \‘ /
/ ~
i i } I YAVASN K
1 U
O.q
-0.02
Kalman filter cycle
-0.04 Y
IllllJIlllIll‘!lllljl|l|!|ll(ll‘|1|lllllllli|lll|lItlllll!l

1964 1969 1974 1979 1984 1990



Figure 2

This figure illustrates the ARIMA business cycle estimated with U.S.GDP data and the

nominal term spread.
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Figure 3

This figure illustrates one-quarter (annualized and demeaned) changes in the logarithm

of U.S. GDP and the nominal term spread.
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Figure 4

This figure illustrates the expected value of the consumption cycle at future points in
time, starting with ¢,=-0.012, and considering an AR(2) process with p; = 1.77 and

p2 = —0.82, and an AR(1) process with p = 0.9.
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Figure 5a

This figure illustrates real returns on a 3-month bill, changes in the logarithm of con-

sumption and the cyclical component estimated from the two series.
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Figure 5b

This figure illustrates real returns on a 3-year bond, changes in the logarithm of consump-

tion and the cyclical component estimated from the two series.
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