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Nematic superconductivity stabilized by density wave fluctuations:
Possible application to twisted bilayer graphene

Vladyslav Kozii,1 Hiroki Isobe,1 Jörn W. F. Venderbos,2, 3 and Liang Fu1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

3Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Nematic superconductors possess unconventional superconducting order parameters that sponta-
neously break rotational symmetry of the underlying crystal. In this work we propose a mechanism
for nematic superconductivity stabilized by strong density wave fluctuations in two dimensions.
While the weak-coupling theory finds the fully gapped chiral state to be energetically stable, we
show that strong density wave fluctuations result in an additional contribution to the free energy
of a superconductor with multicomponent order parameters, which generally favors nematic super-
conductivity. Our theory sheds light on the recent observation of rotational symmetry breaking in
the superconducting state of twisted bilayer graphene1,2.

PACS numbers: 74.20.Rp, 74.20.Mn, 74.45.+c

I. INTRODUCTION

Unconventional superconductors can have multicom-
ponent superconducting order parameters which trans-
form in a multidimensional representation of the crys-
tal symmetry group. In such cases, additional symme-
tries besides the U(1) gauge symmetry — such as time-
reversal or rotation symmetry — are broken in the su-
perconducting state. Superconductors which break rota-
tion symmetry can be called nematic superconductors
(NSC), in analogy with rotational symmetry breaking
in liquid crystals, whereas superconductors which break
time-reversal symmetry are known as chiral superconduc-
tors. Nematic and chiral superconducting order parame-
ters that belong to the same multiplet are degenerate at
the superconducting transition temperature, while this
degeneracy is lifted at lower temperature.

Recently, NSC have attracted a lot of attention fol-
lowing the discovery of rotation symmetry breaking in
superconducting states of doped topological insulators
Bi2Se3 in Knight shift3, upper critical field4–8, specific
heat4,5, magnetic torque9 and STM10 measurements. Im-
portantly, no signatures of rotational symmetry breaking
were found in the normal state, indicating that nematic-
ity is a property of the superconducting state itself. The
observed features are consistent with a nematic super-
conductor with a two-component odd-parity SC order
parameter 11,12.

The studies of NSC have mainly focused on strongly
spin-orbit-coupled 3D materials and have considered
odd-parity pairings13–25. As shown by weak-coupling
approach13,14, in the presence of strong spin-orbit cou-
pling and odd-parity pairing, the nematic superconduct-
ing state can be energetically more favorable than the
chiral one due to the difference in their gap structures.
In contrast, for two-dimensional (2D) systems without
spin-orbit coupling, NSC is not expected from the gap
structure: In 2D, the chiral p + ip or d + id SC states
generally have a full superconducting gap on the Fermi

surface, whereas the nematic px (py) or dx2−y2 (dxy)
states have point nodes. As a result, the chiral state
has a lower energy compared to the nematic state within
a weak-coupling treatment26–30.

In this work, we propose a mechanism for p- or d-wave
nematic superconductivity in 2D systems with hexago-
nal symmetry D6. We focus on the vicinity of the su-
perconducting transition temperature, which allows us
to treat the problem within the Ginzburg-Landau (GL)
theory. By going beyond the weak-coupling approach
which only takes into account the energy of Bogoliubov
quasiparticles, we show that sufficiently strong fluctua-
tions of a density wave order stabilize the NSC. The en-
ergy of such fluctuations is affected by the presence of a
pairing potential and can thus distinguish between differ-
ent SC states. Usually, the corresponding contribution is
small compared to the weak-coupling term; however, it
becomes more significant as the strength of fluctuations
grows. This effect is known as a feedback mechanism
and was originally proposed by Anderson and Brinkman
to explain the stability of nodal A-phase in superfluid
He-3 due to strong ferromagnetic fluctuations31–33.

We show that strong density wave fluctuations gener-
ically favor nematic superconductivity in 2D. Our re-
sults are largely independent of microscopic details of
such fluctuations. We find that the nematic d-wave
state is stabilized more significantly by charge density
wave (CDW) fluctuations, while the feedback contribu-
tion from spin density wave (SDW) is partially sup-
pressed by the destructive interference in a coherence fac-
tor. Interestingly, the conclusion is dual in a case of two-
component spin-triplet superconductivity, i.e., nematic
p-wave SC is more stabilized by SDW. We emphasize
that our analysis is valid not far from the superconduct-
ing transition point, where GL theory is applicable.

Our work is motivated by recent experiments on
twisted bilayer graphene (TBG), which observed super-
conductivity and strongly correlated insulating state at
’magic’ angle θ ≈ 1.1◦ 1,34,35. The mechanism for su-
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perconductivity in TBG and the pairing symmetry are
subject to intense theoretical study36–62. In particular,
Ref. 36 showed that due to the Fermi surface nesting and
the proximity to Van Hove singularity, unconventional
superconductivity and density wave emerge as the two
leading instabilities driven by Coulomb interaction. The
most divergent superconducting instabilities are found in
the two-component p-wave and d-wave superconducting
channels, which are nearly degenerate when the inter-
valley exchange interaction is small. Related results on
superconductivity from density wave/antiferromagnetic
fluctuations in graphene superlattices appear in Refs. 37–
39 (which propose chiral p+ ip and d+ id pairings). We
thus expect that our strong-coupling theory of nematic
superconductivity from density wave fluctuations is di-
rectly applicable to TBG. The strength of density wave
fluctuations, which are important for our theory, may be
enhanced by, e.g., changing electron density or tuning
the twist angle and the interlayer spacing. We predict
that one can observe the transition between chiral and
nematic p/d-wave superconducting states upon varying
these parameters.

Our result sheds light on the most recent measure-
ments of in-plane upper critical magnetic field in TBG,
which shows a pronounced two-fold anisotropy reveal-
ing the breaking of rotational symmetry2. This exper-
imental finding suggests the possibility of nematic p-
wave or d-wave superconductivity, instead of chiral p+ ip
or d + id states which are isotropic. We emphasize
that in our study nematicity is an intrinsic property of
the anisotropic superconducting state, and we assume
there is no primary electronic order that breaks rota-
tion symmetry in the normal state. This should be con-
trasted with the scenario considered in Ref. 40, where the
anisotropy of the superconducting state originates from
nematic orbital order that onsets at high temperature in
the normal metal. Furthermore, the nematic supercon-
ducting state studied in Ref. 40 is fully gapped and breaks
time-reversal state, while the p- or d-wave nematic super-
conductor studied in our work is time-reversal-symmetric
and has point nodes in the gap structure. This can be
directly probed in future experiments, including thermal
transport and tunneling spectroscopy.

II. CDW MODES COUPLED TO SC

To understand the essential physics of strong density
wave fluctuations coupled to SC, we begin by considering
a phenomenological GL theory. In GL theory the free en-
ergy FSC of the superconductor is expanded up to fourth
order in the two-component (spin-singlet) d-wave order

parameter ∆̂ = ∆ · (d1, d2), i.e., FSC = F
(2)
SC + F

(4)
SC , with

F
(4)
SC for the hexagonal systems given by

F
(4)
SC = α1∆4(|d1|2 + |d2|2)2 + α2∆4|d2

1 + d2
2|2, (1)

φ φ

∆ ∆

φ

∆

∆

φ

FIG. 1. Two lowest-order diagrams describing coupling be-
tween CDW fluctuations φi and SC order parameter ∆, see
Eq. (3). These diagrams are sufficient provided the system is
close to the superconducting transition (∆ is small) and the
CDW fluctuations are massive.

where α1,2 are the GL expansion coefficients. The sign
of α2 determines the SC state below Tc: If α2 > 0, chi-
ral superconducting state has lower energy, (d1, d2) ∼
(1,±i). This state breaks time-reversal symmetry, since
di → d∗i under time reversal, and is characterized by
full pairing gap on the entire Fermi surface. In con-
trast, if α2 < 0, the order parameter is real and given
by (d1, d2) ∼ (cos θ, sin θ). This state defines a nematic
superconductor, owing its name to the nonzero subsidiary
nematic order

(N1, N2) = (|d1|2 − |d2|2, d∗1d2 + d1d
∗
2), (2)

which transforms as a nematic director; this state has
nodes in the excitation spectrum. As shown below, cal-
culating α1,2 within weak-coupling gives α2 > 0, selecting
the chiral state.

Next, we introduce the coupling to density wave fluc-
tuations. For the sake of definiteness, we consider CDW
fluctuations, but note that the argument is similar for
SDW fluctuations. In hexagonal systems CDW order is
described by a three-component complex order param-
eter φ = (φ1, φ2, φ3), where the fields φi correspond to
CDW modes at ordering wave vectors Qi. These three
wave vectors are related by sixfold rotation. To the low-
est order, the coupling of the SC order parameter d to
the CDW modes φ, shown diagrammatically in Fig. 1,
can be expressed as

Fφ−∆ = β1|φ|2|d|2 + β2(P1N1 + P2N2). (3)

Here (P1, P2) = (2|φ1|2 − |φ2|2 − |φ3|2,
√

3(|φ2|2 − |φ3|2))
is a subsidiary nematic order parameter quadratic in
the fields φi and describes anisotropic CDW fluctua-
tions which transform as partners under rotations, and
d = (d1, d2). Since it has the same symmetry as (N1, N2)
in (2) it couples linearly.

We further assume that the fields φi are massive and
can be described by a Gaussian contribution Fφ, the
precise form of which is immaterial for present pur-
pose. The free energy of the superconductor coupled
to the CDW fluctuations can thus be expressed as F =
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c) d)

FIG. 2. (a) Fermi surface of twisted bilayer graphene slightly
away from Van Hove singularity. Blue and red parts origi-
nate from different valleys. (b) Hot spots are connected by
six inequivalent CDW/SDW wavevectors ±Qi, related by six-
fold rotations. For concreteness, we assume that ±Qi connect
adjacent hot spots. (c) Time-reversal-breaking chiral super-
conductivity is realized if α2 > 0, see Eq. (1), while (d) the
rotational symmetry-breaking nematic state has lower energy
provided α2 < 0.

F∆ +Fφ+Fφ−∆. Since the fields φi are massive they can
be integrated out, which leads to an effective free energy
for the superconductor given by FSC = F∆ + δF∆; at

fourth order, the correction δF
(4)
∆ is given by

δF
(4)
∆ ∼ −β2

1 |d|4 − 2β2
2(N2

1 +N2
2 ). (4)

Using the identity N2
1 +N2

2 = |d2
1 +d2

2|2, we observe that
(4) implies a lowering of the energy of the nematic super-
conducting state relative to the chiral state. This effect
is enhanced as the fluctuations become stronger, thus ex-
ceeding the weak-coupling or any other fourth-order con-
tribution and eventually leading to NSC. Remarkably,
the argument leading to Eq. (4) is general and does not
rely on the nature of the fluctuating field. In particu-
lar, as mentioned, it also applies to SDW fluctuations,
which can be described by a vectorial order parameter
~φ = (~φ1, ~φ2, ~φ3). Finally, a similar argument was ap-
plied to demonstrate the existence of s+d-wave SC state
in the presence of nematic fluctuations in systems with
tetragonal symmetry63.

III. GENERAL MODEL FOR CDW
FLUCTUATIONS AND SC

While the above argument is physically compelling and
correctly captures the physical mechanism of fluctuation-

induced NSC, it is based on a simplified approach which
neglects the contribution of modes with nonzero momen-
tum or frequency. To develop a theory of NSC which
takes this into account, we now consider a more general
model for a two-component d-wave superconductor in the
presence of CDW fluctuations. The Hamiltonian of such
a system is given by H = Hψ + Hφ + Hψ−∆ + Hψ−φ,
where

Hψ =
∑
kα

ξkψ
†
kαψkα, Hφ =

1

2

∑
q

Ṽ −1
0 (q)φqφ−q (5)

describe the normal state electronic excitations ψkα with
dispersion ξk and spin α =↑, ↓, and the (bosonic) CDW

fluctuations φq governed by the bare propagator Ṽ0(q),

respectively. The propagator Ṽ0(q) is peaked at the six
symmetry-related CDW ordering vectors ±Qi=1,2,3. The
coupling of the fermions to the superconducting pair po-
tential and the CDW fluctuations is given by

Hψ−∆ =
1

2

∑
k

(
ψ†k↑ψ

†
−k↓ − ψ

†
k↓ψ

†
−k↑

)
∆k + H.c.,

Hψ−φ = λ
∑
k,q

ψ†k+qαψkαφq, (6)

respectively. On the Fermi surface, the pairing poten-
tial of the two-component d-wave SC is given by ∆k =

∆[2d1k̂xk̂y + d2(k̂2
x − k̂2

y)], where, again, ∆ is the over-
all pairing strength and d = (d1, d2), which satisfies
|d|2 = 1, captures the structure of the two-component
order parameter. This form of the pairing potential cor-
responds to the E2 representation of the point group D6.

The Hamiltonian H of Eqs. (5) and (6) defines a gen-
eral model for a d-wave superconductor coupled to CDW
fluctuations. To demonstrate how the (gapped) fluctu-
ations can induce NSC via the so-called feedback mech-
anism, we proceed in two main steps: First, we inte-
grate out the fermions and then the fluctuation fields
φq. In this way, we obtain an effective free energy func-
tional for the superconducting order parameter which
includes the effect of CDW fluctuations and renormal-
izes the weak-coupling result. The latter is directly ob-
tained from H by neglecting the effect of CDW fluctu-
ations altogether. More precisely, within weak-coupling
the BCS free energy of the superconductor is given by
F∆ = −T ln [Tr exp(−H0/T )], where H0 = Hψ +Hψ−∆.
After straightforward evaluation, we find F∆ in hexago-
nal systems up to fourth order as (see Appendix A for
details)

F∆ = r∆2|d|2 +K0∆4
(
2|d|4 + |d2|2

)
, (7)

where r ∼ (T −Tc), K0 = (T/16)
∑
ωn,k

(ω2
n+ ξ2

k)−2, and

ωn = πT (2n + 1) are fermionic Matsubara frequencies.
Since K0 > 0, we find that within weak-coupling the chi-
ral state indeed has lower energy below Tc, in agreement
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with Ref. 29. This applies very generally to systems with
hexagonal symmetry and does not depend on microscopic
details of Fermi surface.

IV. FLUCTUATION-INDUCED NSC

We now proceed to calculate the correction to the
weak-coupling free energy originating from the CDW
fluctuations. As an intermediate step, we consider the
normal state electronic structure described by ξk of (5)
in more detail. At low energies, the most important
electronic excitations are located in the vicinity of those
points on the Fermi surface which are connected by the
CDW ordering vectors, the so-called hot spots. The
hexagonal symmetry dictates that there are six such hot
spots. Following the results of Ref. 36, we focus on
CDWs with wavevectors that connect all adjacent hot
spots, as shown in Fig. 2(b), though this assumption is
not important for our analysis. This hot spot model,
which introduces six flavors of low-energy fermions ψikα
(i = 1, . . . , 6) with corresponding ξik, also establishes a
natural connection with TBG36,41. Note that within the
hot spot model all momenta are measured with respect
to the hot spots.

To calculate the feedback correction, we integrate out
the CDW fluctuations, which we assume to be massive,
and determine their contribution to the free energy. Im-
portantly, this contribution depends on the SC order pa-
rameter and can be expanded in ∆ to obtain renormal-
ized GL coefficients. Since the full calculation is tedious
but straightforward, we discuss only the final result and
present the details in Appendix A. We find the correction
to the free energy due to CDW fluctuations as

δF∆ = −TTr
(
V̂ δχ̂

)
− T

2
Tr
(
V̂ δχ̂

)2
+ . . . , (8)

where V̂ is an effective propagator of the CDW fluctu-
ations, and δχ̂ is the correction to the CDW suscepti-
bility due to the coupling to ∆. Note that in (8) Tr
implies summation over frequencies, momenta, as well
as patches. Near Tc, δχ̂ can be expanded in powers of
∆, with the lowest-order term proportional to ∆2. This
term is diagrammatically shown in Fig. 1 and in the limit
of zero frequency and momentum has exactly the form
of Eq. (3). As a result, the term in Eq. (8) proportional

to Tr(V̂ δχ̂)2 gives rise to a quartic correction δF
(4)
∆ to

the free energy of the superconductor and shifts the en-
ergetic balance towards the nematic state, in agreement
with Eq. (4). As we discuss in Appendix A, the effect of

the term proportional to Tr(V̂ δχ̂) is less important and
can be neglected as the strength of fluctuations increases.

Remarkably, we find that δF∆ always favors nematic
SC, irrespective of the precise form of V̂ (Ω,q) or ξk, pro-
vided CDW fluctuations are sufficiently strong. This re-
sult solely relies on the form of δχ̂, and is a direct gener-
alization of Eq. (4) for the case when CDW modes with

nonzero Ω and q are taken into account. Specifically,
for the model described by Eqs. (5) and (6), the lead-
ing contribution to the fourth-order free energy feedback

correction δF
(4)
∆ reads as

δF
(4)
∆ = −3T 3(λ∆)4

2

[
(Y1 + 8Y2 + 8Y3 + 8Y4)|d|4

+2(Y1 + 2Y2 + 2Y3 − Y4)|d2|2
]
, (9)

with

Y1 ≡
∑
q,Ωm

V 2(q)K2
2 (q), Y3 ≡

∑
q,Ωm

V 2(q)K1(q)K2(q),

Y2 ≡
∑
q,Ωm

V 2(q)K2
1 (q), Y4 ≡

∑
q,Ωm

V 2(q)K1(q)K1(−Mq),

(10)

and the functions K1 and K2 are defined as

K1(q,Ωm) ≡
∑
k,ωn

ωn(ωn + Ωm)− ξ1kξ2k−q
[ω2
n + ξ2

1k]
2
[
(ωn + Ωm)2 + ξ2

2k−q

] ,
K2(q,Ωm) ≡

∑
k,ωn

1

[ω2
n + ξ2

1k]
[
(ωn + Ωm)2 + ξ2

2k−q

] .
(11)

Here ξ1,2k are the dispersions of the hot spot fermions,
see Fig. 2, which are related by the mirror symmetry
M as ξ2k = ξ1Mk. ωn = πT (2n + 1) and Ωm = 2πTm
are fermionic and bosonic Matsubara frequencies, respec-
tively, and we have suppressed Ωm in (10) for brevity.
Since V (Ω,q) in (10) is the CDW propagator within the
hot spot model it is peaked at q = 0; V (Ω,q) is re-

lated to the (effective) propagator of the full model Ṽ as

V (Ω,q) ≡ Ṽ (Ω,Q1 + q), where Q1 connects hot spots 1
and 2, see Fig. 2.

Our claim that the feedback effect of CDW fluctuations
always favors NSC now follows from Eq. (9): It is easily
demonstrated that the coefficient of |d2

1 + d2
2|2 is always

positive, i.e., Y1 + 2Y2 + 2Y3 − Y4 > 0, thus proving our
statement. Importantly, Eq. (9) does not require any as-
sumptions about the explicit form of V (Ω,q) or ξik, and
only relies on the (rotation and mirror) symmetries relat-
ing the hot spots. Furthermore, when V (Ω, q) is strongly
peaked at Ω = q = 0, we exactly recover Eqs. (3)-(4)
with

β1 = T (λT∆)2 [4K1(0, 0) +K2(0, 0)] ,

β2 = T (λT∆)2 [K1(0, 0) +K2(0, 0)] . (12)

The overall prefactor in Eq. (4) is proportional to∑
q V

2(0, q), implying that the feedback contribution be-
comes more significant as the strength of CDW fluctua-
tions grows. As such, Eq. (9) in combination with (4)
represents the central result of this paper.

Finally, we consider a specific model for twisted bi-
layer graphene to exemplify our results. We assume that
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the effective normal-state CDW propagator is given by
V (q) = χ0/c

2(q2
0 + q2). We use the Fermi surface repro-

duced from the band structure calculation for TBG with
filling factor close to the filling of two electrons/holes per
supercell64, see Fig. 2(a). The dispersion near the hot
spots can be approximated as ξik = v(k · ni), where ni
is the unit vector in the direction ΓMi. The feedback
correction to free energy then equals

δF
(4)
∆ = −13.46

(2π)4

(
χ0Tλ

2

q0v2c2

)2
∆4

T 3

(
1.16|d|4 + |d2|2

)
.

(13)
As the strength of the fluctuations increases, i.e., as

q0 becomes smaller, this correction becomes more sig-
nificant, eventually exceeding the weak-coupling contri-
bution and leading to NSC. We emphasize that while
the numerical prefactors in (13) depend on the particular
model chosen, the results given by Eqs. (9)–(11) were de-
rived without specifying the normal-state dispersion ξik
and normal-state CDW propagator V (Ω,q), and thus ap-
ply very generally. In particular, it can be used in the
case when the Fermi energy is close to Van Hove singular-
ity, and the hot spot dispersion (in proper coordinates) is
given by ξk = Ak2

x −Bk2
y with some constants A,B > 0.

In the latter case, we reach the same qualitative con-
clusion that sufficiently strong density wave fluctuations
stabilize NSC (see Appendix A 6 for details).

The analysis for the case of strong SDW fluctuations
in a d-wave superconductor is similar. The important
difference, however, is the relative minus sign between
two diagrams in Fig. 1. This leads to the destructive in-
terference for the coherence factor in the expression for
δχ̂65. It is straightforward to show that all results for
SDW fluctuations, apart from a possible overall numeri-
cal prefactor, can be obtained from the CDW case simply
by changing K2(q,Ω) → −K2(q,Ω), which leads to the
partial (but not complete) suppression of the feedback
contribution to free energy (see Appendix B).

V. CONCLUSION

In conclusion, by going beyond weak-coupling and in-
cluding fluctuations of a density wave order we have
presented a general mechanism for nematic multicom-
ponent superconductivity in 2D. The theory we develop
can be directly applied to twisted bilayer graphene,
where density wave fluctuations are strong due to
Fermi surface nesting and intertwined with d/p-wave
superconductivity36. Together with the recent observa-
tion of the upper critical magnetic field anisotropy in

twisted bilayer graphene2, this serves as a main experi-
mental motivation for our work.

As mentioned in the introduction, in our theory the
onset of nematicity is tied to pairing. Since nematicity
appears as the composite order parameter of Eq. (2), we
expect that the two transitions can be separated, i.e.,
the nematic transition can occur at a higher tempera-
ture than the superconducting transition, giving rise to a
vestigial nonsuperconducting phase with broken rotation
symmetry23,55,66. To assess the possibility of a vestigial
nematic phase one must go beyond the theory developed
here and consider the fluctuations of superconducting or-
der parameter. We leave this as a direction for the future.

Finally, we notice that, alternatively to the strongly-
correlated scenario considered in this paper, NSC may,
in principle, originate from the internal strain. Indeed,
symmetry allows the coupling between the nematic sub-
sidiary order (2) and the components of the strain tensor
uij of the form20

Fstrain = g[(u2
xx − u2

yy)N1 + 2uxyN2]. (14)

It is clear from this expression that in the presence of uni-
axial strain, u2

xx − u2
yy 6= 0, one of the superconducting

components develops order at higher temperature than
the other one, thus resulting in nematic superconductiv-
ity. If strain is not too strong, the effect of nematicity
becomes weaker as one lowers the temperature20, and
eventually NSC transits into a chiral superconductor at
sufficiently small temperature. To distinguish between
the scenarios for NSC from density wave fluctuations and
from internal strain, as well as from the strain-induced
nematicity in s-wave superconductor, a detailed study of
the upper critical field behavior in different regimes is
required.
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Appendix A: Nematic d-wave superconductivity in presence of charge density wave fluctuations

In this appendix, we present a detailed calculation of the feedback correction to the free energy of a two-component
superconductor due to the presence of charge density wave (CDW) fluctuations. For definiteness, we focus on a
d-wave superconductor. First, we derive the effective imaginary time action that describes the interplay between
pairing potential and the density wave fluctuations. Next, we calculate the very general expression for the feedback
contribution to free energy. Finally, we apply our results to particular models which are relevant to twisted bilayer
graphene.

1. The model description and the effective action

As was discussed in the main text, the presence of density wave fluctuations allows us to focus on the vicinities
of the points on the Fermi surface connected by the density wave ordering wave vectors, so-called hot spots. The
corresponding regions in momentum space near hot spots are called patches. We consider a 2D model with six
nonequivalent hot spots in the Brillouin zone, with the CDW wavevectors connecting adjacent hot spots, see Fig. 3.
Then, Hamiltonian (5)-(6) of the main text in the low-energy limit translates into the imaginary time action for six
patches

S = Sψ + Sφ + Sψ−∆ + Sψ−φ. (A1)

The first term describes the noninteracting electrons near hot spots:

Sψ = T

6∑
i=1

∑
ωn,k

(−iωn + ξik)ψ†iα(ωn,k)ψiα(ωn,k). (A2)

Here, ωn = 2πT (n + 1/2) are fermionic Matsubara frequencies, index i = 1, .., 6 numerates hot spots, ξi(k) is a
dispersion near the i-th hot spot, and the summation over repeated spin indices α =↑, ↓ is implied. We assume the
presence of sixfold rotational symmetry in the system, which implies that the dispersions near adjacent hot spots are
related as ξi(k) = ξi+1(R6k), where R6 = {{1/2,−

√
3/2}, {

√
3/2, 1/2}} is the π/3 rotation matrix. This results in an

additional relation that we will actively use, ξi(−k) = ξi+3(k), where the hot spot index i is defined mod 6. Finally,
we assume that different hot spots with indices i and j are related by a mirror symmetry Mij , which leads to another
useful equality ξi(k) = ξj(Mijk).

The second term in Eq. (A1) is a quadratic action for CDW fluctuations:

Sφ =
T

2

6∑
i=1

∑
Ωm,k

V −1
0i (q)φi(Ωm,q)φ∗i (Ωm,q), (A3)

where Ωm = 2πTm are bosonic Matsubara frequencies and index i = 1, .., 6 numerates CDW fluctuations with
different ordering wavevectors. The fields φi(q) should be viewed as ’shifted’ with respect to the global CDW field
φ(q) introduced in Eqs. (5)-(6) of the main text, i.e., φi(q) ≡ φ(Qi + q), where CDW wavevectors Qi connect hot
spots with indices i and i+ 1 as shown in Fig. 3(a). We assume that the relevant bosonic momenta are much smaller

than the distance between the hot spots, q � Q. Even though the propagator for the global field φ(q), Ṽ0(q), is
peaked at Qi, the propagators of fields φi(q) are apparently peaked at q = 0, so V0i(q) can be thought of as, e.g.,
Lorentzians with the maximum at q = 0. The particular form of V0i(q), however, is not important for us at this
moment. Finally, since the global field φ(r) is real, the different ’shifted’ components φi(Ω,q) are not independent,
but related according to φi+3(−Ω,−q) = [φi(Ω,q)]

∗
.

The third term in Eq. (A1) describes the two-component d-wave pairing,

Sψ−∆ =
T

2

∑
ωn,k

∆̃ijεαβψ
†
iα(ωn,k)ψ†jβ(−ωn,−k) + H. c., (A4)

where εαβ is the Levi-Civita tensor in spin space, and the pairing matrix ∆̃ is given by

∆̃ = ∆ · Ispin ⊗


√

3

2
d1


0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0

+ d2


0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 1
−1/2 0 0 0 0 0

0 −1/2 0 0 0 0
0 0 1 0 0 0




patches

. (A5)
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FIG. 3. (a) Six inequivalent hot spots in the Brillouin zone are connected by CDW wavevectors Qi. All Qi connect hot spots
with numbers i and i + 1, and can be obtained from Q1 by sixfold rotations. (b) Fermi surface in twisted bilayer graphene
above the Van Hove singularity. (c) Fermi surface of twisted bilayer graphene at Van Hove energy. This scenario is realized
when the filling factor is close to n = 2 electrons/holes per supercell. Blue and red parts of the Fermi surface originate from
different valleys.

Here (d1, d2) plays the role of a two-component superconducting order parameter, and, again, summation over repeated
spin indices α, β =↑, ↓ and patch indices i, j = 1, .., 6 is implied.

Finally, the coupling between electrons and CDW fluctuations is described by the last term in Eq. (A1):

Sψ−φ = λT 2
6∑
i=1

∑
ωn,Ωm
k,q

ψ†i+1α(ωn + Ωm,k + q)ψiα(ωn,k)φi(Ωm,q) + H. c. =

=T

6∑
i,j=1

∑
ωn,Ωm
k,q

ψ†iα(ωn + Ωm,k + q)ψjα(ωn,k)Σ̂ij(Ωm,q), (A6)

with Σ̂(q,Ω) defined as

Σ̂(Ω,q) = λT · Ispin ⊗


0 φ4(Ω,q) 0 0 0 φ6(Ω,q)

φ1(Ω,q) 0 φ5(Ω,q) 0 0 0
0 φ2(Ω,q) 0 φ6(Ω,q) 0 0
0 0 φ3(Ω,q) 0 φ1(Ω,q) 0
0 0 0 φ4(Ω,q) 0 φ2(Ω,q)

φ3(Ω,q) 0 0 0 φ5(Ω,q) 0


patches

. (A7)

To proceed, we introduce Nambu particle-hole space according to

Ψi(ω,k) =


ψi↑(ω,k)
ψi↓(ω,k)

ψ†i+3↓(−ω,−k)

−ψ†i+3↑(−ω,−k)


N

. (A8)

Then, using the identity ξi(−k) = ξi+3(k), the action (A1) can be conveniently rewritten as

Sψ = −T
2

6∑
i=1

∑
ωn,k

Ψ†iα(ωn,k)G−1
0i (ωn,k)Ψiα(ωn,k),

Sψ−∆ =
T

2

∑
ωn,k

Ψ†(ωn,k)Σ∆Ψ(ωn,k),

Sψ−φ =
T

2

∑
ωn,Ωm
k,q

Ψ†(ωn + Ωm,k + q)Σφ(Ωm,q)Ψ(ωn,k), (A9)
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with

G0i(ω,k) = − iω + ξikτz
ω2 + ξ2

ik

⊗ Ispin, Σ∆ =

(
0 ∆̂

∆̂† 0

)
N

, Σφ(Ω,q) = Σ̂(Ω,q)⊗ τz. (A10)

Here, Σ̂ is given by Eq. (A7), τi are Pauli matrices in Nambu space, and ∆̂ equals

∆̂ = ∆ · Ispin ⊗


√

3

2
d1


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0

+ d2


−1/2 0 0 0 0 0

0 −1/2 0 0 0 0
0 0 1 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 1




patches

. (A11)

We note that ∆̂ has matrix structure different from ∆̃, Eq. (A5), because Nambu space introduced in Eq. (A8) mixes
different patch indices.

Combining Eqs. (A3) and (A9), action (A1) takes simple form

S = Sφ +
T

2
Tr Ψ†

(
−G−1

0 + Σ∆ + Σφ
)

Ψ, (A12)

where G0 = diag{G0i}patches, and Tr implies trace over spin, Nambu, and patch indices, as well as summation over
momenta and frequencies.

To derive the effective theory that describes interplay between CDW fluctuations φi and SC order parameter di,
we integrate out fermions:

∫
Dψ†Dψ exp

[
−T

2
Ψ†
(
−G−1

0 + Σ∆ + Σφ
)

Ψ

]
=
{

Det
[
T
(
−G−1

0 + Σ∆ + Σφ
)]}1/2

=

= exp

{
1

2
Tr ln

[
T
(
−G−1

0 + Σ∆ + Σφ
)]}

=
[
Det

(
−TG−1

0

)]1/2
exp

[
1

2
Tr ln (1−G0Σ∆ −G0Σφ)

]
. (A13)

Neglecting the normal-state electronic part of the partition function,
[
Det

(
−TG−1

0

)]1/2
(which does not depend on

φ or ∆), we find that CDW fluctuations in the presence of pairing potential are described by the effective partition
function Zeff given by

Zeff =

∫
Dφ exp

[
−Sφ +

1

2
Tr ln (1−G0Σ∆ −G0Σφ)

]
. (A14)

From this expression, we can extract the effective action:

Seff = Sφ −
1

2
Tr ln (1−G0Σ∆ −G0Σφ) . (A15)

All transformations so far have been exact. Now we make some assumptions that allow us to proceed with our
calculation. First, we consider the vicinity of the superconducting transition temperature Tc, so we expand the
effective action in powers of small pairing potential ∆ (equivalently, in powers of Σ∆) up to fourth order. Second, we
assume that CDW fluctuations, though strong, remain massive. Hence, we expand the effective action up to second
order in φ (equivalently, in Σφ).

Expanding the logarithm in Eq. (A15), we find

Seff ≈S∆ + Sφ + δSφ + Sφ−∆,

δSφ =
1

4
Tr (G0Σφ)

2
, S∆ =

1

4
Tr (G0Σ∆)

2
+

1

8
Tr (G0Σ∆)

4
,

Sφ−∆ =
1

2
Tr
[
(G0Σ∆)2(G0Σφ)2

]
+

1

4
Tr[(G0Σ∆G0Σφ)2]+

+
1

2
Tr[(G0Σφ)2(G0Σ∆)4] +

1

2
Tr[(G0Σ∆)2(G0Σ∆G0Σφ)2] +

1

4
Tr[(G0Σ∆G0Σ∆G0Σφ)2]. (A16)

Here, S∆ is a weak-coupling part of Ginzburg-Landau free energy of a superconductor. Terms Sφ and δSφ are bare
bosonic propagator, Eq. (A3), and the normal-state CDW susceptibility, respectively. Finally, Sφ−∆ describes the
interplay between CDW fluctuations and superconductivity, which eventually results in the feedback correction to
free energy. The different terms in Sφ−∆ are shown diagrammatically in Fig. 4 and will be explicitly calculated below.
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a)
φ φ

b)
φ ∆

∆ ∆ ∆ φ

c)
φ φ

d) ∆
φ φ

e) ∆ ∆

∆ ∆ φ φ

∆ ∆

∆ ∆ ∆ ∆ ∆

FIG. 4. Diagrams describing the coupling between pairing potential ∆(d1, d2) and density wave fluctuations φi. Diagrams
(a)-(b) schematically represent the coupling φ2d2 and describe the ∆2 correction to CDW susceptibility, while diagrams (c)-(e)
correspond to the coupling φ2d4 contributing the ∆4 correction to CDW susceptibility. The contribution to the feedback free
energy from diagrams (a)-(b) becomes dominant when fluctuations become sufficiently strong.

2. Weak-coupling analysis

In this section, we calculate the fourth-order weak-coupling contribution to free energy. The corresponding part of
the effective action is given by

S
(4)
∆ =

1

8
Tr[(G0Σ∆)4] = X0∆4

[
2
(
|d1|2 + |d2|2

)2
+ |d2

1 + d2
2|2
]
, X0 =

3

8

∑
ωn,k

(
1

ω2
n + ξ2

ik

)2

> 0, (A17)

where ξik is a dispersion near any of the hot spots, and no summation over i is needed here. The weak-coupling free
energy then equals

F
(4)
∆ = −T lnZ

(4)
∆ = TX0∆4

[
2
(
|d1|2 + |d2|2

)2
+ |d2

1 + d2
2|2
]
. (A18)

This result is a ’hot spots’ version of Eq. (7) of the main text. We see that, since X0 > 0, the weak-coupling
approximation favors the fully gapped chiral state, (d1, d2) ∼ (1, i).
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3. Coupling between pairing potential and CDW fluctuations

In this section, we present the general expressions for the terms that describe the interplay between CDW fluctua-
tions φi and SC order parameter di, see Eq. (A16). After straightforward calculation, we find:

Tr
[
(G0Σ∆)2(G0Σφ)2

]
= 8(λT∆)2

∑
Ω,q

|φ1(Ω,q)|2
K1(Ω,q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
2

+K1(Ω,−Mq)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
2
+

+ |φ2(Ω,q)|2
K1(Ω,−R6Mq) |d2|2 +K1(Ω, R−1

6 q)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
2
+

+ |φ3(Ω,q)|2
K1(Ω,−R6q) |d2|2 +K1(Ω,MR6q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
2
 , (A19a)

Tr
[
(G0Σ∆G0Σφ)2

]
= −8(λT∆)2

∑
Ω,q

|φ1(Ω,q)|2K2(Ω,q)

[
−3

2
|d1|2 +

1

2
|d2|2

]
+

+ |φ2(Ω,q)|2K2(Ω, R−1
6 q)

[
−|d2|2 −

√
3

2
(d1d

∗
2 + d2d

∗
1)

]
+ |φ3(Ω,q)|2K2(Ω,−R6q)

[
−|d2|2 +

√
3

2
(d1d

∗
2 + d2d

∗
1)

]
,

(A19b)

Tr
[
(G0Σ∆)4(G0Σφ)2

]
= −8(λT∆2)2

∑
Ω,q

|φ1(Ω,q)|2
K3(Ω,q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
4

+K3(Ω,−Mq)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
4
+

+ |φ2(Ω,q)|2
K3(Ω,−R6Mq) |d2|4 +K3(Ω, R−1

6 q)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
4
+

+ |φ3(Ω,q)|2
K3(Ω,−R6q) |d2|4 +K3(Ω,MR6q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
4
 , (A19c)

Tr
[
(G0Σ∆)2(G0Σ∆G0Σφ)2

]
= 4(λT∆2)2

∑
Ω,q

|φ1(Ω,q)|2
(
−3

2
|d1|2 +

1

2
|d2|2

)
×

×

K4(Ω,q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
2

+K4(Ω,−Mq)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
2
+

+ |φ2(Ω,q)|2
(
−|d2|2 −

√
3

2
(d1d

∗
2 + d2d

∗
1)

)K4(Ω,−R6Mq) |d2|2 +K4(Ω, R−1
6 q)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
2
+

+ |φ3(Ω,q)|2
(
−|d2|2 +

√
3

2
(d1d

∗
2 + d2d

∗
1)

)K4(Ω,−R6q) |d2|2 +K4(Ω,MR6q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
2
 , (A19d)

Tr
[
(G0Σ∆G0Σ∆G0Σφ)2

]
= −16(λT∆2)2

∑
Ω,q

|φ1(Ω,q)|2K5(Ω,q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
2 ∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
2

+

+ |φ2(Ω,q)|2K5(Ω, R−1
6 q)

∣∣∣∣∣
√

3

2
d1 +

1

2
d2

∣∣∣∣∣
2

|d2|2 + |φ3(Ω,q)|2K5(Ω,−R6q)

∣∣∣∣∣
√

3

2
d1 −

1

2
d2

∣∣∣∣∣
2

|d2|2 , (A19e)

where, again, R6 is a six-fold rotation matrix, M ≡M12 is a mirror symmetry operation between hot spots 1 and 2,
and we used the equalities ξi(k) = ξi+1(R6k) and ξ1(k) = ξ2(Mk) in our derivation. Functions K1(Ω,q), ..,K5(Ω,q)
are defined as
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K1(Ω,q) ≡
∑
k,ω

ω(ω + Ω)− ξ1kξ2k−q
[ω2 + ξ2

1k]
2
[
(ω + Ω)2 + ξ2

2k−q

] ,
K2(Ω,q) ≡

∑
k,ω

1

[ω2 + ξ2
1k]
[
(ω + Ω)2 + ξ2

2k−q

] ,
K3(Ω,q) ≡

∑
k,ω

ω(ω + Ω)− ξ1kξ2k−q
[ω2 + ξ2

1k]
3
[
(ω + Ω)2 + ξ2

2k−q

] ,
K4(Ω,q) ≡

∑
k,ω

1

[ω2 + ξ2
1k]

2
[
(ω + Ω)2 + ξ2

2k−q

] ,
K5(Ω,q) ≡

∑
k,ω

ω(ω + Ω)− ξ1kξ2k−q

[ω2 + ξ2
1k]

2
[
(ω + Ω)2 + ξ2

2k−q

]2 . (A20)

In our derivation, we also exploited the equalities K2(Ω,−q) = K2(Ω,Mq) and K5(Ω,−q) = K5(Ω,Mq).
The first two terms,(A19a)-(A19b), are given by diagrams in Figs. 4(a) and 4(b) and describe the ∆2 correction

to the CDW susceptibility. Terms (A19c)-(A19e) correspond to the ∆4 correction to the CDW susceptibility, as
represented by diagrams in Figs. 4(c)-4(e). We also note that all terms are expressed through fields φ1 − φ3 only,
since φ4 − φ6 can be eliminated using equality φi+3(−Ω,−q) = [φi(Ω,q)]

∗
.

Though functions K1 −K5 depend on the dispersion relations near hot spots, ξik, which we have not specified yet,
a very general conclusion regarding the favorable superconducting state can be drawn without an explicit evaluation
of Ki.

4. Feedback correction to free energy

Total free energy of CDW fluctuations in the presence of pairing is given by

FCDW = −T lnZCDW, ZCDW ≡
∫
Dφ exp[−(Seff − S∆)], (A21)

where we subtracted the weak-coupling contribution (A17).
Assuming that CDW fluctuations remain massive, we explicitly rewrite the effective action (A16) as a quadratic

form of φi,

Seff − S∆ ≈ T
3∑

i,j=1

∑
Ω,q

φi(Ω,q)

{[
V̂ −1(Ω,q)

]ij
− δχ̂ij(Ω,q)

}
φ∗j (Ω,q), (A22)

where V̂ (Ω,q) is the normal-state bosonic propagator which includes the normal-state polarization operator, and
δχ̂(Ω,q) is a superconducting correction to the CDW susceptibility determined by Eqs. (A19a)-(A19e). Again, we
expressed Seff in terms of three independent complex fields φ1(Ω,q)− φ3(Ω,q) only.

Integrating out fields φi and expanding the result in powers of δχ̂, or, equivalently, in powers of ∆, one easily
obtains

FCDW = F (0) + δF
(2)
∆ + δF

(4)
∆ + . . . = F (0) − TTr

(
V̂ δχ̂

)
− T

2
Tr(V̂ δχ̂)2 + . . . , (A23)

where . . . stands for the terms of order O(∆6).
The first term in Eq. (A23), F (0), does not depend on pairing potential and gives the energy of CDW fluctuations

in the normal state. To evaluate second and third terms, we assume that the bosonic propagator is diagonal in patch
space. Then, due to rotational symmetry, it has the form

V̂ (Ω,q) =

 V (Ω,q) 0 0
0 V (Ω, R−1

6 q) 0
0 0 V (Ω, R−2

6 q)


patches

. (A24)
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Assuming further that V (Ω,q) satisfies V (Ω,−Mq) = V (Ω,q), we find for δF
(2)
∆

δF
(2)
∆ ≡ −TTr

(
V̂ δχ̂

)
= 3(λT∆)2(4X1 +X2)(|d1|2 + |d2|2)−

− 3(λT∆2)2

4

[
(8X3 + 4X4 + 4X5)(|d1|2 + |d2|2)2 + (4X3 + 2X4 −X5) |d2

1 + d2
2|2
]
, (A25)

where we defined Xi ≡
∑

Ω,q V (Ω,q)Ki(Ω,q).

Analogously, using the equality K2(Ω,−q) = K2(Ω,Mq), we find the expression for δF
(4)
∆

δF
(4)
∆ ≡ −T

2
Tr(V̂ δχ̂)2 = −3T 3(λ∆)4

2

[(
|d1|2 + |d2|2

)2
(Y1 + 8Y2 + 8Y3 + 8Y4) +

∣∣d2
1 + d2

2

∣∣2 (2Y1 + 4Y2 + 4Y3 − 2Y4)
]
,

(A26)
with

Y1 ≡
∑
q,Ω

V 2(Ω,q)K2
2 (Ω,q), Y2 ≡

∑
q,Ω

V 2(Ω,q)K2
1 (Ω,q),

Y3 ≡
∑
q,Ω

V 2(Ω,q)K1(Ω,q)K2(Ω,q), Y4 ≡
∑
q,Ω

V 2(Ω,q)K1(Ω,q)K1(Ω,−Mq). (A27)

It is straightforward to show that Y1 +Y2 ≥ 2|Y3| and Y2 ≥ |Y4|, which leads to Y1 + 2Y2 + 2Y3−Y4 ≥ 0. Hence, the

correction to free energy δF
(4)
∆ always favors a nematic superconducting state. As we demonstrate below using specific

examples, the correction δF
(2)
∆ becomes parametrically smaller than δF

(4)
∆ once the fluctuations become sufficiently

strong.
If V (Ω,q) is strongly peaked at Ω = q = 0, only the zeroth mode significantly contributes to free energy. In this

case, the coupling between CDW fluctuations and SC order parameter is given by (we neglect φ2d4 terms for now)

Sφ−∆ ≈
1

2
Tr
[
(G0Σ∆)2(G0Σφ)2

]
+

1

4
Tr[(G0Σ∆G0Σφ)2] =

= (λT∆)2
{
|φ|2|d|2[4K1(0, 0) +K2(0, 0)] + [P1N1 + P2N2][K1(0, 0) +K2(0, 0)]

}
, (A28)

in agreement with Eqs. (3) and (12) of the main text. Here we defined

|φ|2 ≡ |φ1(0, 0)|2 + |φ2(0, 0)|2 + |φ3(0, 0)|2, |d|2 ≡ |d1|2 + |d2|2,
N1 ≡ |d1|2 − |d2|2, N2 ≡ d1d

∗
2 + d2d

∗
1,

P1 ≡ 2|φ1(0, 0)|2 − |φ2(0, 0)|2 − |φ3(0, 0)|2, P2 ≡
√

3
(
|φ2(0, 0)|2 − |φ3(0, 0)|2

)
. (A29)

Integrating out φi, we obtain

δF
(4)
∆ ≈ −3T 3(λ∆)4

2

[∫
d2q

(2π)2
V 2(0, q)

]{
[4K1(0, 0) +K2(0, 0)]

2
(|d1|2 + |d2|2)2 + 2 [K1(0, 0) +K2(0, 0)]

2 |d2
1 + d2

2|2
}
,

(A30)
in agreement with Eq. (4) of the main text. We see that the coupling between nematic bilinears NiPi is an essential
ingredient that eventually leads to nematic superconductivity. As we demonstrate below within two explicit models,
which we believe adequately describe the low-energy physics in twisted bilayer graphene at different dopings and twist

angles, the quartic (∼ ∆4) term from δF
(2)
∆ (originating from the coupling φ2d4) becomes negligible compared to

δF
(4)
∆ as the fluctuation strength increases.

5. Application for specific model: hot spots with linear dispersion

Now we explicitly calculate the feedback free energy for the model of twisted bilayer graphene with Fermi surface
slightly away from the Van Hove singularity. In this case, the Fermi surface is shown in Fig. 3(b), with the single-
electron dispersion near hot spots approximated by ξi(k) = v(k · ni), where ni is a unit vector in the ΓMi direction.
For concreteness, we choose the coordinates such that
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ξ1(k) = −v
2

(
kx +

√
3ky

)
, ξ2(k) = −v

2

(
−kx +

√
3ky

)
. (A31)

With these explicit expressions for ξik, we can calculate Ki(Ω,q) defined in Eq. (A20). Integrals over k can be
readily evaluated, giving

K1(Ωm,q) =
1

4
√

3v2

1

(2πT )2

∑
n

sign(n+ 1/2)sign(n+m+ 1/2)

(n+ 1/2)2
=

1

2
√

3v2

1

(2πT )2
ψ′0

(
|m|+ 1

2

)
,

K2(Ωm,q) =
1

2
√

3v2

1

(2πT )2

∑
n

1

|n+ 1/2||n+m+ 1/2|
=

1

2
√

3v2

1

(2πT )2

{
4
[
ψ0

(
|m|+ 1

2

)
− ψ0

(
1
2

)]
/|m|, m 6= 0

π2, m = 0
,

K3(Ωm,q) =

√
3

16v2

1

(2πT )4

∑
n

sign(n+ 1/2)sign(n+m+ 1/2)

(n+ 1/2)4
,

K4(Ωm,q) =
1

4
√

3v2

1

(2πT )4

∑
n

1

|n+ 1/2|3|n+m+ 1/2|
,

K5(Ωm,q) =
1

8
√

3v2

1

(2πT )4

∑
n

sign(n+ 1/2)sign(n+m+ 1/2)

(n+ 1/2)2(n+m+ 1/2)2
. (A32)

Here ψ0(x) is the digamma function, and Ωm = 2πTm. In principle, frequency dependence of K3 −K5 can also be
expressed through ψ0 and its derivatives. The resulting expressions, however, are rather cumbersome, and we do not
present them here.

To calculate the explicit expression for the feedback free energy, we further assume that the bosonic propagator is
given by

V (Ωm,q) =
χ0

c(q2
0 + q2) + Ω2

m

, with T � cq0 � ckmax, (A33)

where kmax is an ultraviolet momentum cutoff corresponding to the size of patches.
Corrections X1 and X2 in Eq. (A25) only shift Tc, so we do not consider them here. Then, it can be directly shown

that the most singular contribution to δF
(2)
∆ comes from X4, since K4(Ωm,q) ∼ 1/m for m � 1. Consequently,

omitting terms ∼ ∆2, we find for δF
(2)
∆

δF
(2)
∆ → −3(λT∆2)2

2
X4

[
2(|d1|2 + |d2|2)2 + |d2

1 + d2
2|2
]
, X4 =

7ζ(3)

4
√

3π

(
1

2πT

)4
χ0

c2v2
ln
kmax

q0
ln
c2kmaxq0

T 2
. (A34)

Analogously, performing integration over q and summation over Ωm, we find

Y1 = 3.23

(
χ0

q0v2c2

)2

·
(

1

2πT

)4

, Y2 = Y4 = 0.18

(
χ0

q0v2c2

)2

·
(

1

2πT

)4

, Y3 = 0.54

(
χ0

q0v2c2

)2

·
(

1

2πT

)4

,

(A35)
leading to

δF
(4)
∆ = −13.46

(2π)4

(
χ0Tλ

2

q0v2c2

)2
∆4

T 3

[
1.16(|d1|2 + |d2|2)2 + |d2

1 + d2
2|2
]
. (A36)

This result is presented in Eq. (13) of the main text. We see that δF
(4)
∆ becomes dominant over δF

(2)
∆ (at fourth-order

in ∆) when fluctuations become sufficiently strong, i.e., when q0 becomes sufficiently small. This observation allows

us to focus on the δF
(4)
∆ term in this paper.

6. Application for specific model: hot spots at Van Hove singularities

Next, we consider a model of twisted bilayer graphene with the filling factor close to n = 2 electron/holes per
supercell. In this case, hot spots coincide with the Van Hove singularities, and the representative Fermi surface
is shown in Fig. 3(c). We assume for simplicity that the dispersion near Van Hove points is the same as in the

case of monolayer graphene, i.e., ξ1,2(k) = 3t(k2
y ±
√

3kxky)/2, where t is an effective hopping constant, and the
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hyperlattice constant is absorbed into the definition of t. While we consider sufficiently strong CDW fluctuations,
we stay away from the immediate vicinity of the transition into the CDW-ordered state. Hence, we assume that the
CDW propagator is given by

V (Ω, q) =
χ0

c2(q2
0 + q2)

, T/tkmax � q0 �
√
T/t, (A37)

where, again, kmax is an effective ultraviolet momentum cutoff. The relevant bosonic momenta and frequencies then
satisfy q .

√
T/t and Ω ∼ T , respectively. In this range of frequencies and momenta, the asymptotic behavior of

functions Ki(Ω,q) defined in Eq. (A20) is given by

Ki(Ω,q) =
1

3
√

3πt
fi(Ω) ln

(
min

{
kmax

√
t

T
,

1

|qy|

√
T

t

})
, q .

√
T

t
, Ω ∼ T. (A38)

The main contribution to Ki comes from the ’nesting’ direction, ky ≈ 0. Frequency-dependent functions fi(Ω) are
given by

f1(Ωm) =
1

2

∑
ωn

2 + 2sign[ωn(ωn + Ωm)] + Ωm

ωn

|ωn|(|ωn|+ |ωn + Ωm|)2
=

1

(2πT )3
·
{

0, m 6= 0,
7ζ(3), m = 0

f2(Ωm) =
∑
ωn

1

|ωn||ωn + Ωm|(|ωn|+ |ωn + Ωm|)
=

1

(2πT )3
·

{
4
m2

[
ln 4 + HarmonicNumber

(
|m|−1

2

)]
, m 6= 0,

7ζ(3), m = 0

f3(Ωm) =
1

8

∑
ω

3ω2
n + |ωn(ωn + Ωm)|+ sign[ωn(ωn + Ωm)] ·

[
8ω2

n + 9|ωn(ωn + Ωm)|+ 3(ωn + Ωm)2
]

ω4
n(|ωn|+ |ωn + Ωm|)3

=

=
1

(2πT )5

{
− 1

4m2

[
ψ′′0

(
1+|m|

2

)
+ 14ζ(3)

]
, m 6= 0,

93ζ(5)/4, m = 0

f4(Ωm) =
1

2

∑
ωn

2|ωn|+ |ωn + Ωm|
|ωn|3|ωn + Ωm|(|ωn|+ |ωn + Ωm|)2

=

=
1

(2πT )5
·

{
1
m4

[
8 ln 2 + 4HarmonicNumber

(
|m|−1

2

)
+ 7m2ζ(3)

]
, m 6= 0,

93ζ(5)/4, m = 0
,

f5(Ωm) =
1

2

∑
ωn

|ωn||ωn + Ωm|+ sign[ωn(ωn + Ωm)] ·
[
ω2
n + 3|ωn(ωn + Ωm)|+ (ωn + Ωm)2

]
ω2
n(ωn + Ωm)2(|ωn|+ |ωn + Ωm|)3

=

=
1

(2πT )5

{
1

2m4

[
m2ψ′′0

(
2, 1+|m|

2

)
− 8HarmonicNumber

(
|m|−1

2

)
− 16 ln 2

]
, m 6= 0,

93ζ(5)/4, m = 0
(A39)

where, again, ωn = 2πT (n+1/2), Ωm = 2πTm, ζ(x) is the Riemann zeta function, and ψ0(x) is the digamma function.
After straightforward integration over q and summation over Ωm, we find

X1 =
7ζ(3)

273
√

3π5

χ0

tc2T 3
ln2 T

tq2
0

, X2 = 4
7ζ(3)

273
√

3π5

χ0

tc2T 3
ln2 T

tq2
0

= 4X1,

X3 =
23.22

2103
√

3π7

χ0

tc2T 5
ln2 T

tq2
0

, X4 =
128.58

2103
√

3π7

χ0

tc2T 5
ln2 T

tq2
0

,

X5 =
17.85

2103
√

3π7

χ0

tc2T 5
ln2 T

tq2
0

,

Y1 =
144.57

21033π9

χ2
0

t2c4q2
0T

6
ln2 T

tq2
0

, Y2 = Y3 = Y4 =
49ζ2(3)

21033π9

χ2
0

t2c4q2
0T

6
ln2 T

tq2
0

≈ 70.8

21033π9

χ2
0

t2c4q2
0T

6
ln2 T

tq2
0

. (A40)

Collecting everything together, we find the feedback correction to free energy:

δF
(2)
∆ ≈ 7ζ(3)

24
√

3π5

χ0λ
2

tc2
∆2

T
ln2 T

tq2
0

(|d1|2 + |d2|2)− 6.0

(2π)7

χ0λ
2

tc2
∆4

T 3
ln2 T

tq2
0

[
2.32(|d1|2 + |d2|2)2 + |d2

1 + d2
2|2
]
, (A41)



15

δF
(4)
∆ ≈ − 3.16

(2π)8

(
χ0λ

2

tq0c2

)2
∆4

T 3
ln2 T

tq2
0

[
2.58(|d1|2 + |d2|2)2 + |d2

1 + d2
2|2
]
. (A42)

We see, again, that δF
(4)
∆ becomes more significant than the fourth-order term in δF

(2)
∆ as q0 decreases, hence, the

latter can be neglected when fluctuations become sufficiently strong.

Appendix B: Nematic d-wave superconductivity in presence of spin density wave fluctuations

In this appendix, we repeat the analysis of the previous appendix for the case of two-component d-wave supercon-
ductor coupled to spin density wave fluctuations, instead of charge density wave. Due to spin-rotation invariance, it
is sufficient to consider the case of uniaxial SDW only, which we do for simplicity. The answer for the feedback free
energy in case of SU(2)-symmetric SDW is given by the same expression, up to an overall numerical coefficient.

The whole analysis for the case of SDW fluctuations is very similar to the one presented in the previous section.
The only difference is that the coupling between fermions and SDW fluctuations is now given by

Sψ−φ = λT 2
∑

α,β=↑,↓

6∑
i=1

∑
ωn,Ωm
k,q

ψ†i+1α(ωn + Ωm,k + q)σzαβψiβ(ωn,k)φi(Ωm,q) + H. c. =

= T
∑

α,β=↑,↓

6∑
i,j=1

∑
ωn,Ωm
k,q

ψ†iα(ωn + Ωm,k + q)ψjβ(ωn,k)Σ̂ij,αβ(Ωm,q), (B1)

with Σ̂(q,Ω) defined as

Σ̂ij,αβ(Ω,q) = λT · σzαβ ⊗


0 φ4(Ω,q) 0 0 0 φ6(Ω,q)

φ1(Ω,q) 0 φ5(Ω,q) 0 0 0
0 φ2(Ω,q) 0 φ6(Ω,q) 0 0
0 0 φ3(Ω,q) 0 φ1(Ω,q) 0
0 0 0 φ4(Ω,q) 0 φ2(Ω,q)

φ3(Ω,q) 0 0 0 φ5(Ω,q) 0


ij

, (B2)

instead of Eqs. (A6)-(A7), and σz is a Pauli matrix in spin space. This leads to the self-energy in the Nambu space

Σφ(Ω,q) = Σ̂(Ω,q)⊗ IN , (B3)

instead of the corresponding term in Eq. (A10).
As a consequence of a different structure of Σφ in Nambu space, the expressions for Tr[(G0Σ∆G0Σφ)2] and

Tr[(G0Σ∆)2(G0Σ∆G0Σφ)2] in Eqs. (A19b) and (A19d) contain an overall extra minus sign compared to the case
of CDW fluctuations, which can be absorbed by redefining K2 → −K2 and K4 → −K4. This leads, in particular,
to an extra minus sign in front of terms in free energy containing X2, X4, and Y3. More explicitly, the feedback
corrections in case of SDW fluctuations are given by

δF
(2)
∆ = 3(λT∆)2(4X1 −X2)(|d1|2 + |d2|2)−

− 3(λT∆2)2

4

[
(8X3 − 4X4 + 4X5)(|d1|2 + |d2|2)2 + (4X3 − 2X4 −X5) |d2

1 + d2
2|2
]
, (B4)

δF
(4)
∆ = −3T 3(λ∆)4

2

[(
|d1|2 + |d2|2

)2
(Y1 + 8Y2 − 8Y3 + 8Y4) +

∣∣d2
1 + d2

2

∣∣2 (2Y1 + 4Y2 − 4Y3 − 2Y4)
]
, (B5)

where, again, Xi ≡
∑

Ω,q V (Ω,q)Ki(Ω,q), and Ki, Yi are defined in Eqs. (A20) and (A27).

Similarly to the case of CDW fluctuations, the contribution δF
(4)
∆ always favors the nematic superconducting state,

hence, the main result of our paper remains valid for SDW fluctuations as well. The absolute value of this correction,

however, is smaller because of a minus sign in front of Y3. The quartic term in δF
(2)
∆ , on the other hand, changes its
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sign within the specific models for twisted bilayer graphene we considered in Appendices A 5 and A 6. This happens

because of an additional minus sign in front of X4. Hence, δF
(2)
∆ favors chiral state in case of SDW fluctuations. At

sufficiently strong fluctuations, however, the fourth-order term in δF
(2)
∆ is parametrically smaller than δF

(4)
∆ and thus

can be neglected again, justifying our conclusion about the stability of nematic superconductivity.
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