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ABSTRACT OF THE DISSERTATION

Identification of Dynamic Stochastic General Equilibrium Models

by

Stephen David Morris

Doctor of Philosophy in Economics

University of California, San Diego, 2014

Professor James D. Hamilton, Chair

The dissertation “Identification of Dynamic Stochastic General Equilibrium

Models” by Stephen David Morris is divided into three chapters. The first chapter

considers the statistical implications of common identifying restrictions for DSGE

models. The second chapter considers the implications of identification failure for

Bayesian estimators. The third chapter considers how identification of nonlinear

solutions compares with that of linear solutions.
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Chapter 1

The Statistical Implications of

Common Identifying Restrictions

for DSGE Models

Abstract. I reveal identification failure in a well-known dynamic stochas-

tic general equilibrium (DSGE) model, and study the statistical implications of

common identifying restrictions in this context. First, I provide a fully analytical

methodology for determining all observationally equivalent values of the struc-

tural parameters in any parameter space. I show that parameter admissibility or

sign restrictions may yield global identification for some parameter realizations,

but not for others. Second, I derive a “plug-in” maximum likelihood estimator,

which requires no numerical search. I use this tool to demonstrate that the spe-

cific identifying restriction impinges on both the location and distribution of the

small-sample MLE in an idiosyncratic manner. Using this fact, I show how to

compute correctly sized confidence intervals, and generalize the methodology for

application to medium-scale models, such as Smets and Wouters (2007).

1 Introduction

DSGE models are the workhorse of modern macroeconomics. They are

taught in nearly all graduate economics programs, and are a core empirical tool of

1
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monetary policymakers and academics alike.1 Following the realization of identi-

fication failures in the classic vintage of estimated multi-equation macroeconomic

models by Sims (1980), calibration was suggested for what are now known as

DSGE models by Kydland and Prescott (1982).2 Eventually, increases in comput-

ing power made DSGE likelihood computation feasible, leading to the estimation

of DSGE models, in the early 2000’s.3 Since then, important policies are routinely

made on the basis of estimates of DSGE parameters, which typically include the

discount rate, coefficient of relative risk aversion, indices of price and wage sticki-

ness, and other theoretical objects. Recently, however, the identifiability of DSGE

parameters has been called into question.4

In this paper, I investigate whether it is possible to distinguish between

parameter values in DSGE models on the basis of the data, what may be done

when this is not case, and finally, what the statistical implications of the corrective

actions are. I conduct this analysis using the very well-known model utilized in

An and Schorfheide (2007). Although relatively small in scale, this model includes

features of the seminal frameworks of Smets and Wouters (2003), Woodford (2003),

and Christiano et al. (2005). Furthermore, these baseline specifications are the

starting point for recent extensions, including the introduction of nonlinearity,

non-normality, and more richly developed labor and financial markets.5 In the

penultimate section of the paper, I discuss how to generalize the methodology to

larger-scale models, such as Smets and Wouters (2007).

The main findings are three-fold. First, I confirm that the conditional iden-

1Of the many central banks that openly use DSGE models to inform monetary policy decisions
are the Swedish Sveriges Riksbank, the Norwegian Norge Bank, and the US Federal Reserve. See
also Christiano et al. (2010). In terms of academic diffusion, as of May 2014, the representative
paper of Smets and Wouters (2003) has 2,798 scholarly citations on Google Scholar.

2The so-called “classic vintage” including FRB-MIT. See Rasche and Shapiro (1968).
3Notably, Smets and Wouters (2003) and Ireland (2004).
4Cochrane (2011) considers the identification of the Taylor rule, Kleibergen and Mavroeidis

(2009) the Phillips curve, and Beyer and Farmer (2006) and Canova and Sala (2009) the complete
systems of equations known as DSGE models. Thorough critiques of the DSGE paradigm in
general have also been voiced (Chari et al. (2009)). Identification is of preliminary importance
for any argument for or against empirical efficacy.

5Gaĺı et al. (2011) include unemployment, Bianchi (2013) allows for regime-switching, and Doh
(2011), van Binsbergen et al. (2012), and Rudebusch and Swanson (2012) consider nonlinearity
and the term structure. I discuss the implications of nonlinearity for identification in Chapter 3.
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tification scheme suggested by Komunjer and Ng (2011) for the An and Schorfheide

model ensures local identification, but go on to prove that it does not imply global

identification.6 In particular, for any value of the structural parameters there is

exactly one other value which yields an identical value for the likelihood function,

regardless of data sample. Second, I show how this problem might feasibly be

addressed using common identifying restrictions based on macroeconomic theory,

including parameter admissibility and sign restrictions.7 Third, I show that these

restrictions endogenously affect both the placement and distribution of the small-

sample maximum likelihood estimator.8 Thus, I build upon an important result

of Ŕıos-Rull et al. (2012) that the identifying restrictions themselves characterize

important features of the estimator. I add to the discussion by showing how to

compute correctly sized confidence intervals in this context.

An obligation of any science is not only to produce groundbreaking results,

but also to ensure that current knowledge is sound. Beyer and Farmer (2006) and

Canova and Sala (2009) were two of the first to point out that the DSGE models

regularly being estimated were not identified. Since the realization of this prob-

lem, analysts have been careful to restrict their analysis such that identification

is ensured. Yet, the affect of these restrictions on confidence intervals has not

been considered; a Classical estimator reported without valid confidence intervals

is meaningless. Addressing this next phase of inquiry is the purpose of this paper.

In order to discuss identification rigorously, it is necessary to indicate the

formal definitions I have in mind. I discuss these before placing my contribution

in the context of the wider literature.

2 Definitions

DSGE models are simply cross-equation and exclusion restrictions on sys-

tems of time series. Let Y be a TnY ×1 vector of T observations of the nY ×1 vector

6“Conditional identification” is descriptively defined by “fixing some parameters to constants.”
7For example, one salient admissibility constraint is that the discount factor β < 1. A sign

restriction is that a decrease in interest rates causes output to increase.
8The implications of identification failure for Bayesian estimators is discussed in Chapter 2.
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of data Yt and θ be an nθ × 1 vector structural parameter. For each θ ∈ Θ ⊂ Rnθ ,

define a continuous likelihood function `(θ;Y ). Rothenberg (1971) gives the fol-

lowing definitions:9

Definition 1: Two parameter points θ0 and θ∗0 are said to be observa-
tionally equivalent if `(θ0;Y ) = `(θ∗0;Y ) for all Y ∈ RTnY .

Definition 2: A parameter point θ0 is said to be locally identifiable
if there exists an open neighborhood of θ0 containing no other θ∗0 ∈ Θ
which is observationally equivalent.

Definition 3: A parameter point θ0 is said to be globally identifiable
if there is no other θ∗0 ∈ Θ which is observationally equivalent.

Both local and global identifiability are negatively defined in terms of observational

equivalence. Observational equivalence, in turn, does not depend on the data set

utilized. Thus, both local and global identifiability are features of the model, and

not a data set. In addition, whereas local identifiability is qualified by uniqueness

only in an open neighborhood, global identifiability is uniqueness in the entire pa-

rameter space Θ. Therefore, global identifiability is a strictly stronger assumption

than local.

A concept closely linked to parameter identifiability is reduced form repre-

sentation. While this term has several possible interpretations based on context,

I refer to a specific meaning. In particular, Rothenberg (1971) also presents the

following definition:10

Definition 4: Let θ ∈ Θ be vector of structural parameters, and say
that there exists an nΠ-dimensional continuously differentiable vector-
valued function Π = g(θ) mapping Θ into RnΠ such that `(θ;Y ) =
`∗(Π;Y ) for all Y ∈ RTnY ×1 and θ ∈ Θ. If Π is globally identified in
the image of Θ under g for every θ ∈ Θ, Π is a reduced form parameter.

9See p. 578 Definitions 1-3. I use the emphasis global identification in Definition 3, as does
Rothenberg, beginning on page 579.

10See Assumptions VII and VIII, pp. 584-5. While the definition of a reduced form parameter
is rather technical, there are many instructive examples of reduced form parameters; the simplest
is the 2×1 vector Π = (µ, σ)′, where µ and σ are the mean and standard deviation of a univariate
Gaussian likelihood, respectively.
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Reduced form parameters are useful when they are available, since they completely

characterize the likelihood; `(θ;Y ) = `∗(Π;Y ). For example, if Π is a reduced form

parameter, and if g(θ0) = g(θ∗0), then `(θ0;Y ) = `∗(g(θ0);Y ) = `∗(g(θ∗0);Y ) =

`(θ∗0;Y ) for all Y ∈ RTny×1 by identity. In fact, using this observation, we have

the following immediate corollary to Definitions 1 and 4.

Corollary 1: Let Π = g(θ) be a reduced form parameter. Two struc-
tural parameters θ0 and θ∗0 are observationally equivalent if g(θ0) =
g(θ∗0).

A particularly useful aspect of Corollary 1 is that it can be used as an

alternative to Definition 1 for the purpose of defining identification. In other

words, when a given model has reduced form representation, both local and global

identification depend entirely on the parametric features of g(θ). In addition,

all characterizations of local and global identification in terms of reduced form

representation hold in samples of variable length T , including in population.

While the contribution of Rothenberg (1971) is a classic, identification of

parametric econometric models has an even longer history, dating back to at least

Koopmans and Reiersøl (1950), Wald (1950), and Fisher (1966). What makes

DSGE models special – and complicated – is the fact that it is difficult to apply

the classic results. The reasons are twofold. On the one hand, DSGE solutions are

not usually found analytically. Thus, for any value θ0 it is typically not possible to

directly find all θ∗0 such that `(θ0;Y ) = `(θ∗0;Y ) exactly for all Y ∈ RTnY . In other

words, it is difficult to find the set of points which are observationally equivalent, as

they are defined in Definition 1. On the other hand, the ABCD representation that

DSGE models typically have is not a reduced form as defined in Definition 4 (See

Fernández-Villaverde et al. (2007) and Komunjer and Ng (2011)). So, Corollary 1

may not be used.

An important preliminary point of clarification is why global identification

of DSGE models matters in the first place. One reason is that observational

equivalence can cause there to be multiple likelihood-maximizing parameter values

in the admissible parameter space for a given sample. Say that nθ = 1, and the

likelihood maximizer in a specific sample Y ∈ RTnY ×1 is θ0 = arg max `(θ;Y )



6Figure 1: Likelihood for data sample Y ⇤ 2 RTnY ⇥1 under observational equivalence between
the scalar likelihood maximizers ✓0 = arg max `(✓; Y ⇤) and ✓1 = arg max `(✓; Y ⇤), but ✓0 6= ✓1.

✓0 ✓1
R1

`(✓; Y )

2 Global Identification

Whether parameter values are uniquely distinguishable from the data is also called

global identification. Global identification is relevant not just in the case of DSGE

models, but whenever two or more parameter values may be equally likely, regardless

of the data sample. Furthermore, this feature directly impinges on whether consistent

estimation is even possible. Let Y be a TnY ⇥ 1 vector of T observations of the nY ⇥ 1

vector of data Yt and ✓ be an n✓⇥1 vector structural parameter. If two parameter values

✓0 and ✓1 yield equivalent likelihoods `(✓0; Y ) = `(✓1; Y ) for all Y 2 RTnY ⇥1, they are

said to be observationally equivalent, meaning that they are always indistinguishable on

the basis of a time series of length T . For example, say that n✓ = 1 and the likelihood

maximizer in a specific sample Y ⇤ 2 RTnY ⇥1 is ✓0 = arg max `(✓; Y ⇤) 2 R1, but there

exists ✓1 2 R1 6= ✓0 so that ✓1 = arg max `(✓; Y ⇤) as well. The likelihood will have

two equally tall peaks in the domain R1, depicted in Figure 1, so the analyst can not

reasonably distinguish between ✓0 and ✓1 on the basis of sample Y ⇤. In response to this

result, the analyst may consider using another sample for the purpose of distinguishing

between ✓0 and ✓1, controlling for variation in the location of the modes from sample-to-

sample. But if ✓0 and ✓1 are observationally equivalent, the analyst can not distinguish

between ✓0 and ✓1 on the basis of any sample Y 2 RTnY ⇥1. In other words, neither ✓0

nor ✓1 is globally identified.

The definitions summarized in the previous paragraph are directly attributable to

the classic contribution of Rothenberg (1971).7 In fact, identification in parametric

econometric models has an even longer history, dating back to Koopmans and Reiersøl

(1950), Wald (1950), and Fisher (1966). What makes DSGE models special – and

complicated – is the fact that these results are typically not applicable. The reason is

7Disambiguation: Rothenberg (1971) refers to what I call global identification as simply identification.

4

Figure 1.1: Likelihood for data sample Y ∈ RTnY ×1 under observational equiva-
lence between likelihood maximizers θ0 = arg max `(θ;Y ) and θ∗0 = arg max `(θ;Y ),
but θ∗0 6= θ0.

where θ ∈ R1. However, this value θ0 has one observationally equivalent point,

θ∗0 6= θ0 but θ∗0 ∈ R1. Thus, θ∗0 = arg max `(θ;Y ) by definition, and the likelihood

will have two equally tall peaks in the domain R1, as in Figure 1.1. This would

cause the results of numerical search for a unique maximum to be misleading.

Yet it is important to take note that conversely, two peaks of the likelihood for

a given Y necessarily implies neither observational equivalence nor lack of global

identification. Rather, this equality is only necessarily a property of the specific

sample Y . In another sample, that property might change.

Next, I utilize these definitions to place my paper in context of the wider

literature.

3 Contributions to the Literature

This paper is part of a small, but important literature which considers

identification of DSGE models. Following the realization of problems by Beyer

and Farmer (2006) and Canova and Sala (2009), conditions for local identification

were provided by Iskrev (2010), Komunjer and Ng (2011), and Qu and Tkachenko

(2012). However, local identification is merely necessary, and not sufficient for

global identification; in terms of Definitions 2 and 3, there may be observationally

equivalent structural parameters outside of an open neighborhood of the point of

interest. In general, it is very difficult to state necessary and sufficient conditions

for global identification in nonlinear models, and only the overly strong sufficient
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conditions of Gale and Nikaidô (1965) are typically useful. As a result, there exist

no published results on global identification of DSGE models, although working

papers by Fukač et al. (2007), Kocięcki and Kolasa (2013), and Qu and Tkachenko

(2013) have managed to make strides in this direction.

The three aforementioned papers on global identification are the most gen-

erally useful contributions on the topic thus far. Yet, there are a number of sig-

nificant caveats yet to be overcome. All existing approaches suggest some form

of searching a given parameter space for observationally equivalent points. Such

a numerical search is daunting even in a small multidimensional parameter space,

and infeasible in a desirably large one. Furthermore, the computational toll nec-

essary to search for even one observationally equivalent point makes repeating the

process for many points impractical. In addition, the numerical algorithms nec-

essary to solve DSGE models insert small errors in the mapping from structural

parameters to moments which may lead two observationally equivalent points to

seem distinct, or vice-versa.

The ultimate reason for these difficulties is that DSGE models neither have

analytical solutions nor reduced form representation in general. The complications

are a preliminary assumption of all of the papers of Komunjer and Ng (2011),

Kocięcki and Kolasa (2013), and Qu and Tkachenko (2013), all of which use the

model of An and Schorfheide (2007) to demonstrate their methodologies. In this

paper, I do not offer generally applicable results for assessing global identification.

Rather, I simply point out that main model that has been studied in this literature,

An and Schorfheide’s, has both an analytical solution and reduced form represen-

tation. These two facts allow me to address all of the problems discussed above

using simple econometric tools, and the resulting discussion is both concise and

transparent. Finally, this observation will allow me to demonstrate how identifying

restrictions affect the distribution of the MLE, the main concern of this paper.

In the next section, I derive this analytical solution and reduced form rep-

resentation. Then, I show how these results may be used to conduct global iden-

tification analysis.
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4 Solution and Reduced Form Representation

Interest rates, output, and inflation are three of the most important aggre-

gate variables from the perspective of monetary policy formulation, and empirical

macroeconomic analysis more broadly. Consider, then, the simplest model of their

dynamic relationship: An unrestricted Gaussian VAR(1) of the logged deviation

from unconditional means of the nominal interest rate, rt, detrended nominal out-

put, yt, and inflation, πt.
rt

yt

πt


︸ ︷︷ ︸
Yt

=


φrr φry φrπ

φyr φyy φyπ

φπr φπy φππ


︸ ︷︷ ︸

Φ


rt−1

yt−1

πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

Ω ≡ E(UtU
′
t) =


ω2
r · ·

ωyr ω2
y ·

ωπr ωπy ω2
π

 (1.1)

Ut is mean zero. By the Yule-Walker equations, Φ = ΣY (1)ΣY (0)−1 and the

variance-covariance matrix is Ω = ΣY (0) − ΣY (1)ΣY (0)−1ΣY (1)′, where ΣY (i) =

E(YtY
′
t−i). The unique elements of the covariance matrices, vech(ΣY (0)) and

ΣY (1), are in some sense the most primitive reduced form parameters, since the

likelihood function for any vector zero-mean Gaussian process may be written

as a function of its second moments. Meanwhile, the coefficient Φ, for exam-

ple, is possibly more naturally interpreted as the projection of Yt on Yt−1. How-

ever, at the same time we have vech(ΣY (0)) =
(
D+

3 (I3 − Φ⊗ Φ)D3

)−1
vech(Ω)

and ΣY (1) = ΦΣY (0).11 So, the relationship between the 15 elements of the sec-

ond moments (vech(ΣY (0)),ΣY (1)) and the 15 VAR parameters (Φ, vech(Ω)) is

one-to-one; in one direction, since the second moments are functions of the VAR

parameters, if the likelihood may be written as a function of the second moments,

it is just as easily written as a function of the VAR parameters. In the other di-

rection, since the VAR parameters are functions of the second moments, they are

trivially globally identified in all closed and compact 15-dimensional real spaces

Θ ⊂ R15 in both sample and population, regardless of their realization. Thus, the

VAR parameters are just as easily interpreted as reduced form parameters, and in

11DnY
is the duplication matrix, D+

nY
= (D′nY

DnY
)−1D′nY

is its Moore-Penrose pseudoinverse,
and ⊗ is the Kronecker product. See Abadir and Magnus (2005).
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Table 1.1: Model and parameter names.

Structural Params (16) Endogenous (6) Errors (3)
1 τ CRRA zt Total factor prod. εzt To zt
2 β Discount factor gt Gov spending εgt To gt
3 ν Inverse elas. of demnd rt Nominal int rate εrt To rt
4 φ Index of price stckness yt Nominal output
5 Π St. state level of infl. πt Inflation
6 ψπ Taylor rule infl. coeff. ct Nominal cons.
7 ψy Taylor rule out. coeff.
8 ρz zt persistence
9 ρg gt persistence
10 ρr rt persistence
11 σz εzt std error
12 σg εgt std error
13 σr εrt std error
14 σgz Covar of εgt and εzt
15 σrz Covar of εrt and εzt
16 σrg Covar of εrt and εgt

addition, efficient estimators Φ̂ and Ω̂ are trivially available from ordinary least

squares.

The unrestricted Gaussian VAR(1) with 15 × 1 reduced form parameter

Π = (vec(Φ)′, vech(Ω)′)′ has many desirable properties. But how does it compare

with a standard DSGE model? The linearized equilibrium equations for the An

and Schorfheide (2007) model are given by the following 6 equilibrium equations.

A complete derivation is available in Appendix B. Variable and parameter names

are given in Table 1.1.

zt = ρzzt−1 + εzt (1.2)

gt = ρggt−1 + εgt (1.3)

rt = ρrrt−1 + (1− ρr)ψππt + (1− ρr)ψy(yt − gt) + εrt (1.4)

yt = Etyt+1 + gt − Etgt+1 − (1/τ)(rt − Etπt+1 − Etzt+1) (1.5)

πt = βEtπt+1 + κ(yt − gt) (1.6)

ct = yt − gt (1.7)
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where κ is a composite function of four underlying structural parameters.

κ = τ
1− ν
νφΠ2

The 3 × 1 vector of innovations εt = [εzt, εgt, εrt]
′ is iid mean-zero Gaussian with

variance-covariance matrix

Σε(θ) ≡ E(εtε
′
t; θ) =


σ2
z · ·

σgz σ2
g ·

σrz σrg σ2
r

 (1.8)

In this paper I allow for the possibility that the off-diagonal covariances are

nonzero; recall, these are related to correlations, for example, by ρgz = σgz/(σgσz).

θ is the nθ = 16 dimensional column vector structural parameter

θ
(16×1)

= (τ, β, ν, φ,Π, ψπ, ψy, ρz, ρg, ρr, σz, σg, σr, σgz, σrz, σrg)
′ (1.9)

Respectively, Equations (1.2)-(1.7) are rules of motion for TFP and government

spending, a Taylor rule, Euler equation, Phillips curve, and aggregate accounting

equality. At first blush, the resemblance between this model and the VAR in Equa-

tion (1.1) is not obvious. In particular, very specific assumptions are necessary for

a given DSGE model to have reduced form representation (See Ravenna (2007)

and Giacomini (2013)). Furthermore, in order to form any reduced form repre-

sentation, it is usually necessary to use numerical solution algorithms like Sims

(2002)’s. Such a black box makes it impossible to exploit the certain identifiability

of the VAR parameters for the purposes of determining the identification of the

structural parameters.

In the next section, I show how a simplified version of the An and Schorfheide

model may be solved analytically, and that this solution is in fact a special case of

Equation (1.1). Then, I show the same for the full model.
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4 .1 Simplified An and Schorfheide Model

Consider the special case of Equations (1.2)-(1.7) in which TFP is iid, zt =

εzt, and government spending is zero, gt = 0 ∀ t. This model has three equations,

rt = ρrrt−1 + (1− ρr)ψππt + (1− ρr)ψy(yt − gt) + εrt

yt = Etyt+1 + gt − Etgt+1 − (1/τ)(rt − Etπt+1) + (1/τ)εzt

πt = βEtπt+1 + κ(yt − gt)

The solution of this model implies the following rule of motion for interest rates:

rt = φrr(θ)rt−1 + drz(θ)εzt + drg(θ)εgt + drr(θ)εrt

Redefine ρr = φrr and εrt = drzεzt + drgεgt + drrεrt. In addition, let inflation be

augmented by a shock, πt = βEtπt+1 + κyt + επt, and define εyt = (1/τ)εzt. Thus,

the above three equations become the following:12

rt = ρrrt−1 + εrt (1.10)

yt = Etyt+1 − (1/τ) (rt − Etπt+1) + εyt (1.11)

πt = βEtπt+1 + κyt + επt (1.12)

The three exogenous variables εrt, εyt, and επt are iid mean-zero Gaussian inno-

vations. While εrt and εyt are respectively the idiosyncratic portion of monetary

policy and a technological innovation, επt may be conceptualized as a cost-push

shock or observational error, for instance (See Ireland (2004)). Allowing for the

possibility that three innovations are mutually correlated, the 3 × 1 vector of in-

12In other words, the reduced form rule of motion for interest rates, Equation (1.10) is equiv-
alently the minimal state variable solution of a Taylor rule that responds to both inflation and
output when rt−1 is the only lagged endogenous variable in the model; see also McCallum (1983)
and McCallum (1999). Thus, Equation (1.10) is simply a reparameterization of the Taylor rule
and this model will not produce sunspots.
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novations εt = [εrt, εyt, επt]
′ has variance-covariance matrix

Σε(θ) ≡ E(εtε
′
t; θ) =


σ2
r · ·

σyr σ2
y ·

σπr σπy σ2
π

 (1.13)

where θ is the 10× 1 vector structural parameter

θ
(10×1)

= (τ, β, κ, ρr, σr, σy, σπ, σyr, σπr, σπy)
′

This model must be solved to be analyzed empirically. Since rt is the only lagged

variable, the solution is of the form Etyt+1 = φyr(θ)rt and Etπt+1 = φπr(θ)rt. By

the method of undetermined coefficients, φyr = (φyr − 1/τ(1− φπr)) ρr and φπr =

(ρrβφπr + κφyr) (See Gaĺı (2008)). So, the vector Yt = [rt, yt, πt]
′ has restricted

Gaussian VAR(1) representation Yt = Φ(θ)Yt−1 + Ut. Ut is a 3 × 1 vector of

mean-zero Gaussian innovations with covariance matrix E(UtU
′
t ; θ) = Ω(θ).

rt

yt

πt


︸ ︷︷ ︸
Yt

=


ρr 0 0

φyr 0 0

φπr 0 0


︸ ︷︷ ︸

Φ(θ)


rt−1

yt−1

πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

(1.14)


ω2
r · ·

ωyr ω2
y ·

ωπr ωπy ω2
π


︸ ︷︷ ︸

Ω(θ)

=


1 0 0

φyr/ρr 1 0

φπr/ρr κ 1


︸ ︷︷ ︸

D(θ)


σ2
r · ·

σyr σ2
y ·

σπr σπy σ2
π


︸ ︷︷ ︸

Σε(θ)


1 φyr/ρr φπr/ρr

0 1 κ

0 0 1


︸ ︷︷ ︸

D(θ)′

(1.15)

where

φyr(θ) =
1− ρrβ

κ
× φπr(θ)

φπr(θ) = −
(

1

τ
× ρr

1− ρr

)/(
1− ρrβ

κ
−
(

1

τ
× ρr

1− ρr

))
The unique reduced form parameters are collected in the 9×1 vector reduced form
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Table 1.2: Simplified An and Schorfheide model candidate calibration θ0 and
theoretically motivated parameter space Θ0. ε =1e-6. Note, parameter bounds are
purposefully allowed to be generous; see also Table 1.1 for microfounded definitions.

Param Lower θ0 Upper
1 τ 0.1 2 3.5
2 β 0.975 0.9975 1-ε
3 κ ε 0.33 3
4 ρr ε 0.75 1-ε
5 σr ε 2e-2 1
6 σy ε 2e-2 1
7 σπ ε 2e-2 1
8 σyr -1 1e-4 1
9 σπr -1 1e-4 1
10 σπy -1 -1e-4 1

parameter

Π(θ)
(9×1)

= (ρr, φyr, φπr, ωr, ωy, ωπ, ωyr, ωπr, ωπy)
′

It will ultimately prove useful to discuss specific values of the structural param-

eters. Table 1.2 provides a candidate calibration θ0, along with upper and lower

bounds for the individual elements of θ; these make up the theoretically justifi-

able population parameter space Θ0. One possible interpretation of Θ0 is as the

boundaries of diffuse priors over θ. Another is simply the support of any bounded

prior, or the maximum admissible space. At θ0,
rt

yt

πt


︸ ︷︷ ︸
Yt

=


0.75 0 0

1.55 0 0

2.04 0 0


︸ ︷︷ ︸

Φ(θ0)


rt−1

yt−1

πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

Ω(θ0) = (1e− 4)×


4 · ·
9 25 ·
12 28 40



4 .2 Full An and Schorfheide Model

While the simplified model may be solved analytically and has parsimonious

reduced form representation, a natural question is whether the same is true of more

empirically relevant specifications with latent state variables. It turns out that an

exactly analogous solution methodology may be pursued for the full model using
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symbolic computation.

Recall that the structural parameter for the full model is the 16× 1 vector

given in Equation (1.9). While the solution of the simplified model followed from

the fact that only lagged interest rates appeared in the equilibrium conditions, the

same is not true here. To approach the solution of the full model analytically,

note that the minimal solution of the model has the following general form (See

Komunjer and Ng (2011) and Kailath et al. (2000)):
zt

gt

rt


︸︷︷ ︸
Xt

=


ρz 0 0

0 ρg 0

crz crg crr


︸ ︷︷ ︸

A(θ)


zt−1

gt−1

rt−1


︸ ︷︷ ︸
Xt−1

+


1 0 0

0 1 0

drz drg drr


︸ ︷︷ ︸

B(θ)


εzt

εgt

εrt


︸ ︷︷ ︸
εt

rt

yt

πt


︸ ︷︷ ︸
Yt

=


crz crg crr

cyz cyg cyr

cπz cπg cπr


︸ ︷︷ ︸

C(θ)


zt−1

gt−1

rt−1

 +


drz drg drr

dyz dyg dyr

dπz dπg dπr


︸ ︷︷ ︸

D(θ)


εzt

εgt

εrt



where the scalars cij(θ) and dij(θ) are a-priori unknown functions of the structural

parameters θ, while the sizes of the vectors of observables Yt , states Xt, and

innovations εt are nY = nX = nε = 3. Given Etεt+1 = 03×1, the observation

equation implies

Et


rt+1

yt+1

πt+1


︸ ︷︷ ︸
Yt+1

=


crz crg crr

cyz cyg cyr

cπz cπg cπr


︸ ︷︷ ︸

C(θ)


zt

gt

rt



Plugging in the corresponding equations for Etyt+1 and Etπt+1, along with Etzt+1 =

ρzzt, into aggregate demand, Equation (1.5),

yt =

(
cyz +

1

τ
cπz +

ρz
τ

)
︸ ︷︷ ︸

fyz

zt +

(
cyg +

1

τ
cπg + (1− ρg)

)
︸ ︷︷ ︸

fyg

gt +

(
cyr +

1

τ
cπr −

1

τ

)
︸ ︷︷ ︸

fyr

rt

Plugging the corresponding equation for Etπt+1, along with the expression for yt
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just derived into the Phillips curve, Equation (1.6),

πt =
(
κcyz +

(
β +

κ

τ

)
cπz +

ρzκ

τ

)
︸ ︷︷ ︸

fπz

zt +
(
κcyg +

(
β +

κ

τ

)
− ρgκ

)
︸ ︷︷ ︸

fπg

gt

+
(
κcyr +

(
β +

κ

τ

)
cπr −

κ

τ

)
︸ ︷︷ ︸

fπr

rt

So, collecting the last two equations, and using the implicitly defined terms fij(θ),
rt

yt

πt


︸ ︷︷ ︸
Yt

=


0 0 1

fyz fyg fyr

fπz fπg fπr


︸ ︷︷ ︸

F (θ)


zt

gt

rt


︸︷︷ ︸
Xt

(1.16)

Finally, given ABCD representation and the fact that Yt = F (θ)Xt,
crz crg crr

cyz cyg cyr

cπz cπg cπr


︸ ︷︷ ︸

C(θ)

=


0 0 1

fyz fyg fyr

fπz fπg fπr


︸ ︷︷ ︸

F (θ)

×


ρz 0 0

0 ρg 0

crz crg crr


︸ ︷︷ ︸

A(θ)

(1.17)

Since the elements of F have been expressed in terms of the elements of C and

θ, the system in Equation (1.17) yields 9 equations and 9 unknowns, the elements

of C. Although it is infeasible to solve for these as functions of θ by hand, it

is straightforward to make use of symbolic computation software for this purpose.

Solving the model using MATLAB’s built-in symbolic computation software reveals

that there are exactly three solutions. However, only one of these solutions implies

a stable solution at θ0, as judged by the modulus of the eigenvalues of A(θ0). The

generalized functional form of this unique stable solution is

C(θ) =


crz(θ) 0 crr(θ)

cyz(θ) ρg cyr(θ)

cπz(θ) 0 cπr(θ)





16

where each of the 6 functions not explicitly shown are distinct functions of the

structural parameters. Although their functional forms are extremely complicated

and too unintuitive to be worth stating, they are closed-form. The two zeros are

exactly zero.

Solving for C(θ) involved using the fact that Yt = F (θ)Xt to infer that

C(θ) = F (θ) × A(θ). Notice that the same fact can be used to conclude that

D(θ) = F (θ)×B(θ). Taking the expressions for C(θ) as given and again utilizing

symbolic computation,
drz drg drr

dyz dyg dyr

dπz dπg dπr


︸ ︷︷ ︸

D(θ)

×


ρz 0 0

0 ρg 0

0 0 ρr


︸ ︷︷ ︸

ρ(θ)

=


crz 0 crr

cyz ρg cyr

cπz 0 cπr


︸ ︷︷ ︸

C(θ)

where ρ is a 3 × 3 matrix containing all, and only, the 3 persistence terms of the

model, ρz, ρg, and ρr. So, using the simple formula for the inverse of a diagonal

matrix, the matrices A, B, C, and D may be written exclusively in terms of C(θ)

and ρ(θ).
zt

gt

rt


︸︷︷ ︸
Xt

=


ρz 0 0

0 ρg 0

crz 0 crr


︸ ︷︷ ︸

A(θ)


zt−1

gt−1

rt−1


︸ ︷︷ ︸
Xt−1

+


1 0 0

0 1 0

crz/ρz 0 crr/ρr


︸ ︷︷ ︸

B(θ)=A(θ)×ρ(θ)−1


εzt

εgt

εrt


︸ ︷︷ ︸
εt

rt

yt

πt


︸ ︷︷ ︸
Yt

=


crz 0 crr

cyz ρg cyr

cπz 0 cπr


︸ ︷︷ ︸

C(θ)


zt−1

gt−1

rt−1

 +


crz/ρz 0 crr/ρr

cyz/ρz 1 cyr/ρr

cπz/ρz 0 cπr/ρr


︸ ︷︷ ︸

D(θ)=C(θ)×ρ(θ)−1


εzt

εgt

εrt



As in the simplified model, θ is assigned a candidate calibration θ0, and parameter

space Θ0, in Table 1.3. It is verified that the values of this analytical ABCD solution

correspond to Sims (2002)’s numerical solution at the same point. However, the

state space parameters are not reduced form parameters. Thus, it is desirable to

explore any companion forms the model might have. It is now useful to state a
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Table 1.3: Full An and Schorfheide candidate calibration θ0 and space Θ0. ε=1e-
6.

Param Lower θ0 Upper
1 τ 0.1 2 3.5
2 β 0.975 0.9975 1-ε
3 ν ε 0.1 1
4 φ 50 53.68 60
5 Π 1+ε 1.008 1.03
6 ψπ -1 1.5 3
7 ψy -1 0.125 1.25
8 ρz ε 0.9 1-ε
9 ρg ε 0.95 1-ε
10 ρr ε 0.75 1-ε
11 σz ε 3e-2 1
12 σg ε 6e-2 1
13 σr ε 2e-2 1
14 σgz -1 1e-4 1
15 σrz -1 1e-4 1
16 σrg -1 -1e-4 1

simple result.

Reduced Form. Let Yt have ABCD representation. If there exists an invertible

matrix F (θ) such that Yt = F (θ)Xt, then Yt also has VAR(1) representation

Yt = CAC−1Yt−1 +Dεt

Proof. If Yt has ABCD representation, but also Yt = FXt for invertible F , then

using the state equation, FXt = FAF−1FXt +FBεt and thus Yt = FAF−1Yt−1 +

FBεt. Now using the observation equation, C = FA and D = FB exactly. Thus,

F = CA−1 so that FAF−1 = CAC−1 and FB = D.

Without any exogenous restrictions, the An and Schorfheide model satisfies Yt =

F (θ)Xt from Equation (1.16). Thus, its observables Yt have restricted VAR(1)

representation. Defining Ut to be a 3×1 vector of nonstructural innovations Dεt

with covariance matrix E(UtU
′
t) ≡ Ω(θ), by the above result, the observables Yt

have the following VAR(1) reduced form representation, another special case of
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Equation (1.1): 
rt

yt

πt


︸ ︷︷ ︸
Yt

=


φrr 0 φrπ

φyr ρg φyπ

φπr 0 φππ


︸ ︷︷ ︸

Φ(θ)


rt−1

yt−1

πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

(1.18)

Given that D(θ) = C(θ)× ρ(θ)−1 and that ρ(θ)−1′ = ρ(θ)−1 since ρ(θ) is diagonal,


φrr 0 φrπ

φyr ρg φyπ

φπr 0 φππ


︸ ︷︷ ︸

Φ(θ)

=


crz 0 crr

cyz ρg cyr

cπz 0 cπr


︸ ︷︷ ︸

C(θ)

×


ρz 0 0

0 ρg 0

crz 0 crr


︸ ︷︷ ︸

A(θ)

×


crz 0 crr

cyz ρg cyr

cπz 0 cπr


−1

︸ ︷︷ ︸
C(θ)−1

(1.19)


ω2
r · ·

ωyr ω2
y ·

ωπr ωπy ω2
π


︸ ︷︷ ︸

Ω(θ)

=


crz 0 crr

cyz ρg cyr

cπz 0 cπr


︸ ︷︷ ︸

C(θ)

×


σ2
z

ρ2
z

· ·
σgz
ρzρg

σ2
g

ρ2
g

·
σrz
ρrρz

σrg
ρrρg

σ2
r

ρ2
r


︸ ︷︷ ︸
ρ(θ)−1×Σε(θ)×ρ(θ)−1

×


crz cyz cπz

0 ρg 0

crr cyr cπr


︸ ︷︷ ︸

C(θ)′

(1.20)

The unique reduced form parameters are collected in the 13× 1 vector parameter

Π(θ)
(13×1)

= (φrr, φyr, φπr, ρg, φrπ, φyπ, φππ, ωr, ωy, ωπ, ωyr, ωπr, ωπy)
′

At θ0, Equation (1.18) has the following realization:
rt

yt

πt


︸ ︷︷ ︸
Yt

=


0.79 0 0.25

0.19 0.95 −0.46

0.12 0 0.62


︸ ︷︷ ︸

Φ(θ0)


rt−1

yt−1

πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

Ω(θ0) = (1e− 4)×


6 · ·
7 58 ·
7 21 20



5 Identification Analysis

As motivated previously, the global identification of the reduced form VAR(1)

Equation (1.1) is trivial, and furthermore, both the simplified and full versions of

the model are now known to have restricted VAR(1) representation. Yet, the iden-
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θ 1 2 3 4 5 6 7 8 9 10
Π τ β κ ρr σr σy σπ σyr σπr σπy
1 ρr ×
2 φyr × × × ×
3 φπr × × × ×
4 ωr ×
5 ωy × × × × × × ×
6 ωπ × × × × × × × × × ×
7 ωyr × × × × × ×
8 ωπr × × × × × × ×
9 ωπy × × × × × × × × ×

Figure 1.2: Simplified model functional mapping g : θ → Π.

tification of θ is the relevant issue. In this section I study the identifiability of the

structural parameters θ from the reduced form parameters Π.

5 .1 Simplified Model

In order to distinguish whether θ is globally identified in the real plane, it is

sufficient to show that θ is uniquely recoverable from Π regardless of θ’s realization

in the reals. Although the mapping from structural parameters θ to reduced form

parameters Π is nonlinear, by virtue of the analytical solution developed in the

preceding section, the correspondence is closed-form. In place of the complicated

functions themselves, ×’s are used in Figure 1.2 to represent the dependence of each

element of Π on each element of θ. For instance, the standard error ωπ is a function

of all 10 structural parameters. As noted in the figure, it will henceforth clarify

the analysis to name this functional dependence Π = g(θ). A similar identification

table was also recently utilized by Hamilton and Wu (2012) as a preliminary step

in investigating the identification of affine term structure models.

The number of structural parameters, nθ = 10 columns, exceeds the num-

ber of reduced form parameters, nΠ = 9 rows; in other words, it is immediately

apparent that the necessary order condition for identification, nΠ ≥ nθ, is violated.

Thus, at least one of the structural parameters must be set to a constant for the

complement subset to be conditionally identified. In order to distinguish which
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structural parameter is such a candidate, or if more than one parameter must be

set, one possible procedure is to check local identification. As motivated by Iskrev

(2010), a reasonable starting point is to compute the Jacobian J(θ0) = ∂Π/∂θ′|θ=θ0
and successively eliminate columns until those that remain are full column rank;

the dropped columns correspond to parameters to be set. However, such an ap-

proach is only valid at θ0 and overlooks the issue of global identification more

broadly.

Instead, consider the following logical points: First, if setting one structural

parameter did in fact result in the remaining 9 being conditionally locally identified,

those 9 would be exactly locally identified by the 9 elements of Π. Let ϑ be such a

hypothetical 9×1 subvector of θ, and α the scalar fixed parameter. Second, a value

of ϑ which yields Π0 conditional on α is exactly ϑ0 such that Π0 = g(ϑ0;α). Using

Corollary 1, ϑ is globally identified at ϑ0 if and only if there exists no ϑ∗0 6= ϑ0

such that Π0 = g(ϑ∗0;α). Third, typically, one would have to search for such a

ϑ∗0 numerically. However, since nϑ = 9 = nΠ and the solution is analytical, a

simple non-numerical method is to simply check whether a unique inverse of the

vector-valued function g exists. When it does, ϑ0 = g−1(Π0;α).

So, ϑ is globally identifiable at any given point in any parameter space if

nϑ = nΠ and g is injective. The latter requirement is verified if g−1 exists and

is unique. Thus, a central question is whether a unique inverse of the specific

functional form of g exists.

By examining the functional form of the vector-valued function g(θ) repre-

sented by Table 1.2, it appears that the parameter σπ is a reasonable candidate for

the role of α. This implies that the parameter to be analyzed using the analytical

approach is

ϑ
(9×1)

= (τ, β, κ, ρr, σr, σy, σπ, σyr, σπr, σπy)
′

Using the analytical solution to invert the mapping implies that each of the 5

parameters τ , ρr, σr, σy, and σyr have unique functional forms in terms of the

vector reduced form parameter. For example, given a realization Π, the unique
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Table 1.4: Simplified model observational equivalence in R9 but not Θ0. Π =
g(x;σπ); x = ϑ0 or ϑ∗0.

g(x;σπ) ϑ0 ϑ∗
0

1 ρr 0.75 τ 2 2
2 φyr 1.55 β 0.9975 1.51
3 φπr 2.04 κ 0.33 -0.17
4 ωr 2e-2 ρr 0.75 0.75
5 ωy 5e-2 σr 2e-2 2e-2
6 ωπ 6e-2 σy 2e-2 2e-2
7 ωyr 9e-4 σyr 1e-4 1e-4
8 ωπr 12e-4 σπr 1e-4 2e-4
9 ωπy 28e-4 σπy -1e-4 1e-4

expression for τ is

τ = − ρr
1− ρr

× 1− φπr
φyr

and ρr is itself one of the reduced form parameters. The remaining expressions

for σr, σπr, and σyr are closed-form, but too complicated to provide any intuition.

The most important result, however, has to do with the remaining 4 elements of

ϑ. Even after normalizing the relationship between standard errors and variances,

for any Π, there are exactly 2 expressions for each of β, κ, σπr, and σπy in terms of

Π, no more, no less. In other words, g is not injective, and its inverse yields two

values:

g−1(g(ϑ0;σπ);σπ)

ϑ0

ϑ∗0

There are several important consequences of Table 1.4. First, ϑ0 and

ϑ∗0 are observationally equivalent despite that the 9 × 9 Jacobian J(ϑ0;σπ) =

∂Π(ϑ;σπ)/∂ϑ′|ϑ=ϑ0
is full rank, a necessary and sufficient condition for local iden-

tification. Second, the value ϑ∗0 – and specifically, the values of β and κ at ϑ∗0 –

fall outside of Θ0. Therefore, an assessment of global identification at ϑ0 based on

numerically searching over Θ0 would conclude simply that ϑ is globally identified

in Θ0, whereas this conclusion is possibly misleading of the fact that there is an

observationally equivalent ϑ∗0 in R9 outside of, but relatively close to, Θ0. Third,
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Figure 1.3: Simplified model impulse-responses for observationally equivalent
points: ϑ0 (◦) vs ϑ∗0 (+). Triangularity of impulse-responses reflects triangularity
of D(θ) in Equation (1.15).
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computational time is a fraction of a second.

A natural next question is whether the economic implications of both ϑ0

and ϑ∗0 are the same. I provide impulse-responses for both points in Figure 1.3.

When the crosshairs corresponding to ϑ∗0 exactly hit the bullseyes corresponding

to ϑ0, the economic implications are equivalent. In only one case, πt’s response to

εyt, do the economic implications of each point differ. In fact, this can be traced

back to Equation (1.15) as arising from the difference in κ between points. There

are two important implications of this observation. First, the monetary policy

impulse-responses in the first column of Figure 1.3 are robust to observational

equivalence. This means that if those impulse responses were the only object of

economic interest, a valid normalization is to simply drop ϑ∗0. Second, the economic

implications of the two points for πt’s response to εyt differ. Therefore, if this is

the object of economic analysis, simply dropping ϑ∗0 is not benign.

The good news is that is reasonable to distinguish between ϑ0 and ϑ∗0 on

the basis of both the bounded priors embodied in Θ0, and sign restrictions. For

instance, not only is κ < 0 contrary to standard theory, it also implies inflation

will decrease following a cost-push shock (to εyt). In addition, β > 1 is certainly

disconcerting. Specifically, if the space in which global identification is impor-

tant is Θ0, then Table 1.4 has simply shown us that ϑ0 is globally identified in

Θ0. Thus, although this model does engender observational equivalencies, the two

facts that global identification is defined in terms of a parameter space, and that

macroeconomists have a good idea of what parameter spaces are important, allow

the analyst to eliminate the nuisance ϑ∗0 in this case.

Yet, it is not always possible to distinguish between observationally equiva-

lent points on the basis of the bounds of Θ0 alone. Since evaluating global identi-

fication for a point may be done very efficiently, I am able to search the parameter

space Θ0 for values ϑ1 which have an observationally equivalent ϑ∗1 that is also

in Θ0. Such an example is given in Table 1.5. The impulse responses for each

point are given in Figure 1.4. Again, only πt’s response to εyt differs from point to

point. However, in this case, both impulse responses have the same sign, owing to

the fact that the value for κ at each point is the same. Evidently, observational
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Table 1.5: Simplified model observational equivalence in Θ0. Π = g(x;σπ); x = ϑ0

or ϑ∗0.

g(x;σπ) ϑ1 ϑ∗
1

1 ρr 0.93 τ 1.01 1.01
2 φyr 0.03 β 0.9836 0.9980
3 φπr 1.002 κ 2.70 2.25
4 ωr 0.41 ρr 0.93 0.93
5 ωy 0.08 σr 0.41 0.41
6 ωπ 0.60 σy 0.07 0.07
7 ωyr 0.03 σyr 0.03 0.03
8 ωπr 0.25 σπr -6.1e-3 5.1e3
9 ωπy 0.05 σπy -9e-4 9e-4

Table 1.6: Identification of ϑ in simplified model: 100,000 uniformly drawn points
from Θ0.

Yes No
Locally Identified 100 % 0 %

Globally Identified in Θ0 65.76 % 34.24 %
Globally Identified in All Θ ⊂ R9 0.04% 99.96 %

equivalence is a more trying issue at the realization ϑ1, since neither it nor ϑ∗1 may

be easily eliminated. More elaborate identifying restrictions are necessary.

Consider, then, the analyst who decides to simply choose ϑ∗1, since the

value of β is closer to the original value in θ0 of 0.9975. Macroeconomists usually

have very strong convictions about the value of this parameter in particular. This

action would reflect, for example, the will of an analyst with a very tight prior for

β centered at 0.9975. Depending on the analyst’s ultimate inferential goal, many

possible identifying restrictions are possible.

What is the likeliness of drawing a point like ϑ0 versus a point like ϑ1 in

the parameter space Θ0? Obviously, if there are relatively more ϑ0, this is all

else equal a good thing, since the analyst will be required to enforce relatively

less stringent identifying restrictions. Table 1.6 presents the results of testing for

local identification, and global identification in both Θ0 and all Θ ⊂ R9, at 100,000

uniformly drawn points from Θ0. The only restriction I make on the points drawn is

that the variance-covariance matrix Σε(ϑ;α) must be positive semidefinite. Recall,

since Ω = DΣεD
′ in Equation (1.15), Σε positive semidefinite implies that so is Ω.
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Figure 1.4: Simplified model impulse-responses for two theoretically plausible
and observationally equivalent points: ϑ1 (◦) vs ϑ∗1 (+).



26

ϑ is locally identified at all points, but has a real-valued observationally equivalent

point at all but 0.04% of draws.13 Furthermore, the identifying restriction that

ϑ must be in Θ0 does not successfully yield a unique point in roughly a third of

the space. Thus, stronger identifying restrictions like the previously discussed β

criterion are frequently needed.

5 .2 Plug-In Maximum Likelihood

While we are now aware of what types of identifying restrictions are nec-

essary in the simple model, and when they must be implemented, we are not

fully cognizant of the effects of these normalizations on confidence intervals. One

approach to understand the statistical outcomes of a given normalization is to im-

plement these identifying restrictions in the Monte Carlo distribution of a given

estimator, such as the maximum likelihood estimator.14 However, under normal

circumstances, it would be impossible to construct such a distribution for DSGE

models in particular. The reasons are three-fold. Firstly, without the knowledge

of how many maxima are in R9, it would be impossible to determine how many

maximum likelihood estimators exist for each draw i. Secondly, as demonstrated

by Andreasen (2010), even the most sophisticated global algorithms for likelihood

maximization, including simulated annealing and genetic numerical search, are

prone to failure. Furthermore, search algorithms are only as accurate as the ter-

mination tolerance chosen by the analyst, which is particularly worrying given

the topological characterization of weak identification is flatness in the likelihood

surface (See Canova and Sala (2009)). Finally, likelihood maximization is com-

putationally costly, particularly for the most reliable genetic algorithm, making it

infeasible to compute the distribution for large N .

In fact, the mapping g−1 has other uses besides assessing identification; it

may also be used as the basis of a “plug-in” maximum likelihood estimator. This

tool is uniquely suited for computing the Monte Carlo distribution, and investi-

13All of these 0.04% of points have observationally equivalent points that are real, but yield
Σε which are not positive semidefinite, and thus not variance-covariance matrices.

14As in Stock et al. (2002), the Monte Carlo is also a natural place to begin analysis of weak
identification.
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gating the statistical consequences of implemented normalizations. I motivate this

estimator using the minimum chi-squared estimator, or MCSE, implemented by

Hamilton and Wu (2012) and first suggested by Rothenberg (1973). When Π̂ is

the maximum likelihood estimator of the reduced form parameters, and Î is an ef-

ficient estimator of the information matrix with respect to Π, the MCSE is defined

by the following:

ϑ̂MCSE = arg min
ϑ∈Θ

(Π̂− g(ϑ;α))′Î(Π̂− g(ϑ;α)) (1.21)

As Hamilton and Wu (2012) go on to show, this estimator is asymptotically

efficient. In addition, in the special case that nϑ = nΠ, the minimal value of the

criterion is zero, in which case the analyst may simply use an identity matrix as

the weighting matrix, and find the MCSE as equivalently the minimizer of

(Π̂− g(ϑ;α))′(Π̂− g(ϑ;α)) (1.22)

Notice, since (1.22) a quadratic form, ϑ̂MLE is equivalently defined by Π̂ = g(ϑ̂MLE;α).

In other words, given any data set, under the conditional identification scheme

α = σπ there are exactly two points which maximize the likelihood:

g−1(Π̂;σπ)

ϑ̂

ϑ̂∗

The coefficients Π̂ are available by restricted feasible generalize least squares

(FGLS).15 In addition, given g−1 is known in closed-form, the analyst need only

plug-in to obtain both points ϑ̂ and ϑ̂∗ that maximize the likelihood. As in Hamil-

ton and Wu (2012), there is no uncertainty that each of ϑ̂ and ϑ̂∗ maximizes the

likelihood. My extension of deriving g−1 directly also implies there is no uncertainty

about the number of likelihood maxima or the reliability of search algorithms, nor

15In Hamilton and Wu (2012), ordinary least squares is utilized. In the current case, the ex-
clusion restrictions on Φ require restricted FGLS. See Lutkepohl (2005) p. 20. GLS is equivalent
to the MLE under normality of Ut. See Hamilton (1994) p. 222.



28

18501850

1850

1850

1850

1850

1850 1500

1500

1500

1500

1500

1500

1500

500

500

50
0

50
0

500

500

500

−5
000

−5000

−5000

−5000

−5000

−5000

β

κ

Log−likelihood maximum: 1909.3 at exactly two points

0.3065

−0.0589

1.0973 1.5095
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.5: Contour plot of log-likelihood. Maximum achieved at identical 1909.9
for exactly two points +, which are the plug-in MLEs. Compare with depicted
bimodal univariate likelihood in Figure 1.1.

is there computational toll from numerical search.

To verify, I use the value ϑ0 to generate a data set of length T = 250 and

reestimate the parameters of the model using the plug-in technique. As predicted

previously in Table (1.4), for instance, this estimator yields two different values

for β and κ. By computing the contour plot of the likelihood over these values, it

shown that the plug-in MLEs do maximize the likelihood function, with exactly

equal values at both points.



29

5 .3 Small Sample Distribution of MLE

It is now feasible to compute a Monte Carlo simulation of the small-sample

standard errors of the MLE.16 First, I consider the model subject to no identifying

restrictions is given in Figure 5.3 with T = 250 and N=10,00. This T is equivalent

to 62.5 years of quarterly data, approximately the available window of post-war

data on interest rates, output, and inflation. The entire distribution is computed

in a few seconds. To understand how this distribution is computed requires first

an understanding of the sample. While roughly 78% of the draws Π̂i yield two

real-valued estimators ϑ̂i and ϑ̂∗i, 22% yield two complex-valued estimators, and

0% yield only one real-valued point. There are two conflicting perspectives on how

to deal with the complex-valued estimators. One is to include these in the Monte

Carlo distribution. The other is to simply try to find a local maximum in the reals.

However, whereas the first approach takes this analysis out of the comfort zone of

meaningful macroeconomic analysis, the second suggests an estimator known not

to maximize the likelihood. Since there is no formal econometric basis for distin-

guishing between these two options, for the 22% of draws yielding two complex

points, I take the safest route possible and simply say the estimator does not exist.

Thus, the restricted estimator is technically a restricted MLE. When there are

two real-valued estimators, each receives a weight of one in the distribution. The

pseudo-code for Figure 5.3 follows:

1. For draw Π̂i, compute both estimators ϑ̂i and ϑ̂∗i by plugging in to g−1.

2. If both are outside of reals, the estimator is said to not exist for the given

draw (22% of utilized sample).

16Qu (2013), Guerron-Quintana et al. (2013), Dufour et al. (2013), and Andrews and Mikusheva
(2013) have all discussed the issue of weak identification, and how to compute correctly sized
large-sample confidence intervals and tests. Since the distributions I consider are bootstrapped
small sample standard errors, they do not rely on the asymptotic approximations that break
down under weak identification (See Stock et al. (2002), for example). Note, it is not generally
possible to compute a bootstrapped distribution for weakly identified models. This is due to
the fact that the bootstrap is known to be invalid under weak identification, an outcome related
to the failure of Edgeworth expansion in this case (See Hall (1992)). However, the bootstrap
statistics I calculate are applied only to the restricted FGLS estimator of the reduced form VAR
parameters, which are strongly identified.
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Figure 1.6: Monte Carlo distribution of O Model restricted MLE at ϑ0 in the
real-valued codomain: T=250, N=10,000. Two-sided (α/2,1 − α/2) confidence
interval, α = 5%.

3. If both estimators are in the reals, plot both in the Monte Carlo with equal

weight 1.

4. If one is in the reals and one is outside, plot only the one inside with weight

of 217 (Note, this option has no effect in the given sample).

The multi-modal character of the likelihood in the parameters β, κ, and

σπy, also tellingly reminiscent of the distribution of weak instrumental variables

17A weight of 2 indicates that when one of the two estimators for draw i can be eliminated,
the only remaining estimator receives double relative weight. This ensures that the small sample
distribution is correctly computed across the sample of N draws. An alternative way to concep-
tualize this is that when there are two permissible estimators for a given draw i, the analyst has
two half-weighted conflicting estimates. One reasonable story is that as the result of numerical
issues, only one estimator is found at each draw, with equal probability.
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computed by Nelson and Startz (1990), is obvious. Moreover, there are a few other

more subtle observations regarding the MLE distribution over the remaining pa-

rameters. Firstly, the parameter σπr does not seem to have a bimodal distribution,

even though it was the fourth structural parameter, besides β, κ, and σπy, to exhibit

observational equivalence in Table 1.4. The reason is that the two modes pile-up

immediately next to one another so there appears to be only one rightward-leading

peak. Secondly, even single-modal parameters like the coefficient of relative risk

aversion τ = −ρr/(1−ρr)×(1−φπr)/φyr seems to be biased (leftward). Evidently,

even using the longest possible sample of post-war data, there is small sample bias

in the MLE.

Yet, the distribution of the maximum likelihood estimator itself is not the

only important distribution to consider. As first explicitly shown by Hamilton et al.

(2007), normalizations meant to achieve global identification can have unintended

consequences on the properties of confidence intervals. Therefore, if the analyst is

using a given normalization scheme to identify a given parameter value, it is critical

that this identification scheme be embodied in the construction of the Monte Carlo

distribution. First, consider again the analyst that uses bounded priors embodied

by Θ0 as the means for identification; specifically, a parameter is identified in

Θ0 if its observationally equivalent point is outside of this space. Recall, this

normalization was a successful identifying restriction for ϑ0 in Table 1.4. If two

estimators are both inside of or both outside of Θ0, there is no reasonable basis

to distinguish between the two. Rather, there is only a unique estimator when

just one is in Θ0. The distribution of this estimator is given in Figure 1.7. In this

case, the distributions are close to the original MLE, but now the second peaks for

β, κ, and σπy have shrunk slightly, reflecting the analyst’s ability to distinguish

between two points when one is outside of Θ0. Note the standard errors for both β

and κ have now changed, indicating a modest but realized affect of the identifying

restrictions on the sizes of the two modes. Pseudo-code for Figure 1.7 follows.

1. For draw Π̂i, compute both estimators ϑ̂i and ϑ̂∗i by plugging in to g−1.

2. If both are outside of reals, the estimator is said to not exist for the given

draw (22% of utilized sample).
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Figure 1.7: Distribution of simplified model MLE at ϑ0 when the bounds of Θ0 are
used as the identifying restrictions: T=250, N=10,000. Two-sided (α/2,1 − α/2)
confidence interval, α = 5%.

3. If both estimators are in the reals

(a) If both are inside of Θ0, the analyst can not distinguish between the

two, so plot both in Monte Carlo with equal weight 1.

(b) If both are outside of Θ0, the analyst can not distinguish between the

two, so plot both in Monte Carlo with equal weight 1.

(c) If one is in Θ0 and one is outside, plot only the one inside, with weight

2.

4. If one is in the reals and one is outside, plot only the one inside with weight

of 2 (Note, this option has no effect in the given sample).
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Now, consider an analyst confronted with a point like ϑ1 in Table 1.5 for

which the normalization that ϑ ∈ Θ0 is not a successful identifying restriction. As

was suggested, a normalization that works is to choose the value that yields a β

closer to 0.9975, but certainly not larger than 1. The distribution in Figure 1.8 now

implies confidence intervals which are notably different from the first MLE without

identifying restrictions. In particular, the mode corresponding to the nuisance

estimator ϑ̂∗ has been leveled. Thus, any number of identifying restrictions useful,

but confidence intervals are directly affected; the plug-in MLE allows the analyst

to directly account for this discrepancy. Pseudo-code for Figure 1.8 follows.

1. For draw Π̂i, compute both estimators ϑ̂i and ϑ̂∗i by plugging in to g−1.

2. If both are outside of reals, the estimator is said to not exist for the given

draw (22% of utilized sample).

3. If both estimators are in the reals

(a) If both imply β̂i > 1, the analyst can not distinguish between the two,

so plot both in Monte Carlo with equal weight 1.

(b) If only one implies β̂i > 1 plot the other in Monte Carlo with weight 2.

(c) If both imply β̂i < 1

i. If one estimator yields a β̂i which is closer to 0.9975, plot only that

estimator, with weight 2.

ii. If both estimators yield β̂i which are equidistant from 0.9975, plot

both estimators, with weight 1 each.

4. If one is in the reals and one is outside, plot only the one inside with weight

of 2 (Note, this option has no effect in the given sample).

In this section, I have demonstrated the entirety of my approach to global

identification, and accounting for the statistical consequences of necessary normal-

izations, using the simplified model. Next, I consider the full model, which may

be studied similarly.
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Figure 1.8: Distribution of simplified model MLE with β ≈ 0.9975 identifying
restriction at ϑ0: T=250, N=10,000. Two-sided (α/2,1−α/2) confidence interval,
α = 5%.
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5 .4 Full Model

Whereas the mapping from θ to Π in the simplified model was complicated,

the corresponding mapping for the L model is simply indecipherable from a human

perspective; in the computer code for this paper, mathematical expressions for Π in

terms of θ are so complicated, they take up pages of text. However, the expressions

are closed-form and calculated by the computer, and therefore guaranteed to be

correct. A graphical summary is given by Figure 1.9.

As was the case for the simplified model, it is immediately obvious by the

necessary order condition nΠ ≥ nθ that the entire vector θ may not be identified.

Since there are only nΠ = 13 reduced form parameters, but nθ = 16 structural pa-

rameters, at least 3 parameters must be set to constants for even a fighting chance

that the remaining 13 are conditionally locally or globally identified. Figuring out

which are candidates to be set can be done by using the location of ×’s in the

table, and sequential elimination. The parameters that will be set here are exactly

those chosen by Komunjer and Ng (2011) in one of their conditional identification

schemes, α = (ν, φ, ψy). These are trained to their values in θ0. The remaining

parameters which may be identified are collected in the 13×1 vector structural

parameter

ϑ
(13×1)

= (τ, β,Π, ψπ, ρz, ρg, ρr, σz, σg, σr, σgz, σrz, σrg)
′

Since nϑ = 13 = nΠ, if ϑ is identified at a point, it is exactly identified. Indeed,

the 13×13 Jacobian J(ϑ0;α) = ∂Π(ϑ;α)/∂ϑ′|ϑ=ϑ0
, is full column rank, thus satis-

fying a necessary and sufficient condition for ϑ to be locally identified at ϑ0; that

the demeaned model is conditionally identified using α was previously shown by

Komunjer and Ng (2011). But since ϑ is exactly locally identified, and the solution

of the model is analytically derived, one can once again hope to derive g−1. Thus,

one can observe directly whether g is injective at ϑ0. The results for one point are

given in Figure 1.10, and for many points in.

Also as in the simplified model, even when squared variables such as stan-

dard deviations and the steady state of inflation are normalized to positive num-

bers, there are exactly two ϑ that satisfy ϑ = g−1(Π;α) for any value of Π. Specif-
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ically, while the 7 parameters β, ψπ, ρg, ρr, σg, σr, and σrg are the same in both

solutions, all of the 6 parameters τ , Π, ρz, σz, σgz, and σrz differ. But unlike the

analysis of the simple model, this result does not actually in itself imply that ϑ

is not globally identified in R13 at ϑ0. In fact, as listed in Figure 1.10, the only

realization of ϑ which is observationally equivalent to ϑ0 is ϑ1 ∈ C13\R13; in row

3, the value for the steady state of inflation Π at ϑ1 is 4.8i.18 So, even though ϑ is

not globally identified in all Θ ⊂ C13 at ϑ0, it is globally identified in the strictly

smaller, and more economically meaningful space of all Θ ⊂ R13 ⊂ C13. Impulse

responses for ϑ0 and ϑ∗0 are also given in Figure 1.10, demonstrating that only yt’s

response to εgt is the same for both points. However, while result that ϑ is in fact

globally identified in all Θ ⊂ R13 at ϑ0 using α is encouraging, this result is specific

to ϑ0, so it is important to assess other points in Θ0.

Another important point is ϑ1, listed in Figure 1.11. Although the impulse

responses for ϑ1 and ϑ∗1 appear to be the same at first glance, all but the response

of yt to εgt in fact differ from point-to-point by very small amounts (all crosshairs

are not centered; refer also to the impulse responses in Figure 1.10 for clarity of

this point). Thus, even though both points imply similar economic implications,

any determination between the two is not technically a normalization as defined in

Definition 4, but something stronger. Furthermore, notice that ϑ1 and ϑ∗1 are both

contained in Θ0. Therefore, these bounds alone may not be used as an identifying

restriction as they may be to distinguish between ϑ0 and ϑ∗0. An identifying re-

striction which would work is to simply select the estimator that yields a τ closer

to 2, in this case, ϑ1. Much as the β criterion for the O model reflected tight priors

on 0.9975, this similarly reflects the common tight prior on τ = 2.

As was the case for the simplified model, it is of interest to understand how

many points are like ϑ0 versus ϑ1 in the sense of which identification scheme is

successful. Local and global identification is assessed on a uniform grid of Θ in

Table 1.7. Once again, ϑ is locally identified for all draws, but now is also globally

identified in Θ0 for nearly all draws. In addition, ϑ is globally identified in all of

18For intuition of this result, recall that the Phillips curve coefficient is written κ = τ(1 −
ν)/(νφΠ2). Thus, Π is complex simply means that κ is positive; at the same time 0 < ν < 1,
τ < 0, and φ > 0.
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g(x,α) ϑ0 ϑ∗0
1 φrr 0.79 τ 2 -45.4
2 φyr 0.19 β 0.9975 0.9975
3 φπr 0.12 Π 1.008 4.8i
4 ρg 0.95 ψπ 1.5 1.5
5 φrπ 0.25 ρz 0.9 0.51
6 φyπ -0.46 ρg 0.95 0.95
7 φππ 0.62 ρr 0.75 0.75
8 ωr 2e-2 σz 3e-2 1.85
9 ωy 5e-4 σg 6e-2 6e-2
10 ωπ 7e-4 σr 2e-2 2e-2
11 ωyr 8e-2 σgz 1e-4 -1e-2
12 ωπr 2e-3 σrz 1e-4 1e-2
13 ωπy 4e-2 σrg -1e-4 -1e-4
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Figure 1.10: Full model without means observational equivalence in C13 but not
Θ0 (see row 3), and impulse-responses: ϑ0 (◦) vs ϑ∗0 (+). Π = g(x;α); x = ϑ0

or ϑ∗0. Missing impulse-responses correspond to restrictions on D(θ), see ABCD
representation.
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g(x,α) ϑ1 ϑ∗1
1 φrr 0.65 τ 1.99 2.09
2 φyr -0.26 β 0.9839 0.9839
3 φπr -0.14 Π 1.004 1.029
4 ρg 0.62 ψπ 1.21 1.21
5 φrπ 0.16 ρz 0.504 0.499
6 φyπ -0.45 ρg 0.62 0.62
7 φππ 0.35 ρr 0.70 0.70
8 ωr 0.42 σz 0.16 0.12
9 ωy 0.97 σg 0.45 0.45
10 ωπ 0.37 σr 0.57 0.57
11 ωyr -0.39 σgz -0.05 -0.03
12 ωπr -0.16 σrz 0.09 0.06
13 ωπy 0.35 σrg -0.22 -0.22

0 5 10
0

0.05

0.1
rt response to εzt

0 5 10
0

0.5

1
rt response to εrt

0 5 10
−0.5

0

0.5
yt response to εzt

0 5 10
0

0.5

1
yt response to εgt

0 5 10
−1.5

−1

−0.5

0
yt response to εrt

0 5 10
−0.2

0

0.2
πt response to εzt

0 5 10
−1

−0.5

0
πt response to εrt

Figure 1.11: Full model without means observational equivalence in in Θ0, and
impulse-responses: ϑ1 (◦) vs ϑ∗1 (+). Π = g(x;α); x = ϑ1 or ϑ∗1.
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Table 1.7: Identification of ϑ in full model without means: 100,000 points drawn
from Θ0.

Yes No
Locally Identified 100 % 0%

Globally Identified in Θ0 99.5% 0.5 %
Globally Identified in All Θ ⊂ R13 59.4% 40.6 %

R13 in roughly 6/10 draws. So, even though ϑ0 is part of this majority, there is

evidently a large portion of draws at which ϑ is not globally identified in all reals.

Yet, again, the parameter space Θ0 may be used as a reasonable basis to eliminate

many of the 40% of points not identified in all of the reals. In fact, only 0.05% of

draws yield an observationally equivalent point also in Θ0. In other words, points

like ϑ1 exist, but are relatively rare compared to points like ϑ0.

Finally, Monte Carlo distributions are computed. The typical MLE is pre-

sented in Appendix A, Figure A.1 and the τ ≈ 2 identification criterion is enforced

in Figure A.2. In this case, the latter identifying restriction has the added bonus of

curtailing a significant fat and skewed tail for τ̂ observed in Figure A.1. Also, note

that the distribution under the Θ0-based identification scheme, corresponding to

Figure 1.7 for the simplified model, is exactly the same as Figure A.1, since there

are zero instances in which one estimator is in Θ0 and one is out.

Finally, with the analysis of the An and Schorfheide model complete, I use

the lessons just learned to show how identification of the well-known Smets and

Wouters (2007) model may be considered in similar fashion, and conclude.

6 The Smets and Wouters Model

An important question is how to apply these results to a medium-scale

DSGE model, such as the Smets and Wouters model. In Appendix D, I prove that

the Smets and Wouters model has 7× 1 VARMA(3,2) representation

Yt =
3∑
i=1

ΦiYt−i + Ut +
2∑
j=1

Ut−j (1.23)
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for which we define

Ω = E

(
Ut +

2∑
j=1

Ut−j

)(
Ut +

2∑
j=1

Ut−j

)′

Collect these parameters in the vector

Π =
[
(vecΦ1)′ (vecΦ2)′ (vecΦ3)′ (vechΩ)′

]′
(1.24)

Π is not a reduced form parameter, but is trivially identifiable. Therefore, one may

create a GMM estimator on the basis of Π, and compute small sample confidence

intervals similarly to the procedure described in this paper. Note, processor par-

allelization across many CPUs is a simple solution to make the many numericaly

searches that must be conducted feasible.

7 Conclusion

In this paper I have developed new, simple, reliable, and computationally ef-

ficient tools for empirical analysis of a specific well-known DSGE model. As I have

shown, the model is not globally identified, but suitable normalizations based on

macroeconomic priors are typically available. Although these normalizations may

cause the distribution of the maximum likelihood estimator to be nonstandard,

the tools I provide also allow the analyst to compute the small sample distribution

of the MLE under these restrictions. While discovering global identification fail-

ures in DSGE models is difficult in itself, this paper has also argued that it is of

equal importance to account for the statistical implications of a given identification

procedure.



Chapter 2

Posteriors of Globally

Unidentified DSGE Models

Under Prior Independence

Abstract. Dynamic stochastic general equilibrium models are typically

not globally identified, meaning there are distinct values of the structural param-

eters that yield the same value of the likelihood function. When the likelihood

mode is not unique, neither is the maximum likelihood estimator, and the eco-

nomic implications of competing observationally equivalent points may differ. One

common presumption is that Bayesian estimation directly addresses this problem,

since proper priors allow the economist to formally “choose between” observa-

tionally equivalent outcomes. This intuition is incorrect. Economic theory yields

independent priors, while observational equivalence is characterized by dependence

amongst the structural parameters in the likelihood. Only proper dependent pri-

ors necessarily partition observationally equivalent outcomes a-posteriori, but such

priors are not typically available on the basis of theory alone.

1 Introduction

Consider a DSGE model with likelihood function L(Y |θ). Y = (Y ′1 , . . . , Y
′
T )′

is a Tny×1 dataset of T observations of the nY ×1 observables Yt. θ = (θ1, . . . , θnθ)
′

42
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is an nθ × 1 vector of structural parameters. The structural parameters θ are not

globally identified at the point θ0 if there exists another values of the parame-

ter, θ∗0 6= θ0, that yields the same value of likelihood regardless of data sample,

L(Y |θ∗0) = L(Y |θ0) ∀ Y ∈ RTnY ×1. In this case, θ0 and θ∗0 are called observationally

equivalent.

Recently, the issue of global identification in DSGE models has been studied

by Qu and Tkachenko (2013), Kocięcki and Kolasa (2013), and the first chapter

of this dissertation. In the first chapter, the main concern is of how the analyst

should proceed when faced with the problem. While either admissibility or sign

restrictions are useful in distinguishing between observationally equivalent values,

it is also shown to be essential to account for the identifying restriction in the

computation of confidence intervals.

A common question that is voiced with regards to estimating unidentified

DSGE models is of how Bayesian estimators fare. The reasons for optimism are

twofold. First, identification failure does not affect the ability to calculate poste-

riors. Second, since Bayesian estimation allows the economist to specify priors, it

is commonly presumed that this will allay the identification problem. Intuitively,

proper priors may result in one posterior mode while the likelihood has two. The

posterior mode is the main object of interest for computing statistics, like impulse

responses, in Smets and Wouters (2007) and other important studies.

While the properties of Bayesian estimators under failure of local identifi-

cation have been studied by Koop et al. (2013), the implications of global iden-

tification failure are less understood. One exception to this rule is the intuition

provided in Herbst and Schorfheide (2014). As they explain, global identification

failure leads to multimodal posteriors that are reflective of the unusual contours

of the likelihood function. For instance, in a model for which there are two ob-

servationally equivalent points that maximize the likelihood function, one might

reasonably expect there to be two modes of the posterior. The good news, how-

ever, is that proper priors often “fix” the identification problem, because the mode

of the likelihood which is more heavily weighted by the prior results in a strictly

higher mode of the posterior.
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The question, however, is whether common priors for DSGE models typi-

cally allow the economist to distinguish between observationally equivalent points.

In this paper, I will show this to not be the case. The main reason for this find-

ing is that DSGE priors are typically independent; for example, theory suggests

that the coefficient of relative risk aversion τ is somewhere between 0.5 and 3.5,

and the discount factor β is less than 1, but the joint distribution of the priors

is not obvious. Therefore, two points that are observationally equivalent, but for

which the analyst only has independent priors, might be hard to disentangle. Joint

distributions are therefore necessary to distinguish observational equivalent points

a-posteriori, but some priors are hard to determine.

First, I describe the commonly presumed way that priors serve as identi-

fying restrictions. Then, I consider a small-scale DSGE model known to be not

globally identified. I show that independent priors do not allow the economist to

differentiate between competing observationally equivalent outcomes.

2 Priors as Identifying Restrictions

Most Bayesian analyses of DSGE models are concerned with obtaining the

mode of the posterior (See Smets and Wouters (2007), for example). This statistic

is used to compute impulse responses, and other intuitive statistics. Therefore, to

study the relationship between Bayesian and Classical estimators, it is convenient

to consider the maximum a-posteriori estimator (MAP), which is directly related

to the maximum likelihood estimator (MLE). Defining the log-likelihood `(Y |θ) =

lnL(Y |θ),
θ̂MLE = arg max

θ∈Θ
`(Y |θ) (2.1)

while the MAP is written

θ̂MAP = arg max
θ∈Θ

π(θ|Y )
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where the posterior is defined by

π(θ|Y ) =
L(Y |θ)p(θ)

p(Y )

Since the marginal distribution p(Y ) is independent of θ, the MAP is equivalently

the value of the parameters which maximizes L(Y |θ)p(θ). Furthermore, priors for

DSGE models are typically independent. Therefore, p(θ) may be written

p(θ) =

nθ∏
i=1

pi(θi)

where pi(θi) is the independent prior for parameter θi. Then the MAP may also

be written

θ̂MAP = arg max
θ∈Θ

`(Y |θ) +

nθ∑
i=1

ln pi(θi) (2.2)

The MAP is only necessarily equivalent to the MLE when the priors are uniform.

Define the admissible parameter space by

Θ = {θ : θ1 ≤ θ1 ≤ θ1, . . . , θnθ ≤ θnθ ≤ θnθ}

Then uniform prior for each parameter is

U(θi; θi, θi) =


1

θi−θi
for θi ≤ θi ≤ θi

0 otherwise.

and the MAP under uniform priors is

θ̂MAP = arg max
θ∈Θ

`(Y |θ)−
nθ∑
i=1

ln(θi − θi) = arg max
θ∈Θ

`(Y |θ) ≡ θ̂MLE (2.3)
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However, if priors are not uniform, the density of the prior depends on the realiza-

tion of θ and the first-order optimality equation for the MAP is

FOC: 01×nθ =
∂`(Y |θ)
∂θ′

∣∣∣∣
θ=θ̂MAP︸ ︷︷ ︸

MLE FOC

+

nθ∑
i=1

ι′i

(
1

pi(θi)

∣∣∣∣
θ=θ̂MAP

× ∂pi(θi)

∂θi

∣∣∣∣
θ=θ̂MAP

)
︸ ︷︷ ︸

Additional 1× nθ term

(2.4)

Where ιi is an nθ × 1 vector with a 1 in position i and zeros elsewhere.

One instance in which non-uniform priors might be useful is if there are mul-

tiple modes of the likelihood surface. Recall, observational equivalence is defined

by

L(Y |θ) = L(Y |θ∗) for θ 6= θ∗ ∀ Y ∈ RTnY ×1

When θ and θ∗ maximize the likelihood function, the MLE is not unique. However,

since the MAP differs from the MLE with non-uniform priors, it is of course possible

that there is still one global mode of the posterior. This statistic is appealing

because it might be used to “choose between” observationally equivalent points.

I now give an example where the structural parameters are not identified,

but proper independent priors allow the economist to select a unique mode of the

posterior.

2 .1 Example

Consider the atheoretic MA(1) process

yt = θ1ε1t + θ2ε2t (2.5)

where Y = (y1, . . . , yT )′ is a T × 1 vector of observations and ε1t and ε2t are iid

Gaussian, ε1t ∼ N (0, 1) and ε2t ∼ N (0, 1). The likelihood for this model is written

L(Y |θ) =
1

(2π)T/2(θ2
1 + θ2

2)T/2
exp

{
−1

2

1

θ2
1 + θ2

2

T∑
t=1

y2
t

}
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where θ = (θ1, θ2)′ and Θ = R2. The log-likelihood is proportional to

`(Y |θ) ∝ −T
2

ln(θ2
1 + θ2

2)− 1

2

1

θ2
1 + θ2

2

T∑
t=1

y2
t

Therefore, the MLE first order condition is seen to be

θ̂2
1MLE + θ̂2

2MLE =
1

T

T∑
t=1

y2
t

Clearly, neither θ̂1MLE nor θ̂2MLE is individually identifiable; the contours of the

likelihood, with a flat surface corresponding to this identification problem are de-

picted in Figure 2.1 Panel A.

Consider now the Bayesian analyst who uses priors θ1 ∼ N (µ1, σ
2
1) and

θ2 ∼ N (µ2, σ
2
2) to form the posterior. The MAP is defined by

θ̂MAP = arg max
θ∈Θ

{
−T

2
ln(θ2

1 + θ2
2)− 1

2

1

θ2
1 + θ2

2

T∑
t=1

y2
t −

(θ1 − µ1)2

2σ2
1

− (θ2 − µ2)2

2σ2
2

}

For which the first order conditions are(
T∑
t=1

y2
t

)(
1

θ̂2
1MAP + θ̂2

2MAP

)2

− T
(

1

θ̂2
1MAP + θ̂2

2MAP

)
+

(
µi
σ2
i

1

θ̂iMAP

− 1

σ2
i

)
= 0

for i = 1, 2. This set of (fifth degree) polynomials in general has a multitude of

solutions. For example, if µ1 = µ2 = 0 and σ1 = σ2 = 0.1, then the one FOC is

θ̂2
1MAP + θ̂2

2MAP =
T ±

√
T 2 + 0.4

∑T
t=1 y

2
t

−0.2

which again has infinitely many solutions. A depiction of the posterior under

these priors is given in Figure 2.1 Panel D; notice the exact correspondence with

the likelihood.

However, it is possible for the posterior mode to be unique, even given this

identification problem. Examples of priors that accomplish this are given in Figure
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Figure 2.1: Likelihood and posterior contours. (A) Multi-modal likelihood func-
tion. (B) Single-modal posterior distribution under priors µ1 ∼ N (1, 0.1) and
θ2 ∼ N (1, 0.1) yields one MAP near (1,1). (C) Single-modal posterior distribution
under priors µ1 ∼ N (1, 0.1) and µ2 ∼ N (1, 0.1) yields one MAP near (1,1). (D)
Multi-modal posterior under priors µ1 ∼ N (0, 0.1) and µ2 ∼ N (0, 0.1).
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Table 2.1: Observational equivalence in An and Schorfheide (2007) model.

θ̂MLE θ̂∗MLE

τ 1.22 2.02
β 1.86 1.86
Π 1.19 1.54
ψπ 1.84 1.84
ρz 0.9 0.42
ρg 0.94 0.94
ρr 0.75 0.75
σz 0.008 0.04
σg 6e-2 6e-2
σr 2e-2 2e-2
σgz 1e-4 -1e-2
σrz 1e-4 1e-2
σrg -1e-4 -1e-4

2.1 Panels B and C. Notice, in both cases, the location of priors helps “choose”

which of the observationally equivalent values is most in-line with the economist’s

priors. The MAP corresponds precisely to the prior means.

3 Parameter Dependence, Prior Independence

The above example suggests that priors may be used to “choose” amongst

observationally equivalent points. Now, let us consider the DSGE model presented

in An and Schorfheide (2007). As proven in the first chapter of this dissertation,

this model is not globally identifiable, and any value of the structural parameters

has exactly one observationally equivalent value. This means that the maximum

likelihood estimator is not unique, and admissibility or sign restrictions must be

used to differentiate between the two.

First, using the procedure developed in the first chapter, I create a data set

using data generating value θ0 and obtain two MLEs. These are given in Table

2.1. The prominent difference between the two points is that the CRRA τ is low

in θ̂MLE and high in θ̂∗MLE while ρz is high in θ̂MLE and low in θ̂∗MLE.

Since the MLE is not unique, let us alternatively consider the MAP. A

typical set of independent priors for the parameters in this model is given in Table
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Table 2.2: Priors for An and Schorfheide (2007).

Parameter Prior Mean Std Dev
τ G 2 0.25

100× (1/β − 1) G 0.2506 = 100× (1/0.9975− 1) 0.25
1000× (Π− 1) G 8 = 1000× (1.008− 1) 6

ψπ G 1.5 1
ρz B 0.5 0.25
ρg B 0.5 0.25
ρr B 0.5 0.25
σz IG 0.05 0.01
σg IG 0.05 0.01
σr IG 0.05 0.01

ρgz = σgz
σgσz

N 0 0.25

ρrz = σrz
σrσz

N 0 0.25

ρrg = σrg
σrσg

N 0 0.25

2.2. I verify using Andreasen (2010)’s genetic search algorithm that the posterior

has only one global mode on the support of the prior. However, if the posterior has

the quality that the prior has “chosen between” observationally equivalent points,

it should be the case that an analyst with drastically different priors for any of

the parameters that vary between observationally equivalent points will obtain a

different posterior. Is this the case?

In order to test this hypothesis, I vary the mean of τ ’s prior between 0.5

and 5 in increments of 0.1, and use Andreasen’s algorithm to find the posterior

mode in each case. The results of this experiment are given in Appendix B Figure

B.1. Clearly, shifting the mean of τ ’s prior does not result in a discrete shift

from one mode to another, as might be expected, but only incremental changes in

the location of τ ’s posterior. In Appendix B Figure B.2, I show that changing the

means of the priors for τ and ρz at the same time seems to only affect the posterior

mode for each parameter individually. One possible explanation for this is that

the posterior is discontinuous; since DSGE models are not variation-free, there are

large portions of the parameter space in which the likelihood is not defined.

The implication of the above experiment is that two economists with vary-

ing priors about independent parameters will not compute posterior modes that

are representative about the difference between θ̂MLE and θ̂∗MLE. Rather, only



51

dependent priors about the joint distribution about the parameters which differ

between θ̂MLE and θ̂∗MLE will cause the posterior mode to differ in all parameters.

4 Conclusion

In this paper, I have disspelled the commonly held notion that standard

DSGE priors may help the analyst “choose between” between observationally

equivalent economic stories from the data. Because priors are independent, but ob-

servational equivalence emerges from nonlinear dependence amongst parameters,

varying one prior at a time only necessarily effects the placement of the posterior

that individual parameter. Only substantially different joint priors will necessarily

affect the placement of the posterior substantially, but such priors are typically

hard to come by.



Chapter 3

Local Identification of Nonlinear

DSGE Models

Abstract. While rank and order conditions for the identification of lin-

earized DSGE models have recently been introduced, no formal results exist on

the identifiability of nonlinear models. In this paper, I show how to represent the

nonlinear pruned state space system derived in Andreasen et al. (2014) in minimal

linear state space representation. I use this reparameterization to apply the rank

and order conditions derived in Komunjer and Ng (2011), originally intended for

linearized models, to the nonlinear case. I confirm An and Schorfheide (2007)’s

intuition that the elasticity of demand and price stickiness are identifiable in a

nonlinear approximation of their model, but not linear.

1 Introduction

In a well-known paper, An and Schorfheide (2007) study a canonical DSGE

specification. In studying the identifiability of this model, they make two claims.

First, they assert that in a linear approximation of their model, the elasticity of

demand and price stickiness are not separately identifiable (p. 122), and that

steady state government spending is unidentified (p. 164). Second, they posit

that all three parameters are potentially identifiable simply by using a nonlinear

approximation.

52
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It was not until after An and Schorfheide’s paper, with the contributions

of Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011), and Qu and

Tkachenko (2012), that identification of linearized DSGE models was studied com-

pletely rigorously. In particular, Komunjer and Ng have provided generally appli-

cable rank and order conditions, and a thorough analysis of the An and Schorfheide

model in particular. As Komunjer and Ng show, all of the elasticity of demand,

price stickiness, and steady state government spending must be set to constants

for the complement set to be locally identified in a linear approximation, thus

confirming the first half of An and Schorfheide’s intuition.

Yet, because rank and order conditions for nonlinear DSGE models have not

been provided, the second half of An and Schorfheide’s claim remains unverified;

are these three parameters identifiable, simply by utilizing a nonlinear solution?

Furthermore, can using nonlinear approximations enhance the identifiability of

DSGE parameters more generally?

The answer to both questions is yes. In this paper, I provide a methodology

for assessing local identification of nonlinear DSGE models. Since determining the

identifiability of linear models is already a difficult problem, I approach the prob-

lem not by deriving new rank and order conditions, but by repurposing old ones. In

the first substantive section of our paper, I show that the class of nonlinear pruned

state space systems presented in Andreasen et al. (2014) may be reparameterized

to minimal ABCD or AKCΣ “innovations” representation. Since this is immedi-

ately the input to the Komunjer and Ng conditions for linearized models, I am

able to assess the identifiability of nonlinear models using their results. A central

observation I make is that the minimal representation of the linearized model is

nested within the minimal representation of the nonlinear model. This nestedness

feature allows the Komunjer and Ng rank and order conditions to be satisfied by a

nonlinear approximation of a given model, even when they are not in a linearized

version of the same model.

In the following, I discuss the reparameterization of pruned nonlinear state

space to minimal state space representation. I use the simple model presented

in Schmitt-Grohé and Uribe (2004) to demonstrate the approach. Next, I use
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this minimal reparameterization to study the identifiability of nonlinear models. I

show that An and Schorfheide’s predictions for enhanced identifiability in nonlinear

approximations were correct.

2 Representation of Nonlinear DSGE Models

Let xt be a nx×1 vector of detrended, predetermined state variables, where

nx < ∞. Let yt be a ny × 1 vector of detrended but non-predetermined control

variables, where ny <∞. Finally, let θ be an nθ×1 vector of structural parameters

which belongs to the set Θ ⊆ Rnθ . I consider DSGE models of the form

Etf (xt+1, xt, yt+1, yt|θ) = 0nx+ny (3.1)

where 0nx+ny is an (nx + ny) × 1 vector of zeros. As discussed in Schmitt-Grohé

and Uribe (2004), the solution of this model may be written as a set of decision

rules depending on xt and a perturbation parameter σ ≥ 0.1 The decision rule for

yt is the control equation.

yt = g(xt, σ|θ) (3.2)

The state vector xt’s decision rule is called the state equation.

xt = h(xt−1, σ|θ) + ση(θ)ut (3.3)

where ut is an nu×1 vector of exogenous white noise shocks, ut ∼ WN(0nu×1, Inu),

which is strictly more general than IID. η is a rectangular matrix with dimen-

sion nx × nu.
2 For clarity of exposition, I will henceforth interpret the non-

1The perturbation parameter accounts for precautionary behavior induced by the expected
variance of future shocks. In a linearized model, the only aspect of future shocks that affects the
agent’s decision-making process is their expected value, which is typically zero. However, in a
second-order approximation of the same model, the second moments (variances) of future shocks
matter, and are always nonzero.

2To accomodate a non-identity positive definite covariance matrix Σu(θ) for the innovations
ut, the matrix η(θ) may be written as a matrix product η(θ) = N(θ) × Lu(θ), where N is an
arbitrary nx × nu matrix, and Lu(θ) is the Cholesky decomposition of Σu.
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predetermined variables yt to be the observable variables in the data.3

The functions g and h are almost never known in closed-form. For this

reason, Schmitt-Grohé and Uribe proposed approximating their Taylor series ex-

pansions using a perturbation algorithm. However, for expansions of order higher

than one, it was widely observed that impulse-responses tended to diverge. This

result contradicts the initial assumption of steady state, around which the Taylor

series approximation is made. In response, Kim et al. (2008) proposed a second

step of eliminating (“pruning”) certain terms from the series expansion (See also

Lombardo and Sutherland (2007)). Pruned state space models yield convergent

impulse responses, but are no longer Taylor series of the antecedent microfounded

solution. What makes pruned state space models useful is that in conjunction

with convergent impulse-responses, the errors of pruned and unpruned state space

models are frequently of the same order. This is shown, for example, in Andreasen

et al. (2014).

Andreasen et al. also explore pruned state space models’ potential for

estimation. They do so by showing how to compute second moments in closed form,

and applying moment-based estimators, such as GMM. Yet, the identifiability of

the structural parameters in these models is not understood, which is a primitive

assumption underlying the consistency of such estimators. Identification problems

have characterized the estimation of linearized DSGE models, and resolving those

issues is not always straightforward (See Canova and Sala (2009)). It is unclear

how nonlinear approximations fare versus linear with respect to the identifiability

of key macroeconomic parameters.

Next, I review pruned state space representation of second order approxima-

tions of DSGE models. The derivation works in two steps, by first approximating

the nonlinear solution of the model, and then “pruning” that approximation. The

ultimate pruned functional form will provide the foundation for rigorous identifi-

cation analysis in the subsequent sections of the analysis.

3This assumption is made without loss of generality only to relieve obfuscation of the main
results by excessive matrix algebra operations. (→) Any elements in xt for which data is available
can be related to yt by an identity in the function g. (←) Any variable originally included in yt
that is not observable can be moved to xt. These points will be clarified in later examples.
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2 .1 Second Order Approximation

I begin by deriving standard unpruned approximations of the solution. A

first-order Taylor series expansion of the state equation (3.3) about the determin-

istic steady state (xt = xt−1 = x∗(θ), σ = 0) is

x̂t ≈ hx(θ)x̂t−1 +��
��*

0
hσ(θ)σ + ση(θ)ut (3.4)

x̂ = xt − x∗ is the deviation of the states xt from steady state x∗ = h(x∗, 0|θ) and

hx(θ)
nx×nx

=
∂h(xt−1, σ|θ)

∂x′t−1

∣∣∣∣
xt−1=x∗,σ=0

hσ(θ)
nx×1

=
∂h(xt−1, σ|θ)

∂σ′

∣∣∣∣
xt−1=x∗,σ=0

The observation equation’s first-order series expansion is

ŷt = gx(θ)x̂t +��
��*0

gσ(θ)σ (3.5)

ŷt = yt−y∗(θ) is the deviation of the observables yt from steady state y∗ = g(x∗, 0|θ)
and

gx(θ)
ny×nx

=
∂g(xt, σ|θ)

∂x′t

∣∣∣∣
xt=x∗,σ=0

gσ(θ)
ny×1

=
∂g(xt, σ|θ)

∂σ′

∣∣∣∣
xt=x∗,σ=0

That both hσ = 0 and gσ = 0 is proven formally by Schmitt-Grohé and Uribe.

Second-order Taylor series expansions of the state and observation equations are

written

x̂t ≈ hx(θ)x̂t−1 +��
��*

0
hσ(θ)σ +

1

2
Hxx(θ)x̂

⊗2
t−1 +��

�*0
hxσx̂t−1σ +

1

2
hσσ(θ)σ2 + ση(θ)ut (3.6)

ŷt ≈ gx(θ)x̂t +��
��*0

gσ(θ)σ +
1

2
Gxx(θ)x

⊗2
t +���*

0
gxσx̂tσ +

1

2
gσσ(θ)σ2 (3.7)

Details on the functional form of the coefficient matrices appearing in (3.6) and

(3.7) are given in Appendix B.1, and that the cross-partials between states and

perturbation parameter are zero is proven by Schmitt-Grohé and Uribe. Finally, I
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have made use of the convenient shorthand

x̂⊗nt = x̂t ⊗ . . .⊗ x̂t︸ ︷︷ ︸
n times

for ⊗ the Kronecker product (see Abadir and Magnus (2005)).

With this second-order approximation of the state and observations equa-

tions in-hand, the next step is to “prune” the expansion. I now discuss pruning.

2 .2 The Pruned State Space System: Baseline Case

The second-order approximation (3.6) implies that x̂t is only a second or-

der polynomial in the elements of x̂t−1, since it is linear in x̂⊗2
t−1. However, since

x̂t−1 is also linear in x̂⊗2
t−2, x̂t is a function of third and fourth-order terms in pe-

riod t − 2, including x̂⊗3
t−2 and x̂⊗4

t−2. Inductively, each term x̂t is a function of

limn→∞ u
⊗n
t−n. Therefore, a shock to ut is potentially explosive in its implied dy-

namics for limn→∞ x̂t+n, and belies the original assumption of steady state. All

approximations of the solution of order two or above are prone to similar dynamic

inconsistency.

Pruning is a method of augmenting the model to prevent such explosive

dynamics, while maintaining the accuracy of the approximation (measured, for

example, by Euler equation errors). To motivate it, recall, perturbation is a method

that approximates the Taylor series expansion of the solution at one point in time;

when the expansion is second order, approximation error is third-order. Second-

order pruning is similarly a method that removes terms of order three and above.

However, these are terms from the expansion of x̂t over time, such as x̂⊗3
t−2, x̂⊗4

t−2,

and x̂⊗8
t−3. Since these terms are small, the hypothesis is that removing them will

not affect the substantive economic implications of the model. The validity of this

claim is justified, for example, by Andreasen et al. (2014).

Andreasen et al. prune as follows: Let x̂st represent the state vector with a

rule of motion corresponding to the second order approximation, (3.6); s=“second-

order.” Let x̂ft correspond to an entirely separate state vector, with a rule of motion

corresponding to a first order series, (3.4); f=“first-order.” Now, in (3.6), replace
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x̂t with x̂ft + x̂st . This substitution yields the system

x̂ft + x̂st = hx(θ)(x̂
f
t−1 + x̂st−1)+

1

2
Hxx(θ)(x̂

f
t−1 + x̂st−1)⊗2 +

1

2
hσσ(θ)σ2 +ση(θ)ut (3.8)

x̂ft = hx(θ)x̂
f
t−1 + ση(θ)ut (3.9)

x̂st = hx(θ)x̂
s
t−1 +

1

2
Hxx(θ)x̂

s⊗2
t−1 +

1

2
hσσ(θ)σ2 + ση(θ)ut (3.10)

To reduce this system by pruning, first observe that the quadratic terms of interest

(x̂ft−1 + x̂st−1)⊗2 = x̂ft−1 ⊗ x̂ft−1 + x̂ft−1 ⊗ x̂st−1 + x̂st−1 ⊗ x̂ft−1 + x̂st−1 ⊗ x̂st−1

Both x̂ft−1⊗x̂st−1 and x̂st−1⊗x̂ft−1 are inductively functions of x̂s⊗2
t−2⊗x̂ft−2. Meanwhile,

x̂st−1 ⊗ x̂st−1 is a function of x̂s⊗4
t−2 . Since each of the terms x̂s⊗2

t−1 ⊗ x̂ft−1 and x̂s⊗4
t−1 are

of order higher than two, they are “pruned” off the expansion. In other words,

they are collected into an third-order error. Thus, (x̂ft + x̂st)
⊗2 ≈ x̂ft ⊗ x̂ft , so

x̂st ≈ hx(θ)x̂
s
t−1 +

1

2
Hxx(θ)x̂

f⊗2
t−1 +

1

2
hσσ(θ)σ2 (3.11)

Similar operations on the control equation yield

ŷft + ŷst ≈ gx(θ)(x̂
f
t + x̂st) +

1

2
Gxx(θ)x̂

f⊗2
t +

1

2
gσσ(θ)σ2 (3.12)

Equations (3.11) and (3.12) encapsulate second order pruned state space dynamics.

However, it is useful to consider slightly more compact notation.


x̂ft

x̂st

x̂f⊗2
t

 =


0

1
2
hσσσ

2

σ2η⊗2vec(In2
u
)

+


hx 0 0

0 hx
1
2
Hxx

0 0 h⊗2
x

×

x̂ft−1

x̂st−1

x̂f⊗2
t−1



+


ση 0 0 0

0 0 0 0

0 σ2η⊗2 σ(η ⊗ hx) σ(hx ⊗ η)

×


ut

u⊗2
t − vec(In2

u
)

vec(x̂ft−1u
′
t)

vec(utx̂
f ′

t−1)

 (3.13)
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The rule of motion for the observables (3.12) may also be rewritten in terms the

expanded state vector as

ŷft + ŷst =
1

2
gσσ(θ)σ2 +

[
gx gx

1
2
Gxx

]
x̂ft

x̂st

x̂f⊗2
t

 (3.14)

Equations (3.13) and (3.14) are the main objects of interest in Andreasen et al.’s

analysis, and are called pruned state space representation. The preliminary con-

tribution of this paper will be to show that many elements of this representation

are redundant and/or nonminimal. Before returning to this claim, I first consider

a class of pruned state space models which will become useful in the following

sections.

2 .3 Generalized Case: Nonlinearity in Errors and States

The state equation (3.3) implies linear independence between the states xt

and errors ut. This is problematic if the theory at hand implies nonlinearities

between states and errors, a case I will show to be typical. Yet, this can be

accommodated by the current set-up. Say that the model implies nonlinearity

between the states and some errors having covariance matrix Σu(θ) with Cholesky

decomposition Lu(θ). Defining these errors vt and expanding xt to
[
x′t v′t+1

]′
, the

following has the same functional form as (3.3):4

[
xt

vt+1

]
=

[
h(xt−1, vt, σ|θ)

0

]
+ σ

[
0

Lu

]
ut+1 (3.15)

Given this setup, and using the arguments introduced in the previous section, a

first order Taylor approximation of the rule of motion for x̂t may be written in

4Note, I have momentarily advanced the timing convention forward one period from the
previous convention in Equation (3.3); (3.15) has the functional form st+1 = h(st, σ|θ) + σηut+1

for states st.
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exactly the same functional form as (3.4), given we have defined

η(θ)
nx×nu

=

(
∂h(xt−1, vt, σ|θ)

∂v′t

∣∣∣∣
xt−1=x∗,ut=0,σ=0

)
× Lu

In contrast, a distinction arises with respect to the second order approximation,

due to the nonlinearity between xt−1 and vt. In this case, the second-order accurate

expansion of the state equation is

x̂t ≈ hx(θ)x̂t−1 +
1

2
Hxx(θ)x̂

⊗2
t−1 +

1

2
σHxu(θ)vec(x̂t−1u

′
t)

+
1

2
σ2Huu(θ)u

⊗2
t +

1

2
σHux(θ)vec(utx̂

′
t−1) +

1

2
hσσ(θ)σ2 + ση(θ)ut (3.16)

The functional forms of the coefficient matrices in (3.16) are given in Appendix Sec-

tion B.2. Mimicking the pruning steps in the previous section, this approximation

implies the system


x̂ft

x̂st

x̂f⊗2
t

 =


0

1
2
hσσσ

2 + 1
2
σ2HuuIn2

u

σ2η⊗2vec(In2
u
)

+


hx 0 0

0 hx
1
2
Hxx

0 0 h⊗2
x

×

x̂ft−1

x̂st−1

x̂f⊗2
t−1



+


ση 0 0 0

0 1
2
σ2Huu

1
2
σHxu

1
2
σHux

0 σ2η⊗2 σ(η ⊗ hx) σ(hx ⊗ η)

×


ut

u⊗2
t − vec(In2

u
)

vec(x̂ft−1u
′
t)

vec(utx̂
f ′

t−1)

 (3.17)

Thus, the pruned state space system (3.17) has the same functional form as (3.13),

aside from differences in exclusion restrictions that have arisen from second-order

dependence between x̂ft−1 and ut. In other words, (3.13) is simply the special case

of (3.17) in which Huu, Hxu, and Hux are all zero-matrices. Finally, nonlinearities

between states and errors in the observation equation function g only need not be

considered directly, since any element of yt may be placed in xt as well. Therefore,

the pruned observation equation approximation for the current case remains (3.14).

While the generalized pruned state space, equations (3.17) and (3.14), is
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relatively compact, it is distinct from a purely linear system. Yet, there are in fact

many statistical similarities between representations. In the following section, I

show that the pruned state space may be reparameterized to minimal state space

representation. This insight will be central to identification analysis.

3 Minimal Representation

In this section, first, I show that deviations-from-means of the pruned state

space may be reparameterized to ABCD representation. This representation, famil-

iar from Fernández-Villaverde et al. (2007), was previously thought to be applicable

only to linear approximations of DSGE models. The ABCD model may also be

written in so-called AKCΣ “innovations” representation, which recasts the system

in terms of optimal linear forecasts and forecast errors. Second, exploiting ABCD

representation, I show that the pruned state space model is not minimal. I show

how to condense the model to satisfy minimality, setting the stage for identification

analysis. Finally, I show how to carry out the aforementioned reparameterization

in an example.

3 .1 The Pruned State Space is Nonminimal ABCD

As a preliminary step, I show how to directly reparameterize the generalized

pruned state space model equations (3.17) and (3.14) to ABCD and AKCΣ form.

To do so, I make three general assumptions regarding the pruned state space

solution.

Assumption 1. The modulus of all eigenvalues of hx are less than one.

Assumption 2. The zeros in hx, Hxx, Hxu, Hux, and Huu do not vary over θ ∈ Θ.

Assumption 3. The fourth moments of ut are finite.

Assumptions 1 and 3 are also made by Andreasen et al. Assumption 2

is typically implicit of DSGE analysis. Using these assumptions, I derive ABCD

representation in Appendix C in three simple steps. The conclusion of these

operations may be summarized with a concise proposition.
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Proposition 1. Under Assumptions 1, 2, and 3, the pruned state space (3.17)

and (3.14) may be written in terms of deviations-from-means as an ABCD model

Xt = A(θ) Xt−1 + B(θ) εt

Yt = C(θ) Xt−1 + D(θ) εt
(3.18)

where the dimensions of the variables are denoted nX , nY , and nε.

The ABCD representation of the model involves a nontrivial transforma-

tion. In terms of the variables and parameters defined thus far, the elements of

ABCD representation are written as follows. First, the state vector Xt is defined

as

Xt = M × Ẑt for Ẑt = Zt − E(Zt|θ)

with

Zt =


x̂ft

x̂st

D+
nxx̂

f⊗2
t

 and E(Zt|θ) = (InZ − P (θ))−1J(θ)

for D+
nx the Moore-Penrose pseudo inverse of the nx-dimensional duplication matrix

Dnx , and K and P ancillary parameters defined by

J(θ)
nZ×1

=


0

1
2
hσσσ

2 + 1
2
σ2HuuIn2

u

σ2D+
nxη
⊗2vec(In2

u
)

 P (θ)
nZ×nZ

=


hx 0 0

0 hx
1
2
HxxDnx

0 0 D+
nxh

⊗2
x Dnx

 (3.19)

where nZ = 2nx + nx(nx + 1)/2 is the dimension of Zt, and M is an appropriately

defined zero-one selection matrix of the form

M =


m 0 0

0 m 0

0 0 m∗


The location of zeros and ones depends on the idiosyncratic microfoundations of

the model at hand. For intuition, M is roughly a matrix that selects the states

which have some persistence. The construction of the M matrix, featuring a simple
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example, is discussed in Appendix C. The elements of the state equation A and

B are written

A(θ) = MP (θ)M ′ B(θ) = MR(θ)N ′

where R is the ancillary parameter

R(θ)
nZ×nU

=


ση 0 0

0 1
2
σ2HuuDnu

1
2
σ(Hxu +HuxKnx,nu)

0 σ2D+
nxη
⊗2Dnu σD+

nx(η ⊗ hx + (hx ⊗ η)Knx,nu)

 (3.20)

for Knx,nu the nx × nu-dimensional square commutation matrix, and N another

zero-one selection matrix of the form

N =


Inu 0 0

0 Inu 0

0 0 n


N also defines the error, by

εt = N ×


ut

D+
nu

(
u⊗2
t − vec(In2

u
)
)

vec(x̂ft−1u
′
t)


For intuition, N selects only the products within vec(x̂ft−1u

′
t) for which the state

element of the given product has persistence. Again, a full explanation of of

how N is constructed is given in Appendix C . The variance-covariance matrix

Σε(θ) = E(εtε
′
t|θ) is computed in Appendix A. Finally, the observables are defined

as

Yt = yft + yst −
(

1

2
gσσσ

2 + S(θ)× E(Zt|θ)
)

for S(θ) the final necessary ancillary parameter

S(θ) =
[
gx gx

1
2
GxxDnx

]
The empirical analogue of Yt is data that has been separated from means. Finally,
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the matrices defining the observation equation are given in terms of the matrices

above by

C(θ) = S(θ)P (θ)M ′ D(θ) = S(θ)R(θ)N ′

While the transformation from pruned state space to ABCD evidently requires

some rearranging, there are two immediately properties that are useful.

Corollary 1. εt is WN(0,Σε(θ)) for finite Σε(θ).

Corollary 2. The eigenvalues of A are less than one.

Corollaries 1 and 2 are proven in Appendix A. These results emphasize

that not only is it possible to rearrange the pruned state space to a representation

which looks like something familiar from analysis of linearized models, two common

assumptions for linearized DSGE model are also satisfied. There is one property

of the above ABCD representation, however, that is less appealing.

Corollary 3. {A,C} is not observable.

Corollary 3 is also proven in Appendix A. Given the ABCD representation

of the pruned state space is non-observable, the most serious implication is that

it is also therefore nonminimal.5 Minimality is a key assumption of, for example,

Komunjer and Ng (2011)’s rank and order conditions for identification in linearized

models. Without it, such results are not applicable.

Although Komunjer and Ng’s rank conditions pertaining to ABCD repre-

sentation require minimality, the are also divided into two subsets of conditions:

Minimal ABCD representation for singular models (nY ≤ nε), and minimal AKCΣ

representation for nonsingular models (nY ≥ nε). Thus, the careful reader might

initially guess that nonminimality of ABCD is not necessarily problematic, since

models that have stochastically singular ABCD representation for linear approxi-

mations may have nonsingular ABCD representation of their corresponding pruned

5Definitions of key terms, such as observability, and its connection to minimality, are given
Appendix D. These will be used throughout the rest of the paper. The concept of minimality
comes from systems theory, and the definition in the Appendix is duplicated from a major text-
book in that field, Kailath et al. (2000) page 765. See also Komunjer and Ng (2011) Definitions
5-S and 5-NS.
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second order ABCD representation.6 However, uncontrollability of ABCD also im-

plies uncontrollability, and hence nonminimality, of AKCΣ. This may be seen by

forming companion innovations form using one additional assumption.

Assumption 4. For every θ ∈ Θ, D(θ)Σε(θ)D(θ)′ is nonsingular.

Proposition 2. Under Assumptions 1-4, the pruned state space (3.17) and (3.14)

may written in terms of deviations from mean in AKCΣ innovations representa-

tion
X̂t|t = A(θ) X̂t−1|t−1 + K(θ)at

Yt = C(θ) X̂t−1|t−1 + at
(3.21)

where X̂t|t is the optimal linear predictor of Xt given the history of observations,

at = Yt − CX̂t|t is the forecast error, and K(θ) is the steady state Kalman gain

defined by

K = (AΣXC
′ +BΣεD

′) Σ−1

where Σ(θ) is the covariance matrix of the forecast error

Σ = CΣXC
′ +DΣεD

′

and ΣX(θ) is the covariance matrix of the state variables Xt defined by

ΣX = AΣXA
′ +BΣεB

′ − (AΣXC
′ +BΣεD

′)× Σ−1 × (CΣXA
′ +DΣεB

′)

This expression is known as the discrete algebraic Ricatti equation (DARE).

I provide only a short proof to Proposition 2 in Appendix A, since it follows

directly from Proposition 1 when additionally Assumption 4 is satisfied, using well-

known results. Further details on this closely related representation are available

in Hansen and Sargent (2005).

6Explicitly, a linearized model is singular if nY ≥ nu. However, for pruned nonlinear models,
the requirement for singularity is nY ≥ nε = (1 + nm + (nu + 1)/2)nu where nm is the row
dimension of m in Appendix C. In most cases, nY < nε even when nY ≥ nu. For example,
consider the case where nY = 6 and nu = 2. In linear ABCD representation, this model is easily
singular. Now, assume nm = 1. Then, nε = (1 + nm + (nu + 1)/2)nu = 7, implying the pruned
second order ABCD representation is not singular.
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Clearly, because {A,C} is known to not be observable, AKCΣ representa-

tion is also not minimal. Therefore, the implication of Proposition 2 is that the

rank and order conditions derived in Komunjer and Ng are not immediately appli-

cable. In the following section, I provide simple steps to obtain minimal ABCD and

AKCΣ models starting from either nonminimal representation. Then, I provide a

concrete example.

3 .2 Constructing Minimal Representation

The reason why either ABCD or AKCΣ is not minimal is that it is not

observable. Specifically, the currently defined observability matrix O will never be

full column rank due to linear dependence between the first to block-columns of

C; see, for example, the proof to Corollary 3 in Appendix A. It turns out that this

problem is easy to amend. Define

x̂f+s
t = x̂ft + x̂st

It follows from the first two block-rows of the ABCD representation, given following

Proposition 1, that

mx̂f+s
t = (mhxm

′)mx̂f+s
t−1 +

(
1

2
mHxxDnxm

∗′
)
m∗D+

nxx̂
f⊗2
t−1 + σmηut

Therefore, the original ABCD system may immediately be rewritten as a new

smaller dimensional ABCD model

[
mx̂f+s

t

m∗D+
nxx̂

f⊗2
t

]
︸ ︷︷ ︸

Xt

= A(θ)

[
mx̂f+s

t−1

m∗D+
nxx̂

f⊗2
t−1

]
+B(θ)


ut

D+
nu

(
u⊗2
t − vec(In2

u
)
)

nvec(x̂ft−1u
′
t)


︸ ︷︷ ︸

εt

Yt = C(θ)

[
mx̂f+s

t−1

m∗D+
nxx̂

f⊗2
t−1

]
+D(θ)


ut

D+
nu

(
u⊗2
t − vec(In2

u
)
)

nvec(x̂ft−1u
′
t)


(3.22)
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where

A =

 mhxm
′ 1

2
mHxxDnxm

∗′

0 mD+
nxh

⊗2
x Dnxm

∗′


B =

 σmη 1
2
σ2mHuuDnu

1
2
σ(Hxu +HuxKnx,nu)n′

0 σ2mD+
nxη
⊗2Dnu σmD+

nx(η ⊗ hx + (hx ⊗ η)Knx,nu)n′


C(θ) =

[
gxhxm

′ 1
2

(gxHxx +Gxxh
⊗2
x )Dnxm

∗′
]

D(θ) =
[
σgxη

1
2
σ2 (gxHuuDnu +Gxxη

⊗2Dnu) d3

]
and

d3 =
1

2
σ (gx(Hxu +HuxKnx,nu) +Gxx(η ⊗ hx + (hx ⊗ η)Knx,nu))n′

In fact, in many cases, this new ABCD system (and corresponding AKCΣ) is

observable, and minimal. In order to substantiate this claim, and to clarify the

derivations thus far, in the next section I provide a simple example.

3 .3 Example: Schmitt-Grohé and Uribe (2004)

To make the methodology for minimal reparameterization of pruned non-

linear models concrete, in this section I show to obtain ABCD and AKCΣ repre-

sentation using a microfounded example. Consider the simple neoclassical growth

model studied in Schmitt-Grohé and Uribe (2004):

c−γt = βEt{c−γt+1

(
αAt+1k

α−1
t+1 + 1− δ

)
} (3.23)

ct + kt+1 = Atk
α
t + (1− δ)kt (3.24)

lnAt+1 = ρ lnAt + σut+1 (3.25)

kt is capital, At is total factor productivity, and ct is the only observable variable,

consumption. For the purposes of this example, I will assume the scalar shock

ut+1 is standard normal. The structural parameters of the model are collected in

the 5 × 1 vector θ = (β, δ, α, ρ, γ)′, and σ is the perturbation parameter. Due
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to nonlinearity between states and errors in the Euler equation, the states are

defined to be xt =
[
kt ct

]′
the single observable is yt = ct, and the single shock is

ut ∼ WN(0, 1). The parameter value studied in Schmitt-Grohé and Uribe is

θ0
5×1

=
(
β = 0.95 δ = 1 α = 0.3 ρ = 0 γ = 2

)′
(3.26)

Let us consider then the 5-dimensional parameter space θ ∈ Θ in which ρ = 0

always, and all other parameters are both real-valued, and imply a solution exists.

Given this restriction, the model is written in the form of (3.15) as
kt

ct

lnAt+1

 =

 h(kt−1, ct−1, lnAt|θ)
2×1

0

+ σ


0

0

1

ut+1

Note, lnAt+1 is playing the role of vt+1 in Equation (3.15). The (rounded) values

of the solution in the form of equation (3.16) are7

[
k̂t

ĉt

]
︸︷︷︸
x̂t

≈
[

0.42 0

0.25 0

]
︸ ︷︷ ︸

hx(θ0)

[
k̂t−1

ĉt−1

]
︸ ︷︷ ︸
x̂t−1

+

[
−0.004 0 0 0

−0.003 0 0 0

]
︸ ︷︷ ︸

1
2
Hxx(θ0)


k̂2
t−1

ĉt−1k̂t−1

k̂t−1ĉt−1

ĉ2
t−1


︸ ︷︷ ︸

x̂⊗2
t−1

+

[
−0.012 0

−0.008 0

]
︸ ︷︷ ︸

1
2
σHxu(θ0)

[
k̂t−1ut

ĉt−1ut

]
︸ ︷︷ ︸
vec(x̂t−1u′t)

+

[
−0.04

−0.03

]
︸ ︷︷ ︸
1
2
σ2Huu(θ0)

u2
t +

[
−0.012 0

−0.008 0

]
︸ ︷︷ ︸

1
2
σHux(θ0)

[
k̂t−1ut

ĉt−1ut

]
︸ ︷︷ ︸
vec(utx̂′t−1)

+

[
0.24

−0.1

]
︸ ︷︷ ︸
1
2
hσσ(θ0)σ2

+

[
1.39

0.84

]
︸ ︷︷ ︸
ση(θ0)

ut (3.27)

7These are computed using the Dynare code SGU2004.mod provided freely online by Johannes
Pfeifer.
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and the observation equation is merely an identity.

ĉt︸︷︷︸
ŷt

=
[
0 1

]
︸ ︷︷ ︸
gx(θ0)

x̂t + 0
1×9︸︷︷︸

1
2
Gxx(θ0)

x̂⊗2
t + 0︸︷︷︸

1
2
gσσ(θ)σ2

(3.28)

The zeros in hx and Hxx arise due to the fact that TFP is not persistent, ρ = 0.

Since we are considering the parameter space Θ in which ρ = 0 always, Assumption

2 is satisfied. In order to simplify the model at hand to ABCD representation, I

now use the three-step methodology described in Appendix C.

Step 1. The pruned model may be represented by the rule of motion

Zt = J(θ0) + P (θ0)Zt−1 +R(θ0)Ut (3.29)

Yt = S(θ0)Zt (3.30)

where J , P , and R correspond to the expressions given previously in equations

(3.19) and (3.20).

Zt
7×1

=
[
kft cft kst cst (kft )2 cft k

f
t (cft )

2
]′

Yt
1×1

= cft + cst Ut
4×1

=
[
ut u2

t − 1 k̂t−1ut ĉt−1ut

]′
J(θ0)

7×1

=
[
0 0 0.20 −0.13 1.95 1.18 0.71

]′

P (θ0)
7×7

=



0.42 0 0 0 0 0 0

0.25 0 0 0 0 0 0

0 0 0.42 0 −0.004 0 0

0 0 0.25 0 −0.003 0 0

0 0 0 0 0.18 0 0

0 0 0 0 0.11 0 0

0 0 0 0 0.06 0 0


R(θ0)

7×4

=



1.40 0 0 0

0 −0.04 −0.02 0

0 −0.03 −0.02 0

0 1.95 1.17 0

0 1.18 0.71 0

0 0.71 0.43 0



S(θ0) =
[
0 1 0 1 0 0 0

]
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Step 2. The expected value of Zt is defined by

E(Zt|θ0)
7×1

= (I7 − P (θ0))−1J(θ0) =
[
0 0 0.35 −0.04 2.37 1.43 0.86

]′
Therefore, equations (3.29) and (3.30) may be written

Ẑt = P (θ0)Ẑt−1 +R(θ0)Ut (3.31)

Yt = S(θ0)Ẑt (3.32)

for Ẑt = Zt − E(Zt|θ0) and Yt = Yt − S(θ0)E(Zt|θ0).

Step 3. Using the positions of zeros in P and R as guidelines, define

m =
[
1 0

]
m∗ =

[
1 0 0

]
M
3×7

=


m 0 0

0 m 0

0 0 m∗



n =
[
1 0

]
N
3×4

=


1 0 0

0 1 0

0 0 n


Using M and N as defined above, we have ABCD representation, equation (3.18)

with

Xt
3×1

= M × Ẑt =


k̂ft

k̂st − 0.35

(k̂ft )2 − 2.37

 εt
3×1

= N × Ut =


ut

u2
t − 1

k̂ft−1ut



A(θ0)
3×3

=


0.42 0 0

0 0.42 −0.004

0 0 0.18


MP (θ0)M ′

B(θ0)
3×4

=


1.40 0 0

0 −0.04 −0.02

0 1.95 1.17


MR(θ0)N ′

C(θ0)
1×3

=
[
0.25 0.25 −0.003

]
SP (θ0)M ′

D(θ0)
1×3

=
[
0.84 −0.03 −0.02

]
SR(θ0)N ′

Assume E(u3
t ) = 0 and E(u4

t = 3); this is true, for example, if ut is standard
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normal. In addition, observe that the rule of motion for k̂ft evaluated at θ0 is

k̂ft = 0.42k̂ft−1 + 1.4ut, we have E(k̂f2
t |θ0) = 1.42/(1 − 0.422) = 2.37. Then the

covariance matrix of the errors is written

Σε(θ0)
3×3

= E(εtε
′
t|θ0) =


1 · ·
0 2 ·
0 0 2.37



Minimal Representation. The controllability matrix C(θ0) for the ABCD

system is full row rank, implying it is controllable. However, the observability

matrix is

O(θ0)
3×3

=


C

C × A
C × A2

 =


0.25 0.25 −0.003

0.11 0.11 −0.001

0.04 0.04 −0.001


A necessary and sufficient requirement for observability, and hence minimality, is

that O is full column rank. However, it is clear that the first two columns are

linearly dependent. Using the suggested approach from Section 3.2 gives[
k̂ft + k̂st − 0.35

(k̂ft )2 − 2.37

]
︸ ︷︷ ︸

Xt

=

[
0.42 −0.004

0 0.18

]
︸ ︷︷ ︸

A(θ)

Xt−1 +

[
1.40 −0.04 −0.02

0 1.95 1.17

]
︸ ︷︷ ︸

B(θ0)

εt

Yt =
[
0.25 −0.003

]
︸ ︷︷ ︸

C(θ0)

Xt−1 +
[
0.84 −0.02 −0.02

]
︸ ︷︷ ︸

D(θ0)

εt

(3.33)

This ABCD system is both controllable and observable, and hence minimal. Fi-

nally, AKCΣ innovations representation is easily constructed by solving the DARE,

yielding Σ(θ0) = 0.71 and K(θ0) =
[
1.66 −0.23

]′
. This representation is also

minimal.
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3 .4 A Key Property: Nestedness

The first order minimal ABCD representation of the SGU model is in fact

nested within minimal nonlinear representation, Equation (3.33). It is given by

k̂ft = 0.42k̂ft−1 + 1.40ut

ĉft = 0.25k̂ft−1 + 0.84ut
(3.34)

with the linear version of innovations representationK(θ0) = 1.66 and Σ(θ0) = 0.71

also nested within the nonlinear versions of K(θ0) and Σ(θ0). Ultimately, this is

due to the fact that higher-order Taylor approximations nest lower-order approx-

imations. Since none of the matrices A, B, C, D, Σε, K, or Σ are themselves

identifiable, it is impossible to conclude that higher order models will always pro-

cure the identification of weakly more parameters than nonlinear. But clearly, this

outcome is worth consideration.

In the next section, I consider the local identification of nonlinear models

versus their linear counterparts, using the minimal representation of nonlinear

models developed in this section, and repurposing the rank and order conditions

derived for minimal linearized models by Komunjer and Ng (2011) to this case. I

first show that exactly because of the nested nature of the higher order Schmitt-

Grohé and Uribe solution, the identification of strictly more parameters becomes

possible. Finally, I conduct a full analysis of the model of An and Schorfheide

(2007), which was also studied in Komunjer and Ng. Again, I observe a nested

nature of the model.

4 Local Identification

Komunjer and Ng (2011) derive necessary order conditions, and necessary

and sufficient rank conditions, for local identification of the structural parameters

in DSGE models. These conditions are based on identifiability from the spectral

density, i.e. the sequence of first and second moments of an infinitely long data

set. The results are split into two sets of conditions, one for stochastically singular

models nY ≥ nε, and the second for stochastically nonsingular models nY ≤ nε; the
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two results coincide only if nY = nε. The conditions framed around the singular

case are based on minimality of ABCD representation, while the conditions under

nonsingularity rely on minimal AKCΣ representation. In either case, the results

are intended for linearized DSGE models, which are easy to represent in such

functional forms.

In the previous section, I have shown that pruned second order approx-

imations of DSGE model solutions also may be expressed in minimal ABCD

or AKCΣ representation. In these models, the dimension of the error is nε =

(1 +nm)nu +nu(nu + 1)/2, where nm is the dimension of the matrix m. Given this

fact, in most cases, nε > nY . Therefore, I will direct attention to this set of rank

and order conditions directed towards minimal AKCΣ representation.

In order to make this set of KN conditions operable, we require one final

assumption.

Assumption 5. The mapping Λ : θ → Λ(θ) is continuously differentiable on Θ

where

Λ(θ) =
[

vec (A(θ))′ vec (K(θ))′ vec (C(θ))′ vech (Σ(θ))′
]′

Furthermore, define the following matrix of derivatives end elements of Λ:

∆(θ) =


∂vecA(θ)

∂θ′
A(θ)′ ⊗ InX − InX ⊗ A(θ)

∂vecK(θ)
∂θ′

K(θ)′ ⊗ InX
∂vecC(θ)

∂θ′
−InX ⊗ C(θ)

∂vechΣ(θ)
∂θ′

0nY (nY +1)/2×n2
X

 (3.35)

Then, we have the following immediate result, a verbatim statement of Komunjer

and Ng Proposition 2-NS. Recall, under Assumptions 1-3, Corollary 1 ensures εt

is white noise.

Proposition 3. Suppose nε ≥ nY and Assumptions 1-5 hold. If the rank of ∆(θ)

remains constant in a neighborhood of θ0, then a necessary and sufficient condition
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for θ to be locally identified from the autocovariances of Yt at a point θ0 in Θ is

rank ∆(θ0) = nθ+nX . A necessary order condition is nθ ≤ 2nXnY +nY (nY +1)/2.

Because the leg-work of reparameterizing the nonlinear model was accom-

plished in the previous section, in this section, we are able to concentrate on the

implications of Proposition 3 for the identifiability of nonlinear models. In partic-

ular, one item of interest is how the identifiability of parameters in a second order

pruned approximation of a model compares with the identifiability of parameters

in a linear approximation of the same model. As we have seen, a relic of the nest-

edness of Taylor approximations is that minimal ABCD and AKCΣ representation

of the linearized Schmitt-Grohé and Uribe model (3.34) is contained within the

ABCD and AKCΣ representation of the second order pruned model (3.33). Thus,

intuition suggests that identifiability of certain parameters may be enhanced in

the higher order case. Yet, the validity of this hypothesis must be tested.

In the next subsection, I study the identifiability of the parameters of the

Schmitt-Grohé and Uribe model using a linear versus nonlinear approximation. I

confirm the hypothesis that strictly more parameters are identifiable in the non-

linear model. In the following section, I turn attention to the model of An and

Schorfheide (2007), the linear version of which is also studied by Komunjer and

Ng. Beginning with the identifying parameter restrictions Komunjer and Ng sug-

gest, I show that nonlinearity allows one to relax a subset of these restrictions. I

confirm An and Schorfheide’s intuition that three important macroeconomic pa-

rameters become identifiable in a nonlinear approximation which were otherwise

not identifiable using a linear approximation.

4 .1 Example: Schmitt-Grohé and Uribe (2004)

As I have shown, the linearized model of the Schmitt-Grohé and Uribe

model is nested within the second order pruned model. In Figure 3.1 I provide

values for both Λ and ∆ evaluated at θ0 for both the linear model (3.34) and

nonlinear model (3.33).

First, consider the statistics corresponding to the linear approximation. In
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First-order approximation. Order condition not satisfied. Rank(∆(θ0)) = 4.

Λ(θ0)
4×1

=
[
0.42 1.66 0.25 0.71

]′

∆(θ0)
4×6

=


0.09 −0.33 1.07 −0.05 0 0
0.55 −0.56 −0.70 0.13 −0.65 1.65
−0.04 −0.10 0.75 −0.05 0 −0.25
−0.18 0.71 −0.50 −0.28 0.22 0


Second-order pruned approximation. Rank(∆(θ0)) = 9, achieving rank con-
dition. Above linearized model statistics are nested in bold.

Λ(θ0)
9×1

=
[
0.42 0 −0.004 0.18 1.66 −0.23 0.25 −0.003 0.71

]′

∆(θ0)
9×9

=



0.09 −0.33 1.07 −0.05 0 0 0 0 0
0 0 0 0 0 0 0.24 0 0

−0.01 −0.10 −0.02 0 0 0 0 −0.24 0
0.07 −0.28 0.90 −0.04 0 0 0 0 0
0.55 −0.56 −0.70 0.13 −0.65 1.65 0 0.13 0
0.27 −0.94 −0.16 0.08 −0.25 0 1.65 0 0.13

−0.04 −0.10 0.75 −0.05 0 −0.25 0 0 0
0 −0.05 −0.02 0 0 0 0 −0.25 0

−0.18 0.71 −0.50 −0.28 0.22 0 0 0 0


Figure 3.1: Identification of Schmitt-Grohé and Uribe model: Linear versus sec-
ond order pruned approximation.

this model, nX = nY = 1 and nθ = 5. So, 2nXnY + nY (nY + 1)/2 = 3 < nθ =

5 implies the necessary order condition in Proposition 3 is not satisfied. Thus,

without even considering the rank of ∆, it follows that the entire 5-dimensional

vector θ is not identifiable, and at least two parameters must be set to constants

for their complement in θ to be conditionally identified.

Now, consider the same statistics Λ and ∆ for the second order pruned

version of the SGU model, also given in Figure 3.1. The elements of the 4× 1 di-

mensional Λ from the first order approximation are contained within the 9 × 1

dimensional Λ for this version, in bold. Since nX = 2 and nY =1, we have

2nXnY + nY (nY + 1)/2 = 5 = nθ, thus satisfying the necessary order condition for

identifiability, unlike the linearized model. More interesting, though, is the rela-
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tionship between ∆ for the linear and nonlinear approximations; again, I highlight

the feature of nestedness using bold. In fact, in the second order pruned version of

the Schmitt-Grohé and Uribe model, the 9× 9 matrix ∆(θ) is full column rank at

θ0, satisfying the necessary and sufficient condition for local identification of the

entire vector θ at θ0 in Proposition 3.

The SGU model has helped illustrate the important insight of this paper:

Higher order approximations of DSGE models nest lower-order approximations,

and the additional terms from nonlinear approximations can help identify key

macroeconomic parameters. In the case of the Schmitt-Grohé and Uribe model,

at most 3 parameters are identifiable using a linear approximation, but all 5 are

identified at θ0 by simply using a nonlinear approximation.

As I have shown, analysts might be able to overcome identification problems

faced in linearized models simply by using higher-order approximations. While

general statements to this effect are difficult to make, the improved identifiability of

DSGE models from nonlinear approximations is not limited to the simple Schmitt-

Grohé and Uribe model. In fact, the pruned state space approximation can also

be used to identify more parameters in more empirically plausible specifications,

like An and Schorfheide (2007)’s. I demonstrate this fact in the following section.

5 Application: An and Schorfheide (2007)

The An and Schorfheide model, which includes the baseline elements of

many DSGE models, is well-known and well-studied. The Appendix to the first

chapter of this dissertation derives the nonlinear equilibrium equations of the model

of this model as

1

ν

(
1− exp

{
τ ln Ĉt

})
+ φ(exp {ln Πt} − Π)

((
1− 1

2ν

)
exp {ln Πt}+

Π

2ν

)
−

φβEt

[
exp

{
ln(Ŷt+1)− ln(Ŷt)− τ

(
ln(Ĉt+1)− ln(Ĉt)

)}
×

(exp {ln Πt+1} − Π) exp {ln Πt}
]
− 1 = 0 (3.36)
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Table 3.1: An and Schorfheide (2007) model parameter and variable names.

Structural Params (15) Endogenous (6) Shocks (3)
1 τ CRRA Zt TFP εzt TFP
2 β Discount factor Gt Gov spending εgt Gov.
3 ν Inverse elas. of demnd Rt Nominal int rate εrt Int.

4 φ Index of price stckness Ŷt Nom. detr. output
5 γ Avg. gr. rate of prod. Πt Inflation

6 Π St. state level of infl. Ĉt Nom. detr. cons.
7 G St. state level of Gt.
8 ψπ Taylor rule infl. coeff.
9 ψy Taylor rule out. coeff.
10 ρz zt persistence
11 ρg gt persistence
12 ρr rt persistence
13 σz εzt std error
14 σg εgt std error
15 σr εrt std error

βEt

[
exp

{
lnRt − ln Πt+1 − τ

(
ln(Ĉt+1)− ln(Ĉt)

)
− ln γ − lnZt+1

}]
− 1 = 0

(3.37)

− lnRt + (1− ρr) (ln γ − ln β + (1− ψπ) ln Π− ψy(1/τ) ln(1− ν)) + ρr lnRt−1

+ (1− ρr)ψπ ln Πt + (1− ρr)ψy(ln Ŷt − lnGt) + σrεrt = 0 (3.38)

− exp
{

ln Ŷt

}
+ exp

{
ln Ĉt + lnGt

}/(
1− φ

2
(exp {ln Πt}

− Π)2 exp {lnGt}
)

= 0 (3.39)

− lnZt + ρz lnZt−1 + σzεzt = 0 (3.40)

− lnGt + (1− ρg) lnG+ ρg lnGt−1 + σgεgt = 0 (3.41)

All variables and structural parameters of this model are given in Table 3.1. The

shock vector ut = [εzt , εgt, εrt]
′ is distributed as ut ∼ WN(0, I3). In all, there are six

key equilibrium equations (A.17) - (A.22) that completely characterize equilibrium
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for this model stated in terms of the six (detrended) variables of interest lnZt,

lnGt, lnRt, ln Ŷt = ln(Yt/At), ln Πt, and ln Ĉt = ln(Ct/At). The shocks are εzt, εgt,

and εrt. Henceforth, these total nine variables will be collected in the following

vectors, where vt is the ancillary parameter for models with nonlinearities in errors

and shocks defined in (3.15).

[
x′t−1 v′t

]′
(6×1)

=
[
lnZt−1 lnGt−1 lnRt−1 εzt εgt εrt

]′
(3.42)

yt
(3×1)

=
[
lnRt ln Ŷt ln Πt

]′
(3.43)

With these definitions in mind, the equilibrium equations may also be represented

concisely in the form of Equation (3.1). Thus, the solution will have the form of

Equations (3.2) and (3.15). Define h(3) to be the third row of h. Then the state

equation may be expressed as

lnZt

lnGt

lnRt

εzt+1

εgt+1

εrt+1


︸ ︷︷ ︸
[x′t v

′
t+1]′

=



ρz lnZt−1 + εzt

ρg lnGt−1 + εgt

h(3)(xt−1, vt, σ|θ)
0

0

0


+ σ



03×3
σz · ·
0 σg ·
0 0 σr


︸ ︷︷ ︸

Lu(θ)


︸ ︷︷ ︸

η(θ)


εzt+1

εgt+1

εrt+1


︸ ︷︷ ︸

ut+1

(3.44)

Definining g(i) to be the i-th row of g, the observation equation is simply stated as


lnRt

ln Ŷt

ln Πt


︸ ︷︷ ︸

yt

=


lnRt

g(2)(xt, σ|θ)
g(3)(xt, σ|θ)


︸ ︷︷ ︸

g(xt,σ|θ)

(3.45)

The value of the structural parameters at which I will study identification is θ0,

given in Table 3.2. Solving the model and using the same 3-step procedure given
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Table 3.2: Candidate parameter point θ0.

Parameter θ0

1 τ 2
2 β 0.9975
3 ν 0.1
4 φ 53.68
5 γ 1.002
6 Π 1.008
7 G 1.18
8 ψπ 1.5
9 ψy 0.125
10 ρz 0.9
11 ρg 0.95
12 ρr 0.75
13 σz 0.003
14 σg 0.006
15 σr 0.002

in Appendix C and demonstrated in the context of the Schmitt-Grohé and Uribe

model in Section 3.3 yields the minimal ABCD representation in Table 3.2. zt, gt,

and rt are first-order approximations of TFP, government spending, and interest

rates. Second-order terms are collected into the 5× 1-dimensional x̃t and 13× 1-

dimensional ε̃t.

Compare this ABCD representation with the minimal ABCD representa-

tion of the linearized version of the same model at θ0 in Komunjer and Ng (2011)

Table 1. Similarly to the Schmitt-Grohé and Uribe model, in this case, it is quite

clear how the linear model nested within the nonlinear approximation. Therefore,

a natural question to ask is whether more parameters are identifiable in this case

as well. In Table 3.2 I also consider six sets of restrictions on the parameters of

the model, and whether the complement set is identifiable in a linear, or nonlin-

ear model. Restrictions 1 and 2, which are both restrictions for 5 parameters,

correspond to those Komunjer and Ng show successfully identify the complement

13. These restrictions also work for the nonlinear model. As Komunjer and Ng

show, this is the bare minimum amount of parameters which must be fixed for the

complement set to be conditionally identified.

Although many parameters are not identifiable in the linearized model,
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
zt
gt
rt
x̃t


︸ ︷︷ ︸
Xt
8×1

=


0.9 0 0 A14

0 0.95 0 A24

0.55 0 0.51 A34

0 0 0 A44


︸ ︷︷ ︸

A(θ0)
8×8


zt−1

gt−1

rt−1

x̃t−1


︸ ︷︷ ︸

Xt

+


1 0 0 B14

0 1 0 B24

0.61 0 0.69 B34

0 0 0 B44


︸ ︷︷ ︸

B(θ0)
8×16


εzt
εgt
εrt
ε̃t


︸ ︷︷ ︸
εt

18×1rtyt
πt


︸ ︷︷ ︸
Yt

=

0.55 0 0.51 C14

1.34 0.95 −0.83 C24

1.34 0 −0.56 C34


︸ ︷︷ ︸

C(θ0)
3×8


zt−1

gt−1

rt−1

x̃t−1


︸ ︷︷ ︸

Xt

+

0.61 0 0.69 D14

1.49 1 −1.1 D24

1.49 0 −0.75 D34


︸ ︷︷ ︸

D(θ0)
3×16


εzt
εgt
εrt
ε̃t


︸ ︷︷ ︸
εt

Restriction Linear Nonlinear Additional
1. ν φ ψπ G γ X X −
2. ν φ ψy G γ X X −
3. − φ ψπ ψy γ X ν
4. − ν ψπ ψy γ X φ
5. − ν φ ψy γ X G
6. − ν φ ψy G −

Figure 3.2: Minimal ABCD representation of the second order pruned solution
of the An and Schorfheide model.
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An and Schorfheide claim in their paper that the likelihood profile for a nonlinear

approximation of this model shows curvature in all of ν, φ, and G, whereas a linear

model does not. They hypothesize that this means that those three parameters

may be identifiable in a nonlinear version of the model, but not linear. Are they

correct in this assertion?

Yes. In Table 3.2, I consider three more sets of restrictions, 3, 4, and

5. Restriction 3 allows ν to be free, and sets only 4 parameters to constants.

In this case, the nonlinear model successfully identifies the additional parameter

ν. Restriction 4 allows the identification of the additional parameter φ. Finally,

Restriction 5 allows for the identification of the additional parameter G. Therefore,

I am able to verify An and Schorfheide’s intuition that all three of these parameters

are identifiable in a nonlinear version of the model, but not linear. It is important to

realize, however, that nonlinear models do not provide a silver bullet with respect

to identification. For instance, Restriction 6 does not result in the identification

of the complement set in θ.

6 Conclusion

In this paper, I have shown how to assess parameter identifiability in non-

linear approximations of DSGE models. Due to the inherent nestedness of Taylor

approximations, nonlinear approximations of these models may be used to identify

key parameters of interest that are otherwise not identifiable from a linear approxi-

mation of the same model. In the context of the An and Schorfheide (2007) model,

I have shown this to be true for three important parameters, the elasticity of sub-

stitution, price stickiness, and steady state level of government spending. Yet, even

in nonlinear models, a subset of parameters typically must be restricted to iden-

tify their complement. This paper has at the same time introduced a pragmatic

methodology for determining which.
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Chapter 1 Appendix

A Figures

Pseudo Code, Figure A.1.

1. For draw Π̂i, compute both estimators ϑ̂i and ϑ̂∗i by plugging in to g−1.

2. If both are outside of reals, the estimator is said to not exist for the given

draw (2.05% of utilized sample).

3. If both estimators are in the reals, plot both in the Monte Carlo with equal

weight 1 (44% of sample).

4. If one is in the reals and one is outside, plot only the one inside with weight

of 2 (remainder of sample).

Pseudo Code, Figure A.2.

1. For draw Π̂i, compute both estimators ϑ̂i and ϑ̂∗i by plugging in to g−1.

2. If both are outside of reals, the estimator is said to not exist for the given

draw (2.05% of utilized sample).

3. If both estimators are in the reals

(a) If one estimator yields a τ̂i which is closer to 2, plot only that estimator,

with weight 2. If equidistant, plot both estimators, with weight 1 each.

82
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Figure A.1: Distribution of An and Schorfheide model without means MLE at
ϑ0: T=250, N=10,000. Two-sided (α/2,1− α/2) confidence interval, α = 5%.
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Figure A.2: Distribution of An and Schorfheide model without means MLE with
τ ≈ 2 identification scheme ϑ0: T=250, N=10,000. Two-sided (α/2,1 − α/2)
confidence interval, α = 5%.
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B An and Schorfheide Model Appendix

The following small scale economy is similar to that presented in An and Schorfheide

(2007). A distinction is that I will ultimately allow for statistical dependence be-

tween shocks. The model consists of a final goods producing firm, a continuum

of intermediate goods producing firms, a representative household, and both a

monetary and fiscal authority. It abstracts from both wage rigidities and capital

accumulation.

Final Good Production. A perfectly competitive final goods producing firm has

Dixit-Stiglitz type packaging technology, where intermediate goods are numbered

by the index of integration j. 1/ν is the elasticity of demand, and the market price

for the final good is given by an aggregate Pt of intermediate goods prices Pt(j).

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

The profit maximization problem is given by the following symmetric maximization

for each input good i.

max
Yt(i)

Pt

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

−
∫ 1

0

Pt(j)Yt(j)dj

Since maximization is conducted with respect to specific good i, and j is only an

index of integration, differentiation with respect to i and integration with respect

to j commute. Thus, the following first order condition.

1

1− νPt
(∫ 1

0

Yt(j)
1−νdj

) ν
1−ν

(1− ν)Yt(i)
−ν − Pt(i) = 0

Finally, given that
(∫ 1

0
Yt(j)

1−νdj
)ν/(1−ν)

≡ Y ν
t , profit maximization implies the

following demand schedule for intermediate good i.

Yt(i) =

(
Pt
Pt(i)

)1/ν

Yt
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Intermediate Goods Production. Each intermediate good i is produced by

intermediate firm i using the following linear technology. At is an exogenous pro-

ductivity process, and Nt(i) is the specific labor input to good i.

Yt(i) = AtNt(i)

Intermediate firms face nominal rigidities in price adjustment; these are given by

the following quadratic costs. φ is an index of price stickiness and Π is the steady

state inflation rate.

Φt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− Π

)2

Yt(j) (A.1)

Subject to these nominal rigidities, and real wagesWt, each firm i chooses labor and

prices to solve the following profit maximization problem. Qt+s|t is the discounted

value of future consumption today determined independently by households.

max
Nt(i),Pt(i)

Et

( ∞∑
s=0

Qt+s|t

(
Pt+s(i)

Pt+s
Yt+s(i)−Wt+sNt+s(i)− Φt+s(i)

))

Explicitly plugging in for adjustment costs and output, this problem may also be

written

max
Nt(i),Pt(i)

Et

( ∞∑
s=0

Qt+s|t

((
Pt+s(i)

Pt+s
− φ

2

(
Pt+s(i)

Pt+s−1(i)
− Π

)2
)
At+s −Wt+s

)
Nt+s(i)

)

Therefore, defining inflation as Πt = Pt/Pt−1 = Pt(i)/Pt−1(i) and recalling the

definition of Pt in terms of intermediate good prices given by the Dixit-Stiglitz

technology, the first order conditions with respect to Pt(i) and Nt(i) are, respec-

tively,

1−
(

Pt
Pt(i)

) 1−ν
ν

= φ

(
(Πt − Π) Πt − Et

[
Qt+1|t

Yt+1(i)

Yt(i)
(Πt+1 − Π) Πt+1

])
Pt
Pt(i)

(A.2)
Pt
Pt(i)

=
At

Wt + φ
2
At(Πt − Π)2

(A.3)

Representative Household. The representative household has real money bal-
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ances, Mt/Pt, and hours, Ht in the utility function. In addition, consumption

provides utility only in proportion to a habit stock, given by the exogenous level

of technology, At.

Et

( ∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ + χ ln

(
Mt+s

Pt+s

)
−Ht+s

))

Here, 1/τ is the intertemporal elasticity of substitution (equivalently in this con-

text, the inverse coefficient of relative risk aversion) and χ is a scale factor that

determines the steady state of real money balances. The household may trade

bonds Bt at gross nominal rate Rt, pays lump-sum taxes Tt, and receives a net

cash inflow from trading a set of state-contingent securities Xt. Given these fea-

tures, the household’s budget constraint is

PtCt +Bt + Pt
∑
St+1

Qt+1|tXt+1 +Mt + Tt = PtWtHt +Rt−1Bt−1 + PtXt +Mt−1

where St+1 is the realization of the state in period t+ 1. The first order conditions

of the corresponding Lagrangean (multiplier λt) with respect to Xt+1, Ct, and Bt

are, respectively,

βEt
λt+1

λt
=

1

Πt+1

Qt+1|t (A.4)

βEt
λt+1

λt
= βEt

[(
Ct+1/At+1

Ct/At

)−τ
At
At+1

1

Πt+1

]
(A.5)

βEt
λt+1

λt
=

1

Rt

(A.6)

Finally, combining the first order conditions with respect to Ct and Ht yields the

following expression; the first order condition with respect to Mt is not stated since

it will not be of use in the log-linearized solution.

Wt = At(Ct/At)
τ (A.7)

Partial Equilibrium Between Firms and Households. Firstly, plugging
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Equation (A.7) into (A.3) gives

Pt
Pt(i)

=
1

(Ct/At)τ + φ/2(Πt − Π)2

while combining Equations (A.4) and (A.5) gives

Qt+1|t = βEt

[(
Ct+1/At+1

Ct/At

)−τ
At
At+1

]

Inputting these last two equalities into Equation (A.2), and using the steady state-

local approximation (Pt/Pt(i))
1−ν
ν ≈ 1−ν

ν
(Pt/Pt(i)− 1) gives

1 =
1

ν

(
1−

(
Ct
At

)τ)
+ φ(Πt − Π)

((
1− 1

2ν

)
Πt +

Π

2ν

)
− φβEt

[(
Ct+1/At+1

Ct/At

)−τ
Yt+1/At+1

Yt/At
(Πt+1 − Π)Πt+1

]
(A.8)

Secondly, combining the household first order conditions with respect to Ct and

Bt, Equations (A.5) and (A.6), yields

1 = βEt

[(
Ct+1/At+1

Ct/At

)−τ
At
At+1

Rt

Πt+1

]
(A.9)

Exogenous Processes and Market Clearing. The Taylor rule considered in

this paper is an extension of Taylor (1993)’s original specification, allowing for

lagged interest rates to enter into the monetary authority’s decision making pro-

cess. It is written as follows, where R∗t denotes the target gross nominal rate and

εrt is an idiosyncratic monetary policy shock:

Rt = Rρr
t−1R

∗1−ρr
t exp(εrt) (A.10)

R∗t = µΠ (Πt/Π)ψπ (Yt/Y
∗
t )ψy (A.11)

µ is the steady state of real gross interest rates, Rt/Πt. Π, the steady state of

inflation, is also the inflation target. Finally, Y ∗t is the level of output that would
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prevail without price rigidities (φ = 0), sometimes also known as the “natural”

rate.

The fiscal authority consumes a portion of output, Ft = ζtYt, and levies a

lump sum tax, Tt, subject to a budget constraint

PtFt +Rt−1Bt−1 +Mt−1 = Tt +Bt +Mt

where ζt a nonstandard exogenous process which amounts to a function of an

AR(1) process. Specifically, defining Gt = 1/(1− ζt) (i.e. ζt = (Gt − 1)/Gt), then

lnGt = (1− ρg) lnG+ ρg lnGt−1 + εgt (A.12)

Meanwhile, aggregate productivity follows

lnAt = ln γ + lnAt−1 + lnZt (A.13)

lnZt = ρz lnZt−1 + εzt (A.14)

and γ is the average growth rate of productivity. Finally, market clearing is given

by Ht = Nt and the aggregate accounting equality

Yt = Ct + Ft + Φt (A.15)

where Φt is the adjustment cost in the symmetric equilibrium case. In more

straightforward terms, symmetry implies the dependence of Φt(j) on j in Equation

(A.1) does not matter, so that Φt may be written

Φt =
φ

2
(Πt − Π)2 Yt

Thus, using this definition of Φt and Ft = ζtYt, the aggregate accounting equality

Equation (A.15) may also be written

Yt =
CtGt

1− φ
2

(Πt − Π)2Gt

(A.16)
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Shocks. There are three shocks – to TFP, government spending, and interest

rates – respectively εzt, εgt, and εrt. These are dependently mean-zero normally

distributed with standard deviations σz, σg, and σr, respectively, and covariances

σgz, σrz, and σrg. Correlations are defined by ρgz = σgz/(σgσz), ρrz = σrz/(σrσz),

and ρrg = σrg/(σrσg).

Nonlinear Equlibrium Equations and Solution. Ultimately, it will be use-

ful to have the equilibrium equations expressed in log-levels of the endogenous

variables for the pupose of solving the model in Dynare, but still ensuring direct

compatibility of this solution with the log-linearized equilibrium equations else-

where. Furthermore, many variables in the above equations can be eliminated by

simple substitutions. First, simply rewriting Equation (A.8) gives

1

ν

(
1− exp

{
τ ln Ĉt

})
+ φ(exp {ln Πt} − Π)

((
1− 1

2ν

)
exp {ln Πt}+

Π

2ν

)
−

φβEt

[
exp

{
ln(Ŷt+1)− ln(Ŷt)− τ

(
ln(Ĉt+1)− ln(Ĉt)

)}
×

(exp {ln Πt+1} − Π) exp {ln Πt}
]
− 1 = 0 (A.17)

Meanwhile, defining Ĉt = Ct/At and using the equality lnAt − lnAt+1 = − ln γ −
lnZt+1 from Equation (A.13), Equation (A.9) may be written

βEt

[
exp

{
lnRt − ln Πt+1 − τ

(
ln(Ĉt+1)− ln(Ĉt)

)
− ln γ − lnZt+1

}]
− 1 = 0

(A.18)

Equation (A.10) is simply rewritten

lnRt + ρr lnRt−1 + (1− ρr) lnR∗t + εrt

R∗t , Ŷ
∗
t = Y ∗t /At, and Ĉ∗t = C∗t /At are defined to exist in a world exactly like

the model economy, but with φ = 0. When φ = 0, Equation (A.15) implies

Ŷ ∗t = GtĈ
∗
t . But also, when φ = 0, Equation (A.8) implies Ĉ∗t = (1 − ν)1/τ .

Therefore, ln Ŷ ∗t = (1/τ) ln(1− ν) + lnGt. Using these facts, Equation (A.11) may
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be rewritten as

lnR∗t = lnµ+ (1− ψπ) ln Π + ψπ ln Πt + ψy(ln Ŷt − lnGt − (1/τ) ln(1− ν))

The last two equations above may simply be combined to eliminate the variable

R∗t :

− lnRt + (1− ρr) (lnµ+ (1− ψπ) ln Π− ψy(1/τ) ln(1− ν)) + ρr lnRt−1

+ (1− ρr)ψπ ln Πt + (1− ρr)ψy(ln Ŷt − lnGt) + εrt = 0 (A.19)

Dividing both sides of Equation (A.16) through by At and rewriting yields

− exp
{

ln Ŷt

}
+ exp

{
ln Ĉt + lnGt

}/(
1− φ

2
(exp {ln Πt}

− Π)2 exp {lnGt}
)

= 0 (A.20)

Finally, Equations (A.14) and (A.12) simply restated are

− lnZt + ρz lnZt−1 + εzt = 0 (A.21)

− lnGt + (1− ρg) lnG+ ρg lnGt−1 + εgt = 0 (A.22)

In all, there are six key equilibrium equations (A.17) - (A.22) that completely char-

acterize equilibrium for this model stated in terms of the six (detrended) variables

of interest lnZt, lnGt, lnRt, ln Ŷt = ln(Yt/At), ln Πt, and ln Ĉt = ln(Ct/At). The

shocks are εzt, εgt, and εrt.

Steady State. The equilibrium equations also characterize steady state. Equation

(A.18) implies the steady state of nominal gross interest rates is R = γΠ/β because

Equation (A.21) implies Z = 1. Furthermore, µ = R/Π by definition so µ = γ/β.

Equation (A.17) implies Ĉ = (1−ν)1/τ because Πt = Π by definition in the steady

state. Given this, Equation (A.20) implies Ŷ = G(1− ν)1/τ . The steady states Π

and G are structural parameters.



92

Table A.1: With-means An and Schorfheide model parameter and variable names.

Structural Params (18) Endogenous (6) Innovations (3)
1 τ CRRA zt Total factor prod. εzt To zt
2 β Discount factor gt Gov spending εgt To gt
3 ν Inverse elas. of demnd rt Nominal int rate εrt To rt
4 φ Index of price stckness yt Nominal output
5 γ Avg. gr. rate of prod. πt Inflation
6 Π St. state level of infl. ct Nominal cons.
7 G St. state level of Gt.
8 ψπ Taylor rule infl. coeff.
9 ψy Taylor rule out. coeff.
10 ρz zt persistence
11 ρg gt persistence
12 ρr rt persistence
13 σz εzt std error
14 σg εgt std error
15 σr εrt std error
16 σgz Covar of εgt and εzt
17 σrz Covar of εrt and εzt
18 σrg Covar of εrt and εgt

C An and Schorfheide Model With-Means

In the main text, it is assumed that the variables rt, yt, and πt are logged

deviations from the unconditional mean of each respective variable. However, the

means of the data may also be useful for empirical analysis. Given the micro

foundations of the model, it is natural to interpret the unconditional mean of each

variable as the empirical analogue to the steady state. Specifically, under this

assumption and using the notation introduced in Appendix B, and furthermore

definining Yt = Vt − V (θ), the VAR(1) in Equation (1.18) may be rewritten

ln


Rt

Ŷt

Πt


︸ ︷︷ ︸

Vt

− ln


R

Ŷ

Π


︸ ︷︷ ︸
V (θ)

=


φrr 0 φrπ

φyr ρg φyπ

φπr 0 φππ


︸ ︷︷ ︸

Φ(θ)

ln


Rt−1

Ŷt−1

Πt−1

− ln


R

Ŷ

Π


+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

(A.23)

where Rt is the with-mean nominal interest rate, Ŷt is with-mean but detrended

output, and Πt is with-mean gross inflation. Meanwhile, in terms of the structural
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Table A.2: With-means An and Schorfheide model candidate calibration θ0 and
parameter space Θ0. ε=1e-6.

Param Lower θ0 Upper
1 τ 0.1 2 3.5
2 β 0.975 0.9975 1-ε
3 ν ε 0.1 1
4 φ 50 53.68 60
5 γ ε 0.5 1− ε
6 Π 1+ε 1.008 1.03
7 G 1+ε 1.18 1.25
8 ψπ -1 1.5 3
9 ψy -1 0.125 1.25
10 ρz ε 0.9 1-ε
11 ρg ε 0.95 1-ε
12 ρr ε 0.75 1-ε
13 σz ε 3e-2 1
14 σg ε 6e-2 1
15 σr ε 2e-2 1
16 σgz -1 1e-4 1
17 σrz -1 1e-4 1
18 σrg -1 -1e-4 1

parameters, R = γΠ/β is the steady state of real interest rates, Ŷ = G(1−ν)1/τ is

the steady state of detrended output, and Π, itself a structural parameter, is the

steady state of inflation. Given these definitions, define a 3×1 vector Ψ(θ) by
ψr

ψy

ψπ


︸ ︷︷ ︸

Ψ(θ)

=


1− φrr 0 −φrπ
−φyr 1− ρg −φyπ
−φπr 0 1− φππ


︸ ︷︷ ︸

I3−Φ(θ)

ln


γΠ/β

G(1− ν)1/τ

Π


︸ ︷︷ ︸

V (θ)

Then, given Equation (1.18), it is also the case that Vt – the vector of logged

variables not separated from steady states – follows the rule of motion

ln


Rt

Ŷt

Πt


︸ ︷︷ ︸

Vt

=


ψr

ψy

ψπ


︸ ︷︷ ︸

Ψ(θ)

+


φrr 0 φrπ

φyr ρg φyπ

φπr 0 φππ


︸ ︷︷ ︸

Φ(θ)

ln


Rt−1

Ŷt−1

Πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

(A.24)



94

The unique reduced form parameters are collected in the 18 × 1 vector reduced

form parameter

Π(θ)
(18×1)

= (ψr, ψy, ψπ, φrr, φyr, φπr, ρg, φrπ, φyπ, φππ, ωr, ωy, ωπ, ωyr, ωπr, ωπy)
′

At θ0, Equation (A.24) has the following realization; by definition, Φ and Ω are

the same for the model posed with data separated from means, Equation (1.18).

ln


Rt

Ŷt

Πt


︸ ︷︷ ︸

Vt

=


−0.15

0.14

0.85


︸ ︷︷ ︸

Ψ(θ0)

+


0.79 0 0.25

0.19 0.95 −0.46

0.12 0 0.62


︸ ︷︷ ︸

Φ(θ0)

ln


Rt−1

Ŷt−1

Πt−1

+


urt

uyt

uπt


︸ ︷︷ ︸

Ut

Ω(θ0) = (1e− 4)×


6 · ·
7 58 ·
7 21 20


Since Ψ may be estimated, there are in this case nΠ = 16 reduced form

parameters. So, now potentially 16 of the nθ = 18 structural parameters are

identifiable, meaning, up to 3 of the 5 parameters that were set previously set can

now be estimated. A figure depicting the functional dependence of each element

of Π on θ is given in Figure A.3, which I now use to choose which two structural

parameters must be set to constants for their complement to be conditionally

identified. Firstly, consider both γ and G. Since these are not even included in

the parameters Φ and Ω, they were not previously identifiable. However, Ψ is a

function of both, so consider letting both be free. Second, the two parameters ν

and φ were previously set due to their linear dependence in κ. However, Ψ is a

function of both, so consider letting ν be estimated. This results in the conditional

identification scheme α = (φ, ψπ) so that

ϑ
(16×1)

= (τ, β, ν, γ,Π, G, ψπ, ρz, ρg, ρr, σz, σg, σr, σgz, σrz, σrg)
′

Since nϑ = 16 = nΠ, if ϑ is identified at a point, it is exactly identified. Indeed, the
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Table A.3: Identification of ϑ in with-means model: 100,000 uniformly chosen
pts from Θ0.

Yes No
Locally Identified 99.98 % 0.02 %

Globally Identified in Θ0 92.6% 7.4 %
Globally Identified in All Θ ⊂ R16 30% 70%

16×16 Jacobian J(ϑ0;α) = ∂Π(ϑ;α)/∂ϑ′|ϑ=ϑ0
, is full column rank, thus satisfying

a necessary and sufficient condition for ϑ to be locally identified at ϑ0. Thus, it

seems that adding the means of the data into estimation has allowed the estimation

of three more structural parameters. Such claims that adding more aspects of the

data results in the identification of more structural parameters seem intuitive, and

are frequently made. Yet, global identification has not yet been verified.

As in the previous two examples, the inverse mapping g−1 is calculated

analytically and there are exactly two solutions. The values corresponding to ϑ0

are given in Figure A.4. As in the model not using means, ϑ0 is globally identified

in the reals, R16. However, again there are points where the bounds of Θ0 may

not be used to distinguish between two points. One example is ϑ1 and ϑ∗1, listed

in Figure A.5. Once again, for both ϑ0 and ϑ1 it is demonstrated that the impulse

responses, besides those corresponding to εgt, differ for observationally equivalent

points, although the magnitude of the difference between ϑ1 and ϑ∗1 is again small.

Thus, identifying restrictions are not always normalizations with respect to the

impulse responses.

Now consider the identification of ϑ at other realizations in Θ. Both local

and global identification are summarized in Table A.3. As before, nearly all points

are locally identified. However, there is now a relatively larger portion of points,

7.4%, which are not globally identified in Θ0. These require creative identifying

restrictions.

Finally, bootstrapped confidence intervals are computed in Figures A.6 and

A.7 using no identifying restriction, and the better τ restriction, respectively. Once

again, the most obvious distinction is in the size of the confidence interval for τ̂ .

A long right-tail under no identifying restrion is much smaller when the restriction

is accounted for. Pseudo-code resembles that for the model without-means.
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Figure A.4: An and Schorfheide with means observational equivalence in C16 but
not Θ0, and impulse-responses: ϑ0 (◦) vs ϑ∗0 (+). Π = g(x;α); x = ϑ0 or ϑ∗0.

g(x,α) ϑ0 ϑ∗0
1 ψr -0.14 τ 2 -45.4
2 ψy 0.14 β 0.9975 0.9975
3 ψπ 0.08 ν 0.1 1.66
4 φrr 0.79 γ 0.5 0.5
5 φyr 0.19 Π 1.008 1.008
6 φπr 0.12 G 1.18 1.11+0.08i
7 ρg 0.95 ψπ 1.5 1.5
8 φrπ 0.25 ρz 0.9 0.51
9 φyπ -0.46 ρg 0.95 0.95
10 φππ 0.62 ρr 0.75 0.75
11 ωr 2e-2 σz 3e-2 1.85
12 ωy 7e-2 σg 6e-2 6e-2
13 ωπ 4e-2 σr 2e-2 2e-2
14 ωyr 5e-4 σgz 1e-4 -1e2
15 ωπr 7e-4 σrz 1e-4 1e2
16 ωπy 23e-4 σrg -1e-4 -1e-4
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Figure A.5: An and Schorfheide with means observational equivalence in Θ0, and
impulse-responses: ϑ0 (◦) vs ϑ∗0 (+). Π = g(x;α); x = ϑ1 or ϑ∗1.

g(x,α) ϑ1 ϑ∗1
1 ψr -0.09 τ 1.59 2.06
2 ψy -0.006 β 0.9815 0.9815
3 ψπ 0.001 ν 0.23 0.28
4 φrr 0.31 γ 0.86 0.86
5 φyr -0.06 Π 1.001 1.001
6 φπr -0.004 G 1.11 1.10
7 ρg 0.91 ψπ 1.72 1.72
8 φrπ 0.42 ρz 0.27 0.26
9 φyπ -5.47 ρg 0.91 0.91
10 φππ 0.23 ρr 0.32 0.32
11 ωr 0.67 σz 0.73 0.37
12 ωy 0.99 σg 0.69 0.69
13 ωπ 0.06 σr 0.78 0.78
14 ωyr -0.59 σgz -0.42 -0.23
15 ωπr -0.04 σrz 0.53 0.11
16 ωπy 0.05 σrg -0.34 -0.34
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Figure A.6: Distribution of An and Schorfheide with means MLE at ϑ0: T=250,
N=10,000.
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Figure A.7: Distribution of An and Schorfheide with means MLE with τ ≈ 2
identification.
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D Smets and Wouters (2007) Appendix

This section presents the linearized equilibrium conditions of Smets and Wouters

(2007). References to where these equations may be verified include the Appendix

and code for the paper, appearing on the American Economic Review website.

Any apparent deviations between the expressions used here and Smets and

Wouters’s original paper are only the result of benign simplifications and notational

differences. In terms of notation, the conventions used in the derivation of the An

and Schorfheide (2007) model above – capital letters for variables, capitals with no

subscript t for steady states, hats for detrended variables, and lower case for log

deviation from steady states – are preserved here for ease of comparison between

the two models, and context for how this much more elaborate model is derived.

Specific names of variables and parameters are given in Table A.4. Candidate

parameter values θ0 and parameter space Θ are given in Table A.5.

Equilibrium With Real Rigidities. The Smets and Wouters model is composed

of two separate equilibria. The first, corresponding to the theoretical setting in

which prices and wages are sticky, is represented by 14 unique equations paired

with 14 endogenous variables.

The first difference separating the Smets and Wouters from An and Schorfheide

model is the presence of a rule of motion for capital. Nominal, detrended capital

– also known as “installed” capital – follows the rule of motion

kt =
1− δ
γ

kt−1 +
1

γ

Î

K̂
it + sγ(1 + βγ1−τ )

Î

K̂
et (A.25)

where Î/K̂ = γ−(1−δ) is the ratio of steady state investment to capital. However,

there are similarities between Smets and Wouters from An and Schorfheide. The

Euler equation arising from household optimization may be written as follows. For

intuition for how it is derived, note the similarity between this expression and the

aggregate demand equality from the AS model. Here, ct is the log deviation of
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Table A.4: Elements of Smets and Wouters (2007). Normalized notation with
An and Schorfheide model.

Structural Params (41) Endogenous (33) Errors (7)
1 τ CRRA zt Total factor prod. εzt To zt
2 ` Disutility of labor gt Gov. spending εgt To gt
3 β Discount factor et Price of inv. v. cons. εet To et
4 h Habit formation in cons. bt Bond premium εbt To bt
5 s Investment adj. cost ft Fed shock int. rate εft To ft
6 α Capital inten. in prod. mp

t Shock price markup εpt To mp
t

7 γ Avg. gr. rate of prod. mw
t Shock wage markup εwt To mw

t

8 Φ Fixed cost of prod. λpt Func. of mp
t and εpt

9 δ Depreciation of capital λwt Func. of mw
t and εwt

10 u Capital util. inten. kt Installed Capital
11 ιp Price indexation ct Real consumption
12 ξp Calvo price prob. it Real investment
13 ζp Kimball price agg. curv. πt Inflation
14 ιw Wage indexation wt Real wage
15 ξw Calvo wage prob. µpt Price markup
16 ζw Kimball wage agg. curv. µwt Wage markup
17 λw Wage markup qt Tobin’s Q

18 Ŷ St. state detr. output rt Nominal int. rate
19 Π St. state inflation rkt Real rent. rate on kt
20 G St. state gov. spending st Utilized captial
21 ψπ Taylor rule inflation ut Capacity utilization
22 ψy Taylor rule output lt Labor hours
23 ψ∆ Tay. rule output chg. yt Real output
24 ρr rt persistence k∗t Nat. level inst. cap.
25 ρb bt persistence c∗t Nat. real consump.
26 ρe et persistence i∗t Nat. real invest.
27 ρf ft persistence w∗t Nat. real wage
28 ρz zt persistence q∗t Nat. Tobin’s Q
29 ρg gt persistence r∗t Nat. nom. int. rate
30 ρp mp

t persistence rk∗t Nat. real r.r. on k∗t
31 ρw mw

t persistence s∗t Nat. utilized cap.
32 ϑgz εzt coeff for gt AR(1) l∗t Nat. labor hrs.
33 ϑp MA(1) coeff for mp

t y∗t Nat. real output
34 ϑw MA(1) coeff for mw

t

35 σb εbt std error
36 σe εet std error
37 σf εft std error
38 σz εzt std error
39 σg εgt std error
40 σp εpt std error
41 σw εwt std error
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Table A.5: Smets and Wouters calibration θ0 and parameter space Θ. ε=1e-6.

Param Lower θ0 Upper
1 τ 0.1 0.5 3.5
2 ` 0.1 2 3.5
3 β 0.975 0.9975 1-ε
4 h 0 0.7 1-ε
5 s 0 4 10
6 α ε 0.3 1− ε
7 γ ε 0.95 1− ε
8 Φ 0 1.25 5
9 δ ε 0.1 1− ε
10 u ε 0.5 1− ε
11 ιp ε 0.5 1− ε
12 ξp ε 0.5 1− ε
13 ζp 5 10 15
14 ιw ε 0.5 1− ε
15 ξw ε 0.5 1− ε
16 ζw 5 10 15
17 λw ε 1.5 5

18 Ŷ 1+ε 1.065 1.2
19 Π 1+ε 1.008 1.2
20 G 1+ε 1.18 1.2
21 ψπ -1 1.5 3
22 ψy -1 0.125 1.25
23 ψ∆ -1 0.125 1.25
24 ρr ε 0.75 1− ε
25 ρz ε 0.9 1− ε
26 ρg ε 0.95 1− ε
27 ρe ε 0.5 1− ε
28 ρb ε 0.5 1− ε
29 ρf ε 0.5 1− ε
30 ρp ε 0.5 1− ε
31 ρw ε 0.5 1− ε
32 ϑgz ε 0.5 1− ε
33 ϑp ε 0.5 1− ε
34 ϑw ε 0.5 1− ε
35 σb ε 1e-2 1− ε
36 σe ε 1e-2 1− ε
37 σf ε 1e-2 1− ε
38 σz ε 3e-2 1− ε
39 σg ε 6e-2 1− ε
40 σp ε 1e-2 1− ε
41 σw ε 1e-2 1− ε
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real, detrended consumption from its natural rate.

ct =
γ

γ + h
Etct+1 +

h

γ + h
ct−1 −

1− τ
τ

γ

γ + h
κe (lt − Etlt+1)

− 1

τ

γ − h
γ + h

(rt − Etπt+1 + bt) (A.26)

where

κe =
1

1 + λw

1− α
α

RK K̂

Ŷ

Ŷ

Ĉ

Ŷ

Ĉ
=

1

1− G

Ŷ
− Î

K̂

K̂

Ŷ

Î

K̂
= γ−(1−δ) K̂

Ŷ
=
Ŷ + Φ

Ŷ

(
L

K̂

)α−1
L

K̂
=

1− α
α

RK

Ŵ

Ŵ =

(
Ŷ

Ŷ + Φ

αα(1− α)1−α

(RK)α

)1/(1−α)

RK =
γτ

β
− (1− δ)

W is the steady state of detrended real wages and RK is the steady state of the

rental rate on depreciable capital. The parameters (Ŷ , G) are steady state values

that appear in the structural parameter θ. (K̂, Ĉ, Î, L) are steady state parameters

which are functions of the structural parameters, as described below. As in the

derivation of the AS model previously, hats indicate which steady state parameters

correspond to detrended variables. To reiterate, the definitions of all structural

parameters and variables are given in Table A.4.

Next, we have a relationship between investment and Tobin’s Q.

it =
βγ1−τ

1 + βγ1−τ Etit+1 +
1

1 + βγ1−τ it−1 +
1

sγ2

1

1 + βγ1−τ qt + et (A.27)

Investment is real and detrended. Meanwhile, the Phillips curve is

πt =
βγ1−τ

1 + ιpβγ1−τ Etπt+1 +
ιp

1 + ιpβγ1−τ πt−1 − κpµpt +mp
t (A.28)

where

κp =
(1− ξpβγ1−τ )(1− ξp)

ξp(1 + ζp(Φ/Ŷ ))(1 + ιpβγ1−τ )
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and the wage relation is

wt =
βγ1−τ

1 + βγ1−τ (Etwt+1 + Etπt+1) +
1

βγ1−τ (wt−1 + ιwπt−1)

− 1 + ιwβγ
1−τ

1 + βγ1−τ πt − κwµwt +mw
t (A.29)

where

κw =
(1− ξwβγ1−τ )(1− ξw)

ξw(1 + ζwλw)(1 + ιwβγ1−τ )

Wages are real and detrended. µpt and µwt are the markups to prices and wages,

respectively, defined by

µpt = α(st − lt)− wt + zt (A.30)

µwt = wt − `lt −
γ

γ − hct +
h

γ − hct−1 (A.31)

where markups are nominal and not detrended. The same is true for Tobin’s Q,

which follows the rule of motion

qt = β(1− δ)γ−τEtqt+1 + Etπt+1 + (1− β(1− δ)γ−τ )Etrkt+1 − rt − bt (A.32)

Taylor’s rule for the nominal interest rate is written as follows. Starred variables are

those arising from the equilibrium derived without real rigidities, to be expressed

in the following subsection; in particular, y∗t will be known as the “natural” rate of

output. ft is the idiosyncratic component of Fed policy not captured by the Taylor

rule.

rt = ρrrt−1 + (1− ρr)ψππt + ((1− ρr)ψy + ψ∆) (yt − y∗t )
− ψ∆

(
yt−1 − y∗t−1

)
+ ft (A.33)

while the real but not detrended rental rate for installed capital kt is given by

rkt = lt + wt − st (A.34)

where utilized capital st is related to installed capital (both nominal, detrended)
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by

st = kt−1 + ut (A.35)

where ut is nominal and not detrended capacity utilization, simply defined by

ut =
1− u
u

rkt (A.36)

Nominal and not detrended labor hours are given by

lt =
1

1− α
Ŷ

Ŷ + Φ
yt −

α

1− αst −
1

1− αzt (A.37)

and finally, real and detrended output is defined by the aggregate accounting equal-

ity.

yt =
Ĉ

Ŷ
ct +

Î

K̂

K̂

Ŷ
it +RK K̂

Ŷ

1− u
u

rkt + gt (A.38)

The 14 equations Equations (A.26)-(A.38) define rules of motion for the 14 en-

dogenous variables kt, ct, it, πt, wt, µ
p
t , µ

w
t , qt, rt, r

k
t , st, ut, lt, and yt, in that

order. The next section defines a rule of motion for the natural rate of output, y∗t ,

which appeared in the Taylor rule. The remaining 7 variables used in the above

equations, zt, gt, et, bt, ft, m
p
t , and mw

t , will be given reduced form rules of motion

in the section after next.

Equilibrium Without Real Rigidities. The second set of equilibrium condi-

tions defining the SW model correspond to the theoretical setting in which prices

and wages are flexible. This set of equilibrium conditions is reduced to 10 unique

equations paired with 10 endogenous variables. Keeping with the setting of the

SW model, I shall refer to all of these variables as natural rates and levels. The

natural level of installed capital is defined by

k∗t =
1− δ
γ

k∗t−1 +
1

γ

Î

K̂
i∗t + sγ(1 + βγ1−τ )

Î

K̂
et (A.39)
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while the natural rate of consumption c∗t follows

c∗t = −γ − h
γ

w∗t −
γ − h
γ

`l∗t −
h

γ
c∗t−1 (A.40)

Notice, this expression for c∗t is much different than the consumption Euler equation

for ct in Equation (A.26). This is because the flexible price/wage analogue of

Equation (A.26) will be used to define a rule of motion for r∗t in the absence of a

flexible price/wage Taylor rule. The natural rate of investment follows

i∗t =
βγ1−τ

1 + βγ1−τ Eti
∗
t+1 +

1

1 + βγ1−τ i
∗
t−1 +

1

sγ2

1

1 + βγ1−τ q
∗
t + et (A.41)

Given that price markup is zero in this case,

w∗t = α(s∗t − l∗t ) + zt (A.42)

while the natural Tobin’s Q is

q∗t = β(1− δ)γ−τEtq∗t+1 + (1− β(1− δ)γ−τ )Etrk∗t+1 − r∗t − bt (A.43)

and as explained, in place of a Taylor rule, r∗t is defined by a rearranged consump-

tion Euler equation as

r∗t = − τ

γ − h
(
c∗t − γEtc∗t+1 − hc∗t−1

)
− (1− τ)

γ

γ − hκe(l
∗
t − Etl∗t+1)− bt (A.44)

where κe is defined following Equation (A.26), and the natural rental rate for

installed capital k∗t is

rk∗t = l∗t + w∗t − s∗t (A.45)

and natural utilized capital s∗t is related to the natural level of installed capital by

s∗t = k∗t−1 +
1− u
u

rk∗t (A.46)
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Finally, natural labor hours and the natural output are, respectively,

l∗t =
1

1− α
Ŷ

Ŷ + Φ
y∗t −

α

1− αs
∗
t −

1

1− αzt (A.47)

and

y∗t =
Ĉ

Ŷ
c∗t +

Î

K̂

K̂

Ŷ
i∗t +RK K̂

Ŷ

1− u
u

rk∗t + gt (A.48)

To conclude, the 10 numbered equations (A.40)-(A.48) define rules of motion for

the 10 natural rates and levels k∗t , c
∗
t , i
∗
t , w

∗
t , q

∗
t , r

∗
t , r

k∗
t , s∗t , l

∗
t , and y∗t . Now we

move on to the remaining 7 variables zt, gt, et, bt, ft, m
p
t , and mw

t .

Reduced Form Processes. Seven of the variables used above are not defined

by equilibrium conditions. Instead, five of these are AR(1) and the last two

ARMA(1,1).

zt = ρzzt−1 + εzt (A.49)

gt = ρggt−1 + εgt + ϑgzεzt (A.50)

et = ρeet−1 + εet (A.51)

bt = ρbbt−1 + εbt (A.52)

ft = ρfft−1 + εft (A.53)

mp
t = ρpm

p
t−1 + εpt − ϑpεpt−1 (A.54)

mw
t = ρwm

w
t−1 + εwt − ϑwεwt−1 (A.55)

All innovations are iid. For the purposes of this paper, it will be convenient to write

each of the ARMA(1,1) processes Equations (A.54) and (A.55) and 2-dimensional

VAR(1)’s. Specifically, defining

λpt = ρpm
p
t − ϑpεpt

λwt = ρwm
w
t − ϑwεwt
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Then it is easy to verify that Equations (A.54) and (A.55) may equivalently be

represented by the set of four equations

mp
t = λpt + εpt (A.56)

mw
t = λwt + εwt (A.57)

λpt = ρpλ
p
t−1 + (ρp − ϑp)εpt (A.58)

λwt = ρwλ
w
t−1 + (ρw − ϑw)εwt (A.59)

Steady State Conditions. The steady states of output, inflation, and gov-

ernment spending, Ŷ , Π, and G, are included in the structural parameters, and

R = (Πγτ )/β. Using the definitions following Equation (A.26), we already have

explicit functions for the steady states of the rental rate RK and wage W . From

those definitions we can also say that

K̂ =
Î

γ − (1− δ) Ĉ =

(
1− G

Ŷ
− Î

K̂

K̂

Ŷ

)
Ŷ

Î = (γ − (1− δ))K̂
Ŷ
Ŷ L =

1− α
α

RK

Ŵ
K̂

VARMA(3,2) Representation. The ABCD representation of this model is

given in Figure A.8. The 7 states having exogenously defined rules of motion are

X1t = [zt, gt, et, bt, ft, λpt, λwt]
′

The 4 states corresponding to the equilibrium derived without real rigidities are

X2t = [k∗t , c
∗
t , i
∗
t , y
∗
t ]
′

Te 7 states corresponding to the equilibrium derived with real rigidities are

X3t = [kt, ct, it, πt, wt, rt, yt]
′
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Note that that the last 5 elements of X3t are the same as the last 5 elements of

Yt, Y1t = [it, πt, wt, rt, yt]
′. In addition, let Y0t be a vector of the first 6 elements

of Yt, i.e. Yt = [Y ′0t, yt]
′. Finally, define X4t as first 13 elements of Xt, X4t =

[X ′1t, X
′
2t, lt, ct]

′ so


Yt+1[
Y0t

yt

]
︸ ︷︷ ︸
Yt

 =

 F11
13×13

F12
13×5

F21
1×13

F22
1×5


︸ ︷︷ ︸CA

C



X4t−1
13×1

Y1t−1
5×1


︸ ︷︷ ︸

Xt−1

+

 G1
13×14

G2
1×14


︸ ︷︷ ︸
D CB

0
7×7

D



[
εt+1

εt

]

The matrix F11 is full column rank. Therefore,

X4t−1 = F−1
11

[
Yt+1

Y0t

]
− F−1

11 F12Y1t−1 − F−1
11 G1

[
εt

εt

]

In the An and Schorfheide model, inverting C allowed Xt−1 to be written as a

function of Yt and εt, which ultimately allowed the model to be written in VAR(1)

representation. Here, inverting F11 allows the 13 states in X4t−1 to be written as a

function of Yt+1, Yt, Yt−1, εt+1, and εt, and the remaining 5 states in Xt−1 besides

X4t−1 are equal to Y1t−1 exactly. First, decompose the matrices A and B as

A
18×18

=

 A∗11
13×13

A∗12
13×5

A∗21
5×13

A∗22
5×5

 B
18×7

=

B∗113×7

B∗2
5×7


Then, plugging the above expression for Xt into the state equation yields

(
F−1

11

[
Yt

Y0t−1

]
−
[

0
13×2

F−1
11 F12

]
Yt−2 − F−1

11 G1

[
εt

εt−1

])

= A∗11

(
F−1

11

[
Yt−1

Y0t−2

]
−
[

0
13×2

F−1
11 F12

]
Yt−3 − F−1

11 G1

[
εt−1

εt−2

])
+A12Y1t−3+B1εt−2



112

Second, decompose the following matrices:

F11A
∗
11F

−1
11

13×13

=

 (F11A
∗
11F

−1
11 )11

7×7

(F11A
∗
11F

−1
11 )12

7×6

(F11A
∗
11F

−1
11 )21

6×7

(F11A
∗
11F

−1
11 )22

6×6

 F11A
∗
12

13×5

=

 (F11A
∗
12)1

7×5

(F11A
∗
12)2

6×5



F11A
∗
11F

−1
11 G1

13×14

=

 (F11A
∗
11F

−1
11 G1)11

7×7

(F11A
∗
11F

−1
11 G1)12

7×7

(F11A
∗
11F

−1
11 G1)21

7×7

(F11A
∗
11F

−1
11 G1)22

7×7

 F12
13×5

=

 (F12)1
7×5

(F12)2
6×5



F11A
∗
11F

−1
11 F12

13×5

=

 (F11A
∗
11F

−1
11 F12)1

7×5

(F11A
∗
11F

−1
11 F12)2

6×5

 F11B
∗
1

13×7

=

 (F11B
∗
1)1

7×7

(F11B
∗
1)2

6×7


Multiplying both sides of the previous equation by F11 and rearranging ultimately

gives the following VARMA(3,2) representation for the observables; note, D is

invertible:

Yt = (F11A
∗
11F

−1
11 )11︸ ︷︷ ︸

Φ1(θ)
7×7

Yt−1 +
([

(F11A
∗
11F

−1
11 )12 0

7×1

]
+
[

0
7×2

(F12)1

])
︸ ︷︷ ︸

Φ2(θ)
7×7

Yt−2

+
([

0
7×2

(F11A
∗
12)1

]
−
[

0
7×2

(F11A
∗
11F

−1
11 F12)1

])
︸ ︷︷ ︸

Φ3(θ)
7×7

Yt−3 + Dεt︸︷︷︸
Ut

+
(
CB −

(
F11A

∗
11F

−1
11 G1

)
11

)
D−1︸ ︷︷ ︸

∆1(θ)
7×7

Dεt−1︸ ︷︷ ︸
Ut−1

+
(
(F11B

∗
1)1 −

(
F11A

∗
11F

−1
11 G1

)
12

)
D−1︸ ︷︷ ︸

∆2(θ)
7×7

Dεt−2︸ ︷︷ ︸
Ut−2

Correspondence with Raw Data. The observables Yt may be decomposed as

Yt = Vt − V (θ) where Vt is a vector of logged and detrended, but not demeaned,

data and V is a logged vector of each data series’s unconditional means. For

instance, log linearized real interest rates are defined by the linearization above as

rt = ln(Rt/R), where R is the steady state of Rt. Then, the first element of Vt is
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Table A.6: Smets and Wouters model data series

Variable Series Notes
Lt PRS85006023/CE16OV Seasonally adj., quarterly, end-of-period
Ct PCE Seasonally adj., quarterly, end-of-period
It FPI Seasonally adj., quarterly, end-of-period
Pt CPIAUCSL Seasonally adj., quarterly, end-of-period
Wt COMPNFB Seasonally adj., quarterly, end-of-period
Rt 1+TB3MS/400 Not S.a., ann. rate, end-of-period, % pts.

Math to obtain quarterly gross
Yt GDPC1 Seasonally adj., quarterly, end-of-period

lnRt, logged nominal interest rates, and the first element of V is ln(E(Rt)), where

E(·) is the unconditional mean. Where φ(·) is the function selecting the trend of

a given variable and Πt = Pt/Pt−1 is the gross rate of inflation,

Yt =



lt

ct

it

πt

wt

rt

yt


≡ Vt − V Vt = ln



Lt
Ct
Pt
/φ
(
Ct
Pt

)
It
Pt
/φ
(
It
Pt

)
Πt

Wt

Pt
/φ
(
Wt

Pt

)
Rt

Yt
Pt
/φ
(
Yt
Pt

)


V = lnE



Lt
Ct
Pt
/φ
(
Ct
Pt

)
It
Pt
/φ
(
It
Pt

)
Πt

Wt

Pt
/φ
(
Wt

Pt

)
Rt

Yt
Pt
/φ
(
Yt
Pt

)


All data codes below correspond to the St. Louis Federal Reserve’s FRED database.

Empirical V corresponds to the model-theoretic V (θ) by

lnE



Lt
Ct
Pt
/φ
(
Ct
Pt

)
It
Pt
/φ
(
It
Pt

)
Πt

Wt

Pt
/φ
(
Wt

Pt

)
Rt

Yt
Pt
/φ
(
Yt
Pt

)


≡ V = V (θ)︸ ︷︷ ︸

mean = steady state

≡ ln



L

Ĉ

Î

Π

Ŵ

R

Ŷ


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Figure B.1: Sensitivity of posterior mode (vertical axis) to mean of τ prior
(horizontal).
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Figure B.2: (Left panel) Sensitivity of τ posterior mode to changes in mean of
priors for ρz and τ . (Right panel) Same for ρz.
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Chapter 3 Appendix

A Proofs

Proof of Proposition 1. See Appendix C.

Proof of Proposition 2. Follows from Kailath et al. (2000) Lemmas E.3.2 and

E.4.1 when Proposition 1 is satisfied. See the Appendix to Komunjer and Ng

(2011).

Proof of Proposition 3. See Komunjer and Ng (2011).

Proof of Proposition 4. The eigenvalues of P are defined by the characteristic

equation pP (λ) = |P−λIZ |. Utilizing the steps in Andreasen et al. (2014)’s proof to

their Proposition 1, one may also write pP (λ) = |hx−λInx||hx−λInx||D+
nxh

⊗2
x Dnx−

λInx(nx+1)/2|. Thus, the eigenvalues of P are determined by |hx − λInx| = 0 or

|D+
nxh

⊗2
x Dnx − λInx(nx+1)/2| = 0. The eigenvalues of the first problem are less than

one by Assumption 1, that is |λi| < 1, i = 1, . . . , nx. To compute the eigenvalues

of the second problem, first note that any eigenvalue λ of hx is determined by the

equality hxx = λx for some eigenvector x 6= 0. Therefore, for any two eigenvalues

λi and λj of hx, h
⊗2
x (xi⊗xj) = λiλj(xi⊗xj). Given the last equality, it must be the

case that h⊗2
x DnxD

+
nx(xi ⊗ xj) = λiλj(xi ⊗ xj), because DnxD

+
nx is a matrix which

first takes the nx(nx + 1) × 1 vech of xix
′
j using D+

nx , and then duplicates these

elements into a new n2
x× 1 vector using Dnx . Finally, premultiplying both sides of

117
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the last equality by D+
nx yields D+

nxh
⊗2
x DnxD

+
nx(xi⊗xj) = λiλjD

+
nx(xi⊗xj). Thus,

D+
nx(xi ⊗ xj) is an eigenvector of D+

nxh
⊗2
x Dnx , which has eigenvalues that are the

nonredundant products of hx’s eigenvalues, λiλj for i = 1, . . . nx and j = i, . . . nx.

Since λi and λj are less than 1 by Assumption 1, so must λiλj for all i and j. �

Proof of Corollary 1. Under Assumptions 1-3, the ABCD model, and hence

εt =
[
u′t (Dnu(u⊗2

t − vec(In2
u
)))′ (nvec(x̂ft−1u

′
t))
′
]′

exists. The covariance matrix

of εt is written

Σε(θ) = E(εtε
′
t) =


Inu E(utu

⊗2′

t )D+′
nu 0nu×nn

D+
nuE(u⊗2

t u′t) φ1 0nu(nu+1)/2×nn

0nn×nu 0nn×nu(nu+1)/2 φ2


φ1 = D+

nuE
[
u⊗2
t u⊗2′

t

]
D+′

nu −D+
nuvec(Inu)vec(Inu)′D+′

nu

φ2 = nE

[
vec
(
x̂ft−1u

′
t

)
vec
(
x̂ft−1u

′
t

)′]
n′

The zeros occur becuase ut is white noise. The covariance matrix for x̂ft−1 is defined

by the Lyapunov equation E(x̂ft x̂
f ′

t ) = hxE(x̂ft x̂
f ′

t )h′x + σ2ηη′ and (In2
x
− h⊗2

x )−1

exists under Assumption 1. Therefore, E(x̂ft x̂
f ′

t ) exists and is finite. In addition

given Assumption 3, finite fourth moments for ut (and hence, also finite third

moments), then it follows directly that the entire matrix Σε exists and is finite.

However, again because ut is white noise, all additional moments are

E(εtε
′
t−j) =


0nu×nu 0nu×nu(nu+1)/2 0nu×nn

0nu(nu+1)/2×nu 0nu(nu+1)/2×nu(nu+1)/2 0nu(nu+1)/2×nn

0nn×nu 0nn×nu(nu+1)/2 0nn×nn

 ∀ j ≥ 1

This fact is easy to confirm block-by-block. Thus, εt is white noise. �

Proof of Corollary 2. P is related to its eigenvalues and vectors by the relation

Px = λx for x 6= 0. A is related to P by the relation A = MPM ′ for M a zero-one

selection matrix. Recall, M is constructed to exploit the zero-columns of P so that

PẐt = PM ′MẐt. By similar arguments, MPM ′Mx = λMx, i.e. Ay = λy for
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y = Mx 6= 0 an eigenvector of A, and λ, which are A’s eigenvalues, are a subset of

P ’s eigenvalues. Proposition 1 guarantees that all nx(nx + 1)/2 of P ’s eigenvalues

are less than one under Assumption 1. �

Proof of Corollary 3. Utilizing the functional form of A, C, P , and M , the

product of C and any power of A has the functional form

CAi =
[

1′2 ⊗ (gxhxm
′(mhxm′)i) . . .

]
where 12 =

[
1 1

]′
. Therefore, the observability matrix is written

O =


1′2 ⊗ (gxhxm

′) . . .
...

...

1′2 ⊗ (gxhxm
′(mhxm′)nX−1) . . .


Because of the functional form, column j of O is linearly dependent on column

nm + j for j = 1, . . . nm and nm is the row dimension of m. In other words, the ob-

servability matrix has reduced column rank implying the system is not observable.

�

B Pruned State Space Representation

B.1 Baseline Case

The functional form of the matrices in the baseline case state equation

second order approximation (3.6) is given by the following steps:

1. Hxx is defined as follows: Let h(i)(xt−1, σ|θ) denote row i of h(xt−1, σ|θ). The

scalar second-order element of the Taylor expansion of h corresponding to xt
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is

x̂′t−1 ×
∂2h(i)(xt−1, σ|θ)
∂xt−1∂x′t−1

∣∣∣∣
xt−1=x∗,σ=0

× x̂t =

vec

(
∂2h(i)(xt−1, σ|θ)
∂xt−1∂x′t−1

∣∣∣∣
xt−1=x∗,σ=0

)′
× x⊗2

t−1

and Hxx is constructed by stacking the coefficients in rows:

Hxx(θ)
nx×n2

x

=


vec

(
∂2h(1)(xt−1,σ|θ)
∂xt−1∂x′t−1

∣∣∣
xt−1=x∗,σ=0

)′
...

vec

(
∂2h(nx)(xt−1,σ|θ)

∂xt−1∂x′t−1

∣∣∣
xt−1=x∗,σ=0

)′


The elements of Gxx are defined similarly.

2. The cross-partials between states and σ are

hxσ(θ)
nx×nx

=
∂2h(xt−1, σ|θ)
∂σ∂x′t−1

∣∣∣∣
xt−1=x∗,σ=0

gxσ(θ)
ny×nx

=
∂2g(xt, σ|θ)
∂σ∂x′t

∣∣∣∣
xt=x∗,σ=0

3. hσσ and gσσ are defined by

hσσ(θ)
nx×1

=
∂2h(xt−1, σ|θ)

∂σ2

∣∣∣∣
xt−1=x∗,σ=0

gσσ(θ)
nx×1

=
∂2g(xt, σ|θ)

∂σ2

∣∣∣∣
xt=x∗,σ=0

To obtain the representation (3.13) and (3.14) from the second order pruned state

space representation (3.11) and (3.12), observe the equality

x̂ft x̂
f ′

t = hxx̂
f
t−1x̂

f ′

t−1h
′
x + σ2ηutu

′
tη
′ + σhxx̂

f
t−1u

′
tη
′ + σηutx̂

f ′

t−1h
′
x

Since vec(vv′) = v⊗2 for any column vector v,

x̂f⊗2
t = σ2η⊗2vec(Inu) + h⊗2

x x̂f⊗2
t−1 + σ(η ⊗ hx)vec(x̂ft−1u

′
t)

+ σ(hx ⊗ η)vec(utx̂
f ′

t−1) + σ2η⊗2(u⊗2
t − vec(Inu)) (C.1)
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Stacking this underneath Equations (3.9) and (3.11) into a single system immedi-

ately yields (3.13) and (3.14).

B.2 Nonlinearity Between Errors and States

The functional form of the matrices in the second order approximation for

the state equation allowing for nonlinearities between states and errors (3.16) is

given by the following steps:

1. σHxu is defined as follows: Let h(i)(xt−1, vt, σ|θ) denote row i of h(xt−1, vt, σ|θ).
The scalar second-order element of the Taylor expansion of h corresponding

to xt is

x̂′t−1 ×
∂2h(i)(xt−1, vt, σ|θ)

∂xt−1∂v′t

∣∣∣∣
xt−1=x∗,ut=0,σ=0

× (σLuut) =

σvec

(
∂2h(i)(xt−1, σ|θ)

∂xt−1∂v′t

∣∣∣∣
xt−1=x∗,ut=0,σ=0

)′
× (Lu ⊗ Inx)× vec(x̂t−1u

′
t)

and σHxu is constructed by stacking the coefficients in rows:

σHxu(θ)
nx×nxnu

= σ


vec

(
∂2h(1)(xt−1,vt,σ|θ)

∂xt−1∂v′t

∣∣∣
xt=x∗,ut=0,σ=0

)′
...

vec

(
∂2h(nx)(xt−1,vtσ|θ)

∂xt∂v′t

∣∣∣
xt=x∗,ut=0σ=0

)′
 (Lu ⊗ Inx)

2. σHux: Defining h(i) as in Step 1,

(σLuut)
′ × ∂2h(i)(xt−1, vt, σ|θ)

∂vt∂x′t−1

∣∣∣∣
xt−1=x∗,ut=0,σ=0

× x̂′t−1 =

σvec

(
∂2h(i)(xt−1, σ|θ)

∂vt∂x′t−1

∣∣∣∣
xt−1=x∗,ut=0,σ=0

)′
× (Inx ⊗ Lu)× vec(utx̂

′
t−1)
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and σHxu is constructed by stacking the coefficients in rows:

σHux(θ)
nx×nunx

= σ


vec

(
∂2h(1)(xt−1,vt,σ|θ)

∂vt∂x′t−1

∣∣∣
xt−1=x∗,ut=0,σ=0

)′
...

vec

(
∂2h(nx)(xt−1,vt,σ|θ)

∂vt∂x′t−1

∣∣∣
xt−1=x∗,ut=0,σ=0

)′
 (Inx ⊗ Lu)

3. σ2Huu: Defining h(i) as in Step 1,

(σLuut)
′ × ∂2h(i)(xt−1, vt, σ|θ)

∂vt∂v′t

∣∣∣∣
xt−1=x∗,ut=0,σ=0

× (σLuut) =

σvec

(
∂2h(i)(xt−1, σ|θ)

∂vt∂v′t

∣∣∣∣
xt−1=x∗,ut=0,σ=0

)′
× L⊗2

u × vec(utu
′
t)

and σHuu is constructed by stacking the coefficients in rows:

σHxu(θ)
nx×nxnu

= σ


vec

(
∂2h(1)(xt,σ|θ)

∂xt∂x′t

∣∣∣
xt=x∗,σ=0

)′
...

vec

(
∂2h(nx)(xt,σ|θ)

∂xt∂x′t

∣∣∣
xt=x∗,σ=0

)′
× L⊗2

u

B.3 JPRS Representation

Both categories of pruned state space representation described in this paper

– the baseline case with linearity in errors and states (3.13) and (3.14), or with

nonlinearity in errors and states (3.17) and (3.14) – has the same generalized

functional form.

Zt = JZ(θ) + P(θ)Zt−1 +R(θ)Ut (C.2)

Yt = JY(θ) + S(θ)Zt (C.3)
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where the variables and matrices of this JPRS representation are defined by

Zt =


x̂ft

x̂st

x̂f⊗2
t

 Ut =


ut

u⊗2
t − vec(In2

u
)

vec(x̂ft−1u
′
t)

vec(utx̂
f ′

t−1)

 Yt = ŷft + ŷst

JZ =


0

1
2
hσσσ

2 + 1
2
σ2HuuIn2

u

σ2η⊗2vec(In2
u
)

 JY =
1

2
gσσ P =


hx 0 0

0 hx
1
2
Hxx

0 0 h⊗2
x



R =


ση 0 0 0

0 1
2
σ2Huu

1
2
σHxu

1
2
σHux

0 σ2η⊗2 σ(η ⊗ hx) σ(hx ⊗ η)

 S =
[
gx gx

1
2
Gxx

]

The dimensions of this representation nZ = 2nx + n2
x and nU = nu + n2

u + 2nxnu.

Recall, the distinction between the model with nonlinearities between errors and

states and the baseline case is that in the latter, Huu, Hxu, and Hux are all zero.

C 3-Step ABCD Reparameterization

In order to show that pruned state space representation also has generic

ABCD representation, I begin with JPRS representation, given above in Section B

.3. Then, I show how to reparameterize the model in three simple steps, the third

of which is the most intensive. This section also serves as nontechnical step-by-step

proof of Proposition 1.

C.1 Step 1: Remove Redundant States

There are many redundant elements in Zt and Ut, given in Section B .3,

which we wish to remove. For example, x̂ft ⊗ x̂ft = vec(xft x
f ′

t ). Since xft x
f ′

t is sym-

metric, x̂ft⊗x̂ft has exactly n2
x−nx(nx+1)/2 redundant elements, where nx(nx+1)/2

is the number of elements in vech(xft x
f ′

t ). To handle redundancies such as these,

recall that the duplication matrix Dnx is the nx × nx(nx + 1) dimensional matrix
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which yields the equality vec(x̂ft x̂
f ′

t ) = Dnxvech(x̂ft x̂
f ′

t ). D+
nx = (D′nxDnx)

−1D′nx

is the Moore-Penrose pseudo inverse of the duplication matrix which yields the

equality D+
nxvec(xft x

f ′

t ) = vech(xft x
f ′

t ). In relation, D+
nxDnx = Inx(nx+1)/2 and

x̂f⊗2
t = DnxD

+
nxx̂

f⊗2
t where x̂f⊗2

t = vec(xft x
f ′

t ). Note, a somewhat nuanced point

DnxD
+
nx is not the identity matrix, but a matrix which selects the unique elements

of x̂f⊗2
t and uses them to reconstruct the entire vector. Therefore, Equation (3.11)

may be rewritten

x̂st ≈ hx(θ)x̂
s
t−1 +

(
1

2
Hxx(θ)Dnx

)
︸ ︷︷ ︸

nx×nx(nx+1)

×
(
D+
nxx̂

f⊗2
t−1

)
︸ ︷︷ ︸

vech(xft−1x
f ′
t−1)

+
1

2
hσσ(θ)σ2

Meanwhile, Dnu is the nu×nu(nu+1) dimensional duplication matrix (and Dnu =

(D′nuDnu)−1D′nu its Moore-Penrose pseudo inverse) which operate on vec(utu
′
t) (and

vech(utu
′
t)) similarly. In addition, Knx,nu is the commutation matrix which equates

Knx,nuvec(x̂ft−1ut) = vec(utx̂
f ′

t−1). This implies that the product of the first-order

solution with itself, Equation (C.1), and also the third block-row of (C.2), may be

rewritten

D+
nxx̂

f⊗2
t = σ2D+

nxη
⊗2vec(Inu)︸ ︷︷ ︸

nx(nx+1)×1

+ (D+
nxh

⊗2
x Dnx)︸ ︷︷ ︸

nx(nx+1)×nx(nx+1)

×
(
D+
nxx̂

f⊗2
t−1

)
+
(
σ2D+

nxη
⊗2Dnu

)︸ ︷︷ ︸
nx(nx+1)×nu(nu+1)

×
(
D+
nu(u⊗2

t − vec(Inu))
)

+ σr(θ)︸ ︷︷ ︸
nx(nx+1)×nxnu

×vec(x̂ft−1u
′
t)

for r(θ) = D+
nx (η ⊗ hx + (hx ⊗ η)Knx,nu). Similarly, the second block-row of (C.2)

may be written

x̂st =

(
1

2
hσσσ

2 +
1

2
σ2HuuIn2

u

)
+ hxx̂

s
t−1 +

(
1

2
HxxDnx

)
× (D+

nxx̂
f⊗2
t−1 )

+

(
1

2
σ2HuuDnu

)
× (D+

nu(u⊗2
t − vec(In2

u
)) + σ

1

2
(Hxu +HuxKnx,nu)× vec(x̂ft−1u

′
t)
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Together, these equalities imply that the JPRS state in Section B.3 is reducible to
x̂ft

x̂st

D+
nxx̂

f⊗2
t


︸ ︷︷ ︸

Zt

= J(θ) + P (θ)×


x̂ft−1

x̂st−1

D+
nxx̂

f⊗2
t−1

+R(θ)×


ut

D+
nu(u⊗2

t − vec(Inu))

vec(x̂ft−1u
′
t)


︸ ︷︷ ︸

Ut

(C.4)

where J , P , and R are defined in the text following Proposition 1, equations

(3.19) and (3.20) with nZ = 2nx + nx(nx + 1)/2 < nZ for nx > 1 and nU =

nu+nu(nu+1)/2+nxnu < nU for all nx > 0 and nu > 0. Similarly, the observation

equation is reduced to the following, where S =
[
gx gx

1
2
GxxDnx

]
:

Yt = KY(θ) + S(θ)Zt (C.5)

C.2 Step 2: Remove Means

It is necessary to remove means from the model to achieve ABCD repre-

sentation.1 Before doing so, it is useful to state a simple proposition, related to

the findings of Andreasen et al.

Proposition 4. Under Assumption 1, the eigenvalues of P are less than one.

A proof of Propostion 4 appears in Appendix A . When it is true, the

unconditional mean of the states E(Zt|θ) = E(Zt|θ) may be defined by

E(Zt|θ) = (InZ − P (θ))−1J(θ)

Then, the rule of motion for the variables without-means Ẑt = Zt − E(Zt|θ) is:

Ẑt = P (θ)Ẑt−1 +R(θ)Ut (C.6)

1I follow this route with the ultimate intention of applying Komunjer and Ng (2011)’s iden-
tification results, which do not take into consideration mean-nonzero models. Iskrev (2010)’s
approach to local identification does allow for nonzero means; in order to apply his results, one
could alternatively compute the first and second moments of the data set {Yt}Tt=1 from JPRS
representation directly using Andreasen et al. (2014)’s approach, and calculate the Jacobian us-
ing numerical derivatives. Recall, however, that Iskrev’s rank conditions apply to only a finite
data sample, whereas Komunjer and Ng’s apply to the spectral density.
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and the observation equation becomes

Yt = S(θ)Ẑt (C.7)

where Yt = Yt − E(Yt|θ) for E(Yt|θ) = JY + SE(Zt|θ). Recall, I have assumed

WLOG that the control variables yt are the observables. Therefore, Yt is directly

compatible with data that has been separated from its means.

C.3 Step 3: Remove Remaining Unnecessary Variables

Intuition for the Third Step. The final step of the ABCD repararma-

terization is the most intensive of the three. In order to motivate it, it is most

useful to begin with a simple linear example. Consider a first-order approximation

of a simple hypothetical model, with linear dependence between states and shocks,

ut ∼ WN(0, 1). 
x̂f1t

x̂f2t

x̂f3t


︸ ︷︷ ︸
x̂ft

=


h11 0 h13

h21 0 h23

h31 0 h33


︸ ︷︷ ︸

hx


x̂f1t−1

x̂f2t−1

x̂f3t−1

+ σ


η1

η2

η3


︸ ︷︷ ︸
η

ut (C.8)

The scalar observable will be ŷft = gxx̂
f
t . In this model, today’s value of x̂f2t has no

effect on the future values either the states or observables. This is embodied by the

exclusion restrictions on hx that have evidently arisen from the microfoundations

of the model. Assumption 2 guarantees that the zeros in hx do not vary for θ ∈ Θ;

sometimes, DSGE models with this property are referred to as being “varation-

free.”

When the zeros in hx are characteristic of the entire parameter space Θ,

one may completely eliminate x̂f2t from the solution of the model without loss of

generality. First, define the zero-one selection matrix

m =

[
1 0 0

0 0 1

]
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I call m a “selection” matrix, because because using it to premultiply x̂ft , it forms

a new vector of the complement of x̂f2t in x̂ft : m× x̂ft =
[
x̂f1t x̂f3t

]′
. Note, however,

that m also has another useful property,

m′m


x̂f1t−1

x̂f2t−1

x̂f3t−1

 =


x̂f1t−1

0

x̂f3t−1

 and


h11 0 h13

h21 0 h23

h31 0 h33



x̂f1t−1

x̂f2t−1

x̂f3t−1

 =


h11 0 h13

h21 0 h23

h31 0 h33



x̂f1t−1

0

x̂f3t−1


Thus, with x̂ft and m defined as above, the term hxx̂

f
t may simply be replaced

with hxm
′mx̂ft . Using the above facts, it follows that our model may be exactly

rewritten [
x̂f1t

x̂f2t

]
︸ ︷︷ ︸
Xt=mx̂

f
t

=

[
h11 h13

h31 h33

]
︸ ︷︷ ︸

A

[
x̂f1t−1

x̂f2t−1

]
+

[
ση1

ση2

]
︸ ︷︷ ︸

B

ut︸︷︷︸
εt

ŷft︸︷︷︸
Yt

=
[
gxh

·1
x gxh

·3
x

]
︸ ︷︷ ︸

C

[
x̂f1t−1

x̂f2t−1

]
+ σgxη︸︷︷︸

D

ut

(C.9)

where A = mhxm
′, B = σmη, C = gxhxm

′, and D is as expressed above. h·ix

is the entire i-th column of hx. The dimensions of the state, observables, and

innovations are denoted nX = 2, nY = 1, and nε = 1. This is known as the ABCD

representation of the model.

As Komunjer and Ng (2011) point out, not only does this process of re-

moving states on the basis of exclusion restrictions reduce the dimension of the

state vector for linearized DSGE models, but typically, the remaining state vector

mx̂ft is minimal. Since it is easy to use the selection matrix m to obtain minimal

ABCD representation of linearized models, a natural question is whether a similar

procedure may be used for the class of pruned nonlinear models currently under

consideration. This is Step 3.

The Third Step. Consider the pruned second order solution of the same hy-

pothetical model presented in Equation (C.8). Note, due to the nested nature of

Taylor approximations, exactly the same hx is nested in this solution (Compare
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with equation (3.11)).


x̂s1t

x̂s2t

x̂s3t


︸ ︷︷ ︸
x̂st

=


h11 0 h13

h21 0 h23

h31 0 h33


︸ ︷︷ ︸

hx


x̂s1t−1

x̂s2t−1

x̂s3t−1

+
1

2


H1 0 H13 0 0 H16

H21 0 H23 0 0 H26

H31 0 H33 0 0 H36


︸ ︷︷ ︸

1
2
HxxDnx



x̂f2
1t

x̂f2tx̂
f
1t

x̂f3tx̂
f
1t

x̂f2
2t

x̂f3tx̂
f
2t

x̂f2
3t


︸ ︷︷ ︸
D+
nx x̂

f
t

+
1

2
hσσσ

2

Zeros on the first order coefficients often imply zeros on the second order coefficients

for the same variable; for intuition, consider the hypothetical process x2t = αx1t−1+

εt. This explains the location of zeros in Hxx in comparison to the zeros in hx.

Returning to Step 2, the representation without-means expression Equation (C.6)

for the states is
x̂ft

Ẑ2t

Ẑ3t


︸ ︷︷ ︸

Ẑt

=


hx 0 0

0 hx
1
2
HxxDnx

0 0 D+
nxh

⊗2
x Dnx


︸ ︷︷ ︸

P


x̂ft−1

Ẑ2t−1

Ẑ3t−1

+


ση 0 0

0 0 0

0 σ2D+
nxη
⊗2Dnu σr(θ)


︸ ︷︷ ︸

R


ut

u2
t − 1

x̂ft ut


︸ ︷︷ ︸

Ut

Where Ẑ2t is an nx × 1 vector of the second order solution states separated from

their means, Ẑ2t = x̂st − E(x̂st |θ0) and Ẑ3t is the nx(nx + 1)/2 × 1 mean-zero

vector D+
nxx̂

s
t − E(D+

nxx̂
s
t |θ0). The observation equation is the following; Yt =

yft + yst − 1
2
gσσσ

2 − SE(Zt|θ) is a scalar:

Yt =
[
gx gx

1
2
GxxDnx

]
︸ ︷︷ ︸

S

Ẑt

The selection matrix m was previously used in the linear case to select a sub-

vector of x̂ft corresponding to the non-zero columns of hx. Within P , however,

there are zeros not only in the submatrix hx, but also the submatrices 1
2
HxxDnx

and D+
nxh

⊗2
x Dnx . Thus, defining a similar selection matrix for this case requires a
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slightly different strategy. First, drawing on the theme of nestedness of progres-

sively higher-order solutions, note that the only submatrix of P premultiplying

Ẑt−1 is again hx. Thus, with m exactly as previously defined, mẐ2t−1 is the 3× 1

vector that selects only the 3 elements of the 6-dimensional vector Ẑ2t−1 that cor-

respond to non-zero columns in hx. Second, we have the fact that there are zeros

in the second, fourth, and fifth columns of 1
2
HxxDnx as displayed above. But in

addition, note that

D+
nxh

⊗2
x Dnx

6×6

=



h2
11 0 h11h13 0 0 h2

13

h11h21 0 h11h23 0 0 h13h23

h11h31 0 h11h33 0 0 h13h33

h2
21 0 h21h23 0 0 h2

23

h21h31 0 h21h33 0 0 h23h33

h2
31 0 h31h33 0 0 h2

33


So, only the second, fourth, and fifth columns of both 1

2
HxxDnx and D+

nxh
⊗2
x Dnx

have zeros. For this reason define

m∗ =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1


Then, m∗Ẑ3t−1 is the 3 × 1 vector that selects only the 3 elements of the 6-

dimensional vector Ẑ3t−1 that correspond to non-zero columns in 1
2
HxxDnx and

D+
nxh

⊗2
x Dnx , and m∗

′
mẐ3t−1 replaces the appropriate elements with zeros (recall

the operations of m′m previously). Thus, constructing the 7 × 12 matrix M as

below, we have 
m 0 0

0 m 0

0 0 m∗


︸ ︷︷ ︸

M : 7×12


x̂ft

Ẑ2t

Ẑ3t


︸ ︷︷ ︸
Ẑt: 12×1

=


mx̂ft

mẐ2t

m∗Ẑ3t


︸ ︷︷ ︸
Xt: 7×1
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Therefore, given the equivalence of representations

Ẑt = PẐt−1 +RUt ⇔ MẐt = (MPM ′)MẐt−1 +MRUt

Yt = SẐt ⇔ Yt = (SPM ′)MẐt−1 + SRUt

in terms of mẐ2t =
[
ẑ21t ẑ23t

]′
and m∗Ẑ3t =

[
ẑ31t ẑ33t ẑ36t

]′
we have



x̂f1t

x̂f3t

ẑ21t

ẑ23t

ẑ31t

ẑ33t

ẑ36t


︸ ︷︷ ︸
Xt=MẐt

=



h11 h13 0 0 0 0 0

h31 h33 0 0 0 0 0

0 0 h11 h13
1
2
H11

1
2
H13

1
2
H16

0 0 h13 h33
1
2
H31

1
2
H33

1
2
H36

0 0 0 0 h2
11 h11h13 h2

13

0 0 0 0 h11h13 h11h33 h13h33

0 0 0 0 h2
31 h31h33 h2

33


︸ ︷︷ ︸

A=MPM ′



x̂f1t−1

x̂f3t−1

ẑ21t−1

ẑ23t−1

ẑ31t−1

ẑ33t−1

ẑ36t−1


+ MRUt

Yt =
[
gxh

·1
x gxh

·3
x gxh

·1
x gxh

·3
x χ(1) χ(3) χ(6)

]
︸ ︷︷ ︸

C=SPM ′



x̂f1t−1

x̂f3t−1

ẑ21t−1

ẑ23t−1

ẑ31t−1

ẑ33t−1

ẑ36t−1


+ SRUt

where

χ(i) denotes gx ×
(

the i-th column of
1

2
HxxDnx

)
+

1

2
GxxDnx ×

(
the i-th column of D+

nxh
⊗2
x Dnx

)
There is one last step to reduce the dimension of the errors. Recall, the matrix

R is a function of hxx through its submatrix r. Therefore, zeros in hxx will imply

elements of Ut may be shed, just as elements of Ẑt may be. To see this in the
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current ongoing example, and recalling that r = D+
nx (η ⊗ hx + (hx ⊗ η)Knx,nu),

then r has the form

r
6×3

=



2η1h11 0 2η1h13

η3h11 + η1h21 0 η3h13 + η1h23

η3h11 + η1h31 0 η3h13 + η1h33

2η3h21 0 2η3h23

η3(h21 + h31) 0 η3(h23 + h33)

2η3h31 0 2η3h33


Since r premultiplies x̂ft−1ut =

[
x̂f1t−1ut x̂f2t−1ut x̂f3t−1ut

]′
, it is evident how the

zeros in hxx corresponding to x̂f2t have also translated to zeros in r corresponding

to x̂f2tut. Thus, recalling how m was originally constructed, and defining another

zero-one matrix

n =

[
1 0 0

0 0 1

]
→ n′n


x̂f1t−1ut

x̂f2t−1ut

x̂f3t−1ut

 =


x̂f1t−1ut

0

x̂f3t−1ut

 and r


x̂f1t−1ut

x̂f2t−1ut

x̂f3t−1ut

 = r


x̂f1t−1ut

0

x̂f3t−1ut


And using n, define N to be

N =


1 0 0

0 1 0

0 0 n


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

x̂f1t

x̂f3t

ẑ21t

ẑ23t

ẑ31t

ẑ33t

ẑ36t


︸ ︷︷ ︸
Xt=MẐt

= A



x̂f1t−1

x̂f3t−1

ẑ21t−1

ẑ23t−1

ẑ31t−1

ẑ33t−1

ẑ36t−1


+



ση1 0 0 0

ση3 0 0 0

0 0 0 0

0 0 0 0

0 η2
1 2η1h11 2η1h13

0 η1η3 η3h11 + η1h31 η3h13 + η1h33

0 η2
3 2η3h31 2η3h33


︸ ︷︷ ︸

B=MRN ′


ut

u2
t − 1

x̂f1tut

x̂f3tut


︸ ︷︷ ︸
εt=NUt

Yt = C



x̂f1t−1

x̂f3t−1

ẑ21t−1

ẑ23t−1

ẑ31t−1

ẑ33t−1

ẑ36t−1


+

[
σgxη

σ2

2
Gxxη

⊗2Dnx σψ(1) σψ(3)
]

︸ ︷︷ ︸
D=SRN ′


ut

u2
t − 1

x̂f1tut

x̂f3tut


︸ ︷︷ ︸
εt=NUt

where

ψ(i) =
1

2
GxxDnx × (the i-th column of r)

In other words, we now have ABCD representation, with all unnecessary variables

in Ẑt and Ut eliminated from the system, and Step 3 is completed. In conclusion,

under Assumptions 1, 2, and 3, the pruned state space model Equations (3.13)

and (3.14) may be written in terms of deviations from mean as an ABCD model

Xt = A(θ) Xt−1 + B(θ) εt

Yt = C(θ) Xt−1 + D(θ) εt
(C.10)

where Xt = MẐt, εt = NUt, A = MPM ′, B = MRN ′, C = SPM ′, and D =

SRN ′ where Ẑt = Zt − (InZ − P )−1K for Zt, Ut, K, P , R, and S defined as in
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Equations (C.4) and (C.5) and M and N have the functional form

M =


m 0 0

0 m 0

0 0 m∗

 N =


Inu 0 0

0 Inu(nu+1)/2 0

0 0 n


with the submatrices m, m∗, and n being defined appropriately for the model at

hand to eliminate all unnecessary elements of Ẑt and Ut. Corollary 1, that εt is

white noise, in a consequence of the fact that ut is white noise, and is described in

Appendix A.

D Definitions

Definition 1. Controllability: For every θ ∈ Θ, define the controllability matrix

by

C(θ) =
(
B(θ) A(θ)B(θ) . . . A(θ)nX−1B(θ)

)
I say {A(θ), B(θ)} is controllable if and only if C(θ) is full row rank.

Definition 2. Observability: For every θ ∈ Θ, define the observability matrix

by

O(θ) =
(
C(θ)′ A(θ)′C(θ)′ . . . A(θ)nX−1′C(θ)′

)′
I say {A(θ), C(θ)} is observable if and only if O(θ) is full column rank.

Definition 3. Minimality: {A(θ), B(θ), C(θ), D(θ)} is minimal if and only if

{A(θ), B(θ)} is controllable and {A(θ), C(θ)} is observable (Kailath et al. (2000)

p. 765).

Definition 4. Stochastic Singularity: ABCD representation is stochastically

singular (“singular”) if nε ≤ nY . If nε ≥ nY , the model is called stochastically

nonsingular (“nonsingular”), and if nε = nY the model is both singular and non-

singular.
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E Generalization to Higher Order Models

Andreasen et al. (2014) show that third order pruned state space repre-

sentation also has JPRS representation. I claim but do not provide formal proof

that the above steps may be replicated almost exactly to obtain minimal ABCD

or AKCΣ representation of these models. The only additional tool that is re-

quired is Meijer (2005)’s triplication and quadruplication matrices used in place of

the duplication matrix in Step 1 of the 3-Step ABCD reparameterization. Recall,

the duplication matrix has the property of equating x⊗2
t to its unique elements

only by the equality x⊗2
t = Dnx × (unique elements of x⊗2

t ) (The unique elements

of x⊗2
t are also vech(xtx

′
t)). The Moore-Penrose inverse D+

nx = (D′nxDnx)
−1D′nx

equates (un. el. of x⊗2
t ) = D+

nxx
⊗2
t . The triplication matrix Tnx has the property

x⊗3
t = Tnx × (un. el. of x⊗3

t ) and T+
nx exists. The quadruplication matrix Qnx has

the property that x⊗4
t = Qnx × (un. el. of x⊗4

t ) and Q+
nx exists. These matrices

and the steps above may be used to obtain minimal representation of third order

models. Meijer also provides higher-order n-tuplication matrices that could be

used or those interested in fourth or higher order models.



Bibliography

Abadir, K. M. and J. R. Magnus (2005): Matrix Algebra, Cambridge Univer-

sity Press.

An, S. and F. Schorfheide (2007): “Bayesian Analysis of DSGE Models,”

Econometric Reviews, 26, 113–172.

Andreasen, M. M. (2010): “How to Maximize the Likelihood Function for a

DSGE Model,” Computational Economics, 35, 127–54.

Andreasen, M. M., J. Fernández-Villaverde, and J. Rubio-Raḿırez
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