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ABSTRACT OF THE DISSERTATION

Identification of Dynamic Stochastic General Equilibrium Models

by

Stephen David Morris

Doctor of Philosophy in Economics

University of California, San Diego, 2014

Professor James D. Hamilton, Chair

The dissertation “Identification of Dynamic Stochastic General Equilibrium
Models” by Stephen David Morris is divided into three chapters. The first chapter
considers the statistical implications of common identifying restrictions for DSGE
models. The second chapter considers the implications of identification failure for
Bayesian estimators. The third chapter considers how identification of nonlinear

solutions compares with that of linear solutions.



Chapter 1

The Statistical Implications of

Common Identifying Restrictions

for DSGE Models

Abstract. I reveal identification failure in a well-known dynamic stochas-
tic general equilibrium (DSGE) model, and study the statistical implications of
common identifying restrictions in this context. First, I provide a fully analytical
methodology for determining all observationally equivalent values of the struc-
tural parameters in any parameter space. I show that parameter admissibility or
sign restrictions may yield global identification for some parameter realizations,
but not for others. Second, I derive a “plug-in” maximum likelihood estimator,
which requires no numerical search. I use this tool to demonstrate that the spe-
cific identifying restriction impinges on both the location and distribution of the
small-sample MLE in an idiosyncratic manner. Using this fact, I show how to
compute correctly sized confidence intervals, and generalize the methodology for

application to medium-scale models, such as Smets and Wouters (2007).

1 Introduction

DSGE models are the workhorse of modern macroeconomics. They are

taught in nearly all graduate economics programs, and are a core empirical tool of



monetary policymakers and academics alike.! Following the realization of identi-
fication failures in the classic vintage of estimated multi-equation macroeconomic
models by Sims (1980), calibration was suggested for what are now known as
DSGE models by Kydland and Prescott (1982).2 Eventually, increases in comput-
ing power made DSGE likelihood computation feasible, leading to the estimation
of DSGE models, in the early 2000’s.? Since then, important policies are routinely
made on the basis of estimates of DSGE parameters, which typically include the
discount rate, coefficient of relative risk aversion, indices of price and wage sticki-
ness, and other theoretical objects. Recently, however, the identifiability of DSGE
parameters has been called into question.*

In this paper, I investigate whether it is possible to distinguish between
parameter values in DSGE models on the basis of the data, what may be done
when this is not case, and finally, what the statistical implications of the corrective
actions are. I conduct this analysis using the very well-known model utilized in
An and Schorfheide (2007). Although relatively small in scale, this model includes
features of the seminal frameworks of Smets and Wouters (2003), Woodford (2003),
and Christiano et al. (2005). Furthermore, these baseline specifications are the
starting point for recent extensions, including the introduction of nonlinearity,
non-normality, and more richly developed labor and financial markets.® In the
penultimate section of the paper, I discuss how to generalize the methodology to
larger-scale models, such as Smets and Wouters (2007).

The main findings are three-fold. First, I confirm that the conditional iden-

LOf the many central banks that openly use DSGE models to inform monetary policy decisions
are the Swedish Sveriges Riksbank, the Norwegian Norge Bank, and the US Federal Reserve. See
also Christiano et al. (2010). In terms of academic diffusion, as of May 2014, the representative
paper of Smets and Wouters (2003) has 2,798 scholarly citations on Google Scholar.

2The so-called “classic vintage” including FRB-MIT. See Rasche and Shapiro (1968).

3Notably, Smets and Wouters (2003) and Ireland (2004).

4Cochrane (2011) considers the identification of the Taylor rule, Kleibergen and Mavroeidis
(2009) the Phillips curve, and Beyer and Farmer (2006) and Canova and Sala (2009) the complete
systems of equations known as DSGE models. Thorough critiques of the DSGE paradigm in
general have also been voiced (Chari et al. (2009)). Identification is of preliminary importance
for any argument for or against empirical efficacy.

5QGali et al. (2011) include unemployment, Bianchi (2013) allows for regime-switching, and Doh
(2011), van Binsbergen et al. (2012), and Rudebusch and Swanson (2012) consider nonlinearity
and the term structure. I discuss the implications of nonlinearity for identification in Chapter 3.



tification scheme suggested by Komunjer and Ng (2011) for the An and Schorfheide
model ensures local identification, but go on to prove that it does not imply global
identification.® In particular, for any value of the structural parameters there is
exactly one other value which yields an identical value for the likelihood function,
regardless of data sample. Second, I show how this problem might feasibly be
addressed using common identifying restrictions based on macroeconomic theory,
including parameter admissibility and sign restrictions.” Third, I show that these
restrictions endogenously affect both the placement and distribution of the small-
sample maximum likelihood estimator.® Thus, I build upon an important result
of Rios-Rull et al. (2012) that the identifying restrictions themselves characterize
important features of the estimator. I add to the discussion by showing how to
compute correctly sized confidence intervals in this context.

An obligation of any science is not only to produce groundbreaking results,
but also to ensure that current knowledge is sound. Beyer and Farmer (2006) and
Canova and Sala (2009) were two of the first to point out that the DSGE models
regularly being estimated were not identified. Since the realization of this prob-
lem, analysts have been careful to restrict their analysis such that identification
is ensured. Yet, the affect of these restrictions on confidence intervals has not
been considered; a Classical estimator reported without valid confidence intervals
is meaningless. Addressing this next phase of inquiry is the purpose of this paper.

In order to discuss identification rigorously, it is necessary to indicate the
formal definitions I have in mind. I discuss these before placing my contribution

in the context of the wider literature.

2 Definitions

DSGE models are simply cross-equation and exclusion restrictions on sys-

tems of time series. Let Y be a Tny x 1 vector of T" observations of the ny x 1 vector

6 “Conditional identification” is descriptively defined by “fixing some parameters to constants.”

"For example, one salient admissibility constraint is that the discount factor 3 < 1. A sign
restriction is that a decrease in interest rates causes output to increase.

8The implications of identification failure for Bayesian estimators is discussed in Chapter 2.



of data Y; and € be an ng x 1 vector structural parameter. For each § € © C R",
define a continuous likelihood function ¢(6;Y). Rothenberg (1971) gives the fol-

lowing definitions:’

Definition 1: Two parameter points 6y and 6 are said to be observa-
tionally equivalent if £(6y;Y) = £(0;;Y) for all Y € RT™r,

Definition 2: A parameter point 0y is said to be locally identifiable
if there exists an open neighborhood of 6, containing no other 6 € ©
which is observationally equivalent.

Definition 3: A parameter point 6, is said to be globally identifiable
if there is no other 65 € © which is observationally equivalent.

Both local and global identifiability are negatively defined in terms of observational
equivalence. Observational equivalence, in turn, does not depend on the data set
utilized. Thus, both local and global identifiability are features of the model, and
not a data set. In addition, whereas local identifiability is qualified by uniqueness
only in an open neighborhood, global identifiability is uniqueness in the entire pa-
rameter space ©. Therefore, global identifiability is a strictly stronger assumption
than local.

A concept closely linked to parameter identifiability is reduced form repre-
sentation. While this term has several possible interpretations based on context,
[ refer to a specific meaning. In particular, Rothenberg (1971) also presents the

following definition:!°

Definition 4: Let # € © be vector of structural parameters, and say
that there exists an np-dimensional continuously differentiable vector-
valued function II = ¢(f) mapping © into R™ such that £(0;Y) =
C(ILY) for all Y € RT™>1 and § € ©. If 11 is globally identified in
the image of © under g for every 6 € ©, Il is a reduced form parameter.

9See p. 578 Definitions 1-3. I use the emphasis global identification in Definition 3, as does
Rothenberg, beginning on page 579.

10See Assumptions VII and VIII, pp. 584-5. While the definition of a reduced form parameter
is rather technical, there are many instructive examples of reduced form parameters; the simplest
is the 2 x 1 vector I = (i, 0)’, where p and o are the mean and standard deviation of a univariate
Gaussian likelihood, respectively.



Reduced form parameters are useful when they are available, since they completely
characterize the likelihood; £(6;Y") = ¢*(11;Y'). For example, if II is a reduced form
parameter, and if g(6y) = ¢(6;), then £(0y;Y) = *(g(60);Y) = *(9(05);Y) =
0(05;Y) for all Y € RT™>1 by identity. In fact, using this observation, we have

the following immediate corollary to Definitions 1 and 4.

Corollary 1: Let IT = g(f) be a reduced form parameter. Two struc-
tural parameters #, and 6 are observationally equivalent if g(6y) =

9(65)-

A particularly useful aspect of Corollary 1 is that it can be used as an
alternative to Definition 1 for the purpose of defining identification. In other
words, when a given model has reduced form representation, both local and global
identification depend entirely on the parametric features of g(f). In addition,
all characterizations of local and global identification in terms of reduced form
representation hold in samples of variable length 7', including in population.

While the contribution of Rothenberg (1971) is a classic, identification of
parametric econometric models has an even longer history, dating back to at least
Koopmans and Reiersgl (1950), Wald (1950), and Fisher (1966). What makes
DSGE models special — and complicated — is the fact that it is difficult to apply
the classic results. The reasons are twofold. On the one hand, DSGE solutions are
not usually found analytically. Thus, for any value 6, it is typically not possible to
directly find all 6 such that £(6p;Y) = £(05;Y) exactly for all Y € RT™ . In other
words, it is difficult to find the set of points which are observationally equivalent, as
they are defined in Definition 1. On the other hand, the ABCD representation that
DSGE models typically have is not a reduced form as defined in Definition 4 (See
Fernandez-Villaverde et al. (2007) and Komunjer and Ng (2011)). So, Corollary 1
may not be used.

An important preliminary point of clarification is why global identification
of DSGE models matters in the first place. One reason is that observational
equivalence can cause there to be multiple likelihood-maximizing parameter values
in the admissible parameter space for a given sample. Say that ng = 1, and the

likelihood maximizer in a specific sample Y € RT™*! is gy = argmax/(0;Y)
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Figure 1.1: Likelihood for data sample Y € RT™*! under observational equiva-
lence between likelihood maximizers 6y = arg max £(6;Y) and 0} = argmax £(0;Y),

but 05 £ 6.

where § € R!. However, this value §, has one observationally equivalent point,
g5 # 6 but 0 € Ry. Thus, 65 = argmax¢(0;Y) by definition, and the likelihood
will have two equally tall peaks in the domain R!, as in Figure 1.1. This would
cause the results of numerical search for a unique maximum to be misleading.
Yet it is important to take note that conversely, two peaks of the likelihood for
a given Y necessarily implies neither observational equivalence nor lack of global
identification. Rather, this equality is only necessarily a property of the specific
sample Y. In another sample, that property might change.

Next, I utilize these definitions to place my paper in context of the wider

literature.

3 Contributions to the Literature

This paper is part of a small, but important literature which considers
identification of DSGE models. Following the realization of problems by Beyer
and Farmer (2006) and Canova and Sala (2009), conditions for local identification
were provided by Iskrev (2010), Komunjer and Ng (2011), and Qu and Tkachenko
(2012). However, local identification is merely necessary, and not sufficient for
global identification; in terms of Definitions 2 and 3, there may be observationally
equivalent structural parameters outside of an open neighborhood of the point of
interest. In general, it is very difficult to state necessary and sufficient conditions

for global identification in nonlinear models, and only the overly strong sufficient



conditions of Gale and Nikaid6 (1965) are typically useful. As a result, there exist
no published results on global identification of DSGE models, although working
papers by Fuka¢ et al. (2007), Kociecki and Kolasa (2013), and Qu and Tkachenko
(2013) have managed to make strides in this direction.

The three aforementioned papers on global identification are the most gen-
erally useful contributions on the topic thus far. Yet, there are a number of sig-
nificant caveats yet to be overcome. All existing approaches suggest some form
of searching a given parameter space for observationally equivalent points. Such
a numerical search is daunting even in a small multidimensional parameter space,
and infeasible in a desirably large one. Furthermore, the computational toll nec-
essary to search for even one observationally equivalent point makes repeating the
process for many points impractical. In addition, the numerical algorithms nec-
essary to solve DSGE models insert small errors in the mapping from structural
parameters to moments which may lead two observationally equivalent points to
seem distinct, or vice-versa.

The ultimate reason for these difficulties is that DSGE models neither have
analytical solutions nor reduced form representation in general. The complications
are a preliminary assumption of all of the papers of Komunjer and Ng (2011),
Kocigcki and Kolasa (2013), and Qu and Tkachenko (2013), all of which use the
model of An and Schorfheide (2007) to demonstrate their methodologies. In this
paper, I do not offer generally applicable results for assessing global identification.
Rather, I simply point out that main model that has been studied in this literature,
An and Schorfheide’s, has both an analytical solution and reduced form represen-
tation. These two facts allow me to address all of the problems discussed above
using simple econometric tools, and the resulting discussion is both concise and
transparent. Finally, this observation will allow me to demonstrate how identifying
restrictions affect the distribution of the MLE, the main concern of this paper.

In the next section, I derive this analytical solution and reduced form rep-
resentation. Then, I show how these results may be used to conduct global iden-

tification analysis.



4 Solution and Reduced Form Representation

Interest rates, output, and inflation are three of the most important aggre-
gate variables from the perspective of monetary policy formulation, and empirical
macroeconomic analysis more broadly. Consider, then, the simplest model of their
dynamic relationship: An unrestricted Gaussian VAR(1) of the logged deviation
from unconditional means of the nominal interest rate, r;, detrended nominal out-

put, y;, and inflation, 7.

T ¢rr ¢ry (bT'TI' Tt—1 Ut UJ,%
Y| — Qbyr ¢yy ¢y7r Yi—1 + Uyt Q= E(UtUzZ) = | Wyr W; : (1'1)
Tt (bm“ ¢ﬂ’y ¢7r7r Tt—1 Usrt Wrr wﬂ'y w72r
—— N —~~ ——
Y: @ U

Uy is mean zero. By the Yule-Walker equations, ® = Yy (1)Xy(0)~! and the
variance-covariance matrix is Q = Yy (0) — 3y (1)Xy(0) '3y (1), where Xy (i) =
E(Y;Y/ ;). The unique elements of the covariance matrices, vech(Xy(0)) and
Yy (1), are in some sense the most primitive reduced form parameters, since the
likelihood function for any vector zero-mean Gaussian process may be written
as a function of its second moments. Meanwhile, the coefficient ®, for exam-
ple, is possibly more naturally interpreted as the projection of Y; on Y; ;. How-
ever, at the same time we have vech(Xy(0)) = (D5 ([3 —®® @)Dg)il vech(Q)
and 3y (1) = &%y (0).!! So, the relationship between the 15 elements of the sec-
ond moments (vech(Xy(0)),>y (1)) and the 15 VAR parameters (P, vech(f2)) is
one-to-one; in one direction, since the second moments are functions of the VAR
parameters, if the likelihood may be written as a function of the second moments,
it is just as easily written as a function of the VAR parameters. In the other di-
rection, since the VAR parameters are functions of the second moments, they are
trivially globally identified in all closed and compact 15-dimensional real spaces
© C R in both sample and population, regardless of their realization. Thus, the

VAR parameters are just as easily interpreted as reduced form parameters, and in

1D, is the duplication matrix, D} = (Dy, Dny)’lD;Y is its Moore-Penrose pseudoinverse,
and ® is the Kronecker product. See Abadir and Magnus (2005).



Table 1.1: Model and parameter names.

. Structural Params (16) Endogenous (6) Errors (3)
1 , 7 CRRA z;  Total factor prod. | .4 To z
2 | B Discount factor g+ Gov spending e To g
3 v Inverse elas. of demnd | 7, Nominal int rate | ¢, Tor,
4 1+ ¢ Index of price stckness | y; Nominal output
5 , II St. state level of infl. m; Inflation
6 | ¥r Taylor rule infl. coeff. | ¢, Nominal cons.
7 ' 1y Taylor rule out. coeft.
8 1+ p, 2z persistence
9 Py  g¢ Persistence
10 | p, 7 persistence
11 0. e std error
121 04 &4 std error
13, o, &q Std error
14 | 0,. Covar of ey and £
15 1 o, Covar of ¢,; and ¢,
16 1 0,y Covar of ¢,; and €

addition, efficient estimators ® and O are trivially available from ordinary least
squares.

The unrestricted Gaussian VAR(1) with 15 x 1 reduced form parameter
IT = (vec(®)’, vech(£2)’)" has many desirable properties. But how does it compare
with a standard DSGE model? The linearized equilibrium equations for the An
and Schorfheide (2007) model are given by the following 6 equilibrium equations.
A complete derivation is available in Appendix B. Variable and parameter names

are given in Table 1.1.

2t = P21+ Exn (1.2)

9t = Pg9t—1 + Egt (1.3)

re = ppre—1 + (L= pr)amme + (L= pr)y (Y — ge) + €0 (1.4)
Y = Eyrer + 9 — Evger — (1/7)(re — Eymerr — Evzign) (1.5)
™ = BET1 + K(y — gi) (1.6)

Ct =Yt — Gt (1-7)
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where k is a composite function of four underlying structural parameters.

1—v

SRS

The 3 x 1 vector of innovations e; = [, €4t,€,¢) 15 ild mean-zero Gaussian with

variance-covariance matrix

0.2

26(9) = E(St&?;; 9) = |0 02 . (1.8)

2
Orz Org O,

gz

In this paper I allow for the possibility that the off-diagonal covariances are
nonzero; recall, these are related to correlations, for example, by p,. = 0,4./(0,0.).

6 is the ny = 16 dimensional column vector structural parameter

(16Q><1) - (7-7 67 v, ¢7 H7 Qﬂm ¢y7 Pz, pg7 Pr; 0z, Jga Or, nga Orz, O-'I'g)/ (19)

Respectively, Equations (1.2)-(1.7) are rules of motion for TFP and government
spending, a Taylor rule, Euler equation, Phillips curve, and aggregate accounting
equality. At first blush, the resemblance between this model and the VAR in Equa-
tion (1.1) is not obvious. In particular, very specific assumptions are necessary for
a given DSGE model to have reduced form representation (See Ravenna (2007)
and Giacomini (2013)). Furthermore, in order to form any reduced form repre-
sentation, it is usually necessary to use numerical solution algorithms like Sims
(2002)’s. Such a black box makes it impossible to exploit the certain identifiability
of the VAR parameters for the purposes of determining the identification of the
structural parameters.

In the next section, I show how a simplified version of the An and Schorftheide
model may be solved analytically, and that this solution is in fact a special case of

Equation (1.1). Then, I show the same for the full model.
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4.1 Simplified An and Schorftheide Model

Consider the special case of Equations (1.2)-(1.7) in which TFP is iid, z, =

€., and government spending is zero, g; = 0 V ¢. This model has three equations,

Ty = pPrT—1 + (1 - /)r)z/}wﬂt + (1 - /)r)wy(yt — gt) + et
U= By + 9t — Evgrr — (1/7)(ry — Eymyga) + (1/7)esn
T = BEmi + k(g — gt)

The solution of this model implies the following rule of motion for interest rates:
= (Zsrr(e)rrtfl + drz(e)gzt + drg(9>€gt + drr(9>€rt

Redefine p, = ¢, and ¢,y = d,.e.4 + drgege + drper. In addition, let inflation be
augmented by a shock, m; = BEymi41 + Kyi + €qt, and define e,y = (1/7)e,;. Thus,

the above three equations become the following:!?

Tt = PrTi—1 + €t (110)
Ye = Eyyrer — (1/7) (1 — Eymiga) + ey (1.11)
T = /BEtWt+1 + RY¢ + Ext (112)

The three exogenous variables €., €., and e are iid mean-zero Gaussian inno-
vations. While €,; and €,; are respectively the idiosyncratic portion of monetary
policy and a technological innovation, €,; may be conceptualized as a cost-push
shock or observational error, for instance (See Ireland (2004)). Allowing for the

possibility that three innovations are mutually correlated, the 3 x 1 vector of in-

12Tn other words, the reduced form rule of motion for interest rates, Equation (1.10) is equiv-
alently the minimal state variable solution of a Taylor rule that responds to both inflation and
output when r;_; is the only lagged endogenous variable in the model; see also McCallum (1983)
and McCallum (1999). Thus, Equation (1.10) is simply a reparameterization of the Taylor rule
and this model will not produce sunspots.
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novations e; = [g,4, Eyt ext) has variance-covariance matrix

0.2

25<9) = E(steg; Q) = |0 02 . (1.13)

yr Yy

2
Onr Ony Oy

where 6 is the 10 x 1 vector structural parameter

/
= (7_7 6a Ry PryOry Oy, Oy Oyry Ogp, Uwy)
(10x1)

This model must be solved to be analyzed empirically. Since 7, is the only lagged
variable, the solution is of the form E,y; 1 = ¢, (0)r, and Eymyy = ¢rr(0)r,. By
the method of undetermined coefficients, ¢, = (¢, — 1/7(1 — ¢ry)) pr and ¢, =
(PrBOmr + Kpyr) (See Gali (2008)). So, the vector Y; = [ry, ys, ) has restricted
Gaussian VAR(1) representation Y; = ®(0)Y;_1 + U;. U is a 3 x 1 vector of

mean-zero Gaussian innovations with covariance matrix E(U,U}; 0) = ().

Tt pr 0 0f |71y Ut
Yt | — ¢yr 0 0 Yt—1 + Uyt (114>
Ur; ¢7rr 00 Tg—1 Ut
——
Yy ®(9) Ut
W 10 o] [e2 - ] [1 /o mln
Wyr Wy = |oy/pr 1 O oy op - 0 1 K (1.15)
Wrr Way W2 Grrfpr K 1| |Onr Ony 02 0 0 1
(o) 20 5.(0) Do)
where
1—p

¢yr(9) = o X (bm“(e)

Prr(0) = — (% <1 frpr> /(1 _:TB - (% 1 frm))

The unique reduced form parameters are collected in the 9 x 1 vector reduced form
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Table 1.2: Simplified An and Schortheide model candidate calibration 6, and
theoretically motivated parameter space ©y. £ =1e-6. Note, parameter bounds are
purposefully allowed to be generous; see also Table 1.1 for microfounded definitions.

 Param | Lower 6o Upper
1, 7 0.1 2 3.5
2 16 0.975 | 0.9975 1-
3 K € 0.33 3
4 L pr € 0.75 1-
5 1 o € 2e-2 1
6. o, 5 2e-2 1
7. ox € 2e-2 1
8 | oy -1 le-4 1
9 | Onr -1 le-4 1
100 ogy -1 -le-4 1

parameter

H(e) - (pra ¢yra ¢7rr7 Wr, wy7 Wr, wyrv Wrr, wﬂ'y),
(9%x1)

It will ultimately prove useful to discuss specific values of the structural param-
eters. Table 1.2 provides a candidate calibration 6y, along with upper and lower
bounds for the individual elements of €; these make up the theoretically justifi-
able population parameter space ©y. One possible interpretation of ©q is as the
boundaries of diffuse priors over 6. Another is simply the support of any bounded

prior, or the maximum admissible space. At 6,

Tt 075 0 0 Tt—1 Ut 4

vl = 1155 0 0] [y | + |uye| Q60)=(le—4)x |9 25

m 2.04 0 Of |m—1 Ut 12 28 40
—_—— — ——

th CI)(@Q) Ut

4.2 Full An and Schorfheide Model

While the simplified model may be solved analytically and has parsimonious
reduced form representation, a natural question is whether the same is true of more
empirically relevant specifications with latent state variables. It turns out that an

exactly analogous solution methodology may be pursued for the full model using
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symbolic computation.

Recall that the structural parameter for the full model is the 16 x 1 vector
given in Equation (1.9). While the solution of the simplified model followed from
the fact that only lagged interest rates appeared in the equilibrium conditions, the
same is not true here. To approach the solution of the full model analytically,
note that the minimal solution of the model has the following general form (See

Komunjer and Ng (2011) and Kailath et al. (2000)):

2 p. 0 0 Zi_1 1 0 0 €t
Gt 0 p; O Ji-1 + 0 1 0 Egt
_Tt_ Crz Crg Crr _Tt—l_ drz d'rg dr'r _5rt
—— ~ N—— N ~ N——
Xt A(6) Xi—1 B(0) £t
Tt Crz Crg Crr Zt—1 de drg T €zt
Yt Cyz Cyg Cyr gt—1 + dyz dyg dyr € gt
_7Tt_ Crz C7rg Crr _th 1| dﬂ'Z d7rg dm" _5rt_
N s N -~ 7 N - 7
Y; c(0) D(6)

where the scalars ¢;;(#) and d;;(#) are a-priori unknown functions of the structural
parameters 6, while the sizes of the vectors of observables Y; , states X;, and
innovations ¢, are ny = nx = n. = 3. Given E;g;.1 = 03«1, the observation

equation implies

Tt+1 Crz Crg Crr 2t
Et Yt+1| — |Cyz Cyg Cyr gt
T4+1 Crz Cﬂ'g Crr Tt
HH N -~ >
Yita C(0)

Plugging in the corresponding equations for Eyy;.q and Eymyyq, along with Eyz, 1 =

P22, into aggregate demand, Equation (1.5),

1 0 1 1 1
Y=\ Gt —Cnst 2t (Ggg b g H (L= pg) | o | G+ —Car = — | 1

J/

~\~ ~\~ ~\~
fyz fyg f?/’"

Plugging the corresponding equation for E;m; ., along with the expression for y,
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just derived into the Phillips curve, Equation (1.6),

K LK K
T = (ncyz + (ﬁ + ;) Crs + PT ) 2 + (/icyg + <ﬁ + ;) — pgm) gt

K K
+ (HCyT + (ﬁ + —) Crr — —) Ty

~~
Jrr

So, collecting the last two equations, and using the implicitly defined terms f;;(6),

T 0 O 1 2
Ye| = | foe Tog Tor| |9 (1.16)
Tt Jrz f?rg Jrr Tt
>l F(0) X

Finally, given ABCD representation and the fact that Y; = F(6) X,

Crz Crg Cprp 0 0 1 o 0 0
Cyz Cyg Cyr| = fyz fyg fyr X 0 Pg 0 ( 1. 17)
Crz Cﬂ'g Crr fnz fﬂ'g fﬂ-r Crs C,,.g Crr

c(0) F(6) A(8)

Since the elements of F' have been expressed in terms of the elements of C' and
0, the system in Equation (1.17) yields 9 equations and 9 unknowns, the elements
of C. Although it is infeasible to solve for these as functions of # by hand, it
is straightforward to make use of symbolic computation software for this purpose.
Solving the model using MATLAB’s built-in symbolic computation software reveals
that there are exactly three solutions. However, only one of these solutions implies
a stable solution at 6y, as judged by the modulus of the eigenvalues of A(y). The

generalized functional form of this unique stable solution is

Crz(e) 0 Crr‘(g)
C0) = |cy.(0) py cyue(0)
crz(0) 0 crp(0)
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where each of the 6 functions not explicitly shown are distinct functions of the
structural parameters. Although their functional forms are extremely complicated
and too unintuitive to be worth stating, they are closed-form. The two zeros are
exactly zero.

Solving for C'(f) involved using the fact that Y; = F(0)X; to infer that
C(0) = F(0) x A(f). Notice that the same fact can be used to conclude that
D(0) = F(0) x B(0). Taking the expressions for C'() as given and again utilizing

symbolic computation,

drz drg drr Pz 0 0 Gz 0 ¢

dy: dyg dy | X |0 pg O = |cy: pg Cyr

dT(Z dTrg d7r7" 0 0 Pr Crz 0 Crr
D(6) 0(0) (o)

where p is a 3 X 3 matrix containing all, and only, the 3 persistence terms of the
model, p., py, and p,. So, using the simple formula for the inverse of a diagonal

matrix, the matrices A, B, C', and D may be written exclusively in terms of C'(0)
and p(0).

[ 2] . 0 0 [z.] 1 0 0 | [es
gl = 0 p, O gi-1| + 0 1 0 Egt
Tt Crz 0 Crr Tt—1 Crz/pz 0 Crr/pr Ert

L “ L . L g 4 L~

_Xt_ A(0) _Xt—l_ ~ B(0)=A(0)xp(0)—1 _ _ €t _
Tt Crz 0 Crp Zt—1 Crz/pz O Crr/pr Ext
Yt = Cyz Pg Cyr gt—1 + Cyz/pz 1 Cyr/pr ggt
(s Crz 0 Crr Tt—1 sz/Pz O er/pr Ert

- V - N Vv - - - vV -J - -
Y: C(0) D(0)=C(0)xp(0)~1

As in the simplified model, @ is assigned a candidate calibration 6y, and parameter
space Oy, in Table 1.3. It is verified that the values of this analytical ABCD solution
correspond to Sims (2002)’s numerical solution at the same point. However, the
state space parameters are not reduced form parameters. Thus, it is desirable to

explore any companion forms the model might have. It is now useful to state a
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Table 1.3: Full An and Schorfheide candidate calibration 6y and space ©g. e=le-
6.

. Param | Lower 0o Upper
1, 7 0.1 2 3.5
2 16 0.975 | 0.9975 1-¢
3 | v € 0.1 1
4 10) 50 03.68 60
5, 1O 14¢ | 1.008 | 1.03
6 ' i 1 1.5 3
7 : Yy -1 0.125 1.25
8 1 ps € 0.9 1-¢
91 py £ 0.95 l-e
10,  pr 5 0.75 l-e
11 o € 3e-2 1
12 o, € 6e-2 1
13, o, € 2e-2 1
14! o, 1 le-4 1
15 O -1 le-4 1
161 oy -1 -le-4 1

simple result.

Reduced Form. Let Y; have ABCD representation. If there exists an invertible
matriz F(0) such that Yy = F(0)X;, then Y; also has VAR(1) representation

Y, = CAC™'Y,_1 + Dg;

Proof. 1t Y; has ABCD representation, but also Y; = FX; for invertible F', then
using the state equation, F'X;, = FAF'FX,+ FBe, and thus Y; = FAF~'Y,_; +
F' Be,. Now using the observation equation, C' = FFA and D = F'B exactly. Thus,
F=CA!sothat FAF~' = CAC™! and FB = D. O

Without any exogenous restrictions, the An and Schorfheide model satisfies Y; =
F(0)X; from Equation (1.16). Thus, its observables Y; have restricted VAR(1)
representation. Defining U; to be a 3x1 vector of nonstructural innovations De,
with covariance matrix E(U,U;) = €(6), by the above result, the observables Y;

have the following VAR(1) reduced form representation, another special case of
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Equation (1.1):

Tt ¢7"7‘ 0 ¢r7r Ti—1 Ut
Yt = ¢y7‘ pg ¢y7r Yi—1 + uyt ( 1 . 18)
U ¢7rr O ¢7T7T Tg—1 Ung
—— ~ ~ ——"
Yy D(0) Uy

Given that D(6) = C(0) x p(6)~" and that p(6) ™" = p(#)~! since p(#) is diagonal,

-1

Grr 0 Ppr Cro 0 p. 0 0 . 0 ¢
Gyr Py byn | = |Cyz Py Cyr| X |0 pg O | X |y pg cyr (1.19)
Grr 0 Prr Crz 0 Crp Cro 0 ¢ Crz 0 Cpp
2(0) c(o) A(0) ()
2

w? : : Crz 0 Crr ) 7,0_2 B L 7.27 7: 3 .7 ) Crz Cyz Crz

Wy (JJZ = |Cyz Pg Cyr X 7 ;Zgggi L ;Té J o X 0 Pg 0
| Wrr  Way w?T j Crz 0 Cpp | ﬁ : p(’;’;’g : Z—g R Crr Cyr Crr |

Q‘(rﬁ) C‘(,O) p(@)_leZ(rH)Xp(H)—l ng)’

(1.20)

The unique reduced form parameters are collected in the 13 x 1 vector parameter

H(0> - (¢rra Qbym Qbm": Pg> Qbmra Qbym Qbmr? Wy, Wy Wy, Wyr, Wrrr, Wfry>,
(13x1)

At 6y, Equation (1.18) has the following realization:

Tt 0.79 0 0.25 Tt—1 Urt 6

ye| = [0.19 0.95 —0.46| [ye1 | + |y Q) = (le—4) x |7 58

m 0.12 0 0.62 Mi—1 Uy 7 21 20
——— P ——

Yi ‘13(90) U

5 Identification Analysis

As motivated previously, the global identification of the reduced form VAR(1)
Equation (1.1) is trivial, and furthermore, both the simplified and full versions of

the model are now known to have restricted VAR(1) representation. Yet, the iden-
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Figure 1.2: Simplified model functional mapping g : § — II.

tification of 6 is the relevant issue. In this section I study the identifiability of the

structural parameters 6 from the reduced form parameters II.

5.1 Simplified Model

In order to distinguish whether @ is globally identified in the real plane, it is
sufficient to show that 6 is uniquely recoverable from IT regardless of 6’s realization
in the reals. Although the mapping from structural parameters 6 to reduced form
parameters Il is nonlinear, by virtue of the analytical solution developed in the
preceding section, the correspondence is closed-form. In place of the complicated
functions themselves, x’s are used in Figure 1.2 to represent the dependence of each
element of IT on each element of §. For instance, the standard error w, is a function
of all 10 structural parameters. As noted in the figure, it will henceforth clarify
the analysis to name this functional dependence I = g(#). A similar identification
table was also recently utilized by Hamilton and Wu (2012) as a preliminary step
in investigating the identification of affine term structure models.

The number of structural parameters, ng = 10 columns, exceeds the num-
ber of reduced form parameters, ny = 9 rows; in other words, it is immediately
apparent that the necessary order condition for identification, nyy > ng, is violated.
Thus, at least one of the structural parameters must be set to a constant for the

complement subset to be conditionally identified. In order to distinguish which
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structural parameter is such a candidate, or if more than one parameter must be
set, one possible procedure is to check local identification. As motivated by Iskrev
(2010), a reasonable starting point is to compute the Jacobian J(6y) = 9I1/00'|,_,
and successively eliminate columns until those that remain are full column rank;
the dropped columns correspond to parameters to be set. However, such an ap-
proach is only valid at 6, and overlooks the issue of global identification more
broadly.

Instead, consider the following logical points: First, if setting one structural
parameter did in fact result in the remaining 9 being conditionally locally identified,
those 9 would be exactly locally identified by the 9 elements of II. Let ¥} be such a
hypothetical 9 x 1 subvector of #, and @ the scalar fixed parameter. Second, a value
of 9 which yields I, conditional on @ is exactly ¥y such that Iy = g(¥o; @). Using
Corollary 1, ¥ is globally identified at 1y if and only if there exists no ¥ # v
such that IIy = g(¥; @). Third, typically, one would have to search for such a
Y5 numerically. However, since ny = 9 = np and the solution is analytical, a
simple non-numerical method is to simply check whether a unique inverse of the
vector-valued function g exists. When it does, ¥y = ¢~ (Ily; @).

So, ¥ is globally identifiable at any given point in any parameter space if

L exists and

ny = ny and g is injective. The latter requirement is verified if ¢~
is unique. Thus, a central question is whether a unique inverse of the specific
functional form of ¢ exists.

By examining the functional form of the vector-valued function g(6) repre-
sented by Table 1.2, it appears that the parameter o, is a reasonable candidate for
the role of @. This implies that the parameter to be analyzed using the analytical

approach is

/
(9x1) = (7’, 67 Ry PryOryOyy Oy Oyry Oppy Uﬂy)

Using the analytical solution to invert the mapping implies that each of the 5
parameters 7, p,, 0., 0y, and o, have unique functional forms in terms of the

vector reduced form parameter. For example, given a realization II, the unique
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Table 1.4: Simplified model observational equivalence in R but not . II =
g(x;0.); © =Yy or 5.

g(x; o) Yo 9
o | 075 | 7 2 2
b | 155 | B 09975 | 1.51
Oy 2.04 K 0.33 |-0.17

2e-2 Pr 0.75 0.75
Wy oe-2 o 2e-2 2e-2
Wi 6e-2 oy 2e-2 2e-2
Wyr 9e-4 Oyr le-4 le-4
War 12e-4 O | le4 2e-4
| Wiy 28e-4 Ony | -le-4 | le-4

(S
S

© 00 1O Tl Wi~

expression for 7 is
T 1— r
o 10
11— Pr ¢yr

and p, is itself one of the reduced form parameters. The remaining expressions

T =

for o,, 0y, and o, are closed-form, but too complicated to provide any intuition.
The most important result, however, has to do with the remaining 4 elements of
. Even after normalizing the relationship between standard errors and variances,
for any 1I, there are exactly 2 expressions for each of 3, k, 0., and o, in terms of
IT, no more, no less. In other words, ¢ is not injective, and its inverse yields two

values:

Uo

91(9(190§67r>§67r)<

0

There are several important consequences of Table 1.4. First, ¥y and
U§ are observationally equivalent despite that the 9 x 9 Jacobian J(¥y;7,) =
O (0;T) /00| y_y, is full rank, a necessary and sufficient condition for local iden-
tification. Second, the value ¥; — and specifically, the values of § and x at ¥ —
fall outside of ©y. Therefore, an assessment of global identification at 1y based on
numerically searching over ©y would conclude simply that ¢ is globally identified
in ©(, whereas this conclusion is possibly misleading of the fact that there is an

observationally equivalent 95 in R? outside of, but relatively close to, ©y. Third,
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Figure 1.3: Simplified model impulse-responses for observationally equivalent
points: Yy (o) vs ¥ (4). Triangularity of impulse-responses reflects triangularity
of D(#) in Equation (1.15).
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computational time is a fraction of a second.

A natural next question is whether the economic implications of both ¥,
and Y are the same. I provide impulse-responses for both points in Figure 1.3.
When the crosshairs corresponding to ¥ exactly hit the bullseyes corresponding
to g, the economic implications are equivalent. In only one case, m;’s response to
€yt, do the economic implications of each point differ. In fact, this can be traced
back to Equation (1.15) as arising from the difference in x between points. There
are two important implications of this observation. First, the monetary policy
impulse-responses in the first column of Figure 1.3 are robust to observational
equivalence. This means that if those impulse responses were the only object of
economic interest, a valid normalization is to simply drop 9. Second, the economic
implications of the two points for m’s response to €, differ. Therefore, if this is
the object of economic analysis, simply dropping ¥ is not benign.

The good news is that is reasonable to distinguish between ¥, and ¥ on
the basis of both the bounded priors embodied in ©(, and sign restrictions. For
instance, not only is Kk < 0 contrary to standard theory, it also implies inflation
will decrease following a cost-push shock (to €,,). In addition, § > 1 is certainly
disconcerting. Specifically, if the space in which global identification is impor-
tant is ©g, then Table 1.4 has simply shown us that ¥y is globally identified in
Op. Thus, although this model does engender observational equivalencies, the two
facts that global identification is defined in terms of a parameter space, and that
macroeconomists have a good idea of what parameter spaces are important, allow
the analyst to eliminate the nuisance ¥ in this case.

Yet, it is not always possible to distinguish between observationally equiva-
lent points on the basis of the bounds of Oy alone. Since evaluating global identi-
fication for a point may be done very efficiently, I am able to search the parameter
space Og for values ¥; which have an observationally equivalent 97 that is also
in ©y. Such an example is given in Table 1.5. The impulse responses for each
point are given in Figure 1.4. Again, only 7,’s response to ¢, differs from point to
point. However, in this case, both impulse responses have the same sign, owing to

the fact that the value for x at each point is the same. Evidently, observational
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Table 1.5: Simplified model observational equivalence in ©q. 11 = g(x;7,); = Vg
or v;.

g(m;Eﬂ'> "-91 19;
Dr 0.93 T 1.01 1.01
¢y | 0.03 B | 0.9836 | 0.9980
Grr | 1.002 k | 2.70 2.25

0.41 Pr 0.93 0.93
Wy 0.08 o, 0.41 0.41
Wa 0.60 oy 0.07 0.07
Wyr 0.03 Oyr 0.03 0.03
War 0.25 O | -6.1e-3 | 5.1e3
| Way 0.05 Ony | -9e-4 9e-4

(S
RS

© 00 IO Ul W N =

Table 1.6: Identification of ¢ in simplified model: 100,000 uniformly drawn points
from ©y.

Yes No

Locally Identified 100 % 0%
Globally Identified in © 65.76 % | 34.24 %
Globally Identified in All © Cc R | 0.04% | 99.96 %

equivalence is a more trying issue at the realization 1J;, since neither it nor 9 may
be easily eliminated. More elaborate identifying restrictions are necessary.

Consider, then, the analyst who decides to simply choose ¥}, since the
value of g is closer to the original value in 6y of 0.9975. Macroeconomists usually
have very strong convictions about the value of this parameter in particular. This
action would reflect, for example, the will of an analyst with a very tight prior for
B centered at 0.9975. Depending on the analyst’s ultimate inferential goal, many
possible identifying restrictions are possible.

What is the likeliness of drawing a point like 9y versus a point like ¢ in
the parameter space ©y7 Obviously, if there are relatively more v, this is all
else equal a good thing, since the analyst will be required to enforce relatively
less stringent identifying restrictions. Table 1.6 presents the results of testing for
local identification, and global identification in both O, and all © C R, at 100,000
uniformly drawn points from ©y. The only restriction I make on the points drawn is
that the variance-covariance matrix 3. (9; @) must be positive semidefinite. Recall,

since Q = DY.D’ in Equation (1.15), ¥, positive semidefinite implies that so is 2.
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Figure 1.4: Simplified model impulse-responses for two theoretically plausible
and observationally equivalent points: 91 (o) vs ¥ (+).
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9 is locally identified at all points, but has a real-valued observationally equivalent
point at all but 0.04% of draws.!® Furthermore, the identifying restriction that
¥ must be in Oy does not successfully yield a unique point in roughly a third of
the space. Thus, stronger identifying restrictions like the previously discussed [

criterion are frequently needed.

5.2 Plug-In Maximum Likelihood

While we are now aware of what types of identifying restrictions are nec-
essary in the simple model, and when they must be implemented, we are not
fully cognizant of the effects of these normalizations on confidence intervals. One
approach to understand the statistical outcomes of a given normalization is to im-
plement these identifying restrictions in the Monte Carlo distribution of a given
estimator, such as the maximum likelihood estimator.'* However, under normal
circumstances, it would be impossible to construct such a distribution for DSGE
models in particular. The reasons are three-fold. Firstly, without the knowledge
of how many maxima are in R?, it would be impossible to determine how many
maximum likelihood estimators exist for each draw i. Secondly, as demonstrated
by Andreasen (2010), even the most sophisticated global algorithms for likelihood
maximization, including simulated annealing and genetic numerical search, are
prone to failure. Furthermore, search algorithms are only as accurate as the ter-
mination tolerance chosen by the analyst, which is particularly worrying given
the topological characterization of weak identification is flatness in the likelihood
surface (See Canova and Sala (2009)). Finally, likelihood maximization is com-
putationally costly, particularly for the most reliable genetic algorithm, making it
infeasible to compute the distribution for large N.

In fact, the mapping ¢g~! has other uses besides assessing identification; it
may also be used as the basis of a “plug-in” maximum likelihood estimator. This

tool is uniquely suited for computing the Monte Carlo distribution, and investi-

13All of these 0.04% of points have observationally equivalent points that are real, but yield
Y. which are not positive semidefinite, and thus not variance-covariance matrices.

1 As in Stock et al. (2002), the Monte Carlo is also a natural place to begin analysis of weak
identification.
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gating the statistical consequences of implemented normalizations. I motivate this
estimator using the minimum chi-squared estimator, or MCSE, implemented by
Hamilton and Wu (2012) and first suggested by Rothenberg (1973). When I is
the maximum likelihood estimator of the reduced form parameters, and 7 is an ef-
ficient estimator of the information matrix with respect to Il, the MCSE is defined

by the following:

Ivesy = argmin (I — g(9; @))Z(1 — ¢(0; a@)) (1.21)
veO

As Hamilton and Wu (2012) go on to show, this estimator is asymptotically
efficient. In addition, in the special case that ny = nr, the minimal value of the
criterion is zero, in which case the analyst may simply use an identity matrix as

the weighting matrix, and find the MCSE as equivalently the minimizer of
(I~ g(v;@))' (L - g(0:@)) (122)

Notice, since (1.22) a quadratic form, DnrLe is equivalently defined by = g(1/9\ MLE; Q).
In other words, given any data set, under the conditional identification scheme

o = 0, there are exactly two points which maximize the likelihood:

9

The coefficients II are available by restricted feasible generalize least squares
(FGLS)." In addition, given g~! is known in closed-form, the analyst need only
plug-in to obtain both points ¥ and 9* that maximize the likelihood. As in Hamil-
ton and Wu (2012), there is no uncertainty that each of 9 and 9* maximizes the
likelihood. My extension of deriving ¢! directly also implies there is no uncertainty

about the number of likelihood maxima or the reliability of search algorithms, nor

15Tn Hamilton and Wu (2012), ordinary least squares is utilized. In the current case, the ex-
clusion restrictions on ® require restricted FGLS. See Lutkepohl (2005) p. 20. GLS is equivalent
to the MLE under normality of U;. See Hamilton (1994) p. 222.
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Figure 1.5: Contour plot of log-likelihood. Maximum achieved at identical 1909.9
for exactly two points 4, which are the plug-in MLEs. Compare with depicted
bimodal univariate likelihood in Figure 1.1.

is there computational toll from numerical search.

To verify, I use the value ¥y to generate a data set of length 7" = 250 and
reestimate the parameters of the model using the plug-in technique. As predicted
previously in Table (1.4), for instance, this estimator yields two different values
for f and k. By computing the contour plot of the likelihood over these values, it
shown that the plug-in MLEs do maximize the likelihood function, with exactly

equal values at both points.
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5.3 Small Sample Distribution of MLE

It is now feasible to compute a Monte Carlo simulation of the small-sample
standard errors of the MLE.'® First, I consider the model subject to no identifying
restrictions is given in Figure 5.3 with T" = 250 and N=10,00. This 7" is equivalent
to 62.5 years of quarterly data, approximately the available window of post-war
data on interest rates, output, and inflation. The entire distribution is computed
in a few seconds. To understand how this distribution is computed requires first
an understanding of the sample. While roughly 78% of the draws ﬁi yield two
real-valued estimators 7/9\1 and 5’{, 22% vyield two complex-valued estimators, and
0% yield only one real-valued point. There are two conflicting perspectives on how
to deal with the complex-valued estimators. One is to include these in the Monte
Carlo distribution. The other is to simply try to find a local maximum in the reals.
However, whereas the first approach takes this analysis out of the comfort zone of
meaningful macroeconomic analysis, the second suggests an estimator known not
to maximize the likelihood. Since there is no formal econometric basis for distin-
guishing between these two options, for the 22% of draws yielding two complex
points, I take the safest route possible and simply say the estimator does not exist.
Thus, the restricted estimator is technically a restricted MLE. When there are
two real-valued estimators, each receives a weight of one in the distribution. The

pseudo-code for Figure 5.3 follows:

1. For draw ﬁi, compute both estimators 1/9\i and 1/9\i by plugging in to ¢t

2. If both are outside of reals, the estimator is said to not exist for the given

draw (22% of utilized sample).

16Qu (2013), Guerron-Quintana et al. (2013), Dufour et al. (2013), and Andrews and Mikusheva
(2013) have all discussed the issue of weak identification, and how to compute correctly sized
large-sample confidence intervals and tests. Since the distributions I consider are bootstrapped
small sample standard errors, they do not rely on the asymptotic approximations that break
down under weak identification (See Stock et al. (2002), for example). Note, it is not generally
possible to compute a bootstrapped distribution for weakly identified models. This is due to
the fact that the bootstrap is known to be invalid under weak identification, an outcome related
to the failure of Edgeworth expansion in this case (See Hall (1992)). However, the bootstrap
statistics I calculate are applied only to the restricted FGLS estimator of the reduced form VAR
parameters, which are strongly identified.
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Figure 1.6: Monte Carlo distribution of O Model restricted MLE at ¢ in the
real-valued codomain: T=250, N=10,000. Two-sided («/2,1 — «/2) confidence
interval, o = 5%.

3. If both estimators are in the reals, plot both in the Monte Carlo with equal
weight 1.

4. If one is in the reals and one is outside, plot only the one inside with weight

of 217 (Note, this option has no effect in the given sample).

The multi-modal character of the likelihood in the parameters 3, k, and

Oy, also tellingly reminiscent of the distribution of weak instrumental variables

17A weight of 2 indicates that when one of the two estimators for draw i can be eliminated,
the only remaining estimator receives double relative weight. This ensures that the small sample
distribution is correctly computed across the sample of N draws. An alternative way to concep-
tualize this is that when there are two permissible estimators for a given draw i, the analyst has
two half-weighted conflicting estimates. One reasonable story is that as the result of numerical
issues, only one estimator is found at each draw, with equal probability.
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computed by Nelson and Startz (1990), is obvious. Moreover, there are a few other
more subtle observations regarding the MLE distribution over the remaining pa-
rameters. Firstly, the parameter o, does not seem to have a bimodal distribution,
even though it was the fourth structural parameter, besides 3, x, and o, to exhibit
observational equivalence in Table 1.4. The reason is that the two modes pile-up
immediately next to one another so there appears to be only one rightward-leading
peak. Secondly, even single-modal parameters like the coefficient of relative risk
aversion 7 = —p, /(1 —p,) X (1 — @)/ Pyr seems to be biased (leftward). Evidently,
even using the longest possible sample of post-war data, there is small sample bias
in the MLE.

Yet, the distribution of the maximum likelihood estimator itself is not the
only important distribution to consider. As first explicitly shown by Hamilton et al.
(2007), normalizations meant to achieve global identification can have unintended
consequences on the properties of confidence intervals. Therefore, if the analyst is
using a given normalization scheme to identify a given parameter value, it is critical
that this identification scheme be embodied in the construction of the Monte Carlo
distribution. First, consider again the analyst that uses bounded priors embodied
by ©¢ as the means for identification; specifically, a parameter is identified in
Oy if its observationally equivalent point is outside of this space. Recall, this
normalization was a successful identifying restriction for 9y in Table 1.4. If two
estimators are both inside of or both outside of O, there is no reasonable basis
to distinguish between the two. Rather, there is only a unique estimator when
just one is in ©(. The distribution of this estimator is given in Figure 1.7. In this
case, the distributions are close to the original MLE, but now the second peaks for
B, Kk, and o, have shrunk slightly, reflecting the analyst’s ability to distinguish
between two points when one is outside of ©y. Note the standard errors for both g
and x have now changed, indicating a modest but realized affect of the identifying

restrictions on the sizes of the two modes. Pseudo-code for Figure 1.7 follows.
1. For draw ﬁi, compute both estimators 1/9\1 and 1/9} by plugging in to ¢ .

2. If both are outside of reals, the estimator is said to not exist for the given

draw (22% of utilized sample).
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Figure 1.7: Distribution of simplified model MLE at ¥y when the bounds of © are
used as the identifying restrictions: T=250, N=10,000. Two-sided (/2,1 — a/2)
confidence interval, o = 5%.

3. If both estimators are in the reals
(a) If both are inside of ©, the analyst can not distinguish between the
two, so plot both in Monte Carlo with equal weight 1.

(b) If both are outside of G, the analyst can not distinguish between the
two, so plot both in Monte Carlo with equal weight 1.

(c) If one is in ©g and one is outside, plot only the one inside, with weight

2.

4. If one is in the reals and one is outside, plot only the one inside with weight

of 2 (Note, this option has no effect in the given sample).
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Now, consider an analyst confronted with a point like ¢; in Table 1.5 for
which the normalization that ¥ € ©g is not a successful identifying restriction. As
was suggested, a normalization that works is to choose the value that yields a
closer to 0.9975, but certainly not larger than 1. The distribution in Figure 1.8 now
implies confidence intervals which are notably different from the first MLE without
identifying restrictions. In particular, the mode corresponding to the nuisance
estimator ¥* has been leveled. Thus, any number of identifying restrictions useful,
but confidence intervals are directly affected; the plug-in MLE allows the analyst

to directly account for this discrepancy. Pseudo-code for Figure 1.8 follows.

1. For draw ﬁi, compute both estimators 1/9\i and 5’1‘ by plugging in to g~.

2. If both are outside of reals, the estimator is said to not exist for the given

draw (22% of utilized sample).
3. If both estimators are in the reals

(a) If both imply B\i > 1, the analyst can not distinguish between the two,
so plot both in Monte Carlo with equal weight 1.

(b) If only one implies Bi > 1 plot the other in Monte Carlo with weight 2.
(c) If both imply B <1
i. If one estimator yields a Bi which is closer to 0.9975, plot only that

estimator, with weight 2.

ii. If both estimators yield Bi which are equidistant from 0.9975, plot
both estimators, with weight 1 each.

4. If one is in the reals and one is outside, plot only the one inside with weight

of 2 (Note, this option has no effect in the given sample).

In this section, I have demonstrated the entirety of my approach to global
identification, and accounting for the statistical consequences of necessary normal-
izations, using the simplified model. Next, I consider the full model, which may

be studied similarly.
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Figure 1.8: Distribution of simplified model MLE with 8 ~ 0.9975 identifying
restriction at ¥o: T=250, N=10,000. Two-sided (/2,1 — «/2) confidence interval,
a = 5%.
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5.4 Full Model

Whereas the mapping from 6 to II in the simplified model was complicated,
the corresponding mapping for the L. model is simply indecipherable from a human
perspective; in the computer code for this paper, mathematical expressions for II in
terms of @ are so complicated, they take up pages of text. However, the expressions
are closed-form and calculated by the computer, and therefore guaranteed to be
correct. A graphical summary is given by Figure 1.9.

As was the case for the simplified model, it is immediately obvious by the
necessary order condition ny > ny that the entire vector § may not be identified.
Since there are only ny; = 13 reduced form parameters, but ny = 16 structural pa-
rameters, at least 3 parameters must be set to constants for even a fighting chance
that the remaining 13 are conditionally locally or globally identified. Figuring out
which are candidates to be set can be done by using the location of x’s in the
table, and sequential elimination. The parameters that will be set here are exactly
those chosen by Komunjer and Ng (2011) in one of their conditional identification
schemes, @ = (7, ?, Ey) These are trained to their values in ;. The remaining
parameters which may be identified are collected in the 13x1 vector structural

parameter

(13111) = (7_7 B; H, 'QZ)7H PzyPgs Prs02,0¢,0r,0gz,0rz, O-Tg),

Since ny = 13 = ny, if ¥ is identified at a point, it is exactly identified. Indeed,
the 13x13 Jacobian J(do; @) = IlL(V;@) /00| ,_,, , is full column rank, thus satis-
fying a necessary and sufficient condition for 9 to be locally identified at ¥y; that
the demeaned model is conditionally identified using @ was previously shown by
Komunjer and Ng (2011). But since 9 is exactly locally identified, and the solution
of the model is analytically derived, one can once again hope to derive g—!. Thus,
one can observe directly whether g is injective at 9Jy. The results for one point are
given in Figure 1.10, and for many points in.

Also as in the simplified model, even when squared variables such as stan-
dard deviations and the steady state of inflation are normalized to positive num-

bers, there are exactly two o that satisfy ¢ = ¢~ (IT; «) for any value of II. Specif-
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ically, while the 7 parameters 3, ¥, pgy, pr, 04, 0y, and 0,4 are the same in both
solutions, all of the 6 parameters 7, II, p., 0,, 04., and o, differ. But unlike the
analysis of the simple model, this result does not actually in itself imply that
is not globally identified in R at y. In fact, as listed in Figure 1.10, the only
realization of ¥ which is observationally equivalent to ¥, is ¥; € C¥*\R!3; in row
3, the value for the steady state of inflation IT at 9 is 4.8i.'® So, even though ¥ is
not globally identified in all © C C'3 at ¥y, it is globally identified in the strictly
smaller, and more economically meaningful space of all © C R!3 ¢ C'3. Impulse
responses for ¥y and 9 are also given in Figure 1.10, demonstrating that only v,’s
response to €, is the same for both points. However, while result that ¢ is in fact
globally identified in all © C R'3 at 9, using @ is encouraging, this result is specific
to g, so it is important to assess other points in Oy.

Another important point is v, listed in Figure 1.11. Although the impulse
responses for ¥; and ¥} appear to be the same at first glance, all but the response
of y; to g4 in fact differ from point-to-point by very small amounts (all crosshairs
are not centered; refer also to the impulse responses in Figure 1.10 for clarity of
this point). Thus, even though both points imply similar economic implications,
any determination between the two is not technically a normalization as defined in
Definition 4, but something stronger. Furthermore, notice that J; and 9] are both
contained in ©¢. Therefore, these bounds alone may not be used as an identifying
restriction as they may be to distinguish between ¥y and 9. An identifying re-
striction which would work is to simply select the estimator that yields a 7 closer
to 2, in this case, ¥/;. Much as the (3 criterion for the O model reflected tight priors
on 0.9975, this similarly reflects the common tight prior on 7 = 2.

As was the case for the simplified model, it is of interest to understand how
many points are like ¥y versus ¢; in the sense of which identification scheme is
successful. Local and global identification is assessed on a uniform grid of © in
Table 1.7. Once again, ¥ is locally identified for all draws, but now is also globally
identified in ©¢ for nearly all draws. In addition, ¢ is globally identified in all of

18For intuition of this result, recall that the Phillips curve coefficient is written x = 7(1 —
v)/(vgll?). Thus, IT is complex simply means that x is positive; at the same time 0 < v < 1,
7 <0, and ¢ > 0.
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Figure 1.10: Full model without means observational equivalence in C'? but not
Oy (see row 3), and impulse-responses: ¥y (o) vs 9§ (+). II = g(x;@); = = vy
or ¥5. Missing impulse-responses correspond to restrictions on D(#), see ABCD
representation.
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Figure 1.11: Full model without means observational equivalence in in ©(, and
impulse-responses: 91 (o) vs 95 (+). Il = g(x;@); © = 91 or 9.
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Table 1.7: Identification of ¥ in full model without means: 100,000 points drawn
from ©y.

Yes No

Locally Identified 100 % | 0%
Globally Identified in O 99.5% | 0.5 %
Globally Identified in All © c R | 59.4% | 40.6 %

R in roughly 6/10 draws. So, even though ¥ is part of this majority, there is
evidently a large portion of draws at which 1 is not globally identified in all reals.
Yet, again, the parameter space Oy may be used as a reasonable basis to eliminate
many of the 40% of points not identified in all of the reals. In fact, only 0.05% of
draws yield an observationally equivalent point also in ©¢. In other words, points
like 19, exist, but are relatively rare compared to points like 9.

Finally, Monte Carlo distributions are computed. The typical MLE is pre-
sented in Appendix A, Figure A.1 and the 7 ~ 2 identification criterion is enforced
in Figure A.2. In this case, the latter identifying restriction has the added bonus of
curtailing a significant fat and skewed tail for 7 observed in Figure A.1. Also, note
that the distribution under the ©gy-based identification scheme, corresponding to
Figure 1.7 for the simplified model, is exactly the same as Figure A.1, since there
are zero instances in which one estimator is in ©y and one is out.

Finally, with the analysis of the An and Schorfheide model complete, I use
the lessons just learned to show how identification of the well-known Smets and

Wouters (2007) model may be considered in similar fashion, and conclude.

6 The Smets and Wouters Model

An important question is how to apply these results to a medium-scale
DSGE model, such as the Smets and Wouters model. In Appendix D, I prove that
the Smets and Wouters model has 7 x 1 VARMA(3,2) representation

3 2
Y=Y &Y+ Uit ) Uy (1.23)
i=1 j=1
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for which we define

2 2 !
QO=F (Ut +y Ut_j> (Ut +y Ut_j>
j=1

J=1

Collect these parameters in the vector
/
II= [(Veccbl)’ (vecdy)  (vecds) (VechQ)’} (1.24)

IT is not a reduced form parameter, but is trivially identifiable. Therefore, one may
create a GMM estimator on the basis of II, and compute small sample confidence
intervals similarly to the procedure described in this paper. Note, processor par-
allelization across many CPUs is a simple solution to make the many numericaly

searches that must be conducted feasible.

7 Conclusion

In this paper I have developed new, simple, reliable, and computationally ef-
ficient tools for empirical analysis of a specific well-known DSGE model. As I have
shown, the model is not globally identified, but suitable normalizations based on
macroeconomic priors are typically available. Although these normalizations may
cause the distribution of the maximum likelihood estimator to be nonstandard,
the tools I provide also allow the analyst to compute the small sample distribution
of the MLE under these restrictions. While discovering global identification fail-
ures in DSGE models is difficult in itself, this paper has also argued that it is of
equal importance to account for the statistical implications of a given identification

procedure.



Chapter 2

Posteriors of Globally
Unidentified DSGE Models

Under Prior Independence

Abstract. Dynamic stochastic general equilibrium models are typically
not globally identified, meaning there are distinct values of the structural param-
eters that yield the same value of the likelihood function. When the likelihood
mode is not unique, neither is the maximum likelihood estimator, and the eco-
nomic implications of competing observationally equivalent points may differ. One
common presumption is that Bayesian estimation directly addresses this problem,
since proper priors allow the economist to formally “choose between” observa-
tionally equivalent outcomes. This intuition is incorrect. Economic theory yields
independent priors, while observational equivalence is characterized by dependence
amongst the structural parameters in the likelihood. Only proper dependent pri-
ors necessarily partition observationally equivalent outcomes a-posteriori, but such

priors are not typically available on the basis of theory alone.

1 Introduction

Consider a DSGE model with likelihood function £(Y'|0). Y = (Y{,...,Y])

is a T'n, x 1 dataset of T observations of the ny x 1 observables Y;. 8 = (64,...,6,,)’
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is an ng x 1 vector of structural parameters. The structural parameters ¢ are not
globally identified at the point 6y if there exists another values of the parame-
ter, 05 # 6y, that yields the same value of likelihood regardless of data sample,
L(Y05) = L(Y|0p) VY € RT™*1 In this case, 0, and 0} are called observationally
equivalent.

Recently, the issue of global identification in DSGE models has been studied
by Qu and Tkachenko (2013), Kocigcki and Kolasa (2013), and the first chapter
of this dissertation. In the first chapter, the main concern is of how the analyst
should proceed when faced with the problem. While either admissibility or sign
restrictions are useful in distinguishing between observationally equivalent values,
it is also shown to be essential to account for the identifying restriction in the
computation of confidence intervals.

A common question that is voiced with regards to estimating unidentified
DSGE models is of how Bayesian estimators fare. The reasons for optimism are
twofold. First, identification failure does not affect the ability to calculate poste-
riors. Second, since Bayesian estimation allows the economist to specify priors, it
is commonly presumed that this will allay the identification problem. Intuitively,
proper priors may result in one posterior mode while the likelihood has two. The
posterior mode is the main object of interest for computing statistics, like impulse
responses, in Smets and Wouters (2007) and other important studies.

While the properties of Bayesian estimators under failure of local identifi-
cation have been studied by Koop et al. (2013), the implications of global iden-
tification failure are less understood. One exception to this rule is the intuition
provided in Herbst and Schorfheide (2014). As they explain, global identification
failure leads to multimodal posteriors that are reflective of the unusual contours
of the likelihood function. For instance, in a model for which there are two ob-
servationally equivalent points that maximize the likelihood function, one might
reasonably expect there to be two modes of the posterior. The good news, how-
ever, is that proper priors often “fix” the identification problem, because the mode
of the likelihood which is more heavily weighted by the prior results in a strictly

higher mode of the posterior.
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The question, however, is whether common priors for DSGE models typi-
cally allow the economist to distinguish between observationally equivalent points.
In this paper, I will show this to not be the case. The main reason for this find-
ing is that DSGE priors are typically independent; for example, theory suggests
that the coefficient of relative risk aversion 7 is somewhere between 0.5 and 3.5,
and the discount factor [ is less than 1, but the joint distribution of the priors
is not obvious. Therefore, two points that are observationally equivalent, but for
which the analyst only has independent priors, might be hard to disentangle. Joint
distributions are therefore necessary to distinguish observational equivalent points
a-posteriori, but some priors are hard to determine.

First, I describe the commonly presumed way that priors serve as identi-
fying restrictions. Then, I consider a small-scale DSGE model known to be not
globally identified. I show that independent priors do not allow the economist to

differentiate between competing observationally equivalent outcomes.

2 Priors as Identifying Restrictions

Most Bayesian analyses of DSGE models are concerned with obtaining the
mode of the posterior (See Smets and Wouters (2007), for example). This statistic
is used to compute impulse responses, and other intuitive statistics. Therefore, to
study the relationship between Bayesian and Classical estimators, it is convenient
to consider the maximum a-posteriori estimator (MAP), which is directly related
to the maximum likelihood estimator (MLE). Defining the log-likelihood ¢(Y|0) =
In £(Y]0),

OrLp = argmax ((Y|0) (2.1)
0cO

while the MAP is written

é\MAP = arg max 7w (0|Y)
0co
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where the posterior is defined by

L(Y0)p(0)

e = =)

Since the marginal distribution p(Y) is independent of 8, the MAP is equivalently
the value of the parameters which maximizes £(Y|#)p(#). Furthermore, priors for

DSGE models are typically independent. Therefore, p(6) may be written
ng
p(0) = [ [ »:(6:)
i=1

where p;(6;) is the independent prior for parameter ¢;. Then the MAP may also

be written

ng
Orap = argmax ((Y]0) + Y Inp;(6;) (2.2)
SE) —1

The MAP is only necessarily equivalent to the MLE when the priors are uniform.

Define the admissible parameter space by
®:{QZQ1 Sel S§17"'7Q
Then uniform prior for each parameter is

— 519 forﬁlgelga
U0:;0;,0;) =7

0 otherwise.

and the MAP under uniform priors is

ng
Orrap = argmax £(Y]0) — Zln(@i —0,) =argmax {(Y0) = Oyrp (2.3)
6o — 6o
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However, if priors are not uniform, the density of the prior depends on the realiza-

tion of 6 and the first-order optimality equation for the MAP is

al(Y'|0) il 1 Opi(6:)
FOC: 01xn, = - + vl —— —_— (2.4)
\ 0 00 9=§MAP/ ; pl(el) 9=0rrap 90 0=0r1ap
MLE FOC Additional 1 x ng term

Where ¢; is an ng x 1 vector with a 1 in position ¢ and zeros elsewhere.

One instance in which non-uniform priors might be useful is if there are mul-
tiple modes of the likelihood surface. Recall, observational equivalence is defined
by

L(Y|0) = L(Y|07) for § £ 0* VY € RT™>!

When 6 and 6* maximize the likelihood function, the MLE is not unique. However,
since the MAP differs from the MLE with non-uniform priors, it is of course possible
that there is still one global mode of the posterior. This statistic is appealing
because it might be used to “choose between” observationally equivalent points.
I now give an example where the structural parameters are not identified,
but proper independent priors allow the economist to select a unique mode of the

posterior.

2.1 Example

Consider the atheoretic MA(1) process

Yyr = bher + bae (2.5)

/

where Y = (y1,...,yr) is a T x 1 vector of observations and 1; and ey are iid

Gaussian, e1; ~ N(0,1) and €9, ~ N (0, 1). The likelihood for this model is written

T
B 1 11 )
0= G o {_5 CETP }
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where 0 = (61,6,)" and © = R?. The log-likelihood is proportional to
T 1 1
((Y]6) x —Emwf +62) > v
t=1

202 + 62

Therefore, the MLE first order condition is seen to be
L I
2 02
Otvire + Oonie = T Z i
t=1

Clearly, neither (/9\1 MLE hor 52 mLe is individually identifiable; the contours of the
likelihood, with a flat surface corresponding to this identification problem are de-
picted in Figure 2.1 Panel A.

Consider now the Bayesian analyst who uses priors §; ~ N(ui,0?) and
0y ~ N (12, 03) to form the posterior. The MAP is defined by

N T 11 (0 — 1)* (02— po)?
0 — —=1In(0; +63) — = = B
MAP ar%ergax { 9 H( i+ 2) 2 9% + 9% Z Yi 20% 20%

For which the first order conditions are

ZT 1 ’ 1 1 1
=1 OTnap + O5prap Oinap + O50rap i Oiniap i

for i = 1,2. This set of (fifth degree) polynomials in general has a multitude of

solutions. For example, if y; = us = 0 and o7 = 09 = 0.1, then the one FOC is

_ T+ /T2 + 0450 32
Oirviap + Oonap = 02

which again has infinitely many solutions. A depiction of the posterior under
these priors is given in Figure 2.1 Panel D; notice the exact correspondence with
the likelihood.

However, it is possible for the posterior mode to be unique, even given this

identification problem. Examples of priors that accomplish this are given in Figure
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Figure 2.1: Likelihood and posterior contours. (A) Multi-modal likelihood func-
tion. (B) Single-modal posterior distribution under priors gy ~ N(1,0.1) and
0y ~ N (1,0.1) yields one MAP near (1,1). (C) Single-modal posterior distribution
under priors gy ~ N (1,0.1) and po ~ N(1,0.1) yields one MAP near (1,1). (D)
Multi-modal posterior under priors 1 ~ N(0,0.1) and py ~ N(0,0.1).
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Table 2.1: Observational equivalence in An and Schorfheide (2007) model.

0 *
MLE MLE

T | 1.22 | 2.02
B | 1.86 | 1.86
I | 1.19 | 1.54

Uy | 1.84 1.84
Pz 0.9 0.42
Pg 094 | 094
Pr 0.75 | 0.75
o, | 0.008 | 0.04
Og 6e-2 6e-2
o, 2e-2 2e-2
Og. | le-4 | -le-2
Or, | le-d | 1le-2
Org | -le-4 | -le-4

2.1 Panels B and C. Notice, in both cases, the location of priors helps “choose”
which of the observationally equivalent values is most in-line with the economist’s

priors. The MAP corresponds precisely to the prior means.

3 Parameter Dependence, Prior Independence

The above example suggests that priors may be used to “choose” amongst
observationally equivalent points. Now, let us consider the DSGE model presented
in An and Schorfheide (2007). As proven in the first chapter of this dissertation,
this model is not globally identifiable, and any value of the structural parameters
has exactly one observationally equivalent value. This means that the maximum
likelihood estimator is not unique, and admissibility or sign restrictions must be
used to differentiate between the two.

First, using the procedure developed in the first chapter, I create a data set
using data generating value 6, and obtain two MLEs. These are given in Table
2.1. The prominent difference between the two points is that the CRRA 7 is low
in éMLE and high in @\LLE while p, is high in gMLE and low in %\ME.

Since the MLE is not unique, let us alternatively consider the MAP. A

typical set of independent priors for the parameters in this model is given in Table
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Table 2.2: Priors for An and Schorfheide (2007).

Parameter Prior Mean Std Dev
T g 2 0.25
100 x (1/8—1) g 0.2506 = 100 x (1/0.9975 — 1) 0.25
1000 x (IT — 1) g 8 = 1000 x (1.008 — 1) 6
(o8 g 1.5 1
p. B 0.5 0.25
Py B 0.5 0.25
P B 0.5 0.25
o, g 0.05 0.01
o g 0.05 0.01
o, g 0.05 0.01
Pgz = S N 0 0.25
Prz = 22 N 0 0.25
Prg = ;- N 0 0.25

2.2. T verify using Andreasen (2010)’s genetic search algorithm that the posterior
has only one global mode on the support of the prior. However, if the posterior has
the quality that the prior has “chosen between” observationally equivalent points,
it should be the case that an analyst with drastically different priors for any of
the parameters that vary between observationally equivalent points will obtain a
different posterior. Is this the case?

In order to test this hypothesis, I vary the mean of 7’s prior between 0.5
and 5 in increments of 0.1, and use Andreasen’s algorithm to find the posterior
mode in each case. The results of this experiment are given in Appendix B Figure
B.1. Clearly, shifting the mean of 7’s prior does not result in a discrete shift
from one mode to another, as might be expected, but only incremental changes in
the location of 7’s posterior. In Appendix B Figure B.2, I show that changing the
means of the priors for 7 and p, at the same time seems to only affect the posterior
mode for each parameter individually. One possible explanation for this is that
the posterior is discontinuous; since DSGE models are not variation-free, there are
large portions of the parameter space in which the likelihood is not defined.

The implication of the above experiment is that two economists with vary-
ing priors about independent parameters will not compute posterior modes that

are representative about the difference between .5 and /H\L,LE Rather, only



ol

dependent priors about the joint distribution about the parameters which differ

between /Q\M g and é\jj g Will cause the posterior mode to differ in all parameters.

4 Conclusion

In this paper, I have disspelled the commonly held notion that standard
DSGE priors may help the analyst “choose between” between observationally
equivalent economic stories from the data. Because priors are independent, but ob-
servational equivalence emerges from nonlinear dependence amongst parameters,
varying one prior at a time only necessarily effects the placement of the posterior
that individual parameter. Only substantially different joint priors will necessarily
affect the placement of the posterior substantially, but such priors are typically

hard to come by.



Chapter 3

Local Identification of Nonlinear

DSGE Models

Abstract. While rank and order conditions for the identification of lin-
earized DSGE models have recently been introduced, no formal results exist on
the identifiability of nonlinear models. In this paper, I show how to represent the
nonlinear pruned state space system derived in Andreasen et al. (2014) in minimal
linear state space representation. I use this reparameterization to apply the rank
and order conditions derived in Komunjer and Ng (2011), originally intended for
linearized models, to the nonlinear case. I confirm An and Schorfheide (2007)’s
intuition that the elasticity of demand and price stickiness are identifiable in a

nonlinear approximation of their model, but not linear.

1 Introduction

In a well-known paper, An and Schorfheide (2007) study a canonical DSGE
specification. In studying the identifiability of this model, they make two claims.
First, they assert that in a linear approximation of their model, the elasticity of
demand and price stickiness are not separately identifiable (p. 122), and that
steady state government spending is unidentified (p. 164). Second, they posit
that all three parameters are potentially identifiable simply by using a nonlinear

approximation.

52
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It was not until after An and Schorftheide’s paper, with the contributions
of Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011), and Qu and
Tkachenko (2012), that identification of linearized DSGE models was studied com-
pletely rigorously. In particular, Komunjer and Ng have provided generally appli-
cable rank and order conditions, and a thorough analysis of the An and Schorfheide
model in particular. As Komunjer and Ng show, all of the elasticity of demand,
price stickiness, and steady state government spending must be set to constants
for the complement set to be locally identified in a linear approximation, thus
confirming the first half of An and Schorfheide’s intuition.

Yet, because rank and order conditions for nonlinear DSGE models have not
been provided, the second half of An and Schorfheide’s claim remains unverified;
are these three parameters identifiable, simply by utilizing a nonlinear solution?
Furthermore, can using nonlinear approximations enhance the identifiability of
DSGE parameters more generally?

The answer to both questions is yes. In this paper, I provide a methodology
for assessing local identification of nonlinear DSGE models. Since determining the
identifiability of linear models is already a difficult problem, I approach the prob-
lem not by deriving new rank and order conditions, but by repurposing old ones. In
the first substantive section of our paper, I show that the class of nonlinear pruned
state space systems presented in Andreasen et al. (2014) may be reparameterized
to minimal ABCD or AKCY “innovations” representation. Since this is immedi-
ately the input to the Komunjer and Ng conditions for linearized models, I am
able to assess the identifiability of nonlinear models using their results. A central
observation I make is that the minimal representation of the linearized model is
nested within the minimal representation of the nonlinear model. This nestedness
feature allows the Komunjer and Ng rank and order conditions to be satisfied by a
nonlinear approximation of a given model, even when they are not in a linearized
version of the same model.

In the following, I discuss the reparameterization of pruned nonlinear state
space to minimal state space representation. I use the simple model presented

in Schmitt-Grohé and Uribe (2004) to demonstrate the approach. Next, I use
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this minimal reparameterization to study the identifiability of nonlinear models. I
show that An and Schorfheide’s predictions for enhanced identifiability in nonlinear

approximations were correct.

2 Representation of Nonlinear DSGE Models

Let x; be a n, x 1 vector of detrended, predetermined state variables, where
ng < 0o. Let y; be a n, x 1 vector of detrended but non-predetermined control
variables, where n, < co. Finally, let 6 be an ny x 1 vector of structural parameters

which belongs to the set © C R™. I consider DSGE models of the form

By f (2441, T, Yeg15 Ye)0) = Onygen, (3.1)

where 0,4y, is an (ny +ny) x 1 vector of zeros. As discussed in Schmitt-Grohé
and Uribe (2004), the solution of this model may be written as a set of decision
rules depending on z; and a perturbation parameter o > 0.! The decision rule for

Yy is the control equation.

Yy = g(xy, 0|0) (3.2)

The state vector x;’s decision rule is called the state equation.
xy = h(xi_1,0l0) + on(0)u, (3.3)

where u, is an n, x 1 vector of exogenous white noise shocks, uy ~ WN(0,,x1, In, ),

which is strictly more general than I7D. n is a rectangular matrix with dimen-

2

sion n, X n,.”© For clarity of exposition, I will henceforth interpret the non-

!The perturbation parameter accounts for precautionary behavior induced by the expected
variance of future shocks. In a linearized model, the only aspect of future shocks that affects the
agent’s decision-making process is their expected value, which is typically zero. However, in a
second-order approximation of the same model, the second moments (variances) of future shocks
matter, and are always nonzero.

2To accomodate a non-identity positive definite covariance matrix 3, (6) for the innovations
ug, the matrix n(f) may be written as a matrix product n(0) = N(0) x L,(0), where N is an
arbitrary n, x n, matrix, and L, (6) is the Cholesky decomposition of ¥,,.
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predetermined variables 3, to be the observable variables in the data.?

The functions ¢ and h are almost never known in closed-form. For this
reason, Schmitt-Grohé and Uribe proposed approximating their Taylor series ex-
pansions using a perturbation algorithm. However, for expansions of order higher
than one, it was widely observed that impulse-responses tended to diverge. This
result contradicts the initial assumption of steady state, around which the Taylor
series approximation is made. In response, Kim et al. (2008) proposed a second
step of eliminating (“pruning”) certain terms from the series expansion (See also
Lombardo and Sutherland (2007)). Pruned state space models yield convergent
impulse responses, but are no longer Taylor series of the antecedent microfounded
solution. What makes pruned state space models useful is that in conjunction
with convergent impulse-responses, the errors of pruned and unpruned state space
models are frequently of the same order. This is shown, for example, in Andreasen
et al. (2014).

Andreasen et al. also explore pruned state space models’ potential for
estimation. They do so by showing how to compute second moments in closed form,
and applying moment-based estimators, such as GMM. Yet, the identifiability of
the structural parameters in these models is not understood, which is a primitive
assumption underlying the consistency of such estimators. Identification problems
have characterized the estimation of linearized DSGE models, and resolving those
issues is not always straightforward (See Canova and Sala (2009)). It is unclear
how nonlinear approximations fare versus linear with respect to the identifiability
of key macroeconomic parameters.

Next, I review pruned state space representation of second order approxima-
tions of DSGE models. The derivation works in two steps, by first approximating
the nonlinear solution of the model, and then “pruning” that approximation. The
ultimate pruned functional form will provide the foundation for rigorous identifi-

cation analysis in the subsequent sections of the analysis.

3This assumption is made without loss of generality only to relieve obfuscation of the main
results by excessive matrix algebra operations. (—) Any elements in x; for which data is available
can be related to y; by an identity in the function g. (+-) Any variable originally included in y;
that is not observable can be moved to z;. These points will be clarified in later examples.
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2.1 Second Order Approximation

I begin by deriving standard unpruned approximations of the solution. A
first-order Taylor series expansion of the state equation (3.3) about the determin-

istic steady state (x; = z;_1 = 2*(0),0 = 0) is
i'\t ~ h1<9)/$\t,1 + h o+ U??(e)ut (34)

T =z — " is the deviation of the states x; from steady state z* = h(z*,0]|¢) and

() = Plasld)

/
Mg XNy axt—l

o) = 2anold)

Ng X1 80/

zt,1=x*,cr:0 $t71:x*70':0

The observation equation’s first-order series expansion is

5o = 00 (007 + kT (35)

~

Uy = ys—y*(0) is the deviation of the observables y; from steady state y* = g(z*,0|0)

and
ag(xb 0‘9)

dg(xy,ol6
o) — Pl olo) o

/
Thy X Mgy Oz}

9s(0) =
ri=x*,0=0 ny X1 ri=x*,0=0
That both h, = 0 and g, = 0 is proven formally by Schmitt-Grohé and Uribe.
Second-order Taylor series expansions of the state and observation equations are

written

. . 0 1 0 1
Ty~ h(0)Z,1 + hott)o + QHM(Q)E‘?fl + hisap 10 + éhw(ﬁ)oz + on(@)u; (3.6)

. 01 1

Ui ~ 9.(0)7; + o+ §Gm(0)xf@2 + g0 + 5900(9)02 (3.7)
Details on the functional form of the coefficient matrices appearing in (3.6) and
(3.7) are given in Appendix B.1, and that the cross-partials between states and

perturbation parameter are zero is proven by Schmitt-Grohé and Uribe. Finally, I
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have made use of the convenient shorthand

i\?":i\t@@@
N————

n times

for ® the Kronecker product (see Abadir and Magnus (2005)).
With this second-order approximation of the state and observations equa-

tions in-hand, the next step is to “prune” the expansion. I now discuss pruning.

2.2 The Pruned State Space System: Baseline Case

The second-order approximation (3.6) implies that Z; is only a second or-
der polynomial in the elements of Z,_1, since it is linear in 7%%. However, since
Z;_1 is also linear in 55(?_22, Z; is a function of third and fourth-order terms in pe-
riod ¢ — 2, including 9%, and 2%,. Inductively, each term Z; is a function of
lim,, oo uy,. Therefore, a shock to u; is potentially explosive in its implied dy-
namics for lim,,_,., Ty1n, and belies the original assumption of steady state. All
approximations of the solution of order two or above are prone to similar dynamic
inconsistency.

Pruning is a method of augmenting the model to prevent such explosive
dynamics, while maintaining the accuracy of the approximation (measured, for
example, by Euler equation errors). To motivate it, recall, perturbation is a method
that approximates the Taylor series expansion of the solution at one point in time;
when the expansion is second order, approximation error is third-order. Second-
order pruning is similarly a method that removes terms of order three and above.
However, these are terms from the expansion of 7, over time, such as 7°°,, 794,
and 7%, Since these terms are small, the hypothesis is that removing them will
not affect the substantive economic implications of the model. The validity of this
claim is justified, for example, by Andreasen et al. (2014).

Andreasen et al. prune as follows: Let 7 represent the state vector with a
rule of motion corresponding to the second order approximation, (3.6); s=“second-

order.” Let EE{ correspond to an entirely separate state vector, with a rule of motion

corresponding to a first order series, (3.4); f=“first-order.” Now, in (3.6), replace
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7, with 2/ 4+ Z5. This substitution yields the system
-~ ~8 -~ ~8 1 . S 1
33{ tr = hx(e)(x{—l +77 )+ §sz(9)(x{—1 +xt—1)®2 + §haa(9)02 +on(0)uy (3.8)

& = ha(0)T_; + on(0)u; (3.9)
=~ =~ 1 ~s5®2 1 2
z; = h.(0)T;_, + §Hm(9)xt_1 + §hw(9)0 + on(0)u, (3.10)
To reduce this system by pruning, first observe that the quadratic terms of interest
(55\{—1 + fc\ffl)m = 55\{—1 ® 5/’7\{—1 + 5/’5\{—1 QT+ T, ® S/C\{—l +T, 0T,

Both 7/, @, and Z5_,®7/_, are inductively functions of Z:%2@7/_,. Meanwhile,

T¢ | ®T5_, is a function of Z:%4. Since each of the terms %2 @ 2/ | and 3%} are

of order higher than two, they are “pruned” off the expansion. In other words,

they are collected into an third-order error. Thus, (2] + 752 ~ 2/ @ Z/, so
A N 1 . 1
T & ha ()T + 5 Hea (0T + Shoo(0)0” (3.11)
Similar operations on the control equation yield
~f | == ~f | =s 1 ~f®2 1 2
Yi 9~ g.00)(T; +77) + EGmr(Q)xt + 5900(8)0 (3.12)

Equations (3.11) and (3.12) encapsulate second order pruned state space dynamics.

However, it is useful to consider slightly more compact notation.

7! 0 hy 0 0 zl |
| = thoeo? + |0 hy 3He| X |Z5,
/x\{®2 o*n®?vec(1,2) 0 0 A% fc\ﬁ@f
_ . -
o0 ’ 0 ud? — vec(I,2)
+lo o 0 0 x Y (3.13)

0 o*n®? o(n®hy) o(h,@n)
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The rule of motion for the observables (3.12) may also be rewritten in terms the

expanded state vector as

1 /x\,{
W0 = 590000 + g0 g0 3Gua | B (3.14)
~f®2
Tt

Equations (3.13) and (3.14) are the main objects of interest in Andreasen et al.’s
analysis, and are called pruned state space representation. The preliminary con-
tribution of this paper will be to show that many elements of this representation
are redundant and/or nonminimal. Before returning to this claim, I first consider
a class of pruned state space models which will become useful in the following

sections.

2.3 Generalized Case: Nonlinearity in Errors and States

The state equation (3.3) implies linear independence between the states z;
and errors u;. This is problematic if the theory at hand implies nonlinearities
between states and errors, a case I will show to be typical. Yet, this can be
accommodated by the current set-up. Say that the model implies nonlinearity
between the states and some errors having covariance matrix ¥, (6) with Cholesky
decomposition L, (#). Defining these errors v; and expanding z; to [x; v +1} /, the

following has the same functional form as (3.3):

LUZ;] = [h@tbovt’a‘e)] + o [LOJ Ugt1 (3.15)

Given this setup, and using the arguments introduced in the previous section, a

first order Taylor approximation of the rule of motion for 7; may be written in

4Note, I have momentarily advanced the timing convention forward one period from the
previous convention in Equation (3.3); (3.15) has the functional form s;y1 = h(st, o]0) + onuss
for states s;.
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exactly the same functional form as (3.4), given we have defined

n(6) = <8h(xt_1,vt,a|6’) ) « L,
xr—1=x*,ut=0,0=0

v,
In contrast, a distinction arises with respect to the second order approximation,

Ny XNy,

due to the nonlinearity between x;_; and v;. In this case, the second-order accurate

expansion of the state equation is

1 1
Ty & h(0)Ti1 + EHM(Q)@@_QI + §JHM(€)VeC(/x\t_1u;)
1 1 N 1
+ 5‘72Huu(9)u£®2 + 50Hux(6)vec<utx;—1) + Ehoa(e)az +on(@)u; (3.16)
The functional forms of the coefficient matrices in (3.16) are given in Appendix Sec-

tion B.2. Mimicking the pruning steps in the previous section, this approximation

implies the system

7! 0 hy 0 0 o
T | = |3hooo” + 30°Huuyz | + | 0 hy §Hoo| X | T
/®? o2n®vec(I,) 0 0 h%2 ki
0 0 0 | " |
o
N L 1 X u?Q—Vec(]n%)
o vee(T;_yup)
0 o*n** on®hy) olh,®@n) ~f'
vee(usT]_)

Thus, the pruned state space system (3.17) has the same functional form as (3.13),
aside from differences in exclusion restrictions that have arisen from second-order
dependence between ’:f{_l and u;. In other words, (3.13) is simply the special case
of (3.17) in which H,,, H,,, and H,, are all zero-matrices. Finally, nonlinearities
between states and errors in the observation equation function g only need not be
considered directly, since any element of 1, may be placed in z; as well. Therefore,

the pruned observation equation approximation for the current case remains (3.14).

While the generalized pruned state space, equations (3.17) and (3.14), is
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relatively compact, it is distinct from a purely linear system. Yet, there are in fact
many statistical similarities between representations. In the following section, I
show that the pruned state space may be reparameterized to minimal state space

representation. This insight will be central to identification analysis.

3 Minimal Representation

In this section, first, I show that deviations-from-means of the pruned state
space may be reparameterized to ABCD representation. This representation, famil-
iar from Ferndndez-Villaverde et al. (2007), was previously thought to be applicable
only to linear approximations of DSGE models. The ABCD model may also be
written in so-called AKCY “innovations” representation, which recasts the system
in terms of optimal linear forecasts and forecast errors. Second, exploiting ABCD
representation, I show that the pruned state space model is not minimal. I show
how to condense the model to satisfy minimality, setting the stage for identification
analysis. Finally, I show how to carry out the aforementioned reparameterization

in an example.

3.1 The Pruned State Space is Nonminimal ABCD

As a preliminary step, I show how to directly reparameterize the generalized
pruned state space model equations (3.17) and (3.14) to ABCD and AKCY form.
To do so, I make three general assumptions regarding the pruned state space

solution.

Assumption 1. The modulus of all eigenvalues of h, are less than one.
Assumption 2. The zeros in hy, Hy., Hyy, Hyy, and Hy,,, do not vary over 6 € ©.
Assumption 3. The fourth moments of u; are finite.

Assumptions 1 and 3 are also made by Andreasen et al. Assumption 2
is typically implicit of DSGE analysis. Using these assumptions, I derive ABCD
representation in Appendix C in three simple steps. The conclusion of these

operations may be summarized with a concise proposition.
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Proposition 1. Under Assumptions 1, 2, and 3, the pruned state space (3.17)

and (3.14) may be written in terms of deviations-from-means as an ABCD model

Xt - A(@) thl + B(G) Et

(3.18)
Y, = C) X,.n + D) e

where the dimensions of the variables are denoted nx, ny, and n..

The ABCD representation of the model involves a nontrivial transforma-
tion. In terms of the variables and parameters defined thus far, the elements of

ABCD representation are written as follows. First, the state vector X; is defined

as
X, =M x Z, for Z, = Z, — E(Z|0)
with
%
Zy=| @ and E(Z,)0) = (I, — P(0))"'J(0)
D; #]®*

for D;f the Moore-Penrose pseudo inverse of the n,-dimensional duplication matrix

D, , and K and P ancillary parameters defined by

0 hy 0 0
J<0) = %hoaa2 + %U2Huujn% P(9> =10 hy %Hxanz (319)
nzXx1 nzXn
’ oD n®?vec(I,2) o 0 0 D} h2D,,

where ny = 2n, + n,(n, + 1)/2 is the dimension of Z;, and M is an appropriately

defined zero-one selection matrix of the form

m 0
M=10 m
0 0

3 o O

The location of zeros and ones depends on the idiosyncratic microfoundations of
the model at hand. For intuition, M is roughly a matrix that selects the states

which have some persistence. The construction of the M matrix, featuring a simple
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example, is discussed in Appendix C. The elements of the state equation A and

B are written

A(0) = MP(O)M' B(#) = MR(O)N'
where R is the ancillary parameter
on 0 0

nzXn
o 0 O-QD:IU@)ZDM O-DT—:—I (77 ® hg + (hx @ U)an,nu)

for K, », the n, x n,-dimensional square commutation matrix, and N another

zero-one selection matrix of the form

I,, 0 0
N=10 1,
0 0 n
N also defines the error, by
Uy
er=Nx | D} (uf® — vec(I,2))
f

vee(T_quy)

For intuition, N selects only the products within vec(Z/ ,u}) for which the state
element of the given product has persistence. Again, a full explanation of of
how N is constructed is given in Appendix C. The variance-covariance matrix
Y (0) = E(e44]0) is computed in Appendix A. Finally, the observables are defined

as

1
Vimof + 1t — (anec? + 5(0) x B(Z10))

for S(@) the final necessary ancillary parameter

S(0) = [ga; e %GMDM}

The empirical analogue of Y; is data that has been separated from means. Finally,
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the matrices defining the observation equation are given in terms of the matrices

above by
C(0) = S(O)P(O)M’ D(0) = S()R(O)N'

While the transformation from pruned state space to ABCD evidently requires

some rearranging, there are two immediately properties that are useful.
Corollary 1. ¢, is WN(0,%.(0)) for finite ¥.(6).
Corollary 2. The eigenvalues of A are less than one.

Corollaries 1 and 2 are proven in Appendix A. These results emphasize
that not only is it possible to rearrange the pruned state space to a representation
which looks like something familiar from analysis of linearized models, two common
assumptions for linearized DSGE model are also satisfied. There is one property

of the above ABCD representation, however, that is less appealing.
Corollary 3. {A,C} is not observable.

Corollary 3 is also proven in Appendix A. Given the ABCD representation
of the pruned state space is non-observable, the most serious implication is that
it is also therefore nonminimal.> Minimality is a key assumption of, for example,
Komunjer and Ng (2011)’s rank and order conditions for identification in linearized
models. Without it, such results are not applicable.

Although Komunjer and Ng’s rank conditions pertaining to ABCD repre-
sentation require minimality, the are also divided into two subsets of conditions:
Minimal ABCD representation for singular models (ny < n.), and minimal AKCX
representation for nonsingular models (ny > n.). Thus, the careful reader might
initially guess that nonminimality of ABCD is not necessarily problematic, since
models that have stochastically singular ABCD representation for linear approxi-

mations may have nonsingular ABCD representation of their corresponding pruned

5Definitions of key terms, such as observability, and its connection to minimality, are given
Appendix D. These will be used throughout the rest of the paper. The concept of minimality
comes from systems theory, and the definition in the Appendix is duplicated from a major text-
book in that field, Kailath et al. (2000) page 765. See also Komunjer and Ng (2011) Definitions
5-S and 5-NS.
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second order ABCD representation.’ However, uncontrollability of ABCD also im-
plies uncontrollability, and hence nonminimality, of AKC3. This may be seen by

forming companion innovations form using one additional assumption.
Assumption 4. For every 6 € ©, D(6)X.(0)D(0)" is nonsingular.

Proposition 2. Under Assumptions 1-4, the pruned state space (3.17) and (3.14)
may written in terms of deviations from mean in AKCY innovations representa-

tion R R
Xy = A0) Ximqpr + K(O)a

~ (3.21)
Y, = C(9) Xi1jp—1 + ag

where )?t‘t i1s the optimal linear predictor of X, given the history of observations,
a =Y, — C)/(\'ﬂt is the forecast error, and K(0) is the steady state Kalman gain
defined by

K = (AXxC' + BY. D) x !

where Y(0) is the covariance matriz of the forecast error
¥ =C0¥xC'+ Dx.D'
and Xx(0) is the covariance matriz of the state variables X, defined by
Yx = AXx A + BY. B — (AXxC' + BY.D') x ¥ x (CXxA' + DX.B)

This expression is known as the discrete algebraic Ricatti equation (DARE).

I provide only a short proof to Proposition 2 in Appendix A, since it follows
directly from Proposition 1 when additionally Assumption 4 is satisfied, using well-
known results. Further details on this closely related representation are available

in Hansen and Sargent (2005).

SExplicitly, a linearized model is singular if ny > n,. However, for pruned nonlinear models,
the requirement for singularity is ny > n. = (1 4+ n,, + (ny + 1)/2)n, where n,, is the row
dimension of m in Appendix C. In most cases, ny < m. even when ny > n,. For example,
consider the case where ny = 6 and n, = 2. In linear ABCD representation, this model is easily
singular. Now, assume n,, = 1. Then, n. = (1 4 n, + (ny, + 1)/2)n,, = 7, implying the pruned
second order ABCD representation is not singular.
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Clearly, because {A, C} is known to not be observable, AKCY representa-
tion is also not minimal. Therefore, the implication of Proposition 2 is that the
rank and order conditions derived in Komunjer and Ng are not immediately appli-
cable. In the following section, I provide simple steps to obtain minimal ABCD and
AKCY models starting from either nonminimal representation. Then, I provide a

concrete example.

3.2 Constructing Minimal Representation

The reason why either ABCD or AKCY is not minimal is that it is not
observable. Specifically, the currently defined observability matrix O will never be
full column rank due to linear dependence between the first to block-columns of
C; see, for example, the proof to Corollary 3 in Appendix A. It turns out that this

problem is easy to amend. Define
ot =2l +3;

It follows from the first two block-rows of the ABCD representation, given following

Proposition 1, that

R N 1 : -
ma{ T = (mhym!) mal " + (imeanm* ) m* D /5 + omnu,

Therefore, the original ABCD system may immediately be rewritten as a new

smaller dimensional ABCD model

Uy
~f+s ~f+s
mx; mx;_,
= A(0) + B(0) | Df (uf? — vec(I,:
— ’ | nvec(Th_quy) |
X . ~ S/
: _ M - (322)
Ut
/\f—i,-s
mx
Y, = C(0) ez | TDO) | DE (uf? = vee(Lz))
m* Dy w7 ' f ’
¢ nvec(T_ju})
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where
4 mh,m' | %mHmD%m*’
0 mD;} h®2D,, m*
s |omn so'mHuwDa, | 30(Heu t Hualom )0
0 | o*mD;} n®?D,, : omD} (n® hy + (hy @ ) Kp, 5, )0
c() = [ Geham/ ‘ %(ngmx + wah§2) anm*l ]
D(0) = [ 09z ; %02 (92 Huu D, + Gran®*Dy,,) ; ds }
and

1
d3 - 50- (gz(Ha:u + HumKn;c,nu) + Gzz(n ® hw + (h33 ® n)Knx,nu)) n,

In fact, in many cases, this new ABCD system (and corresponding AKCY) is
observable, and minimal. In order to substantiate this claim, and to clarify the

derivations thus far, in the next section I provide a simple example.

3.3 Example: Schmitt-Grohé and Uribe (2004)

To make the methodology for minimal reparameterization of pruned non-
linear models concrete, in this section I show to obtain ABCD and AKCX repre-
sentation using a microfounded example. Consider the simple neoclassical growth

model studied in Schmitt-Grohé and Uribe (2004):

¢ =BE{c ) (@Akisy +1—10)} (3.23)
ct + kt-i—l = Atkf + (]_ - (S)kt (324)
InAi 1 =plnA; + ougyq (3.25)

k; is capital, A; is total factor productivity, and ¢; is the only observable variable,
consumption. For the purposes of this example, I will assume the scalar shock
us41 18 standard normal. The structural parameters of the model are collected in

the 5 x 1 vector 8 = (B,0,a, p,7v)’, and o is the perturbation parameter. Due



68
to nonlinearity between states and errors in the Fuler equation, the states are
!/
defined to be x; = [kt Ct] the single observable is y; = ¢;, and the single shock is
uy ~ WN(0,1). The parameter value studied in Schmitt-Grohé and Uribe is
Oy =

5x1

(5=09516=110=031p=01y=2) (3.26)

Let us consider then the 5-dimensional parameter space 8 € © in which p = 0

always, and all other parameters are both real-valued, and imply a solution exists.

Given this restriction, the model is written in the form of (3.15) as

ki h(k?t—h Ci—1,1n At|9) 0
Ct = |- - - - - 2x1_ . +0 |0 Ut+1
In Ay 0

Note, In A;44 is playing the role of vy in Equation (3.15). The (rounded) values
of the solution in the form of equation (3.16) are

2]
E| _[0.42 0] [k L [-0004 0 0 0] 1 1y
al 025 o |7

7

o —0.003 0 0 0| k16
—~  ——— N ~ v g
o hz(00) Ty 1 Hyz(60) L Ci1 i
—_——
z2%
—0.012 0] [k1u —0.04] , [-0.012 0] [k 1w
+ R + u? + R
—0.008 0| |&_ u ~0.03 —0.008 0| |&_ u
N — N—— N—— N — N——
%aqu(Go) VeC(Tt—1u}) %U Huw(60) %UHuz(HO) VeC(usz;_,)
+

0.24 1.39

—0.1 0.84

N—_——
Lhoo(00)c?

an(fo)
"These are computed using the Dynare code SGU2004.mod provided freely online by Johannes
Pfeifer.

——
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and the observation equation is merely an identity.

~ ~ ~R2
=0 1@+ 0 F+ (3.28)
T — ~~~ 1 6)o2
Yt 2900()
gz(eo) %Gxx(go)

The zeros in h, and H,, arise due to the fact that TFP is not persistent, p = 0.
Since we are considering the parameter space © in which p = 0 always, Assumption
2 is satisfied. In order to simplify the model at hand to ABCD representation, I
now use the three-step methodology described in Appendix C.

Step 1. The pruned model may be represented by the rule of motion
Zy = J(0) + P(00)Zi—1 + R(00)Uy (3.29)

Vi = S(600)Z, (3.30)
where J, P, and R correspond to the expressions given previously in equations

(3.19) and (3.20).

/
z= [ o ko )7 b (Y

/
_.f s _ n ~
Vi =¢ +¢ U = |y Uf -1 kuw o
1x1 4x1

/
J(0)=[0 0 020 —013 1.95 118 0.71]

7x1
042 0 0 0 0 00 - .
140 0 0 0
0250 0 0 0 00
0 —0.04 —0.02 0
0 0 042 0 —0.004 0 0
0 —0.03 —0.02 0
Ply)=1 0 0 025 0 —0.003 0 0| R(bp) =
X7 x4 0 1.95 1.17 0
0O 0 0 0 018 0 0
0 1.18 071 0
0O 0 0 0 011 0 0
0 071 043 0
0 0 0 0 006 00 - .
S(eo):[o 101000
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Step 2. The expected value of Z; is defined by

E(Zi|0) = (I: — P(6p)) ' J(6o) = [0 0 0.35 —0.04 2.37 1.43 0.86]
7x1

Therefore, equations (3.29) and (3.30) may be written
Zy = P(00)Zy_1 + R(60)U, (3.31)
Y, = S(60) Z, (3.32)
for Z, = Z, — E(Z)|0y) and Y, = Y, — S(60)E(Zi|6o).

Step 3. Using the positions of zeros in P and R as guidelines, define

m 0 0
m:[1 o] m*:[100} M=10 m 0
3xT7
0 0 m
10 0
nz[lo] N=1o1o0
3x4
0 0 n

Using M and N as defined above, we have ABCD representation, equation (3.18)

with

7{\{ Ut
Xt:MXZ\t: 7{;?—035 Et:NXUt: U?—l
3x1 ~ 3x1 ~
(k)2 —2.37 ki
042 0 0 (140 0 0
AB) =1 0 042 —0.004] Bl)=1| 0 —004 —0.02
3x3 3x4
0 0 018 0 195 117
MP(6o) M’ MR(60)N'
C6) = |0.25 0.25 —0.003] D) = [0.84 —0.03 —0.02

1 1 o
X3 SP(60)M’ X3 SR(60)N’

Assume E(u?) = 0 and E(uj = 3); this is true, for example, if u,; is standard
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normal. In addition, observe that the rule of motion for E{ evaluated at 6 is
K = 0.42/14\:{_1 + 1.4u,;, we have E(?{:\{QWO) = 1.4%/(1 — 0.42%) = 2.37. Then the

covariance matrix of the errors is written

1
Ye(0o) = E(eigy]60) = |0 2
3x3
0 0 237

Minimal Representation. The controllability matrix C(6,) for the ABCD
system is full row rank, implying it is controllable. However, the observability

matrix is

C 0.25 0.25 —-0.003

Oy =|CxA| =011 0.11 —0.001
3x3

C x A? 0.04 0.04 -0.001

A necessary and sufficient requirement for observability, and hence minimality, is
that O is full column rank. However, it is clear that the first two columns are

linearly dependent. Using the suggested approach from Section 3.2 gives

K +%k —035] [0.42 —0.004] 1.40 —0.04 —0.02]
~f o X1+ €t
(k)2 = 2.37 0 018 | 0 195 117
X: o _ B(00) _ (3.33)
Y, = [0.25 —0.003] X1+ {084 —0.02 —0.02] &
ngo) ngo)

This ABCD system is both controllable and observable, and hence minimal. Fi-

nally, AKCY innovations representation is easily constructed by solving the DARE,
/

yielding () = 0.71 and K(6y) = [1,66 —0_23} . This representation is also

minimal.



72

3.4 A Key Property: Nestedness

The first order minimal ABCD representation of the SGU model is in fact

nested within minimal nonlinear representation, Equation (3.33). It is given by

kK = 042k, + 1.40u

i (3.34)
e = 025k, + 084w,

with the linear version of innovations representation K (6y) = 1.66 and 3(6y) = 0.71
also nested within the nonlinear versions of K () and ¥(6y). Ultimately, this is
due to the fact that higher-order Taylor approximations nest lower-order approx-
imations. Since none of the matrices A, B, C, D, ¥., K, or X are themselves
identifiable, it is impossible to conclude that higher order models will always pro-
cure the identification of weakly more parameters than nonlinear. But clearly, this
outcome is worth consideration.

In the next section, I consider the local identification of nonlinear models
versus their linear counterparts, using the minimal representation of nonlinear
models developed in this section, and repurposing the rank and order conditions
derived for minimal linearized models by Komunjer and Ng (2011) to this case. I
first show that exactly because of the nested nature of the higher order Schmitt-
Grohé and Uribe solution, the identification of strictly more parameters becomes
possible. Finally, I conduct a full analysis of the model of An and Schorfheide
(2007), which was also studied in Komunjer and Ng. Again, I observe a nested

nature of the model.

4 Local Identification

Komunjer and Ng (2011) derive necessary order conditions, and necessary
and sufficient rank conditions, for local identification of the structural parameters
in DSGE models. These conditions are based on identifiability from the spectral
density, i.e. the sequence of first and second moments of an infinitely long data
set. The results are split into two sets of conditions, one for stochastically singular

models ny > n., and the second for stochastically nonsingular models ny < n.; the
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two results coincide only if ny = n.. The conditions framed around the singular
case are based on minimality of ABCD representation, while the conditions under
nonsingularity rely on minimal AKCY representation. In either case, the results
are intended for linearized DSGE models, which are easy to represent in such
functional forms.

In the previous section, I have shown that pruned second order approx-
imations of DSGE model solutions also may be expressed in minimal ABCD
or AKCY representation. In these models, the dimension of the error is n. =
(1+ 1y )1y + 1y (ny + 1) /2, where n,, is the dimension of the matrix m. Given this
fact, in most cases, n. > ny. Therefore, I will direct attention to this set of rank
and order conditions directed towards minimal AKCY representation.

In order to make this set of KN conditions operable, we require one final

assumption.

Assumption 5. The mapping A : 0 — A(0) is continuously differentiable on ©

where

A(B) = [ vec (A(0)) 1 vee (K (6))" vec (C(0)) 1 vech (£(9)) ]

Furthermore, define the following matrix of derivatives end elements of A:

[ ovecA(d) T
o Yeé(é, (, ), i 14(,9,) /,@i Iy = 1Iny ® {1(797) ;
ovVeCcK(0) ! /
A(0) = ,,,QGL,,L,,,,:K,(?), Ol (3.35)
I R e N
ovechx (o) | 0
L 907 ; ny (ny +1)/2xn% i

Then, we have the following immediate result, a verbatim statement of Komunjer
and Ng Proposition 2-NS. Recall, under Assumptions 1-3, Corollary 1 ensures &;

is white noise.

Proposition 3. Suppose n. > ny and Assumptions 1-5 hold. If the rank of A(0)

remains constant in a neighborhood of 0y, then a necessary and sufficient condition
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for 6 to be locally identified from the autocovariances of Y; at a point 6y in © 1is

rank A(6p) = ng+nx. A necessary order condition is ng < 2nxny +ny (ny +1)/2.

Because the leg-work of reparameterizing the nonlinear model was accom-
plished in the previous section, in this section, we are able to concentrate on the
implications of Proposition 3 for the identifiability of nonlinear models. In partic-
ular, one item of interest is how the identifiability of parameters in a second order
pruned approximation of a model compares with the identifiability of parameters
in a linear approximation of the same model. As we have seen, a relic of the nest-
edness of Taylor approximations is that minimal ABCD and AKCY representation
of the linearized Schmitt-Grohé and Uribe model (3.34) is contained within the
ABCD and AKCY. representation of the second order pruned model (3.33). Thus,
intuition suggests that identifiability of certain parameters may be enhanced in
the higher order case. Yet, the validity of this hypothesis must be tested.

In the next subsection, I study the identifiability of the parameters of the
Schmitt-Grohé and Uribe model using a linear versus nonlinear approximation. I
confirm the hypothesis that strictly more parameters are identifiable in the non-
linear model. In the following section, I turn attention to the model of An and
Schorfheide (2007), the linear version of which is also studied by Komunjer and
Ng. Beginning with the identifying parameter restrictions Komunjer and Ng sug-
gest, I show that nonlinearity allows one to relax a subset of these restrictions. I
confirm An and Schorfheide’s intuition that three important macroeconomic pa-
rameters become identifiable in a nonlinear approximation which were otherwise

not identifiable using a linear approximation.

4.1 Example: Schmitt-Grohé and Uribe (2004)

As I have shown, the linearized model of the Schmitt-Grohé and Uribe
model is nested within the second order pruned model. In Figure 3.1 I provide
values for both A and A evaluated at 6, for both the linear model (3.34) and
nonlinear model (3.33).

First, consider the statistics corresponding to the linear approximation. In
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First-order approximation. Order condition not satisfied. Rank(A(6)) = 4.

A(6o) = [0.42 1.66 0.25 0.71]

4x1

0.09 —0.33 1.07 —0.05 0 0
A(B) = 0.55 —0.56 —0.70 0.13 —0.65 1.65
e | =004 —0.10 075 —0.05 0 —0.25

-0.18 0.71 —-0.50 —-0.28 0.22 0

Second-order pruned approximation. Rank(A(fy)) = 9, achieving rank con-
dition. Above linearized model statistics are nested in bold.

A(6p) = [0.42 0 —0.004 0.18 1.66 —0.23 0.25 —0.003 0.71]

9Ix1

[ 0.09 —-0.33 1.07 —0.05 0 0 0 0 0 ]

0 0 0 0 0 0 0.24 0 0

-0.01 -0.10 -0.02 0 0 0 0 —-024 O

0.07 —-0.28 090 —0.04 0 0 0 0 0

A(6y) =] 0.55 —0.56 —0.70 0.13 —0.65 1.65 0 0.13 0
9x9 027 -094 -0.16 0.08 —0.25 0 1.65 0 0.13

—0.04 —-0.10 0.75 —0.05 0 —-0.25 O 0 0

0 —0.06 —0.02 0 0 0 0 —-025 0
|—0.18 0.71 —-0.50 —0.28 0.22 0 0 0 0

Figure 3.1: Identification of Schmitt-Grohé and Uribe model: Linear versus sec-
ond order pruned approximation.

this model, nx = ny = 1 and ny = 5. So, 2nxny + ny(ny +1)/2 =3 < ny =
5 implies the necessary order condition in Proposition 3 is not satisfied. Thus,
without even considering the rank of A, it follows that the entire 5-dimensional
vector 6 is not identifiable, and at least two parameters must be set to constants
for their complement in 6 to be conditionally identified.

Now, consider the same statistics A and A for the second order pruned
version of the SGU model, also given in Figure 3.1. The elements of the 4 x 1 di-
mensional A from the first order approximation are contained within the 9 x 1
dimensional A for this version, in bold. Since nxy = 2 and ny=1, we have
2nxny +ny(ny +1)/2 = 5 = ny, thus satisfying the necessary order condition for

identifiability, unlike the linearized model. More interesting, though, is the rela-
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tionship between A for the linear and nonlinear approximations; again, I highlight
the feature of nestedness using bold. In fact, in the second order pruned version of
the Schmitt-Grohé and Uribe model, the 9 x 9 matrix A() is full column rank at
0y, satisfying the necessary and sufficient condition for local identification of the
entire vector 0 at 6 in Proposition 3.

The SGU model has helped illustrate the important insight of this paper:
Higher order approximations of DSGE models nest lower-order approximations,
and the additional terms from nonlinear approximations can help identify key
macroeconomic parameters. In the case of the Schmitt-Grohé and Uribe model,
at most 3 parameters are identifiable using a linear approximation, but all 5 are
identified at 6, by simply using a nonlinear approximation.

As I have shown, analysts might be able to overcome identification problems
faced in linearized models simply by using higher-order approximations. While
general statements to this effect are difficult to make, the improved identifiability of
DSGE models from nonlinear approximations is not limited to the simple Schmitt-
Grohé and Uribe model. In fact, the pruned state space approximation can also
be used to identify more parameters in more empirically plausible specifications,

like An and Schorfheide (2007)’s. I demonstrate this fact in the following section.

5 Application: An and Schorfheide (2007)

The An and Schorfheide model, which includes the baseline elements of
many DSGE models, is well-known and well-studied. The Appendix to the first
chapter of this dissertation derives the nonlinear equilibrium equations of the model

of this model as

% (1 — exp {Tln @}) + ¢(exp {InIL;} — II) ((1 - %) exp {InTL;} + %) -
6BE; [exp {In(¥1) — (%) — 7 (1n(Coyr) (1)) }

(exp {InIl;1} — II) exp {In Ht}} —1=0 (3.36)
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Table 3.1: An and Schorfheide (2007) model parameter and variable names.

. Structural Params (15) Endogenous (6) Shocks (3)
1 . 7 CRRA Z; TFP e TFP
2 | B Discount factor G; Gov spending eqt Gov.
3 v Inverse elas. of demnd | R, Nominal int rate e Int.
4 ' ¢ Index of price stckness }/}t Nom. detr. output
5 1 v Avg. gr. rate of prod. | II; Inflation
6 : II St. state level of infl. @ Nom. detr. cons.
7 1 G St. state level of G;.
8 | 1, Taylor rule infl. coeff.
9 | ¢, Taylor rule out. coeff.
10 P A persistence
11+ py g persistence
12 | pr Ty persistence
13| 0, &4 std error
14 Oy Egt std error
15 1 0, &y std error

LE; [exp {ln Ry —Inlly; — 7 <ln(a§+1) — ln(@)> —Iny—1In Zt+1H —1=0
(3.37)

—InR+(1—p)(Iny—Inp+ (1 —t¢;) Inll — 4 (1/7)In(1 — v)) + p, In Ry
+ (1= p)br InTl + (1 — p)tby(InY; —InGy) + 0 = 0 (3.38)

— exp {ln?t} + exp {ln (Z +In Gt} /(1 — g(exp {InII;}
— )2 exp {In Gt}) =0 (3.39)

—InZ;+p.InZ,_1+0.6,4=0 (3.40)

—InG,+(1—p,)InG+ p,InGy_y + 04600 =0 (3.41)

All variables and structural parameters of this model are given in Table 3.1. The
shock vector u; = [e,,, €4, €r4) is distributed as u; ~ WN(0, I3). In all, there are six

key equilibrium equations (A.17) - (A.22) that completely characterize equilibrium
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for this model stated in terms of the six (detrended) variables of interest In 7,
Gy, InR;, InY, = In(Y;/A;), In1l;, and In C, = In(C}/A;). The shocks are €, €4,
and e,,. Henceforth, these total nine variables will be collected in the following

vectors, where v; is the ancillary parameter for models with nonlinearities in errors

and shocks defined in (3.15).

/ ’
7y v = |[nZo MG MR e e e (3.42)
(6x1)
R /
Y = [lnRt InY; InIl (3.43)
(3x1)

With these definitions in mind, the equilibrium equations may also be represented
concisely in the form of Equation (3.1). Thus, the solution will have the form of
Equations (3.2) and (3.15). Define h(s) to be the third row of h. Then the state

equation may be expressed as

In Zt Pz In Zt—l + €.t - 0 -
X
In Gt Py In Gt,1 + Egt 3
] R h ( |9) Oz . : Ezt+1
n fy )\ Tt—1,Vt, 0
= | +ollo o || |esn (3.44)
€241 0
0 0 oS 67“1E+1
Egt+1 0 —— | N——
L L.(09) i Ut41
| Ert+1 ] L 0 i ~ -~ -
N—— n(0)
[z ”£+1]/

Definining g;) to be the i-th row of g, the observation equation is simply stated as

In Rt In Rt
Y, | = | g (@, 0l6) (3.45)

In IT, 93y (¢, 010)
—_— —

Yt g(z¢,0l0)

The value of the structural parameters at which I will study identification is 6,

given in Table 3.2. Solving the model and using the same 3-step procedure given
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Table 3.2: Candidate parameter point 6.

. Parameter O
1 T 2
2! B 0.9975
3 } v 0.1
4 ¢ 53.68
5 5 1.002
6 I 1.008
7 G 1.18
8 ! U 1.5
9 U, 0.125
10 | P 0.9
11 Py 0.95
12! 0y 0.75
13 o, 0.003
14 o, 0.006
150 o, 0.002

in Appendix C and demonstrated in the context of the Schmitt-Grohé and Uribe
model in Section 3.3 yields the minimal ABCD representation in Table 3.2. 2, ¢y,
and r; are first-order approximations of TFP, government spending, and interest
rates. Second-order terms are collected into the 5 x 1-dimensional x; and 13 x 1-
dimensional &;.

Compare this ABCD representation with the minimal ABCD representa-
tion of the linearized version of the same model at 6 in Komunjer and Ng (2011)
Table 1. Similarly to the Schmitt-Grohé and Uribe model, in this case, it is quite
clear how the linear model nested within the nonlinear approximation. Therefore,
a natural question to ask is whether more parameters are identifiable in this case
as well. In Table 3.2 T also consider six sets of restrictions on the parameters of
the model, and whether the complement set is identifiable in a linear, or nonlin-
ear model. Restrictions 1 and 2, which are both restrictions for 5 parameters,
correspond to those Komunjer and Ng show successfully identify the complement
13. These restrictions also work for the nonlinear model. As Komunjer and Ng
show, this is the bare minimum amount of parameters which must be fixed for the
complement set to be conditionally identified.

Although many parameters are not identifiable in the linearized model,
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Figure 3.2: Minimal ABCD representation of the second order pruned solution
of the An and Schorfheide model.
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An and Schorfheide claim in their paper that the likelihood profile for a nonlinear
approximation of this model shows curvature in all of v, ¢, and G, whereas a linear
model does not. They hypothesize that this means that those three parameters
may be identifiable in a nonlinear version of the model, but not linear. Are they
correct in this assertion?

Yes. In Table 3.2, 1 consider three more sets of restrictions, 3, 4, and
5. Restriction 3 allows v to be free, and sets only 4 parameters to constants.
In this case, the nonlinear model successfully identifies the additional parameter
v. Restriction 4 allows the identification of the additional parameter ¢. Finally,
Restriction 5 allows for the identification of the additional parameter GG. Therefore,
[ am able to verify An and Schorfheide’s intuition that all three of these parameters
are identifiable in a nonlinear version of the model, but not linear. It is important to
realize, however, that nonlinear models do not provide a silver bullet with respect
to identification. For instance, Restriction 6 does not result in the identification

of the complement set in 6.

6 Conclusion

In this paper, I have shown how to assess parameter identifiability in non-
linear approximations of DSGE models. Due to the inherent nestedness of Taylor
approximations, nonlinear approximations of these models may be used to identify
key parameters of interest that are otherwise not identifiable from a linear approxi-
mation of the same model. In the context of the An and Schorfheide (2007) model,
I have shown this to be true for three important parameters, the elasticity of sub-
stitution, price stickiness, and steady state level of government spending. Yet, even
in nonlinear models, a subset of parameters typically must be restricted to iden-
tify their complement. This paper has at the same time introduced a pragmatic

methodology for determining which.



Appendix A

Chapter 1 Appendix

A Figures

Pseudo Code, Figure A.1.

1. For draw ﬁi, compute both estimators 51 and @j by plugging in to ¢t

2. If both are outside of reals, the estimator is said to not exist for the given

draw (2.05% of utilized sample).

3. If both estimators are in the reals, plot both in the Monte Carlo with equal
weight 1 (44% of sample).

4. If one is in the reals and one is outside, plot only the one inside with weight

of 2 (remainder of sample).

Pseudo Code, Figure A.2.

1. For draw ﬁi, compute both estimators 51 and 5? by plugging in to ¢

2. If both are outside of reals, the estimator is said to not exist for the given

draw (2.05% of utilized sample).
3. If both estimators are in the reals

(a) If one estimator yields a 73 which is closer to 2, plot only that estimator,

with weight 2. If equidistant, plot both estimators, with weight 1 each.

82
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Figure A.1: Distribution of An and Schorfheide model without means MLE at
Yo: T=250, N=10,000. Two-sided (a/2,1 — a/2) confidence interval, o = 5%.
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Figure A.2: Distribution of An and Schorfheide model without means MLE with
T ~ 2 identification scheme ty: T=250, N=10,000. Two-sided (a/2,1 — a/2)
confidence interval, o = 5%.
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B An and Schorfheide Model Appendix

The following small scale economy is similar to that presented in An and Schorfheide
(2007). A distinction is that I will ultimately allow for statistical dependence be-
tween shocks. The model consists of a final goods producing firm, a continuum
of intermediate goods producing firms, a representative household, and both a
monetary and fiscal authority. It abstracts from both wage rigidities and capital

accumulation.

Final Good Production. A perfectly competitive final goods producing firm has
Dixit-Stiglitz type packaging technology, where intermediate goods are numbered
by the index of integration j. 1/v is the elasticity of demand, and the market price
for the final good is given by an aggregate P, of intermediate goods prices P;(j).

v, = ( / 1 th—”dj) T ae ( / 1 Pt<j>“fdj) a

The profit maximization problem is given by the following symmetric maximization

for each input good 1.

max P, </01Yt(j)1”dj>lly - /lPt(j)Yt(j)dj

Y3 (i) 0

Since maximization is conducted with respect to specific good , and j is only an
index of integration, differentiation with respect to ¢ and integration with respect

to 7 commute. Thus, the following first order condition.

1
1—v

1 =
P [ via) T as v - A6 =

0
. : 1rg. A\ v/ (=v) e
Finally, given that ( Jo Yt(j)l_”dj> = Y}, profit maximization implies the

following demand schedule for intermediate good «.

V(i) = (Pi())/y
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Intermediate Goods Production. FEach intermediate good ¢ is produced by
intermediate firm ¢ using the following linear technology. A; is an exogenous pro-

ductivity process, and Ny(7) is the specific labor input to good i.

Yt(Z) = AtNt(i)

Intermediate firms face nominal rigidities in price adjustment; these are given by
the following quadratic costs. ¢ is an index of price stickiness and II is the steady

state inflation rate.

¢ [ P)
€l =3 (Ptl(j)

Subject to these nominal rigidities, and real wages W;, each firm ¢ chooses labor and

—n) Yi(5) (A1)

prices to solve the following profit maximization problem. @, is the discounted

value of future consumption today determined independently by households.

max F; (Z Qt+s|t (B+S(i) Yt+s(i) - Wt+sNt+s(i) - (I’t+s(i)>>

Ne(i), Py (i) por

Explicitly plugging in for adjustment costs and output, this problem may also be

written

Pt+3< ) (b Pt+8(i) ’ ;
NtI(HaX Ey (Z Qt+s|t (( Pros - E <m - H) ) At+s - Wt+s) Nt+s(l))

Therefore, defining inflation as II, = P,/P,_; = P,(i)/P,—1(i) and recalling the

definition of P, in terms of intermediate good prices given by the Dixit-Stiglitz

technology, the first order conditions with respect to P;(i) and Ny(i) are, respec-

tively,
- ( PZ)) " s ((Ht M, - E QHWYZE()) (s — D) HMD %)
. . (A2)
(A3)

P(i) W, + SA,(I, — 1)?

Representative Household. The representative household has real money bal-



87

ances, M;/P;, and hours, H; in the utility function. In addition, consumption
provides utility only in proportion to a habit stock, given by the exogenous level

of technology, A;.

s Ct S/At 5)7 _]- Mts
(Zﬁ ( +s/ At — +Xln<Pt;) —Ht+s>>

Here, 1/7 is the intertemporal elasticity of substitution (equivalently in this con-

text, the inverse coefficient of relative risk aversion) and y is a scale factor that
determines the steady state of real money balances. The household may trade
bonds B; at gross nominal rate R;, pays lump-sum taxes T;, and receives a net
cash inflow from trading a set of state-contingent securities X;. Given these fea-

tures, the household’s budget constraint is

PCi+ B+ P> QueapXeor + My + T, = BWiHy + Ry Bioy + Xy + My

Sty

where S; 1 is the realization of the state in period ¢+ 1. The first order conditions
of the corresponding Lagrangean (multiplier \;) with respect to X1, C}, and B,

are, respectively,

At-}—l 1
JoFARS S A4
BE, N Ht+1Qt+1\t (A.4)

At41 (Ct+1/At+1 > A1
B — 3R A5
e T T ) A 49
/\t+1 1

E - A.6
g — 2 (A6)

Finally, combining the first order conditions with respect to C; and H; yields the
following expression; the first order condition with respect to M; is not stated since

it will not be of use in the log-linearized solution.
Wt - At(Ct/At)T (A7>

Partial Equilibrium Between Firms and Households. Firstly, plugging
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Equation (A.7) into (A.3) gives

P, 1

P (i) (C/A)T + ¢/2(11;, — 11)?

while combining Equations (A.4) and (A.5) gives

Qt+1|t = 5Et

(Cm Av ) A
Ci/A; Ay

Inputting these last two equalities into Equation (A.2), and using the steady state-
local approximation (Pt/Pt(i))lzy ~ L2(P,/Py(i) — 1) gives

o (§)) e (-2 )

Ci1/Aria ) Y /A
— E
oHE: ( /A, Y. /4,

(41 — IDTLpya | (A-8)

Secondly, combining the household first order conditions with respect to C; and

B, Equations (A.5) and (A.6), yields

1:ﬁEt

(Ct+1/At+l ) - At Rt (A 9)

Ct/At At+1 Ht+1

Exogenous Processes and Market Clearing. The Taylor rule considered in
this paper is an extension of Taylor (1993)’s original specification, allowing for
lagged interest rates to enter into the monetary authority’s decision making pro-
cess. It is written as follows, where R; denotes the target gross nominal rate and

g4 1s an idiosyncratic monetary policy shock:

R, = RI" R 7 exp(en) (A.10)
Ry = pIT (T /T (Y;/ V)™ (A.11)

i is the steady state of real gross interest rates, R;/Il;. II, the steady state of

inflation, is also the inflation target. Finally, Y;* is the level of output that would



89

prevail without price rigidities (¢ = 0), sometimes also known as the “natural”
rate.
The fiscal authority consumes a portion of output, F; = (;Y;, and levies a

lump sum tax, T}, subject to a budget constraint
PF,+ R 1By + My =T, + By + M,

where (; a nonstandard exogenous process which amounts to a function of an
AR(1) process. Specifically, defining G; = 1/(1 — () (i.e. ¢ = (G: — 1)/G;), then

InG,=(1—py)InG+ pyInGyq + ey (A.12)
Meanwhile, aggregate productivity follows
InA;=Iny+InA,_ 1 +InZz (A.13)

InZ,=p.InZ;_1+¢e, (A.14)

and 7 is the average growth rate of productivity. Finally, market clearing is given

by H; = N, and the aggregate accounting equality

where ®; is the adjustment cost in the symmetric equilibrium case. In more
straightforward terms, symmetry implies the dependence of ®;(j) on j in Equation

(A.1) does not matter, so that ®;, may be written

@tzg(ﬂt—H)QYt

Thus, using this definition of ®, and F; = (;Y;, the aggregate accounting equality
Equation (A.15) may also be written

C,G
V= ———— (A.16)
121, - 1)’ G,
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Shocks. There are three shocks — to TFP, government spending, and interest
rates — respectively €.+, €4, and €. These are dependently mean-zero normally
distributed with standard deviations o, o4, and o,, respectively, and covariances
Ogz, Orz, and o,4. Correlations are defined by p,, = 04./(040.), prz = 042/(0:02),

and pry = 0,4/(0,0,).

Nonlinear Equlibrium Equations and Solution. Ultimately, it will be use-
ful to have the equilibrium equations expressed in log-levels of the endogenous
variables for the pupose of solving the model in Dynare, but still ensuring direct
compatibility of this solution with the log-linearized equilibrium equations else-
where. Furthermore, many variables in the above equations can be eliminated by

simple substitutions. First, simply rewriting Equation (A.8) gives

% <1 — exp {Tln @}) + ¢(exp {InIl;} — II) ((1 - %) exp {Inll;} + %) -
PBE [exp {m(?tﬂ) - ln(ﬁ) -7 <1n(6t+1) - ln(@))} X

(exp {InIl;;} — II) exp {In Ht}} —1=0 (A.17)

Meanwhile, defining C’t = C}/A; and using the equality In A, —In A;41 = —Iny —
In Z;11 from Equation (A.13), Equation (A.9) may be written

BE; [exp {m R —InTly — 7 (m(dm) - m@)) ~Iny—In ZtHH —1=0
(A.18)
Equation (A.10) is simply rewritten

IR +p IR+ (1—p)In R} + &4

Ry, §A/t* = Y/ /A;, and @* = Cf/A; are defined to exist in a world exactly like
the model economy, but with ¢ = 0. When ¢ = 0, Equation (A.15) implies
Y = G,C*. But also, when ¢ = 0, Equation (A.8) implies Cf = (1 — v)V/".
Therefore, InY;* = (1/7)In(1 —v) +In G,. Using these facts, Equation (A.11) may
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be rewritten as
IR =Inp+ (1 —;) InIl + ¢, InTl, + ¢,(In Y, — In G, — (1/7) In(1 — v))

The last two equations above may simply be combined to eliminate the variable

Ry

—ImR+(1—p)(Inp+ (1 =) InIl— 4, (1/7) In(1 — v)) + p, In Ry_4
+ (1= p)be InTL + (1 — p )by (InY; —InGy) + 64 =0 (A.19)

Dividing both sides of Equation (A.16) through by A; and rewriting yields

— exp {ln}?t} + exp {ln@ + lnGt} /(1 — g(exp {InTI;}

—1II)*exp {In Gt}) =0 (A.20)
Finally, Equations (A.14) and (A.12) simply restated are
—ant—I—pZ In Zt—l +eEu = 0 <A21)

—InG+(1—-p)InG+p,InGy1+¢€4 =0 (A.22)

In all, there are six key equilibrium equations (A.17) - (A.22) that completely char-
acterize equilibrium for this model stated in terms of the six (detrended) variables
of interest In Z;, In Gy, In Ry, InY; = In(Y;/A,), InII;, and In C; = In(C,/A,). The

shocks are €, €4, and &,4.

Steady State. The equilibrium equations also characterize steady state. Equation
(A.18) implies the steady state of nominal gross interest rates is R = I/ because
Equation (A.21) implies Z = 1. Furthermore, u = R/II by definition so u = /.
Equation (A.17) implies C = (1—v)Y" because II; = II by definition in the steady
state. Given this, Equation (A.20) implies Y = G(1 — v)Y7. The steady states II

and G are structural parameters.
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Table A.1: With-means An and Schorfheide model parameter and variable names.

Structural Params (18)

Endogenous (6)

Innovations (3)

O 3 O U i W

— = = = O
W N = O

15
16

18

CRRA

Discount factor
Inverse elas. of demnd
Index of price stckness
Avg. gr. rate of prod.
St. state level of infl.
St. state level of G;.
Taylor rule infl. coeff.
Taylor rule out. coeff.
p. % persistence

Py g: persistence

pr  Tp persistence

SEFag=2 o x wn

0, &, std error
o4 gt std error
o, &q std error
04, Covar of €5 and €4
o,, Covar of ¢,; and ¢,
org Covar of €+ and ey

z;  Total factor prod.
g: Gov spending

r; Nominal int rate
vy Nominal output
m; Inflation

¢, Nominal cons.

Eat To Zt
g 1o gt
e Tor

C

An and Schorfheide Model With-Means

In the main text, it is assumed that the variables r;, 1, and 7; are logged

deviations from the unconditional mean of each respective variable. However, the

means of the data may also be useful for empirical analysis.

Given the micro

foundations of the model, it is natural to interpret the unconditional mean of each

variable as the empirical analogue to the steady state.

Specifically, under this

assumption and using the notation introduced in Appendix B, and furthermore

definining Y; = V; — V/(#), the VAR(1) in Equation (1.18) may be rewritten

Ry R Grr 0 Opr Ry R

n|Y,|-ln|Y| = Gyr Py Pyx | | In Y, .| —In|Yy
1L I1 Grr 0 Onr Iy II
Ve Yo e

Ut
+ Uyt (A.23)
Unt

Ut

where R; is the with-mean nominal interest rate, Y, is with-mean but detrended

output, and II; is with-mean gross inflation. Meanwhile, in terms of the structural



93

Table A.2: With-means An and Schorfheide model candidate calibration 6, and

 Param | Lower 0o Upper
1 0.1 2 3.5
2, 16 0.975 | 0.9975 1-e
3 | v € 0.1 1
4 | 10) 50 53.68 60
D ol € 0.5 1—¢
6, I I1+¢ | 1.008 | 1.03
(N E 14¢ 1.18 1.25
8 | (- -1 1.5 3
9 1 Yy -1 0.125 1.25
10 | Pz € 0.9 1-
11, p, € 0.95 1-e
12 pr € 0.75 1-e
13 o € 3e-2 1
14, o, € 6e-2 1
15, o, £ 2e-2 1
16, o, -1 le-4 1
17 L O -1 le-4 1
181 oy -1 -le-4 1

parameters, R = vII/[ is the steady state of real interest rates, Y = G(1—v)7is
the steady state of detrended output, and II, itself a structural parameter, is the

steady state of inflation. Given these definitions, define a 3x1 vector W(f) by

¢r I- ¢TT 0 _¢T7T VH/B
¢y = _qbyr 1 - Py _¢yw In G(l - V)l/T
’lpﬂ' _¢7T’I’ O 1-— Qbﬂ—w H

[N / . - 7\ -~
T(9) I3—®(0) V(6)

Then, given Equation (1.18), it is also the case that V; — the vector of logged

variables not separated from steady states — follows the rule of motion

Rt wr ¢rr O ¢r7r Rt— 1 Ut

I (Yi| = (¢ |+ (b pg Gyr |0 | Vi | + |uy (A.24)
Ht ww ¢7T'I’ O ¢TI'7T Htfl Urg
N—— - N——

Vi w(6) ®(0) Uy
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The unique reduced form parameters are collected in the 18 x 1 vector reduced

form parameter

H(0> - (¢T7 I/Jyv 2/}7T7 ¢T"I’7 ¢y7“7 ¢7l'7"7 pg7 ¢T7r7 ¢y7r7 ¢7F7T7w7"7 wyv wﬂ’?wyﬁ wﬂ'?‘a Wwy)/

(18x1)

At 60y, Equation (A.24) has the following realization; by definition, ® and Q are

the same for the model posed with data separated from means, Equation (1.18).

R, —0.15 079 0  0.25 R,y Upg
In|Y;|=1]014 |+]019 095 —046|In |V, |+ |uy
11, 0.85 012 0  0.62 I, , Ut
S—— ~~ N——
Vi T (00) ®(6) Us
6
Qfy) = (le —4) x |7 58
7 21 20

Since ¥ may be estimated, there are in this case ny = 16 reduced form
parameters. So, now potentially 16 of the ny = 18 structural parameters are
identifiable, meaning, up to 3 of the 5 parameters that were set previously set can
now be estimated. A figure depicting the functional dependence of each element
of IT on @ is given in Figure A.3, which I now use to choose which two structural
parameters must be set to constants for their complement to be conditionally
identified. Firstly, consider both v and G. Since these are not even included in
the parameters ® and 2, they were not previously identifiable. However, U is a
function of both, so consider letting both be free. Second, the two parameters v
and ¢ were previously set due to their linear dependence in x. However, ¥ is a
function of both, so consider letting v be estimated. This results in the conditional

identification scheme @ = (¢,)..) so that

/
(16111) = (T7 57 v, 7, HJ G7 1/}7” Pz, pg7 Pr; 0z, O-gv Or, 0927 Orz, U?“g)

Since ny = 16 = nyy, if 1 is identified at a point, it is exactly identified. Indeed, the
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Table A.3: Identification of ¥ in with-means model: 100,000 uniformly chosen
pts from O,.

Yes No
Locally Identified 99.98 % | 0.02 %
Globally Identified in O, 92.6% | 7.4 %
Globally Identified in All © Cc RS | 30% 70%

16x16 Jacobian J(dg; @) = OI(J; @) /00| 4_y, , is full column rank, thus satisfying
a necessary and sufficient condition for 9 to be locally identified at 9Jy. Thus, it
seems that adding the means of the data into estimation has allowed the estimation
of three more structural parameters. Such claims that adding more aspects of the
data results in the identification of more structural parameters seem intuitive, and
are frequently made. Yet, global identification has not yet been verified.

1'is calculated

As in the previous two examples, the inverse mapping g~
analytically and there are exactly two solutions. The values corresponding to v
are given in Figure A.4. As in the model not using means, 1, is globally identified
in the reals, R'®. However, again there are points where the bounds of ©, may
not be used to distinguish between two points. One example is ¢; and 97, listed
in Figure A.5. Once again, for both ¥y and ¥ it is demonstrated that the impulse
responses, besides those corresponding to €4, differ for observationally equivalent
points, although the magnitude of the difference between ¢; and ¥} is again small.
Thus, identifying restrictions are not always normalizations with respect to the
impulse responses.

Now consider the identification of ¥ at other realizations in ©. Both local
and global identification are summarized in Table A.3. As before, nearly all points
are locally identified. However, there is now a relatively larger portion of points,
7.4%, which are not globally identified in ©y. These require creative identifying
restrictions.

Finally, bootstrapped confidence intervals are computed in Figures A.6 and
A.7 using no identifying restriction, and the better 7 restriction, respectively. Once
again, the most obvious distinction is in the size of the confidence interval for 7.
A long right-tail under no identifying restrion is much smaller when the restriction

is accounted for. Pseudo-code resembles that for the model without-means.



97

Figure A.4: An and Schorfheide with means observational equivalence in C'¢ but
not O, and impulse-responses: ¥y (o) vs ¥ (+). Il = g(x;@); x = Jy or J.
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Figure A.5: An and Schorfheide with means observational equivalence in 6, and
impulse-responses: ¥y (o) vs ¥ (+). Il = g(x;@); © = v, or V}.
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Figure A.6: Distribution of An and Schorfheide with means MLE at ¢y: T=250,
N=10,000.
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Figure A.7: Distribution of An and Schorfheide with means MLE with 7 ~
identification.
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D Smets and Wouters (2007) Appendix

This section presents the linearized equilibrium conditions of Smets and Wouters
(2007). References to where these equations may be verified include the Appendix
and code for the paper, appearing on the American Economic Review website.
Any apparent deviations between the expressions used here and Smets and
Wouters’s original paper are only the result of benign simplifications and notational
differences. In terms of notation, the conventions used in the derivation of the An
and Schorfheide (2007) model above — capital letters for variables, capitals with no
subscript ¢ for steady states, hats for detrended variables, and lower case for log
deviation from steady states — are preserved here for ease of comparison between
the two models, and context for how this much more elaborate model is derived.
Specific names of variables and parameters are given in Table A.4. Candidate

parameter values 6, and parameter space © are given in Table A.5.

Equilibrium With Real Rigidities. The Smets and Wouters model is composed
of two separate equilibria. The first, corresponding to the theoretical setting in
which prices and wages are sticky, is represented by 14 unique equations paired
with 14 endogenous variables.

The first difference separating the Smets and Wouters from An and Schorfheide
model is the presence of a rule of motion for capital. Nominal, detrended capital
— also known as “installed” capital — follows the rule of motion

o~

1-4 17 1
ki_q + ;Ezt + sy(1+ B! )Eet (A.25)

v

kt:

where /K = ~v—(1—4) is the ratio of steady state investment to capital. However,
there are similarities between Smets and Wouters from An and Schortheide. The
Euler equation arising from household optimization may be written as follows. For
intuition for how it is derived, note the similarity between this expression and the

aggregate demand equality from the AS model. Here, ¢; is the log deviation of
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Table A.4: Elements of Smets and Wouters (2007). Normalized notation with
An and Schorfheide model.

. Structural Params (41) Endogenous (33) Errors (7)
1 . 7 CRRA 2z Total factor prod. €x  To z
2 | ¢ Disutility of labor g Gov. spending g To g
3 £ Discount factor e; Price of inv. v. cons. | €; To ¢
4 | h  Habit formation in cons. | b; Bond premium ey To by
5 1 s Investment adj. cost fi  Fed shock int. rate s To fy
6 , a Capital inten. in prod. my  Shock price markup | ¢, To mY
7 . v Avg gr. rate of prod. my’ Shock wage markup | e, Tom}’
8 | ® Fixed cost of prod. AP Func. of m} and &7
9 ' 0  Depreciation of capital Ay Func. of my’ and &}’
10 + uw  Capital util. inten. k;  Installed Capital
11 tp,  Price indexation ¢ Real consumption
12, & Calvo price prob. i;  Real investment
13 | ¢, Kimball price agg. curv. | m  Inflation
14 | Wage indexation w; Real wage
151 &, Calvo wage prob. 1t Price markup
16 | Cw Kimball wage agg. curv. | p’ Wage markup
17} Ay Wage markup q;  Tobin’s Q
18! Y St. state detr. output r,  Nominal int. rate
19 | IT  St. state inflation r¥  Real rent. rate on k;
20 | G St. state gov. spending sy Utilized captial
21 1 ¢, Taylor rule inflation u;  Capacity utilization
22 | ¢,  Taylor rule output l;  Labor hours
23 | Yo Tay. rule output chg. y;  Real output
24 | p, 1 persistence ky  Nat. level inst. cap.
251 py b; persistence c; Nat. real consump.
26 1 p. e persistence iy Nat. real invest.
27 | ps  ft persistence w; Nat. real wage
28 | p. 2 persistence g Nat. Tobin’s Q
29 | py g¢ persistence r;  Nat. nom. int. rate
301 pp mY persistence r¥*  Nat. real r.r. on k}
311 p, my’ persistence sy Nat. utilized cap.
32 Vg, € coeff for g, AR(1) [  Nat. labor hrs.
331 9, MA(1) coeff for m¥ y;  Nat. real output
34 9, MA(1) coeff for m{’
35 Loy En std error
36 1 0. €4 std error
37, of & std error
38 | 0, &4 std error
39 | o4 eg4 std error
40 | Op  Ept std error
41 1 0y €y std error
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Table A.5: Smets and Wouters calibration 6y and parameter space ©. ¢
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real, detrended consumption from its natural rate.

h 1—17
Ct—fyj_hEtct—o—l‘i‘ th - 7_T_hfﬁe(lt—EtltJrl)
1~—h
- ;’VY T (re — Eymipr + b)) (A.26)
where o~
1 1—-a gKY
Re = =< =
1+ « Y C
Y 1 7 (1-6) K '?+¢(L)a1 L 1-aRK
- = == —< = 7—\1L— —_ = = - -_ = e
C 1-&_ LK K Y Y K K a W
Yy KY

A Y a1 —a)t e o
W=z RE=L _—(1-9¢
(y o ) g0

W is the steady state of detrended real wages and R is the steady state of the

rental rate on depreciable capital. The parameters (?, (7) are steady state values
that appear in the structural parameter 6. ([? , C , f, L) are steady state parameters
which are functions of the structural parameters, as described below. As in the
derivation of the AS model previously, hats indicate which steady state parameters
correspond to detrended variables. To reiterate, the definitions of all structural
parameters and variables are given in Table A .4.

Next, we have a relationship between investment and Tobin’s Q.

1-7 1 1
ﬁfy 1+ e (A27)

1
w=—-DWHKij 1 +—y  +——
t 1_,_57177 tl+1 1_,_5,},177 t—1 8721—#571*7(1

Investment is real and detrended. Meanwhile, the Phillips curve is

pytT lp
=———F —_— T — p p A28
=T LBy M1+ 7 n Lpﬁ,yprﬁt L ( )
where
_ (1— 51957177-)(1 —&p)
» =

&1+ Cp(q)/i}))(l + 18777
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and the wage relation is

ﬁ,yl—T 1
W= T i e BT g (e )
1+ 0,897
- Kol +m® (A.29
T gy et (29
where

- &kT0 - )
b gw(l + Cw)\w)(l + Lwﬁ'}/liﬂ-)

Wages are real and detrended. pf and p% are the markups to prices and wages,
g Hy Hy

respectively, defined by
= alsy — ) —wy + 2 (A.30)

h
,UJ;U = Wt — élt - ~ z th + - hct_l (Ag]_)

where markups are nominal and not detrended. The same is true for Tobin’s Q,

which follows the rule of motion
qy = B(l — (S)’yiTthH_l + Etﬂ-t—&-l + (1 - 6(1 — 5)’}/7T)Et7’f+1 — Ty — bt <A32)

Taylor’s rule for the nominal interest rate is written as follows. Starred variables are
those arising from the equilibrium derived without real rigidities, to be expressed
in the following subsection; in particular, y; will be known as the “natural” rate of
output. f; is the idiosyncratic component of Fed policy not captured by the Taylor

rule.

re=ppre+ (L= pr)tbam + (1= pr)iby + Pa) (e — 47)
—a (Y1 — Y1) + fi (A33)

while the real but not detrended rental rate for installed capital k; is given by
rf =l +w — s, (A.34)

where utilized capital s; is related to installed capital (both nominal, detrended)
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by
St = kt—l + Ut (A35)
where wu; is nominal and not detrended capacity utilization, simply defined by

1—
U = urf (A.36)

Nominal and not detrended labor hours are given by

~

1 Y « 1
_ _ _ — A.37
1—04Y+Q)yt l—ast 1—04Zt ( )

Iy

and finally, real and detrended output is defined by the aggregate accounting equal-

ity. R

C K1-—

Y = =<Ct + — =1 + RKT u?”f + g¢ <A38)
Y KY Y u

The 14 equations Equations (A.26)-(A.38) define rules of motion for the 14 en-
dogenous variables ky, ¢, is, T, Wy, pE, ¥, G, T, T Se, ug, Iy, and gy, in that
order. The next section defines a rule of motion for the natural rate of output, y;,
which appeared in the Taylor rule. The remaining 7 variables used in the above
equations, 2y, gi, €, by, fi, mi, and m!, will be given reduced form rules of motion

in the section after next.

Equilibrium Without Real Rigidities. The second set of equilibrium condi-

tions defining the SW model correspond to the theoretical setting in which prices

and wages are flexible. This set of equilibrium conditions is reduced to 10 unique

equations paired with 10 endogenous variables. Keeping with the setting of the

SW model, I shall refer to all of these variables as natural rates and levels. The

natural level of installed capital is defined by
1-9

17
ki=—Fk _+——i; +sy(1+ 0 1=r
t t—1 ,YKt ol Y )

~ (& <A39)

=0l ~)
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while the natural rate of consumption ¢, follows

c, = — w; — 0F — —c; A.40
t ’Y t ’}/ t ,_ytl ( )

Notice, this expression for ¢ is much different than the consumption Euler equation
for ¢; in Equation (A.26). This is because the flexible price/wage analogue of
Equation (A.26) will be used to define a rule of motion for r; in the absence of a

flexible price/wage Taylor rule. The natural rate of investment follows

o 1

. 1 *
= 1+ 571—7Et2t+1 + FR n 5’71_T2t_1 + S_’YZW% + e (A.41)

Given that price markup is zero in this case,
w; = a(s; = 1)) + 2 (A.42)
while the natural Tobin’s Q is
g = B(1 = 0)y T Egyy + (1= B(1 =)y ") Bty — i — b (A.43)

and as explained, in place of a Taylor rule, 7} is defined by a rearranged consump-

tion Euler equation as

T

*
ry =

* k % ’y * *
po— (¢ —vEici —heyy) — (1 — T)mKe(lt — Bl ) — b (A44)

where k. is defined following Equation (A.26), and the natural rental rate for
installed capital k; is

=1 4wl — s} (A.45)
and natural utilized capital s; is related to the natural level of installed capital by

1—
5 = kiy + ——rf" (A.46)
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Finally, natural labor hours and the natural output are, respectively,

~

. 1 Yy a 1
I = N — Y — sy — 2 (A.A47)
—aYy + @ 11—« 1l—«a
and N ~ ~ ~
C I K| rK1—u ,
y*:70*+772*+R = r *+g A48
tT T T = t t ( )

To conclude, the 10 numbered equations (A.40)-(A.48) define rules of motion for
the 10 natural rates and levels k}, cf, i, w}, g, vf, r¥*, s, I7, and y;. Now we

. . . p
move on to the remaining 7 variables z;, g, e, by, fi, m;, and m;’.

Reduced Form Processes. Seven of the variables used above are not defined
by equilibrium conditions. Instead, five of these are AR(1) and the last two
ARMA(1,1).

2= P21+ Eat (A.49)

Gt = PgGt—1 + gt + Vgo€24 (A.50)

€t = Pe€i_1 + Eet (A.51)

by = ppbi_1 + €ne (A.52)
fe=ppfic1 +ep (A.53)

mi = ppmy_y + €pt — VpEpr-1 (A.54)
my = pumy_y + wt — VwEwr—1 (A.55)

All innovations are iid. For the purposes of this paper, it will be convenient to write
each of the ARMA(1,1) processes Equations (A.54) and (A.55) and 2-dimensional
VAR(1)’s. Specifically, defining
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Then it is easy to verify that Equations (A.54) and (A.55) may equivalently be

represented by the set of four equations

my =\ + ey (A.56)

my = A+ € (A.57)

A= ppAi_1 + (pp — Up)ept (A.58)
A= N+ (pw — Yu)Eu (A.59)

Steady State Conditions. The steady states of output, inflation, and gov-
ernment spending, ?, II, and G, are included in the structural parameters, and
R = (IIn7)/pB. Using the definitions following Equation (A.26), we already have
explicit functions for the steady states of the rental rate R and wage W. From

those definitions we can also say that

g1 e (1-C_ LK)y
7= (1-9) Y KY

- K ~ 1 —aREK ~

T=(y—(1-0)=Y p-1—ef g
% a W

VARMA(3,2) Representation. The ABCD representation of this model is

given in Figure A.8. The 7 states having exogenously defined rules of motion are
X = [Ztagtaeta by, ft7)\pt; )\wt]/
The 4 states corresponding to the equilibrium derived without real rigidities are
Ko = [k}, ¢}, 17, yr]
Te 7 states corresponding to the equilibrium derived with real rigidities are

. /
X3 = [kt,CtJt,antﬂ”ta?/t]
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Note that that the last 5 elements of X3; are the same as the last 5 elements of
Y:, Yig = [ig, m, wy, 14, ). In addition, let Yo, be a vector of the first 6 elements
of Yy, ie. Y, = [V, u’. Finally, define Xy, as first 13 elements of X;, Xy =
[X1e, Xop, It i)' s0

t+1
Fiy  Fig| | Xa1 Gy
Yo _ |13x13 13x5 13x1 | 4 |13x14 Et+1
4 R I R I N
X X 5x1 X
Y X1
CA D CB
C 0 D
T
The matrix Fi; is full column rank. Therefore,
Y, €
-1 +1 -1 -1 t
X4t—1 = F11 - F11 FlQYit—l - F11 Gl
ot &t

In the An and Schorfheide model, inverting C' allowed X; ; to be written as a
function of Y; and &;, which ultimately allowed the model to be written in VAR(1)
representation. Here, inverting Fj; allows the 13 states in Xy;_1 to be written as a
function of Y1, Y, Y1, €141, and €, and the remaining 5 states in X, ; besides

Xy4_1 are equal to Yj;_1 exactly. First, decompose the matrices A and B as

* * *

All A12 Bl

— 13x13 13x5 B — 13x7
18x18 * * 18x7 *
A21 A22 B2

5x13 5%x5 5XT7

Then, plugging the above expression for X; into the state equation yields

_ €t
Et—1

€t—1
o * -1
- All (Fll

Yy -1 -1

0t—1

) +A1RY1 3 +Big o

Y,

‘ 1] _ [ 0 F;llFlg} Yig— FLIGH
13x2

0t—2 Et—2
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Second, decompose the following matrices:

(FuAfL Fy o | (Fudf Fry e (F11 A7)
Fudi = |- O P L Fodiy = |2
13x13 (FnAéffﬂ )21 ! (FHA;f{ﬂ )22 13x5 (Fléf‘gz)z
X ‘ x X
(FuAi Fri'Gin | (FuAi Fr G (Fi2)
F11AT1F131G1 =\ ;-7 d 57*{**** ***** d 57*1 ***** Fg = |--D9-.
13x14 (FUA)llelil G1)21 : (FllAlelil G1)22 13x5 (F12)2
X7 ‘ T 6x5
(FuAj Fiy' Fao) (Fii B
FuAy F o= |- - - - & 1L Fy By = |- - % -
13x5 (FllA)lel_l F12)2 13x7 (FllBT)2
6x5 6x7

Multiplying both sides of the previous equation by F}; and rearranging ultimately
gives the following VARMA(3,2) representation for the observables; note, D is

invertible:

Y, = (Fu AL F)n Y + ([ (Fi AL Fp)io 791 } + [ 792 (Fioh ]) Yi o
W A ! ! J/
2 B5(0)

X7

([ i ] = [ 8, Gt ]) vis s 25
A ~~ > Ut

%0
+(CB - (FnATfﬂlGl)n) Dii%

A1(0) U1
<7

+ ((F11Bf)1 - (F111“,1T1F1_11G1)12> D_iDgt—Q

Aa(6) Ut—2
X7

Correspondence with Raw Data. The observables Y; may be decomposed as
Y, =V, — V(0) where V; is a vector of logged and detrended, but not demeaned,
data and V is a logged vector of each data series’s unconditional means. For
instance, log linearized real interest rates are defined by the linearization above as

re = In(R;/R), where R is the steady state of R;. Then, the first element of V; is
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Table A.6: Smets and Wouters model data series

Variable Series Notes
Ly PRS85006023/CE160V | Seasonally adj., quarterly, end-of-period
C; PCE Seasonally adj., quarterly, end-of-period
I FPI Seasonally adj., quarterly, end-of-period
P, CPIAUCSL Seasonally adj., quarterly, end-of-period
Wi COMPNFB Seasonally adj., quarterly, end-of-period
Ry 1+TB3MS/400 Not S.a., ann. rate, end-of-period, % pts.
Math to obtain quarterly gross
Y, GDPC1 Seasonally adj., quarterly, end-of-period

In Ry, logged nominal interest rates, and the first element of V' is In(F(R;)), where

E(-) is the unconditional mean. Where ¢(-) is the function selecting the trend of

a given variable and II; = P,/ P,_; is the gross rate of inflation,

ly
Ct
it
Tt
Wy

Tt

Yt |

V,—V

Vi=1In

oL S
B0 (%) 2o (%)
R0 (%) ko (%)
1, V=IE 11,
#10 (%) Hio (%)
R, R,
| #/o (%) ] | #/o (%) ]

All data codes below correspond to the St. Louis Federal Reserve’s FRED database.

Empirical V' corresponds to the model-theoretic V' (#) by

In &

Ly

IT;

Ry

I I
/o (4

Fro (%)
)

/o ()

| #/0 (%)

mean = steady state

L
C
7
V=V(9) =In|II
SN—— _—
W
R
Y



Appendix B

Chapter 2 Appendix

114



115

Figure B.1: Sensitivity of posterior mode (vertical axis) to mean of 7 prior
(horizontal).
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Figure B.2: (Left panel) Sensitivity of 7 posterior mode to changes in mean of
priors for p, and 7. (Right panel) Same for p,.




Appendix C

Chapter 3 Appendix

A  Proofs

Proof of Proposition 1. See Appendix C.

Proof of Proposition 2. Follows from Kailath et al. (2000) Lemmas E.3.2 and
E.4.1 when Proposition 1 is satisfied. See the Appendix to Komunjer and Ng
(2011).

Proof of Proposition 3. See Komunjer and Ng (2011).

Proof of Proposition 4. The eigenvalues of P are defined by the characteristic
equation pp(\) = |P—AIz|. Utilizing the steps in Andreasen et al. (2014)’s proof to
their Proposition 1, one may also write pp(A) = |hy — AL, [|he — AL, || D;f hE?D,,, —
My, (no+1)/2]. Thus, the eigenvalues of P are determined by |h, — A, | = 0 or
|D;; hf?QDnz — My (no+1) /2| = 0. The eigenvalues of the first problem are less than
one by Assumption 1, that is |A\;| < 1,7 =1,...,n,. To compute the eigenvalues
of the second problem, first note that any eigenvalue X\ of h, is determined by the
equality h,z = Az for some eigenvector z # 0. Therefore, for any two eigenvalues
A\ and A of by, h&?(z;®@x;) = M\ (z;®2;). Given the last equality, it must be the
case that h$?D,, D, (z; ® ;) = \\j(x; ® ), because D, D} is a matrix which
first takes the n,(n, + 1) x 1 vech of x;z); using D} , and then duplicates these

Ng?

elements into a new n2 x 1 vector using D,,,. Finally, premultiplying both sides of

117
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the last equality by D, yields D;f h€?D,, D} (z; ® x;) = N\ D, (2; @ ;). Thus,
Dif (z; ® x;) is an eigenvector of D} h2?D,, , which has eigenvalues that are the
nonredundant products of h,’s eigenvalues, \;A; for i =1,...n, and j =14,...n,.

Since A; and \; are less than 1 by Assumption 1, so must \;A; for all ¢ and j. [

Proof of Corollary 1. Under Assumptions 1-3, the ABCD model, and hence
/
€ = [ug (D, (u? — vec(L,2)))  (nvec(T_qu,))| exists. The covariance matrix

of g, is written

L. E(uu®)Df Oy,
S:(0) = E(ie;) = | Dyt E(ugup) ¢1 O (1 +1) /2510
Onnxnu Onnxnu(nu+1)/2 ¢2

¢ =D} E [u;@zu?y] D" — Dif vec(I,,)vec(I,,) D,

Ny

!/
¢ =nE [Vec (f{_wé) vec (f{_ﬁbé) } n'

The zeros occur becuase u is white noise. The covariance matrix for 7/, is defined
by the Lyapunov equation E(#/ 7/ ) = h,E(@Z] W, + o®nn’ and (I,z — hE?)~!
exists under Assumption 1. Therefore, E(Z/Z! ) exists and is finite. In addition
given Assumption 3, finite fourth moments for u; (and hence, also finite third
moments), then it follows directly that the entire matrix 3. exists and is finite.

However, again because u; is white noise, all additional moments are

Onuxnu Onuxnu(nu+1)/2 Onuxnn
E(gtgf‘,fj) = | Ony(nut1)/2xne Onu(nut1)/2xna(met1)/2 Ong(nut+1)/2xnn Viz1
Onnxnu Onnxnu(nu+1)/2 Onnxnn

This fact is easy to confirm block-by-block. Thus, ¢; is white noise. [

Proof of Corollary 2. P is related to its eigenvalues and vectors by the relation
Px = \x for x # 0. A is related to P by the relation A = M PM' for M a zero-one
selection matrix. Recall, M is constructed to exploit the zero-columns of P so that
PZ, = PM'MZ,. By similar arguments, MPM'Mz = AMz, i.e. Ay = \y for
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y = Mz # 0 an eigenvector of A, and A\, which are A’s eigenvalues, are a subset of
P’s eigenvalues. Proposition 1 guarantees that all n,(n, + 1)/2 of P’s eigenvalues

are less than one under Assumption 1. [J

Proof of Corollary 3. Utilizing the functional form of A, C, P, and M, the

product of C' and any power of A has the functional form
CA = | 1y ® (gohgm! (mhm)) ... |

!/
where 1, = [1 1] . Therefore, the observability matrix is written

15 ® (gehem' (mhym/)mx—1)

Because of the functional form, column j of O is linearly dependent on column
Ny, + 7 for j =1,...n,, and n,, is the row dimension of m. In other words, the ob-

servability matrix has reduced column rank implying the system is not observable.

OJ

B Pruned State Space Representation

B.1 Baseline Case

The functional form of the matrices in the baseline case state equation

second order approximation (3.6) is given by the following steps:

1. H,, is defined as follows: Let h(;(w;—1,0|0) denote row ¢ of h(z;—1,0]f). The

scalar second-order element of the Taylor expansion of h corresponding to x;
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82h(,-) (a:t_l s 0’«9)

axt_lf)ngl

-~/

Ty X

27
e (a hy(z1-1,06)

/
®2
X X
! t—1
8xt_18xt_1 $t_1:x*,020>

and H,, is constructed by stacking the coefficients in rows:

/-
xtlzz*,UZO)

/
xt_lzx*,az()) ]

[ 9y (21-1,010)
vec ( Ozry_10x),_,

Nz XN
vec <_82h<nx><mtww>

Oxi_10x}_

The elements of GG, are defined similarly.

2. The cross-partials between states and o are

O?h(xi_y, 0|0 0?g(xy, 0l0
haa (6) = —a( o 2 9:0(0) = —a( > 0
Ng XNy 00T Ti_1=x*,0=0 Ny XNg ooTy Tr=x*,0=0
3. hyo and g,, are defined by
O*h(xi_1, 0|0 0%qg(xy, 0l
hoo(6) = —(5 Ll 9ao () = —(83 2
ng X1 o zt_1=a*,0=0 ng X1 9 ri=z*,0=0

To obtain the representation (3.13) and (3.14) from the second order pruned state
space representation (3.11) and (3.12), observe the equality

a3l = nh,7 Lozl lh’ + o2 nugn + och, @iy + ozl (W,

Since vec(vv') = v®?2 for any column vector v,

z1%% = 62®%vec(I,,,) + W22 TIE + 0 (n ® hy)vec(Z]_u)
+o(h, ® n)vec(utﬁr\t,l) + o?n®? (uf? — vec(I,,)) (C.1)
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Stacking this underneath Equations (3.9) and (3.11) into a single system immedi-
ately yields (3.13) and (3.14).

B.2 Nonlinearity Between Errors and States

The functional form of the matrices in the second order approximation for
the state equation allowing for nonlinearities between states and errors (3.16) is

given by the following steps:

1. 0H,, is defined as follows: Let h(;) (21, s, 0]0) denote row i of h(z—1, vy, 0(0).

The scalar second-order element of the Taylor expansion of h corresponding

to x; is

N OPhy (21, v¢, 0|0

x:«/,lx ()( t—1 t/ | ) X<O-Luut>:
@xt—lavt zi—1=x*,u=0,0=0

/
O?hiy(xi_1, 00 ~
ovec () (@it - 9) X (Ly ® I,,) X vec(T;_quy)
Oxy_10v; Ty_1=2* ur=0,0=0

and o H,, is constructed by stacking the coefficients in rows:

=
Te=x*,ut O,UO)

vec ( 82h(1)(mt,1,fut,a|6‘)

Oxi_10v;
oHy(0) = o : (Lu ® In,)
Ng XNy ’
62h(nz)(xt_1,vta\€)
vec ( Oz v] PP
| ry=z*,u=00=0 / |

2. 0H,;: Defining h(;) as in Step 1,
02h(i)(:pt_1,vt,a|0)

82h(1) (Z’t_l, U|0)
ovec
(%tax;fl

(O'LUUt)/ X X ngfl =

zi—1=x*,ut=0,0=0

/
X (I, ® L) X vec(u; T}y 1)
ri—1=x*,ut=0,0=0
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and o H,, is constructed by stacking the coefficients in rows:

/-
Tp_1=x* 7ut—O,U—O>

vec ( 82h(1) (a:tfl,vt,cr|9)

8Ut8$;71
oHyuu(0) = o : (In, ® Lu)
Ng XNy Ny ’
82h(nz)(:1:t_1,vt,0'|0)
vec < v dzy_ 4 PP
L i 1=2*u=0,0=0/ |

3. 0?H,,: Defining h; as in Step 1,

a2h(i)(l‘t—17 Ut 0-|0) X (O’L ut) =
8%81)2 zi—1=x* ur=0,0=0

(awmg%baw)
ovec

(oLyug) x

!/
) x L%? x vec(ugul)

Ov0v,

Ti—1=x*,ut=0,0=0

and o H,, is constructed by stacking the coefficients in rows:

/=
CCtJJ*,O’O)

— 0%h o0
voc ( (1) (@6,016)

8%69:;
oH.,(0) =0 : x L%?
g XNgNoy ’
82h(n ) (z¢,010)
( Ox¢O z=2*,0=0) |

B.3 JPRS Representation

Both categories of pruned state space representation described in this paper
— the baseline case with linearity in errors and states (3.13) and (3.14), or with
nonlinearity in errors and states (3.17) and (3.14) — has the same generalized

functional form.

Vo= Iy(0) + S(0)2, (C.3)
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where the variables and matrices of this JPRS representation are defined by

Ut
z
R uP? — vec(ly2) o
Zy=| 7} U, = SR Ve=1y; +U
~f©2 vec(Zy_quy)
' vec(u ;)
0 . hy 0 0
\72 - %h0-0—0'2 + %O’ZHqun% jy - 590’0 P = 0 h:l,’ %wa
o*n®?vec(1y,z) 0 0 hn®
on 0 0 0
R=10 30°Hy, 30H,, s0H,, S = [gx 9o 3Gas

The dimensions of this representation nz = 2n, + ni and ny = n, + ni + 2n,MNy,.
Recall, the distinction between the model with nonlinearities between errors and

states and the baseline case is that in the latter, H,,, H,,, and H,, are all zero.

C 3-Step ABCD Reparameterization

In order to show that pruned state space representation also has generic
ABCD representation, I begin with JPRS representation, given above in Section B
.3. Then, I show how to reparameterize the model in three simple steps, the third
of which is the most intensive. This section also serves as nontechnical step-by-step

proof of Proposition 1.

C.1 Step 1: Remove Redundant States

There are many redundant elements in Z; and U, given in Section B .3,

which we wish to remove. For example, #/ @ 7/ = vec(a! z/ l). Since zfz! is sym-

metric, 7/ ®%/ has exactly n2—ng(n,+1)/2 redundant elements, where ng(n,+1)/2
is the number of elements in vech(xf x{ /). To handle redundancies such as these,

recall that the duplication matrix D, is the n, X n;(n, + 1) dimensional matrix
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which yields the equality vec(#/7] ) = D, vech(z/%!). D} = (D! D, )"'D,
is the Moore-Penrose pseudo inverse of the duplication matrix which yields the
equality D:{Ivec(x{ ! l) = vech(zf 2] l). In relation, D} D, = I, (n,4+1)2 and
~f®2 _ + ~f®2 ~f®2 _ fo.f ;

;7" = Dy, D 2/ where 2/°° = vec(z{xz; ). Note, a somewhat nuanced point
D,,, D} is not the identity matrix, but a matrix which selects the unique elements
of Z/¥? and uses them to reconstruct the entire vector. Therefore, Equation (3.11)

may be rewritten

1 1
B~ ha(0)F, + (EHM(G)DM> < (DA +3han(®)0?
—_—
Ny XNg(ng+1) VeCh(:E{_lx{_l)

Meanwhile, D,,, is the n, x n,(n, + 1) dimensional duplication matrix (and D,,, =
(Dl Dy,) ' D, its Moore-Penrose pseudo inverse) which operate on vec(u,u;) (and
vech(uguy)) similarly. In addition, K, ,, is the commutation matrix which equates
K, n,vee(T ) = vec(u;Z ;). This implies that the product of the first-order
solution with itself, Equation (C.1), and also the third block-row of (C.2), may be

rewritten

D} #f%% = 02D nPvee(l,,) + (DfhE2D,,) (Dm{;@f)

S

nz(n;—ri—l)xl nz(nz—&-l)::nm(nz-l—l)
+ (62D} n®2D,,) x (D} (u?* —vec(I,,))) +  or(f)  xvec(T]_ u})
~ ~ / v
Nz (Ne+1)Xny (ny+1) ng(nz+1)Xngny

for 7(0) = D} (n® hy + (hy ® ) Ky, 1, ). Similarly, the second block-row of (C.2)

may be written

N 1 1 N 1 .
7= (§hwa? + §a2Hqun3> + hoT5_ | + (5 mDnz> X (D;zxﬁ?’f)

Lz

1 1 N
+ (502Hanu) x (D} (u? — vec(I,2)) + a§(qu + Hyo Ky, ) % vee(Z ul)
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Together, these equalities imply that the JPRS state in Section B.3 is reducible to

55{ ?’5\{—1 R
B | =IO PO) < | T, | +RO) < | Dy~ vee(L,)| (©4)
D ik D} 7 vec(Z_up)
— ) b4

where J, P, and R are defined in the text following Proposition 1, equations
(3.19) and (3.20) with nz = 2n, + ny(n, +1)/2 < ng for n, > 1 and ny =
Ny +ny(ny+1)/24n,n, < ny for all n, > 0 and n, > 0. Similarly, the observation

equation is reduced to the following, where S = [gx Ja %GmDnz :

Ve = Ky(0) + 5(0) 2, (C.5)

C.2 Step 2: Remove Means

It is necessary to remove means from the model to achieve ABCD repre-

1

sentation.” Before doing so, it is useful to state a simple proposition, related to

the findings of Andreasen et al.
Proposition 4. Under Assumption 1, the eigenvalues of P are less than one.

A proof of Propostion 4 appears in Appendix A. When it is true, the
unconditional mean of the states E(Z;|0) = E(Z;|6) may be defined by

E(Z,]0) = (1

nz — P(0))71J(0)
Then, the rule of motion for the variables without-means Z, = Z, — E(Z,|f) is:

Zy = P(0)Z_1 + R(O)U, (C.6)

T follow this route with the ultimate intention of applying Komunjer and Ng (2011)’s iden-
tification results, which do not take into consideration mean-nonzero models. Iskrev (2010)’s
approach to local identification does allow for nonzero means; in order to apply his results, one
could alternatively compute the first and second moments of the data set {),}7 ; from JPRS
representation directly using Andreasen et al. (2014)’s approach, and calculate the Jacobian us-
ing numerical derivatives. Recall, however, that Iskrev’s rank conditions apply to only a finite
data sample, whereas Komunjer and Ng’s apply to the spectral density.
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and the observation equation becomes
Y, = S5(0)Z: (C.7)

where Y; = YV, — E(Q4|0) for E(4|0) = Ty + SE(Z:|0). Recall, 1 have assumed
WLOG that the control variables y; are the observables. Therefore, Y; is directly

compatible with data that has been separated from its means.

C.3 Step 3: Remove Remaining Unnecessary Variables

Intuition for the Third Step. The final step of the ABCD repararma-
terization is the most intensive of the three. In order to motivate it, it is most
useful to begin with a simple linear example. Consider a first-order approximation

of a simple hypothetical model, with linear dependence between states and shocks,

z hiy 0 hysl| 2], m
i'\gt = |har 0 has fgt_l +0 |n| w (C.8)
z, hst 0 hss| |@4, 4 "3

The scalar observable will be g/]{ = gg@,{ . In this model, today’s value of f{t has no
effect on the future values either the states or observables. This is embodied by the
exclusion restrictions on h, that have evidently arisen from the microfoundations
of the model. Assumption 2 guarantees that the zeros in h, do not vary for 6 € ©;
sometimes, DSGE models with this property are referred to as being “varation-
free.”

When the zeros in h, are characteristic of the entire parameter space O,
one may completely eliminate ZJ, from the solution of the model without loss of

generality. First, define the zero-one selection matrix

100
m =
0 01
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I call m a “selection” matrix, because because using it to premultiply f{ , it forms

/
a new vector of the complement of 74, in Z/: m x 2/ = [f{ . /x\g;t} . Note, however,
that m also has another useful property,
a?{t—l /x\{t—l hll 0 h13 Zc\{t—l hll 0 h13 E'3\{t—1
m'm fgtfl 0 and h21 0 h23 fgtfl = h21 0 h23 0
By By har O has| | %, hai O has| |%,

Thus, with /x\{ and m defined as above, the term hx/x\{ may simply be replaced

with h,m’ mﬁc\f . Using the above facts, it follows that our model may be exactly
rewritten
#l, hir has 7 om
T ~f * NG,
Lot hsi hss [ P21 ] o Y
—— —— ——
X,=mz! A B (C.9)
/ Em
yt - |:gzh:pl gmhmg] /ZL‘\gt ) + Ugﬂ] Uy
Y —— L72t—1 D

c

where A = mh,m’, B = omn, C = g,h,m/, and D is as expressed above. h
is the entire i-th column of h,. The dimensions of the state, observables, and
innovations are denoted ny = 2, ny = 1, and n. = 1. This is known as the ABCD
representation of the model.

As Komunjer and Ng (2011) point out, not only does this process of re-
moving states on the basis of exclusion restrictions reduce the dimension of the
state vector for linearized DSGE models, but typically, the remaining state vector
mi{ is minimal. Since it is easy to use the selection matrix m to obtain minimal
ABCD representation of linearized models, a natural question is whether a similar

procedure may be used for the class of pruned nonlinear models currently under

consideration. This is Step 3.

The Third Step. Consider the pruned second order solution of the same hy-
pothetical model presented in Equation (C.8). Note, due to the nested nature of

Taylor approximations, exactly the same h, is nested in this solution (Compare
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with equation (3.11)).

o
g

~fof
Loy

&;\it hll 0 hlg /x\‘{t_l H1 0 H13 00 H16 F
fof
T3: T4

/l‘\gt = h21 O h23 ZB\;t—l + 5 H21 O H23 O O HQ@ i-\fz
~ ~ 2t
x5, hg1 0 hss| |75, H3; 0 Hzz 0 0 Hze ~f ~f
\A,_/ | — ~- - | L3¢ Loy

t

1
+§h0—002

—_——
D, @]

Zeros on the first order coefficients often imply zeros on the second order coefficients

for the same variable; for intuition, consider the hypothetical process xo; = a1+

g;. This explains the location of zeros in H,, in comparison to the zeros in h,.

Returning to Step 2, the representation without-means expression Equation (C.6)

for the states is

7/ he 0 0 zl on 0 0 g
Zy| =10 hy 1H.D, | |Zy.|+]0 0 0 | |uz—-1
73y 0 0 D} hPD,, Ty 0 o*D} n®*D,, or(0) zlu,
SN—— N ~ 4 N ~ 7N~ ~ -
Z P R Uy

Where Z\gt is an n, x 1 vector of the second order solution states separated from
their means, Zy = 5 — E(#|0) and Zs, is the ng(ng + 1)/2 x 1 mean-zero
vector D;f 77 — E(D;} 27|6y). The observation equation is the following; Y; =

ul + s — 590002 — SE(Z)]0) is a scalar:

Y, = [gx s

(

The selection matrix m was previously used in the linear case to select a sub-
vector of /x\{ corresponding to the non-zero columns of h,. Within P, however,
there are zeros not only in the submatrix h,, but also the submatrices %HmDnm

and D;f h¥?D,,,. Thus, defining a similar selection matrix for this case requires a
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slightly different strategy. First, drawing on the theme of nestedness of progres-
sively higher-order solutions, note that the only submatrix of P premultiplying
Z,l is again h,. Thus, with m exactly as previously defined, mZQt,l is the 3 x 1
vector that selects only the 3 elements of the 6-dimensional vector 2%_1 that cor-
respond to non-zero columns in h,. Second, we have the fact that there are zeros
in the second, fourth, and fifth columns of %Hman as displayed above. But in
addition, note that

B2, 10 U hihis 0001 b2y

————— i R
hithsi 10! hithss 10 10! hishss

PP = a0 b 000 1,
21 | | 211423 | | | 23

77777 T

hothszr | 0| hathgs | 00| hazhss

So, only the second, fourth, and fifth columns of both %Hman and D} h€?D,,,

have zeros. For this reason define

1 0000O
m"=100 1000
000O0O0T1

Then, m*Z\gt_l is the 3 x 1 vector that selects only the 3 elements of the 6-
dimensional vector Z\gt,l that correspond to non-zero columns in %HmDnz and
D} h#?D,,,, and m*/mé\gt_l replaces the appropriate elements with zeros (recall
the operations of m'm previously). Thus, constructing the 7 x 12 matrix M as

below, we have

m 0 0 z! mz!
0 m O 22,5 = m22t
0 0 m* Z\gt m* Z\St

——
M: 7x12 2t5 12x1 Xt: 7x1



Therefore, given the equivalence of representations
Z,=PZ_1+RU, & MZ,=(MPM')MZ,_, + MRU,

Y, =57, & Y,=(SPM')MZ,_, + SRU,

~ / ~ /
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+ SRU;

&, hi his 0 0 0 0 0 G

zl, ht hss 0 0 0 0 0 z

o1t 0 0 hu hs $Hu $Hiz 3Hi Za1t-1
Zoge| = 0 0 his hgs 3Hy 1Hss L1Hg Zys—1| + MRU;

Z31¢ 0 0 0 0 A hihiz hig 23161

331 0 0 0 0 huhs hithss hashss 23311

| 236t 0 0 0 0  h3  hahss  h3z | [Zser—1]

Al PR B

G

Ty

Za1t-1

Yoo = gl g:hd ghil gohy x(1) x(3) x(6)|  |Zes

) C=SPM/ 23161

23311

| Z361-1

where

1
x(7) denotes g, x (the i-th column of éHmDnz>
1
+ §G:c:chz X (the i-th column of D:{m
There is one last step to reduce the dimension of the errors. Recall,

R is a function of h,, through its submatrix r. Therefore, zeros in h,,

elements of U; may be shed, just as elements of Z may be. To see

he*D,,)

the matrix
will imply
this in the
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current ongoing example, and recalling that ©» = D} (n® hy + (he ® 0) Ky, 0, )

then r has the form

2mhi 0 211 M3
nshin +mhar 0 m3haz + mhos
_— nshir +mhsi 0 mzhiz + mihss
03 2n3ha1 0 2n3has3
n3(hor + ha1) 0 m3(hos + hssz)
2n3h31 0 2n3hs3
/
Since r premultiplies /x\{_lut = /x\{ Uy fgt_lut fgt_lut] , it is evident how the

zeros in h,, corresponding to fgt have also translated to zeros in r corresponding
to Zv\gtut. Thus, recalling how m was originally constructed, and defining another

zero-one matrix

~f ~f ~f ~f
10 0 Lp—1Ut Lip—1Ut Tp—1Ut Lp—1Ut
n = —n'n |7, u| = 0 and r |7, ju | =7 0
L3 Ut L3 Ut T3 Ut L3 1 Ut

And using n, define N to be

1 00
N=1(010
0 0 n
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Lt T om0 0 0
zl, ., ons 0 0 0 - -
~ ~ Uy
291t 221¢—1 0 0 0 0 )
~ ~ up — 1
293¢t — A 293t—1 + 0 0 0 0 ~f
—~ —~ ) xltut
231t Z31¢t—1 0 Ui 2n1hiy 2n1hs ~f
~ ~ L3 Ut
233t 23311 0 mns mshi +mhsr nshiz +mhss| —e— ——
—~ ~ Ez:NUt
| Z36t | | Z361—1 | 0 2n3hs 2n3hs3
—— ~ v
Xt:MEt B=MRN’
SO
Tii—1
=~f
T3 i 7
~ Uy
221t—1
~ b2 @2 : ! U? —1
Y: =C |Zyg_1| + [ 09: ' G Gaan® Dy, 1 0U(1) 1 0 (3) ] o
R K ‘ — ‘ , Typus
231t—1 D=SRN' _f
~ L3 Ut
233t—1 —_——
~ Et:NUt
| ©36t—1 |
where

1
P(i) = §Gman X (the i-th column of r)

In other words, we now have ABCD representation, with all unnecessary variables
in Z\t and U; eliminated from the system, and Step 3 is completed. In conclusion,
under Assumptions 1, 2, and 3, the pruned state space model Equations (3.13)

and (3.14) may be written in terms of deviations from mean as an ABCD model

Xt = A(G) Xt,1 -+ B(@) Et

(C.10)
Y, = C0) X, + D) e

where X, = MZ,, &, = NU,, A= MPM’', B= MRN', C = SPM’, and D =
SRN’ where Z = %; — (I,, — P)7'K for Z;, U;, K, P, R, and S defined as in
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Equations (C.4) and (C.5) and M and N have the functional form

m 0 0 I, 0 0
M=10 m 0 N=10 IL,nw+1p2 O
0O 0 m* 0 0 n

with the submatrices m, m*, and n being defined appropriately for the model at
hand to eliminate all unnecessary elements of Z and U;. Corollary 1, that ¢, is

white noise, in a consequence of the fact that u; is white noise, and is described in
Appendix A.

D Definitions

Definition 1. Controllability: For every 6 € ©, define the controllability matrix
by
c(6) = ( B6) 1 AB)B(O) ...+ AB)"'B(®) )

I say {A(0), B(0)} is controllable if and only if C(0) is full row rank.

Definition 2. Observability: For cvery 0 € O, define the observability matrix
by
O0) = ( C(oy 1 ABYCBY ...+ AOy~—"C(68) )

I say {A(0),C(0)} is observable if and only if O(0) is full column rank.

Definition 3. Minimality: {A(6), B(6),C(6), D(0)} is minimal if and only if
{A(0),B(0)} is controllable and {A(0),C(0)} is observable (Kailath et al. (2000)
p. 765).

Definition 4. Stochastic Singularity: ABCD representation is stochastically
singular (“singular”) if n. < ny. If n. > ny, the model is called stochastically
nonsingular (“nonsingular”), and if n. = ny the model is both singular and non-

singular.
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E Generalization to Higher Order Models

Andreasen et al. (2014) show that third order pruned state space repre-
sentation also has JPRS representation. I claim but do not provide formal proof
that the above steps may be replicated almost exactly to obtain minimal ABCD
or AKCY representation of these models. The only additional tool that is re-
quired is Meijer (2005)’s triplication and quadruplication matrices used in place of
the duplication matrix in Step 1 of the 3-Step ABCD reparameterization. Recall,
the duplication matrix has the property of equating % to its unique elements
only by the equality z$°? = D,,, x (unique elements of 2{°*) (The unique elements
of z7* are also vech(z,z})). The Moore-Penrose inverse D} = (D) D, )"'D,
equates (un. el. of ) = D/ zf?. The triplication matrix T}, has the property
293 =T, x (un. el. of x7®) and T," exists. The quadruplication matrix ¢,, has
the property that z9* = @Q,, x (un. el. of 2{*) and @, exists. These matrices
and the steps above may be used to obtain minimal representation of third order
models. Meijer also provides higher-order n-tuplication matrices that could be

used or those interested in fourth or higher order models.
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