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Differentially Methylated Super-
Enhancers Regulate Target Gene 
Expression in Human Cancer
Emily L. Flam1,8, Ludmila Danilova  2,3,8, Dylan Z. Kelley1, Elena Stavrovskaya4,5, 
Theresa Guo1, Michael Considine2, Jiang Qian6, Joseph A. Califano7, Alexander Favorov  2,3, 
Elana J. Fertig2,8* & Daria A. Gaykalova1,8*

Current literature suggests that epigenetically regulated super-enhancers (SEs) are drivers of aberrant 
gene expression in cancers. Many tumor types are still missing chromatin data to define cancer-specific 
SEs and their role in carcinogenesis. In this work, we develop a simple pipeline, which can utilize 
chromatin data from etiologically similar tumors to discover tissue-specific SEs and their target genes 
using gene expression and DNA methylation data. As an example, we applied our pipeline to human 
papillomavirus-related oropharyngeal squamous cell carcinoma (HPV + OPSCC). This tumor type is 
characterized by abundant gene expression changes, which cannot be explained by genetic alterations 
alone. Chromatin data are still limited for this disease, so we used 3627 SE elements from public domain 
data for closely related tissues, including normal and tumor lung, and cervical cancer cell lines. We 
integrated the available DNA methylation and gene expression data for HPV + OPSCC samples to filter 
the candidate SEs to identify functional SEs and their affected targets, which are essential for cancer 
development. Overall, we found 159 differentially methylated SEs, including 87 SEs that actively 
regulate expression of 150 nearby genes (211 SE-gene pairs) in HPV + OPSCC. Of these, 132 SE-gene 
pairs were validated in a related TCGA cohort. Pathway analysis revealed that the SE-regulated genes 
were associated with pathways known to regulate nasopharyngeal, breast, melanoma, and bladder 
carcinogenesis and are regulated by the epigenetic landscape in those cancers. Thus, we propose that 
gene expression in HPV + OPSCC may be controlled by epigenetic alterations in SE elements, which are 
common between related tissues. Our pipeline can utilize a diversity of data inputs and can be further 
adapted to SE analysis of diseased and non-diseased tissues from different organisms.

Super-enhancers (SEs) are tissue- and disease-specific regulatory genomic elements related to chromatin that 
drive cell-specific gene expression changes in development, differentiation, and disease progression, including 
cancer1,2. SEs are enriched for binding of many transcription factors, as well as Mediator, RNA polymerase II, 
and BRD4 proteins, which they bring to the promoter regions of in cis target genes through the formation of 
chromatin loops2–7. SEs are marked by specific histone modifications, such as H3K27ac and H3K4me13,8, sug-
gesting an essential role of the chromatin landscape in SE-mediated gene expression regulation. SEs can cover 
up to 300 kb regions9 and influence the expression of genes with transcription start sites (TSS) up to 1.5 Mbp 
away3,10. Genes regulated by SEs are more expressed than those regulated by typical enhancers and are often asso-
ciated with tissue-specific or disease-specific cell-identity2,3,11. Moreover, the chromatin landscape predetermines 
disease-specific genetic alterations in cancer12. SEs can appear de novo during carcinogenesis in proximity to their 
cancer-related gene targets, causing changes in the relative gene expression of multiple genes simultaneously13,14.
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Differential methylation has been used as a hallmark for SE detection8,15–18. Therefore, it is critical to study 
the interplay between DNA methylation of SEs and their effects on the regulation of target gene expression. SE 
methylation can be altered during the carcinogenesis process, independent of global disease-specific methylation 
changes in cancer cells8,16. We propose that hypomethylation of SE regions causes increased expression of nearby 
oncogenic target genes and that hypermethylation of these SEs causes decreased expression of targets, especially 
tumor suppressors8,15,19.

SEs can be detected through chromatin-focused studies, such as chromatin immunoprecipitation with high 
throughput sequencing (ChIP-Seq)3 or assay for transposase-accessible chromatin with high throughput sequenc-
ing (ATAC-Seq)13. While SEs are currently recognized as one of the main drivers of carcinogenesis, many tumor 
types are still missing information about SE locations. This lack of information can be explained by the challenges 
of chromatin analysis procedures on clinical biopsy tissues20. Nevertheless, annotation and characterization of the 
SEs based on H3K27Ac chromatin data have been presented in numerous cancer cell lines2. We hypothesized that 
etiologically similar tumors might share a portion of SE regions to regulate similar genes due to the genetic and 
epigenetic similarities noticed between certain tumor types13. Therefore, it is possible to utilize chromatin-related 
data available for etiologically-relevant tissues for the discovery of SEs in other tumor types that still lack chro-
matin data. This type of data is widely available for diverse tumor types through projects like The Cancer Genome 
Atlas (TCGA) and can be used to navigate through SE candidates from etiologically relevant samples.

In this study, we introduce a pipeline to detect SE regions by using gene expression and DNA methylation for 
a particular set of samples. This pipeline helps to define the role of SE methylation in target gene expression in 
human carcinomas. We built our pipeline under the assumption that maximum gene expression occurs under the 
condition that both the gene promoter region and nearby SE region are hypomethylated, while hypermethylation 
signal from either the promoter or the SE region could diminish target gene expression (Fig. 1 and refs8,15,19).

As an example of the power of our pipeline, we studied high-risk human papillomavirus-related oropharyn-
geal squamous cell carcinoma (HPV + OPSCC), which has limited available chromatin data. We chose this model 
because the development of HPV + OPSCC cannot be fully explained by its mutational landscape alone21–25. 
Most mutations in OPSCC are found in tumor suppressors21–23,25,26 and are coupled with pervasive genome-wide 
alterations to DNA methylation, but these alterations are still insufficient to explain the widespread gene expres-
sion changes observed in HPV + OPSCC21,27,28. Mutations in chromatin-related genes have been implicated in 
head and neck carcinogenesis, including K27 and K36 of the histone 3 tail28–31. Given the extensive epigenetic 
changes in HPV + OPSCC, we hypothesized that methylation of SEs is a critical driver of transcriptional changes 
in carcinogenesis. We utilized our pipeline to identify actionable SE elements using ChIP-Seq data published for 
lung and HPV + cervical cell lines2, which are all closely related to HPV + OPSCC13,21. We hypothesized that SE 
regions are conserved between these tissues and HPV + OPSCC, resulting in transcriptional activation of target 
genes in HPV + OPSCC.

Figure 1. Scheme of how DNA methylation of either promoter or SE can affect target gene expression. 
Methylation at the promoter region prevents the expression of a gene, regardless of SE methylation. Genes can 
be minimally expressed with an unmethylated promoter, even with a methylated SE region, but maximal gene 
expression is reached with both an unmethylated promoter and an unmethylated SE.
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Using our pipeline, the candidate SE regions from lung and HPV + cervical samples were filtered through the 
integrated analysis of gene expression and DNA methylation patterns in our JHU cohort of HPV + OPSCC32,33. 
DNA methylation of gene promoters may also impact gene expression. Therefore, we have also evaluated the 
methylation status of promoter regions on SE-regulated genes. We identified 211 gene-SE pairs in HPV + OPSCC, 
of which we have validated n = 132 in the HPV + OPSCC cohort from TCGA project21. These critical SE regions 
suggest epigenetic regulation as a mechanism for HPV + OPSCC carcinogenesis.

We believe our pipeline can be adopted for SE filtering and analysis of other cancer types, non-cancer diseases, 
and other tissue types for any organism with available data. The pipeline can use SEs for the same tissues or for 
etiologically-similar samples and can incorporate a range of relevant data input from various platforms.

Results
Pipeline to identify differentially methylated SE that regulate target gene expression. We 
developed a pipeline to study the role of SE methylation on target gene expression. The pipeline takes a list of 
SEs as an input, which can vary depending on the study question, cancer type of interest, data availability, etc. 
The main steps of the pipeline for the analysis of HPV + OPSCC’s SEs are shown in Fig. 2 and include differential 
methylation analysis of SE and correlation analysis of SE methylation with target gene expression. While we used 
HPV + OPSCC as an example throughout the manuscript, the pipeline can be applied to any cohort that has DNA 
methylation and gene expression data available for the same samples. As an output, the pipeline creates SE-gene 
pairs where methylation of the SE region significantly correlates with target gene expression. This set of pairs can 
be validated in different cohorts and be supplemented with pathway analysis, functional analysis, correlation 
analysis, experimental analysis, and so on. The R code for the pipeline is available through this link: https://bit-
bucket.org/favorov/cervical-lung-se-and-hnscc/downloads/ and in the supplementary information.

Differentially methylated SEs regulate target gene expression in human papillomavirus-related 
oropharyngeal squamous cell carcinoma. To demonstrate a possible use for our pipeline, we applied it 
to find differentially methylated SEs that regulate gene expression in HPV + OPSCC.

Input SEs. As an input list of candidate SEs, we obtained a pooled list of SEs for lung cancer (H2171), non-cancer 
lung (NHLF and IMR90), and HPV + cervical cancer (HeLa) cell lines and healthy lung tissue (UCSD_Lung) 
available from a previous study2 (Table S1) for a total of 3627 candidate SEs (Table S2, Fig. 2). To evaluate whether 
these candidate SEs were conserved across tissues, we calculated the Jaccard index of 3627 SEs from the five cell 

Figure 2. Experimental scheme. Pipeline for analysis of SEs, including SE input and initial filtering steps, 
detection of differential methylation of SEs, correlation of target gene expression with SE methylation, and 
validation of results.
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lines described above and 54656 SEs from the remaining 81 cell lines available from the same study2 using the 
Genometricorr package34. We obtained a Jaccard index of 0.17, which means the two sets of SEs had a small inter-
section, which suggests high conservation between our chosen study input SEs relative to all other tissue types 
and their tissue- and disease-specificity.

Differentially methylated SE. We analyzed whole-genome DNA methylation in a previously published cohort 
of n = 47 HPV + OPSCC samples from tumor patients and n = 25 normal mucosal samples from uvulopalato-
pharyngoplasty surgery patients (UPPP)20,35. In this cohort, 0.07% of the genome was differentially methylated 
in tumor samples relative to normal controls. To validate the correlation between SE location and differential 
methylation in HPV + OPSCC, we compared the distribution of differentially methylated 100 bp regions rel-
ative to candidate SE sites. Differentially methylated regions were significantly overrepresented in the 3627 
SEs (GenometriCorr analysis34: observed/expected ratio = 3, p-value < 10−16) compared to background DNA. 
Using the Wilcoxon rank sum test, we found that 159 (4%) of 3627 SE candidates were differentially methylated 
(DM-SEs) between tumor and normal samples in our cohort (FDR < 0.05, Table S2, Figs 2 and 3). These SEs 
included 138 (87%) SEs that were hypermethylated (Figs 3A, 4A-B and S1A) and 21 (13%) SEs that were hypo-
methylated (Figs 3B, 5A,B and S2A).

Correlation of SE methylation and target gene expression. To test whether differential methylation of SEs reg-
ulates the expression of at least one in cis target gene, we gathered all genes with TSS within 1 Mbp of each 
DM-SE region. Overall, we detected 2,675 genes to be potentially affected by 159 DM-SEs, suggesting that each 
DM-SE regulates an average of 28 genes (range: 1–91 genes, Table S2). Target genes were located an average of 
471,800 bp (range: 20–1,102,000 bp) from the SE region (Fig. S3). For each of the DM-SE-gene pairs, we corre-
lated the methylation of SEs with the expression of target genes using Kendall’s tau test. A statistically significant 
negative correlation (FDR < 0.05) between gene expression and SE methylation was confirmed for 211 SE-gene 
pairs (Tables S3). Of these pairs, 190 SE-gene pairs (93%) were linked to hypermethylated SEs and 21 pairs to 
hypomethylated SEs. The overrepresentation of hypermethylated SE-gene pairs is consistent with OPSCC being 
a tumor suppressor-dysregulated disease36.

Hypermethylation of SE regions has been linked to silencing of target genes15. Of the 138 DM-SEs, 76 (55%) 
had at least one target gene with decreased expression in cancer (Figs 2 and S4), totaling 190 SE-gene pairs and 
132 individual genes (Table S3). An illustration of one representative hypermethylated SE and its target genes is 
provided in Fig. 4. For this SE, we found eight potential target genes that were under-expressed in tumors rela-
tive to normal samples (Figs 4C and S1B). The representative hypermethylated SE from Fig. 4 is linked to lower 
expression of SMAGP (Small Cell Adhesion Glycoprotein, Fig. S5A-B), which plays a role in epithelial cell-cell 
contact37.

Differential hypomethylation of SEs is linked to activation of oncogene expression8,15,38. We documented an 
increased expression of 18 genes linked to 11 (52%) out of 21 hypomethylated SE regions, which formed 21 
SE-gene pairs (Fig. 2 and Table S3). An illustration of one representative hypomethylated SEs and its target genes 
is provided in Fig. 5. For this SE, we found seven potential target genes with overexpression in tumors relative to 
normal samples (Figs 5C and S2B). Hypomethylation of this SE is strongly linked to overexpression of GPR107 
(G Protein-Coupled Receptor 107, Fig. S5C,D), which is commonly overexpressed in breast cancer patients with 
worth prognosis39.

For the genes that had a significant correlation between expression and SE methylation, we also quantified 
the correlation of its expression with promoter methylation. Most promoters had little to no methylation, and 
only a small portion of SE-gene pairs showed strong correlation for both promoter and super-enhancer methyl-
ation (Figs 4D and 5D). These data emphasize the significant role of super-enhancer methylation on target gene 
expression.

Validation. To confirm the regulation of gene expression by methylation of the SE regions, we utilized TCGA 
data from 22 HPV + OPSCC and six normal samples with both DNA methylation and gene expression data21 to 
match our JHU cohort. Out of the 211 SE-gene pairs, 132 (63%) had a significant association between SE meth-
ylation and gene expression in the TCGA cohort (Table S3 and Figs S1 and S2). Of these 132 validated SE-gene 
pairs, five were regulated by hypomethylated SEs, and 127 were regulated by hypermethylated SEs (Table S3).

As an additional step of validation, we performed gene set analysis on 132 target genes of hypermethylated 
SEs. The target genes, whose expression was downregulated in cancer, belong to gene sets such as BREAST 
CANCER NORMAL LIKE UP, NASOPHARYNGEAL CARCINOMA, DIFFERENTIATING T LYMPHOCYTE, 
BOUND BY FOXP3, as well as epigenetic related BRAIN HCP WITH H3K4ME3 AND H3K27ME3, ES ICP 
WITH H3K4ME3, HDAC TARGETS SILENCED BY METHYLATION DN, and many more (Table S4, top). 
Eighteen upregulated genes linked to hypomethylated SEs were related to BLADDER CANCER WITH LOH IN 
CHR9Q AND UVEAL MELANOMA UP (Table S4, bottom). This analysis demonstrates that the detected gene 
targets belong to gene sets that play a significant role in carcinogenesis.

Discussion
In this study, we developed a new bioinformatics pipeline to define and evaluate differentially methylated SEs that 
regulate target gene expression. Depending on the scientific question, data availability, or disease, the pipeline 
can be applied to any list of SEs or other defined DNA region, including from other organisms and experimental 
models. The code for the pipeline is publicly available and can be adapted to use on any cohort of samples that 
have parallel DNA methylation and gene expression data available. In this paper, we demonstrated how our algo-
rithm integrates methylation and expression data with a list of potential SE sites for the discovery of functional, 
tissue-specific SEs in OPSCC. The algorithm can use a list of SEs identified from the same study samples or from 
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etiologically-similar samples, which is especially valuable for samples that have limited chromatin data. Indeed, 
our results suggest that biological signatures in one cancer type can be detected and validated using SE data from 
related cancer types.

The input SE list goes through the stringent sorting process. DNA methylation data from study samples is the 
primary filter, which helps to remove all non-phenotype-related SE candidates. This assumption is built on recent 
works demonstrating that actionable SEs in a particular tissue are expected to be differentially methylated8,16. 
Previous studies developed algorithms to predict functional, tissue-specific SEs by applying machine learning 
algorithms to integrated DNA methylation and SE data17. Therefore, the incorporation of such methylation status 
of SEs regions increases the accuracy and biological relevance of our SE predictions. Our pipeline for this step of 
the algorithm is based on the well-known MACS peak-calling procedure. Interestingly, in our examples, the full 
differential signal is provided by local differentially methylated regions (Figs 4, 5, S1, and S2). It is concordant 

Figure 3. Methylation landscape of DM-SEs. Individual and averaged JHU cohort methylation of the 
tumor (top, red) and normal (bottom, black) samples across the SE region for (A) hypermethylated and (B) 
hypomethylated SEs.

https://doi.org/10.1038/s41598-019-51018-x
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with the work of others40 that SEs and their parts (individual typical enhancers) both carry the regulatory signal. 
Still, we do not explicitly relate the unsupervised uniformed probe regions we use with specific SEs. Furthermore, 
in the future, we are going to compare with modern algorithms, such as MBDDiff41.

The application of our pipeline allowed us to define tissue-specific SE candidates in HPV + OPSCC, their 
methylation status, and its correlation with target gene expression. This tissue type has minimal chromatin data 
available, and SEs for this disease are not yet described. Although many SEs are disease- and tissue-specific1,2,5,38, 
similar genetic profiles between head and neck, cervical, and lung cancers21 suggest conservation of SE regions 
between these diseases and tissues. We observed many examples of analogous SEs from two or more different cell 
lines, suggesting the presence of pan-SEs that are common across tissues types and disease status. Our findings 
were consistent with recent data, which suggest that a subset of multiple myeloma-specific SE candidates was 
differentially methylated in six head and neck primary samples (three HPV + and three HPV-)42. The current 
study presented a high confidence list of candidate head and neck SEs that were detected in cervical and lung 
tissue and were differentially methylated in HPV + OPSCC samples. These SE had statistically significant links 
to gene expression of their in cis targets, which participate in cancer-relevant pathways. Such work provides the 
groundwork for the future discovery of novel, HPV + OPSCC-specific SEs.

Figure 4. Methylation and genetic landscape of the representative hypermethylated SE: 
chr12:52622299−52631702 in JHU cohort. (A) Genomic landscape of the SE region and potential target genes 
within one Mbp of the SE. (B) Relative average methylation coverage across the SE region (red – tumor, black – 
normal). (C) Log-transformed RNA expression of the potential target genes (z-score). (D) Kendall-tau values 
and corresponding FDR for correlation of promoter methylation with gene expression, as well as SE region 
methylation with gene expression of target genes.

https://doi.org/10.1038/s41598-019-51018-x
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We identified 21 differentially hypomethylated SEs and 138 differentially hypermethylated SEs that were 
linked to the expression of in cis target genes in HPV + OPSCC. The prevalence of hypermethylated SEs sug-
gests that hypermethylation of SEs leads to downregulation of normal cellular homeostasis. For example, the 
observed down-regulated genes are important in breast cancer (BREAST CANCER NORMAL LIKE UP; 
BREAST CANCER LUMINAL B DN). The significance of those SE-gene links was validated using one of the 
largest HPV + OPSCC cohorts with in-parallel gene expression and DNA methylation data available for the same 
samples from TCGA21,32,33.

We note several limitations of our study. First, the clinical characteristics between tumor and non-tumor 
groups are not matched in the JHU patient cohort32,33 due to the demographics of UPPP and OPSCC popu-
lations43–46, with differences in age and smoking status. Nonetheless, a similar UPPP population has helped to 
reveal strong cancer-specific signatures of OPSCC in previous studies43–46. Moreover, the employment of TCGA’s 
control population with matched clinical characteristics validated our original discovery of tissue-specific SEs 
in HPV + OPSCC. Utilization of DNA methylation array data (Illumina Infinium HumanMethylation450 
BeadChip) in TCGA restricted our validation of methylation-expression correlations for both SEs and promot-
ers in this cohort due to the limited number of DNA methylation probes. The availability of probes weakens the 

Figure 5. Methylation and genetic landscape of the representative hypomethylated SE: 
chr9:132243320−132261430 in JHU cohort. (A) Genomic landscape of the SE region and potential target genes 
within one Mbp of the SE. (B) Relative average methylation coverage across the SE region. (C) Log-transformed 
RNA expression of the potential target genes. (D) Kendall-tau values and corresponding FDR for correlation 
of promoter methylation with gene expression, as well as SE region methylation with gene expression of target 
genes.

https://doi.org/10.1038/s41598-019-51018-x
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correlation, as we are only able to link expression to methylation of one or a few coordinates in the SE region, 
as opposed to the entire region. The comprehensive discovery of SE candidates is possible only with MBD-Seq 
whole-genome data, as is employed in our JHU HPV + OPSCC cohort32,33, which is the only HPV + OPSCC 
cohort with MBD-Seq data available in parallel with RNA-Seq data for the same samples. The observed differ-
ences between the JHU and TCGA cohorts are expected, as normal TCGA samples are not from healthy patients, 
but are adjacent to the tumor sites of oral cavity tumor patients. These adjacent tissues are known to carry genetic 
and epigenetic alterations characteristic of OPSCC, skewing analyses47. Moreover, we could not define a correla-
tion with survival because only three patients in the discovery cohort recurred in the last five years. Lastly, none 
of the SE candidates were functionally evaluated within the scope of this study, but they can be assessed in future 
work, which will also define the OPSCC-specific transcription factors associated with the SE regions.

In conclusion, we developed a new bioinformatics pipeline to define and evaluate SE activity in individual 
tissue types, which can be further adapted for a wide range of tissues to facilitate analysis of epigenetic mediators. 
Our pipeline and the SE candidates presented here provide an important next step in developing novel epigenetic 
therapies and biomarkers for detection of a variety of diseases.

Materials and Methods
JHU study cohort. The employed cohort of study samples is composed of 47 primary HPV + OPSCC tis-
sue specimens and 25 control normal mucosal samples from uvulopalatopharyngoplasty (UPPP) surgeries of 
non-cancer-affected patients32,33. The clinical differences between tumor and control populations in this cohort 
were previously identified and acknowledged32,33. All tissue samples were obtained from the Johns Hopkins Tissue 
Core, as a part of the Head and Neck Cancer Specialized Program of Research Excellence (HNC-SPORE). These 
samples were acquired under the Internal Review Board-approved research protocol #NA_00036235. Informed 
consent was obtained from all patients recruited under this protocol prior to participation in the study. All meth-
ods for processing the high-throughput data for these samples were performed in accordance with the relevant 
guidelines and regulations.

TCGA study cohort. The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/cancersselected/
headandneck) recently finished high throughput analyses of head and neck squamous cell carcinoma samples 
(HNSCC)21. The study analyzed data on 279 HNSCC tumors, including 35 HPV + tumors and 50 total adjacent 
non-cancer control tissues from the same HNSCC patients. Of the 35 HPV + HNSCC tumors, 22 samples were 
from the oropharynx, similar to JHU cohort, which were selected for cross-study validation to avoid introducing 
any cohort-specific biases in the analysis. Of 50 controls, we analyzed six samples confirmed as squamous epithe-
lium tissues, while the other 44 TCGA samples designated as controls belong to muscle, salivary gland, and other 
tissues21. After the employed JHU cohort, TCGA is the largest HPV + OPSCC cohort with in-parallel analysis of 
DNA methylation and gene expression. All methods for processing the high-throughput data for these samples 
were performed in accordance with the relevant guidelines and regulations.

Candidate SE regions. SEs were previously reported for NHLF (human lung fibroblast), IMR90 (human 
fetal lung), H2171 (small cell lung carcinoma), HeLa (HPV + cervical adenocarcinoma) cell lines, and UCSD_
Lung (healthy lung tissue)2 (Table S1). Due to their genetic similarity to HPV + OPSCC21, this pooled list of 
SEs (n = 3627) was used as an input in our pipeline to look for SEs that are specific for HPV + OPSCC (Fig. 2, 
Table S2).

Gene expression data and processing. RNA-Seq data was obtained for JHU32,33 and TCGA21 cohorts. 
JHU stranded RNA-Seq libraries from ribosomal RNA depleted total RNA were prepared using the Illumina 
TruSeq stranded total RNA Seq Gold kit and sequenced on the HiSeq 2500 (JHU) or HiSeq 2000 (TCGA) plat-
form sequencer (Illumina) and the TruSeq Cluster Kit. RNA sequencing data from both cohorts were normal-
ized based on the version 2 protocols developed by TCGA21. Gene expression values were quantified from RNA 
sequencing data using RSEM version 1.2.9 and upper quartile normalization according to the TCGA RSEM v2 
normalization pipeline21,32.

DNA methylation data and processing. MBD-Seq DNA methylation analysis for JHU sam-
ples. Genome-wide DNA methylation analysis was carried out using MBD-Seq (Methyl-CpG binding domain 
protein sequencing), as previously described48,49 using the NEBNext DNA Library Prep Set for the SOLiD 
sequencer. Methylated regions were identified as positional peaks of the population of aligned sequencing reads 
in the MBD-enriched data compared with the total input fraction using the MACS v1.4 software50,51. MACS 
builds an HMM model to identify peaks and indirectly takes the CpG density into account. This algorithm iden-
tifies peaks after accounting for both global and local biases using the enriched-to-input fraction. MACS p-value 
cut-off (p < 10–6) was used to identify reliable methylation peaks. Using the distribution of MACS-called DNA 
methylation regions, we performed a whole-genome identification of differentially methylated DNA regions 
between 47 HPV + OPSCC and 25 UPPP samples.

Illumina infinium humanmethylation450 array analysis of TCGA samples. Methylation array data were collected 
from the TCGA database. This platform includes probes for more than 480,000 CpG sites, spanning 99% of 
RefSeq. In total, 96% of CpG islands and 92% of CpG shores are represented by at least one probe. Beta values 
(percent methylation) were estimated from unmethylated (U) and methylated (M) measurements on a probe 
level basis: β = M/(M + U)43,45.

Differential methylation analysis preparation. The methylation calculation was done by a function for 
intersection length calculations for a set of intervals (SEs, promoters) in multiple samples, which was provided by 
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the “differential.coverage” R package52. Annotation functions, e.g., the enumeration of all genes with transcription 
start site around a SE, was also provided by this package52. The package was also used to prepare 100 bp probe 
intervals inside SE regions and to calculate their methylation for visualization (Figs 4 and 5).

Whole genome differential methylation by 100 bp regions. To identify differentially methylated 
genome regions using MACS-processed MBD-Seq data for 47 OPSCC and 25 UPPP (normal) samples, we sep-
arately tested 30,975,368 nonoverlapping regions of 100 bp each, which together completely cover the human 
genome. The methylation status of each 100 bp segment for each sample in the discovery cohort was determined 
as the presence of any intersection of the segment with regions of DNA methylation, as identified by MACS peak 
calling50 for that sample. The differentially methylated probes between diseased and normal phenotypes were 
identified by exact Fisher test for association of the probe methylation status with the sample status, followed by 
FDR correction.

GenometriCorr analysis. We used overlap statistics provided by the GenometriCorr package34 to compare 
the genome-wide distribution of differentially methylated 100 bp regions relative to candidate SE sites and to test 
the conservation of the input list of 3627 SEs.

SE differential methylation detection. Methylation of a SE region in each sample was identified as the 
length of the intersection of the SE region with methylation peaks provided by the MACS software for each 
sample50,51. MACS identifies peaks after accounting for both global and local biases using the enriched-to-input 
fraction. Using MACS-processed MBD-Seq data, we calculate the net length of methylated regions that overlap 
with each of the enhancers in each of the samples. For each SE, we calculated the Wilcoxon p-values for the dif-
ference of the methylation in the SE region between sample types of cases (n = 47) and controls (n = 25), followed 
by FDR correction. All the SE regions with FDR p-value < 0.05 were considered as differentially methylated. 
Of the initial 3627 SEs, 159 were differentially methylated (DM) between 47 tumors and 25 normal samples 
in JHU HPV + HNSCC cohort. The SEs with higher methylation in tumors relative to normal (138 SEs) were 
referred to as hypermethylated, while the remaining (21 SEs) with higher methylation in normal were referred to 
as hypomethylated.

Identification of in cis SE targets. Recent data suggest that SE effects can reach in cis targets up to one 
Mbp away through chromatin loop formation3–5,8,10,14,42. Therefore, all genes with transcription start sites within 
one Mbp from the SE region were considered potential targets of the SE2,3. For each differentially methylated SE 
(n = 159), a list of all potential targets was assembled. SE candidates that covered the same genomic coordinates 
due to the utilization of four different cell lines were treated individually.

Promoter methylation detection. We defined the gene’s promoter region as the genomic interval 1500 bp 
upstream and 500 bp downstream of the transcription start site. The methylation of each promoter was assessed 
in the same way as the SEs (see SE differential methylation detection).

Methylation to expression correlation analysis. Correlation between target gene expression and SE 
methylation. For each pair of a differentially methylated super-enhancer and a gene with TSS within 1 Mbp 
of the SE region, we tested the hypothesis that the SE methylation regulated the gene expression. This hypothe-
sis was tested by calculation of correlation (negative concordance) between the RSEM-estimated expression of 
the gene in each sample and DNA methylation of the SE region in the same sample for all samples in the JHU 
cohort32,33. We applied Kendall’s tau test using the Kendall package for R, version 2.253. We used rank-based sta-
tistics to compare gene expression (measured by RNA-Seq) and DNA methylation (quantified by MBD-Seq or 
Illumina 450 k array). These data types produce different values and cannot be compared directly, only through 
their ranks. FDR-corrected Kendall’s tau test p-value < 0.05 was considered significant to link SE methylation and 
gene expression. Then, we filtered out all gene-SE pairs with positive correlation as artifacts. The remaining pairs 
were then considered separately for hypo- and hyper-SEs.

Correlation between target gene expression and promoter methylation. For all the target genes (with TSS in 1 Mbp 
from a DM-SE) of a SE, we also estimated the Kendall’s tau rank correlation between promoter methylation and 
gene expression to test whether the gene expression is regulated by promoter methylation. Similar to SEs, we used 
the Kendall package for R53 and FDR-corrected Kendall’s tau test p-values < 0.05 were considered significant.

TCGA validation. We used 22 HPV + OPSCC and 6 normal samples from TCGA21 that have both Illumina 
450 k DNA methylation and RNA-Seq expression data to validated gene-SE pairs. For every pair, we found 
Illumina probes in a SE region and applied Kendall’s tau test53 to methylation beta values of these probes and the 
gene expression values of potential target genes. For every SE-gene pair for which the SE region has at least one 
Illumina probe, we found the probe with the minimum correlation coefficient with the gene expression value. A 
pair was considered as validated if Kendall’s test p-value for the probe was less than 0.05.

Overrepresentation gene set analysis. Overrepresentation gene set analysis was done by computing 
overlaps with annotated Hallmark gene sets in MSigDB v6.154.
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