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Abstract

Methodological advancements for genome reconstruction by haplotyping long

read sequence data

by

Trevor W. Pesout

Second-generation sequencing technology and accompanying analyses resulted in a del-

uge of information about variation in human populations, enabling large-scale associa-

tion studies and precision medicine. However, there are genomic contexts which cannot

be analyzed using these technologies. With the advent of long-read sequencing, previ-

ously unmappable regions of the genome have become accessible, paving the way for

more comprehensive analyses of the human genome. However, new methods are required

to leverage the increased length of these data as well as mitigate the poor sequence accu-

racy. In this work, I present an accurate and efficient application “Margin”, which uses

a Hidden Markov Model to separate read and variant data into haplotypes. I describe

work to validate the method and show applicability in variant calling, I demonstrate

ways to overcome systematic errors in nanopore sequence data and correct assembled

sequence, and I document the tool’s use in a state-of-the-art variant caller for Oxford

Nanopore and PacBio HiFi data used to generate reference materials and make medical

diagnoses.
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Chapter 1

Introduction

Over two decades ago the first expansive construction of the human genome

completed, costing three hundred million dollars, taking fifteen months to finish, and

requiring work from over two hundred and fifty scientists from across the globe. Today,

reconstruction of a human genome can go from 2ml of blood to genetic medical diagnoses

in less than a standard workday. Innovations in computational approaches and physical

methodologies have moved the field forward, as well as layers of understanding built

upon new conceptual frameworks. This has involved thousands of students and scientists

and engineers making incremental progress in a variety of domains. As with many

doctoral studies, my work represents a small improvement on a specific analysis towards

a general goal using a particular type of data.

At a high level, the goal we’re moving towards is accurate reconstruction of

genetic sequence. As with all improving fields, how we do this has addressed increasingly

difficult areas of this problem. Twenty years ago, this meant producing a general image
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of what the simplest parts of the human genome looked like. Reference-dependent

variant calling methods were then developed to assay the variety in human populations,

using sequencing technologies that are inexpensive and produce accurate (but small)

pieces of data. As we got good at this type of genetic inspection, it became apparent

that there are areas of the genome which will never be successfully analyzed using

existing methods on this type of data. These hard-to-reach areas, specifically where

genetic sequences are highly repetitive or exist in multiple places in the genome, need

a different data modality to be accessible.

The development of the nanopore sequencer (the particular type of data my

dissertation focuses on) produces sequencing data long enough that it can be used

successfully in these contexts. However, this new datatype is not a strict improvement on

older sequencing technologies; they produced accurate sequence with random errors, and

nanopore sequencers produce inaccurate sequence with systematic errors. We needed

new methods to leverage the increased length as well as strategies to ameliorate the

poor sequence accuracy.

One of these analyses (the analysis on which I have spent my dissertation

working) is the determination of haplotypes in a collection of long reads. As humans

have two copies of each chromosome, we can theoretically separate sequencing data into

two partitions. This partitioning enables downstream methods to perform haplotype-

specific analyses, which more accurately reflects the underlying genetic structure, which

in turn leads to improved sequence reconstruction. If we can figure out how to use long

reads to effectively reconstruct genetic sequence, we can use it to build understanding of
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previously inaccessible regions of the genome, and this knowledge will enable the next

generation of scientists and specialists to focus on harder problems and design better

methodologies.

This brings us to the specific work I’ve done for my dissertation. The bulk of

this work has revolved around a single code base called Margin, descended from a gen-

eralized Hidden Markov Model implementation that my advisor Benedict Paten wrote

when he was a grad student. After joining the lab in 2016, I was given a “theoretically

functional” project which could accurately phase simulated reads. All we needed to do

was figure out how to make it work on real data.

Figure 1.1: “Just make it work on real data”

Five years and eight hundred thousand lines of code later, “make it work”
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ended up being marginally more complicated than I expected. From a bird’s eye view,

the task was simple and straightforward. The view from the ground was full of weeds

and dirt and an incredible variety of bugs. The Sequence Alignment/Map codebase

is an inscrutable labyrinth, comprehensible only by Heng Li and gcc. Error profiles

for nanopore data are different for species, strand, sequencer, basecaller versions, and

probably the radio’s volume during DNA extraction. Homopolymers in the DNA result

in systematic errors in the data, but compressing them helps (plus it improves align-

ment!), but that unfortunately makes alignment worse, so you definitely shouldn’t do it.

Apparently some troglodyte decided that switching the parameter ordering of qsort r

between BSD and GNU was a good idea, and my sanity and self respect withered to

dust in between the #ifdef’s needed to contain the problem.

All that being said, it works! I’ve built a tool that can effienctly and accu-

rately turn long reads on a reference and a set of heterozygous variants into haplotyped

sequence data. At first it worked slowly and expensively and poorly, but after five

years of development a whole genome run went from days and thousands of dollars,

to hours and tens of dollars, to 36 minutes and $1.35. Not everyone in the field cares

about the time and cost a tool takes to run, but as someone who has spent more time

thinking of himself as a computer scientist than a bioinformatician, I can tell you that

efficiency is critical in any application you want to use at scale. If you want it to be

useful everywhere, it needs to be fast and cheap and easy.

The bioinformatics landscape is full of tools which are not these things. It is

rife with half-baked graduate student “code” designed to be run manually in a very spe-
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cific environment using data in non-standardized formats which has since been deleted.

Programs which can only really be run by their author and were only even built to

show proof of concept in a manuscript, after which the tool is discarded or (at best)

forgotten. Finding out some other poor rube is trying to use their code sends shivers

down the weary and hunched spines of these students.

I jest, but there is truth to the idea that much in the world of bioinformatics is

not production ready. When reading this manuscript, it is my hope that the reader finds

the tool I’ve developed does not fall into this category. I show consistent improvements

in efficiency, usability, and accuracy. In Chapter 3, I validate the core phasing algorithm

and demonstrate that it improves variant calling performance. In Chapter 4, I improve

the tool to better handle nanopore data, and to identify and correct variant sites in

genome assemblies. In Chapter 5, I show that the tool is refined and performant, and I

detail its inclusion in a state-of-the-art variant calling pipeline. In Chapter 6, I briefly

describe how it has been applied in a project generating ultra-fast clinical diagnoses.
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Chapter 2

Background

To lay out all the knowledge and methodologies upon which my dissertation

builds would take far longer than it took to complete my dissertation. I include in this

background section topics which are directly applicable or relevant to my work, and

focus specifically on human analyses.

2.1 DNA Sequencing Technologies

The first widespread method of sequencing DNA was developed in 1977 by

Frederick Sanger [142], after whom the technology was named. Sanger sequencing in-

volves use of dideoxythymidine triphosphate during DNA replication, stopping replica-

tion and leaving a residue for which the length can be measured using electrophoresis

on acrylamide gels. This process can be replicated for each of the four nucleotides,

enabling an accurate determination of the nucleotide sequence. An improved version

of this method is still used today, as it can accurately (99.999% accuracy) generate
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sequences up to 1000bp in length [150].

This methodology was largely eclipsed in use by technologies colloquially re-

ferred to as second-generation sequencing, next-generation sequencing, or shotgun se-

quencing. There are many implementations of this methodology, but all follow a similar

high-level workflows involving DNA fragmentation, adapter ligation, amplification, and

florescence-based imaging [150]. Illumina sequencing [13] is the most common of these

methods, where a single-stranded DNA molecule is repeatedly annealed to an array,

extended, and then denatured to create a cluster of clonal copies. These clusters are fi-

nally observed in process where a removable fluorophore label is attached at each round

of synthesis, a laser is used to excite the label, and the nucleotide can be determined

optically. Furthermore, this allows for an estimation of accuracy for each base, which

is used in downstream processing. The process is highly parallelizable resulting in a

cheaper method for production of larger amounts of sequence data, albeit less accurate

(99-99.9% accuracy) and with smaller sizes (50-300bp), than Sanger sequencing. Illu-

mina sequencing often is performed in paired-end mode, where a size-selected piece of

DNA has both ends sequenced to produce a pair of reads which are known to originate

from the same molecule.

Third-generation sequencing, sometimes referred to as long read sequencing,

is dominated by two different technologies and implementations both which directly

measure DNA molecules instead of a product of replication. Pacific Biosciences uses

fluorophores incorporated during DNA synthesis to determine the nucleotide sequence

[42]. Recent improvements to the technology involve circularizing the DNA and generat-

8



ing a consensus sequence by reading the molecule multiple times, producing high-fidelity

or HiFi data with 10-30kb read lengths and accuracies up to 99-99.9% [160, 171].

The second long read sequencing technology was conceived of by researchers

at UCSC [33] and turned into a consumer product by Oxford Nanopore Technologies

(ONT). Nanopore sequencing attaches a motor protein to a DNA molecule which is

used to feed a single strand through a pore in a membrane using an applied electric

field. Current is measured as nucleotides translocate through the pore, and the un-

derlying sequence can be inferred from these data [69]. Originally this inference was

performed using Hidden Markov Models, but later improvements to basecalling software

have turned to deep neural nets for sequence determination. Nanopore read data are

generally longer than any other methodology, with observed lengths ranging from tens

of thousands to millions of bases. The impressive length of these data is offset by their

relatively lower accuracy (90%+ accurate), with the majority of errors being found in

homopolymers [130, 148].

2.2 Methods for Genome Inference

Determining underlying genomic sequence for a person is the necessary first

step for all analyses, from large-scale studies of pathology and phenotypic association to

precision medicine. Efforts to infer genomic sequence are confounded by an assortment

of difficulties; first I list these difficulties and then later detail how various methods used

during analysis handle (poorly and successfully) these issues.
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2.2.1 Difficulties in Genome Inference

Beyond errors related to sequencing technology, the main confounding issue

in genome inference is that the human genome is largely composed of repetitive and

duplicated sequence.

Human centromeres and the regions around them are primarily composed of

multiple different repetitive structures [108]. These are largely described as satellite

DNA [174]: sequences of short (a single base pair) to long (a thousand base pairs)

repeated in tandem, with this repetitive structure itself repeated. They include repeats

of AT-rich 171bp sequences called alpha-satellites, which form larger repetitive units

known as high-order repeats (HORs), which then organize into multi-megabase satellite

arrays of which one or more can be found on human centromeres. Human telomeres

are also highly repetitive, characterized by a 6bp sequence repeated to a total length of

5kb-15kb [113].

Beyond repetitive sequence, there are a classes of mobile DNA elements called

transposable elements (TEs, or transposons) which can insert themselves into our DNA.

They fall into functional groupings (Class I TE or retrotransposons, and Class II TE

or DNA transposons), followed by further groupings based on sequence structure (Alus,

LINEs, SINEs, VNTRs, SVAs), and further tracked by lineages (AluYa5, AluSx, L1Hs,

L1PA2, etc). Transposable elements are thought to represent up to 44% of the human

genome, with the majority of these insertion events having occurred far back in our

genetic history and have since been neutered by mutation or methylation [44, 112, 36].
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Beyond repetitive sequence and transposons, there are biological processes

which can cause large-scale structural changes in our genome. These can include Copy

Number Polymorphisms (CNPs), where hundreds of kilobases of genetic sequence is

duplicated or deleted. They also include inversions, where a segment of DNA is inverted

relative to a reference [145, 22]. The community has adopted the convention that any

genetic event larger than 50bp (including these large-scale events as well as transposon

driven changes) is deemed a Structural Variant (SV).

Beyond repetitive sequence, transposons, and structural variation, there are

regions of the genome which were duplicated at some point in our ancestry. As an

example, the NOTCH2NL gene family includes three paralogous copies of a protein-

coding gene sequence related to brain function [47]. This class of duplication is reflected

in our reference material, whereas SVs are relative to the reference (albeit an arbitrary

relativity).

The final significant difficulty to most genome inference efforts is that the

human genome is diploid. We inherit one set of chromosomes from each parent, so

variation can exist twice at any genomic locus. When we use one of the various methods

of genome inference, we have to understand the relationship between haplotypes to

properly analyze or record it.

2.2.2 Human Genome Reference

The genome inference problem became much easier with the first assembly of

the human genome in 2001 [84]. This process involved a massive amount of work from
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an international group of collaborators where they created Bacterial Artificial Chromo-

somes (BACs) by inserting 100-200kb of human sequence into a bacterial genome, grew

a colony of this bacteria, used shotgun sequencing to generate read data, assembled the

sequence inserted into the bacterial genome, and then stitched the assembled sequences

together. The result was approximately 2.69 gigabases (Gb) of sequence.

The human reference sequence has been corrected and updated many times

since its initial publication, with primarily two sequences being used by recent analy-

ses. These are managed by the Genome Reference Consortium, and are referred to as

GRCh37 (or hg19) and GRCh38 (or hg38) with 2.91Gb and 2.98Gb of primary non-N

sequence respectively. GRCh38 includes modeled centromeres, a significant improve-

ment over previous iterations although not truly representative of underlying sequence

[143].

Recently, another human reference sequence has been generated by the Telomere-

to-Telomere Consortium (T2T) using extensive sequencing, assembly, and correction of

an effectively-haploid cell line CHM13 [117]. This flagship reference is the first complete

representation of the human genome.

Lastly, work by the Human Pangenome Reference Consortium has been done

to generate a pangenome reference: a graph of sequence data theoretically describing

almost all variation in the human population. This graph-based reference is struc-

turally much different from any of the previous linear references and will require different

methodologies for use.
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2.2.3 Reference-Based Methods

The reason genome inference became easier with the first human genome as-

sembly (and all the references since then) is because the reference sequence is very

similar to the underlying sequence for any given human. An average human differs from

the reference at 4.1 to 5 million sites, including 23,000 to 28,000 structural variants,

from a reference with over 3 billion bases [158, 36]. This similarity between the refer-

ence and a sample allows read data to be localized much more easily using a method

called alignment, described in the next section.

Alignments would not be manageable without technological infrastructure to

track, manage, and manipulate data. The foundation of alignment standardization is

the Sequence Align/Map (SAM) format and accompanying toolkit samtools, written

by Heng Li [95].

2.2.3.1 Alignment

Alignment is a process where a piece of sequencing data is localized on a

reference and each nucleotide is matched to a position (or anchored to a position for

inserts and deletes) on the reference. Generally this process involves two steps: finding

the general area on the reference where the sequencing read originated from, and then

finding the fine-grained alignment between the entire read and a portion of the reference.

This paradigm is often referred to as seed and extend.

To find seeds, most aligners will either use suffix trees or some form of hashed

k-mers to find exact matches. A suffix tree is a data structure used to efficiently to find
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exact matches for a string, and is used by the most common short-read aligner bwa [94].

A K-mer based methodology is used by the most common long-read aligner minimap2

[92], which uses a hashed representation of a subset of k-mers called minimizers [135]

for improved efficiency. Often a read will have exact matches to multiple locations in

the genome; to find the most likely region of origin from seeds, aligners will cluster or

chain seeds together.

Once a region has been selected, aligners will use long-standing dynamic pro-

gramming alignment algorithms such as Needleman-Wunsch [116] or Smith-Waterman

[154] to find the most likely exact matching of nucleotides. Of particular mention is a

class of algorithms (used by minimap2, among others) that uses affine gap costs where

the penalty for a gap does not scale linearly with size, a reflection of underlying biolog-

ical likelihoods where the insertion or deletion of a sequence of length n is not n times

less likely than a sequence of length one [6, 57, 58].

Because of the amount of duplicated or repetitive sequence in the reference,

aligners can not be confident which duplication or repeat the read sequence most likely

originated from. To address this, aligners will include a measure of confidence in the

alignment (Map Quality, or MQ score) that can be used by downstream analyses. Often,

low MQ scores will be accompanied by secondary alignments: alignments which are also

optimal or slightly less optimal but which may still merit consideration.

Third generation long reads are particularly advantageous for inference in hard-

to-map regions, as they are more likely to have an anchor in a region of unique sequence.

Thus anchored, the portion of the read extending into non-unique sequence can be
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analyzed with confidence.

2.2.3.2 Variant Calling

After a set of reads are aligned to the reference, examining sites where the

read data reflects a different nucleotide is a straightforward method of inferring how the

sample differs from the reference. The visualization (for a human or a computer) of many

reads overlapping a reference region is generally refered to as a pileup. As alignment

required the SAM format, tracking variation data also requires a specification; during

the first large-scale variation study, the 1000 Genomes Project developed the Variant

Call Format (VCF) and accompanying toolkit vcftools [32] to describe differences with

respect to a reference.

One of the first variant callers was bcftools (developed by the authors of

samtools) which generated statistical summaries of pileups taken directly from the

alignment files [95, 90]. As NGS proliferated and an array of sequence data from a

variety of sources became accessible, a set of tools and workflow of normalization and

analysis steps was developed. This Genome Analysis Toolkit (GATK) and their best-

practices workflow became an industry standard for use with the incredible amount

of highly accurate short read data that was available [106]. Recently, tools such as

DeepVariant which use deep neural nets have been adopted as they outperform many

of the older statistical methods [126].

These tools excel at finding small variants (called point variation) which are

classified as Single Nucleotide Polymorphisms (SNPs) or Insertions/Deletions (INDELs).
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Structural variation generally cannot be detected using the same paradigms. Novel se-

quence can’t be identified by short read alignment, duplicated sequence will exist at

other places in the reference resulting in untrustworthy mappings, and large scale in-

versions align normally to the reference except at their boundaries. Methods do exist

[72, 85, 131, 4], but are less adept at identifying structural variation.

Third generation data with drastically longer lengths is much more suited to

SV calling. The tool Sniffles has been adopted by much of the industry to do reference-

based SV calling [146]. While long reads are better able to detect large variation, the

higher error rate makes calling of point variation more difficult. In particular, nanopore

sequencing can result in errors falling into consistent patterns (such as undercounting

homopolymers, or biases in basecalling depending on which DNA strand is read), pat-

terns which are consistent enough that simple pileup-based inferences will produce false

positives at untenable rates.

2.2.4 De Novo Assembly

De Novo Assembly is the other main method of genome inference. Assembly

is a reference-agnostic process, where only raw sequencing data is used to infer the

underlying genomic sequence. Methods for doing this largely fall into three categories

[23], all of which are graph based.

The first method is referred to as the overlap-layout-consensus (OLC) frame-

work. In this methodology, overlaps between reads are detected, overlapping reads are

merged together, and finally a consensus sequence is generated from the overlapping
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reads. In this framework, reads are represented as nodes, and overlaps as edges. This

can be applied to both short and long reads and was used in some of the first assembly

algorithms [114, 66, 11].

The second method is called de Bruijn graphs. Reads are first decomposed

into overlapping kmers (GATTACA→ GAT,ATT,TTA,TAC,ACA). Overlapping kmers

are used to build a graph, and contigs are determined by finding paths in the graph

supported by read data. In this method, kmers (sequence) are nodes, edges are overlap

between nodes, and reads are represented as paths through the graph. This can be

more computationally efficient than OLC methods, as pairwise relationships between

reads don’t need to be calculated. However, this depends on having highly accurate

reads, making these methods not as effective with nanopore data. Various short read

assemblers have been developed using this framework [55, 102, 151].

The third method uses string graphs [115], which involve constructing a graph

describing read overlaps using a matching function, then removing inferrable edges from

this graph using a process called transitive reduction. The result is a simplified graph

where all paths in the graph have read-based support. FALCON, one of the first long-

read assemblers for PacBio data uses this framework [27].

The first de novo assembly of the human genome was in 2001 as described above

[84]. The process to generate this was incredibly complicated and expensive. With the

advent of long reads, the process has become orders of magnitude less expensive and

easier. In 2018, researchers at UCSC generated a human assembly using nanopore data

using the Canu assembler [77, 70]. This assembly took 40 thousand CPU hours and was
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the first demonstration of a successful human assembly using nanopore data. Since then,

many other nanopore-based assembly techniques have been developed which drastically

reduce the time and cost of assembly [74, 141, 148].

2.2.4.1 Polishing

Most assemblers are focused on colocating sequencing data and generating a

consensus sequence, and can often fail to produce sequence which is as consistently ac-

curate as the reference sequence. Part of this is because the methodologies for grouping

reads and generating sequence are different, and partly because the long read data most

useful for grouping reads is not as accurate as second generation sequencing. The pro-

cess of refining an assembled sequence is referred to as polishing. Generally, polishers

involve a similar process to variant calling: reads are aligned to the assembly and pileup-

or graph-based methodologies are used to identify differences and correct the assembled

sequence. There are a wide range of tools which do this [137, 156, 148], but the most

used is a short-read polishing toolkit called Pilon [167].

2.3 Phasing methodologies

Most of the work presented in my dissertation involves accurate phasing of

sequence or variant data. When calling a variant against a linear reference first the

genotype needs to be determined, where we decide if the variant is heterozygous (existing

on one haplotype) or homozygous (existing on both haplotypes). Then we can perform

phasing, where we assign the alleles of a heterozygous variant to each of the (generally)
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two haplotypes. Sometimes it is possible to divide data into two disparate sets, and

sometimes it is possible to assign them specifically to the maternal or the paternal

haplotype. In the first case, the regions where the two sets are consistently separated

are called phase sets or phase blocks. The haplotypes, generally enumerated 1 and 2,

are not necessarily consistent across phase sets. Understanding the phasing of a set of

variants has applications in medicine, where two variants with a functional effect can

produce different phenotypes in a sample if they are in cis (on the same haplotype) or

in trans (on different haplotypes) [157]. This process can also be performed on sequence

data, where each read can be assigned to a haplotype. This can improve the accuracy

of downstream analyses.

Variant phasing is generally done in one of three ways. The first is using direct

observation: a single sequencing read which describes two heterozygous loci is evidence

that those loci are on the same haplotype. This could be from a paired-end Illumina

read, from any of the long read sequencing technologies, or from other methods such as

Hi-C [82, 51] or Strand-Seq [127].

There have been various methodological approaches to tackling this algorith-

mically while accounting for the potential of sequencing error. Many early tools using

paired-end short read data would construct a fragment matrix relating reads and al-

lele support, and then using minimum error correction (MEC) criterion to update a

minimal number of sites to produce a perfect bipartition, including HapCUT [10] and

MaxSAT [63]. With the advent of long read sequencing, this problem has become easier

to solve as reads span more heterozygous sites. Tools including WhatsHap [124, 105]
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and HapCUT2 [39] continued to use MEC to solve this problem on long-read data.

Methods which do not rely on direct molecular observations generally use trios

(child, mother, father) or pedigrees (trio including siblings) to determine haplotypes.

These rely on principles of Mendelian segregation, where (absent the presence of de

novo mutation) an allele found only in one of the parents must have originated on that

haplotype. Various methods exist which perform this type of analysis [133, 134, 173].

Finally, there are also methods to haplotype variants using population infer-

ence, where the presence of certain variants in specific haplogroups can be used to

identify co-inherited variation in a sample. These methods tend to be purely statisti-

cal and are not deterministic, and furthermore produce smaller phase sets than other

methods [54].

Assigning haplotypes to sequencing data is a similar process to variant phasing,

and has resulted in improvements in diploid genome assembly. The most common

method of this involves trio-binning, where haplotype-informative k-mers are determined

using short reads from a sample’s parents and the presence of these k-mers in long

reads is used to assign them to a maternal or paternal haplotype [76]. Recently, the

diploid assembly method hifiasm has been used to produce remarkably accurate diploid

assemblies using PacBio HiFi reads binned into haplotypes using short-read trio data

[24] or Strand-Seq data [25].
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2.3.1 Polyploid Phasing

Phasing in polyploid species (having more than two copies of each autosome)

has significance in understanding plant evolution and agriculture improvement, as many

commercially-farmed plant species (such as wheat, sugarcane, and potato) are polyploid

[132]. When phasing diploid samples, evidence of linkage between alleles at heterozygous

variant sites for one haplotype implies linkage between the remaining alleles for the

other haplotype. This is not true for polyploid genomes where multiple haplotypes

can exhibit the same allele at heterozygous sites. This adds computational complexity

to any analysis and makes diploid-specific optimizations (which are necessary to solve

NP-hard problems such as MEC) inapplicable.

Many of the algorithmic frameworks used in diploid phasing are difficult to

apply to polyploid genomes. For example, when using MEC in regions where multiple

haplotypes are similar, there is no penalty for merging reads from these similar haplo-

types into a single partition. This can result in one large false haplotype (where a correct

partition would have multiple haplotypes with similar sequence), and another false hap-

lotype composed primarily of erroneous reads (where the reads actually originate from

multiple different haplotypes) [144].

One of the first tools for solving polyploid phasing was HapCompass, which

uses a graph-based framework to describe similarity between reads based on their agree-

ment on alleles at variant sites, and removes weighted edges (reflective of read similarity)

to produce spanning trees which correspond to haplotypes, an criterion called minimum
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weighted edge removal (MWER) [2, 3]. Another tool called HapTree takes an inductive

approach by finding the most likely set of haplotypes on a small set of SNPs using a

maximum-likelihood estimation framework, and then iteratively extending this set until

all variant sites have been considered [14]. H-PoP is another successful tool which uses

a Polyploid Balanced Optimal Partition (PBOP) method, where reads are partitioned

into a set number of groups with minimal differences between reads in the same group

and maximal differences between reads in different groups [175].

Recently, the ability to phase polyploid genomes has been introduced into the

existing tool WhatsHap. WhatsHap Polyphase takes a two-step approach. First, reads

are clustered together using a graph-based method with reads as nodes and weighted

edges reflecting similarity between reads. The number of expected haplotypes does not

contribute to the clustering step; similar regions across multiple haplotypes are gen-

erally merged together. Second, reads are threaded through these clusters to produce

sequences for the expected number of haplotypes, using coverage statistics to identify

regions where multiple haplotypes are locally identical. The tool will divide the results

into phase blocks at regions of uncertainty using parameterized thresholds, enabling

users to fine-tune the tradeoff between phasing accuracy and phase block length. What-

sHap Polyphase shows large improvements over the previous state-of-the-art method in

switch and Hamming error rates, even when controlling for phase block size [144].
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2.4 Sample Reference Materials

As much of the work in this document is method development, understand-

ing the landscape of reference materials is important context. The bulk of this data

has been generated by the Genome In A Bottle Consortium (GIAB). This consortium

has endeavored to produce publicly-available sequence data and platinum-grade variant

calls for benchmarking and analysis [178, 177, 166]. These efforts include the gener-

ation of multiple types of sequencing data, variant calling with multiple technologies,

collation of results across data and methods, and determination of high-quality variants

accompanied by regions of certainty and uncertainty. Without this data it would be

impossible to accurately compare methods for human genome inference.

The samples documented by these efforts come from three child-father-mother

trios, all which have given permission for their cell lines to be immortalized and preserved

for future sequencing. They are referred to by an ancestral designation, NIST ID,

and Coriell lines and are: the CEPH Mother/Daughter, HG001, or NA12878 (and

her parents, spouse, spouse’s parents, and children); the Ashkenazim Son, HG002, or

GM24385 (and his parents HG003 and HG004); the Chinese Son, HG005, or GM24631

(and his parents HG006 and HG007). All of work presented here has been evaluated on

at least one of these cell lines.
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Part II

Demonstrating the Utility of

Read Haplotyping
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Chapter 3

Demonstration of the applicability of

HMMs to phasing reads, and the utility

of phased reads in variant calling

3.1 Preamble

What follows is the full text from my first manuscript “Haplotype-aware geno-

typing from noisy long reads” [37] published in Genome Biology in which I share first-

authorship with Jana Ebler and Marina Haukness. In this paper we present two im-

plementations of the same high-level algorithm and demonstrate that using phasing

information improves variant calling for long read sequencing.

For this publication, I worked with Marina to develop, test, and evaluate

MarginPhase. I helped write the text of the paper, produce figures, and performed

the coverage analysis for Figure 3.6.
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While WhatsHap (the implementation our collaborators developed) has be-

come an industry standard for phasing since publication, our implementation of Margin-

Phase was largely an experimental proof of concept at this point. Neither tool has ever

been used as a variant caller, although both have now been successfully used in variant

calling pipelines. Much of what what I learned during this chapter’s work about han-

dling nanopore data was instrumental in the development of MarginPolish (presented

in Chapter 4), and the foundation laid here enabled all the work presented in Chapter

5.

3.2 Abstract

Motivation: Current genotyping approaches for single nucleotide variations

(SNVs) rely on short, relatively accurate reads from second generation sequencing de-

vices. Presently, third generation sequencing platforms able to generate much longer

reads are becoming more widespread. These platforms come with the significant draw-

back of higher sequencing error rates, which makes them ill-suited to current genotyping

algorithms. However, the longer reads make more of the genome unambiguously map-

pable and typically provide linkage information between neighboring variants.

Results: In this paper we introduce a novel approach for haplotype-aware genotyp-

ing from noisy long reads. We do this by considering bipartitions of the sequencing

reads, corresponding to the two haplotypes. We formalize the computational problem

in terms of a Hidden Markov Model and compute posterior genotype probabilities using
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the forward-backward algorithm. Genotype predictions can then be made by picking

the most likely genotype at each site. Our experiments indicate that longer reads allow

significantly more of the genome to potentially be accurately genotyped. Further, we

are able to use both Oxford Nanopore and Pacific Biosciences sequencing data to inde-

pendently validate millions of variants previously identified by short-read technologies

in the reference NA12878 sample, including hundreds of thousands of variants that were

not previously included in the high-confidence reference set.

3.3 Introduction

Reference-based genetic variant identification comprises two related processes:

genotyping and phasing. Genotyping is the process of determining which genetic vari-

ants are present in an individual’s genome. A genotype at a given site describes whether

both chromosomal copies carry a variant allele, only one of them carries it, or whether

the variant allele is not present at all. Phasing refers to determining an individual’s

haplotypes, which consist of variants that lie near each other on the same chromosome

and are inherited together. To completely describe all of the genetic variation in an

organism, both genotyping and phasing are needed. Together, the two processes are

called diplotyping.

Many existing variant analysis pipelines are designed for short DNA sequencing

reads [162, 1]. Though short reads are very accurate at a per-base level, they can suffer

27



from being difficult to unambiguously align to the genome, especially in repetitive or

duplicated regions [96]. The result is that millions of bases of the reference human

genome are not currently reliably genotyped by short reads, primarily in multi-megabase

gaps near the centromeres and short arms of chromosomes [5]. While short reads are

unable to uniquely map to these regions, long reads can potentially span into or even

across them. This makes it so long reads are advantageous over short reads for tasks such

as haplotyping, large structural variant detection, and de novo assembly [128, 21, 70,

147]. Here, we attempt to demonstrate the utility of long reads for more comprehensive

genotyping.

Long read DNA sequencing technologies are rapidly falling in price and in-

creasing in general availability. Such technologies include Single Molecule Real Time

(SMRT) Sequencing by Pacific Biosciences (PacBio) and nanopore sequencing by Ox-

ford Nanopore Technologies (ONT). However, due to the historically greater relative

cost and higher sequencing error rates of these technologies, little attention has been

given thus far to the problem of genotyping single nucleotide variants (SNVs) with long

reads. Recently, [60] have taken first steps in this direction, but their approach does

not scale to process whole human genomes in reasonable time.

For an illustration of the benefit of using long reads to diplotype, consider

Figure 3.1. Shown are three SNV positions covered by long reads. The gray sequences

represent the true haplotype sequences and reads are colored in blue and red. The

colors correspond to the haplotype which the respective read stems from: the red ones

from the upper sequence, and the blue ones from the lower one. Since sequencing errors
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Figure 3.1: Motivation. Gray sequences illustrate the haplotypes; the reads are shown

in red and blue. The red reads originate from the upper haplotype, the blue ones from

the lower. Genotyping each SNV individually would lead to the conclusion that all

of them are heterozygous. Using the haplotype context reveals uncertainty about the

genotype of the second SNV.
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can occur, the alleles supported by the reads are not always equal to the true ones in

the haplotypes shown in gray. Considering the SNVs individually, we would probably

genotype the first one as A/C, the second one as T/G and the third one as G/C, since

the number of reads supporting each allele are the same. This leads to a wrong genotype

prediction for the second SNV. However, if we knew which haplotype each read stems

from, that is, if we knew their colors, then we would be unsure about the genotype

of the second SNV. It could also be G/G or T/T, since the reads stemming from the

same haplotypes must support the same alleles. Therefore, using haplotype information

during genotyping makes it possible to compute more reliable genotype predictions and

to detect uncertainties.

Contributions. In this paper, we show that for contemporary long read technologies,

read-based phase inference can be simultaneously combined with the genotyping process

for SNVs to produce accurate diplotypes and to detect variants in regions not mappable

by short reads. We show that key to this inference is the detection of linkage rela-

tionships between heterozygous sites within the reads. To do this, we describe a novel

algorithm to accurately predict diplotypes from noisy long reads that scales to deeply

sequenced human genomes. We achieve this by considering bipartitions of all given

sequencing reads, corresponding to the two haplotypes of an individual. The problem

is formalized using a Hidden Markov Model (HMM) from which we compute genotype

likelihoods using the forward-backward algorithm and make genotype predictions by

determining the likeliest genotype at each position.
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We then apply this algorithm to diplotype one individual from the 1000 Genomes

Project, NA12878, using long reads from both PacBio and ONT. NA12878 has been ex-

tensively sequenced and studied, and the Genome in a Bottle consortium has published

sets of highly confident variant calls [176]. We demonstrate that our method is accu-

rate, that it can be used to confirm variants in regions of uncertainty, and that it allows

for the discovery of variants in regions which are unmappable using short DNA read

sequencing technologies.

3.4 Methods

We describe a probabilistic model for diplotype and genotype inference, and

in this paper use it to find maximum posterior probability genotypes. The approach

builds upon the WhatsHap approach [125], but incorporates a full probabilistic allele

inference model into the problem. It has similarities to that proposed by [83], but we

here frame the problem using Hidden Markov Models (HMMs).

3.4.1 Alignment Matrix

Let M be an alignment matrix whose rows represent sequencing reads and

whose columns represent genetic sites. Let m be the number of rows, let n be the

number of columns, and let Mi,j be the jth element in the ith row. In each column

let Σj ⊂ Σ represent the set of possible alleles such that Mi,j ∈ Σj ∪{−}, the “−” gap

symbol representing a site at which the read provides no information. We assume no

row or column is composed only of gap symbols, an uninteresting edge case. An example
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alignment matrix is shown in Figure 3.2. Throughout the following we will be informal

and refer to a row i or column j, being clear from the context whether we are referring

to the row or column itself or the coordinate.

  1 2 3 4 5
1 A G T - -
2 A G T - -
3 - C - G -
4 - C T G -
5 - - T C T
6 - - T C T          

Figure 3.2: Alignment Matrix. Here, the alphabet of possible alleles is the set of

DNA nucleotides, i.e. Σ = {A,C,G,T}

3.4.2 Genotype Inference Problem Overview

A diplotype H = (H1,H2) is a pair of haplotype (segments); a haplotype (seg-

ment) Hk =Hk
1 ,H

k
2 , . . . ,H

k
n is a sequence of length n whose elements represents alleles

such that Hk
j ∈ Σj . Let B = (B1,B2) be a bipartition of the rows of M into two parts

(sets): B1, the first part, and B2, the second part. We use bipartitions to represent

which haplotypes the reads came from, of the two in a genome. By convention we as-

sume that the first part of B are the reads arising from H1 and the second part of B are

the reads arising from H2. The problem we analyze is based upon a probabilistic model

that essentially represents the (Weighted) Minimum Error Correction (MEC) problem

[29, 59], while modeling the evolutionary relationship between the two haplotypes and so
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imposing a cost on bipartitions that create differences between the inferred haplotypes.

For a bipartition B, and making an i.i.d. assumption between sites in the

reads:

P (H|B,M) =
n∏

j=1

∑
Zj∈Σj

P (H1
j |B1,Zj)P (H2

j |B2,Zj)P (Zj)

Here P (Zj) is the prior probability of the ancestral allele Zj of the two haplotypes at

column j, by default we can use a simple flat distribution over ancestral alleles (but see

below). The posterior probability P (Hk
j |Bk,Zj) =

P (Hk
j |Zj)

∏
{i∈Bk:Mi,j 6=−}P (Mi,j |Hk

j )∑
Yj∈Σj

P (Yj |Zj)
∏
{i∈Bk:Mi,j 6=−}P (Mi,j |Yj)

for k ∈ {1,2}, where the probability P (Hk
j |Zj) is the probability of the haplotype allele

Hk
j given the ancestral allele Zj . For this we can use a continuous time Markov model

for allele substitutions, such as Jukes-Cantor [20], or some more sophisticated model

that factors the similarities between alleles (see below). Similarly, P (Mi,j |Hk
j ) is the

probability of observing allele Mi,j in a read given the haplotype allele Hk
j .

The genotype inference problem we consider is finding for each site:

argmax
(H1

j ,H2
j )
P (H1

j ,H
2
j |M) = argmax

(H1
j ,H2

j )

∑
B

P (H1
j ,H

2
j |B,M)

i.e. finding the genotype (H1
j ,H

2
j ) with maximum posterior probability for a generative

model of the reads embedded in M.

3.4.3 A Graphical Representation Of Read Partitions

For a column j in M, a row i is active if the first non-gap symbol in row i

occurs at or before column j and the last non-gap symbol in row i occurs at or after
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column j. Let Aj be the set of active rows of column j. For a column j a row i is

terminal if its last non-gap symbol occurs at column j or j = n. Let A′j be the set of

active, non-terminal rows of column j.

Let Bj = (B1
j ,B

2
j ) be a bipartition of Aj into a first part B1

j and a second

part B2
j . Let Bj be the set of all possible such bipartitions of the active rows of j.

Similarly, let Cj = (C1
j ,C

2
j ) be a bipartition of A′j , and Cj be the set of all possible such

bipartitions of the active, non-terminal rows of j.

For two bipartitions B = (B1,B2) and C = (C1,C2), B is compatible with C

if the subset of B1 in C1 ∪C2 is a subset of C1, and, similarly, the subset of B2 in

C1∪C2 is a subset of C2. Note this definition is symmetric and reflexive, although not

transitive.

Let G = (VG,EG) be a directed graph. The vertices VG are the set of bipar-

titions of both the active rows and the active, non-terminal rows for all columns of M

and a special start and end vertex, i.e. VG = {start,end}∪ (
⋃

j Bj ∪Cj) . The edges

EG are a subset of compatibility relationships, such that (1) for all j there is an edge

(Bj ∈ Bj,Ci ∈ Cj) if Bj is compatible with Cj , (2) for all 0 < j < n there is an edge

(Cj ∈Cj,Bj+1 ∈Bj+1) if Cj is compatible with Bj+1, (3) there is an edge from the start

vertex to each member of B1, and (4) there is an edge from each member of Bn to the

end vertex (Note that Cn is empty and so contributes no vertices to G). Figure 3.3

shows an example graph.
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  1 2 3
1 A - -
2 T A -
3 - A -
4 - - T          

1,2 / .

1 / 2

2 / 1

. / 1,2

4 / .

. / 4

2,3 / .

2 / 3

3 / 2

. / 2,3

B1 C1 B2 C2 B3start end

Figure 3.3: Example Graph. Left: An alignment matrix. Right: The corresponding

directed graph representing the bipartitions of active rows and active non-terminal rows,

where the labels of the nodes indicate the partitions, e.g. ‘1,2 / .’ is shorthand for

A= ({1,2},{}}).

The graph G has a large degree of symmetry and the following properties are

easily verified:

• For all j and all Bj ∈Bj, the indegree and outdegree of Bj is 1.

• For all j the indegree of all members of Cj is equal.

• Similarly, for all j the outdegree of all members of Cj is equal.

Let the maximum coverage, denoted maxCov, be the maximum cardinality of

a set Aj over all j. By definition, maxCov ≤m. Using the above properties it is easily

verified that: (1) the cardinality of G (number of vertices) is bounded by this maximum

coverage, being less than or equal to 2+(2n−1)2maxCov, and (2) the size of G (number

of edges) is at most 2n2maxCov.
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Let a directed path from the start vertex to the end vertex be called a diploid

path, D = (D1 = start,D2, . . . ,D2n+1 = end). The graph is naturally organized by the

columns of M, so that D2j = (B1
j ,B

2
j ) ∈Bj and D2j+1 = (C1

j+1,C
2
j+1) ∈Cj for all 0 <

j ≤ n. Let BD = (B1
D,B

2
D) denote a pair of sets, where B1

D is the union of the first parts

of the vertices of D2, . . . ,D2n+1 and, similarly, B2
D is the union of second parts of the

vertices of D2, . . . ,D2n+1.

B1
D and B2

D are disjoint because otherwise there must exist a pair of vertices

within D that are incompatible, which is easily verified to be impossible. Further, be-

cause D visits a vertex for every column of M, it follows that the sum of the cardinalities

of these two sets is m. BD is therefore a bipartition of the rows of M which we call a

diploid path bipartition.

Lemma 3.4.1. The set of diploid path bipartitions is the set of bipartitions of the rows

of M and each diploid path defines a unique diploid path bipartition.

Proof. We first prove that each diploid path defines a unique bipartition of the rows

of M. For each column j of M, each vertex Bj ∈ Bj is a different bipartition of the

same set of active rows. Bj is by definition compatible with a diploid path bipartition

of a diploid path that contains it, and incompatible with every other member of Bj. It

follows that for each column j two diploid paths with the same diploid path bipartition

must visit the same node in Bj, and, by identical logic, the same node in Cj, but then

two such diploid paths are therefore equal.

There are 2m partitions of the rows of M. It remains to prove that there
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are 2m diploid paths. By the structure of the graph, the set of diploid paths can

be enumerated backwards by traversing right-to-left from the end vertex by depth-first

search and exploring each incoming edge for all encountered nodes. As stated previously,

the only vertices with indegree greater than one are for all j the members of Cj, and each

member of Cj has the same indegree. For all j the indegree of Cj is clearly 2|Cj |−|Bj |:

two to the power of the number of number of active, terminal rows at column j. The

number of possible paths must therefore be
∏n

j=1 2|Cj |−|Bj |. As each row is active and

terminal in exactly one column, we obtain m=
∑

j |Cj |− |Bj | and therefore:

2m =
n∏

j=1
2|Cj |−|Bj |

.

3.4.4 A Hidden Markov Model For Genotype and Diplotype Inference

In order to infer diplotypes, we define a Hidden Markov Model which is based

on G, but additionally represents all possible genotypes at each genomic site (i.e. in

each B column). To this end, we define the set of states Bj×Σj×Σj , which contains a

state for each bipartition of the active rows at position j and all possible assignments of

alleles in Σj to the two partitions. Additionally, the HMM contains a hidden state for

each bipartition in Cj, exactly as defined for G above. Transitions between states are

defined by the compatibility relationships of the corresponding bipartitions as before.

This HMM construction is illustrated in Figure 3.4.

For all j and all Cj ∈Cj each outgoing edge has transition probability P (a1,a2) =
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∑
Zj
P (a1|Zj)P (a2|Zj)P (Zj), where (Bj ,a1,a2) ∈Bj×Σj ×Σj is the state being tran-

sitioned to. Similarly, each outgoing edge of the start node has transition probability

P (a1,a2). The outdegree of all remaining nodes is 1, so these edges have transition

probability 1.

The start node, the end node, and members of Cj for all j are silent states,

and hence do not emit symbols. For all j, members of Bj×Σj×Σj output the entries

in the j-th column of M that are different from “–”. We assume every matrix entry to

be associated with an error probability, which we can compute from P (Mij |Hk
j ) defined

previously. Based on this, the probability of observing a specific output column of M

can be easily calculated.
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start

B2C1 B3C2

end

1,2 / .
T|T

1,2 / .
T|G

1,2 / .
G|T

1 / 2
T|T

1 / 2
T|G

1 / 2
G|T

1,2 / .

1,2 / .
A|A

1,2 / .
A|C

1,2 / .
C|A

1 / 2
A|A

1 / 2
A|C

1 / 2
C|A

. / .

3 / .
G|G

3 / .
G|A

3 / .
A|G

1 / 2

1,2 / .
G|G

1 / 2
G|G

1 / 2
C|C

1,2 / .
C|C

3 / .
A|A

x x{G,A} {G,A}B1  x x{T,G} {T,G} x x{A,C} {A,C}

1  2  3
T

AG
G

C -
-

- -

1
2
3
 

Figure 3.4: Genotyping HMM. Colored states correspond to bipartitions of reads and

allele assignments at that position. States in C1 and C2 correspond to bipartitions of

reads covering positions 1 and 2 or 2 and 3, respectively. In order to compute genotype

likelihoods after running the forward-backward algorithm, states of the same color have

to be summed up in each column.

3.4.4.1 Computing Genotype Likelihoods

The goal is to compute genotype likelihoods for the possible genotypes for each

variant position using the HMM defined above. Performing the forward-backward algo-

rithm returns forward and backward probabilities of all hidden states. Using those, the

posterior distribution of a state (B,a1,a2) ∈Bj×Σj×Σj , corresponding to bipartition
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B and assigned alleles a1 and a2, can be computed as

P ((B,a1,a2)|M) = αj(B,a1,a2) ·βj(B,a1,a2)∑
B′∈B(Aj)

∑
a′

1,a′
2∈Σj

αj(B′,a′1,a′2) ·βj(B′,a′1,a′2)

(3.1)

where αj(B,a1,a2) and βj(B,a1,a2) denote forward and backward probabilities of the

state (B,a1,a2) and B(Aj), the set of all bipartitions of Aj . The above term represents

the probability for a bipartition B = (B1,B2) of the reads in Aj and alleles a1 and

a2 assigned to these partitions. In order to finally compute the likelihood for a certain

genotype, one can marginalize over all bipartitions of a column, and all allele assignments

corresponding to that genotype.

Example 3.4.1. In order to compute genotype likelihoods for each column of the align-

ment matrix, posterior state probabilities corresponding to states of the same color in

Figure 3.4 need to be summed up. For the first column, adding up the red probabilities

gives the genotype likelihood of genotype T/T , blue of genotype G/T and yellow of G/G.

3.4.5 Implementations

We created two independent software implementations of this model, one based

upon WhatsHap and one from scratch, which we call MarginPhase. Each uses different

optimizations and heuristics that we briefly describe.
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3.4.5.1 WhatsHap Implementation

We extended the implementation of WhatsHap ([125], bitbucket.org/whatshap/

whatshap) to enable haplotype aware genotyping of bi-allelic variants based on the above

model. WhatsHap focuses on re-genotyping variants, i.e. it assumes SNV positions to

be given. In order to detect variants, a simple SNV calling pipeline was developed. It

is based on samtools mpileup [95] which provides information about the bases sup-

ported by each read covering a genomic position. A set of SNV candidates is generated

by selecting genomic positions at which the frequency of a non-reference allele is above a

fixed threshold (0.25 for PacBio data, 0.4 for Nanopore data) and the absolute number

of reads supporting the non-reference allele is at least 3.

Allele Detection. In order to construct the alignment matrix, a crucial step is to

determine whether each read supports the reference or the alternative allele at each of

n given genomic positions. In WhatsHap, this is done based on re-aligning sections

of the reads [105]. Given an existing read alignment from the provided BAM file, its

sequence in a window around the variant is extracted. It is aligned to the corresponding

region of the reference sequence and additionally, to the alternative sequence, which is

artificially produced by inserting the alternative allele into the reference. The alignment

cost is computed by using affine gap costs. Phred scores representing the probabilities

for opening and extending a gap and for a mismatch in the alignment can be estimated

from the given BAM file. The allele leading to a lower alignment cost is assumed to be

supported by the read and is reported in the alignment matrix. If both alleles lead to
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the same cost, the corresponding matrix entry is “–”. The absolute difference of both

alignment scores is assigned as a weight to the corresponding entry in the alignment

matrix. It can be interpreted as a phred scaled probability for the allele being wrong

and is utilized for the computation of output probabilities.

Read Selection. Our algorithm enumerates all bipartitions of reads covering a vari-

ant position and thus has a runtime exponential in the maximum coverage of the data.

To ensure that this quantity is bounded, the same read selection step implemented pre-

viously in the WhatsHap software is run before constructing the HMM and computing

genotype likelihoods. Briefly, a heuristic approach described in [48] is applied, which se-

lects phase informative reads iteratively taking into account the number of heterozygous

variants covered by the read and its quality.

Transitions. Defining separate states for each allele assignment in Bj enables easy

incorporation of prior genotype likelihoods by weighting transitions between states in

Cj−1 and Bj×Σj ×Σj . Since there are two states corresponding to a heterozygous

genotype in the bi-allelic case (0|1 and 1|0), the prior probability for the heterozygous

genotype is equally spread between these states.

In order to compute such genotype priors, the same likelihood function under-

lying the approaches described in [64] and [38] was utilized. For each SNV position, the

model computes a likelihood for each SNV to be absent, heterozygous, or homozygous

based on all reads that cover a particular site. Each read contributes a probability term

to the likelihood function, which is computed based on whether it supports the reference
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or the alternative allele [64]. Furthermore, the approach accounts for statistical uncer-

tainties arising from read mapping and has a runtime linear in the number of variants

to be genotyped [38]. Prior genotype likelihoods are computed before read selection. In

this way, information of all input reads covering a position can be incorporated.

3.4.5.2 MarginPhase Implementation

MarginPhase (github.com/benedictpaten/marginPhase) is an experimental,

open source implementation of the described HMM written in C. It differs from the

WhatsHap implementation in the method it uses to explore bipartitions and the method

to generate allele support probabilities from the reads.

Read Bipartitions. The described HMM scales exponentially in terms of increasing

read coverage. For typical 20-60x sequencing coverage (i.e. average number of active

rows per column) it is impractical to store all possible bipartitions of the rows of the ma-

trix. MarginPhase implements a simple, greedy pruning and merging heuristic outlined

in recursive pseudocode as follows:

The procedure computePrunedHMM takes an alignment matrix and returns

a connected subgraph of the HMM for M that can be used for inference, choosing to

divide the input alignment matrix into two if the number of rows exceeds a threshold t,

recursively.

The sub-procedure mergeHMMs takes two pruned HMMs for two disjoint align-

ment matrices with the same number of columns and joins them together in the natural
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procedure computePrunedHMM(M)

if maxCov ≥ t then

Divide M in half to create two matrices, M1 and M2, such

that M1 is the first n
2 rows of M and M2 is the remaining

rows of M.
HMM1← computePrunedHMM(M1)

HMM2← computePrunedHMM(M2)

HMM← mergeHMMs(HMM1,HMM2)

else

Let HMM be the read partitioning HMM for M.

return subgraph of HMM including visited states and transitions

each with posterior probability of being visited ≥ v, and which

are on a path from the start to end nodes.
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way such that if at each site i there are |B1
i | states in HMM1 and |B2

i | in HMM2

then the resulting HMM will have |B1
i |× |B2

i | states. This is illustrated in Figure 3.5.

In the experiments used here t= 8 and v = 0.01.

  1 2 3
1 A - -
2 T A -          

1,2 / .

1 / 2

2 / 1

. / 1,2

. / .

2 / .

. / 2

B1 C1 B2 C2 B3start end

   1 2 3
1' - A -
2' - - T          

. / .
2' / .

. / 1'

1' / .

. / 1'

   1 2 3
1  A - -
2  T A -
1' - A -
2' - - T          

1,2 / .

1 / 2

2 / 1

. / 1,2

2' / .

. / 1'

2,1' / .

2 / 1'

1' / 2

. / 2,1'

Figure 3.5: The merger of two read partitioning HMMs with the same number of

columns. Top and middle: Two HMMs to be merged; bottom: the merged HMM.

Transition and emission probabilities not shown.

Allele Supports. In MarginPhase, the alignment matrix has a site for each base in

the reference genome. To generate the allele support from the reads, for each read
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we calculate the posterior probability of each allele using the implementation of the

banded forward-backward pairwise alignment described in [69]. The result is that for

each reference base, for each read that overlaps (according to an initial guide alignment

extracted from the SAM/BAM file) the reference base we calculate the probability of

each possible nucleotide (i.e. { ‘A’, ‘C’, ‘G’, ‘T’ }). Gaps are ignored and treated as

missing data. This approach allows summation over all alignments within the band.

3.5 Results

3.5.1 Data Preparation and Evaluation

To test our methods, we used sequencing data for NA12878 from two different

long read sequencing technologies. NA12878 is a participant from the 1000 Genomes

Project [1] who has been extensively sequenced and analyzed. We used Oxford Nanopore

reads from [70] and PacBio reads from [177]. Both sets of reads were aligned to GRCh38

with minimap2, a mapper designed to align error-prone long reads [91].

To ensure that any variants we found were not artifacts of misalignment, we

filtered out reads flagged as secondary or supplementary, as well as reads with a mapping

quality score less than 30. Genome-wide, this left approximately 12 million Nanopore

reads and 34 million PacBio reads. The Nanopore reads had a median depth of 37×

and length of 5950, including a set of ultra-long reads with lengths up to 900 kilobases.

The PacBio reads had a median depth of 46× and length of 2650.

To validate the performance of our methods, we used callsets from Genome
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Figure 3.6: Reach of short read and long read technologies. The callable and
mappable regions for NA12878 spanning various repetitive or duplicated sequences on
GRCh38 are shown. Feature locations are determined based on BED tracks downloaded
from the UCSC Genome Browser [73]. Other than the Gencode regions [62, 138], all
features are subsets of the Repeat Masker [153] track. Four coverage statistics for long
reads (shades of red) and three for short reads (shades of blue) are shown. The labels
‘PacBio Mappable’ and ‘Nanopore Mappable’ describe areas where at least one primary
read with GQ ≥ 30 has mapped, and ‘Long Read Mappable’ describes where this is
true for at least one of the long read technologies. ‘Long Read Callable’ describes areas
where both read technologies have coverage of at least 10 and less than twice the median
coverage. ‘GIAB High Confidence’, ‘GATK Callable’ and ‘Short Read Mappable’ are
the regions associated with the evaluation callsets. For the feature-specific plots, the
numbers on the right detail coverage over the feature and coverage over the whole
genome (parenthesized).
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in a Bottle’s (GIAB) benchmark small variant calls v3.3.2 [176]. First, we compared

against GIAB’s set of high confidence calls, generated by a consensus algorithm span-

ning multiple sequencing technologies and variant calling programs. The high confidence

regions associated with this callset exclude structural variants, centromeres, and het-

erochromatin. We used this to show our method’s accuracy in well-understood and

easy-to-map regions of the genome.

We also analyzed our results compared to two callsets which were used in the

construction of GIAB’s high confidence variants, one made by GATK HaplotypeCaller

v3.5 (GATK/HC, [162]) and the other by Freebayes 0.9.20 [53], both generated from a

300× PCR-free Illumina sequencing run [176].

All of our evaluation statistics were generated with the tool vcfeval from Real

Time Genomics [30]. We restrict the analysis to SNVs due to the error distribution of

both PacBio and Nanopore long reads which leads to insertions and deletions being the

most common type of sequencing error by far [79, 119].

Short read variant callers. We explored the suitability of current state-of-the-art

callers for short reads to process long read data (using default settings), but were un-

successful. The absence of base qualities in the PacBio data prevented any calling; for

Nanopore data, FreeBayes was prohibitively slow and neither Platypus nor GATK/HC

produced calls.
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3.5.2 Long Read Coverage

We determined the regions where long and short reads can be mapped to

the human genome. In Figure 3.6, various coverage metrics for short and long reads

are plotted against different genomic features, which were mostly selected for being

repetitive or duplicated.

The callsets on the Illumina data made by GATK/HC and FreeBayes come

with two BED files describing where calls were made with some confidence. The first,

described in Figure 3.6 as Short Read Mappable, was generated using GATK CallableLoci

v3.5 and includes regions where there is a) at least a read depth of 20, and b) at most a

depth of twice the median depth, only including reads with mapping quality of at least

20. This definition of callable only considers read mappings. The second, described as

GATK Callable, was generated from the GVCF output from GATK/HC by excluding

areas with genotype quality less than 60. This is a more sophisticated definition of

callable as it reflects the effects of homopolymers and tandem repeats. We use these

two BED files in our analysis of how short and long reads map differently in various

areas of the genome.

For long reads, we show four coverage statistics. The records marked as “Map-

pable” describe areas where there is at least one high quality long read mapping (PacBio,

Nanopore, and Long Read Mappable for areas where at least one of the technologies

mapped). The Long Read Callable entries cover a conservative region which has a suf-

ficient read depth to illustrate the efficacy of our method; it covers regions where both
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sequencing technologies had a minimum depth of ten and maximum of 2× the median

depth (similar to the CallableLoci metric).

Figure 3.6 shows that in almost all cases, long reads map to more area than is

mappable by short reads. For example, nearly half a percent of the genome is mappable

by long reads but not short reads. Long reads also map to one percent more of the

exome, and thirteen percent more of segmental duplications. Centromeres and Tandem

Repeats are outliers to this generalization, where neither PacBio nor Nanopore cover

appreciably more than Illumina.

3.5.3 Comparison Against High Confidence Truthset

To validate our method, we first analyzed the SNV detection and genotyping

performance of our algorithm using the GIAB high confidence callset as a benchmark.

All variants reported in these statistics fall within the GIAB high confidence regions.

Figure 3.7 (top) shows precision and recall of our algorithms on both the

PacBio and Oxford Nanopore data sets. MarginPhase and WhatsHap perform similarly

overall. MarginPhase achieved higher precision and recall on Nanopore reads, with

precision of 0.7686 and recall of 0.8089, compared to WhatsHap’s precision of 0.7131

and recall of 0.7248 on the same set of Nanopore reads. WhatsHap obtained better

results on PacBio data, with a precision of 0.9738 and recall of 0.9593, compared to

MarginPhase’s precision of 0.9497 and recall of 0.9147.

In addition to considering the two methods individually, we examine a com-

bined set of variants which occur in both the calls made by WhatsHap on the PacBio

50



reads and MarginPhase on the Nanopore data and where both tools report the same

genotype. This improves the precision to 0.9969 at a recall of 0.7859. In further analysis,

we refer to this combined variant set as Long Read Variants. It reflects a high precision

subset of long read variants, validated independently by both sequencing technologies.

In order to further analyze the quality of the genotype predictions of our meth-

ods, we computed the genotype concordance of our callsets with respect to the GIAB

ground truth inside of the high confidence regions. This was done by considering all

variant positions correctly identified by MarginPhase and WhatsHap, and finding what

fraction of these were also correctly genotyped (homozygous or heterozygous) with re-

spect to the truth set. Figure 3.7 (bottom) shows the results. On the PacBio data,

WhatsHap genotypes 99.78% of the variants contained in the truth set correctly, and

MarginPhase genotypes 96.59% correctly. On the Nanopore data, MarginPhase per-

forms slightly better by genotyping 98.02% of the SNVs contained in the GIAB callset

correctly, while WhatsHap computed correct genotypes for 97.42% of the variants over-

lapping the GIAB truth set. Considering the intersection of the WhatsHap calls on

PacBio, and MarginPhase calls on Nanopore data (i.e. our Long Read Variants set), we

obtain a genotype concordance of 99.98%.

3.5.4 Cutting and Downsampling Reads

Our genotyping model incorporates haplotype information into the genotyping

process by using the property that long sequencing reads can cover multiple variant

positions. Therefore, one would expect the genotyping results to improve as the length
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Figure 3.7: Precision and Recall (Top) of MarginPhase and WhatsHap on PacBio

and Nanopore data sets in GIAB high confidence regions. Genotype Concordance

(Bottom) (wrt. GIAB high confidence calls) of MarginPhase (mp, top) and WhatsHap

(wh, middle) callsets on PacBio (PB) and Nanopore (NP) data. Furthermore, genotype

concordance for the intersection of the calls made by WhatsHap on the PacBio and

MarginPhase on the Nanopore reads is shown (bottom).
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of the provided sequencing reads increases. Furthermore, the coverage of the data would

also affect the genotyping results.

In order to examine how the genotyping performance depends on the length

of the sequencing reads and the coverage of the data, the following experiment was

performed using the WhatsHap implementation. Both data sets (PacBio, Nanopore)

were downsampled to average coverages 10×,20×,25× and 30×. All SNVs inside of

the high confidence regions in the GIAB truth set were re-genotyped from each of the

resulting downsampled read sets, as well as from the full coverage data sets. Two

versions of the genotyping algorithm were considered. First, the full length reads as

given in the BAM files were provided to WhatsHap. Second, in an additional step

prior to genotyping, the aligned sequencing reads were cut into shorter pieces such that

each resulting fragment covered at most two variants. Additionally, we cut reads into

fragments covering only one variant position. The genotyping performances of these

genotyping procedures were finally compared by determining the amount of incorrectly

genotyped variants.

Figure 3.8 shows the results of this experiment. On both data sets, the geno-

typing error increases as the length of reads decreases. Especially at lower coverages,

the genotyping algorithm benefits from using the full length reads, which leads to much

lower genotyping errors compared to using the shorter reads. In general, the experiment

demonstrates that incorporating haplotype information gained from long reads does in-

deed improve the genotyping performance. Computing genotypes based on bipartitions

of reads that represent possible haplotypes of the individual helps to reduce the number
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Figure 3.9: Confirming Short Read Variants. We examine all distinct variants

found by our method, GIAB High Confidence, GATK/HC, and FreeBayes. Raw variant

counts appear on top of each section, and the percentage of total variants is shown on

bottom.

of genotyping errors, because it makes it easier to detect sequencing errors in the given

reads.

3.5.5 Callset Consensus Analysis

In Figure 3.9, we further dissect the relation of our intersection call set (Long

Read Variants, which refers to variants called by both WhatsHap on PacBio reads and

MarginPhase on nanopore reads) to the GIAB truth set, as well as to the callsets from

GATK/HC and FreeBayes, which both contributed to the GIAB truth set.

Figure 3.9a reveals that 399 156 variants in our Long Read Variants callset

were called by both the GATK Haplotype Caller and FreeBayes, but are not in the

GIAB truth set. To gather additional support for the quality of these calls, we con-

sider two established quality metrics: the transition/transversion ratio (Ti/Tv), and

the heterozygous/non-ref homozygous ratio (het/hom) [168]. The Ti/Tv ratio of these
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variants is 2.10 and the het/hom ratio is 1.29. These ratios are comparable to those

of the GIAB truth set, which are 2.10 and 1.55, respectively. An examination of the

Platinum Genomes benchmark set [35], an alternative to GIAB, reveals 71371 such

long-read validated variants outside of their existing truth set.

We hypothesized that a callset based on long reads is particularly valuable in

regions that were previously difficult to characterize. To investigate this, we separately

examined the intersections of our Long Read Variants callset with the two short-read

callsets both inside the GIAB high confidence regions and outside of them, see Fig-

ure 3.9b and Figure 3.9c, respectively. These Venn diagrams clearly indicate that the

concordance of GATK and FreeBayes was indeed substantially higher in high confidence

regions than outside. An elevated false positive rate of the short-read callers outside

the high confidence regions is a plausible explanation for this observation. Interestingly,

the fraction of calls concordant between FreeBayes and GATK for which we gather ad-

ditional support is considerably lower outside the high confidence regions. This is again

compatible with an increased number of false positives in the short read callsets, but

we emphasize that these statistics should be interpreted with care in the absence of a

reliable truth set for these regions.

3.5.6 Candidate Novel Variants

To demonstrate that our method allows for variant calling on more regions of

the genome than short read variant calling pipelines, we have identified 15 498 variants

which lie outside of the Short Read Mappable area, but inside the Long Read Callable
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regions, i.e. regions in which there is sequencing depth of at least 10 and not more

than 2× the median depth for both sequencing technologies. We determined that 4.43

megabases of the genome (0.146%) is only mappable by long reads in this way.

Table 3.1 provides the counts of all variants found in each of the regions from

Figure 3.6, as well as the counts for candidate variants, among the different types of

genomic features described in Section 3.2. Over two thirds of the candidate variants oc-

curred in the repetitive or duplicated regions described in the UCSC Genome Browser’s

repeatMasker track. The transition/transversion ratio of NA12878’s 15 498 candidate

variants is 1.64, and the heterozygous/homozygous ratio of these variants is 0.31. Given

that we observe one candidate variant in every 325 haplotype bases, compared to one

variant in every 1151 haplotype bases in the GIAB truth set, these candidate variants

exhibit a 3.6× increase in the haplotype variation rate.

3.5.7 Runtimes

Whole genome variant detection using WhatsHap took 147 CPU hours on

PacBio reads and 79.5 hours on Nanopore, of which genotyping took 42.2 and 32.8

hours respectively. The MarginPhase implementation took 583 CPU hours on PacBio

and 330 on Nanopore, with an additional 1730 and 1220 hours for realignment.

3.6 Discussion

We present a method that uses a Hidden Markov Model to partition long

reads into haplotypes, which we found to improve the quality of variant calling. This
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is evidenced by our experiment in cutting and downsampling reads, where reducing the

number of variants spanned by any given read leads to decreased performance at all

levels of read coverage.

Our analysis of the method against a high confidence truth set in high confi-

dence regions shows false discovery rates (corresponding to one minus precision) between

Table 3.1: Distribution of candidate novel variants across different regions of interest.

All variants refers to the variants in the Long Read Variants set, and Novel Variant

Candidates are those described in Section 3.6.

All Variants
Novel Variant

Candidates

Total 2,913,942 15,498

Gencode v27 (ALL) 1,363,064 5,594

Gencode v27 exome 86,357 538

Repeat Masker 1,583,684 10,677

LINEs 690,859 5,161

SINEs 421,340 1,432

Segmental Duplications 157,341 5,683

Tandem Repeats 96,871 5,437

Centromeres 18,644 2,031

Telomeres 295 14
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3 and 6 percent for PacBio, and between 24 and 29 percent for Nanopore. However,

when considering a conservative set of variants confirmed by both long read technolo-

gies, the false discovery rate drops to around 0.3%, comparable with contemporary short

read methods in these regions.

In analyzing the area of the genome with high quality long read mappings, we

found roughly a half a percent of the genome (approximately fifteen megabases) that

is mappable by long reads but not by short reads. This includes one percent of the

human exome, as well as over ten percent of segmental duplications. Even though some

of these areas have low read counts in our experimental data, the fact that they have

high quality mappings means that they should be accessible with sufficient sequencing.

We note that this is not the case for centromeric regions, where Illumina reads were

able to map over twice as much as we found in our PacBio data. This may be a result

of the low quality in long reads preventing them from uniquely mapping to these areas

with an appreciable level of certainty.

Over our entire set of called variants, the Ti/Tv and het/hom ratios were

similar to those reported by the truth set. The Ti/Tv ratio of 2.18 is slightly above the

2.10 reported in the GIAB callset, and the Het/Hom ratio of 1.36 is lower than the 1.55

found in the GIAB variants. In the 15 498 novel variant candidates produced by our

method in regions unmappable by short reads, the Ti/Tv ratio of 1.64 is slightly lower

than that of the truth set. This is not unexpected as gene-poor regions such as these

tend to have more transversions away from C:G pairs [7]. We also observe that the

Het/Hom ratio dropped to 0.31, which could be due to systematic biases in our callset
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or in the reference genome. The rate of variation in these regions was also notably

different than in the high confidence regions, where we find three variants per thousand

haplotype bases (3.6× the rate in high confidence regions). A previous study analyzing

NA12878 [170] also found an elevated variation rate in regions where it is challenging

to call variants, such as low complexity regions and segmental duplications. The study

furthermore found clusters of variants in these regions, which we also observe.

The high precision of our intersected Nanopore/PacBio long read variants set

makes it useful as strong evidence for confirming existing variant calls. As shown in the

read coverage analysis, in both the GIAB and Platinum Genomes efforts many regions

cannot be called with high confidence. In the excluded regions of GIAB we found just

under 400 thousand variants using both Nanopore and PacBio reads with our meth-

ods, which were additionally confirmed with Illumina reads by two other variant callers,

FreeBayes and GATK/HC. Given the extensive support of these variants from multiple

sequencing technologies and variant callers, these variants are good candidates for addi-

tion to the GIAB truth set. Expansion of benchmark sets to harder-to-genotype regions

of the human genome is generally important for the development of more comprehensive

genotyping methods, and we plan to work with these efforts to use our results.

Further, our method is likely to prove useful for future combined diplotyping

algorithms when both genotype and phasing is required, for example as may be used

when constructing phased diploid de novo assemblies [27] or in future hybrid long/short

read diplotyping approaches.
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Part III

Allele Detection and Selection for

Assembly Polishing With

Nanopore Data
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Chapter 4

Groundwork for a diploid-aware

assembly polisher

4.1 Preamble

What follows is selected text from the Nature Biotechnology publication “Nanopore

sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human

genomes” [148], in which I share first-authorship with Kishwar Shafin, Ryan Lorig-

Roach, Marina Haukness, and Hugh E. Olsen. This paper comprises four separate

projects: the generation of ONT sequencing data for eleven samples, assembly of these

samples using a novel method and three existing methods with comparisons across

methodologies, demonstration of a polishing method using the Margin framework, and

an improved polishing method involving a recurrent neural network ran on statistical

summaries generated by Margin. For this chapter, I have excluded sections from the

63



Online Methods which do not pertain to work that I performed.

For this publication, I generated and evaluated a share of the assemblies along-

side Kishwar Shafin, Ryan Lorig-Roach, and Marina Haukness; I implemented, refined,

and evaluated the polishing method with Benedict Paten; and I worked closely with

Kishwar Shafin to develop and fine-tune the RNN method. I helped write the main text

of the paper and generate figures, including the MarginPolish and HELEN sections of

the Online Methods.

I intended the work presented in this chapter to lay the groundwork for a

diploid-aware polisher, but focused exclusively on haploid polishing for this publication.

After submission, as progress was made towards a diploid implementation we found that

different methodologies were better suited for allele detection and genotyping. The iden-

tification and correction of erroneous sequence that MarginPolish performs was largely

transitioned to other tools in the eventual toolchain, but many of the improvements and

additions to the Margin framework described in this chapter were critical to its eventual

success.

4.2 Abstract

Present workflows for producing human genome assemblies from long-read

technologies have cost and production time bottlenecks that prohibit efficient scaling to

large cohorts. We demonstrate an optimized PromethION nanopore sequencing method

for eleven human genomes. The sequencing, performed on one machine in nine days,
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achieved an average 63x coverage, 42 Kb read N50, 90% median read identity and 6.5x

coverage in 100 Kb+ reads using just three flow cells per sample. To assemble these

data we introduce new computational tools: Shasta - a de novo long read assembler,

and MarginPolish & HELEN - a suite of nanopore assembly polishing algorithms. On a

single commercial compute node Shasta can produce a complete human genome assem-

bly in under six hours, and MarginPolish & HELEN can polish the result in just over a

day, achieving greater than 99.9% identity (QV30) for haploid samples from nanopore

reads alone. We evaluate assembly performance for diploid, haploid and trio-binned

human samples in terms of accuracy, cost, and time and demonstrate improvements

relative to current state-of-the-art methods in all areas. We further show that addition

of proximity ligation (Hi-C) sequencing yields near chromosome-level scaffolds for all

eleven genomes.

4.3 Introduction

Short-read sequencing reference-assembly mapping methods only assay about

90% of the current reference human genome assembly [37], and closer to 80% at high-

confidence [181]. The latest incarnations of these methods are highly accurate with

respect to single nucleotide variants (SNVs) and short insertions and deletions (indels)

within this mappable portion of the reference genome [126]. However, short reads are

much less able to de novo assemble a new genome [16], to discover structural variations

(SVs) [4, 80] (including large indels and base-level resolved copy number variations), and
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are generally unable to resolve phasing relationships without exploiting transmission

information or haplotype panels [22].

Third generation sequencing technologies, including linked-reads [12, 45, 169]

and long-read technologies [69, 42], get around the fundamental limitations of short-

read sequencing for genome inference by providing more information per sequencing

observation. In addition to increasingly being used within reference guided methods

[37, 67, 146, 124], long-read technologies can generate highly contiguous de novo genome

assemblies [27].

Nanopore sequencing, as commercialized by Oxford Nanopore Technologies

(ONT), is particularly applicable to de novo genome assembly because it can produce

high yields of very long 100+ kilobase (Kb) reads [70]. Very long reads hold the promise

of facilitating contiguous, unbroken assembly of the most challenging regions of the

human genome, including centromeric satellites, acrocentric short arms, rDNA arrays,

and recent segmental duplications [41, 47, 71]. We contributed to the recent consortium-

wide effort to perform the de novo assembly of a nanopore sequencing based human

genome [70]. This earlier effort required considerable resources, including 53 ONT

MinION flow cells and an assembly process that required over 150,000 CPU hours and

weeks of wall-clock time, quantities that are unfeasible for production scale replication.

Making nanopore long-read de novo assembly easy, cheap and fast will enable

new research. It will permit both more comprehensive and unbiased assessment of

human variation, and creation of highly contiguous assemblies for a wide variety of plant

and animal genomes. Here we report the de novo assembly of eleven diverse human

66



genomes at near chromosome scale using a combination of nanopore and proximity-

ligation (HiC) sequencing [12]. We demonstrate a substantial improvement in yields

and read lengths for human genome sequencing at reduced time, labor, and cost relative

to earlier efforts. Coupled to this, we introduce a toolkit for nanopore data assembly

and polishing that is orders of magnitude faster than state-of-the-art methods.

4.4 Results

4.4.1 Nanopore sequencing eleven human genomes in nine days

We selected for sequencing eleven, low-passage (six passages), human cell lines

of the offspring of parent-child trios from the 1000 Genomes Project (1KGP) [31] and

Genome-in-a-Bottle (GIAB) [177] sample collections. Samples were selected to maxi-

mize captured allelic diversity (see Online Methods).

We performed PromethION nanopore sequencing and HiC Illumina sequencing

for the eleven genomes. Briefly, we isolated HMW DNA from flash-frozen 50 million

cell pellets using the QIAGEN Puregene kit, with some modifications to the standard

protocol to ensure DNA integrity (see Online Methods). For nanopore sequencing, we

performed a size selection to remove fragments less than 10 kilobases (Kb) using the

Circulomics SRE kit, followed by library preparation using the ONT ligation kit (SQK-

LSK109). We used three flow cells per genome, with each flow cell receiving a nuclease

flush every 20-24 hours. This flush removed long DNA fragments that could cause the

pores to become blocked over time. Each flow cell received a fresh library of the same
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sample after the nuclease flush. A total of two nuclease flushes were performed per flow

cell, and each flow cell received a total of three sequencing libraries. We used Guppy

version 2.3.5 with the high accuracy flipflop model for basecalling (see Online Methods).

The nanopore sequencing for these eleven genomes was performed in nine days,

producing 2.3 terabases of sequence. This was made possible by running up to 15

flow cells in parallel during these sequencing runs. Results are shown in Fig. 4.1 and

Supplementary Tables A.1, A.2, and A.3. Nanopore sequencing yielded an average

of 69 gigabases (Gb) per flow cell, with the total throughput per individual genome

ranging between 48x (158 Gb) and 85x (280 Gb) coverage per genome (Fig. 4.1a).

The read N50s for the sequencing runs ranged between 28 Kb and 51 Kb (Fig. 4.1b).

We aligned nanopore reads to the human reference genome (GRCh38) and calculated

their alignment identity to assess sequence quality (see Online Methods). We observed

that the median and modal alignment identity was 90% and 93% respectively (Fig.

4.1c). The sequencing data per individual genome included an average of 55x coverage

arising from 10 Kb+ reads, and 6.5x coverage from 100 Kb+ reads (Fig. 4.1d). This

was in large part due to size-selection which yielded an enrichment of reads longer

than 10 Kb. To test the generality of our sequencing methodology for other samples,

we sequenced high-molecular weight DNA isolated from a human saliva sample using

identical sample preparation. The library was run on a MinION (approximately one

sixth the throughput of a ProMethION flow cell) and yielded 11 Gb of data at a read

N50 of 28 Kb (Supplementary Table A.4), extrapolating both are within the lower

range achieved with cell line derived DNA.
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Figure 4.1: Nanopore sequencing results. (a) Throughput in gigabases from each
of three flowcells for eleven samples, with total throughput at top. (b) Read N50s for
each flowcell. (c) Alignment identities against GRCh38. Medians in a, b and c shown
by dashed lines, dotted line in c is mode. (d) Genome coverage as a function of read
length. Dashed lines indicate coverage at 10 and 100 Kb. HG00733 is bolded as an
example. (e) Alignment identity for standard and run-length encoded (RLE) reads.
Data for HG00733 chromosome 1 are shown. Dashed lines denote quartiles.
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4.4.2 Shasta: assembling a human genome from nanopore reads in

under 6 hours

To assemble the genomes, we developed a new de novo assembly algorithm,

Shasta. Shasta was designed to be orders of magnitude faster and cheaper at assembling

a human-scale genome from nanopore reads than the Canu assembler used in our earlier

work [70]. A detailed description of algorithms and computational techniques used is

provided in the Online Methods section. Here we summarize key points:

• During most Shasta assembly phases, reads are stored in a homopolymer-compressed

(HPC) form using Run-Length Encoding (RLE) [92, 139, 111]. In this form, identi-

cal consecutive bases are collapsed, and the base and repeat count are stored. For

example, GATTTACCA would be represented as (GATACA, 113121). This representa-

tion is insensitive to errors in the length of homopolymer runs, thereby addressing

the dominant error mode for Oxford Nanopore reads [69]. As a result, assembly

noise due to read errors is decreased, and significantly higher identity alignments

are facilitated (Fig. 4.1e).

• A marker representation of reads is also used, in which each read is represented

as the sequence of occurrences of a predetermined, fixed subset of short k-mers

(marker representation) in its run-length representation.

• A modified MinHash [18, 15] scheme is used to find candidate pairs of overlapping

reads, using as MinHash features consecutive occurrences of m markers (default

m= 4).
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• Optimal alignments in marker representation are computed for all candidate pairs.

The computation of alignments in marker representation is very efficient, partic-

ularly as various banded heuristics are used.

• A Marker Graph is created in which each vertex represents a marker found to be

aligned in a set of several reads. The marker graph is used to assemble sequence

after undergoing a series of simplification steps.

• The assembler runs on a single machine with a large amount of memory (typically

1-2 TB for a human assembly). All data structures are kept in memory, and no

disk I/O takes place except for initial loading of the reads and final output of

assembly results.

To validate Shasta, we compared it against three contemporary assemblers:

Wtdbg2 [140], Flye [75] and Canu [78]. We ran all four assemblers on available read

data from two diploid human samples, HG00733 and HG002, and one haploid human

sample, CHM13. HG00733 and HG002 were part of our collection of eleven samples,

and data for CHM13 came from the T2T consortium [159].

Canu consistently produced the most contiguous assemblies, with contig NG50s

of 40.6, 32.3, and 79.5 Mb, for samples HG00733, HG002, and CHM13, respectively (Fig.

4.2a). Flye was the second most contiguous, with contig NG50s of 25.2, 25.9, and 35.3

Mb, for the same samples. Shasta was next with contig NG50s of 21.1, 20.2, and 41.1

Mb. Wtdbg2 produced the least contiguous assemblies, with contig NG50s of 15.3, 13.7,

and 14.0 Mb.
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Figure 4.2: Assembly results for four assemblers and three human samples,
before polishing. (a) NGx plot showing contig length distribution. The intersection of
each line with the dashed line is the NG50 for that assembly. (b) NGAx plot showing
the distribution of aligned contig lengths. Each horizontal line represents an aligned
segment of the assembly unbroken by a disagreement or unmappable sequence with
respect to GRCh38. The intersection of each line with the dashed line is the aligned
NGA50 for that assembly. (c) Assembly disagreement counts for regions outside of
centromeres, segmental duplications and, for HG002, known SVs. (d) Total generated
sequence length vs. total aligned sequence length (against GRCh38). (e) Balanced base-
level error rates for assembled sequences. (f) Average runtime and cost for assemblers
(Canu not shown).
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Conversely, aligning the samples to GRCh38 and evaluating with QUAST

[110], Shasta had between 4.2 to 6.5x fewer disagreements (locations where the assembly

contains a breakpoint with respect to the reference assembly) per assembly than the

other assemblers (Supplementary Table A.5). Breaking the assemblies at these disagree-

ments and unaligned regions with respect to GRCh38, we observe much smaller absolute

variation in contiguity (Fig. 4.2b, Supplementary Table A.5). However, a substantial

fraction of the disagreements identified likely reflect true SVs with respect to GRCh38.

To address this we discounted disagreements within chromosome Y, centromeres, acro-

centric chromosome arms, QH-regions, and known recent segmental duplications (all

of which are enriched in SVs[8, 155]); in the case of HG002, we further excluded a

set of known SVs [180]. We still observe between 1.2x to 2x fewer disagreements in

Shasta relative to Canu and Wtdbg2, and comparable results against Flye (Fig. 4.2c,

Supplementary Table A.6). To account for differences in the fraction of the genomes

assembled, we analysed disagreements contained within the intersection of all the as-

semblies (i.e. in regions where all assemblers produced a unique assembled sequence).

This produced results highly consistent with the prior analysis, and suggests Shasta and

Flye have the lowest and comparable rates of misassembly (Online Methods, Supple-

mentary Table. A.7). Finally, we used QUAST to calculate disagreements between the

T2T Consortium’s chromosome X assembly, a highly curated, validated assembly [159]

and the subset of each CHM13 assembly mapping to it; Shasta has 2x to 17x fewer

disagreements than the other assemblers while assembling almost the same fraction of

the assembly (Supplementary Table A.8).
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Canu consistently assembled the largest genomes (avg. 2.91 Gb), followed by

Flye (avg. 2.83 Gb), Wtdbg2 (avg. 2.81 Gb) and Shasta (avg. 2.80 Gb). We would

expect the vast majority of this assembled sequence to map to another human genome.

Discounting unmapped sequence, the differences are smaller: Canu produced an avg.

2.86 Gb of mapped sequence per assembly, followed by Shasta (avg. 2.79 Gb), Flye

(avg. 2.78 Gb) and Wtdbg2 (avg. 2.76 Gb) (Fig. 4.2d; see Online Methods). This

analysis supports the notion that Shasta is currently relatively conservative vs. its

peers, producing the highest proportion of directly mapped assembly per sample.

For HG00733 and CHM13 we examined a library of bacterial artificial chro-

mosome (BAC) assemblies (see Online Methods). The BACs were largely targeted at

known segmental duplications (473 of 520 BACs lie within 10 Kb of a known duplica-

tion). Examining the subset of BACs for CHM13 and HG00733 that map to unique

regions of GRCh38 (see Online Methods), we find Shasta contiguously assembles all 47

BACs, with Flye performing similarly (Supplementary Table A.9). In the full set we ob-

serve that Canu (411) and Flye (282) contiguously assemble a larger subset of the BACs

than Shasta (132) and Wtdbg2 (108), confirming the notion that Shasta is relatively

conservative in these duplicated regions (Supplementary Table A.10). Examining the

fraction of contiguously assembled BACs of all BACs represented in each assembly we

can measure an aspect of assembly correctness. In this regard Shasta (97%) produces a

much higher percentage of correct BACs in duplicated regions vs. its peers (Canu: 92%,

Flye 87%, Wtdbg2 88%). In the intersected set of BACs attempted by all assemblers

(Supplementary Table A.11) Shasta: 100%, Flye: 100%, Canu: 98.50% and Wtdbg2:
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90.80% all produce comparable results.

Shasta produced the most base-level accurate assemblies (avg. balanced error

rate 0.98% on diploid and 0.54% on haploid), followed by Wtbdg2 (1.18% on diploid

and 0.69% on haploid), Canu (1.40% on diploid and 0.71% on haploid) and Flye (1.64%

on diploid and 2.21% on haploid) (Fig. 4.2e); see Online Methods, Supplementary Table

A.12. We also calculated the base level accuracy in regions covered by all the assemblies

and observe results consistent with the whole genome assessment (Supplementary Table

A.13).

Shasta, Wtdbg2 and Flye were run on a commercial cloud, allowing us to

reasonably compare their cost and run time (Fig. 4.2e; see Online Methods). Shasta

took an average of 5.25 hours to complete each assembly at an average cost of $70 per

sample. In contrast, Wtdbg2 took 7.5x longer and cost 3.7x as much, and Flye took

11.9x longer and cost 9.9x as much. The Canu assemblies were run on a large compute

cluster, consuming up to $19,000 (estimated) of compute and took around 4-5 days per

assembly (see Online Methods, Supplementary Tables A.14, A.15).

To assess the utility of using Shasta for SV characterization we created a

workflow to extract putative heterozygous SVs from Shasta assembly graphs (Online

Methods). Extracting SVs from an assembly graph for HG002, the length distribution of

indels shows the characteristic spikes for known retrotransposon lengths (Supplementary

Fig. A.1). Comparing these SVs to the high-confidence GIAB SV set we find good

concordance, with a combined F1 score of 0.68 (Supplementary Table A.16).
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4.4.3 Contiguously assembling MHC haplotypes

The Major Histocompatibility Complex (MHC) region is difficult to resolve

using short reads due to its repetitive and highly polymorphic nature [17], but recent

efforts to apply long read sequencing to this problem have shown promise [70, 161]. We

analyzed the assemblies of CHM13 and HG00733 to see if they spanned the region. For

the haploid assembly of CHM13 we find MHC is entirely spanned by a single contig in

all 4 assemblers’ output, and most closely resembles the GL000251.2 haplogroup among

those provided in GRCh38 (Fig. 4.3a; Supplementary Fig. A.2 and Supplementary

Table A.17). In the diploid assembly of HG00733 two contigs span the large majority of

the MHC for Shasta and Flye, while Canu and Wtdbg2 span the region with one contig

(Fig. 4.3b; Supplementary Fig. A.3). However, we note that the chimeric diploid

assembly leads to sequences that do not closely resemble any haplogroup (see Online

Methods).

To attempt to resolve haplotypes of HG00733 we performed trio-binning [76],

where we partitioned all the reads for HG00733 into two sets based on likely maternal

or paternal lineage and assembled the haplotypes (see Online Methods). For all haplo-

type assemblies the global contiguity worsened significantly (as the available read data

coverage was approximately halved, and further, not all reads could be partitioned),

but the resulting disagreement count decreased (Supplementary Table A.18). When

using haploid trio-binned assemblies, the MHC was spanned by a single contig for the

maternal haplotype (Fig. 4.3c, Supplementary Fig. A.4, Supplementary Table A.19),
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Figure 4.3: Shasta MHC assemblies vs GRCh38. Unpolished Shasta assembly for

CHM13 and HG00733, including HG00733 trio-binned maternal and paternal assem-

blies. Shaded gray areas are regions in which coverage (as aligned to GRCh38) drops

below 20. Horizontal black lines indicate contig breaks. Blue and green describe unique

alignments (aligning forward and reverse, respectively) and orange describes multiple

alignments.
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with high identity to GRCh38 and having the greatest contiguity and identity with the

GL000255.1 haplotype. For the paternal haplotype, low coverage led to discontinuities

(Fig. 4.3d) breaking the region into three contigs.

4.4.4 Deep neural network based polishing achieves greater than QV30

long-read only haploid polishing accuracy

Accompanying Shasta, we developed a deep neural network based consensus

sequence polishing pipeline designed to improve the base-level quality of the initial as-

sembly. The pipeline consists of two modules: MarginPolish and HELEN. MarginPolish

uses a banded form of the forward-backward algorithm on a pairwise hidden Markov

model (pair-HMM) to generate pairwise alignment statistics from the RLE alignment of

each read to the assembly [34]. From these statistics MarginPolish generates a weighted

RLE Partial Order Alignment (POA) graph [86] that represents potential alternative

local assemblies. MarginPolish iteratively refines the assembly using this RLE POA,

and then outputs the final summary graph for consumption by HELEN. HELEN em-

ploys a multi-task recurrent neural network (RNN) [107] that takes the weights of the

MarginPolish RLE POA graph to predict a nucleotide base and run-length for each

genomic position. The RNN takes advantage of contextual genomic features and asso-

ciative coupling of the POA weights to the correct base and run-length to produce a

consensus sequence with higher accuracy.

To demonstrate the effectiveness of MarginPolish and HELEN, we compared

them with the state-of-the-art nanopore assembly polishing workflow: four iterations
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of Racon polishing [163] followed by Medaka [100]. Here MarginPolish is analogous in

function to Racon, both using pair-HMM based methods for alignment and POA graphs

for initial refinement. Similarly, HELEN is analogous to Medaka, in that both use a

deep neural network and both work from summary statistics of reads aligned to the

assembly.

Figure 4.4a and Supplementary Tables A.20, A.21 and A.22 detail error rates

for the four methods performed on the HG00733 and CHM13 Shasta assemblies (see

Online Methods) using Pomoxis [101]. For the diploid HG00733 sample MarginPolish

and HELEN achieve a balanced error rate of 0.388% (QV 24.12), compared to 0.455%

(QV 23.42) by Racon and Medaka. For both polishing pipelines, a significant fraction of

these errors are likely due to true heterozygous variations. For the haploid CHM13 we

restrict comparison to the highly curated X chromosome sequence provided by the T2T

consortium [159]. We achieve a balanced error rate of 0.064% (QV 31.92), compared to

Racon and Medaka’s 0.110% (QV 29.59).

For all assemblies, errors were dominated by indel errors, e.g. substitution

errors are 3.16x and 2.9x fewer than indels in the polished HG000733 and CHM13 as-

semblies, respectively. Many of these errors relate to homopolymer length confusion;

Fig. 4.4b analyzes the homopolymer error rates for various steps of the polishing work-

flow for HG00733. Each panel shows a heatmap with the true length of the homopolymer

run on the y-axis and the predicted run length on the x-axis, with the color describing

the likelihood of predicting each run length given the true length. Note that the disper-

sion of the diagonal steadily decreases. The vertical streaks at high run lengths in the
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MarginPolish and HELEN confusion-matrix are the result of infrequent numerical and

encoding artifacts (see Online Methods, Supplementary Fig. A.5).

Figure 4.4c and Supplementary Table A.23 show the overall error rate after

running MarginPolish and HELEN on HG00733 assemblies generated by different as-

sembly tools, demonstrating that they can be usefully employed to polish assemblies

generated by other tools.

To investigate the benefit of using short reads for further polishing, we polished

chromosome X of the CHM13 Shasta assembly after MarginPolish and HELEN using

10X Chromium reads with the Pilon polisher [167]. This led to a ˜2x reduction in

base errors, increase the Q score from ˜QV32 (after polishing with MarginPolish and

HELEN) to ˜QV36 (Supplementary Table A.24). Notably, attempting to use Pilon

polishing on the raw Shasta assembly resulted in much poorer results (QV24).

Figure 4.4d and Supplementary Table A.25 describe average runtimes and costs

for the methods (see Online Methods). MarginPolish and HELEN cost a combined $107

and took 29 hours of wall-clock time on average, per sample. In comparison Racon and

Medaka cost $621 and took 142 wall-clock hours on average, per sample. To assess

single-region performance we additionally ran the two polishing workflows on a single

contig (roughly 1% of the assembly size), MarginPolish/HELEN was 3.0x faster than

Racon (1x)/Medaka (Supplementary Table A.26).
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Figure 4.4: Polishing Results. (a) Balanced error rates for the four methods on

HG00733 and CHM13. (b) Row-normalized heatmaps describing the predicted run-

lengths (x-axis) given true run lengths (y-axis) for four steps of the pipeline on HG00733.

(c) Error rates for MarginPolish and HELEN on four assemblies. (d) Average runtime

and cost.
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Sample Assembler Polisher
Genes

Found %

Missing

Genes

Complete

Genes %

HG00733

Canu HELEN 99.741 51 67.038

Flye HELEN 99.405 117 71.768

Wtdbg2 HELEN 97.429 506 66.143

Shasta HELEN 99.228 152 68.069

Shasta Medaka 99.141 169 66.27

CHM13
Shasta HELEN 99.111 175 74.202

Shasta Medaka 99.035 190 73.836

Table 4.1: CAT transcriptome analysis of human protein coding genes for HG00733 and

CHM13.
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4.4.5 Long-read assemblies contain nearly all human coding genes

To evaluate the accuracy and completeness of an assembled transcriptome we

ran the Comparative Annotation Toolkit [46], which can annotate a genome assembly

using the human GENCODE [49] reference human gene set (Table 4.1, Online Methods,

Supplementary Tables A.27, A.28, A.29, and A.30.).

For the HG00733 and CHM13 samples we found that Shasta assemblies pol-

ished with MarginPolish and HELEN were close to representing nearly all human protein

coding genes, having, respectively, an identified ortholog for 99.23% (152 missing) and

99.11% (175 missing) of these genes. Using the restrictive definition that a coding gene

is complete in the assembly only if it is assembled across its full length, contains no

frameshifts, and retains the original intron/exon structure, we found that 68.07% and

74.20% of genes, respectively, were complete in the HG00733 and CHM13 assemblies.

Polishing the Shasta assemblies alternatively with the Racon-Medaka pipeline achieved

similar but uniformly less complete results.

Comparing the MarginPolish and HELEN polished assemblies for HG00733

generated with Flye, Canu and Wtdbg2 to the similarly polished Shasta assembly we

found that Canu had the fewest missing genes (just 51), but that Flye, followed by

Shasta, had the most complete genes. Wtdbg2 was clearly an outlier, with notably larger

numbers of missing genes (506). For comparison we additionally ran BUSCO [152] using

the eukaryote set of orthologs on each assembly, a smaller set of 303 expected single-copy

genes (Supplementary Tables A.31 and A.32). We find comparable performance between
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the assemblies, with small differences largely recapitulating the pattern observed by the

larger CAT analysis.

4.4.6 Comparing to a PacBio HiFi Assembly

We compared the CHM13 Shasta assembly polished using MarginPolish and

HELEN with the recently released Canu assembly of CHM13 using PacBio HiFi reads

[165]; HiFi reads being based upon circular consensus sequencing technology that de-

livers significantly lower error rates. The HiFi assembly has lower NG50 (29.0 Mb vs.

41.0 Mb) than the Shasta assembly (Supplementary Fig. A.6). Consistent with our

other comparisons to Canu, the Shasta assembly also contains a much lower disagree-

ment count relative to GRCh38 (1073) than the Canu based HiFi assembly (8469), a

difference which remains after looking only at disagreements within the intersection of

the assemblies (380 vs. 594). The assemblies have an almost equal NGAx (˜20.0Mb),

but the Shasta assembly covers a smaller fraction of GRCh38 (95.28% vs. 97.03%)

(Supplementary Fig. A.7, Supplementary Table A.33). Predictably, the HiFi assembly

has a higher QV value than the polished Shasta assembly (QV41 vs. QV32).

4.4.7 Assembling, polishing and scaffolding 11 human genomes at near

chromosome scale

To achieve chromosome length sequences we scaffolded all of the polished

Shasta assemblies with HiC proximity-ligation data using HiRise [129] (see Online Meth-

ods, Fig. 4.5a). On average, 891 joins were made per assembly. This increased the
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Figure 4.5: HiRise scaffolding for 11 genomes. (a) NGx plots for each of the

11 genomes, before (dashed) and after (solid) scaffolding with HiC sequencing reads,

GRCh38 minus alternate sequences is shown for comparison. (b) Dot plot showing

alignments between the scaffolded HG00733 Shasta assembly and GRCh38 chromosome

scaffolds. Blue indicates forward aligning segments, green indicates reverse, with both

indicating unique alignments.
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scaffold NG50s to near chromosome scale, with a median of 129.96 Mb, as shown in Fig.

4.5a, with additional assembly metrics in Supplementary Table A.36. Proximity-ligation

data can also be used to detect misjoins in assemblies. In all 11 Shasta assemblies, no

breaks to existing contigs were made while running HiRise to detect potential misjoins.

Aligning HG00733 to GRCh38, we find no major rearrangements and all chromosomes

are spanned by one or a few contigs (Fig. 4.5b), with the exception of chrY which is

absent because HG00733 is female. Similar results were observed for HG002 (Supple-

mentary Fig. A.8).

4.5 Discussion

In this paper we demonstrate the sequencing and assembly of eleven diverse

human genomes in a time and cost efficient manner using a combination of nanopore

and proximity ligation sequencing.

The PromethION realizes dramatic improvements in yield per flow cell, allow-

ing the sequencing of each genome with just three flow cells at an average coverage

of 63x. This represents a large reduction in associated manual effort and a dramatic

practical improvement in parallelism; a single PromethION allows up to 48 flow cells

to be run concurrently. Here we completed all 2.3 terabases of nanopore data collec-

tion in nine days on one PromethION, running up to 15 flow cells simultaneously (it is

now possible to run 48 concurrently). In terms of contemporary long-read sequencing

platforms, this throughput is unmatched.
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Due to the length distribution of human transposable elements, we found it

better to discard reads shorter than 10 Kb to prevent multi-mapping. The Circulomics

SRE kit reduced the fraction of reads ¡10 Kb to around 13%, making the majority usable

for assembly. Conversely, the right tail of the read length distribution is long, yielding an

average of 6.5x coverage per genome in 100 Kb+ reads. This represents an enrichment of

around 7 fold relative to our earlier MinION effort [70]. In terms of assembly, the result

was an average NG50 of 18.5 Mb for the 11 genomes, ˜3x higher than in that initial

effort, and comparable with the best achieved by alternative technologies [42, 172]. We

found the addition of HiC sequencing for scaffolding necessary to achieve chromosome

scale, making 891 joins on average per assembly. However, our results are consistent

with previous modelling based on the size and distribution of large repeats in the human

genome, which predicts that an assembly based on 30x coverage of such 100 Kb+ reads

would approach the continuity of complete human chromosomes [70, 159].

Relative to alternate long-read and linked-read sequencing, the read identity of

nanopore reads has proven lower [69, 70]. However, original reports of 66% identity [69]

for the original MinION are now historical footnotes: we observe modal read identity of

92.5%, resulting in better than QV30 base quality for haploid polished assembly from

nanopore reads alone. The accurate resolution of highly repetitive and recently dupli-

cated sequence will depend on long-read polishing, because short-reads are generally

not uniquely mappable. Further polishing using complementary data types, including

PacBio HiFi reads [172] and 10x Chromium [104], will likely prove useful in achieving

QV40+ assemblies.
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The advent of third generation technologies has dramatically lowered the cost

of high-contiguity long-read de novo assembly relative to earlier methods [87]. This cost

reduction is still clearly underway. The first MinION human assembly cost ˜$40,000

in flow cells and reagents [70]. After a little over a year, the equivalent cost per sam-

ple here was ˜$6,000. At bulk with current list-pricing, this cost would be reduced to

˜$3,500 per genome. It is not unreasonable to expect further yield growth and result-

ing cost reduction of nanopore and competing platforms such that we foresee $1,000

total sequencing cost high-contiguity de novo plant and animal genome assembly being

achieved - a milestone that will likely make many ambitious comparative genomic efforts

economic [120, 89].

With sequencing efficiency for long-reads improving, computational considera-

tions are paramount in figuring overall time, cost and quality. Simply put, large genome

de novo assembly will not become ubiquitous if the requirements are weeks of assembly

time on large computational clusters. We present three novel methods that provide a

pipeline for the rapid assembly of long nanopore reads. Shasta can produce a draft

human assembly in around six hours and $70 using widely available commercial cloud

nodes. This cost and turnaround time is much more amenable to rapid prototyping and

parameter exploration than even the fastest competing method (Wtdbg2), which was

on average 7.5x slower and 3.7x more expensive. Connected together, the three tools

presented allow a polished assembly to be produced in ˜24 hours and for ˜$180, against

the fastest comparable combination of Wtdbg2, Racon, and Medaka which costs 5.3x

more and is 4.3x slower while producing measurably worse results in terms of disagree-
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ments, contiguity and base-level accuracy. Substantial further parallelism of polishing,

the dominant time component in our current pipeline, is easily possible. We are now

working toward the goal of having a half-day turn around of our complete computational

pipeline. With real-time base calling, a DNA-to-de novo assembly could be achieved in

less than 96 hours with little difficulty. Such speed could make these techniques practical

for screening human genomes for abnormalities in difficult-to-sequence regions.

All three presented computational methods employ run-length encoding of

reads. By operating on homopolymer-compressed nucleotide sequences, we mitigate

effects of the dominant source of error in nanopore reads [130] and enable the use of

different models for addressing alignment and run-length estimation orthogonally.

Shasta produces a notably more conservative assembly than competing tools,

trading greater correctness for contiguity and total produced sequence. For example, the

ratio of total length to aligned length is relatively constant for all other assemblers, where

approximately 1.6% of sequence produced does not align across the three evaluated

samples. In contrast, on average just 0.38% of Shasta’s sequence does not align to

GRCh38, representing a more than 4x reduction in unaligned sequence. Additionally,

we note substantially lower disagreement counts, resulting in much smaller differences

between the raw NGx and corrected NGAx values. Shasta also produces substantially

more base-level accurate assemblies than the other competing tools. MarginPolish and

HELEN provide a consistent improvement of base quality over all tested assemblers, with

more accurate results than the current state-of-the-art long read polishing workflow.

We have assembled and compared haploid, trio-binned and diploid samples.
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Trio binned samples show great promise for haplotype assembly, for example contigu-

ously assembling an MHC haplogroup, but the halving of effective coverage resulted

in ultimately less contiguous human assemblies with higher base-error rates than the

related, chimeric diploid assembly. This can potentially be rectified by merging the

haplotype assemblies to produce a pseudo-haplotype or increasing sequencing coverage.

Indeed the improvements in contiguity and base accuracy in CHM13 over the diploid

samples illustrate what can be achieved with higher coverage of a haploid sample. We

believe that one of the most promising directions for the assembly of diploid samples

is the integration of phasing into the assembly algorithm itself, as pioneered by others

[27, 52, 88]. We anticipate that the novel tools we’ve described here are suited for this

next step: the Shasta framework is well placed for producing phased assemblies over

structural variants, MarginPolish is built off of infrastructure designed to phase long

reads [37], and the HELEN model could be improved to include haplotagged features

for the identification of heterozygous sites.
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4.7 Online Methods

4.7.1 Analysis methods

4.7.1.1 Read alignment identities

To generate the identity violin plots (Fig. 4.1c/e) we aligned all the reads

for each sample and flowcell to GRCh38 using minimap2 [92] with the map-ont preset.

Using a custom script get summary stats.py in the repository https://github.com/

rlorigro/nanopore_assembly_and_polishing_assessment, we parsed the alignment

for each read and enumerated the number of matched (N=), mismatched (NX), inserted

(NI), and deleted (ND) bases. From this, we calculated alignment identity as N=/(N= +

NX +NI +ND). These identities were aggregated over samples and plotted using the

seaborn library with the script plot summary stats.py in the same repository. This

method was used to generate both Figure 4.1c and Figure 4.1e. For Figure 4.1e, we se-

lected reads from HG00733 flowcell1 aligned to GRCh38 chr1. The “Standard” identities

are used from the original reads/alignments. To generate identity data for the “RLE”

portion, we extracted the reads above, run-length encoded the reads and chr1 reference,

and followed the alignment and identity calculation process described above. Sequences

were run-length encoded using a simple script (github.com/rlorigro/runlength_

analysis/blob/master/runlength_encode_fasta.py) and aligned with minimap2 us-

ing the map-ont preset and --k 19.
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4.7.1.2 Runtime and Cost Analysis

Our runtime analysis was generated with multiple methods detailing the amount

of time the processes took to complete. These methods include the unix command

time and a home-grown resource tracking script which can be found in the https:

//github.com/rlorigro/TaskManager repository. We note that the assembly and pol-

ishing methods have different resource requirements, and do not all fully utilize available

CPUs, GPUs, and memory over the program’s execution. As such, we report runtimes

using wall clock time and the number of CPUs the application was configured to use,

but do not convert to CPU hours. Costs reported in the figures are the product of the

runtime and AWS instance price. Because portions of some applications do not fully

utilize CPUs, cost could potentially be reduced by running on a smaller instance which

would be fully utilized, and runtime could be reduced by running on a larger instance

which can be fully utilized for some portion of execution. We particularly note the long

runtime of Medaka and found that for most of the total runtime, only a single CPU was

used. Lastly, we note that data transfer times are not reported in runtimes. Some of the

data required or generated exceeds hundreds of gigabytes, which could be potentially

significant in relation to the runtime of the process. Notably, the images generated by

MarginPolish and consumed by HELEN were often greater than 500 GB in total.

All recorded runtimes are reported in the supplement. For Shasta, times were

recorded to the tenth of the hour. All other runtimes were recorded to the minute.

All runtimes reported in figures were run on the Amazon Web Services cloud platform
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(AWS).

Shasta runtime reported in Fig. 4.2f was determined by averaging across all 12

samples. Wtdbg2 runtime was determined by summing runtimes for wtdbg2 and wtpoa-

cns and averaging across the HG00733, HG002, and CHM13 runs. Flye runtime was

determined by averaging across the HG00733, HG002, and CHM13 runs, which were

performed on multiple instance types (x1.16xlarge and x1.32xlarge). We calculated

the total cost and runtime for each run and averaged these amounts; no attempt to

convert these to a single instance type was performed. Precise Canu runtimes are not

reported, as they were run on the NIH Biowulf cluster. Each run was restricted to

nodes with 28 cores (56 hyperthreads) (2x2680v4 or 2x2695v3 Intel CPUs) and 248GB

of RAM or 16 cores (32 hyperthreads) (2x2650v2 Intel CPUs) and 121GB of RAM. Full

details of the cluster are available at https://hpc.nih.gov. The runs took between

219 and 223 thousand CPU hours (4-5 wall-clock days). No single job used more than

80GB of RAM/12 CPUs. We find the r5.4xlarge ($1.008 per hour) to be the cheapest

AWS instance type possible considering this resource usage, which puts estimated cost

between $18,000 and $19,000 per genome.

For MarginPolish, we recorded all runtimes, but used various thread counts

that did not always fully utilize the instance’s CPUs. The runtime reported in the figure

was generated by averaging across 8 of the 12 samples, selecting runs that used 70 CPUs

(of the 72 available on the instance). The samples this was true for were GM24385,

HG03492, HG01109, HG02055, HG02080, HG01243, HG03098, and CHM13. Runtimes

for read alignments used by MarginPolish were not recorded. Because MarginPolish
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requires an aligned BAM, we found it unfair to not report this time in the figure as

it is a required step in the workflows for MarginPolish, Racon, and Medaka. As a

proxy for the unrecorded read alignment time used to generate BAMs for MarginPolish,

we added the average alignment time recorded while aligning reads in preparation for

Medaka runs. We note that the alignment for MarginPolish was done by piping output

from minimap2 directly into samtools sort, and piping this into samtools view to

filter for primary and supplementary reads. Alignment for Medaka was done using

mini align, which is a wrapper for minimap2 bundled in Medaka that simultaneously

sorts output.

Reported HELEN runs were performed on GCP except for HG03098, but

on instances that match the AWS instance type p2.8xlarge in both CPU count and

GPU (NVIDIA Tesla P100). As such, the differences in runtime between the platforms

should be negligible, and we have calculated cost based on the AWS instance price for

consistency. The reported runtime is the sum of time taken by call consensus.py and

stitch.py. Unannotated runs were performed on UCSC hardware.

Racon runtimes reflect the sum of four series of read alignment and polishing.

The time reported in the figure is the average of the runtime of this process run on the

Shasta assembly for HG00733, HG002, and CHM13.

Medaka runtime was determined by averaging across the HG00733, HG002,

and CHM13 runs after running Racon 4× on the Shasta assembly. We again note that

this application in particular did not fully utilize the CPUs for most of the execution,

and in the case of HG00733 appeared to hang and was restarted. The plot includes the
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average runtime from read alignment using minialign; this is separated in the tables

in the supplementary results. We ran Medaka on an x1.16xlarge instance, which

had more memory than was necessary. When determining cost, we chose to price the

run based on the cheapest AWS instance type that we could have used accounting for

configured CPU count and peak memory usage (c5n.18xlarge). This instance could

have supported 8 more concurrent threads, but as the application did not fully utilize

the CPUs we find this to be a fair representation.

4.7.1.3 BAC Analysis

At a high level, the BAC analysis was performed by aligning BACs to each

assembly, quantifying their resolution, and calculating identity statistics on those that

were fully resolved.

We obtained 341 BACs for CHM13 [81, 164] and 179 for HG00733 [22] (com-

plete BAC clones of VMRC62), which had been selected primarily by targeting complex

or highly duplicated regions. We performed the following analysis on the full set of of

BACs (for CHM13 and HG00733), and a subset selected to fall within unique regions

of the genome. To determine this subset, we selected all BACs which are greater than

10 Kb away from any segmental duplication, resulting in 16 of HG00733 and 31 of

CHM13. This subset represents simple regions of the genome which we would expect

all assemblers to resolve.

For the analysis, BACs were aligned to each assembly with the command

minimap2 --secondary=no -t 16 -ax asm20 assembly.fasta bac.fasta
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> assembly.sam and converted to a PAF-like format which describes aligned regions

of the BACs and assemblies. Using this, we calculated two metrics describing how

resolved each BAC was: closed is defined as having 99.5% of the BAC aligned to a

single locus in the assembly; attempted is defined as having a set of alignments covering

>= 95% of the BAC to a single assembly contig where all alignments are at least 1kb

away from the contig end. If such a set exists, it counts as attempted. We furthermore

calculate median and mean identities (using alignment identity metric described above)

of the closed BACs. These definitions were created such that a contig that is counted as

attempted but not closed likely reflects a disagreement. The code for this can be found

at https://github.com/skoren/bacValidation.

4.7.2 MarginPolish

Throughout we used MarginPolish (https://github.com/ucsc-nanopore-cgl/

MarginPolish) version 1.0.0.

MarginPolish is an assembly refinement tool designed to sum over (marginalize)

read to assembly alignment uncertainty. It takes as input a genome assembly and set

of aligned reads in BAM format.

It outputs a refined version of the input genome assembly after attempting to

correct base-level errors in terms of substitutions and indels (insertions and deletions).

It can also output a summary representation of the assembly and read alignments as

a weighted partial order alignment graph (POA), which is used by the HELEN neural

network based polisher described below.
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It was designed and is optimized to work with noisy long ONT reads, although

parameterization for other, similar read types is easily possible. It does not yet consider

signal-level information from ONT reads. It is also currently a haploid polisher, in that

it does not attempt to recognize or represent heterozygous polymorphisms or phasing

relationships. For haploid genome assemblies of a diploid genome it will therefore fail

to capture half of all heterozygous polymorphisms.

Algorithm Overview MarginPolish works in overview as follows:

1. Reads and the input assembly are converted to their run-length encoding (RLE)

(see Shasta description above for description and rationale).

2. A restricted, weighted Partial Order Alignment [86] (POA) graph is constructed

representing the RLE input assembly and potential edits to it in terms of substi-

tutions and indels.

3. Within identified regions of the POA containing likely assembly errors:

• A set of alternative sequences representing combinations of edits are enumer-

ated by locally traversing the POA within the region.

• The likelihood of the existing and each alternative sequence is evaluated given

the aligned reads.

• If an alternative sequence with higher likelihood than the current reference

exists then the assembly at the location is updated with this higher likelihood

sequence.
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4. Optionally, the program loops back to step 2 to repeat the refinement process (by

default it loops back once).

5. The modified RLE assembly is expanded by estimating the repeat count of each

base given the reads using a simple Bayesian model. The resulting final, polished

assembly is output. In addition, a representation of the weighted POA can be

output.

Innovations Compared to existing tools MarginPolish is most similar to

Racon [163], in that they are comparable in speed, both principally use small-parameter

HMM like models and both do not currently use signal information. Compared to

Racon MarginPolish has some key innovations that we have found to improve polishing

accuracy:

• MarginPolish, as with our earlier tool in the Margin series [37], uses the forward-

backward and forward algorithms for pair hidden Markov models (HMMs) to sum

over all possible pairwise alignments between pairs of sequences instead of the

single most probable alignment (Viterbi). Considering all alignments allows more

information to be extracted per read.

• The POA graph is constructed from a set of weights computed from the posterior

alignment probabilities of each read to the initial assembled reference sequence

(see below), the result is that MarginPolish POA construction does not have a

read-order dependence. This is somewhat similar to that described by HGAP3
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[26]. Most earlier algorithms for constructing POA graphs have a well known

explicit read order dependence that can result in undesirable topologies [86].

• MarginPolish works in run-length encoded space, which results in considerably

less alignment uncertainty and correspondingly improved performance.

• MarginPolish, similarly to Nanopolish [99], evaluates the likelihood of each alter-

native sequence introduced into the assembly. This improves performance relative

to a faster but less accurate algorithm that traces back a consensus sequence

through the POA graph.

• MarginPolish employs a simple chunking scheme to break up the polishing of the

assembly into overlapping pieces. This results in low memory usage per core and

simple parallelism.

Below steps 2, 3 and 5 of the MarginPolish algorithm are described in detail.

In addition, the parallelization scheme is described.

Partial Order Alignment Graph Construction To create the POA we

start with the existing assembled sequence s= s1,s2, . . .sn and for each read r= r1, r2, . . . , rm

in the set of reads R use the Forward-Backward algorithm with a standard 3-state,

affine-gap pair-HMM to derive posterior alignment probabilities using the implementa-

tion described in [122]. The parameters for this model are specified in the polish.hmm

subtree of the JSON formatted parameters file, including polish.hmm.transitions,

and polish.hmm.emissions. Current defaults were tuned via expectation maximiza-
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tion [69] of R9.4 ONT reads aligned to a bacterial reference; we have observed the

parameters for this HMM seem robust to small changes in base-caller versions. The re-

sult of running the Forward-backward algorithm is three sets of posterior probabilities:

• Firstly match probabilities: the set of posterior match probabilities, each the prob-

ability P (ri �sj) that a read base ri is aligned to a base sj in s.

• Secondly insertion probabilities: the set of posterior insertion probabilities, each

the probability P (ri �−j) that a read base ri is inserted between two bases sj and

sj+1 in s, or, if j = 0, inserted before the start of s, or, if j = n, after the end of s.

• Thirdly deletion probabilities, the set of posterior deletion probabilities, each the

probability P (−i�sj) that a base sj in s is deleted between two read bases ri and

ri+1. (Note, because a read is generally an incomplete observation of s we consider

the probability that a base in s is deleted before the first position or after the last

position of a read as 0).

As most probabilities in these three sets are very small and yet to store and compute all

the probabilities would require evaluating comparatively large forward and backward

alignment matrices we restrict the set of probabilities heuristically as follows:

• We use a banded forward-backward algorithm, as originally described here [123].

To do this we use the original alignment of the read to s as in the input BAM file.

Given that s is generally much longer than each read this allows computation of

each forward-backward invocation in time linearly proportional to the length of
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each read, at the cost of restricting the probability computation to a sub-portion

of the overall matrix, albeit one that contains the vast majority of the probability

mass.

• We only store posterior probabilities above a threshold

(polish.pairwiseAlignmentParameters.threshold, by default 0.01), treating

smaller probabilities as equivalent as zero.

The result is that these three sets of probabilities are a very sparse subset of

the complete sets.

To estimate the posterior probability of a multi-base insertion of a read sub-

string ri, ri+1, . . . rk at a given location j in s involves repeated summation over terms

in the forward and backward matrices. Instead to approximate this probability we

heuristically use:

P (ri, ri+1, . . . rk �−j) = argmin
l∈[i,k]

P (rl �−j)

the minimum probability of any base in the multi-base insertion being individ-

ually inserted at the location in s as a proxy, a probability that is an upper-bound on

the actual probability.

Similarly we estimate the posterior probability of a deletion involving more

than one contiguous base s at a given location in a read using analogous logic. As we

store a sparse subset of the single-base insertion and deletion probabilities and given

these probability approximations it is easy to calculate all the multi-base indel prob-

abilities with value greater than t by linear traversal of the single-based insertion and
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deletion probabilities after sorting them, respectively, by their read and s coordinates.

The result of such calculation is expanded sets of insertion and deletion probabilities

that include multi-base probabilities.

To build the POA we start from s, which we call the backbone. The backbone

is a graph where each base sj in s corresponds to a node, there are special source and

sink nodes (which do not have a base label), and the directed edges connect the nodes

for successive bases sj , sj+1 in s, from the source node to the node for s1, and, similarly,

from the node for sn to the sink node.

Each non-source/sink node in the backbone has a separate weight for each

possible base x ∈ {A,C,G,T}. This weight:

w(j,x) =
∑
r∈R

∑
i

1x(ri)P (ri �sj)

where 1x(ri) is an indicator function that is 1 if ri = x and otherwise 0, cor-

responds to the sum of match probabilities of read elements of base x being aligned to

sj . This weight has a probabilistic interpretation: it is the total number of expected

observations of the base x in the reads aligned to sj , summing over all possible pairwise

alignments of the reads to s. It can be fractional because of the inherent uncertainty of

these alignments, e.g. we may predict only a 50% probability of observing such a base

in a read.

We add deletion edges, which connect nodes in the backbone. Indexing the

nodes in the backbone from 0 (the source) to the source n+ 1 (the sink), a deletion

edge between positions j and k in the backbone corresponds to the deletion of bases
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j,j + 1, . . .k− 1 in s. Each deletion edge has a weight equal to the sum of deletion

probabilities for deletion events that delete the corresponding base(s) in s, summing over

all possible deletion locations in all reads. Deletions with no weight are not included.

Again, this weight has a probabilistic interpretation: it is the expected number of times

we see the deletion in the reads, and again it may be fractional.

We represent insertions as nodes labelled with an insertion sequence. Each

insertion node has a single incoming edge from a backbone node, and a single outgoing

edge to the next backbone node in the backbone sequence. Each insertion is labeled

with a weight equal to the sum of probabilities of events that insert the given insertion

sequence between the corresponding bases in s. The resulting POA is a restricted form

of a weighted, directed acyclic graph (Fig. 4.6(A) shows an example).

Frequently either an insertion or deletion can be made between different suc-

cessive bases in s resulting in the same edited sequence. To ensure that such equivalent

events are not represented multiple times in the POA, and to ensure we sum their

weights correctly, we ‘left shift’ indels to their maximum extent. When shifting an indel

results in multiple equivalent deletion edges or insertions we remove the duplicate ele-

ments, updating the weight of the residual element to include the sum of the weights of

the removed elements. For example, the insertion of ‘AT’ in Fig. 4.6 is shifted left to its

maximal extent, and could include the merger of an equivalent ‘AT’ insertion starting

two backbone nodes to the right.
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Figure 4.6: A) An example POA, assuming approximately 30x read coverage. The

backbone is shown in red. Each non-source/sink node has a vector of weights, one for

each possible base. Deletion edges are shown in teal, they also each have a weight.

Finally insertion nodes are shown in brown, each also has a weight. (B) A pruned POA,

removing deletions and insertions that have less than a threshold weight and highlight-

ing plausible bases in bold. There are six plausible nucleotide sequences represented

by paths through the POA and selections of plausible base labels: G;AT;A;T;A;C:A,

G;AT;A;T;A;C:G, G;A;T;A;C:A, G;A;T;A;C:G, G;A;C:A, G;A;C:G. To avoid the com-

binatorial explosion of such enumeration we identify subgraphs (C) and locally enumer-

ate the possible subsequences in these regions independently (dotted rectangles identify

subgraphs selected). In each subgraph there is a source and sink node that does not

overlap any proposed edit.
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Local Haplotype Proposal After constructing the POA we use it to sample

alternative assemblies. We first prune the POA to mark indels and base substitutions

with weight below a threshold, which are generally the result of sequencing errors (Fig.

4.6(B)). Currently this threshold (polish.candidateVariantWeight=0.18, established

empirically) is normalized as a fraction of the estimated coverage at the site, which

is calculated in a running window around each node in the backbone of 100 bases.

Consequently if fewer than 18% of the reads are expected to include the change then

the edit is pruned from consideration.

To further avoid a combinatorial explosion we sample alternative assemblies

locally. We identify subgraphs of s containing indels and substitutions to s then in each

subgraph, defined by a start and end backbone vertex, we enumerate all possible paths

between the start and end vertex and all plausible base substitutions from the backbone

sequence. The rationale for heuristically doing this locally is that two subgraphs sep-

arated by one or more anchor backbone sites with no plausible edits are conditionally

independent of each other given the corresponding interstitial anchoring substring of s

and the substrings of the reads aligning to it. Currently, any backbone site more than

polish.columnAnchorTrim=5 nodes (equivalent to bases) in the backbone from a node

overlapping a plausible edit (either substitution or indel) is considered an anchor. This

heuristic allows for some exploration of alignment uncertainty around a potential edit.

Given the set of anchors computation proceeds by identifying successive pairs of anchors

separated by subgraphs containing the potential edits, with the two anchors considered

the source and sink vertex.
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Figure 4.7: Visual representation of run length inference. This diagram shows

how a consensus run length is inferred for a set of aligned lengths (X) that pertain to

a single position. The lengths are factored and then iterated over, and log likelihood

is calculated for every possible true length up to a predefined limit. Note that in this

example, the most frequent observation (4bp) is not the most likely true length (5bp)

given the model.

A Simple Bayesian Model for Run-length Decoding Run-length en-

coding allows for separate modelling of length and nucleotide error profiles. In par-

ticular, length predictions are notoriously error prone in nanopore basecalling. Since

homopolymers produce continuous signals, and DNA translocates at a variable rate

through the pore, the basecaller often fails to infer the true number of bases given a

single sample. For this reason, a Bayesian model is used for error correction in the

length domain, given a distribution of repeated samples at a locus.

To model the error profile, a suitable reference sequence is selected as the truth

set. Reads and reference are run-length encoded and aligned by their nucleotides. The
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alignment is used to generate a mapping of observed lengths to their true length (y,x)

where y = true and x= observed for each position in the alignment. Observations from

alignment are tracked using a matrix of predefined size (ymax = 50,xmax = 50) in which

each coordinate contains the corresponding count for (y,x). Finally the matrix is nor-

malized along one axis to generate a probability distribution of P (X|yj) for j in [1,ymax].

This process is performed for each of the 4 bases.

With enough observations, the model can be used to find the most probable

true run length given a vector of observed lengths X. This is done using a simple

log likelihood calculation over the observations xi for all possible true lengths yj in

Y , assuming the length observations to be independent and identically distributed.

The length yj corresponding to the greatest likelihood P (X|yj ,Base) is chosen as the

consensus length for each alignment position (Fig. 4.7).

4.7.2.1 Training

To generate a model, we ran MarginPolish with reads from a specific basecaller

version aligned to a reference (GRCh38) and specified the --outputRepeatCounts flag.

This option produces a TSV for each chunk describing all the observed repeat counts

aligned to each backbone node in the POA. These files are consumed by a script in

the https://github.com/rlorigro/runlength_analysis repository, which generates

a RLE consensus sequence, aligns to the reference, and performs the described process

to produce the model.

The allParams.np.human.guppy-ff-235.json model used for most of the
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Figure 4.8: Run-length confusion in different versions of Guppy base caller

analysis was generated from HG00733 reads basecalled with Guppy Flipflop v2.3.5

aligned to GRCh38, with chromosomes 1, 2, 3, 4, 5, 6, and 12 selected. The model

allParams.np.human.guppy-ff-233.json was generated from Guppy Flipflop v2.3.3

data and chromosomes 1-10 were used. This model was also used for the CHM13 anal-

ysis, as the run-length error profile is very similar between v2.3.3 and v2.3.1 (v2.3.5 has

a drastically different error profile, as is shown below in Fig. 4.8).

Parallelization and Computational Considerations To parallelize Margin-

Polish we break the assembly up into chunks of size polish.chunkSize=1000 bases,

with an overlap of polish.chunkBoundary=50 bases. We then run the MarginPolish

algorithm on each chunk independently and in parallel, stitching together the resulting

chunks after finding an optimal pairwise alignment (using the default hmm described

earlier) of the overlaps that we use to remove the duplication. We can further parallelize

the algorithm across machines or processes using a provided Toil script.

Memory usage scales with thread count, read depth, and chunk size. For
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this reason, we downsample reads in a chunk to polish.maxDepth=50× coverage by

counting total nucleotides in the chunk Nc and discarding reads with likelihood 1−

(chunkSize + 2∗chunkBoundary)∗maxDepth/Nc. With these parameters, we find that

2GB of memory per thread is sufficient to run MarginPolish on genome-scale assemblies.

Across 13 whole-genome runs, we averaged roughly 350 CPU hours per gigabase of

assembled sequence.

4.7.3 HELEN: Homopolymer Encoded Long-read Error-corrector for

Nanopore

HELEN is a deep neural network based haploid consensus sequence polisher.

HELEN employs a multi-task recurrent neural network (RNN) [107] that takes the

weights of the partial order alignment (POA) graph of MarginPolish to predict a base

and a run-length for each genomic position. MarginPolish constructs the POA graph

by performing multiple possible alignments of a single read that makes the weights as-

sociative to the correct underlying base and run-length. The RNN employed in HELEN

takes advantage of the transitive relationship of the genomic sequence and associative

coupling of the POA weights to the correct base and run-length to produce a consensus

sequence with higher accuracy.

The error-correction with HELEN is done in three steps. First, we generate

tensor-like images of genomic segments with MarginPolish that encodes POA graph

weights for each genomic position. Then we use a trained RNN model to produce

predicted bases and run-lengths for each of the generated images. Finally, we stitch the
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chunked sequences to get a contiguous polished sequence.

4.7.3.1 Image Generation

MarginPolish produces an image-like summary of the final POA state for use

by HELEN. At a high level, the image summarizes the weighted alignment likelihoods

of all reads divided into nucleotide, orientation, and run-length.

The positions of the POA nodes are recorded using three coordinates: the

position in the backbone sequence of the POA, the position in the insert sequences

between backbone nodes, and the index of the run-length block. All backbone positions

have an insert coordinate of 0. Each backbone and insert coordinate includes one or

more run-length coordinate.

When encoding a run-length, we divide all read observations into blocks from 0

to 10 inclusive (this length is configurable). For cases where no observations exceed the

maximum run-length, a single run-length image can describe the POA node. When an

observed run-length exceeds the length of the block, the run-length is encoded as that

block’s maximum (10), and the remaining run-length is encoded in successive blocks.

For a run-length that terminates in a block, its weight is contributed to the run-length

0 column in all successive blocks. This means that the records for all run-length blocks

of a given backbone and insert position have the same total weight. As an example,

consider three read positions aligned to a node with run-lengths of 8, 10, and 12. These

require two run-length blocks to describe: the first block includes one 8 and two 10s,

and the second includes two 0s and one 2.
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(i)
Assembly sequence: GGAAAAAAAACATTTTAAAA
True sequence:         GGAAAAAAAA - - TTTTAAAA

Assembly sequence in run-length: G A A C A T A
2 5 3 1 1 4 4

Truth sequence in run-length: G A A - - T A
2 5 3 0 0 4 4

(ii)
Assembly sequence: ATGAAA - - CTTG
True sequence:         ATGAAAGGCTTG

Assembly sequence in run-length: A T G A C T G
1 1 1 3 1 2 1

Truth sequence in run-length: A T G A G C T G
1 1 1 3 2 1 2 1

a.

b.

(i)

(ii)

Figure 4.9: MarginPolish Images A graphical representation of images from two

labeled regions selected to demonstrate: the encoding of a single POA node into two

run-length blocks (i), a true deletion (i), and a true insert (ii). The y-axis shows truth

labels for nucleotides and run-lengths, the x-axis describes features in the images, and

colors show associated weights.
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The information described at each position (backbone, insert, and run-length)

is encoded in 92 features: each nucleotide {A, C, T, G} and run-length {0, 1, .., 10},

plus a gap weight (for deletions in read alignments). The weights for each of these 45

observations are separated into forward and reverse strand for a total of 90 features.

The weights for each of these features are normalized over the total weight for the record

and accompanied by an additional data point describing the total weight of the record.

This normalization column for the record is an approximation of the read depth aligned

to that node. Insert nodes are annotated with a binary feature (for a final total of 92);

weights for an insert node’s alignments are normalized over total weight at the backbone

node it is rooted at (not the weight of the insert node itself) and gap alignment weights

are not applied to them.

Labeling nodes for training requires a truth sequence aligned to the assembly

reference. This provides a genome-scale location for the true sequence and allows the its

length to help in the resolution of segmental duplications or repetitive regions. When

a region of the assembly is analyzed with MarginPolish, the truth sequences aligned to

that region are extracted. If there is not a single truth sequence which approximately

matches the length of the consensus for this region, we treat it as an uncertain region

and no training images are produced. Having identified a suitable truth sequence, it is

aligned to the final consensus sequence in non-run-length space with Smith-Waterman.

Both sequences and the alignment are then run-length encoded, and true labels are

matched with locations in the images. All data between the first and last matched

nodes are used in the final training images (leading and trailing inserts or deletes are

113



discarded). For our training, we aligned the truth sequences with minimap2 using the

asm20 preset and filtered the alignments to include only primary and supplementary

alignments (no secondary alignments).

Fig. 4.9 shows a graphical representation of the images. On the y-axis we

display true nucleotide labels (with the dash representing no alignment / gap) and true

run-length. On the x-axis the features used as input to HELEN are displayed: first

the normalization column (the total weight at the backbone position), second the insert

column (the binary feature encoding whether the image is for a backbone or insert

node), forty-eight columns describing the weights associated with read observations

(stratified by nucleotide, run-length, strand), and two columns describing weights for

gaps in read alignments (stratified by strand). In this example, we have reduced the

maximum run-length per block from 10 to 5 for demonstrative purposes.

We selected these two images to highlight three features of the model: the way

multiple run-length blocks are used to encode observations for a single node, and the

relevant features around a true gap and a true insert that enable HELEN to correct

these errors.

To illustrate multiple run length blocks, we highlight two locations on on image

(i). The first are the nodes labeled (A,5) and (A,3). This is the labeling for a true (A,8)

sequence separated into two blocks. See that the bulk of the weight is on the (A,5)

features on the first block, with most of that distributed across the (A,1-3) features on

the second. Second, observe the nodes on (i) labeled (T,4) and (T,0). Here we show

the true labeling of a (T,4) sequence where there are some read observations extending
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into a second run-length block.

To show a features of a true gap, note on (i) the non-insert nodes labeled (-,0).

We know that MarginPolish predicted a single cytosine nucleotide (as it is a backbone

node and the (C,1) nodes have the bulk of the weight. Here, HELEN is able to use the

low overall weight (the lighter region in the normalization column) at this location as

evidence of fewer supporting read alignments and can correct the call.

The position labeled (G,2) on (ii) details a true insertion. It is not detected

by MarginPolish (as all insert nodes are not included in the final consensus sequence).

Read support is present for the insert, less than the backbone nodes in this image but

more than the other insert nodes. HELEN can identify this sequence and correct it.

Finally, we note that the length of the run length blocks results in streaks at

multiples of this length (10) for long homopolymers. The root of this effect lies in the

basecaller producing similar prediction distributions for these cases (ie, the run length

predictions made by the basecaller for a true run length of 25 are similar to the run

length predictions made for a true run length of 35, see Fig. 4.4b Guppy 2.3.3). This

gives the model little information to differentiate upon, and the issue is exacerbated by

the low occurrence of long run lengths in the training data. Because the model divides

run length observations into chunks of size 10, it tends to call the first chunks correctly

(having length 10) but has very low signal for the last chunk and most often predicts 0.
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Part IV

A State-of-the-Art Variant Caller

116



Chapter 5

Read and variant phasing in a

state-of-the-art variant calling toolchain

5.1 Preamble

What follows is the full text from the Nature Methods publication “Haplotype-

aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore

long-reads” [149], in which I share first-authorship with Kishwar Shafin, and Pi-Chuan

Chang. This paper describes and evaluates a variant calling pipeline which depends on

margin to efficiently phase reads.

For this publication, I improved and streamlined margin including functional

improvements to the codebase as well as considerable fine-tuning of parameters for

different sequence data and desired output. Kishwar and I wrote the majority of the

manuscript together.
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This chapter is the culmination of years of work building a tool which can

partition reads into maternal and paternal haplotypes. Accurate phasing is a critical

part of this pipeline, providing the context needed to solve difficult edge cases as well

as identifying co-inheritied variants.

I am incredibly proud to have contributed to the work presented in this chapter.

5.2 Abstract

Long-read sequencing has the potential to transform variant detection by

reaching currently difficult-to-map regions and routinely linking together adjacent vari-

ations to enable read based phasing. Third-generation nanopore sequence data has

demonstrated a long read length, but current interpretation methods for its novel pore-

based signal have unique error profiles, making accurate analysis challenging. Here, we

introduce a haplotype-aware variant calling pipeline PEPPER-Margin-DeepVariant that

produces state-of-the-art variant calling results with nanopore data. We show that our

nanopore-based method outperforms the short-read-based single nucleotide variant iden-

tification method at the whole genome-scale and produces high-quality single nucleotide

variants in segmental duplications and low-mappability regions where short-read based

genotyping fails. We show that our pipeline can provide highly-contiguous phase blocks

across the genome with nanopore reads, contiguously spanning between 85% to 92% of

annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to

PacBio HiFi data, providing an efficient solution with superior performance than the
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current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly

polishing methods that use nanopore and PacBio HiFi reads to produce diploid assem-

blies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio-HiFi-polished).

5.3 Introduction

Most existing reference-based small variant genotyping methods are tuned to

work with short-reads [31, 106]. Short-reads have high base-level accuracy but frequently

fail to align unambiguously in repetitive regions [97]. Short-reads are also generally

unable to provide substantial read-based phasing information, and therefore require

using haplotype panels for phasing [22] that provide limited phasing information for

rarer variants.

Third-generation sequencing technologies, like linked-reads [12, 45, 169] and

long-reads [69, 42], produce sequences that can map more confidently in the repetitive

regions of the genome [68], overcoming the fundamental limitations of short-reads. Long-

reads can generate highly contiguous de novo assemblies [109, 98, 148, 24, 118, 74, 141],

and they are increasingly being used by reference-based analysis methods [100, 103, 40,

171, 37, 67, 146, 124]. The Genome-In-A-Bottle Consortium (GIAB) [177] used the ad-

ditional power of long-reads and linked-reads to expand the small variant benchmarking

set to cover more of the genome [166]. This was essential to the PrecisionFDA challenge

V2, which quantified the limitations of short read-based methods to accurately identify

small variants in repetitive regions[121].
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Oxford Nanopore Technologies (ONT) is a commercial nanopore-based high-

throughput [148] long-read sequencing platform that can generate 100kb+ long reads

[148, 70]. Nanopore long-reads can confidently map to repetitive regions of the genome

[68] including centromeric satellites, acrocentric short arms, and segmental duplications

[109, 71, 47, 41]. Nanopore sequencing platform promises same-day sequencing and

analysis [43], but the base-level error characteristics of the nanopore-reads, being both

generally higher and systematic, make small variant identification challenging [130].

Pacific Biosciences (PacBio) provides a single-molecule real-time (SMRT) se-

quencing platform that employs circular consensus sequencing (CCS) to generate highly-

accurate (99.8%) high-fidelity (PacBio HiFi) reads that are between 15kb-20kb long

[171]. The overall accuracy of PacBio-HiFi-based variant identification is competitive

with short-read based methods [171]. These highly accurate long-reads enabled the

small variant benchmarking of major histocompatibility complex (MHC) region [28]

and difficult-to-map regions [166].

In our previous work, we introduced DeepVariant, a universal small variant

calling method based on a deep convolutional neural network (CNN) [126]. We showed

that by retraining the neural network of DeepVariant, we can generate highly accu-

rate variant calls for various sequencing platforms [126]. To limit the computational

time, DeepVariant only uses the neural network on candidate sites identified with sim-

ple heuristics. However, the higher error-rate of nanopore-reads [148, 130] causes too

many candidate variants to be picked up by the heuristic-based candidate finder of

DeepVariant, limiting the extension of DeepVariant to nanopore sequencing platform.
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Phasing long reads has been shown to enable or improve methods for small

variant calling, structural variant calling, and genome assembly [22, 171, 67, 124, 39,

136, 27, 76, 127]. Previously, we trained DeepVariant on PacBio HiFi long-read data

and showed highly competitive performance against short-read based methods for small

variant identification [171]. However, the run-time of the haplotype-aware mode of

DeepVariant with PacBio HiFi reads remain a bottleneck for production-level scaling.

Sufficiently accurate nanopore long-read based accurate small variant identi-

fication would enable new research. It could allow same-day sequencing and variant

calling by using highly multiplexed sequencing with the PromethION device. It could

allow researchers to study genomic variants in the most difficult regions of the genome.

Similarly, making PacBio HiFi haplotype-aware genotyping efficient would allow re-

searchers to adopt to production scale haplotype-aware genotyping.

Here we present a haplotype-aware genotyping pipeline PEPPER-Margin-DeepVariant

that produces state-of-the art small variant identification results with nanopore and

PacBio HiFi long-reads. PEPPER-Margin-DeepVariant outperforms other existing nanopore-

based variant callers like Medaka[100], Clair [103], and longshot [40]. For the first

time we report that nanopore-based single nucleotide polymorphism (SNP) identifi-

cation with PEPPER-Margin-DeepVariant outperforms short-read based SNP identi-

fication with DeepVariant at whole genome scale. For PacBio HiFi reads, we report

PEPPER-Margin-DeepVariant is more accurate, 3× faster, and 1.4× cheaper than the

current haplotype-aware pipeline DeepVariant-WhatsHap-DeepVariant. We analyzed

our pipeline in the context of GENCODE[61] genes and report phasing errors in less
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than 1.5% of genes, with over 88% of all genes being contiguously phased across six

samples. Finally, we extended PEPPER-Margin-DeepVariant to polish nanopore-based

de novo assemblies with nanopore and PacBio HiFi reads in a diploid manner. We

report Q35+ nanopore-based and Q40+ PacBio-HiFi-polished assemblies with lower

switch error rate compared to the unpolished assemblies.

5.4 Results

5.4.1 Haplotype-aware variant calling

PEPPER-Margin-DeepVariant is a haplotype-aware pipeline for identifying

small variants against a reference genome with long-reads. The pipeline employs sev-

eral methods to generate highly-accurate variant calls (Figure 5.1a). Details of these

methods are in the online methods section. An overview is presented here:

1. PEPPER-SNP: PEPPER-SNP finds single nucleotide polymorphisms (SNPs)

from the read alignments to the reference using a recurrent neural network (RNN).

The method works in three steps:

• Image generation: We take the reads aligned to a reference genome and gen-

erate base-level summary statistics in a matrix-like format for each location

of the genome. We do not encode insertions observed in reads at this stage.

• Inference: We use a gated recurrent unit (GRU)-based RNN that takes the

base-level statistics generated in the previous step and the provides likelihood

of the two most likely bases present at each genomic location.
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• Find candidates: We take all of the base-mismatches observed in the reads-to-

reference alignment. We calculate a likelihood using the predictions from the

inference step and if a base-mismatch has high likelihood of being a potential

variant, we pick the mismatch to be a potential SNP. The likelihood of the

bases at any location also helps to assign a genotype.

2. Margin: Margin is a phasing and haplotyping method that takes the SNPs re-

ported by PEPPER-SNP and generates a haplotagged alignment file using a hid-

den Markov Model (HMM).

• Read-allele alignment: We first extract read substrings around allelic sites

and generate alignment likelihoods between reads and alleles. These are used

as emission probabilities in the phasing HMM.

• Phasing Variants: We construct an HMM describing genotypes and read bi-

partitions at each variant site which enforces consistent partitioning between

sites. After running the forward-backward algorithm, we marginalize over

the posterior probability distribution at each site to calculate the most likely

phased genotype (aka diplotype).

• Haplotagging reads: After determining haplotypes using the maximum prob-

ability haplotype decoding, we decide from which haplotype each read orig-

inated from by calculating the probability of the read arising from each of

the two haplotypes and picking the haplotype with maximum likelihood. If

a read spans no variants or has equal likelihood for each haplotype, it is
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assigned the a “not haplotagged” tag.

• Chunking: The genome is broken up into 120kb chunks with 20kb of overlap

between chunks. Variant and read phasing occurs separately on each chunk,

enabling a high degree of parallelism. Chunks are stitched together using the

haplotype assignment of the reads shared between adjacent chunks.

3. PEPPER-HP: PEPPER-HP takes the haplotagged alignment file and finds po-

tential SNP, insertion, and deletion (INDEL) candidate variants using a recurrent

neural network (RNN). In this step PEPPER-HP ranks all variants arising from

the read-to-reference alignment and picks variants with high-likelihood derived

from the RNN output. Filtering candidates enables DeepVariant to efficiently

genotype the candidates and produce a highly accurate variant set as it removes

errors. PEPPER-HP is used only during Oxford Nanopore-based variant calling

and has proved unnecessary while using PacBio HiFi reads.

• Image generation: We generate base-level summary statistics for each hap-

lotype independently. Summary statistics for each haplotype use both reads

that were haplotagged to that haplotype and which were not haplotagged.

In this scheme, we encode insertions observed in the reads.

• Inference: We use a GRU-based RNN that takes the haplotype-specific sum-

mary statistics and predicts two bases at each location of the genome, one

for each haplotype. This haplotype-aware inference scheme allows us to de-

termine most likely alleles in a haplotype-specific manner.
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• Find candidates: In the find candidates step we find all SNP and INDEL

candidates arising from the read alignment to the reference. We use the

haplotype-specific predictions from the inference step to generate the like-

lihood of each candidate variant belonging to haplotype-1 or haplotype-2.

Using the likelihood values we propose candidates with high likelihood for

genotyping with DeepVariant.

4. DeepVariant: DeepVariant identifies variants in a three step process:

• Make examples: Prior to this work [126], the make examples stage of Deep-

Variant used simple heuristics to identify possible variant positions for clas-

sification. The different error profile of Oxford Nanopore required the more

sophisticated logic from PEPPER to generate a tractable number of can-

didates for classification. DeepVariant was modified to take the candidate

variant set from PEPPER-HP and the haplotagged alignment from Margin,

and to generate the tensor input set with read features as channels (base, base

quality, mapping quality, strand, whether a read supports the variant, and

the bases that mismatch the reference). Reads are sorted by their haplotype

tag.

• Call variants: This stage applies a model trained specifically for Oxford

Nanopore data with inputs provided by PEPPER-Margin. Apart from train-

ing on new data, and the sorting of reads by haplotype, other software com-

ponents of this step are unchanged.
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• Postprocess variants: Converts the output probability into a VCF call and

resolves multi-allelic cases. No other changes were made from previously

published descriptions.

DeepVariant has more total parameters than PEPPER, and models with more

parameters can generally train to higher accuracy at the cost of increased runtime.

By combining PEPPER with DeepVariant in this way, we allow the faster neural

network of PEPPER to efficiently scan much more of the genome, and to leverage

the larger neural network of DeepVariant to achieve high accuracy on a tractable

number of candidates.

5. Margin: Margin takes the output of DeepVariant and the alignment file to gener-

ate a phased VCF file using the same Hidden Markov Model as described before.

In this mode, it annotates the VCF with high-confidence phasesets using heuristics

over the reads assigned to each variant’s haplotype. It creates a new phaseset if

there is no linkage between adjacent sites, if there is an unlikely binomial p-value

for the bipartition of reads at a site, or if there is high discordancy between read

assignments over adjacent variants.

It is challenging to identify accurate variants with Oxford nanopore reads due

to the error rate. Heuristic-based approaches show robust solutions for highly-accurate

sequencing platforms [126, 171] but fail when introduced with erroneous reads. For

example, in 90x HG003 ONT data, at 10% allele frequency, we find 20× more erroneous

variants than true variants (Supplementary Figure B.2).
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Existing variant callers, like Clair[103], that use allele frequency to find a set of

candidates often need to set the threshold too high, excluding many true variants from

being detected. Our pipeline demonstrates an efficient solution using an RNN to find

candidates with PEPPER and genotype the candidates accurately with DeepVariant.

The use of haplotype information to get better genotyping results with er-

roneous reads has been demonstrated before[37, 171]. The schema of the PEPPER-

Margin-DeepVariant pipeline follows a similar design of PacBio HiFi-based DeepVariant[171]

and Medaka[100] that use haplotyping to provide better genotyping results. However,

Medaka[100] is a consensus caller that presents the predicted sequence per position

that does not match with reference sequence as variants. In contrast, PEPPER ap-

plies the predictions of the RNN to the candidates to find likely candidate variants for

DeepVariant to accurately genotype. While maintaining similar candidate sensitivity of

the heuristic-based approach, PEPPER reduces the number of erroneous homozygous

candidate variants significantly (Supplementary figure B.2).
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Figure 5.1: Nanopore variant calling results. (a) Illustration of haplotype-aware
variant calling using PEPPER-Margin-DeepVariant. (b) Nanopore variant calling per-
formance comparison between different nanopore-based variant callers. (c) Evaluating
variant calling performance at different coverage of HG003. (d) Variant calling perfor-
mance of PEPPER-Margin-DeepVariant on six GIAB samples.
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We trained PEPPER-Margin-DeepVariant on HG002 sample using Genome-

In-A-Bottle (GIAB) v4.2.1 benchmarking set [166]. We trained PEPPER and Deep-

Variant on chr1-chr19 and tested on chr20 and used chr21-chr22 as holdout sets (See

Online Methods).

5.4.2 Nanopore variant calling performance

We compared the nanopore variant calling performance of PEPPER-Margin-

DeepVariant against Medaka[100], Clair[103], and Longshot[40]. We called variants on

two samples HG003 and HG004, with 90× coverage. We also compared the performance

against Medaka and Clair for the HG003 sample at various coverages ranging from 20×

to 90×. Finally, we benchmarked the variant calling performance of PEPPER-Margin-

DeepVariant on six Genome-In-A-Bottle (GIAB) samples.

PEPPER-Margin-DeepVariant produces more accurate nanopore-based SNP

calls (F1-scores of 0.9969 and 0.9977) for HG003 and HG004 respectively than Medaka

(0.9926, 0.9933), Clair (0.9861, 0.9860), and Longshot (0.9775, 0.9776). We also observe

higher INDEL performance with PEPPER-Margin-DeepVariant (F1-scores of 0.7257

and 0.7128 for HG003 and HG004) compared to Medaka (0.7089, 0.7128) and Clair

(0.5352, 0.5260)(Figure 5.1b, Supplementary table B.1).

To assess the robustness of our method, we evaluated the variant calling per-

formance with HG005 sample on GRCh38 and GRCh37 against two GIAB truth ver-

sions (v3.3.2 [181] and v4.2.1 [166]). In this comparison, we see PEPPER-Margin-

DeepVariant perform similarly between GRCh37 GIABv3.3.2 (SNP F1-Score: 0.9971,
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INDEL F1-Score: 0.7629) and GRCh38 v4.2.1 (SNP F1-Score: 0.9974, INDEL F1-Score:

0.7678) and has higher accuracy compared to Medaka (GRCH37: SNP 0.9938, INDEL

0.7629, GRCh38: SNP 0.9927, INDEL 0.7406), Clair (GRCH37: SNP 0.9789, INDEL

0.5666, GRCh38: SNP 0.9787, INDEL 0.5675) and longshot (GRCh37: SNP 0.9803,

GRCh38: SNP 0.9767) (Supplementary table B.2). Overall, we see PEPPER-Margin-

DeepVariant has consistent performance between different samples, reference sequence

and truth sets.

We performed a Mendelian concordance analysis of our method with the

HG005/HG006/HG007 trio on GRCh38 inside and outside of the HG005 v4.2.1 high-

confidence regions (Supplementary table B.3). In the 2.5 Gb high confidence region we

observed a paternal and maternal concordance of 99.90%, with overall concordance of

99.75%. In the 315Mb region outside of high confidence excluding centromeres we ob-

served a paternal concordance of 98.20%, maternal concordance of 97.80%, with overall

concordance of 95.52%.

To understand performance over realistic coverage ranges, we downsampled

the HG003 nanopore sample at coverages varying between 20× and 90× and compared

PEPPER Margin-DeepVariant against Medaka and Clair. The INDEL performance

of PEPPER-Margin-DeepVariant achieves the highest F1-score at any coverage com-

pared to other tools (Figure 5.1c, Supplementary table B.4). At coverage above 30×,

PEPPER-Margin-DeepVariant achieves a higher F1-score than Medaka and Clair (Sup-

plementary table B.5). Overall, we observe that PEPPER-Margin-DeepVariant can

yield high-quality variant calls at above 40× coverage on Oxford Nanopore data.
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We investigated the nanopore variant calling performance of PEPPER-Margin-

DeepVariant on six GIAB samples (HG001, HG003-HG007), each sample with vari-

ous coverage (Supplementary Table B.6) and against GRCh37 and GRCh38 reference

genomes (Supplementary Table B.7). PEPPER-Margin-DeepVariant achieves SNP F1-

score 0.995 or higher and INDEL F1-score of 0.709 or higher for each sample, demon-

strating the ability to generalize the variant calling across samples and reference genomes

(Figure 5.1d, Supplementary table B.8).

We also assessed the ability to use PEPPER-HP as a variant caller if we tune

the method for a balanced precision and recall. We find that PEPPER-HP outper-

forms Medaka in SNP accuracy while having a comparable INDEL accuracy. However,

PEPPER-HP in itself is not able to achieve the genotyping accuracy DeepVariant pro-

vides. As PEPPER-HP uses a compressed representation of nucleotide bases, it fails to

achieve the high genotyping accuracy compared to DeepVariant’s CNN (Supplementary

table B.9).

Similar to the nanopore-based haplotype-aware pipeline, the PacBio HiFi-

based PEPPER-Margin-DeepVariant pipeline produces highly accurate variant calls.

In the PacBio HiFi pipeline, we do not use PEPPER-HP to find candidate variants;

the highly accurate (99.8%) PacBio HiFi reads are suitable for the heuristic-based

candidate generation approach of DeepVariant [171, 126]. We analyzed the PacBio

HiFi PEPPER-Margin-DeepVariant variant calling performance on the 35x HG003

and HG004 from precisionFDA [121] against DeepVariant-WhatsHap-DeepVariant (cur-

rent state-of-the-art method [121, 171]) and DeepVariant-Margin-DeepVariant. In this
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comparison we see that DeepVariant-Margin-DeepVariant produces the best perfor-

mance (HG003 SNP-F1: 0.9991 INDEL-F1: 0.9945 , HG004 SNP-F1: 0.9992, INDEL-

F1: 0.9942) compared to DeepVariant-WhatsHap-DeepVariant (HG003 SNP-F1:0.9990

INDEL-F1:0.9942 , HG004 SNP-F1: 0.9992 , INDEL-F1: 0.9940) and PEPPER-Margin-

DeepVariant (HG003 SNP-F1:0.9990, INDEL-F1:0.9944, HG004 SNP-F1: 0.9992 , INDEL-

F1: 0.9941) (Supplementary table B.10).

We compared the run-time and cost of Oxford nanopore-based variant calling

pipelines on 50× and 75× HG001 data (Supplementary table B.11) using the GCP

platform with instance sizes best matching CPU and memory requirements. Clair

(HG001-50×: 2.5h/$11.40, HG001-75×: 3.1h/$14.13) is the fastest and cheapest, but

fails to generate high-quality variant calls (Figure 5.1, Supplementary Table B.1). Long-

shot (HG001-50×: 51h/$49, HG001-75×: 74h/$139) and Medaka (CPU-HG001-50×:

95h/$90, CPU-HG001-75×: 117h/$175, GPU-HG001-50×: 40h/$97, GPU-HG001-75×:

46h/$22) fail to use all available CPU resources, resulting in long runtimes. PEPPER-

Margin-DeepVariant is designed for CPU and GPU platforms. On a CPU-platform,

PEPPER-Margin-DeepVariant (HG001-50×: 13h/$60, HG001-75×: 15h/$68) is 8×

faster than Medaka and 4× faster than Longshot while providing the best variant calling

performance. On GPU-platforms we see further runtime improvement with PEPPER-

Margin-DeepVariant (HG001-50×: 7h/$70, HG001-75×: 9h/$94). On PacBio HiFi

data the PEPPER-Margin-DeepVariant pipeline outperforms DeepVariant-WhatsHap-

DeepVariant and is 3× faster and 1.4× cheaper, establishing a faster and more accurate

solution to haplotype-aware variant calling with PacBio HiFi data (Supplementary ta-
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ble B.12, Supplementary table B.13). Overall, PEPPER-Margin-DeepVariant provides

a scalable solution to haplotype-aware variant calling with nanopore-based long reads,

as it is designed to efficiently use all available resources.

5.4.3 Nanopore, Illumina and PacBio HiFi variant calling performance

comparison

We compared the variant calling performance of Oxford Nanopore and PacBio

HiFi long-read based PEPPER-Margin-DeepVariant against Illumina short-read based

DeepVariant method [9]. We used 35x Illumina NovaSeq, 35x PacBio HiFi, and 90x

Oxford Nanopore reads basecalled with Guppy v4.2.2 for HG003 and HG004 samples

available from PrecisionFDA [121]. We used GIAB v4.2.1 benchmarking data for HG003

and HG004, which is notable for including difficult-to-map regions. Finally we used

GIAB v2.0 stratificiations to compare variant calling performance in difficult-to-map

regions and low-complexity regions of the genome.
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Figure 5.2: Comparison between Nanopore, Illumina and PacBio HiFi vari-
ant calling performance. (a) SNP and INDEL performance comparison of Nanopore,
Illumina and PacBio HiFi in all benchmarking regions. (b) SNP performance compar-
ison in difficult-to-map regions of the genome. (c) SNP performance comparison in
low-complexity regions of the genome.
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The SNP F1-score of PacBio HiFi (HG003 SNP-F1: 0.9990, HG004 SNP-F1:

0.9992) is higher than Oxford Nanopore (HG003 SNP-F1: 0.9969, HG004 SNP-F1:

0.9977) and Illumina (HG003 SNP-F1: 0.9963, HG004 SNP-F1: 0.9962) in all bench-

marking regions. Notably, both long-read sequencing platforms outperform the short-

read based method in accurate SNP identification performance. The INDEL F1-score

of Oxford Nanopore (HG003 INDEL-F1: 0.7257, HG004 INDEL-F1: 0.7128) is well be-

low the performance with PacBio HiFi (HG003 INDEL-F1: 0.9945, HG004 INDEL-F1:

0.9941) and Illumina (HG003 INDEL-F1: 0.9959, HG004 INDEL-F1: 0.9958) suggest-

ing further improvement required for nanopore-based methods. On HG003 PacBio-CLR

data, we observed a SNP-F1 score of 0.9892 with our method and 0.9755 with Long-

shot (Supplemental Table B.14). Overall, we find that haplotype-aware long-read-based

variant calling produces high-quality SNP variant calls comparable to those produced

by short-read-based variant identification methods (Figure 5.2a, Supplementary table

B.15). This is the first demonstration we are aware of in which SNP variant calls with

Oxford Nanopore data achieved similar accuracy to Illumina SNP variant calls.

In segmental duplications, 250bp+ non-unique regions, and low-mappability

regions where short-reads have difficulty in mapping, we observe the average SNP F1-

scores of Illumina (Seg. Dup. F1-score: 0.94, 250bp+ non-unique:0.66, Low-mappability:

0.94) drop sharply for both HG003 and HG004 samples. Long-read based PacBio HiFi

(Seg. Dup. F1-score: 0.99, 250bp+ non-unique:0.90, Low-mappability: 0.99) and Ox-

ford Nanopore (Seg. Dup. F1-score: 0.98, 250bp+ non-unique:0.94, Low-mappability:

0.98) produce more accurate SNP variants. In the major histocompatibility complex

135



(MHC) region, we see Oxford Nanopore (HG003 SNP F1-score: 0.9958, HG004 SNP

F1-score: 0.9966) achieve best performance followed by PacBio HiFi (HG003 SNP F1-

score: 0.9951, HG004 SNP F1-score: 0.9955) and Illumina HG003 SNP F1-score: 0.9939,

HG004 SNP F1-score: 0.9921). In general, the long-read-based haplotype-aware meth-

ods outperform short-reads in more repetitive regions of the genome (Figure 5.2b, Sup-

plementary table B.16).

In low-complexity regions like homopolymer, di-mer and tri-mer repeat regions

of the genome, the average variant calling performance of Nanopore drops (7bp-11bp

homopolymer SNP F1-score: 0.96, 11bp+ homopolymer SNP F1-Score: 0.88) for both

HG003 and HG004 samples compared to Illumina (7bp-11bp homopolymer SNP F1-

score: 0.998, 11bp+ homopolymer SNP F1-Score: 0.998) and PacBio HiFi (7bp-11bp

homopolymer SNP F1-score: 0.998, 11bp+ homopolymer SNP F1-Score: 0.984). In

11bp-50bp di-mer and 15bp-50bp tri-mer repeat regions of the genome, we see the

average performance of Oxford Nanopore (di-mer SNP F1-score: 0.969, tri-mer SNP

F1-score: 0.984) is lower than PacBio HiFi (di-mer SNP F1-score: 0.995, tri-mer SNP

F1-score: 0.995) and Illumina (di-mer SNP F1-score: 0.998, tri-mer SNP F1-score:

0.998). Overall, the Illumina short-read based variant calling method achieves higher

accuracy in low-complexity regions of the genome (Figure 5.2c, Supplementary table

B.17).

We further compare the variant calling performance of Illumina, PacBio HiFi

and ONT in “easy regions” (the inverse of all difficult regions: excluding all tandem

repeats, homopolymers, imperfect homopolymers, difficult to map regions, segmental
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duplications, and GC <25% or >65%) which cover 76% of the genome [166]. In this

comparison, we see ONT variant calling performance (SNP: 0.9988 INDEL: 0.9719) is

comparable to Illumina (SNP: 0.9997, INDEL: 0.9996) and HiFi (SNP: 0.9999, INDEL:

0.9997) showing that in easy regions, all technologies can generate high-quality variants

(Supplementary table B.18). We further look into regions with no tandem repeats (cov-

ering 86% of the genome) and see that ONT performance (SNP: 0.9981, INDEL: 0.97)

is comparable to Illumina (SNP: 0.996, INDEL: 0.996). However in tandem repeat and

homopolymer regions, the ONT SNP calling performance drops from 0.998 to 0.9748,

and the INDEL calling performance drops from 0.97 to 0.54 (Supplementary Table B.19)

suggesting that ONT variant calling can generate competitive variant calling in the 86%

of the genome outside tandem repeat and homopolymer regions, and it suffers only in

the 4% of the genome which is highly repetitive.

5.4.4 Phaseset and Haplotagging Accuracy

We compared phaseset accuracy for Margin and WhatsHap on HG001 against

GIAB’s phased v3.3.2 variants with 25× nanopore, 50× nanopore, 75× nanopore,

and 35× PacBio HiFi data. We generated genotyped variants with PEPPER-Margin-

DeepVariant, and used both Margin and WhatsHap to phase the final variant set. The

phasesets produced by both tools were analyzed using whatshap stats and whatshap

compare against the trio-confirmed truth variants in high-confidence regions.
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For all datasets, Margin had a lower switch error rate (0.00875, 0.00857,

0.00816, 0.00895) than WhatsHap (0.00923, 0.00909, 0.00906, 0.00930), but lower phas-

eset N50 (2.07, 4.21, 6.13, 0.24 Mb) than WhatsHap (2.37, 4.90, 8.27, 0.25 Mb) (Figure

5.3a, Supplementary Tables B.20 and B.21).

We also compared phaseset accuracy for Margin and WhatsHap on the same

data using a novel metric we call “Local Phasing Correctness” (LPC). In brief, the LPC

is a value between 0 and 1 that summarizes whether every pair of heterozygous variants

is correctly phased relative to each other. The contribution of each pair of variants is

weighted based on the distance between them, with the weights varying according to

a tunable parameter, the “length scale”. The length scale can be understood roughly

as the scale of distances that influence the metric (see online methods). The LPC is a

generalization of the standard metrics of switch error rate and Hamming rate, which

have a close relationship with the LPC at length scales 0 and infinity respectively. We

plot the LPC across various length scale values (Figure 5.3b). Margin produced more

accurate phasing for all length scales for 25× nanopore and 35× CCS. Margin also

produced more accurate phasing for 50× nanopore for length scales up to 128kb and

for 75× nanopore for length scales up to 242kb, after which WhatsHap outperforms

Margin. Both tools exhibit local maxima for length scales from 20-30 kilobases.

To analyze haplotagging accuracy, we artificially constructed an admixture

sample by trio-binning reads from HG005 and HG02723 and combining an equal amount

of maternal reads from each sample, resulting in a 55× nanopore alignment and a 35×

PacBio HiFi alignment. We ran PEPPER-SNP, haplotagged each alignment with Mar-
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gin using these variants, and compared the number of direct-matched reads Rd (truth

H1 to tagged H1 or truth H2 to tagged H2) and cross-matched reads Rc (truth H1

to tagged H2 or truth H2 to tagged H1) of the output. In Figure 5.3c, for each 10kb

bucket in chr1 we plot the number of reads that were direct-matched (top, red) and

cross-matched (bottom, blue) for both data types, with phasesets plotted in black al-

ternating between top and bottom. With this “Natural Switch” plot, it is possible to

identify consistent phasing as regions where the majority of reads are either direct- or

cross-matched, and switch errors in the haplotagging as regions where the majority of

reads transition between the two. As the plot shows, nanopore reads allow us to hap-

lotag consistently with phase sets in the range of tens of megabases, whereas PacBio

HiFi reads cannot be used for long-range haplotagging. For each bucket we can calculate

a local haplotagging accuracy using the ratio: max(Rc,Rd)/(Rc +Rd). On average the

haplotagging accuracy is 0.9626 for ONT data and 0.9800 for HiFi data using Margin

(Supplementary Table B.22). Full plots including local haplotagging accuracy visual-

ization are shown in Supplementary Figures B.3, B.4, B.5, B.6. As Margin has higher

haplotagging accuracy compared to WhatsHap, we see that the variant calling with

Margin exhibits higher accuracy compared to WhatsHap for both Oxford Nanopore

and PacBio HiFi data (Supplementary Table B.23, Supplementary Table B.12).

Lastly we compare the runtime and cost for the haplotag and phase actions

on the four HG001 datasets using Margin and WhatsHap. When configured to use 64

threads, Margin at peak used 35GB of memory on a GCP instance n1-highcpu-64

costing $2.27/hr. This results in a total cost (for haplotagging and phasing) of $1.35
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(36m) for 25x ONT, $3.17 (84m) for 50x ONT, $4.64 (123m) for 75x ONT, $1.23 (33m)

for 35x PacBio HiFi. Given WhatsHap’s concurrent use of two threads and three GB

of memory we determined it could be run most cheaply on the GCP n1-standard-2

instance type for $0.095/hr, resulting in a total cost of $1.48 (941m), $2.10 (1336m),

$2.66 (1688m), and $1.20 (764m) respectively (Supplementary table B.24)
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5.4.5 Gene Analysis
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Figure 5.4: Gene analysis. (a) Phasing analysis for HG001 over GENCODE an-
notated gene regions, stratified by GIAB high confidence coverage. Percentages are
relative to their predecessor. (b) Wholly phased GENCODE annotated gene regions.
Percentages are relative to the total genes annotated on the reference. (c) Error statis-
tics including wholly phased genes, genes without SNP or INDEL errors, and wholly
phased genes without SNP, INDEL, or switch errors over a subset of the protein coding
genes. (d) The same statistics on HG001 with 35x PacBio HiFi data.
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We performed an analysis of Margin’s phasing over genic regions to understand

its utility for functional studies. With 75× nanopore data from HG001 on GRCh37,

we classified each of the GENCODE v35 genes[50] (coding and non-coding) as wholly,

partially, or not spanned for the GIAB v3.3.2 high confidence regions, the phasesets

proposed by Margin, and the switch errors determined by whatshap compare between

the two. In Figure 5.4a, we first plot the number of gene bodies as spanned by high

confidence regions (23712 wholly, 26770 partly, 11372 not), then further compare how

many of each division were wholly spanned by Margin’s phasesets (22491, 24877, 9807),

and finally how many of these had no detected phasing errors (22191, 24563, unknown).

In Figure 5.4b, we plot the number of genes wholly phased by Margin on GRCh38

(60656) for HG003 and HG004 (53817, 55234) and on GRCh37 (62438) for HG001,

HG005, HG006, and HG007 (57175, 53150, 53112, 54116).

We analyzed accuracy statistics for PEPPER-Margin-DeepVariant with the

same HG001 data used above stratified by GENCODE annotations. SNP and INDEL

accuracies are largely similar between stratifications of all regions, all genes, and all

protein coding genes, with improved performance for protein coding sequence (including

CDS, start codon, and stop codon annotations for protein coding genes) (Supplementary

Tables B.25, B.26).

We combined the accuracy and phasing analysis by selecting the 3793 protein

coding genes which had at least 80% of their coding sequence covered by the high confi-

dence regions and analyzed the presence of phasing and SNP/INDEL errors on HG001

with 75x nanopore (Figure 5.4c) and 35x PacBio HiFi (Figure 5.4d) reads (Supplemen-
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tary Tables B.27, B.28). Nanopore had better read phasing for these genes, with 3540

wholly spanned by Margin’s phasesets and only 38 exhibiting a switch error (1.07%), as

compared to PacBio HiFi with 2500 wholly spanned genes and 24 switch errors (0.96%).

We then counted the number of genes which had no SNP or INDEL errors in the high

confidence region for the entire gene, all annotated exons in the gene, and all coding

sequences in the gene; PacBio HiFi performs best for this metric with 3037, 3745, and

3791 respectively as compared to nanopore with 1884, 3384, and 3770 perfectly called

regions. Lastly, we identified how many of these gene regions were perfectly captured

(wholly phased with no switch errors and having no SNP or INDEL miscalls) for the

entire gene (1738 for nanopore, 2086 for PacBio HiFi), for all annotated exons (3121,

2446), and for all coding sequences (3481, 2471). For nanopore data, we find that for

91.8% of genes the CDS is fully phased and genotyped without error, and for 82.3% of

genes all exons are fully phased and genotyped without error.

5.4.6 Diploid polishing of de novo assemblies

Oxford Nanopore-based assemblers like Flye [74] and Shasta [148] generate

haploid assemblies of diploid genomes. By calling and phasing variants against the

haploid contigs they produce, it is possible to polish the haploid assembly into a diploid

assembly. We implemented such a diploid de novo assembly polishing method with

PEPPERMargin-DeepVariant (Figure 5.5a). It can polish haploid Oxford Nanopore-

based assemblies with either Nanopore or PacBio HiFi reads.
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Figure 5.5: Diploid assembly polishing results. (a) Illustration of the diploid
assembly polishing pipeline. (b) Estimated quality values of assemblies using YAK.
(c) CHM13-chrX run-length confusion matrix between different assemblies and PacBio
HiFi reads aligned to the corresponding assembly. (d) Switch error and hamming error
comparison between assemblies.
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The assembly polishing pipeline employs the modules similarly to the variant

calling pipeline. The difference between variant calling and assembly polishing is after

we phase the alignment file using the initial set of SNPs, we take candidates from

each haplotype independently and classify the candidate as error or not-error using

DeepVariant. This entails converting the genotyping classification used in variant calling

to a binary classification to predict if a candidate is true error or not. A detailed

description of this method is presented in the online methods.

5.4.7 Diploid de novo assembly polishing performance

We generated haploid assemblies using Shasta [148] and Flye [74] for diploid

samples HG005, HG00733, HG02723, and haploid sample CHM13 (chrX) using nanopore

reads, and we polished the Shasta assemblies using ONT and PacBio HiFi reads. To

evaluate the base-level accuracy of the assemblies we use the kmer-based tool YAK[24],

which uses Illumina trio data to estimate sequence quality, switch error rates, and ham-

ming error rates. We compare the haploid assemblies, polished diploid assemblies, and

trio-aware diploid assemblies generated with hifiasm[24]. Hifiasm uses parental short-

read data to generate maternal and paternal assemblies.

The estimated quality values (QV) of nanopore-based assemblies with Shasta

(HG005: QV32, HG00733: QV32.7, HG02723: QV32.52) assembler are higher than

the nanopore-based Flye assemblies (HG005: QV31.08, HG00733: QV31.93, HG02723:

QV31.88). Furthermore, the NG50s of the Shasta assemblies (HG005: 39.83Mbp,

HG00733: 42.49Mbp, HG02723: 49.18Mbp) are higher compared to the Flye assem-
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blies (HG005: 37.25Mbp, HG00733: 36.60Mbp, HG02723: 39.65Mbp) (Supplementary

table B.29).

As Shasta generated higher quality assemblies compared to Flye, we pol-

ished the Shasta assemblies with the PEPPER-Margin-DeepVariant diploid polisher.

The nanopore-polished assemblies achieve Q35+ estimated quality (HG005: Q35.06,

HG00733: QV35.83, HG02723: QV35.8) and PacBio-HiFi-polished assemblies achieve

Q40+ estimated quality (HG005: Q43.5, HG00733: QV43.8, HG02723: QV43.8) for all

three diploid samples. Finally, we show that the unpolished CHM13-chrX Shasta as-

sembly (QV34.6) can be improved to QV36.9 with nanopore-based and QV42.7 PacBio-

HiFi-based assembly polishing with PEPPER-Margin-DeepVariant. Compared to the

nanopore-based Shasta assemblies, the trio-aware PacBio HiFi assembler hifiasm achieves

higher quality assemblies with respect to base-level accuracy (HG005: QV51.81, HG00733:

53.6, HG02723: 55.94, CHM13-chrX: QV53.03) but the NG50 of the hifiasm assem-

blies are lower for HG00733 and HG02723 samples (HG005: 51.32Mbp, HG00733:

32.47Mbp, HG02723: 22.21Mbp). In summary, PEPPER-Margin-DeepVariant achieves

Q35+ ONT-based assembly polishing and Q40+ PacBio-HiFi-based assembly polishing

of ONT assemblies (Figure 5.5b, Supplementary table B.29, Supplementary table B.30).

The dominant error modality for ONT data are homopolymers[148]. In Fig-

ure 5.5c we show the run-length confusion matrix of PacBio HiFi read alignments to

four chrX assemblies of CHM13-chrX. The Shasta assembly starts to lose resolution at

run-lengths greater than 7 (RL-7) and loses all resolution around RL-25. The nanopore-

polished assembly improves homopolymer resolution up to RL-10, but also fails to re-
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solve run-lengths greater than RL-25. The PacBio HiFi polished assembly has fair reso-

lution up to RL-25. The trio-hifiasm assembly shows accurate homopolymer resolution

up to and beyond RL-50.

Figure 5.5d shows the switch error-rate of the assemblies. The switch error-rate

of haploid Shasta assemblies (HG005: 0.16, HG00733: 0.26, HG02723: 0.28) reduce after

polishing with PEPPER-Margin-DeepVariant (HG005: 0.05, HG00733: 0.09, HG02723:

0.10) with ONT data. Similarly, the hamming error rate of the Shasta assemblies

(HG005: 0.29, HG00733: 0.43, HG02723: 0.42) reduce after polishing the assemblies

with ONT-data (HG005: 0.20, HG00733: 0.31, HG02723: 0.24). Compared to the

ONT-polished assemblies the PacBio-HiFi-polished assemblies have higher hamming

error-rate (HG005: 0.26, HG00733: 0.40, HG02723: 0.36) but lower switch error-rate

(HG005: 0.02, HG00733: 0.04, HG02723: 0.04). The trio-hifiasm that use maternal

and paternal short-reads to resolve haplotypes have much lower switch error-rate and

hamming error-rate (Figure 5.5d, Supplementary table B.30).

The trio-hifiasm method is able to phase large structural variants in the assem-

blies. Therefore, trio-hifiasm is expected to produce globally higher quality assemblies.

PEPPER-Margin-DeepVariant can not achieve similar global accuracy by polishing hap-

loid assemblies in a diploid manner with small variants. In table 5.1, we compare HG005

assemblies at the small variant level. The analysis show that the F1-score of unpolished

Shasta assembly (INDEL: 0.1203, SNP: 0.4928) improves significantly after polishing

with nanopore reads using PEPPER-Marin-DeepVariant (INDEL: 0.3611, SNP: 0.9825).

The PacBio-HiFi-polished Shasta assembly achieves similar F1-score (INDEL: 0.9565,
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SNP: 0.9976) compared to the trio-hifiasm assembly (INDEL: 0.9733, SNP: 0.9988).

This analysis provide evidence that PEPPER-Margin-DeepVariant can effectively im-

prove the assembly quality at small variant level.

The current version of the PEPPER-Margin-DeepVariant pipeline does not

attempt to polish structural variants (SVs, >50bp in size). The resulting haplotypes

preserve all SVs initially contained in the input assembly. Since the input assemblies

are haploid, only one (randomly assembled) allele for each heterozygous SV is retained

within the pair of output haplotypes. To benchmark SV recall and precision, we first

called SVs from the assemblies using svim-asm [65] and then validated the reconstructed

SV sets using the previously described approach [179]. Our benchmarks using HG002,

HG005, HG0073 and HG02733 genomes show that input Shasta assemblies on aver-

age contained signatures of 94.6% and 48.3% of homozygous and heterozygous SVs,

respectively. After polishing using PEPPER-Margin-DeepVariant, the average recon-

struction rate slightly increased to 95.7% and 50.9% for homozygous and heterozygous

SVs, respectively. The average SV precision was 81.6% before and 83.2% after polishing

(Supplementary Table B.31).
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Method Polished
with Type True

positives
False

negatives
False

positives Recall Precision F1 score

Shasta - INDEL 128989 253403 1629782 0.3373 0.0732 0.1203
SNP 1279988 1696540 939228 0.4300 0.5769 0.4928

Shasta Nanopore INDEL 279793 102605 906353 0.7317 0.2397 0.3611
SNP 2940462 36058 68863 0.9879 0.9771 0.9825

Shasta PacBio
HiFi

INDEL 367819 14575 19341 0.9619 0.9512 0.9565
SNP 2971733 4787 9689 0.9984 0.9968 0.9976

Hifiasm - INDEL 374002 8390 12451 0.9781 0.9686 0.9733
SNP 2973193 3320 3730 0.9989 0.9987 0.9988

Table 5.1: Small variant accuracy evaluation of HG005 assemblies against GIAB HG005
v3.3.2 benchmarking set. We derive a small variant set against GRCh37 from the assem-
blies using dipcall[93] and compare the variant calls against HG005 GIAB benchmark.
We restrict our analysis in regions that are assembled by both Shasta and trio-hifiasm
and falls in the high-confidence region defined by GIAB.

5.5 Discussion

Long-read sequencing technology is allowing gapless human genome assembly

[109] and enabling investigations in the most repetitive regions of the genome[121].

In this work, we present PEPPER-Margin-DeepVariant, a state-of-the-art long-

read variant calling pipeline for Oxford nanopore data. For the first time, we show

that nanopore-based SNP identification outperforms a state-of-the-art short-read based

method at whole genome scale. Particularly in segmental duplication and difficult-to-

map regions, the nanopore-based method outshines the short-read based method. It

seems likely, therefore, that the anticipated widespread application of long-read vari-

ant calling will for the first time accurately illuminate variation in these previously

inaccessible regions of the genome.

The genomic contexts where nanopore SNP accuracy suffers for our pipeline are
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identifiable, meaning that variant calls in these regions can be treated with skepticism

while calls outside these contexts can be handled with confidence. The one obvious area

that Nanopore variant calling lags is in INDEL accuracy. While the results achieved

here are to our knowledge the best shown so far, we believe it is likely that further

technological innovations at the platform level will be required to make nanopore INDEL

accuracy on par with other technologies in all genomic contexts. However, we find that

in the 86% of the genome without tandem repeats or homopolymers, INDEL calls from

our method are already of high quality.

PEPPER-Margin-DeepVariant is designed for whole-genome sequencing anal-

ysis. Although targeted sequencing with the Oxford Nanopore platform is reasonably

popular, several issues may limit the application. For example, read length, read qual-

ity, coverage, and heterozygosity of the target region are expected to be fairly different

than whole-genome sequencing. Further investigation and benchmarking are required

to extend support for variant calling on amplicon sequencing data.

Oxford Nanopore provides a highly-multiplexed sequencing solution with its

PromethION device [148]. With this device and the PEPPER-Margin-DeepVariant

pipeline described here it should be comfortably possible to go from biosample collection

to complete genome inferences in under half a day. This fast turnaround should enable

its use in a medical context, where diagnosis for acute disease situations requires speed.

We have demonstrated our nanopore-based phasing is able to wholly phase

85% of all genes with only 1.3% exhibiting a switch error. This phasing ability could

play a useful role in population genetics studies [157, 19] and clinical genomics [54]. For
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clinical applications the accurate identification of compound-heterozygotes should be

particularly valuable.

We have extended PEPPER-Margin-DeepVariant to PacBio HiFi reads and

demonstrated a more accurate and cheaper solution to the existing WhatsHap-DeepVariant

variant calling methods, making cohort-wide variant calling and phasing with PacBio-

HiFi more accessible. Currently, we find PacBio-HiFi sequencing analyzed with our

method has the best performance, but we expect that improvements to nanopore pore

technology and basecalling may close this gap.

We have demonstrated diploid polishing of nanopore-based haploid assemblies

with PEPPER-Margin-DeepVariant. We achieve Q35+ nanopore polished assemblies

and Q40+ PacBio-HiFi-polished assemblies. We observe that our polishing method

can resolve homopolymer errors up to 20bp with PacBio HiFi data. However, our

polishing method fails to resolve 25bp+ long homopolymers indicating that they need

to be resolved during the consensus generation of the de novo assembly methods. As

nanopore assembly methods like Shasta move toward generating fully resolved diploid

genome assemblies like trio-hifiasm, our polishing method can enable nanopore-only

Q40+ polished diploid assemblies.
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Chapter 6

Successful Application of the

PEPPER-Margin-DeepVariant Pipeline

The PEPPER-Margin-DeepVariant pipeline is the first demonstration of suc-

cessful ONT-based variant calling. As Illumina sequencing has obvious shortcomings in

specific genomic contexts and PacBio HiFi data can be prohibitively slow and expen-

sive for some applications, this represents the cheapest and fastest method for accurate

genomic inference available today. This has resulted in a successful application of the

toolkit in a medical context.

A pipeline was developed where the PromethION sequencer was used to con-

currently sequence from 48 flow cells until a sufficient amount of sequence data was gen-

erated, with basecalling and alignment performed in near real time. Variant calling was

performed using a hardware-accelerated version of the PEPPER-Margin-DeepVariant

pipeline, and a method for fast variant filtration was used to select candidate variants
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for manual review. At its fastest, this entire process from sample collection to initial

diagnosis took seven hours eighteen minutes.

This work resulted in two primary publications, “Ultrarapid Nanopore Genome

Sequencing in a Critical Care Setting” published in the New England Journal of Medicine

[56] and “Accelerated identification of disease-causing variants with ultra-rapid nanopore

genome sequencing” to be published in Nature Biotechnology, with an additional case

study “Ultra-rapid nanopore whole genome genetic diagnosis of dilated cardiomyopathy

in an adolescent with cardiogenic shock” to be published in Circulation: Genomic and

Precision Medicine.

I was involved in this project and contributed to the manuscript, but I don’t

include the full text of these papers as the bulk of the work to transform this application

into a record-breaking medical pipeline was largely performed by John E. Gorzynski,

Sneha D. Goenka, and Kishwar Shafin.
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Appendix A

Supplementary information for efficient
de novo assembly of eleven human
genomes in nine days

156



Supplementary Results

Nanopore sequencing eleven human genomes in nine days

Supplementary Table A.1: Read N50s stratified by sample and flowcell (three for each
sample) for 11 samples.

Sample Flowcell No. Flowcell N50 Sample N50

GM24143
1 48891

467572 47044
3 44335

GM24149
1 46054

433062 44245
3 39618

GM24385
1 50349

487052 49319
3 46448

HG00733
1 29862

295842 30473
3 28417

HG01109
1 48795

458942 44218
3 44670

HG01243
1 45467

435672 44681
3 40554

HG02055
1 44320

454572 47148
3 44902

HG02080
1 38519

393192 40123
3 39315

HG02723
1 50509

497232 47842
3 50817

HG03098
1 41463

406292 42308
3 38115

HG03492
1 32149

301682 30063
3 28292

Average - 41889 42101
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Supplementary Table A.2: Throughput stratified by sample and flowcell (three for each
sample) in gigabases (Gb) for 11 samples.

Sample
Flowcell

No. Flowcell (Gb) Sample (Gb) Coverage

GM24143
1 87

280 84.722 97
3 95

GM24149
1 82

273 82.62 107
3 84

GM24385
1 26

157 47.432 71
3 59

HG00733
1 62

242 73.452 90
3 89

HG01109
1 71

219 66.482 79
3 70

HG01243
1 71

187 56.682 73
3 43

HG02055
1 71

202 61.332 67
3 65

HG02080
1 71

172 52.212 42
3 59

HG02723
1 81

227 68.72 69
3 78

HG03098
1 79

177 53.632 40
3 58

HG03492
1 61

158 47.742 45
3 51

Average - 69 208 63.18
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Supplementary Table A.3: Mean, median, and modal values for read alignment identities
of 11 samples, aligned to GRCh38. Metrics were generated per read. Total gigabases of
read data for each sample are detailed in Supplementary Table A.2

Sample Mean Median Mode
GM24143 0.87188 0.89651 0.920
GM24149 0.87665 0.90511 0.930
GM24385 0.88276 0.91143 0.935
HG00733 0.87165 0.89682 0.925
HG01109 0.87033 0.89845 0.930
HG01243 0.88525 0.91435 0.935
HG02055 0.87215 0.90572 0.930
HG02080 0.88188 0.91259 0.935
HG02723 0.84914 0.87565 0.920
HG03098 0.85522 0.88156 0.915

All samples: 0.87251 0.90068 0.930

Supplementary Table A.4: Summary read statistics derived from human saliva sequenc-
ing.

Reads Bases Mean Length Median Length Read N50
594,753 10,961,203,887 18,430 15,580 27,778
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A.0.1 Shasta: assembling a human genome from nanopore reads in
under 6 hours

Supplementary Table A.5: QUAST assembly metrics of three samples on four assemblers
before polishing, compared against GRCh38 with no alternate contigs.

Sample Metric Shasta Wtdbg2 Flye Canu

HG00733

# contigs 2,150 5,086 1,852 778
Total length 2,783,599,890 2,792,376,827 2,816,034,584 2,900,719,051

N50 24,429,871 18,763,119 28,763,002 44,759,083
NG50 21,088,309 15,338,021 25,227,330 40,627,903

# disagreements 814 3,985 6,555 4,570
Genome fraction (%) 94.982 92.938 95.763 96.404

Duplication ratio 0.995 1.005 0.986 1.014
# mismatches per 100 kbp 156.21 248.78 506.12 231.24

# indels per 100 kbp 453.97 664.90 1,480.91 677.26
Total aligned length 2,775,307,347 2,742,343,142 2,769,440,009 2,858,769,830

NA50 16,052,981 9,106,500 18,577,806 21,157,324
NGA50 12,765,264 7,787,949 16,267,214 19,945,150

HG002

# contigs 1,847 5,310 1,627 767
Total length 2,801,200,983 2,793,889,694 2,819,241,152 2,901,099,163

N50 23,346,484 15,380,722 31,253,170 33,064,788
NG50 20,205,529 13,750,884 25,917,293 32,340,595

# disagreements 901 3,572 5,881 3,882
Genome fraction (%) 95.622 93.136 96.228 96.959

Duplication ratio 0.995 1.004 0.981 1.009
# mismatches per 100 kbp 167.75 261.72 549.10 231.39

# indels per 100 kbp 520.33 796.71 1,650.63 792.45
Total aligned length 2,792,458,737 2,743,401,414 2,768,347,339 2,863,787,213

NA50 16,068,951 8,564,600 18,803,788 21,330,391
NGA50 14,189,972 7,361,363 16,079,132 18,175,258

CHM13

# contigs 1,236 6,428 1,269 558
Total length 2,809,087,051 2,836,802,421 2,857,931,691 2,919,690,848

N50 46,037,322 15,522,332 36,829,446 80,507,947
NG50 41,091,906 14,039,241 35,319,460 79,504,166

# disagreements 1,051 4,202 5,452 4,768
Genome fraction (%) 95.307 93.124 96.022 96.553

Duplication ratio 1.000 1.017 0.997 1.014
# mismatches per 100 kbp 155.15 256.17 443.85 226.04

# indels per 100 kbp 358.45 535.46 1,023.79 484.46
Total aligned length 2,798,043,587 2,780,449,715 2,807,157,420 2,864,418,837

NA50 23,475,255 6,786,237 18,991,999 25,611,947
NGA50 18,990,051 5,892,796 17,032,972 23,819,455

A.0.2 Contiguously assembling MHC haplotypes
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Supplementary Table A.6: QUAST disagreement count for four assemblers on different
regions of the genome for four samples. We report disagreements that happen in all
chromosomes of GRCh38, then incrementally exclude centromeric regions, segmental
duplication regions (Seg Dups), and all other regions enriched for SVs (chrY, acrocentric
chromosome arms, and QH-regions)

Sample Assembler

Disagreements
in

GRCh38
autosomes

and
chrX, chrY

Disagreements
outside

centromeres

Disagreements
outside

centromeres
and

seg dups

Disagreements
outside

centromeres,
seg dups,

chrY,
acrocentric chr arms,

and QH-regions

HG002

Shasta 901 755 284 121
Flye 5881 1226 513 117
Canu 3882 2347 689 216

Wtdbg2 3572 1213 484 148

HG00733

Shasta 814 662 256 110
Flye 6555 1261 604 134
Canu 4570 2791 755 224

Wtdbg2 3985 1166 474 135

CHM13

Shasta 1051 795 333 129
Flye 5452 1228 448 107
Canu 4768 2764 864 164

Wtdbg2 4202 1519 592 249

Supplementary Table A.7: Disagreement count in the intersection of the assemblies for
each sample (see Online Methods). Total Disagreements describes all disagreements
found in 100bp windows before taking the intersection; note that these counts are very
close to those reported by QUAST. Consensus Disagreements describes disagreements
in the intersection of the four assemblies. Genome fraction describes total coverage over
GRCh38 for the consensus sequence.

Sample Assembler
Total

Disagreements
Consensus

Disagreements
Genome
Fraction

HG002

Shasta 863 179 87.16%
Flye 5823 178 87.16%
Canu 3779 328 87.16%

Wtdbg2 3509 215 87.16%

HG00733

Shasta 792 161 87.43%
Flye 6546 178 87.43%
Canu 4524 383 87.43%

Wtdbg2 3975 205 87.43%

CHM13

Shasta 1033 242 87.53%
Flye 5446 217 87.53%
Canu 4682 712 87.53%

Wtdbg2 4190 404 87.53%
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Supplementary Table A.8: Disagreement count and fraction of genome covered on chro-
mosome X for four assemblers on CHM13 assemblies with no polishing, compared to the
chromosome X assembly from the Telomere-to-Telomere Consortium. These numbers
were obtained via running QUAST.

Assembler Disagreements Genome Fraction
Shasta 5 97.73%

Wtdbg2 87 94.17%
Flye 18 98.41%
Canu 9 98.16%

Supplementary Table A.9: BAC analysis on selected dataset. BACs were selected (31 of
CHM13 and 16 of HG00733) for falling within unique regions of the genome, specifically
>10 Kb away from the closest segmental duplication. Closed refers to the number of
BACs for which 99.5% of their length aligns to a single locus in the assembly. Attempted
refers to the number of BACs which have an alignment for >5 Kb of sequence with >90%
identity to only one contig (BACs which have such alignments to multiple contigs are
excluded). Identity metrics are for closed BACs.

Sample Assembler BAC counts Median Quality Mean Quality

Total
Attemp-

ted Closed

Closed
of

attemp-
ted %

Identity
% QV

Identity
% QV

CHM13

Canu 31 31 30 96.77 99.40 22.18 99.34 21.84

Flye 31 31 31 100.00 97.58 16.17 97.65 16.28

Shasta 31 31 31 100.00 99.55 23.51 99.51 23.07

Wtdbg2 31 29 28 96.55 99.46 22.71 99.39 22.15

HG00733

Canu 16 16 15 93.75 98.74 18.98 98.61 18.56

Flye 16 16 16 100 97.99 16.97 98.01 17.02

Shasta 16 16 16 100 98.84 19.38 98.79 19.20

Wtdbg2 16 16 16 100 98.81 19.26 98.79 19.20
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Supplementary Table A.10: BAC analysis on full dataset, 341 on CHM13 and 179 on
HG00733. Closed refers to the number of BACs for which 99.5% of their length aligns
to a single locus. Attempted refers to the number of BACs which have an alignment
for ¿5Kb of sequence with ¿90% identity to only one contig (BACs which have such
alignments to multiple contigs are excluded). Identity metrics are for closed BACs.

Sample Assembler
Polisher

BAC counts Median Quality Mean Quality

Total
Attemp-

ted Closed

Closed
of

attemp-
ted %

Identity
% QV

Identity
% QV

CHM13

Canu 341 309 287 92.88 99.22 21.07 98.93 19.7

Flye 341 227 202 88.98 97.54 16.09 97.51 16.03

Shasta 341 94 92 97.87 99.47 22.74 99.37 21.99

Wtdbg2 341 70 62 88.57 99.36 21.96 99.28 21.43

HG00733

Canu 179 137 124 90.51 98.73 18.95 98.43 18.05

Flye 179 98 80 81.63 98.09 17.18 97.76 16.49

Shasta 179 42 40 95.23 98.76 19.08 98.13 17.30

Wtdbg2 179 52 46 88.46 98.70 18.87 98.02 17.04

Supplementary Table A.11: BAC analysis intersection of attemted BACs by all four
assemblers, 65 on CHM13 and 27 on HG00733. Closed refers to the number of BACs
for which 99.5% of their length aligns to a single locus. Attempted refers to the number
of BACs which have an alignment for ¿5Kb of sequence with ¿90% identity to only one
contig (BACs which have such alignments to multiple contigs are excluded). Identity
metrics are for closed BACs.

Sample Assembler
Polisher

BAC counts Median Quality Mean Quality

Total
Attemp-

ted Closed

Closed
of

attemp-
ted %

Identity
% QV

Identity
% QV

CHM13

Canu 65 65 64 98.50 99.29 21.53 99.21 21.01

Flye 65 65 65 100.00 97.57 16.16 97.61 16.22

Shasta 65 65 65 100.00 99.50 23.03 99.41 22.33

Wtdbg2 65 65 59 90.80 99.39 22.17 99.29 21.49

HG00733

Canu 27 27 26 96.30 98.66 18.76 98.54 18.37

Flye 27 27 27 100.00 98.07 17.14 98.08 17.16

Shasta 27 27 27 100.00 98.80 19.23 98.30 17.71

Wtdbg2 27 27 26 96.30 98.75 19.01 98.53 18.32
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Supplementary Table A.12: Base-level accuracies on four different assemblers for three
samples. Analysis is performed with whole-genome truth sequences.

Sample Assembler Percentage Errors
Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta 0.975% 0.061% 0.849% 0.065%
Wtdbg2 1.181% 0.080% 1.073% 0.029%

Canu 1.400% 0.065% 1.316% 0.020%
Flye 1.636% 0.068% 0.450% 1.118%

HG00733
Guppy 2.3.5

Shasta 1.062% 0.083% 0.887% 0.093%
Wtdbg2 1.217% 0.108% 1.059% 0.051%

Canu 1.328% 0.074% 1.224% 0.031%
Flye 1.854% 0.089% 0.445% 1.320%

CHM13
Guppy 2.3.1

Shasta 0.540% 0.039% 0.430% 0.072%
Wtdbg2 0.689% 0.068% 0.583% 0.038%

Canu 0.705% 0.038% 0.643% 0.024%
Flye 2.213% 0.051% 0.448% 1.715%

Supplementary Table A.13: Base-level accuracies on four different assemblers for three
samples in the regions of intersection of the assemblies. Analysis is performed only on
regions where all assemblers have an assembled sequence.

Sample Assembler Percentage Errors
Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta 0.943% 0.056% 0.823% 0.064%
Wtdbg2 1.145% 0.077% 1.041% 0.028%

Canu 1.319% 0.050% 1.253% 0.016%
Flye 1.554% 0.063% 0.432% 1.059%

HG00733
Guppy 2.3.5

Shasta 1.021% 0.064% 0.875% 0.083%
Wtdbg2 1.162% 0.088% 1.034% 0.041%

Canu 1.307% 0.065% 1.213% 0.030%
Flye 1.847% 0.068% 0.431% 1.348%

CHM13
Guppy 2.3.1

Shasta 0.513% 0.016% 0.406% 0.048%
Wtdbg2 0.660% 0.054% 0.575% 0.030%

Canu 0.692% 0.027% 0.645% 0.021%
Flye 2.198% 0.036% 0.460% 1.702%
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Supplementary Table A.14: Runtime and cost of three assembly workflows on Amazon
Web Services (AWS) platform.

Method Sample Minutes
Threads

Used
Peak

Memory
AWS Instance

Type
AWS Instance

Cost

WTDBG2
HG00733 2971 63 365 r5a.16xlarge $3.62
GM24385 1752 63 293 r5a.16xlarge $3.62
CHM13 1655 63 312 r5a.16xlarge $3.62

WTDBG2
(wtpoa-cns)

HG00733 248 31 12 r5a.16xlarge $3.62
GM24385 274 24 12 r5a.16xlarge $3.62
CHM13 257 31 12 r5a.16xlarge $3.62

Flye
HG00733 3421 123 1013 x1.32xlarge $13.34
GM24385 3749 64 727 x1.16xlarge $6.67
CHM13 4084 126 911 x1.32xlarge $13.34

Shasta

HG00733 298 128 966 x1.32xlarge $13.34
HG01109 355 128 - x1.32xlarge $13.34
HG01243 296 128 - x1.32xlarge $13.34
HG02055 309 128 - x1.32xlarge $13.34
HG02080 276 128 - x1.32xlarge $13.34
HG02723 373 128 - x1.32xlarge $13.34
HG03098 238 128 - x1.32xlarge $13.34
HG03492 200 128 - x1.32xlarge $13.34
GM24385 240 128 692 x1.32xlarge $13.34
GM24149 427 128 - x1.32xlarge $13.34
GM24143 451 128 - x1.32xlarge $13.34
CHM13 317 128 - x1.32xlarge $13.34

Supplementary Table A.15: Runtime breakdown for each step of the Shasta assembler.

Sample Input MinHash
Align-
ments

Marker
graph

creation

Trans-
itive

reduc-
tion

Assemble Output Other Total

HG00733 30 9 93 73 17 15 2 55 298
HG01109 29 10 136 89 16 17 2 53 355
HG01243 23 7 104 73 16 15 2 51 296
HG02055 25 9 113 73 15 15 2 53 309
HG02080 22 7 95 67 15 14 2 49 276
HG02723 29 9 146 89 19 16 2 59 373
HG03098 23 8 73 53 14 14 2 47 238
HG03492 19 7 57 44 11 14 2 40 200
GM24385 20 7 92 49 12 13 2 41 240
GM24149 34 11 149 124 21 18 2 64 427
GM24143 35 11 168 120 24 18 2 69 451
CHM13 21 6 173 67 12 13 2 46 345
Average 26 8 117 77 16 15 2 52 317

Percent
of total 8% 3% 37% 24% 5% 5% 1% 17% 100%
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Supplementary Table A.16: Structural variants extracted from HG002 assembly graph
compared to GIAB SV set in high-confidence regions.

Metric HG002
TP FP FN Precision Recall F1

Total 2961 1580 1202 0.6521 0.7117 0.6806
Inserts 2152 1203 810 0.6414 0.7117 0.7289
Deletes 809 377 392 0.6821 0.6681 0.6750
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Supplementary Figure A.1: Size distribution of structural variants (¿50 bp) extracted
from the Shasta assembly graph for HG002 and the structural variants in the Genome
In A Bottle (GIAB) catalog for the same sample. a) Full size distribution for deletions
(top) and insertion (bottom), in log-scale. b) and c) zoom in the two peaks caused by
Alu ( 300 bp) and L1 ( 6 Kbp) insertion polymorphisms.

Supplementary Table A.17: CHM13 MHC unpolished Shasta assembly as compared to
the nearest matching haplotype in hg38 (GL000251.2)

Assembler Best Contig Disagreements Largest Aligned Mismatch Rate Indel Rate
Shasta 62 6 2,788,362 0.00296 0.00399
Canu tig00589784 5 2,792,139 0.00331 0.00607
Flye contig 115 6 2,787,570 0.00543 0.01106

wtdbg2 ctg25 32 1,819,753 0.00553 0.00576
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Supplementary Table A.18: QUAST results for the HG00733 trio-binned maternal
reads, using all four assemblers.

Metric HG00733-Mother
Shasta Wtdbg2 Flye (initial) Canu

# contigs 1,934 4,028 1,634 877
Total length 2,754,225,214 2,690,619,717 2,791,893,188 2,829,920,708

N50 9,071,623 14,125,235 25,658,831 19,451,828
NG50 7,702,138 10,217,387 23,775,989 16,507,795

# disagreements 705 3,661 6,082 2,161
Genome fraction (%) 90.824 87.373 92.121 92.298

Duplication ratio 0.993 0.996 0.982 0.999
# mismatches per 100 kbp 194.15 287.89 549.61 232.72

# indels per 100 kbp 576.55 859.83 1585.30 724.67
Total aligned length 2,748,135,723 2,650,821,801 2,751,532,754 2,798,797,021

NA50 7,805,090 7,615,651 15,615,208 11,947,316
NGA50 6,339,949 5,584,544 12,833,996 10,085,023

Supplementary Table A.19: HG00733 Maternal trio binned MHC unpolished Shasta
assembly as compared to the nearest matching haplotype in hg38 (GL000255.1)

Assembler Best Contig Disagreements Largest Aligned Mismatch Rate Indel Rate
Shasta 226 0 4,289,729 0.00206 0.00538
Canu tig00002130 0 4,289,729 0.00182 0.00676
Flye contig 295 0 4,289,729 0.00579 0.01759

wtdbg2 ctg36 23 1,418,939 0.00592 0.00905
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Supplementary Figure A.2: Dotplot of unpolished CHM13 MHC assembly vs hg38
chr6:28000000-34000000 for the each of the 4 assemblers tested. (a) Shasta (b) Canu
(c) Flye (no native polish) (d) wtdbg2. Blue dots represent unique alignments and
orange dots represent repetitive alignments.
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Supplementary Figure A.3: Dotplot of unpolished HG00733 diploid MHC assembly vs
hg38 chr6:28000000-34000000 for the each of the 4 assemblers tested. (a) Shasta (b)
Canu (c) Flye (no native polish) (d) wtdbg2. Blue dots represent unique alignments
and orange dots represent repetitive alignments.
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Supplementary Figure A.4: Dotplot of unpolished HG00733 maternal haploid MHC
assembly vs hg38 chr6:28000000-34000000 for the each of the 4 assemblers tested. (a)
Shasta (b) Canu (c) Flye (no native polish) (d) wtdbg2. Blue dots represent unique
alignments and orange dots represent repetitive alignments.
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A.0.3 Deep neural network based polishing achieves QV30 long-read
only polishing accuracy

Supplementary Table A.20: Base-level accuracies comparing Racon & Medaka and
MarginPolish & HELEN pipelines on Shasta assemblies for three samples. Analysis
is performed with whole-genome truth sequences.

Sample Polisher Percentage Errors
Method Model Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta Unpolished 0.975% 0.061% 0.849% 0.065%
Racon 4x 0.665% 0.054% 0.579% 0.032%

Medaka r941 flip235 0.393% 0.051% 0.303% 0.039%
MarginPolish guppy ff235 0.372% 0.043% 0.248% 0.081%

HELEN rl941 flip235 0.279% 0.038% 0.171% 0.070%

HG00733
Guppy 2.3.5

Shasta Unpolished 1.062% 0.083% 0.887% 0.093%
Racon 4x 0.715% 0.080% 0.570% 0.066%

Medaka r941 flip235 0.455% 0.075% 0.311% 0.069%
MarginPolish guppy ff235 0.460% 0.063% 0.278% 0.118%

HELEN rl941 flip235 0.388% 0.066% 0.202% 0.120%

CHM13
Guppy 2.3.1

Shasta Unpolished 0.540% 0.039% 0.430% 0.072%
Racon 4x 0.367% 0.037% 0.199% 0.131%

Medaka r941 flip213 0.329% 0.033% 0.037% 0.259%
MarginPolish guppy ff233 0.281% 0.027% 0.071% 0.184%

HELEN rl941 flip233 0.206% 0.027% 0.062% 0.117%
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Supplementary Table A.21: QUAST results for the Shasta assemblies for all samples,
post polishing with MarginPolish-HELEN.

Sample #
contigs Total length N50 NG50 # mis-

assemblies

Genome
fraction

(%)

#
mismatches

per
100 kbp

# indels
per

100 kbp

Total aligned
length NA50 NGA50

GM24143 2,042 2,802,437,249 23,531,777 19,936,924 970 95.025 128.63 142.77 2,794,379,803 16,323,510 13,840,294
GM24149 2,368 2,816,566,939 20,798,256 17,752,973 990 95.416 130.54 134.60 2,806,847,428 13,174,778 12,128,076
GM24385 1,685 2,819,474,365 23,520,830 20,346,145 960 95.609 127.44 152.17 2,810,951,083 16,200,287 14,315,298
HG00733 1,962 2,800,357,697 24,600,414 21,701,762 877 94.976 126.23 137.92 2,792,792,711 16,156,822 12,971,070
HG01109 2,111 2,820,988,852 21,532,001 18,279,481 1,033 95.564 136.51 140.59 2,811,696,923 13,162,850 12,012,786
HG01243 1,936 2,819,065,027 22,753,128 20,884,160 920 95.521 137.50 143.02 2,810,262,570 16,040,951 14,115,348
HG02055 1,903 2,819,836,390 17,485,643 16,302,857 971 95.592 142.23 162.43 2,810,300,557 13,840,319 12,123,357
HG02080 1,814 2,803,471,776 18,701,305 15,584,440 920 95.045 128.16 134.35 2,794,749,368 12,401,739 11,561,569
HG02723 1,813 2,805,268,038 25,163,327 20,265,678 1,110 95.062 143.30 147.09 2,796,332,696 15,390,923 13,175,818
HG03098 1,790 2,811,295,217 22,571,315 19,620,076 986 95.395 144.36 170.40 2,802,844,336 14,045,283 12,089,849
HG03492 1,811 2,811,690,127 24,629,163 22,891,947 854 95.364 126.61 147.22 2,804,103,412 16,317,390 12,930,516
CHM13 1,186 2,819,245,173 46,206,794 41,255,275 1,107 95.281 136.58 140.38 2,808,536,514 23,540,225 19,532,176

Supplementary Table A.22: Base-level accuracies comparing Racon & Medaka
and MarginPolish & HELEN pipelines against CHM13 Chromosome-X. The truth
Chromosome-X sequence used reflects the most accurate haploid truth sequence avail-
able.

Sample Polisher Percentage Errors
Method Model Balanced Identity Deletion Insertion

CHM-13
Chromosome-X

Shasta Unpolished 0.469% 0.014% 0.404% 0.051%
Racon 4x 0.313% 0.017% 0.192% 0.104%

Medaka r941 flip213 0.110% 0.012% 0.035% 0.063%
MarginPolish guppy ff233 0.215% 0.008% 0.055% 0.153%

HELEN rl941 flip233 0.143% 0.007% 0.041% 0.095%
rl941 flip231 0.064% 0.006% 0.036% 0.022%

Supplementary Figure A.5: Log frequency of each run length as found in the GRCh38
reference for all bases A,C,G,T up to 100bp. Run lengths greater than 15 account for
approximately 0.012% of all homopolymer runs in GRCh38.
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Supplementary Table A.23: Base-level accuracies improvements with MarginPolish and
HELEN pipeline on four different assemblers for two samples. Analysis is performed
with whole-genome truth sequences.

Sample Polisher Percentage Errors
Method Model Balanced Identity Deletion Insertion

HG00733
Guppy 2.3.5

Shasta Unpolished 1.062% 0.083% 0.887% 0.093%
MarginPolish guppy ff235 0.460% 0.063% 0.278% 0.118%

HELEN rl941 flip235 0.388% 0.066% 0.202% 0.120%
Wtdbg2 Unpolished 1.217% 0.108% 1.059% 0.051%

MarginPolish guppy ff235 0.538% 0.083% 0.333% 0.122%
HELEN rl941 flip235 0.473% 0.089% 0.257% 0.127%

Canu Unpolished 1.328% 0.074% 1.224% 0.031%
MarginPolish guppy ff235 0.438% 0.050% 0.290% 0.098%

HELEN rl941 flip235 0.355% 0.050% 0.206% 0.099%
Flye Unpolished 1.854% 0.089% 0.445% 1.320%

MarginPolish guppy ff235 0.425% 0.062% 0.257% 0.106%
HELEN rl941 flip235 0.356% 0.064% 0.183% 0.109%

CHM13
Guppy 2.3.1

Shasta Unpolished 0.540% 0.039% 0.430% 0.072%
MarginPolish guppy ff233 0.281% 0.027% 0.071% 0.184%

HELEN rl941 flip233 0.206% 0.027% 0.062% 0.117%
Wtdbg2 Unpolished 0.689% 0.068% 0.583% 0.038%

MarginPolish guppy ff233 0.361% 0.049% 0.112% 0.201%
HELEN rl941 flip233 0.296% 0.053% 0.115% 0.129%

Canu Unpolished 0.705% 0.038% 0.643% 0.024%
MarginPolish guppy ff233 0.255% 0.013% 0.075% 0.168%

HELEN rl941 flip233 0.173% 0.012% 0.058% 0.103%
Flye Unpolished 2.213% 0.051% 0.448% 1.715%

MarginPolish guppy ff233 0.256% 0.022% 0.058% 0.176%
HELEN rl941 flip233 0.185% 0.024% 0.052% 0.109%

Supplementary Table A.24: Single-chromosome error rates after polishing with short
reads. 10X Chromium reads for sample CHM13 were used to polish via Pilon polishing
software. The top half of the table shows the results of three rounds of Pilon, starting
from the CHM13 Shasta chrX assembly that had been polished with MarginPolish and
HELEN. The bottom half shows the results of three rounds of Pilon, starting from the
raw Shasta assembly.

Sample Assembly Percentage Errors Q Scores
Balanced Identity Deletion Insertion Balanced Identity Deletion Insertion

CHM13
ChrX

Shasta (polished) 0.064% 0.006% 0.036% 0.022% 31.92 42.40 34.42 36.51
Pilon 1x 0.025% 0.004% 0.012% 0.008% 36.06 43.75 39.16 40.75
Pilon 2x 0.023% 0.004% 0.012% 0.007% 36.29 43.51 39.32 41.34

CHM13
ChrX

Shasta (raw) 0.468% 0.014% 0.404% 0.051% 23.29 38.57 23.94 32.95
Pilon 1x 0.449% 0.011% 0.395% 0.043% 23.48 39.78 24.03 33.68
Pilon 2x 0.425% 0.011% 0.373% 0.041% 23.71 39.49 24.29 33.84
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Supplementary Table A.25: Runtime and cost of two polishing workflows on Amazon
Web Services (AWS) platform.

Method Sample Minutes
Threads

Used
Peak

Memory
Instance

Type
Instance

Cost

Racon (4x)
HG00733 3099 62 574 r5a.24xlarge $5.42
GM24385 2342 62 501 r5a.24xlarge $5.42
CHM13 3700 62 281 r5a.24xlarge $5.42

Medaka
mini align

HG00733 611 62 101 c5.18xlarge $3.06
GM24385 489 62 115 c5.18xlarge $3.06
CHM13 810 60 143 c5.18xlarge $3.06

Medaka
call consensus

HG00733 8611 62 164 c5n.18xlarge $3.89
GM24385 3355 62 150 c5n.18xlarge $3.89
CHM13 2532 62 149 c5n.18xlarge $3.89

MarginPolish

HG00733 680 90 66 m5.metal $4.61
HG01109 912 70 57 c5.18xlarge $3.06
HG01243 835 70 65 c5.18xlarge $3.06
HG02055 733 70 77 c5.18xlarge $3.06
HG02080 793 70 64 c5.18xlarge $3.06
HG02723 1000 64 60 c5.18xlarge $3.06
HG03098 852 70 78 c5.18xlarge $3.06
HG03492 777 70 80 c5.18xlarge $3.06
GM24385 842 70 66 c5.18xlarge $3.06
GM24149 1037 64 103 c5.18xlarge $3.06
GM24143 1051 64 84 c5.18xlarge $3.06
CHM13 739 70 65 c5.18xlarge $3.06

HELEN
consensus

HG00733 216 8 GPUs - p2.8xlarge $7.20
HG01109 204 8 GPUs - p2.8xlarge $7.20
HG01243 233 8 GPUs - p2.8xlarge $7.20
HG02080 212 8 GPUs - p2.8xlarge $7.20
HG03098 216 8 GPUs - p2.8xlarge $7.20
GM24385 208 8 GPUs - p2.8xlarge $7.20
GM24143 226 8 GPUs - p2.8xlarge $7.20

HELEN
stitch

HG00733 59 32 - p2.8xlarge $7.20
HG01109 50 32 - p2.8xlarge $7.20
HG01243 49 32 - p2.8xlarge $7.20
HG02080 54 32 - p2.8xlarge $7.20
HG03098 65 32 - p2.8xlarge $7.20
GM24385 68 32 - p2.8xlarge $7.20
GM24143 62 32 - p2.8xlarge $7.20
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Supplementary Table A.26: Runtime and cost of two polishing workflows run on a 29
Mb contig from the HG00733 Shasta assembly. MarginPolish uses an improved stitch
method not used in original runs and Racon was run once instead of four times as was
done in the full runs. All runs were configured to use 32 CPUs, except for the GPU
runs which were performed with 16 CPUs and 1 GPU (Tesla P100).

Application Runtimes Avg Runtime

MarginPolish
16.6

16.4616.47
16.31

HELEN consensus
(CPU)

97.46
95.8695.55

94.56

HELEN consensus
(GPU)

1.63
1.671.72

1.65

HELEN stitch
0.76

0.780.78
0.80

Racon 1x
52.00

52.0452.15
51.98

mini align
3.01

3.003.00
2.98

Medaka
(CPU)

17.26
17.0116.78

16.98

Medaka consensus
(GPU)

10.55
10.6210.73

10.57

Medaka stitch
(GPU)

0.68
0.680.68

0.68
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A.0.4 Long-read assemblies contain nearly all human coding genes

Supplementary Table A.27: Transcript-level analysis with Comparative Annotation
Toolkit (CAT) of MarginPolish & HELEN and Racon & Medaka on three samples
from Shasta assemblies.

Metric HG002 HG00733 CHM13
HELEN MEDAKA HELEN MEDAKA HELEN MEDAKA

Transcripts Found Total 83093 83105 83002 82928 82833 82807
Percent 99.536 99.551 99.427 99.339 99.225 99.194

Full mRNA Coverage Total 25721 20367 28612 26573 40132 38081
Percent 30.811 24.397 34.274 31.832 48.074 45.617

Full CDS Coverage Total 41396 36248 45104 43956 53089 52297
Percent 49.588 43.421 54.030 52.655 63.595 62.646

Transcripts With
Frameshift

Total 35339 40783 31333 32647 23261 24441
Percent 42.332 48.854 37.534 39.108 27.864 29.278

Transcripts With
Original Introns

Total 76880 76883 76618 76463 76807 76803
Percent 92.094 92.098 91.780 91.594 92.006 92.002

Transcripts With
Full CDS Coverage

Total 41396 36248 45104 43956 53089 52297
Percent 49.588 43.421 54.030 52.655 63.595 62.646

Transcripts With
Full CDS Coverage
And No Frameshifts

Total 41245 36158 44982 43860 52966 52160

Percent 49.407 43.313 53.884 52.540 63.448 62.482

Transcripts With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 41021 35952 44692 43546 52616 51807

Percent 49.139 43.067 53.536 52.163 63.028 62.059
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Supplementary Table A.28: Gene-level analysis with Comparative Annotation Toolkit
(CAT) of MarginPolish & HELEN and Racon & Medaka on three samples from Shasta
assemblies.

Metric HG002 HG00733 CHM13
HELEN MEDAKA HELEN MEDAKA HELEN MEDAKA

Genes Found Total 19536 19531 19537 19511 19505 19490
Percent 99.268 99.243 99.273 99.141 99.111 99.035

Genes With
Frameshift

Total 10933 12165 9941 10081 7300 7564
Percent 55.554 61.814 50.513 51.225 37.093 38.435

Genes With
Original Introns

Total 18212 18198 18151 18113 18217 18202
Percent 92.541 92.47 92.231 92.038 92.566 92.49

Genes With
Full CDS Coverage

Total 11070 10066 11812 11756 13648 13534
Percent 56.25 51.148 60.02 59.736 69.35 68.77

Genes With
Full CDS Coverage
And No Frameshifts

Total 12454 11570 13127 13081 14625 14562

Percent 63.283 58.791 66.702 66.468 74.314 73.994

Genes With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 12422 11539 13098 13042 14603 14531

Percent 63.12 58.633 66.555 66.27 74.202 73.836

Missing Genes Total 144 149 143 169 175 190
Percent 0.732 0.757 0.727 0.859 0.889 0.965

Supplementary Table A.29: Transcript-level analysis with Comparative Annotation
Toolkit (CAT) of four HG00733 assemblies polished with MarginPolish and HELEN.

Metric HG00733
Flye

HELEN
Canu

HELEN
Wtdbg2
HELEN

Shasta
HELEN

Transcripts Found Total 83267 83334 81484 82974
Percent 99.745 99.825 97.609 99.394

Full mRNA Coverage Total 33078 28488 28889 30378
Percent 39.624 34.126 34.606 36.390

Full CDS Coverage Total 41396 44877 45321 46965
Percent 59.754 53.758 54.290 56.259

Transcripts With
Frameshift

Total 27293 32230 29525 29657
Percent 32.694 38.608 35.368 35.526

Transcripts With
Original Introns

Total 77412 77583 74683 76613
Percent 92.731 92.936 89.462 91.774

Transcripts with
Full CDS Coverage

Total 49883 44877 45321 46965
Percent 59.754 53.758 54.290 56.259

Transcripts with
Full CDS Coverage
And No Frameshifts

Total 49766 44737 45217 46802

Percent 59.614 53.590 54.165 56.064

Transcripts with
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 49459 44412 44924 46505

Percent 59.247 53.201 53.814 55.708
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Supplementary Table A.30: Gene-level analysis with Comparative Annotation Toolkit
(CAT) of four HG00733 assemblies polished with MarginPolish and HELEN

Metric HG00733
Flye

HELEN
Canu

HELEN
Wtdbg2
HELEN

Shasta
HELEN

Genes Found Total 19563 19629 19174 19528
Percent 99.405 99.741 97.429 99.228

Genes With
Frameshift

Total 8698 10160 9323 9464
Percent 44.197 51.626 47.373 48.089

Genes With
Original Introns

Total 18345 18460 17709 18154
Percent 93.216 93.801 89.985 92.246

Genes With
Full CDS Coverage

Total 12966 11889 11817 12207
Percent 65.884 60.412 60.046 62.027

Genes With
Full CDS Coverage
And No Frameshifts

Total 14145 13221 13047 13419

Percent 71.875 67.18 66.296 68.186

Genes With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 14124 13193 13017 13396

Percent 71.768 67.038 66.143 68.069

Missing Genes Total 117 51 506 152
Percent 0.595 0.259 2.571 0.772

Supplementary Table A.31: BUSCO results of three samples using two polishing work-
flows on Shasta assemblies.

Sample Metric
Shasta

MarginPolish
HELEN

Shasta
Racon (4x)

Medaka

HG00733

Complete BUSCOs (C) 87.20% 87.10%
Complete and single-copy BUSCOs (S) 84.20% 83.80%
Complete and duplicated BUSCOs (D) 3.00% 3.30%

Fragmented BUSCOs (F) 4.60% 5.30%
Missing BUSCOs (M) 8.20% 7.60%

HG002

Complete BUSCOs (C) 89.40% 88.80%
Complete and single-copy BUSCOs (S) 84.80% 85.80%
Complete and duplicated BUSCOs (D) 4.60% 3.00%

Fragmented BUSCOs (F) 3.60% 4.30%
Missing BUSCOs (M) 7.00% 6.90%

CHM13

Complete BUSCOs (C) 86.50% 86.80%
Complete and single-copy BUSCOs (S) 82.50% 82.80%
Complete and duplicated BUSCOs (D) 4.00% 4.00%

Fragmented BUSCOs (F) 5.90% 5.30%
Missing BUSCOs (M) 7.60% 7.90%

Supplementary Table A.32: BUSCO results for four assemblers on HG00733, post pol-
ishing with MarginPolish and HELEN.

Metric HG00733
Flye Canu Wtdbg2 Shasta

Complete BUSCOs (C) 87.50% 89.80% 85.80% 87.20%
Complete and single-copy BUSCOs (S) 84.50% 86.80% 82.20% 84.20%
Complete and duplicated BUSCOs (D) 3.00% 3.00% 3.60% 3.00%

Fragmented BUSCOs (F) 5.30% 3.00% 6.30% 4.60%
Missing BUSCOs (M) 7.20% 7.20% 7.90% 8.20%
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A.0.5 Comparing to a PacBio HiFi Assembly

Supplementary Table A.33: CHM13 QUAST results for Shasta, MarginPolish, HELEN
and PacBio HiFi assembly. Stratified disagreement counts were added after manual
determination.

Metric CHM13
Nanopore

Shasta
MarginPolish, HELEN

PacBio-HiFi
Canu
Racon

# contigs 1622 5206
Total length 2819245173 3031026325

N50 46206794 29522819
NG50 41255275 29092230

# disagreements 1107 8666
# disagreements outside Centromeres 801 2999

# disagreements outside centromeres and Seg Dups 314 893
Genome fraction (%) 95.281 97.030

# mismatches per 100 kbp 136.58 274.84
# indels per 100 kbp 140.38 32.99
Total aligned length 2808536514 2954558720

NA50 23540225 20440378
NGA50 19532176 20029136
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Supplementary Table A.34: Disagreement count in the intersection of the assemblies
between the PacBio-HiFi and the Shasta assembly of CHM13. Total Disagreements is
all disagreements found in 100bp before windows before taking the intersection, note it
is very close to that reported by QUAST. Consensus disagreements: Disagreements in
the intersection of the four assemblies.

Sample Assembler
Total

disagreements
Consensus

disagreements

CHM13 PacBio-HiFi 8469 594
Shasta 1073 380

Supplementary Table A.35: CHM13 Chromosome-X error rate analysis with Pomoxis
for Shasta, MarginPolish, HELEN, and PacBio HiFi assembly.

Sample Sequencing
Platform

Method Percentage errors
Assembler Polisher Balanced Identity Deletion Insertion

CHM13
Chr-X

PacBio HiFi Canu Racon 0.008% 0.001% 0.004% 0.003%

Nanopore Shasta
MarginPolish &

HELEN 0.064% 0.006% 0.036% 0.022%
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Supplementary Figure A.6: Contig NGx for CHM13 Shasta-HELEN nanopore assembly
vs Canu CCS (HiFi) assembly
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Supplementary Figure A.7: Contig NGAx for CHM13 Shasta-HELEN nanopore assem-
bly vs Canu CCS (HiFi) assembly
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A.0.6 Assembling, polishing and scaffolding 11 human genomes at
near chromosome scale

7/3/2019 Dot: Interactive dot plot for genome-genome alignments

https://dnanexus.github.io/dot/ 1/2

Click	and	drag	to	zoom	in,	double-click	to	zoom	out.

UCSC	reference	database: hg38

UCSC	(hg38):	chr1:0-248956422	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr1:0-248956422)
UCSC	(hg38):	chr2:0-242193529	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr2:0-242193529)
UCSC	(hg38):	chr3:0-198295559	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr3:0-198295559)
UCSC	(hg38):	chr4:0-190214555	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr4:0-190214555)
UCSC	(hg38):	chr5:0-181538259	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr5:0-181538259)
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Supplementary Figure A.8: Dotplot for the scaffolded HG002 assembly, aligned with
GRCh38. Blue dots represent unique alignments and orange dots represent repetitive
alignments.
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Supplementary Table A.36: QUAST results for all 11 Shasta assemblies scaffolded with
HiRise, post polishing with MarginPolish-HELEN

Sample #
contigs Total length N50 NG50 # mis-

assemblies

# scaffold
gap

extensive
mis-

assembies

Genome
fraction

(%)

#
mismatches

per
100 kbp

# indels
per

100 kbp

Total aligned
length NA50 NGA50

GM24143 1,184 2,802,523,049 129,960,437 128,216,303 1,466 4 95.027 128.28 142.79 2,792,775,664 20,657,530 16,966,477
GM24149 1,323 2,816,683,224 129,643,816 128,275,807 1,530 11 95.417 130.24 134.58 2,804,735,382 18,446,390 15,435,923
GM24385 1,019 2,819,527,260 118,169,209 102,591,941 1,335 6 95.606 127.19 152.25 2,809,570,528 22,369,161 16,601,924
HG00733 1,056 2,800,455,909 129,857,865 118,785,172 1,337 8 94.974 126.16 138.09 2,791,610,554 22,141,375 17,570,210
HG01109 1,156 2,821,098,626 130,282,751 130,166,418 1,529 5 95.559 136.73 140.63 2,809,413,640 19,932,703 17,228,023
HG01243 1,006 2,819,162,443 128,571,344 118,762,399 1,381 7 95.517 137.47 143.03 2,808,041,766 22,146,722 17,559,055
HG02055 977 2,819,933,140 130,184,428 128,180,737 1,387 8 95.587 141.91 162.46 2,809,195,864 21,057,279 18,446,049
HG02080 934 2,803,570,658 129,931,575 128,451,196 1,470 9 95.041 127.98 134.36 2,793,854,132 20,418,609 16,379,851
HG02723 982 2,805,356,030 130,365,062 128,975,828 1,499 9 95.06 143.45 147.13 2,794,747,200 20,232,566 17,865,825
HG03098 926 2,811,385,538 130,040,472 128,535,908 1,439 4 95.391 144.36 170.40 2,801,774,564 22,165,948 17,439,948
HG03492 901 2,811,782,250 130,277,907 100,251,163 1,381 7 95.362 126.54 147.23 2,803,106,787 20,001,587 16,836,756
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Appendix B

Supplementary information for
Haplotype-aware variant calling with
PEPPER-Margin-DeepVariant
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Supplementary Figures

Supplementary Figure B.1: Precision-Recall plot of HG003 for nanopore-based variant
callers.
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Supplementary Figure B.2: HG003 ONT 90x candidate finding performance comparison
between 10% heuristic based approach and PEPPER.

Supplementary Figure B.3: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from nanopore data phased by Margin
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Supplementary Figure B.4: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from nanopore data phased by WhatsHap

Supplementary Figure B.5: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from PacBio HiFi data phased by Margin
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Supplementary Figure B.6: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from PacBio HiFi data phased by WhatsHap
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Supplementary Figure B.7: PEPPER-SNP image generation scheme.
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Supplementary Figure B.8: PEPPER-SNP inference scheme.
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Supplementary Figure B.9: PEPPER-HP haplotype specific image generation scheme.
Each row describes an encoded feature and each column describes a reference position.
The top summary is derived from reads with haplotag 1 (HP-1) and the bottom is
derived from reads with haplotag 2 (HP-2).
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Supplementary Figure B.10: PEPPER-HP haplotype-specific inference scheme.

Supplementary Results

B.0.1 Variant calling results

Sample
Name Type Method True

positives
False

negatives
False

positives Recall Precision F1-score

HG003

SNP

P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969
Medaka 3293174 22716 26549 0.9931 0.9920 0.9926

Clair 3266489 61006 31220 0.9817 0.9905 0.9861
Longshot 3224643 102852 45780 0.9691 0.9860 0.9775

INDEL
P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257
Medaka 313033 189639 69434 0.6227 0.8226 0.7089

Clair 205364 299137 58367 0.4071 0.7812 0.5352

HG004

SNP

P-M-DV 3338882 7728 7474 0.9977 0.9978 0.9977
Medaka 3286457 20743 23309 0.9937 0.9930 0.9933

Clair 3285625 60985 32021 0.9818 0.9903 0.9860
Longshot 3243183 103427 45387 0.9691 0.9862 0.9776

INDEL
P-M-DV 300258 210261 32429 0.5881 0.9046 0.7128
Medaka 306050 198390 88346 0.6067 0.7807 0.6828

Clair 203825 306694 61454 0.3993 0.7708 0.5260

Supplementary Table B.1: Oxford nanopore variant calling performance comparison
between Medaka, Clair, Longshot and PEPPER-Margin-DeepVariant (P-M-DV) on
HG003 and HG004 with 90× coverage.
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Sam-
ple

Ref.
GRC

GIAB
ver-
sion

Type Method True
pos.

False
neg.

False
pos. Recall Precision F1-score

HG
005

h37 v3.3.2

SNP

P-M-DV 3036676 5947 11807 0.9980 0.9961 0.9971
Medaka 3026174 16361 21414 0.9946 0.9930 0.9938

Clair 2982163 60460 68238 0.9801 0.9776 0.9789
Longshot 2980529 62094 57698 0.9796 0.9810 0.9803

IN-
DEL

P-M-DV 258720 131438 30008 0.6631 0.8981 0.7629
Medaka 264300 125852 66019 0.6774 0.8043 0.7354

Clair 175540 214617 54654 0.4499 0.7650 0.5666

h38 v4.2.1
(draft)

SNP

P-M-DV 3269767 7563 9624 0.9977 0.9971 0.9974
Medaka 3256035 21207 26871 0.9935 0.9918 0.9927

Clair 3210942 66388 73550 0.9797 0.9776 0.9787
Longshot 3189831 87499 64687 0.9733 0.9801 0.9767

IN-
DEL

P-M-DV 278726 138235 30957 0.6685 0.9019 0.7678
Medaka 284407 132546 68363 0.6821 0.8100 0.7406

Clair 187276 229685 56443 0.4491 0.7706 0.5675

Supplementary Table B.2: Oxford nanopore variant calling performance comparison
between Medaka, Clair, Longshot and PEPPER-Margin-DeepVariant (P-M-DV) on
HG005 sample between two reference (GRCh37 and GRCh38) and GIAB truth set
(v3.3.2 and v4.2.1).
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Confidence
Total
Region
Size

Paternal
Concor-
dance

Maternal
Concor-
dance

Concor-
dance

Checked
Records

Indeter-
minate
Consist-
ency

Mendelian
Violations

GIAB High 2.504 Gb
2899287
2902160
(99.9%)

2906561
2909420
(99.9%)

2257125
2262783
(99.75%)

3588024
4791528
(74.88%)

1323587
3588024
(36.89%)

7312
3588024
(0.20%)

GIAB Low 0.315 Gb
544760
554736
(98.20%)

536611
548668
(97.80%)

394059
412533
(95.52%)

775185
1052572
(73.65%)

356121
775185
(45.94%)

25005
775185
(3.23%)

Supplementary Table B.3: Mendelian consistency for HG005, HG006, HG007 trio in and
out of GIAB high confidence regions v4.2.1 using rtg mendelian on GRCh38. “Checked
records” denotes output from the tool with description “Records were variant in at least
1 family member and checked for Mendelian constraints”, “Indeterminate Consistency”
denotes output from the tool with description “Records had indeterminate consistency
status due to incomplete calls”, and “Mendelian Violoations” denotes output from the
tool with description “Records contained a violation of Mendelian constraints”. GIAB
Low was generated by excluding GIAB’s high confidence BED from GRCh38 as well as
centromeric regions.

HG003
coverage Method True

positives
False

negatives
False

positives Recall Precision F1-score
(INDEL)

10x
P-M-DV 169072 335430 248485 0.3351 0.4074 0.3677
Medaka 147181 351183 2222020 0.2953 0.0631 0.1039

Clair 78015 426486 31587 0.1546 0.7133 0.2542

20x
P-M-DV 239619 264882 96644 0.4750 0.7164 0.5712
Medaka 229787 268549 182403 0.4611 0.5628 0.5069

Clair 142647 361854 40955 0.2827 0.7785 0.4148

30x
P-M-DV 265318 239183 64214 0.5259 0.8083 0.6372
Medaka 264877 233132 119190 0.5319 0.6949 0.6025

Clair 167998 336503 44982 0.3330 0.7905 0.4686

40x
P-M-DV 278902 225599 51381 0.5528 0.8472 0.6691
Medaka 284431 217108 103944 0.5671 0.7373 0.6411

Clair 180964 323537 48517 0.3587 0.7905 0.4935

50x
P-M-DV 288480 216021 43169 0.5718 0.8723 0.6908
Medaka 297390 206752 91135 0.5899 0.7702 0.6681

Clair 189538 314963 51278 0.3757 0.7891 0.5090

60x
P-M-DV 294414 210087 38056 0.5836 0.8878 0.7042
Medaka 301161 198584 82479 0.6026 0.7896 0.6835

Clair 195079 309422 53275 0.3867 0.7877 0.5187

70x
P-M-DV 298553 205948 34079 0.5918 0.8997 0.7139
Medaka 306842 194792 76519 0.6117 0.8048 0.6951

Clair 199070 305431 55055 0.3946 0.7856 0.5253

80x
P-M-DV 301312 203189 31269 0.5972 0.9079 0.7205
Medaka 309376 191507 72591 0.6177 0.8142 0.7024

Clair 202551 301950 56606 0.4015 0.7840 0.5310

90x
P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257
Medaka 313033 189639 69434 0.6227 0.8226 0.7089

Clair 205364 299137 58367 0.4071 0.7812 0.5352

Supplementary Table B.4: Comparison on INDEL performance between Medaka, Clair
and PEPPER-Margin-DeepVariant (P-M-DV) variant callers at different coverages of
HG003 sample.
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HG003
coverage Method True

positives
False

negatives
False

positives Recall Precision F1-score
(SNP)

10x
P-M-DV 3015493 312002 2510007 0.9062 0.5458 0.6813
Medaka 2998322 288605 8528164 0.9122 0.2602 0.4049

Clair 2067633 1259862 585625 0.6214 0.7793 0.6914

20x
P-M-DV 3286124 41371 475385 0.9876 0.8736 0.9271
Medaka 3228058 59716 369037 0.9818 0.8974 0.9377

Clair 3026716 300779 229952 0.9096 0.9294 0.9194

30x
P-M-DV 3308068 19427 60871 0.9942 0.9819 0.9880
Medaka 3248842 34884 59816 0.9894 0.9819 0.9856

Clair 3194577 132918 121085 0.9601 0.9635 0.9618

40x
P-M-DV 3312504 14991 20633 0.9955 0.9938 0.9947
Medaka 3279473 29155 39141 0.9912 0.9882 0.9897

Clair 3237789 89706 80265 0.9730 0.9758 0.9744

50x
P-M-DV 3314808 12687 13806 0.9962 0.9959 0.9960
Medaka 3298374 26404 33504 0.9921 0.9899 0.9910

Clair 3254017 73478 58229 0.9779 0.9824 0.9802

60x
P-M-DV 3315655 11840 12062 0.9964 0.9964 0.9964
Medaka 3271294 24807 30926 0.9925 0.9906 0.9916

Clair 3260364 67131 46813 0.9798 0.9858 0.9828

70x
P-M-DV 3316257 11238 11217 0.9966 0.9966 0.9966
Medaka 3283443 24010 28991 0.9927 0.9913 0.9920

Clair 3263513 63982 39636 0.9808 0.9880 0.9844

80x
P-M-DV 3316750 10745 10219 0.9968 0.9969 0.9969
Medaka 3280595 23263 27321 0.9930 0.9917 0.9924

Clair 3265361 62134 34616 0.9813 0.9895 0.9854

90x
P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969
Medaka 3293174 22716 26549 0.9931 0.9920 0.9926

Clair 3266489 61006 31220 0.9817 0.9905 0.9861

Supplementary Table B.5: Comparison on SNP performance between Medaka, Clair
and PEPPER-Margin-DeepVariant (P-M-DV) variant callers at different coverages of
HG003 sample.

File Read N50 Gb Coverage
HG001 21443 309.88 93.91
HG002 50317 160.39 48.6
HG003 44550 277.38 84.05
HG004 47996 284.32 86.16
HG005 49297 182.53 55.31
HG006 50019 163.87 49.66
HG007 50423 132.75 40.23

Supplementary Table B.6: Sample-wise nanopore read coverage for seven Genome-In-
A-Bottle (GIAB) samples.
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Sample Name Reference Version Regions covered
by benchmark (bp)

HG001 GRCh37 v3.3.2 2437907771
HG002 GRCh38 v4.2.1 2542242843
HG003 GRCh38 v4.2.1 2528531102
HG004 GRCh38 v4.2.1 2524487531
HG005 GRCh37 v3.3.2 2376855757
HG006 GRCh37 v3.3.2 2393652163
HG007 GRCh37 v3.3.2 2394471248

Supplementary Table B.7: Details of Genome-In-A-Bottle truth set used for each
genome.

Sample Type Total
truth

True
positives

False
negatives

False
positives Recall Precision F1-score

HG001 SNP 3209309 3203740 5569 11466 0.9983 0.9964 0.9973
INDEL 481841 292565 189276 37718 0.6072 0.8883 0.7213

HG003 SNP 3327495 3317032 10463 9958 0.9969 0.9970 0.9969
INDEL 504501 303643 200858 29400 0.6019 0.9136 0.7257

HG004 SNP 3346610 3338882 7728 7474 0.9977 0.9978 0.9977
INDEL 510519 300258 210261 32429 0.5881 0.9046 0.7128

HG005 SNP 3042623 3036676 5947 11807 0.9980 0.9961 0.9971
INDEL 390158 258720 131438 30008 0.6631 0.8981 0.7629

HG006 SNP 3053660 3047013 6647 13802 0.9978 0.9955 0.9967
INDEL 394727 242909 151818 30518 0.6154 0.8901 0.7277

HG007 SNP 3069407 3060423 8984 18351 0.9971 0.9940 0.9956
INDEL 397103 236816 160287 34295 0.5964 0.8753 0.7094

Supplementary Table B.8: PEPPER-Margin-DeepVariant performance on six GIAB
samples with Oxford nanopore data.

Sample Variant
Type Method True

positives
False

negatives
False

positives Recall Precision F1-score

HG003

SNP
P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969
Medaka 3293174 22716 26549 0.9931 0.9920 0.9926

PEPPER-HP 3311863 15632 27711 0.9953 0.9917 0.9935

INDEL
P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257
Medaka 313033 189639 69434 0.6227 0.8226 0.7089

PEPPER-HP 310722 193779 151334 0.6159 0.6784 0.6456

HG004

SNP
P-M-DV 3338882 7728 7474 0.9977 0.9978 0.9977
Medaka 3286457 20743 23309 0.9937 0.9930 0.9933

PEPPER-HP 3333967 12643 25961 0.9962 0.9923 0.9942

INDEL
P-M-DV 300258 210261 32429 0.5881 0.9046 0.7128
Medaka 306050 198390 88346 0.6067 0.7807 0.6828

PEPPER-HP 307935 202584 190089 0.6032 0.6247 0.6137

Supplementary Table B.9: Oxford nanopore variant calling performance comparison
between PEPPER-HP (tuned for balanced precision and recall), Medaka and PEPPER-
Margin-DeepVariant on HG003 and HG004 with 90× coverage.
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Sample Haplotype-aware pipeline Runtime
hh:mm:ss

Cost
USD($)

INDEL
F1-Score

SNP
F1-Score

HG003
DeepVariant-Whatshap-DeepVariant 15:11:52 $36.24 0.9942 0.9990

DeepVariant-Margin-DeepVariant 08:03:43 $36.71 0.9945 0.9991
PEPPER-Margin-DeepVariant 05:55:28 $26.99 0.9944 0.9990

HG004
DeepVariant-Whatshap-DeepVariant 15:47:29 $37.35 0.9940 0.9992

DeepVariant-Margin-DeepVariant 08:26:36 $38.45 0.9942 0.9992
PEPPER-Margin-DeepVariant 05:58:57 $27.26 0.9941 0.9992

Supplementary Table B.10: PacBio HiFi variant calling performance and runtime com-
parison between three haplotype-aware pipelines on 35× coverage HG003 and HG004
samples. For PEPPER, Margin and DeepVariant we used $4.56/h n1-standard-96 and
for WhatsHap we used $0.09/h n1-standard-2 instance types on google cloud platform.
The F1-scores are derived by comparing the variant calls against GIAB v4.2.1 bench-
mark variants for HG003 and HG004.

Sample Method CPUs Memory GPUs Instance
cost/h

Total
runtime

Total
cost

HG001
50x

ONT

Longshot 16vCPUs 104 GB - $0.95 51:25:31 $48.84
Clair 96vCPUs 360 GB - $4.56 02:30:05 $11.40

Medaka 16vCPUs 104 GB 1x NVIDIA
Tesla P100 $2.41 40:21:11 $97.24

16vCPUs 104 GB - $0.95 95:14:01 $90.47
PEPPER
Margin

DeepVariant

96vCPUs 360 GB - $4.56 12:59:19 $59.28

96vCPUs 360 GB 4x NVIDIA
Tesla P100 $10.4 6:41:56 $70

HG001
75x

ONT

Longshot 32vCPUs 208 GB - $1.89 73:56:43 $139.73
Clair 96vCPUs 360 GB - $4.56 03:05:46 $14.13

Medaka 32vCPUs 206GB 2x NVIDIA
Tesla P100 $4.81 46:58:11 $225.87

32vCPUs 206GB - $1.50 116:41:04 $175.025
PEPPER
Margin

DeepVariant

96vCPUs 360 GB - $4.56 14:44:40 $68.4

96vCPUs 360 GB 4x NVIDIA
Tesla P100 $10.4 9:05:01 $94.4

Supplementary Table B.11: Run-time and cost analysis of Oxford nanopore-based vari-
ant calling pipelines on 50x and 75x HG001 data. We used various n1-series instance
types available on Google Cloud Platform (GCP). The we calculated the cost using the
GCP cost calculator. Logs of all the runs are publicly available (See supplementary
Notes).
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Sample
name Pipeline Type True

positives
False

negatives
False

positives Recall Precision F1-score

HG003
35x

DeepVariant INDEL 499277 5224 4901 0.9896 0.9907 0.9902
SNP 3323609 3886 2883 0.9988 0.9991 0.9990

DV-WH-DV INDEL 501509 2992 2935 0.9941 0.9944 0.9942
SNP 3323655 3840 2734 0.9988 0.9992 0.9990

DV-M-DV INDEL 501567 2934 2746 0.9942 0.9948 0.9945
SNP 3323586 3909 1841 0.9988 0.9994 0.9991

P-M-DV INDEL 501539 2962 2816 0.9941 0.9946 0.9944
SNP 3323607 3888 2501 0.9988 0.9992 0.9990

HG004
35x

DeepVariant INDEL 504939 5580 5217 0.9891 0.9902 0.9896
SNP 3343142 3468 2274 0.9990 0.9993 0.9991

DV-WH-DV INDEL 507288 3231 2966 0.9937 0.9944 0.9940
SNP 3343074 3536 1771 0.9989 0.9995 0.9992

DV-M-DV INDEL 507351 3168 2846 0.9938 0.9946 0.9942
SNP 3342966 3644 1491 0.9989 0.9996 0.9992

P-M-DV INDEL 507313 3206 2903 0.9937 0.9945 0.9941
SNP 3342928 3682 1721 0.9989 0.9995 0.9992

Supplementary Table B.12: PacBio HiFi variant calling perfomance comparison between
PEPPER-Margin-DeepVariant (P-M-DV), DeepVariant-WhatsHap-DeepVariant (DV-
WH-DV), DeepVariant-Margin-DV (DV-M-DV), DeepVariant only.

Sample Pipeline
SNP

calling
runtime

Phasing runtime
Variant
calling

runtime

Total
runtime Cost

HG003
35x

PacBio
HiFi

DeepVariant
Whatshap

DeepVariant

03:48:45
(n1-std-96)

07:32:35
(n1-std-2)

03:50:32
(n1-std-96) 15:11:52 $36.24

DeepVariant
Margin

DeepVariant

03:48:45
(n1-std-96)

00:24:51
(n1-std-96)

03:50:07
(n1-std-96) 08:03:43 $36.71

PEPPER
Margin

DeepVariant

1:28:49
(n1-std-96)

00:23:25
(n1-std-96)

4:03:14
(n1-std-96) 05:55:28 $26.99

HG004
35x

PacBio
HiFi

DeepVariant
Whatshap

DeepVariant

04:03:58
(n1-std-96)

07:44:56
(n1-std-2)

03:58:35
(n1-std-96) 15:47:29 $37.35

DeepVariant
Margin

DeepVariant

04:03:58
(n1-std-96)

00:26:09
(n1-std-96)

03:56:29
(n1-std-96) 08:26:36 $38.45

PEPPER
Margin

DeepVariant

1:25:03
(n1-std-96)

0:23:41
(n1-std-96)

4:10:13
(n1-std-96) 05:58:57 $27.26

Supplementary Table B.13: PacBio HiFi variant calling run-time comparison between
three haplotype-aware pipelines on 35× coverage HG003 and HG004 samples. We used
$4.56/h n1-standard-96 (n1-std-96) and $0.09/h n1-standard-2 (n1-std-2) in-
stance types on google cloud platform for this analysis.
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Sample Coverage Method True
positives

False
negatives

False
positives Recall Precision F1-score

HG003 26.5x P-M-DV 3278007 20943 50763 0.9937 0.9847 0.9892
Longshot 3220875 53788 107929 0.9836 0.9676 0.9755

HG004 10.9x P-M-DV 2862862 208230 484946 0.9322 0.8551 0.8920

Supplementary Table B.14: SNP Variant accuracy statistics for HG003 and HG004
against GIAB v4.2.1 on GRCh38 using PacBio CLR data

Sample Variant
type

Sequencing
technology

True
positives

False
negatives

False
positives Recall Precision F1-score

HG003

SNP
Nanopore 3317032 10463 9958 0.9969 0.9970 0.9969
Illumina 3307988 19508 4808 0.9941 0.9985 0.9963

PacBio HiFi 3323607 3888 2501 0.9988 0.9992 0.9990

INDEL
Nanopore 303643 200858 29400 0.6019 0.9136 0.7257
Illumina 501546 2955 1276 0.9941 0.9976 0.9959

PacBio HiFi 501539 2962 2816 0.9941 0.9946 0.9944

HG004

SNP
Nanopore 3338882 7728 7474 0.9977 0.9978 0.9977
Illumina 3326040 20570 4476 0.9939 0.9987 0.9962

PacBio HiFi 3342928 3682 1721 0.9989 0.9995 0.9992

INDEL
Nanopore 300258 210261 32429 0.5881 0.9046 0.7128
Illumina 507418 3101 1284 0.9939 0.9976 0.9958

PacBio HiFi 507313 3206 2903 0.9937 0.9945 0.9941

Supplementary Table B.15: Variant calling performance comparison in all benchmark
regions between Oxford Nanopore Technology (ONT), Illumina NovaSeq (Illumina) and
PacBio HiFi sequencing technology. Illumina variant calls are generated with DeepVari-
ant v1.1 and ONT and PacBio HiFi variant calls are generated with PEPPER-Margin-
DeepVariant.
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Region Sample Platform Total
truth

True
posi-
tives

False
nega-
tives

False
posi-
tives

Recall Precision F1-score

MHC
(SNP)

HG003
ONT 19543 19437 106 56 0.9946 0.9971 0.9958

Illumina 19544 19336 208 31 0.9894 0.9984 0.9939
PacBio 19543 19391 152 39 0.9922 0.9980 0.9951

HG004
ONT 19271 19181 90 42 0.9953 0.9978 0.9966

Illumina 19271 18998 273 31 0.9858 0.9984 0.9921
PacBio 19271 19112 159 12 0.9917 0.9994 0.9955

Seg.
Dup.

(SNP)

HG003
ONT 121960 119838 2122 2288 0.9826 0.9813 0.9819

Illumina 121960 112293 9667 2905 0.9207 0.9748 0.9470
PacBio 121960 119003 2957 818 0.9758 0.9932 0.9844

HG004
ONT 122191 120107 2084 1693 0.9829 0.9861 0.9845

Illumina 122191 112296 9895 2710 0.9190 0.9764 0.9469
PacBio 122191 119713 2478 672 0.9797 0.9944 0.9870

Low
map.

(SNP)

HG003
ONT 192520 190380 2140 2152 0.9889 0.9888 0.9889

Illumina 192520 174763 17757 3627 0.9078 0.9797 0.9423
PacBio 192520 189453 3067 888 0.9841 0.9953 0.9897

HG004
ONT 192653 190671 1982 1634 0.9897 0.9915 0.9906

Illumina 192653 174196 18457 3510 0.9042 0.9803 0.9407
PacBio 192653 190118 2535 653 0.9868 0.9966 0.9917

250bp+
non-

unique
(SNP)

HG003
ONT 13608 12594 1014 592 0.9255 0.9552 0.9401

Illumina 13608 7420 6188 1377 0.5453 0.8436 0.6624
PacBio 13608 11613 1995 380 0.8534 0.9684 0.9072

HG004
ONT 13492 12615 877 413 0.9350 0.9683 0.9514

Illumina 13492 7235 6257 1323 0.5362 0.8455 0.6563
PacBio 13492 11847 1645 284 0.8781 0.9766 0.9247

Supplementary Table B.16: SNP performance in difficult-to-map regions with Illumina,
PacBio HiFi and Oxford nanopore data.
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Region Sample Platform Total
truth

True
posi-
tives

False
nega-
tives

False
posi-
tives

Recall Precision F1-score

H.poly.
(7bp-
11bp)

HG003
ONT 70736 68620 2116 2464 0.9701 0.9654 0.9677

Illumina 70737 70632 105 60 0.9985 0.9992 0.9988
PacBio 70736 70645 91 93 0.9987 0.9987 0.9987

HG004
ONT 71141 68912 2229 2665 0.9687 0.9628 0.9657

Illumina 71141 71045 96 39 0.9987 0.9995 0.9991
PacBio 71142 71032 110 127 0.9985 0.9982 0.9983

H.Poly.
11bp+

HG003
ONT 12187 10708 1479 1359 0.8786 0.8879 0.8832

Illumina 12188 12176 12 16 0.9990 0.9987 0.9989
PacBio 12187 12005 182 203 0.9851 0.9841 0.9846

HG004
ONT 12494 10751 1743 1441 0.8605 0.8823 0.8713

Illumina 12494 12478 16 38 0.9987 0.9971 0.9979
PacBio 12494 12332 162 182 0.9870 0.9861 0.9866

Di-Mer
repeat
(11bp-
50bp)

HG003
ONT 18817 18322 495 668 0.9737 0.9654 0.9695

Illumina 18817 18778 39 34 0.9979 0.9982 0.9981
PacBio 18817 18763 54 120 0.9971 0.9939 0.9955

HG004
ONT 18925 18417 508 676 0.9732 0.9652 0.9692

Illumina 18925 18880 45 41 0.9976 0.9979 0.9978
PacBio 18925 18873 52 109 0.9973 0.9945 0.9959

Tri-Mer
repeat
(15bp-
50bp)

HG003
ONT 4179 4129 50 89 0.9880 0.9791 0.9835

Illumina 4179 4172 7 3 0.9983 0.9993 0.9988
PacBio 4179 4153 26 22 0.9938 0.9948 0.9943

HG004
ONT 4213 4175 38 92 0.9910 0.9785 0.9847

Illumina 4213 4210 3 2 0.9993 0.9995 0.9994
PacBio 4213 4196 17 18 0.9960 0.9958 0.9959

Supplementary Table B.17: SNP performance in low-complexity regions with Illumina,
PacBio HiFi and Oxford nanopore data.

Region Sam-
ple Type Total

truth
Plat-
form F1-score Recall Precision True

positives
False
neg.

False
pos.

Not
in all
diffi-
cult
re-

gions
(76%
ge-

nome
frac-
tion)

HG-
003

SNP 2717833
Ilmn. 0.9997 0.9997 0.9997 2717119 713 796
ONT 0.9988 0.9986 0.9989 2714093 3740 2857
CCS 0.9999 0.9999 0.9998 2717567 265 416

IN-
DEL 155063

Ilmn. 0.9996 0.9995 0.9997 154988 74 54
ONT 0.9719 0.9535 0.9910 147852 7211 1343
CCS 0.9997 0.9997 0.9997 155023 42 39

HG-
004

SNP 2732800
Ilmn. 0.9998 0.9997 0.9998 2732050 750 600
ONT 0.9996 0.9996 0.9997 2731662 1138 903
CCS 0.9999 0.9998 0.9999 2732330 470 322

IN-
DEL 156444

Ilmn. 0.9997 0.9996 0.9998 156385 59 31
ONT 0.9700 0.9503 0.9905 148676 7768 1429
CCS 0.9997 0.9996 0.9998 156388 59 38

Supplementary Table B.18: Performance in not all difficult regions (easy regions) with
Illumina, PacBio HiFi and Oxford nanopore data.
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Region Sam-
ple Type Total

truth
Plat-
form F1-score Recall Precision True

pos.
False
neg.

False
pos.

Not in
all

tan-
dem
re-

peats
and

hom.
(86%
ge-

nome
fraction)

HG-
003

SNP 3161145
Ilmn. 0.9962 0.9939 0.9985 3141934 19209 4642
ONT 0.9981 0.9980 0.9982 3154668 6477 5534
CCS 0.9992 0.9989 0.9996 3157593 3550 1396

IN-
DEL 184877

Ilmn. 0.9962 0.9937 0.9987 183717 1159 237
ONT 0.9704 0.9516 0.9900 175933 8944 1784
CCS 0.9991 0.9989 0.9994 184667 212 105

HG-
004

SNP 3180117
Ilmn. 0.9961 0.9936 0.9986 3159831 20286 4291
ONT 0.9990 0.9989 0.9991 3176662 3455 2774
CCS 0.9993 0.9990 0.9997 3176818 3299 1068

IN-
DEL 186340

Ilmn. 0.9961 0.9935 0.9988 185125 1215 226
ONT 0.9684 0.9479 0.9898 176633 9707 1825
CCS 0.9992 0.9988 0.9995 186120 224 92

In all
tan-
dem
re-

peats
and

hom.
(4%
ge-

nome
fraction)

HG-
003

SNP 166352
Ilmn. 0.9986 0.9982 0.9990 166054 299 166
ONT 0.9748 0.9760 0.9736 162364 3988 4425
CCS 0.9976 0.9978 0.9974 165994 358 445

IN-
DEL 320072

Ilmn. 0.9957 0.9944 0.9969 318271 1800 1039
ONT 0.5401 0.4002 0.8305 128093 191979 27622
CCS 0.9918 0.9915 0.9922 317355 2719 2663

HG-
004

SNP 166493
Ilmn. 0.9986 0.9983 0.9989 166209 284 185
ONT 0.9731 0.9743 0.9720 162220 4273 4700
CCS 0.9977 0.9979 0.9974 166147 346 440

IN-
DEL 324622

Ilmn. 0.9956 0.9942 0.9969 322730 1892 1059
ONT 0.5193 0.3820 0.8108 123993 200629 30601
CCS 0.9914 0.9908 0.9920 321655 2971 2774

Supplementary Table B.19: Performance comparson of Illumina, PacBio HiFi and Ox-
ford nanopore data in repeat and non-repeat regions.

Data Tool Phased
Variants

Un-
phased
Variants

Blocks

Me-
dian
Var-
iants
per
Block

Ave-
rage
Var-
iants
per
Block

Median
BP per
Block

Average
BP per
Block

Block
N50

ONT
25x

Margin 2293009 1008276 2536 347 904 503808 1056597 2067806
WhatsHap 2452395 849215 2297 395 1068 523694 1177941 2372651

ONT
50x

Margin 2275697 875317 1376 613 1654 853602 1993709 4211518
WhatsHap 2391670 759715 1172 822 2041 1049089 2355537 4900234

ONT
75x

Margin 2091713 1023259 1167 496 1792 769148 2372510 6126250
WhatsHap 2393421 722297 812 955 2948 1167915 3430964 8266083

HiFi
35x

Margin 2327420 1035855 14069 15 165 48362 154095 242226
WhatsHap 2412900 954503 14061 14 172 48362 155745 252972

Supplementary Table B.20: Details of Margin and WhatsHap phasing output on HG001
sample with Oxford Nanopore (ONT) and PacBio HiFi data. Results are generated with
whatshap stats command.
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Data Tool Data Tool Assessed
Pairs Switches Switch

Rate Hamming
Ham-
ming
Rate

ONT
25x

Margin ONT 25x Margin 1901418 16639 0.00875 162341 0.0854
WhatsHap ONT 25x WhatsHap 1917571 17696 0.00923 177660 0.0926

ONT
50x

Margin ONT 50x Margin 1895721 16252 0.00857 195897 0.1033
WhatsHap ONT 50x WhatsHap 1926257 17513 0.00909 161079 0.0836

ONT
75x

Margin ONT 75x Margin 1759253 14356 0.00816 174052 0.0989
WhatsHap ONT 75x WhatsHap 1927665 17462 0.00906 179655 0.0932

HiFi
35x

Margin HiFi 35x Margin 1908770 17077 0.00895 24187 0.0127
WhatsHap HiFi 35x WhatsHap 1914368 17801 0.00930 28973 0.0151

Supplementary Table B.21: Comparison of Margin and WhatsHap phasesets of HG001
sample with Oxford Nanopore (ONT) and PacBio HiFi data. Comparison is performed
with whatshap compare command.

Data Tool Average
Accuracy

Average
Reads
per 1kb

Average
Tagged
Reads
per 1kb

ONT 55x Chr1 Margin 96.26 56.9 56.9
WhatsHap 95.71 56.9 56.9

CCS 35x Chr1 Margin 98.00 35.5 35.5
WhatsHap 97.99 35.5 35.5

Supplementary Table B.22: Haplotagging results comparing Margin and WhatsHap on
an Admixed sample with an approximately equal amount of reads from the maternal
haplotypes of HG005 and HG02723. Accuracy is determined for each kilobase bucket
by comparing the number of direct-matched reads Rd (truth H1 to tagged H1 or truth
H2 to tagged H2) and cross-matched reads Rc (truth H1 to tagged H2 or truth H2 to
tagged H1) and calculating max(Rc,Rd)/(Rc +Rd), then averaging this value across all
buckets in the HG003 high confidence regions.

Sample Variant
Type

Variant
caller

True
positives

False
negatives

False
positives Recall Precision F1-score

HG003
SNP P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969

P-WH-DV 3316452 11043 11716 0.9967 0.9965 0.9966

INDEL P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257
P-WH-DV 301732 202769 29507 0.5981 0.9128 0.7227

HG004
SNP P-M-DV 3338882 7728 7474 0.9977 0.9978 0.9977

P-WH-DV 3338354 8256 10522 0.9975 0.9969 0.9972

INDEL P-M-DV 300258 210261 32429 0.5881 0.9046 0.7128
P-WH-DV 298389 212130 32383 0.5845 0.9041 0.7100

Supplementary Table B.23: Oxford Nanopore variant calling perfomance comparison be-
tween PEPPER-Margin-DeepVariant (P-M-DV) and PEPPER-WhatsHap-DeepVariant
(P-WH-DV) only.
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Data Tool Module
Max
Thr-
eads

Max
Mem.

Run-
time
(min)

Instance Type
Instance
Cost
($/hr)

Cost
($)

ONT 25x

Margin
Haplotag 64 20 21 n1-highcpu-64 2.267 0.79
Phase VCF 64 15 15 n1-highcpu-64 2.267 0.56
Total – – 36 n1-highcpu-64 2.267 1.36

WhatsHap
Phase 2 3 347 n1-standard-2 0.095 0.54
Haplotag 2 3 247 n1-standard-2 0.095 0.39
Total – – 941 n1-standard-2 0.095 1.48

ONT 50x

Margin
Haplotag 64 28 54 n1-highcpu-64 2.267 2.04
Phase VCF 64 18 30 n1-highcpu-64 2.267 1.13
Total – – 84 n1-highcpu-64 2.267 3.17

WhatsHap
Phase 2 3 446 n1-standard-2 0.095 0.7
Haplotag 2 3 444 n1-standard-2 0.095 0.7
Total – – 1336 n1-standard-2 0.095 2.11

ONT 75x

Margin
Haplotag 64 35 80 n1-highcpu-64 2.267 3.02
Phase VCF 64 22 43 n1-highcpu-64 2.267 1.62
Total – – 123 n1-highcpu-64 2.267 4.64

WhatsHap
Phase 2 3 522 n1-standard-2 0.095 0.82
Haplotag 2 3 644 n1-standard-2 0.095 1.01
Total – – 1688 n1-standard-2 0.095 2.67

HiFi 35x

Margin
Haplotag 64 19 19 n1-highcpu-64 2.267 0.71
Phase VCF 64 18 14 n1-highcpu-64 2.267 0.52
Total – – 33 n1-highcpu-64 2.267 1.24

WhatsHap
Phase 2 3 277 n1-standard-2 0.095 0.43
Haplotag 2 3 210 n1-standard-2 0.095 0.33
Total – – 764 n1-standard-2 0.095 1.2

Supplementary Table B.24: Margin/WhatsHap Runtimes. Total runtimes are sum of
Haplotag and Phase VCF runtimes for Margin, and sum of 2x Phase and 1x Haplotag
for WhatsHap, as whatshap haplotag requires a phased VCF.
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Type Data Gene Type Subset Recall Precision F1 Score

SNP

Nanopore

all regions all regions 0.998169 0.996314 0.997241
all genes all genes 0.998097 0.996481 0.997289

protein coding
all cds 0.998641 0.997887 0.998263
all exons 0.998158 0.997675 0.997916
all genes 0.99799 0.996751 0.99737

PacBio HiFi

all regions all regions 0.999391 0.998062 0.998726
all genes all genes 0.999384 0.998197 0.99879

protein coding
all cds 0.999446 0.998994 0.99922
all exons 0.999502 0.999117 0.99931
all genes 0.999382 0.998441 0.998912

INDEL

Nanopore

all regions all regions 0.60077 0.878512 0.713567
all genes all genes 0.595042 0.877943 0.709325

protein coding
all cds 0.799544 0.926893 0.858522
all exons 0.632435 0.896594 0.741696
all genes 0.584914 0.876731 0.701692

PacBio HiFi

all regions all regions 0.948736 0.92602 0.937241
all genes all genes 0.947847 0.922887 0.935201

protein coding
all cds 0.984055 0.909278 0.94519
all exons 0.955149 0.927624 0.941186
all genes 0.946128 0.918991 0.932362

Supplementary Table B.25: Accuracy stats for ONT and CCS calls made on GRCh37
with HG001 data in high confidence regions against GIAB v3.3.2 stratified by all gene
and protein coding gene, further stratified by whole gene, exon, CDS as annotated by
GENCODE v35lift37. CDS regions are coding sequences, and include start and stop
codons for this analysis.

Gene Region Subset Subset Size

Subset
High
Confidence
Size

High
Confidence
Ratio

High
Confidence
Whole
Genome
Ratio

Genome – 2951332653 2579466415 0.874001 0.874001
All Genes – 1982798080 1591767788 0.802789 0.539339
Protein Coding Coding Sequence 114906140 31986772 0.278373 0.010838
Protein Coding Exon 283314507 92457254 0.326341 0.031327
Protein Coding Gene Regions 1367165648 1201166019 0.878581 0.406991

Supplementary Table B.26: Size of GENCODE Gene Regions
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Phasing
Coverage

Switch
Errors
Present

SNP,
INDEL
Errors

Gene
Region Count

25
Quartile
Gene
Size

Median
Gene
Size

75
Quartile
Gene
Size

wholly

no error

no error
gene 1738 1438 3332 8005
exon 3121 2845 10303 34848
cds 3481 3163 11478 39123

error
gene 1764 15676 35729 80335
exon 381 7533 27218 67507
cds 21 3161 5190 31102

error

no error
gene 15 1685 4868 15383
exon 33 8703 19682 86981
cds 37 8703 20549 72326

error
gene 23 18072 63546 107182
exon 5 7680 47627 63546
cds 1 7680 7680 7680

partially no error

no error
gene 6 4760 10482 36920
exon 29 25339 102612 147661
cds 37 25339 102612 161893

error
gene 31 44745 110698 223634
exon 8 54807 99792 318869
cds 0 – – –

error all all 0 – – –

not –

no error
gene 125 1769 3060 8819
exon 201 2352 8744 29504
cds 214 2478 9365 29958

error
gene 91 19316 33429 69811
exon 15 10690 23836 35712
cds 2 44794 53073 61351

Supplementary Table B.27: Gencode protein coding genes with coding sequence (CDS,
start codon, and stop codon) 80% spanned by high confidence stratified by how phased
it is by Margin, whether there were switch errors, whether there were SNP or INDEL
errors, and gene region for HG001 with 75x Nanopore data on GRCh37. Three gene
length quartiles are presented for the groupings.
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Phasing
Coverage

Switch
Errors
Present

SNP,
INDEL
Errors

Gene
Region Count

25
Quartile
Gene
Size

Median
Gene
Size

75
Quartile
Gene
Size

wholly

no error

no error
gene 2086 2184 5907 17294
exon 2446 2586 8471 27219
cds 2474 2615 8536 27351

error
gene 390 23230 51309 102861
exon 30 7098 15068 65957
cds 2 60929 108132 155335

error

no error
gene 18 1690 6798 11879
exon 23 2321 8703 23001
cds 24 2567 9247 19731

error
gene 6 13297 23861 43535
exon 1 12242 12242 12242
cds 0 – – –

partially

no error

no error
gene 190 13338 34319 67099
exon 354 28087 68206 146543
cds 360 28289 68510 145331

error
gene 170 76695 137702 255101
exon 6 55573 75267 104898
cds 0 – – –

error

no error
gene 2 20915 21281 21647
exon 5 22014 109387 127176
cds 5 22014 109387 127176

error
gene 3 118281 127176 138247
exon 0 – – –
cds 0 – – –

not no error

no error
gene 741 2565 8419 23809
exon 917 3533 13187 43784
cds 928 3639 13351 43785

error
gene 187 30101 75166 156763
exon 11 10504 29953 68614
cds 0 – – –

Supplementary Table B.28: Gencode protein coding genes with coding sequence (CDS,
start codon, and stop codon) 80% spanned by high confidence stratified by how phased
it is by Margin, whether there were switch errors, whether there were SNP or INDEL
errors, and gene region for HG001 with 35x PacBio HiFi data on GRCh37. Three gene
length quartiles are presented for the groupings.
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Sample Assembler Polisher Assembly
haplotype NG50

Estimated
QV

YAK
(k=31)

Switch
error rate

Hamming
error

HG005

Flye - Haploid 37254637 31.08 0.146333 0.319502

Shasta

- Haploid 39831103 32 0.16431 0.293283
P-M-DV
(ONT)

HP-1 39820763 35.06 0.058178 0.207221
HP-2 39820481 35.06 0.059199 0.218271

P-M-DV
(PacBio HiFi)

HP-1 39808277 43.54 0.028165 0.26687
HP-2 39809097 43.5 0.028253 0.264903

Trio-
hifiasm - mat 51324672 51.81 0.007056 0.009601

pat 50669010 51.72 0.003106 0.004542

HG00733

Flye - Haploid 36602095 31.93 0.226708 0.455478

Shasta

- Haploid 42512208 32.7 0.263731 0.4387
P-M-DV
(ONT)

HP-1 42497702 35.83 0.09903 0.319373
HP-2 42498275 35.84 0.098502 0.320807

P-M-DV
(PacBio HiFi)

HP-1 42475072 43.83 0.050551 0.401146
HP-2 42476106 43.85 0.049385 0.406129

Trio-
hifiasm - mat 32479553 53.6 0.0102 0.012044

pat 35318917 53.35 0.010144 0.010069

HG02723

Flye - Haploid 39652856 31.88 0.24692 0.454764

Shasta

- Haploid 49185987 32.52 0.28754 0.424615
P-M-DV
(ONT)

HP-1 49165039 35.8 0.104264 0.248018
HP-2 49164831 35.79 0.103455 0.238674

P-M-DV
(PacBio HiFi)

HP-1 49146102 43.46 0.046367 0.365246
HP-2 49143792 43.38 0.046215 0.363784

Trio-
hifiasm - mat 19737990 56.27 0.005794 0.007677

pat 22214675 55.94 0.006683 0.009111

Supplementary Table B.29: Diploid assembly polishing results of PEPPER-Margin-
DeepVariant (P-M-DV) pipeline on HG005, HG00733 and HG02723 samples. We report
estimated quality value (QV), switch error rate and hamming error using YAK assembly
assessment tool.

Sample Assembler Polisher Estimated QV
YAK (k=31)

CHM13
chrX

Flye - 32.85

Shasta
- 34.601

P-M-DV
(ONT) 36.91

P-M-DV
(PacBio HiFi) 42.765

Hifiasm - 53.039

Supplementary Table B.30: Haploid assembly polishing results of PEPPER-Margin-
DeepVariant (P-M-DV) pipeline on CHM13-chrX. We report estimated quality value
(QV) using YAK assembly assessment tool.
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Genome Test SV set Truth SV set Hom. SV recall Het. SV recall Precision

HG002

Shasta
GIAB curated

94.4% 46.7% 80.1%
PEPPER-Margin-DV 94.9% 49.0% 81.1%
hifiasm 97.8% 97.0% 93.0%
Shasta hifiasm 95.2% 48.7% 83.2%
PEPPER-Margin-DV 96.0% 50.9% 84.7%

HG005 Shasta hifiasm 93.7% 49.6% 82.3%
PEPPER-Margin-DV 95.2% 51.7% 84.0%

HG00733 Shasta hifiasm 95.1% 47.7% 80.1%
PEPPER-Margin-DV 95.9% 49.7% 81.7%

HG02733 Shasta hifiasm 94.6% 48.7% 80.7%
PEPPER-Margin-DV 95.8% 51.3% 82.4%

Supplementary Table B.31: Evaluation of the accuracy and completeness of SV recon-
struction of Shasta and PEPPER-Margin-DeepVariant assemblies. Recall and precision
were computed using the SVbenchmark tool inside the Tier1 high-confidence regions
defined in the HG002 curated set of SVs. Since the set of curated SVs was only avail-
able for the HG002 genome, for the remaining genomes SVs recovered from the hifiasm
assemblies were used as reference.
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