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Abstract 
There is an apparent discrepancy between visual perception, 
which is colorful, complete, and in high resolution, and the 
saccadic, and spatially heterogeneous retinal input data. In this 
work, we computationally emulated foveated color maps and 
intensity channels as well as intra-saccadic motion data using 
a neuromorphic event camera. We used a convolutional neural 
network, U-Net, and adversarial optimization to demonstrate 
how retinal inputs can be used for the reconstruction of colorful 
images in high resolution. Our model may set the groundwork 
for the development of biologically plausible neural networks 
for computational vision perception. 

Keywords: computational visual processing; computational 
cognition; neuromorphic vision; event cameras; color 
perception 

Introduction 
Retinal visual inputs reflect the intricate anatomical and 

physiological characteristics of the retina, where visual cues 
are captured by non-evenly distributed photoreceptors across 
the retinopatic field. While achromatic rod photoreceptors are 
found in M-shape-like distributaion across the retina (peak at 
the pheiphery and absent from the fovea), the chromatic 
cones photoreceptors are present in low density throughout 
the retina, peaking at the center of the fovea (Purves et al., 
2001). Furthermore, retinal input is compressed and encoded 
by Retinal Ganglion Cells (RGC) to fit the limited capacity 
of the optic nerve. Most RGCs have a center-surround 

antagonist receptive field (RF), realizing spectral (color 
antagonism)-spatio-temporal filtering that transmits only 
color changes. The  RGC's RF size varies, whereas its size 
becomes larger as the distance from the fovea increases. 
Therefore, in comparison to its periphery, the fovea features 
high visual resolution (Lee, 1996). Interestingly, 
electrophysiological studies (Field et al., 2010; Solomon et 
al., 2005) showed that while non-opponent red-green 
responsive P-type retinal ganglion cells (RGCs), are mostly 
found in the peripheral retina, opponent yellow-blue sensitive 
opponent P-type RGCs are mostly found in the retina’s 
center. Consequently, RGCs transmit incomplete visual 
information from the retina to the brain. Retinal color 
processing is therefore considered to deteriorate in the 
peripheral retina, where the visual signals are of low 
resolution and color cues.  

There is an important apparent discrepancy between 
human visual perception, which is sharp and colorful across 
the full extent of the visual field, and the retinal input (Figure 
1). Even though visual information is lacking in the 
peripheral retina as was described above, our subjective 
visual experience is that of sharp and colorful surfaces, both 
in the center and in the peripheral vision (Haun et al., 2017; 
Tyler, 2015). This apparent discrepancy was recently 
showcased by Cohen and colleagues (Cohen et al., 2020). 
Using virtual reality, they showed non-homogeneous color 
awareness as viewers routinely failed to notice color 
removals from the majority of their visual perceptive field. 
They concluded that our intuitive perception of a rich, 
colorful visual world under active, naturalistic viewing 
conditions is largely incorrect.  

Another important characteristic of human vision it being 
based on saccade vision, where the eyes are constantly and 
successively fixating on changing locations several times per 
second (Gilchrist, 2011). While human visual perception is 
stable, in saccade vision, retinal objects’ projections are 
continuously altered, supposedly resulting in motion blur and 
instability. The process of integrating successive fixations 
into a stable perceptual representation is known as trans-
saccadic integration (Irwin, 1996; Melcher and Colby, 2008). 
During trans-saccadic integration, information from different 
visual scenes is combined across saccades, providing visual 
perceptive stability. Recent studies demonstrated that trans-
saccadic integration does not simply correspond to 

 
 
Figure 1: Illustration of perceptual image reconstruction. 
Reconstruction of a perceived image is based on retinal input during 
saccades. 
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disconnected snapshots during each fixation (Stewart and 
Schütz, 2018; Wolf and Schütz, 2015). Therefore, the process 
could involve intrasaccadic motion information as well as 
cues from visual working memory. Notably, it was recently 
shown that intra-saccadic visual information is associated 
with visual stability via object correspondence and gaze 
correction (Schweitzer and Rolfs, 2021). Another feature of 
saccadic vision is saccadic suppression. Saccadic suppression 
occurs when visual information is not processed between 
fixation periods, and it is argued to be responsible for 
eliminating blurry stimuli (Krekelberg, 2010). Saccadic 
vision points out another dimension of the discrepancy 
between visual perception and retinal inputs: despite the 
eyes’ constant movements, we experience the visual world as 

continuous and seamless through the mechanisms of trans-
saccadic integration and saccadic suppression.  

To conclude, retinal input to the brain contains limited 
visual information, which is further challenged with 
instability and blurriness throughout the entire visual field. 
The visual system overcomes these impairments by 
employing intensive computations of stabilization, 
reconstruction, resolution enhancement, and colorization  
(Figure 1).   

In this work, we used a Convolutional Neural Network 
(CNN) with chromatic and achromatic pathways. In the 
achromatic pathway, high-frequency temporal and spatial 
information was used to reconstruct high-resolution intensity 
images (representing intra-saccadic motion and spatial 
edges). The chromatic pathway enhances peripheral vision's 
perception of color, using U-Net for image colorization. Our 
proposed model allows the reconstruction of a full, colorful, 
and high-resolution image from incomplete retinal 
information. An adversarially trained discriminator 
(convolutional PatchGAN classifier (Isola et al., 2017)), was 
trained to reconstruct colorful outputs that cannot be 
distinguished from the real color images (Figure 2).   

Methods 

Generating retinal input 
In this work, we acquired RGB and event data from the 
neuromorphic dataset N-Caltech101 (Orchard et al., 2015). 
To generate retinal inputs from a given image we 
computationally emulated foveated colors maps and intensity 
channels as well as intra-saccadic motion data (Figure 3).   To 
emulate the RGC’s On-Off color opponent receptive fields 
(Kuffler et al., 1984), input RGB images were converted to 
three opponent channels: the chromatic	𝑅𝐺, 𝐵𝑌 channels, and 
the achromatic channel 𝐼 using: 

 
Figure 2: The architecture of the proposed reconstruction and colorization model. The retinal input contains three opponent channel and 
events from an event camera. Events represent intra-saccadic information. The predicted image and GT image can be used in adversarial 
training of the discriminator. 
 

 
Figure 3: Emulation of a retinal input from the sunflower image 
(shown in Figure 4). Blue and red dots signify events, specify 
positive and negative changes in brightness, respectively.  The 
events presented resulted in a total of three saccades. 
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where 𝑀!"" is the color opponent transformation matrix in 

which 𝑎 = 0.2989, 𝑏 = 0.587, and	𝑐 = 0.114. 
Achromatic derivative signal 𝐼!#$!%% were derived by 

convolving the achromatic intensity channel with the discrete 

Laplacian operator 𝐿 =	!
0 −1 0
−1 4 −1
0 −1 0

# using: 𝐼&'$&(( = 	𝐼 ∗

𝐿 ≈ ∆𝐼.  
 
We simulated the size of the receptive field, being small in 
the fovea and larger toward the peripheral retina (Perry and 
Geisler, 2002) by applying Gaussian filters with different 
scales on the opponent image. To simulate the deficient color 
perception in the peripheral vision we used a circular mask 
whose center was located at the chromatic channels (𝑅𝐺 and	
𝐵𝑌) centers and whose radius 𝑅 is 30 pixels. We zeroed out 
all of the pixels located outside of the mask’s area.  

To simulate the intra-saccadic motion, we used a recording 
taken by a neuromorphic event camera (silicon retina), 
available through the Caltech101 dataset. Event-based 
cameras are considered as following the principles of 
biological sensing, only capturing changes in scene 
reflectance, i.e., they report only changes in brightness. Event 
cameras transmit asynchronous events representing changes 
in relative intensity at the pixel level with a high milli-second 
range temporal resolution (Brandli et al., 2014; Gallego et al., 
2022). Three saccade modalities were generated by virtually 
moving each image in front of an event camera (Fei-Fei et al., 
2004)). Three saccades were fixed both in time and in target 
along the recording. Each recorded event-stream (events-data 
corresponding to three saccades) from each corresponding 
RGB image was assigned to an event frame, as was recently 
proposed by (Cohen-Duwek et al., 2021). Briefly, each event-
camera file was converted to an event-frame tensor E, which 
the dimensions 𝐻	 ×𝑊	 × 	𝑇 where H, and W are the spatial 
dimensions, and T=6 is the number of event-frames 
constituting each image in the dataset.  Our retinal input 
signals were therefore tensors with the size 𝐵 × 𝐻	 ×𝑊	 ×
	9, where 𝐵 is the batch size, and 9 stands for the following 
channels: 6 channels are the event-frame tensor (90	 ×
120	 × 	6) and 3 channels represent the retinal transformation 
described above, where the 7th channel is the foveated and 
masked RG channel, the 8th channel is the foveated and 
masked BY channel and the 9th channel is the Laplacian of 
the foveated intensity. 

Reconstruction and colorization neural network 
We utilized an artificial neural network for the reconstruction 
and colorization of the retinal inputs. Our neural network 
comprises the following phases (each described in length 
below): 1) A simple 5-layers Convolutional Neural Network 
(CNN) that predicts Laplacian from the event-frames 

(channels 0-6 in the input tensor) as well as the foveated 
intensity Laplacian (the last channel of the input tensor); 2) 
A Poisson solver layer that reconstructs the image from the 
predicted Laplacian input; and 3) A U-Net model for image 
colorization. We further used a Discriminator to train the 
network with adversarial examples.  Our objective was to 
minimize the sum of the loss functions of each phase of the 
Generator while maximizing the ability of the Discriminator 
to detect “fake” and “real” examples.  

 
Laplacian prediction. This phase is based on the 5-layers 
CNN, previously proposed by (Cohen-Duwek et al., 2021), 
which predicts the image Laplacian from event data. Here, 
however, as opposed to the originally proposed method, the 
CNN also incorporates the foveated intensity's Laplacian.  
We used the Mean Absolute Error (MAE) loss to compute 
the loss of this phase: 
 
ℒ∇! = 𝜆∇!𝑀𝐴𝐸G𝐿𝑎𝑝	, 𝐿I𝑎𝑝J           (2) 
 
where  𝐿𝑎𝑝 is the Laplacian of the original intensity of the 
image and 𝐿I𝑎𝑝 is the predicted Laplacian (the output of the 
current phase of the Generator).  

 
Poisson solver layer. The Poisson solver layer was 
implemented to solve the Poisson equation (Poisson 
Integration, PI) and to reconstruct surfaces (intensity 
reconstruction) from edge input. Although it does not contain 
learnable parameters, it was incorporated into the network to 
back-propagate errors for end-to-end training of the network. 
The realization of this layer was based on the PI algorithm, 
previously proposed by (Simchony et al., 1990), applied to 
the Laplacian and the Predicted Laplacian of the image 
intensity. 

Here, we used the Structural Similarity Index Measure 
(SSIM) to compute the loss of this layer: 
 
ℒ*" = 𝜆+,(1 − 𝑆𝑆𝐼𝑀G𝑃𝐼(𝐿𝑎𝑝), 𝑂I-J		         (3) 

 
where 𝑂I- is the output of the Poisson solver layer.  

 
Image colorization with U-Net. As an input to this phase, 
the predicted intensity channel (𝑂I-, the reconstructed 
intensity calculated at the Laplacian prediction stage) was 
concatenated with the opponent's color channel. 
A U-Net neural network architecture, featuring encoder-
decoder schemes with skip connections (Ronneberger et al., 
2015, Isola et al., 2017) was utilized here for image 
colorization. We used the network to minimize two cost 
functions: (1) the MAE of the real (original) opponent colors 
of the image and the predicted opponent colors using: 

 
ℒ!"" = 𝜆!""(𝑀𝐴𝐸G𝑂., 𝑂I.J +𝑀𝐴𝐸G𝑂/, 𝑂I/J)                   (4) 
 
; and (2) the perceptual similarity of the original 𝐼012 and the 
predicted 𝐼R012 RGB color images using two perceptual 
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similarity metrics: SSIM and LPIPS (Zhang et al., 2018) 
using: 
ℒ012 = 𝜆3345 S1 − 𝑆𝑆𝐼𝑀G𝐼012 , 𝐼R012JT

+ 𝜆6"4"3𝐿𝑃𝐼𝑃𝑆G𝐼012 , 𝐼R012J 

 
(5) 

 
We defined 𝐼012 = 𝑜𝑝𝑝2𝑟𝑔𝑏(𝑂., 𝑂/, 𝑂-) and 𝐼R012 =
𝑜𝑝𝑝2𝑟𝑔𝑏G𝑂I., 𝑂I/, 𝑂I-J, where 𝑜𝑝𝑝2𝑟𝑔𝑏 is the linear 
transformation from opponent channel to RGB color channel 
computed using the inverse of the opponent matrix 𝑀!"".   
 
Generative adversarial network (GAN) 
An adversarially trained discriminator (convolutional 
PatchGAN classifier (Isola et al., 2017)), 𝐷, was trained to 
detect the generator's "fake" images, as the trained Generator,	
𝐺, produces reconstructed and colorful outputs 𝑦 that cannot 
be distinguished from "real" images 𝑥. An adversarial 𝐷 
attempts to maximize this objective against 𝐺 's attempt to 
minimize it. The GAN loss was computed using: 
 
ℒ7189(𝐺, 𝐷) = 𝔼:,<[𝑙𝑜𝑔𝐷(𝑥, 𝑦)]

+ 𝜆=𝔼:,1(:)log	[(1
− 𝐷(𝑥, 𝐺(𝑥))] 

 
(6) 

Where 𝑥 is the retinal input, 𝑦 is the GT image transformed 
to the opponent color space, 𝔼 donates the expected value, 
and 𝜆= is a gain parameter. In the first term of Equation (6) 
GT examples are introduced to the discriminator and in the 
second term, the fake examples, created by the Generator, are 
presented to the discriminator.  
To conclude, the final end-to-end minimization objective is: 
 
𝐺∗ = argmin

1
max
=

ℒ7189(𝐺, 𝐷) +
													ℒ012 +ℒ!""+ℒ*" + ℒ∇! 

 
(7) 

Implementation details 
The model was implemented using TensorFlow and was 
trained on Google Colab. We divided the N-caltech101 
dataset sequences into 6097 training sequences, 1306 
validation sequences, and 1306 testing sequences. We use the 
Adam optimizer (Kingma and Ba, 2015), with a batch size of 
16 and an initial learning rate of 0.001. At a plateau, we 
schedule a 20% learning rate with a minimum value of  2 ∙
10$A.  A plateau was defined as non-improving validation 
loss over 6 epochs: 

 
𝐵𝑒𝑠𝑡#BC < 𝐵𝑒𝑠𝑡!6D(1 − 𝛼),    (8) 
 

where 𝛼 is the minimal required relative improvement (here 
we use 𝛼 =0.005). We trained each model for 150 epochs. We 
set 𝜆∇! = 100, 𝜆+, = 25, 𝜆!"" = 150,	 𝜆3345 = 100	 and 
𝜆= = 10 over the whole expriments. 

Results 
As part of our evaluation, we trained our reconstruction and 
colorization CNN in two training methods: (1) minimizing 
the generator loss ℒ1 using:  
 
ℒ1 = ℒ012 + ℒ!""+ℒ*" + ℒ∇!                                 (9) 

 
; and (2) adversarially minimizing the GAN’s objective 
function (Eq. 7). Figure 4 shows the original ground truth 
(GT) images, and the reconstructed images using those two 
training methods. SSIM and LPIPS perceptual similarity 
measures are summarized in Table 1. Our results demonstrate 
that our proposed network is capable of reconstructing high-
quality images from retinal input which is lacking peripheral 
information with both training methods (with and without a 
discriminator). While the results without the GAN 
optimization achieve a better perceptual score in both SSIM 
and LPIPS, the obtained images are more colorful in their 
peripheral areas. For example: (1) the sunflower leaves are 
reconstructed as green while colored brown in the GT image; 
and (2) the background flora in the black-and-white 
photograph of the elephant was reconstructed as green is 
colored gray in the GT image (Figure 4). Interestingly, green 
appears to be the GAN’s color of choice for peripheral areas 
(e.g., the tail of the fish and the neck of the cougar (Figure 
4)). The reason for this may be that many images in the 
dataset have large greenish areas in their background. 
Moreover, results without the GAN tend to appear 
achromatic or brownish at the periphery indicating that the 
without the GAN, the network has struggled to colorize 
achromatic areas. 

To investigate the effect of intra-saccadic motion on the 
reconstructed images, we further trained our model with 
foveated images (RGB data without events). SSIM, LPIPS 
measures, and the reconstructed images are shown in Table 1 
and Figure 4. Without events data (representing intra-
saccadic motion), the reconstructed images are not as sharp 
in the periphery as they are with events data. The blurring 
effect is particularly noticeable in images with high-detail 
texture, such as the rooster image, or in the images with 
detailed peripheral information, such as the fishtail and the 
face images. LPIPS and SSIM measures demonstrate 
improved reconstruction when events are used. Interestingly, 
when GAN optimization is used without events, the colors 
appear to be corrupted as is evident in the rooster’s 
background color, and the red spot on the cougar's face. 
 

Table 1: Image quality evaluation metrics (D stands for 
the use of the GAN). 

 
Method SSIM ↑ LPIPS ↓ 
Events + D 0.7840 0.2120 
Events - D 0.8329 0.1643 
No Events + D 0.7651 0.2240 
No Events - D 0.7682 0.2114 
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Discussion 
 In this work, we demonstrate how a deep neural network can 
be used to reconstruct high-resolution, colorful images of 
entire fields of view from limited and realistic retinal inputs. 
The reconstruction process handles the lack of peripheral 

visual cues using achromatic and chromatic pathways 
(Shapley, 2019). As we recently demonstrated (Cohen-
Duwek et al., 2022; Cohen-Duwek and Ezra Tsur, 2022; 
Cohen Duwek and Ezra Tsur, 2021),  the achromatic pathway 
is responsible for the reconstruction of whole surfaces from 

 
Figure 4: Selected image reconstructions. GT stands for ground truth (for reference); Event + D stands for using events in the input and 
adversarial training (Discriminator). Event – D stands for using event with regular optimization. No event stands for using only the opponent 
channels. 
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achromatic edge information (high spatial frequency, or 
events). In this work, we extended this model to handle 
foveated Laplacian of images.  This data represents the 
center-surround response of achromatic RGCs, emulating the 
retinal input produced by both spatial intensity and intra-
saccadic motion signals via fixational saccadic eye 
movements. The chromatic pathway predicts colors in 
peripheral vision based on natural image statistics using a U-
Net architecture.  

Our model was evaluated using two different training 
methods: a classical training procedure and an adversarial 
optimization. We found that, while non-adversarial training 
produces better perceptual errors and similarity measures 
(SSIM, LPIPS), adversarial training produces more colorful 
results in the images’ peripheral areas. Furthermore, we 
found that the intra-saccadic information (here, the data 
acquired from an event camera) enhances the acquired visual 
cues, allowing the reconstruction of peripheral visual areas in 
a higher resolution. 

The adversarial training of our model provides more 
colorful results in the peripheral areas. Despite the colorful 
results, Discriminator produces a lower LPIPS score. In this 
case, the LPIPS measures the degree of similarity between 
GT and its prediction and cannot account for visual or 
perceptual phenomena in which perception differs from GT, 
such as visual illusions (Cohen-Duwek et al., 2022). 
Accordingly, when colors are added to the prediction (for 
example, the elephant in Figure 4), the LPIPS decreases 
because colors are not present in GT.  

 Although most of the reconstructed images appear sharp 
and colorful when using adversarial training, some appear 
slightly corrupted. This problem appears to be caused by the 
presence of many unnatural images in the Caltech101 dataset 
(such as illustrations). Additionally, to fit the RGB 
Caltech101 images to the dimensions of the event camera’s 
sensor, the GT RGB images had to be scaled and padded with 
zeros. Thus, a large number of images in our modified dataset 
had black borders, which may result in insufficient 
colorization of the peripheral areas. Interestingly, despite the 
limitations of the dataset we used, when we optimized the 
model with adversarial training, it was able to color both 
achromatic images (e.g., the elephant and the sunflower 
leaves (Figure 3)) and achromatic areas using learned 
statistics of natural images (Isola et al., 2017).  A more 
realistic and natural dataset would likely result in better 
statistics of natural images as well as more realistic 
colorization. Furthermore, the N-Caltech101 dataset was 
acquired using a fixed saccadic motion. All three saccades in 
the dataset occurred at the same time and were targeted at the 
same target locations. Therefore, to reconstruct images with 
more realistic data, a new dataset, which contains random 
saccades, or attentional saccades (Itti et al., 1998), 
randomized both in timing and target location is desired. 

To simplify the current work, we assumed that the 
peripheral vision is colorless. However, when presented with 
monochrome and large objects, observers are sensitive to 
color in the peripheral vision to some degree (Tyler, 2015). 

With a more realistic model of peripheral vision, such as was 
proposed by Haun, (2021), we would be able to incorporate 
more color information into the network. However, with the 
colorless periphery as input to the model, our model can be 
considered as a possible explanation for Cohen's experiment. 
Cohen and colleagues (2020) found that observers did not 
notice the absence of peripheral colors. Using our model, we 
demonstrate that peripheral color can be perceived (predicted 
colorization) based on achromatic input in the peripheral 
visual field. 

As a further simplification, we used a feedforward 
architecture in this work. A more biologically plausible 
model, however, might be based on a recurrent architecture. 
A recurrent architecture incorporating memory, such as Long 
Short-Term Memory (LSTM), could potentially solve the 
problem of random saccades. In this context, convolutional 
LSTMs (Shi et al., 2015) may be considered to be working 
visual memory (Stewart and Schütz, 2018) for the task of 
trans-saccadic integration, which may be the function of the 
core mechanism for both high visual accuracy in the 
peripheral region as well as stabilization of vision across 
saccades. Additionally, by incorporating LSTMs into our 
model, we will be able to explain the VR experiments 
conducted by Cohen colleagues (Cohen et al., 2020) that 
found that color removal was not noticed by observers in this 
experiment. Working memory (LSTM) may be useful in 
"filling in" colors in areas that were colored before the color 
was removed in the experiment.  

An important question that should be asked here is whether 
“Blackbox” models like deep artificial neural networks, 
which use non-biologically plausible optimization techniques 
(such as backpropagation) can model human perception. This 
question was previously discussed by leading researchers 
from both neuroscience and machine learning fields. It is 
generally agreed that current theories in systems 
neuroscience could be enhanced by a cohesive framework 
based on optimization (Richards et al., 2019). Following this 
idea and despite replacing one black box (the brain) with 
another black box (deep neural network), we were able to 
demonstrate that despite the limited amount of color 
observers perceive "in the blink of an eye" (Cohen and 
Rubenstein, 2020) and the limits of color awareness during 
real-world vision (Cohen et al., 2020), and despite the 
limitations of the retinal inputs, a neural network inspired by 
some principles of biological brains can perceive (or predict) 
a colorful and rich environment. 
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