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Abstract of the Dissertation 
 

Genetic and Metabolic Mechanisms of Breast Cancer Metastasis  
 

By  
 

Paige Vail Halas 
 

Doctor of Philosophy in Biomedical Sciences  
 

University of California, Irvine, 2024 
 

Assistant Professor Devon A. Lawson, Chair 
 

 
Metastasis is a major determinant of patient survival in cancer, yet the genetic and metabolic 

mechanisms underlying metastatic progression remain poorly understood. In our previous work, 

we identified PHLDA2, a gene not previously implicated in breast cancer metastasis, as a 

transcriptional marker of metastatic breast cancer. Analyzing patient datasets, we found this gene 

is more highly expressed in breast tumor tissue than normal tissue. This elevated expression is 

likely driven by methylation, as PHLDA2 is an imprinted gene, indicating a potential role for 

epigenetic regulation in its overactivation in cancer. Patient datasets revealed that high PHLDA2 

expression is associated with reduced relapse-free and distal metastasis-free survival, 

underscoring its prognostic significance. Building on these findings, this thesis explores PHLDA2 

as a driver of metastatic burden, demonstrating that it promotes breast cancer metastasis by 

restructuring the extracellular matrix and increasing vessel permeability, thereby reshaping the 

metastatic microenvironment. Additionally, to better study the metabolic processes driving 

aggressive cancer cell behavior at metastatic sites, I developed a single-cell metabolomics 

approach. This work identifies citrate as a potential metabolic drivers of cancer metastasis using 

a novel tool to study cancer metabolism at a single-cell resolution
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Chapter 1: Introduction  

Chapter 1.1: Breast Cancer and the Metastatic Cascade  
 

Breast cancer patient mortality is driven by untreatable metastatic lesions. Breast cancer 

is the most frequently diagnosed cancer in women globally and remains the leading cause of 

cancer-related mortality1. Patient survival declines significantly as breast cancer progresses from 

localized disease in the breast to systemic metastatic disease. Due to its aggressive and recurrent 

nature, breast cancer metastasis is responsible for 90% of patient deaths2. The metastatic 

process is quite complex and genetic and metabolic drivers of breast cancer metastasis are 

largely unidentified.  

During the metastatic cascade, cancer cells in the primary tumor in the breast will invade 

the surrounding tissue, allowing for intravasation into the microvasculature of the lymphatic and 

circulatory systems2. These cells survive and travel through the bloodstream to secondary sites 

in distal tissues2. At these secondary sites, cells extravasate from the blood stream into 

microvessels of distant tissues. These cells then adapt to the microenvironment in secondary 

sites and proliferate to colonize secondary lesions2. The metastatic cascade is largely inefficient 

due to numerous biological barriers; however, aggressive metastatic lesions possess the ability 

to overcome these challenges, enabling successful colonization at distant sites. In the context of 

breast cancer, cancer cells preferentially metastasize in the lung, liver, bone and brain3. In this 

study, we utilized models of breast cancer lung metastasis, incorporating both spontaneous and 

experimental metastasis approaches for experimentation.  

Cancer cells possess key characteristics that drive their aggression such as immortality, 

genomic instability, cell death resistance, altered metabolism and ability to invade and 

metastasize4,5. These cells interact with their environment to promote processes such 

angiogenesis, inflammation, growth inhibition resistance and enabling immortality to promote 

abnormal growth4,5. These processes have been defined as the Hallmarks of Cancer4,5. The 
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differentiation between a benign tumor and cancer is the ability of at least one cell to invade 

through the basement membrane. However, for metastatic cancer cells, invasion alone is not 

sufficient to establish metastatic disease. These cells must be able to survive independently of 

the host and adapt a new microenvironment, driving the acquisition of hallmarks that drive 

invasive cancer cell behavior4,5. To successfully adapt to this new microenvironment, cancer cells 

rely on the extracellular matrix (ECM), which plays a pivotal role in supporting cellular functions 

and facilitating the signaling pathways essential for their survival and progression. 

Chapter 1.2: Extracellular Matrix and Vasculature: Key Players in Cancer Progression and 

Metastasis 

 
The ECM is made up of interstitial elements within tissues and organs to provide structural 

support for cell growth, cellular adhesion, production of growth factors and promote various 

signaling pathways during homeostasis6,7. As a major component of the tumor microenvironment 

(TME), the dysregulation of the ECM has been extensively studied for its role in cancer 

progression from primary tumor formation to metastasis6–8. Through biochemical and structural 

modifications, the ECM impacts cancer cell growth and metastasis7. The ECM is comprised of 

three layers; the glycocalyx, the basement membrane and the stromal ECM7. The glycocalyx 

plays a role in cellular interaction with its surroundings through glycoproteins, proteoglycans and 

glycolipids that cover the surface of epithelial and endothelial cells9. The basement membrane 

contains laminins and collagen IV for the purpose of separating epithelial layers from the stromal 

ECM7. The stromal ECM is made up of glycoproteins such as collagen, elastin, hyaluronic acid 

and fibronectin7. These three layers are all influenced and altered by the presence of tumor cells, 

which disrupt their normal structure and function, facilitating cancer progression and metastasis. 

In cancer, the stomal ECM undergoes significant remodeling during disease which 

promotes tumor growth through increased density and stiffness7. ECM remodeling correlates with 

tumor invasiveness and poor clinical outcome7. As collagen is the most abundant component of 
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the ECM, it has been observed that increased collagen deposition provides a structural support 

for tumor formation in primary and secondary tumor sites7. Once cancer cells metastasize to a 

secondary site, to form a secondary lesion these cells must acclimate to a new microenvironment. 

To do this, the ECM, particularly through deposition of collagen, establishes a new environment 

for cancer cells in a secondary organ7. This has been demonstrated in both the pre-metastatic 

and metastatic niche of secondary tumor sites7. Through mechanisms of production/deposition, 

cross-linking, degradation and remodeling of the ECM, cancer cells can be supported in their new 

environments, promoting secondary tumor growth7.  

However, these ECM changes are not limited to being an advantage in tumor sites. In the 

metastatic cascade, cancer cells must invade the vasculature, survive in the blood and exit the 

blood vessels at distal locations7. In cancer, the basement membrane integrity is disrupted, 

allowing for disruption of the vascular basement membrane and increased vessel permeability7. 

Angiogenesis, the formation of new blood vessels, is often promoted by tumors to ensure a supply 

of nutrients and oxygen10. This newly formed vasculature, which is frequently leaky, facilitates 

metastasis by enabling cancer cells to enter the circulation10. To enter circulation through 

invasion, cancer cells degrade basement membrane vessel junctions and ECM components 

using the secretion of matrix metalloproteinases (MMPs)7. The glycocalyx additionally regulates 

cell adhesion before intravasation by allowing tumor cell binding to endothelial cells7. These 

interactions assist cancer cells in attaching to the epithelial lining before entering the blood7. In 

extravasation when cancer cells exit the blood stream and invade surrounding tissues, the 

glycocalyx is again altered causing increased vessel permeability7. During extravasation, the 

basement membrane is further degraded by MMPs to allow for cancer cell escape into secondary 

sites7. Overall, the dysregulation of the ECM during cancer supports tumor growth and metastasis.  
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Chapter 1.3: Heterogeneity and Therapeutic Challenges in Breast Cancer Metastasis 
 

Given the pivotal role of the ECM in supporting tumor progression, its influence is 

particularly evident in the context of breast cancer, which is highly heterogeneous, comprising 

four main molecular subtypes: Luminal A, Luminal B, HER2+, and Triple Negative (TNBC). Along 

with primary tumor heterogeneity, metastatic capability and location are also highly variable 

among breast cancer subtypes3. Part of this heterogeneity can be attributed to the differences in 

ECM alteration between breast cancer subtypes11. For example, more aggressive subtypes, 

Basal and HER2+, been demonstrated to the have increased stiffness compared to less 

aggressive Luminal A and B subtypes11. Breast cancer subtypes are determined according to a 

gene expression pattern based on the presence or absence of estrogen receptor (ER), 

progesterone receptor (PR) or human epidermal growth factor receptor positive (HER2)12,13. 

These molecular markers can be leveraged for targeted treatments of primary tumors and 

metastatic lesions such as estrogen targeted hormone therapy or Herceptin targeting HER2+ 

cancers14. Given the lack of targetable receptors in TNBC, this model was employed in our 

previous work to identify transcriptional markers of metastasis and continues to serve as a 

foundation for this current work. 

Regardless of the metastatic site, once TNBC tumors establish themselves in secondary 

locations, there are no targeted approaches to treat these lesions. Current treatments for receptor 

negative cancer cells primarily rely on systemic chemotherapeutic strategies, which not only 

target cancer cells but also harm healthy tissues, leading to significant side effects14. Targeted 

therapeutics that specifically address markers of metastatic breast cancer cells are crucial for 

improving patient outcomes while minimizing toxicity15. However, to discover novel therapeutic 

targets for metastatic lesions, a deeper understanding of the key drivers of breast cancer 

metastasis is required. The purpose of this work was to identify genetic and metabolic drivers of 

breast cancer metastasis to better understand how TNBC breast cancer cells metastasize to the 
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lung. To achieve this, we evaluated the role of the gene PHLDA2 in promoting breast cancer lung 

metastasis. Additionally, we took an untargeted approach to identify metabolic markers of breast 

cancer metastasis using a novel single cell metabolomics approach.  

Chapter 1.4: The Role of PHLDA2 in Placental Development and Disease  
 

Our previous work defined the unique transcriptomic programs of primary tumor and 

metastatic cancer cells in previously established human patient-derived-xenograft models (PDX) 

of TNBC using single-cell RNA sequencing16,17. Using three PDX models of TNBC donated by the 

Huntsman Cancer Institute, cancer cells were injected into the mammary fat pad of immune-

deficient NOD-SCID Gamma (NSG) mice17. Primary tumors were grown and allowed to 

metastasize to secondary sites including the lung and lymph nodes17. Using flow sorting, human 

cells were isolated from each tissue and single cell RNA-Sequencing was conducted17. In all three 

PDX models, gene pleckstrin homology like domain family A member 2 (PHLDA2) was highly 

expressed in metastatic tissues, but was absent in primary tumors17. RNA scope confirmed that 

PHLDA2 transcripts were twofold higher in metastatic lung tissues than primary tumors17. Using 

a biomarker identification algorithm, PHLDA2 was a top biomarker for identifying metastatic cells 

in eight of ten computational models17. However, the data did not establish whether PHLDA2 is 

correlated with metastasis or contributes to its progression.  

PHLDA2, also referred to as TSSC3, is in the tumor suppressor region of human 

chromosome 11. This location also contains many imprinted genes. Both parents contribute 

genetically to their offspring, but in the process of genomic imprinting, monoallelic gene 

expression occurs according to parental origin18. PHLDA2 is a maternally imprinted gene, 

meaning that the maternal allele is transcriptionally active, and the paternal allele is silenced19. 

Imprinting, achieved through epigenetic modifications, ensures the regulated expression of 

genes18. This regulation is critical as these genes play a vital role in fetal development and 
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placental biology, supporting the rapid growth required during these processes 18. Reflecting this 

function, PHLDA2 has been found to be highly expressed in the murine placenta19.  

Disruption of expression of imprinted genes has been demonstrated to cause human 

diseases such as growth restriction, obesity and cancer18. A murine study determined that global 

loss of imprinting using embryonic stem cells leads to tumorigenesis in a variety of tissues20. 

Additionally, using chimeric models this study demonstrated that loss of imprinting alone can 

promote tumorigenesis20. In humans, dysregulated imprinting that results from somatic or 

germline events are associated with cancer risk21,22. These diseases often arise from 

dysregulation of DNA methylation as it plays a critical role in establishment and maintenance of 

imprinted genes22.  

Epigenetic changes in breast cancer subtypes are associated with subtype classification, 

cancer stages, and the prediction of clinical outcomes23. TNBC is considered broadly 

hypomethylated based on low levels of methylation compared to other subtypes and normal 

breast tissue23. Additionally, metastatic risk and poor survival were correlated with TNBC tumors 

lacking Cpg island methylation sites23,24. It has also been shown that patients with hypomethylated 

TNBC tumors have worse overall survival23,25. DNA methylation is regulated by DNA methylases 

(DNMTs) and DNA demethylases (TETs)23. When overexpressed, the TET family of enzymes, 

have been found to demethylate genes23. In investigating what drives hypomethylation in TNBC 

tumors, it was found that TET1 is upregulated in about 40% of TNBC patients and has been 

shown to increase oncogenic signaling through demethylation23,25. Experimental knock out of 

TET1 in TNBC cell lines, MDA-MB-231 and Hs578T, supports the oncogenic potential of this 

enzyme in vitro through reduction of cell migration and proliferation23,25. This suggests that the 

aggressive nature of TNBC can be attributed to its hypomethylation that drives its metastatic 

capabilities.  

Due to its imprinted nature and abundant expression in the placenta, PHLDA2 has largely 

been studied in the context of placental development using murine models. The murine placenta 
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contains two complementary layers to support fetal growth, the spongiotrophoblast and the 

labyrinth. The spongiotrophoblast is a cellular layer in the placenta that supports fetal 

development through the exchange of hormones and glycogen energy between mother and 

fetus26–28. PHLDA2 has been shown to regulate placental demands for maternal resources in the 

spongiotrophoblast, functioning as a rheostat in placental development28. Loss of PHLDA2 

imprinting caused by the deletion of Kvdmr1—a regulatory region for imprinted, maternally 

expressed genes—leads to a significant reduction in the spongiotrophoblast layer26,29. PHLDA2 

overexpression reduces the size of the placental layer as well as reduces energy allocated to the 

fetus, while gene deletion leads to placental overgrowth28. Using murine models, it has been 

determined that PHLDA2 is the cause of fetal growth restriction19. This finding is reflected in 

human patients with whom PHLDA2 overexpression correlates with fetal growth restriction19. 

Overall, these studies demonstrate that PHLDA2 is critical for proper placental development.  

Additionally, PHLDA2 has been shown to be a transcriptomic marker of the labyrinth, a 

highly vascularized layer of the placenta that facilitates blood exchange30. This layer of the 

placenta acts as a filter, allowing for transfer of oxygen from mother to fetus and transfer of waste 

from fetus back to the mother30. As embryonic development progressed, this study identified that 

the labyrinth exhibited an upregulation of transcriptomic pathways related to vessel development 

and angiogenesis30. Highlighting these pathways supports the function of the labyrinth as a 

complex matrix of blood vessels30.  

PHLDA2 encodes a small protein (17 kDa) of the same name which contains a pleckstrin 

homology (PH) domain and an alanine repeat chain. Alanine repeats have been shown to 

marginally increase protein stability, but can also assist with protein-protein interactions31,32. 

PHLDA2 is part of a pleckstrin homology domain (PHLD) class of proteins33. The pleckstrin 

homology domain (PH) is highly conserved among eukaryotic species and is abundant in the 

human proteome33. PH domain-containing proteins were initially discovered through their ability 

to bind specifically to the phosphorylated head group of phosphatidylinositol 4,5-bisphosphate 
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(PtdIns(4,5)P2) in vitro33. However, less than 10% of proteins with PH domains show strong 

specificity for phosphorylated phosphatidylinositol lipids33. Instead, most of these proteins bind to 

various phosphorylated phosphatidylinositol lipids, as long as the lipids have adjacent phosphate 

groups on their inositol head such as PtdIns(1,4,5)P3, PtdIns(3,4,5)P3)33. The PHLD class of 

proteins is divided into two families, PHLDA and PHLDB 33. These families differ based on the 

position of the PH domain on the N or C-terminus of the protein, with PHLDA PH domains 

positioned on the N-terminus and PHLDB PH domains located on the C-terminus 33.  The PHLDA 

family proteins, particularly PHLDA1, are more well studied than PHLDB proteins33. Within the 

PHLDA family, there are three paralogous genes that have diverted through evolution, PHLDA1, 

PHLDA2 and PHLDA3, which are all located on different chromosomes33,34. However, they all 

share similar gene organization with a PH domain two exons, one of which is coding, and a small 

intron34.  

PHLDA1, is about 45 kDa and contains a N-terminal PH domain in addition to a 

polyglutamine and proline histidine repeat33. This gene is highly expressed in all human tissues 

but is most elevated in salivary glands33. This gene is located on human chromosome 12 and has 

not been reported to be imprinted, like its paralogous relative PHLDA234.  This protein is the most 

studied in the PHLDA family and has been studied in cancer. PHLDA1 was first identified as a 

transcription factor in murine T cell hybridomas where it was found to be necessary for Fas 

expression and T-cell activation induced apoptosis34,35. However, since it’s identification, there 

has been conflicting data on its role in cancer, as it demonstrates a context dependent role as an 

oncogene or tumor suppressor33. It has been found that PHLDA1 is overexpressed in highly 

metastastic cell lines and is correlated with patient poor prognosis in osteosarcoma36. 

Polyglutamine repeats, known to contribute to genomic instability, may impact the genetic function 

of PHLDA1, potentially driving tumorigenesis34,37. Alternatively, PHLDA1 has been reported to 

have reduced expression in many cancers and has found to be associated with tumor-

suppressive effects such as reduction of cell growth, colony formation, and migration along with 
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increased apoptosis34,36,38–40,40–43. Although initially unexplored, the mechanism by which PHLDA1 

promotes tumor suppression was eventually linked to its regulation of AKT signaling. 

PHLDA1 has been demonstrated to have a tumor suppressive function through inhibition 

of AKT signaling38. AKT signaling plays a central role in cellular growth and survival as well as 

migration and metabolism44. This pathway has been widely demonstrated to be dysregulated 

leading to cancer growth44. Growth factor binding to receptor tyrosine kinases on the cellular 

membrane activate phosphatidylinositol 3-kinase (PI3K)44. This activation causes production of 

phosphatidylinositol (3,4,5)-triphosphate on the cell membrane (PIP3)44. PIP3 production on the 

inner cellular membrane triggers the translocation and recruitment of AKT, which contains a PH 

domain, to the plasma membrane44. AKT is then activated at the cell membrane through 

phosphorylation at Thr308 and Ser407 residues. Activation of AKT leads to increased cell survival 

and proliferation, characteristic with cancer behavior44.  

Due to their PH domain, PHLDA family proteins are thought to competitively bind to 

membrane-bound phosphatidylinositol phosphates  (PIPs), and deactivate oncogenic pathways 

such as AKT signaling33,45,46. PHLDA1 has been determined to be a novel target for p53, a protein 

that regulates genomic stability38. It has been found that the PH domain of PHLDA1 localizes the 

protein to the cell membrane facilitating its binding to PIPs38. This competitive binding represses 

AKT signaling, suggesting a role of PHLDA1 in tumor suppression. In breast and ovarian cancers, 

genetic expression of PHLDA1 confirms this role38. PHLDA3 has also been studied in the context 

of AKT signaling.  

PHLDA3 is a 13.9 kDa protein that is expressed in all human tissues but is elevated in fat 

tissue. Located on chromosome 1, PHLDA3 has been demonstrated to have sequence similarity 

to an imprinted gene47. Additionally, it has been found that the genetic region of PHLDA3 loses 

heterozygosity (LOH) at a high frequency in pancreatic neuroendocrine tumors (PanNETs) which 

lead to disease and poor prognosis48.This study also demonstrates that both LOH as well as 

methylation are necessary for PHLDA3 driven PanNET tumor development48. PHLDA3 has been 
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determined to be a p53 target gene, similar to PHLDA1 in pancreatic and lung cancers44,48,49. By 

competitively binding with PIP3, AKT activation is inhibited, leading to tumor suppression44,48,49. 

However, it was also identified that in PanNETs PHLDA3 frequently undergoes LOH and 

methylation at the gene locus, leading to suppression of PHLDA3 transcription and downstream 

tumorigenesis49. These studies highlight the complexity of the context dependent roles of 

PHLDA1 and PHLDA3 in cancer.  

PHLDA2 has been studied far less extensively than PHLDA1 and PHLDA3 in relation to 

its effect on AKT signaling. The ability of the PHLDA2 PH domain to bind to PIPs has been 

predicted through in silico analysis and confirmed using a novel single molecule pull down assay. 

to bind PIPs45. This binding capability has also been demonstrated in the context of trophoblast 

stem cells in mice50. While the paralogous genes PHLDA1 and PHLDA3 are known to reduce 

AKT signaling, underexplored whether PHLDA2 directly affects this pathway. However, the 

mechanism of PIP binding and its chromosomal location suggest that PHLDA2 may play a tumor-

suppressive role in cancer. 

The role of PHLDA2 in cancer remains highly controversial, with studies revealing both 

tumor-suppressing and tumor-promoting characteristics depending on the cancer type and 

context. PHLDA2 is located within a tumor suppressor region on the human chromosome, and its 

increased expression in human osteosarcoma has been associated with enhanced autophagy51. 

This protective function maintains cellular homeostasis by preventing the accumulation of 

damaged proteins and organelles which lead to DNA damage, therefore classifying it as tumor 

suppressing51. This protective role in osteosarcoma suggests that PHLDA2 may act as a tumor 

suppressor by mitigating DNA damage and preventing the onset of genomic instability. In support 

of this, in vivo studies have shown that when human osteosarcoma cell lines overexpressing 

PHLDA2 are injected into nude mice, these animals exhibit fewer metastatic occurrences 

compared to controls51. Thus, further implicating PHLDA2 in suppressing cancer spread. In lung 

cancer models, PHLDA2 has been characterized as a mediator of ferroptosis, a form of regulated 
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cell death that has emerged as a key mechanism in tumor suppression52. These studies highlight 

PHLDA2’s potential role in limiting tumor growth and metastasis. 

However, despite these tumor-suppressive functions, contrasting studies have indicated 

that PHLDA2 may also play a role in promoting cancer in certain contexts. In lung cancer, for 

instance, PHLDA2 expression has been shown to positively correlate with AKT activation, a 

critical signaling pathway involved in cell survival, growth, and metabolism53. The activation of 

AKT, particularly through phosphorylation (p-AKT), is essential for promoting cancer cell 

proliferation and survival, suggesting that in this context, PHLDA2 may contribute to cancer 

progression rather than suppression53. Additionally, in hepatocellular carcinoma (HCC), a 

common and aggressive form of liver cancer, PHLDA2 expression is associated with poor patient 

survival54. In this context, PHLDA2 is linked to several cancer-promoting processes, including 

angiogenesis, which facilitates tumor growth by enhancing blood vessel formation, and stemness, 

which is associated with the ability of cancer cells to self-renew and differentiate54. Furthermore, 

PHLDA2 has been implicated in treatment resistance in HCC, adding another layer of complexity 

to its role in cancer biology54. 

These findings underscore the multifaceted and context-dependent mechanisms by which 

PHLDA2 influences cancer progression. While it may act as a tumor suppressor in some cancers, 

it appears to have a dual role in others, contributing to cancer survival and treatment resistance. 

Importantly, the precise function of PHLDA2 in breast cancer progression and metastasis remains 

largely unexplored. Given its involvement in various forms of cancer, further research into 

PHLDA2’s role in breast cancer could unveil its potential as a novel genetic driver of metastatic 

disease. This research would offer new insights into cancer biology and potential therapeutic 

targets for metastatic breast cancer. Identifying a new genetic marker of metastasis would be 

especially valuable because metastatic cancer cells are notoriously difficult to treat. This is 

particularly true for TNBC, a subtype of breast cancer known for its aggressive nature and lack of 

targeted therapies. The absence of specific molecular targets in TNBC makes it challenging to 
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treat effectively, and the identification of markers like PHLDA2 could potentially lead to new 

therapeutic strategies or diagnostic tools that address this gap in treatment. 

 

Chapter 1.6: Metabolic Drivers of Breast Cancer Metastasis 
 

In addition to identifying genetic markers of metastasis to improve patient outcome, it is 

important to also understand the metabolic drivers of metastasis. It has been long understood 

that metabolic alteration occurs during tumorigenesis55. Due to their rapid growth, cancer cells 

sustain their functions through high metabolic demands55. A long understood metabolic hallmark 

of cancer cells through the Warburg Effect describes the use of glycolysis for energy production 

necessary for cellular survival56,57. In glycolysis, cells obtain energy from the uptake of glycose in 

the cytoplasm to produce two ATP molecules per glucose molecule digested56,57. This process is 

fast; however, it is energetically unfavorable56,57. In contrast, Oxidative Phosphorylation 

(OXPHOS), is energetically more favorable generating thirty to thirty-six ATP molecules56,57. 

However, OXPHOS needs oxygen to function, whereas glycolysis can occur under anaerobic 

conditions56,57. However, even with oxygen availability, the Warburg Effect described that cancer 

cells preferentially perform glycolysis to generate energy, despite being energetically 

unfavorable56,57. However, there has been significant work in the field challenging this dogma in 

the context of metastasis, suggesting the involvement of fatty acids, glutamine, proline and 

pyruvate carboxylase-mediated metabolism in metastasis58–63. Our prior work utilized a single cell 

transcriptomics approach to determine what metabolic process promotes metastasis, specifically 

during early metastatic seeding.  

Our lab performed single cell sequencing on primary tumors and metastatic lungs and 

lymph nodes from immunocompromised NOD scid gamma (NSG) mice carrying patient derived 

primary tumors (PDX)17. We found in this work using gene ontology (GO) analysis of differentially 

expressed genes in primary tumors and metastatic lesions that primary tumors have high 
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expression of glycolytic markers17. This agrees with the Warburg Effect. However, we also found 

a clear switch in this metabolism in metastatic lesions17. In early metastatic cells, OXPHOS 

pathways were significantly expressed17. This work determines that breast cancer cells switch 

their metabolism from glycolysis to oxidative phosphorylation (OXPHOS) during metastasis17. To 

further determine that metastatic lesions were reliant on OXPHOS, we pharmacologically inhibited 

OXPHOS in vivo17.  Through inhibition of complex V in the electron transport chain using 

oligomycin, we were able to selectively affect OXPHOS while shifting cells to glycolysis for ATP 

production.17 We demonstrated a significant reduction in metastasis with complex V inhibition in 

two independent models17. Additionally, the inhibition of complex V showed no significant impact 

on primary tumor growth, indicating that OXPHOS is not essential for the progression of primary 

tumors17. This work provided evidence that OXPHOS is critical for metastasis17. However, it 

remains unclear what nutrient source allows for metastatic cancer cells to make this metabolic 

switch during the metastatic cascade.  

Chapter 1.7: Experimental Limitations of Single Cell Metabolomics  
 

Understanding what nutrient sources promote this invasive cancer cell behavior could lead 

to treatment of metastasis through cellular nutrient starvation mechanisms or dietary intervention. 

To answer this question, we have adapted and optimized a novel methodology for tissue digestion 

and flow cytometry sorting of cells from solid lung tissues that is compatible with liquid 

chromatography-mass spectrometry (LC-MS). Assessing the metabolic differences using LC-MS 

between primary tumor and metastatic cells has been greatly limited by sample preparation. 

Metabolomics relies on flash frozen tissue samples, which preserves metabolic signature while 

preventing recovery of minority metastatic cells from a tissue using fluorescence-activated cell 

sorting (FACs)64. When tissues are dissociated into single cell suspension for FACs, tissues are 

often digested under physiological conditions at 37°C. However, it has been demonstrated that 

physiological conditions alter the metabolomic profile of tissue64. To determine what nutrient 
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sources, drive this OXPHOS energy production, it was necessary to develop a method for 

digesting tissues at cold temperatures to isolate rare metastatic cells using flow cytometry.  

To reduce RNA sequencing artifacts, a study employed the use of a cold activated 

protease to digest murine kidneys65. This protocol could be adapted to digest lung tissue into 

single cell suspension suitable for FACs while preserving their metabolic signature at cold 

temperatures. As metabolomics is typically performed on whole tissues, there lacks an ability to 

identify metabolic changes in subpopulations of organs, such as metastatic cells. Due to this 

limitation, there is little knowledge of metabolic heterogeneity in tissues. However, a protocol was 

developed to investigate the metabolic profile of rare circulating cancer cells using flow 

cytometry66. Using a cold activated protease and a protocol sufficient for obtaining metabolic 

profiles from rare cells using flow cytometry, we can use an unbiased approach to determine the 

nutrient source that drives OXPHOS metabolism in metastatic breast cancer cells.  

Due to these limitations, there have been few studies conducted to determine the 

metabolic drivers of metastasis. In melanoma, it has been reported that metabolic differences 

drive metastatic potential due to alterations in lactate transport67. Using radiolabeled nutrients, a 

study determined that metastatic melanoma cells lines exhibit enhanced lactate uptake67. 

Through inhibition of MCT1, a lactate transporter, there was little effect on primary tumor growth67. 

However, with inhibition there was a significant depletion of circulating melanoma cells resulting 

in reduced metastatic disease67. In a study assessing breast cancer brain metastasis, mice 

injected with cancer cells in the breast or brain were fed radio-labeled glucose68. In comparing 

these two tissues, it was determined that fatty acid synthesis is elevated in breast tumors growing 

in the brain68. This differential metabolism is likely attributed to decreased lipid availability in the 

brain68. By inhibiting fatty acid synthesis genetically and pharmacologically, it was demonstrated 

that breast cancer tumor growth in the brain was reduced68. These studies demonstrate that 

nutrient sources are critical drivers of cancer metastasis and are additionally targetable as a 

mechanism for improving patient survival.  
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In our PDX model of breast cancer metastasis, we have previously demonstrated that 

metastatic cells rely heavily on OXPHOS for their energy needs. However, the specific nutrient 

source fueling this metabolic process remains unclear. Identifying this nutrient dependency is 

crucial, as it can reveal vulnerabilities in the metabolic network of metastatic cells. By employing 

a novel single-cell metabolomics approach, we aim to uncover the metabolic drivers of breast 

cancer lung metastasis. This knowledge could provide critical insights into the mechanisms of 

metastasis and pave the way for the development of targeted therapeutic strategies to improve 

treatment outcomes. 
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Chapter 2: PHLDA2 promotes breast cancer metastasis by increasing extracellular 
matrix deposition and vascular permeability 
 

Chapter 2.1. Overview 
 

In this chapter, we aimed to investigate whether PHLDA2 actively promotes metastasis 

and modulates breast cancer cell behavior to enhance metastatic potential. By doing so, we 

sought to uncover its previously uncharacterized role in breast cancer progression and 

metastasis. PHLDA2 is a maternally imprinted gene that has been demonstrated to mark the 

highly vascularized placental labyrinth and regulate placental development26,28,30,69. This gene 

acts as a rheostat, as deletion promotes placental overgrowth, but loss of imprinting impairs 

placental growth26,28,30,69.  

PHLDA2 is located within a tumor suppressor region of the chromosome, however, there 

is a lack of consensus of its role in cancer. PHLDA2 expression has been correlated with 

enhanced autophagy and reduced metastatic burden in osteosarcoma51. In lung cancer models, 

PHLDA2 has been defined as a ferroptosis mediator, which drives tumor suppression52. These 

studies support a role for PHLDA2 in tumor suppression. Conversely, PHLDA2 was found to 

promote AKT activation in lung cancer tissue, demonstrating tumor promoting function53. In a 

human hepatocellular carcinoma patient dataset, PHLDA2 was found to be indicative of poor 

prognosis and increased angiogenesis54. Together, these studies suggest that PHLDA2 's role in 

cancer progression is context-dependent, with conflicting evidence showing that it can both 

promote and suppress tumor growth depending on the biological and experimental conditions. 

However, the role of PHLDA2 in breast cancer, particularly its functional impact on metastasis in 

vivo, remains unexplored. This study is novel in addressing this critical gap, providing insights into 

the molecular underpinnings of PHLDA2-mediated metastasis. Furthermore, these findings hold 

significant promise for advancing our understanding of metastatic TNBC which could improve 

patient survival through diagnostic tools and treatment strategies. 
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Our study revealed that PHLDA2 promotes breast cancer metastasis, demonstrating its 

role in driving metastatic progression by modulating the extracellular matrix and enhancing 

vascular permeability. By genetically modifying PHLDA2 expression levels in PDX and human 

cell line models, we observed a correlation between PHLDA2 expression and metastatic burden. 

We have determined that PHLDA2 promotes collagen deposition in the metastatic lungs, without 

altering the primary tumor. Additionally, we identified other ECM modulators, MFAP5 and SPARC, 

whose expression is correlated with increased PHLDA2 expression. Finally, we determined with 

an in vitro vascularized micro tumor system and in vivo staining of metastatic lungs, that PHLDA2 

promotes vascular permeability. Understanding the roles of pro-metastatic genes like PHLDA2 in 

breast cancer metastasis can improve patient outcomes by enabling targeted treatment of 

metastatic cancer cells and identifying potential biomarkers for earlier detection and personalized 

therapeutic strategies. 

Chapter 2.2. Significance 
 

By identifying PHLDA2 as a gene not previously linked to breast cancer spread, we 

provide new insights into the genetic drivers of breast cancer metastasis. Our data reveal that 

PHLDA2 is more highly expressed in cancer tissues and suggest that its activation is influenced 

by methylation, consistent with its status as an imprinted gene. Furthermore, the association of 

elevated PHLDA2 expression with poor relapse-free and distal metastasis-free survival in 

patient datasets establishes it as a prognostic marker for aggressive disease. Functionally, we 

demonstrate that PHLDA2 contributes to metastasis by altering the tumor microenvironment 

through extracellular matrix restructuring and increased vessel permeability, which has been 

demonstrated to facilitate cancer cell invasion and colonization at distant sites. These findings 

not only uncover a novel role for PHLDA2 in breast cancer biology but also allow for potential 

avenues for therapeutic targeting and biomarker development aimed at mitigating metastatic 

burden and improving patient outcomes. 



 18 

Chapter 2.3. Innovation 
  

The discovery of PHLDA2 as a novel player in breast cancer metastasis marks a 

significant advancement in our understanding of the genetic mechanisms that drive this complex 

process. While many genes have been studied in the context of breast cancer metastasis, 

PHLDA2 had not previously been implicated, making its identification particularly noteworthy. 

Our research reveals that elevated expression of PHLDA2 in metastatic tissues is associated 

with poor clinical outcomes, suggesting it may serve as a valuable prognostic marker. 

To further investigate the functional role of PHLDA2 in metastatic behavior, we 

employed a vessel-on-a-chip system to evaluate vascular permeability. This innovative 

approach allows for the precise recreation of the tumor microenvironment, enabling us to model 

and quantify how PHLDA2 influences endothelial cell permeability in vivo. By using this 

advanced technology, we provide critical insights into the mechanisms by which PHLDA2 alters 

the vascular landscape, facilitating the invasive capabilities of cancer cells. This combination of 

novel gene discovery and cutting-edge experimental methodology highlights the potential for 

PHLDA2 to be a key target for future therapeutic interventions aimed at mitigating metastatic 

spread. 

Chapter 2.4. Materials and Methods  

 

2.4.1. Patient Survival Analysis  
 
To assess relapse-free and distal-metastasis free survival, we used the KM plotter database 

(KMplot.com) to generate Kaplan-Meier survival curves using a primary tumor microarray 

dataset (mRNA Breast Cancer Gene Chip) of breast cancer patients. All Kaplan-Meier plots use 

patient split ‘auto select best cutoff’ parameter. Subtypes were determined using PAM50 

subtypes.  
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2.4.2. TCGA Gene Expression Analysis  
 
To assess gene expression in primary tumor versus normal tissue, the UALCAN analysis portal 

was used to mine the TCGA Breast Invasive Carcinoma dataset. Statistics were provided by the 

portal. 

2.4.3 Analysis of epigenetic dysregulation of PHLDA2 in breast cancer 
 
Bulk methylation and gene expression profiles for the PHLDA2 gene were obtained from the 

GDC TCGA Breast Cancer repository. Exploratory data analysis and data download was 

performed with the UCSC Xena platform70. In-depth analysis was performed on the singularity 

container server “Bioportal1” with a JupyterLab instance created by the UC Irvine Research 

Cyberinfrastructure Center. An R notebook with the following packages was used: R (v4.1.2), 

ggplot2 (v3.3.5), dplyr (v.1.0.8), reshape (1.4.4). Primary tumors and normal samples which 

contained missing data were filtered out using “na.omit”. For single-modality plotting, only data 

for that modality was considered in the filtration. For joint methylation and gene expression 

analysis, samples with missing data in either modality were excluded.   

 

To select the candidate regulatory sites for PHLDA2, the methylation beta values of all 32 

associated loci from Infinium HumanMethylation450 BeadChip were visualized as box and 

whisker plots. Welch’s t-test from UCSC-Xena as well as visual examination of the differences 

in the means in the tumor and normal samples for each locus identified two loci as most 

differentially demethylated in breast cancer (cg05167973 and cg04720330). These loci were 

replotted with their adjusted p-values after a Bonferroni multiple testing adjustment and retained 

for further analysis. 

 

To test whether the two demethylated loci have a role in upregulating PHLDA2 expression in 

breast cancer, the methylation beta values of each locus was plotted against the RNA 
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expression for PHLDA2 on a scatter plot. The negative sign of the slope for the best-fit line as 

well as Spearman’s rank correlation rho were used to infer the inverse relationship between 

methylation levels at the candidate regulatory loci and the levels of gene expression. T-tests 

and Bonferroni p-value adjustments were performed again. 

2.4.4. PDX Sample 
 
A patient derived xenograft (PDX) sample was provided by A. L. Welm at the Department of 

Oncological Sciences at the Huntsman Cancer Institute (HCI). Tissues were collected from 

individuals being treated at the Huntsman Cancer Hospital and University of Utah with informed 

consent under a protocol approved by the Institutional Review Board of the University of Utah. A 

pleural effusion of a female patient diagnosed with Stage IIIC ER−PR−Her2− basal-like 

(PAM50) invasive ductal carcinoma and treated with several rounds of chemotherapies is noted 

as HCI-010. This sample was collected and de-identified by the Huntsman Cancer Institute 

Tissue Resource and Application Core facility before being obtained for implantation. The study 

is compliant with all relevant ethical regulations regarding research involving human 

participants.  

2.4.5. Cell Culture 
 
Breast cancer cell line MDA-MB-231, was cultured in DMEM, 1X (Corning, 10-013-CV) media 

respectively with 10% heat-inactivated fetal bovine serum (Sigma-Aldrich, cat. no. 12306 C) and 

1% penicillin/streptomycin (Hyclone, SC30010) 100 X solution. The cells were passaged with 

0.05% trypsin (Corning, 25-052-Cl) after reaching 70% confluency. MDA-MB-231 cells are 

mycoplasma-free and STR profiled with a 93% match to the ATCC reference. 

2.4.6. Viral Transduction (PDX and Cell Lines)  
 
PDX cells were transduced as described in our previous Nature Communications biology 

publication.1 GFP control (+GFP) and human PHLDA2-GFP (+PHLDA2-GFP) lentiviral 
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expression vectors were packaged into lentiviral particles purchased from VectorBuilder Inc., 

Chicago, IL, USA (+GFP Cat. no. (VB190812-1255tza), +PHLDA2-GFP Cat. no. (VB180802-

1084xrz)). MDA-MB-231 cell line was transduced with Scramble GFP control (+Scramble-GFP) 

and human PHLDA2 shRNA-GFP (+shPHLDA2-GFP) lentiviral expression vectors which were 

packaged into lentiviral particles and purchased from VectorBuilder Inc., Chicago, IL, USA 

(+Scramble-GFP Cat. no. (VB010000-0009mxc), +shPHLDA2-GFP Cat. no. (VB220307-

1326nwx)). All cell lines were transduced with 10 mg/mL polybrene. Cells were incubated in 

virus overnight before switching to fresh media to allow cells to grow out. GFP positive 

transduced cells were selected using FACs sorting. Alterations in PHLDA2 expression were 

confirmed by qPCR and Western Blot Analysis.  

2.4.7. Animal Experiments 
 
For spontaneous metastasis generation, HCI010 (120,000) cells were mixed 1:1 with sterile 

PBS and Matrigel (Corning 356230) and injected orthotopically into the number four mammary 

fat pad area of female NSG mice using a 0.5 mL insulin syringe. For experimental metastasis 

generation, cultured MDA-MB-231 (500,000 cells) cells were resuspended in 100 uL of sterile 

PBS and injected intravenously into the tail vein of female NSG mice. Primary tumors were 

measured using a caliper and volumes were calculated using the tumor volume = 1/2 (length x 

width2) equation. All animal experiments were reviewed and approved by The Institutional 

Animal Care and Use Committee of the University of California, Irvine.  

2.4.8. Tissue Harvest and Dissociation  
 
At the endpoint, animals were euthanized by asphyxiation with CO2 followed by cervical 

dislocation and perfusion with 10 mM EDTA in PBS. Tumors and lungs were removed and 

dissociated for flow cytometry by mechanical chopping with razor blades. The chopped tissues 

were digested in 2 ug/mL Collagenase IV (Sigma-Aldrich cat. No. C5138-1G) in DMEM with 300 

mg/mL DNAseI (Catalog Number) for 20 minutes at 37°C. The cell suspensions were washed 
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with Hanks Balanced Salt Solution (HBSS) and passed through a 70 μm cell strainer. Lung and 

primary tumor cells were treated with 1X Red Blood Cell Lysis buffer followed by resuspension 

in PBS for FACs analysis.  

2.4.9. Flow Cytometry and Florescence Activated Cell Sorting (FACs)  
 
Cells were stained with a fluorescently conjugated antibodies for CD298/MHCI to isolate human 

cells. Human specific-CD298 (diluted 1:100; PE; BioLegend, cat. no. 341704) and the mouse-

specific antibody MHC-I (diluted 1:150; APC; Thermo Fisher Scientific, cat. no. 17-5957-80) 

antibodies were added to samples.  Cell viability was determined using SYTOX blue stain 

(diluted 1:1000, Thermo Fisher Scientific, cat. No. S34857). Cell viability was determined using 

SYTOX blue stain (diluted 1:1000, Thermo Fisher Scientific, cat. No. S34857). The samples 

were resuspended in PBS for FACs analysis using the BD FACSAria Fusion cell sorter (Becton, 

Dickinson and Company, Franklin Lakes, NJ, USA). To isolate single cells from doublet and 

multiplet cells, forward scatter area by forward scatter width (FSC-A x FSC-H) and side scatter 

area by side scatter width (SSC-A x SSC-H) were used. GFP labeled human primary tumor and 

metastatic lung cells were selected by gating on Sytox-GFP+ cells. 

2.4.10. qPCR  
 
RNA was extracted from cells using Quick-RNA MicroPrep (Zymo Research, R1050). cDNA 

was obtained from iScript cDNA Synthesis Kit (Bio Rad, 1708891). q-PCR amplification was 

performed using Power SYBR Green PCR Master Mix (Applied Biosystems, A25742). Gene 

specific primers were utilized to amplify PHLDA2 (Forward Primer: CCGCCGCGGGCCATA, 

Reverse Primer: CCACAGCCGGATGGTAGAAA), MFAP5 (Forward Primer: 

AGTCAACGAGGAGACGATGTG, Reverse Primer: CATCCCAGCACTCCAAGTCA)  and 

SPARC (Forward Primer: TGAGAATGAGAAGCGCCTGG, Reverse Primer: 

TGGGAGAGGTACCCGTCAAT). Each sample was standardized to the housekeeping gene 

GAPDH (Forward Primer: CTCTCTGCTCCTCCTGTTCGACGAC, Reverse Primer: 
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TGAGCGATGTGGCTCGGCT). Primers were generated by Integrated DNA Technologies. 

Relative quantification of transcripts for all samples was performed as triplicates and analyzed 

by the CT values for each gene group.  

2.4.11. Western Blot  
 
Cells were lysed in RIPA buffer (150mM NaCl, 50mM Tris-HCl pH 8.0, 1% Triton-X, 0.5% 

sodium deoxycholate, 0.1% SDS, diluted in H2O) with protease and phosphatase inhibitors 

(Thermo Fisher, Cat No. 78430). Lysates were incubated with agitation for 45 minutes and then 

centrifuged at 12,000g for 10 minutes. Supernatant was removed and protein was quantified 

using Pierce BCA Protein Assay Kit (Thermo Fisher, Cat No. 23225) according to 

manufacturer's instructions. 8-20ug protein samples were run on a 12% SDS PAGE gel 

(BioRad, Cat No. 4568046) and proteins were wet transferred to a PDVF membrane. After 

blocking with 5% BSA, primary antibody was incubated at 4°C overnight. Primary antibodies 

included: 1:500 rabbit Anti-TSCCE (PHLD2) antibody (Abcam, Cat no. ab234669), 1:1000 

SPARC polyclonal antibody (Thermo Fisher, Cat no. PA5-78178), and 1:1000 mouse anti-

mouse β-actin (Santa Cruz, sc-47778). Secondary antibodies were diluted in blocking solution 

and placed on membranes for one hour at room temperature. Secondary antibodies included: 

1:1000 Goat Anti-Mouse HRP (Thermo Fisher, Cat No. 31430) or 1:1000 Goat Anti-Rabbit HRP 

(Thermo Fisher, Cat No. 31460). Protein bands were visualized using Thermo Fisher 

Chemiluminescent Substrate kit (Thermo Fisher, Cat No. 34579) and imaged BioRad ChemiDoc 

system. Densitometry was performed using ImageJ and normalized to β-actin control.  

2.4.12. Tissue Preparation  
 
Tumor and lung tissues for Mason’s trichrome staining were fixed in 10% neutral-buffered 

formaldehyde at room temperature for 24 hours, placed in freshly prepared 70% ethanol, and 

process for paraffin embedding in a Leica tissue processor using standard protocols. FFPE 
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blocks were sectioned into 5 μm sections using a Reichert-Jung 2040 Autocut Rotory Microtome 

and stained with Mason’s trichrome protocol.  

Tumor and lung issues for immunofluorescence staining were fixed in formaldehyde for 6-12 

hours at 4℃ and placed in 30% sucrose overnight. Tissues were embedded with O.C.T 

Compound (Tissue-Tek, Cat no. 4583) in disposable base mold at – 80℃. Tissue sections of 8 

μm were sectioned using a Leica Cryostat CM1950 and stored in a closed container at -80℃.  

2.4.12. Immunofluorescence 
 
Slides with OCT-embedded tissue sections were washed, blocked with BlockAid Blocking 

Solution (Life Technologies Corporation, 810710) at room temperature for an hour, and 

incubated overnight with primary antibodies (1: 100 Ki67, Genetex, Cat No. GTX16667, 1:100 

MFAP5 Rabbit Polyclonal Antibody, Proteintech, Cat no. 15727-1-AP, CD31 Rat Anti-mouse, 

1:75, BD Bioscience, Cat no. 741740) at 4℃. Albumin Rabbit Polyclonal Antibody (1:100, 

Proteintech, Cat no. 16475-1-AP) was used in the same method but blocking occurred in 5% 

Fish Gelatin. Tissues were incubated with appropriate secondary antibodies for 1 hour in the 

dark at room temperature. Tissues were mounted with Antifade Mounting Medium with DAPI 

(Epredia, 8312-4) and sealed with a coverslip. Slides were imaged on Keyence BZ-X series 

inverted microscope.  

2.4.13. Immunofluorescence Image Quantification 
 
Five-ten 20x regions of interest were captured per tissue stained. Each image was quantified 

and all images corresponding to a sample were averaged to report one value per mouse on 

graphs. The following analyses were performed using NIH open-source image software ImageJ 

(http://rsbweb.nih.gov/ij/). 

 

Ki67+ GFP+ area 
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Ki67+ GFP+ double positive area was quantified by using thresholding to measure the area of 

GFP+. GFP+ area was converted to a mask and projected onto the same image’s Ki67+ channel. 

Ki67+ area across the image was visualized using a constant threshold. Next,  Ki67+ area within 

the GFP+ mask was measured. Lastly, Ki67+ GFP+ area was normalized to total GFP+ area and 

multiplied by 100 to measure the percent of Ki67+ area within GFP+ metastase or the Ki67+ 

GFP+ area. We selected this method specifically to quantify Ki67-positive tumor cells, while 

avoiding the inclusion of other proliferating cell types in the metastatic lung.  

 

MFAP5 expression and Albumin leakage 

MFAP5 and albumin staining were quantified as the ratio of MFAP+ or albumin+ area normalized 

to DAPI+ area and multiplied by 100 to quantify percent of MFAP or albumin area relative to 

DAPI area. We determined MFAP5, albumin, or DAPI area using consistent threshold values 

across samples. We chose this method of quantification to determine the expression of MFAP5 

or leakage of albumin relative to total lung tissue area. 

 

Vessel Structure Analysis 

Tumor vessel structural analysis was performed as described previously71. Briefly, vessel 

parameters quantified included the total number of CD31+ vessels, the average vessel length of 

all vessels (reported in μm), the number of vessels with a length greater than 50 μm (elongated 

vessels), and the number of 100 μm2 regions per image occupied by CD31+ vessels 

(microvessel density). The number of open lumens was also quantified but none were observed 

in images and therefore is not reported. 

2.4.14. Cell Growth Assays (Cell Titer-Glo 3D Cell Viability Assay, MTT Cell Proliferation 
Assay)  
 
After 7 days of culturing PDX primary tumor organoid cells, 200,000, 500,000 and 100,000 cells 

were seeded into rows of a 24 well ultra-low attachment plate. Cell Titer-Glo 3D Cell Viability 
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Assay (Promega, Cat no. G9681) protocol was followed as directed by the manufacturer and 

imaged using the luminescence function on Biotek Cytation 5 plate reader. MDA-MB-231 cells 

were seeded at 5,000 cells/well in a standard flat bottom 96 well plate. MTT Cell Proliferation 

Assay Kit (Cayman Chemical, Cat no. 10009365) protocol was followed as directed by 

manufacturer and imaged using absorbance function on Biotek Cytation 5 plate reader.  

2.4.15. Bulk RNA-Sequencing Library Prep  
 
RNA was extracted from sorted primary tumor cells (Viable GFP+) using Quick-RNA MicroPrep 

(Zymo Research, R1050) as directed by the manufacturer. Total RNA was monitored for quality 

control using the Agilent Bioanalyzer Nano RNA chip and Nanodrop absorbance ratios for 

260/280nm and 260/230nm. Library construction was performed according to the Illumina 

TruSeq mRNA stranded protocol.  The input quantity for total RNA within the recommended 

range and mRNA was enriched using oligo dT magnetic beads. The enriched mRNA was 

chemically fragmented. First strand synthesis used random primers and reverse transcriptase to 

make cDNA. After second strand synthesis the ds cDNA was cleaned using AMPure XP beads 

and the cDNA was end repaired and then the 3’ ends were adenylated. Illumina barcoded 

adapters were ligated on the ends and the adapter ligated fragments were enriched by nine 

cycles of PCR. The resulting libraries were validated by qPCR and sized by Agilent Bioanalyzer 

DNA high sensitivity chip. The concentrations for the libraries were normalized and then 

multiplexed together. The multiplexed libraries were sequenced using paired end 100 cycles 

chemistry for the Illumina NovaSeq 6000. 50 million reads were sequenced per sample.  

2.4.16. Bulk Sequencing Analysis  
 
Bulk RNA sequencing data was processed following a standardized workflow. Initial quality 

control of raw sequencing reads was conducted using FastQC, followed by alignment to the 

Homo sapiens reference genome (hg38) using HISAT2. Gene-level read counts were generated 

using featureCounts, counting only exonic regions. Differential gene expression analysis was 
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performed with DESeq2, identifying differentially expressed genes (DEGs) with an FDR-

corrected adjusted p-value < 0.05 and log2 fold change ≥ 0.5 for the PHLDA2 overexpression 

samples compared to GFP control samples. Low-count genes were filtered out before 

calculating reads per kilobase per million mapped reads (RPKM). For further analysis, only 

protein-coding genes with an average reads per kilobase per million mapped reads (RPKM) 

above 2 were included in volcano plots. Volcano plot was plotted with R package 

EnhancedVolcano (v1.20.0)72. The gene expression heatmap displays normalized gene 

expression levels in transcripts per million (TPM). Heatmap was made using pheatmap 

(v1.0.12)73. Gene set enrichment analysis (GSEA) was performed using R packages 

clusterProfiler (v4.10.1) and org.Hs.eg.db (v3.18.0) using the Gene Ontology Biological 

Processes gene sets74,75. Top ten significant (adjusted p value > 0.05) pathways of interest were 

selected. Normalized enrichment score bar plots were generated with ggplot2 (v3.5.1). 

Enrichment plots were generated with enrichplot (v1.22.0).  

2.4.17. Mason’s Trichrome Staining 
 
Tissues were deparaffinized with Histo-Clear and decreasing concentrations of ethanol (100%, 

95%, 70%) for one minute each. Each step was done twice. Masson’s trichrome staining was 

performed using Trichrome Stain Kit (Abcam, Cat no. ab150686) according to manufacturer 

instructions. Briefly, Bouin’s fluid was added onto tissues and incubated for one hour, followed 

by a wash step. Equal parts of Weigert's reagents A and B were mixed to create Weigert’s Iron 

Hematoxylin and added onto tissues for five minutes and then washed. Tissues were then 

incubated with a Biebrich Scarlet/Acid Fuchsin solution for 15 minutes followed by a wash step. 

After, tissues were incubated in Phosphomolybdic/Phosphotungstic Acid solution for 15 

minutes. Without washing Aniline Blue was immediately added to the slides and incubated for 

10 minutes. Slides were then washed and incubated in a 1% Acetic Acid solution for 5 minutes. 

Tissues were then dipped in 95% ethanol and 100% ethanol and left in Histo-Clear (National 
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Diagnostics, HS-200) for one minute. Tissues were mounted with a mounting medium (Cytoseal 

XYL, Epredia, 8212-4) and coverslip. 10x objective images were acquired on the Keyence BZ-X 

series inverted microscope. Open access image software, QuPath (downloaded from 

https://qupath.github.io/) was used for analysis. In QuPath, a boarder was drawn around a 

metastatic lesion to create a region of interest (ROI) and area of the ROI was measured. Blue 

pixels (collagen) were then isolated from other colors using the QuPath’s color deconvolution 

stains and the area of collagen within the metastatic lesion ROI was measured. Lastly, the area 

of collagen within a metastatic lesion was normalized to total area of metastatic lesion and 

multiplied by 100 to quantify the percent of collagen deposition in a metastatic lesion. This 

process was repeated for every lesion identified in 5-10 randomly acquired 10x objective 

brightfield images. Each lesion was plotted as a point on the graph. In total, 3 lungs were 

imaged per group.  

2.4.18. Microfluidic Device Fabrication  
 
Microfluidic device fabrication and loading has been previously described76–81. In summary, a 

custom polyurethane master mold is created using a 2-part polyurethane liquid plastic (Smooth 

Cast 310, Smooth-On Inc.). Subsequently, a PDMS layer is replicated from this master mold, 

and holes are punched to create inlets and outlets. The platform is assembled in two stages: 

first, the PDMS layer is chemically glued and subjected to 2 minutes of oxygen plasma 

treatment to affix it to the bottom of a 96-well plate. Following this, a 150 µm thin transparent 

membrane is bonded to the bottom of the PDMS device layer through an additional 2-minute 

treatment with oxygen plasma. The fully assembled platform is then placed in a 60°C oven 

overnight, covered with a standard 96-well plate polystyrene lid, and sterilized using UV light for 

30 minutes before cell loading.  

2.4.19. Cell Culture and Microfluidic Device Loading  
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To establish the vascularized microtumor (VMT), normal human lung fibroblasts and ECFC-ECs 

(endothelial colony forming cell endothelial cells) were harvested and resuspended in fibrinogen 

solution at a concentration of 3×106 cells/mL and 7×106 cells/mL, respectively. MDA-MB-231 

cells (GFP, PHLDA2, Scramble or shPHLDA2) were introduced into the mixture at a 

concentration of 1 × 105 cells/mL fibrinogen solution. Fibrinogen solution was prepared by 

dissolving 70% clottable bovine fibrinogen (Sigma-Aldrich) in EBM2 basal media (Lonza) to a 

final concentration of 5 mg/mL. The cell-matrix suspension (6 μL) was mixed with thrombin (50 

U/mL, Sigma-Aldrich) at a concentration of 3 U/mL, quickly seeded into each microtissue 

chamber, and allowed to polymerize in a 37◦C incubator for 15 minutes. Laminin (1 mg/mL, 

LifeTechnologies) was then introduced into the microfluidic channels through medium inlets and 

incubated at 37°C for an additional 15 minutes. After incubation, culture medium (EGM-2, 

Lonza) was introduced into the microfluidic channels and medium wells. Medium was changed 

every other day and hydrostatic pressure head re-established daily to maintain interstitial flow. 

2.4.20. VMT fluorescence imaging and analyses 
 
Fluorescence images were acquired with a Biotek Lionheart fluorescent inverted microscope 

using automated acquisition and standard 10x air objective. To test vessel perfusion, 25 µg/mL 

rhodamine-conjugated 70 kDa dextran was added to the medium inlet for 10 minutes. ImageJ 

software (National Institutes of Health) was utilized to determine the total extravascular 

fluorescence intensity (mean grey value) for each VMT. Subtraction of background fluorescence 

measurements was performed for each chamber.  

2.4.21. Statistics and Reproducibility 
 
Data are presented as the mean ± s.d. from at least three independent experiments, unless 

stated otherwise. Statistics were conducted using Student's t test or Mann Whitney.  Statistical 

test results are represented on graphs according to the following: ns, P > 0.05; *, P ≤ 0.05; 

**, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001. No statistical method was used to determine 
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sample size and age-matched female NSG mice were randomly assigned into experiments. 

Investigators were aware which conditions applied to each experimental group while performing 

experiments and analyzing data.   
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Chapter 2.5. Results   

2.5.1. PHLDA2 expression is associated with increased metastasis and poor survival in breast 
cancer patients 
 
 PHLDA2 expression in breast cancer patient tumors and its association with metastasis 

remain unclear. We investigated PHLDA2 expression in healthy breast (n=114) and invasive 

breast carcinoma (n=1097) from the Cancer Genome Atlas (TCGA) dataset 82,83. This revealed 

that PHLDA2 expression is 3-16-fold higher in patient breast tumors relative to healthy breast 

cancer subtypes (Figure 2-1a). We further find that PHLDA2 shows the highest expression in the 

HER2+ breast cancer subtype (Figure 2-2a), which is consistent with prior reports that PHLDA2 

is regulated by HER2 signaling53. We further determined whether PHLDA2 expression in patient 

primary breast tumors is associated with relapse free survival (RFS, n=4929) or distant metastasis 

free survival (DMFS, n=2765) using the KMplotter gene chip database containing 1,809 patients 

84,85. Remarkably, high PHLDA2 expression is associated with poor RFS (HR=1.42) and DFMS 

(HR=1.52) in nearly all types of patients and breast cancer subtypes (Figure 2-1b,c) (Figure 2-

2b,c). This suggests that increased PHLDA2 expression is in primary tumors is a robust predictor 

of both metastatic propensity, as well as poor survival across breast cancer patient populations.  

 2.5.2. PHLDA2 hypomethylation is associated with increased RNA expression and metastasis   
 

PHLDA2 is a maternally imprinted gene that shows strong gene dosage effects on 

placental growth following hypomethylation and expression of the paternal allele26,28,69. Knowing 

imprinted genes are regulated through methylation, we investigated whether PHLDA2 

overexpression in breast cancer may also occur through demethylation. PHLDA2 is a 1,148 kb 

gene on chromosome 11 that is comprised of two exons (one untranslated) one intron, and 5’ 

upstream regulatory sequences that include the promoter region. There are 32 CpG loci known 

to be associated with PHLDA2, including six exonic, two intronic, and 24 in the 5’ regulatory 
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sequence (Figure 2-1d). We compared mean methylation levels for each locus in patient breast 

cancer samples compared to healthy breast tissues from the TCGA dataset. We found that most 

loci exhibit low beta values (mean: 0.05), suggesting they remain unmethylated in both healthy 

breast and tumor tissues (Figure 2-2d). However, two loci located in the untranslated exon region 

(cg04720330 and cg051679730) show higher beta values and appear methylated in healthy 

breast tissue (Figure 2-1e, Figure 2-2d). Importantly, we found an inverse correlation between 

PHLDA2 RNA expression and methylation at these two specific loci (Figure 2-1f), suggesting that 

methylation at these sites may preferentially regulate PHLDA2 expression. PHLDA2 expression 

has also been reported to be regulated by hypomethylation in clear cell renal cell carcinoma86. 

These loci also display significantly lower methylation in primary and metastatic tumor samples 

compared to healthy tissue (Figure 2-1e). These findings suggest that the increased PHLDA2 

expression observed in primary breast and metastatic tumor samples may occur through 

hypomethylation, particularly at two loci located in the untranslated exon of the gene. 
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Figure 1: PHLDA2 is overexpressed in breast cancer and is indicative of poor relapse free and distal metastasis free survival.  a. PHLDA2 gene 
expression in normal breast versus primary tumor breast tissue. (Normal, n = 114, Primary Tumor, n = 1097). Data was mined from the TCGA 
BRCA dataset using the UALCAN tool (ualcan.path.uab.edu). Statistics were conducted by a student’s t-test. b.Kaplan-Meier survival curve show-
ing decreased relapse-free survival in patients with all subtypes of breast cancer who express high levels of PHLDA2, (n = 2721 low, 2208 high). 
c. Kaplan-Meier survival curve showing decreased distal metastasis free survival in patients with all subtypes of breast cancer who express high 
levels of PHLDA2, (n = 2048 low, 717 high). d. Diagram of PHLDA2 methylation loci. Loci that have statistically different methylation between 
tumor and normal tissue are denoted with *. Data from UCSC Genome Browser using the hg37 reference genome. e. TCGA data demonstrated 
that PHLDA2 is more highly methylated in tumor tissue as compared to normal tissue at loci cg04720330 and cg05167973.  (Normal, n = 139, 
Primary Tumor, n = 1101, Metastatic Tumor, n = 5). Statistics by a student’s t test with Bonferroni multiple-testing adjustment. f. Significant inverse 
correlation of methylation of these two significant loci (cg04720330 and cg05167973) with PHLDA2 expression. Statistics were coducted by 
students t-test with Bonferroni multiple testing adjustment. The rho value is from Spearman's rank correlation.  

Figure 2-1: Elevated PHLDA2 expression in paitent breast tumors is associated with increased metastasis, poor 
survival and hypomethylation at specific CpG loci.  
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a.PHLDA2 expression in healthy breast (n=114) and primary breast tumor (n = 1097) tissues. Bar plot shows RNA 
expression in tissues from the TCGA dataset plotted using the UALCAN tool (ualcan.path.uab.edu). P value was 
calculated using a student’s t-test. b. Kaplan-Meier plot shows probability of RFS in breast cancer patients with high 
(n=2208) vs. low (n=2721) expression of PHLDA2 in their primary tumor tissue. Plot was generated using the KM plotter 
compiled dataset of mRNA breast cancer gene chip and visualized using the KM plotter tool (KMplot.com). c. Kaplan-
Meier plot shows probability of DMFS in breast cancer patients with high (n=717) vs. low (n=2048) expression of 
PHLDA2 in their primary tumor tissue. Plot was generated using the KM plotter compiled dataset (mRNA breast cancer 
genechip) and visualized using the KM plotter tool (KMplot.com). d. Schematic shows CpG loci in the exonic and intronic 
regions of the PHLDA2 gene. Loci located in upstream 5’ regulatory sequences are not shown. Loci were annotated 
using the GRCh37/hg19 human genome and the Infinium HumanMethylation450 assay. *Loci hypomethylated in 
primary and metastatic tumor tissues relative to healthy breast tissues. e. Bar plot shows methylation values at select 
CpG loci (cg4720330, cg05167973) in healthy breast (n = 139), primary (n = 1101), and metastatic (n = 5) tumor tissues 
from breast cancer patients from the TCGA dataset. Select loci were identified in a screen for loci that display 
hypomethylation in tumor tissues and correlation with increased PHLDA2 expression. P values were calculated using 
student’s t test with Bonferroni multiple-testing adjustment. f. Correlation plots show relationship between PHLDA2 RNA 
expression and methylation at select CpG loci (cg4720330, cg05167973). P value was calculated using a students t-
test with Bonferroni multiple testing adjustment. The rho value was calculated using Spearman's rank correlation.   
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Supplemental Figure 1: The impact of PHLDA2 is not subtype specific. a. PHLDA2 gene expression in normal breast versus primary tumor breast tissue 
of Luminal, HER2 positive and Triple Negative Subtypes. Data was mined from the TCGA BRCA dataset using the UALCAN tool (ualcan.path.uab.edu). 
Statistics were conducted by a student’s t-test.  b. Kaplan-Meier survival curves showing PHLDA2 expression does not significantly impact patient 
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Figure 2-2: PHLDA2 expression, methylation status, and association with survival and metastasis 
in breast cancer patients.  
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a.PHLDA2 expression in healthy breast (n=114) and primary breast tumors representing different breast cancer subtypes 
Luminal, HER2 positive and Triple Negative. Bar plot shows RNA expression in tissues from the TCGA dataset plotted 
using the UALCAN tool (ualcan.path.uab.edu). P value was calculated using a student’s t-test. b. Kaplan-Meier plots 
show probability of RFS in breast cancer patients with high vs. low expression of PHLDA2 in their primary tumor tissue, 
separated by breast cancer subtype. Plots were generated using the KM plotter compiled dataset of mRNA breast cancer 
genechip and visualized using the KM plotter tool (KMplot.com). Basal (n=392 low, 561 high), Luminal A (n=852 low, 
957 high), Luminal B (n=710 low, 643 high), HER2+ (n=206 low, 489 high), Normal (n=38 low, 81 high).c. Kaplan-Meier 
plots show probability of DMFS in breast cancer patients with high vs. low expression of PHLDA2 in their primary tumor 
tissue, separated by breast cancer subtype. Plots were generated using the KM plotter compiled dataset of mRNA breast 
cancer genechip and visualized using the KM plotter tool (KMplot.com). Basal (n=469 low, 161 high), Luminal A (n=579 
low, 419 high), Luminal B (n=443 low, 230 high), HER2+ (n=197 low, 204 high), Normal (n=24 low, 31 high).d. Methylation 
values for all PHLDA2 loci in solid normal tissue (n = 139) and tumor tissue (n = 1101). Significantly methylated loci 
between primary tumor and normal tissue are marked with arrows. Diagram of PHLDA2 gene was generated with UCSC 
Genome browser and denotes location of loci in the chromosome using the hg37 reference genome.   
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2.5.3. PHLDA2 promotes breast cancer lung metastasis in vivo  
 

We determined whether PHLDA2 functionally promotes metastasis by assessing the 

effects of genetic modulation of PHLDA2 expression on breast cancer metastasis in vivo. We 

utilized a human patient-derived xenograft (PDX) model of triple negative breast cancer (HCI010) 

that spontaneously metastasizes to the lung following orthotopic transplantation16. We previously 

found that cells from this model display increased PHLDA2 expression (2-3-fold) during metastatic 

seeding in the lung17. HCI010 cells were propagated using a 3D tumor sphere culture system, 

followed by lentiviral infection using constructs to overexpress (PHLDA2 GFP) or knockdown 

(PHLDA2 shRNA GFP) PHLDA2 87. PHLDA2 overexpression did not result in significant changes 

in vitro, indicating that the cells are viable and show similar growth kinetics after genetic 

modulation. (Figure 2-4e). The HCI010 cells were subsequently injected orthotopically into NOD 

SCID gamma (NSG) mice and tissues were harvested at endpoint (~two months) (Figure 2-3a). 

Western blot analysis confirmed overexpression and knockdown of PHLDA2 in experimental 

relative to control tumors (Figure 2-4 f,g). Genetic modulation of PHLDA2 expression resulted in 

limited changes in primary tumor growth (Figure 2-3b, Figure 2-4b), demonstrating that primary 

tumor size should not have significant confounding effects on metastatic burden.  

We determined the effects of changes in PHLDA2 expression on lung metastasis by whole 

mount fluorescence microscopy and flow cytometry for GFP (Figure 2-3c,d). Remarkably, we 

found that PHLDA2 overexpression leads to a dramatic increase in GFP+ metastatic foci (Figure 

2-3c), and 6-10 times more metastatic cells in the lung than control (Figure 2-3d). 

Immunofluorescence staining for Ki67 in metastatic lesions revealed limited differences in cellular 

proliferation between PHLDA2 overexpressing and control conditions (Figure 2-4h). These 

results suggest that PHLDA2 drives metastasis through enhancing seeding efficiency, since we 

observe a dramatic increase in metastatic foci but limited changes in proliferation.  
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PHLDA2 knockdown resulted in a reduced but non-significant change in lung metastasis 

(Figure 2-4c,d). This may be due to low baseline levels of PHLDA2 expression (Figure 2-3e) and 

lung metastasis in the HCI010 model, making it difficult to measure a statistically significant 

reduction in PHLDA2 expression or metastasis. We therefore performed analogous experiments 

using MDA-MB-231 breast cancer cells, which have ~2-fold higher levels of endogenous PHLDA2 

expression than HCI010 cells (Figure 2-3e,f). Western blot analysis confirmed efficient 

knockdown of PHLDA2 following lentiviral infection in vitro (Figure 2-4i). PHLDA2 knockdown did 

not result in significant changes in MDA-MB-231 cell growth as measured by MTT assay in vitro 

(Figure 2-4j). MDA-MB-231 cells were injected via tail vein, and tissues were harvested 21 days 

later (Figure 2-3f). Analysis of lung tissues showed that PHLDA2 knockdown results in a 

significant reduction in metastatic burden in the lung (Figure 2-3g,h). Taken together, these 

findings show that PHLDA2 is not only associated with metastasis in patients, but also functionally 

promotes breast cancer lung metastasis in vivo. 
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Figure 2-3: Overexpression of PHLDA2 promotes breast cancer lung metastasis in vivo.  
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a. Experimental schematic of spontaneous metastasis model for HCI010 PDX tumor cells expressing GFP (control) or 
PHLDA2 GFP in NSG mice. b. Images show primary tumors from mice injected orthotopically in the mammary fat pad 
region with HCI010 PDX tumor cells expressing GFP (control) or PHLDA2 GFP (n= 12 GFP/11 PHLDA2 GFP) Scale bar 
= 1 cm. Bar plot shows tumor volume (cm3). P value was calculated using a student’s t-test. c. Representative images 
show whole mount fluorescence microscopy of metastatic lungs from mice injected orthotopically with HCI010 PDX tumor 
cells expressing GFP (control) or PHLDA2 GFP. Images are shown with brightfield and GFP filters. d. Representative flow 
cytometry plots of metastatic lungs from mice injected orthotopically in the mammary fat pad region with HCI010 PDX 
tumor cells expressing GFP (control) or PHLDA2 GFP. Bar plot shows quantification of lung metastatic burden using 
cancer cell GFP marker (n=16/group). P value was calculated using a student’s t-test. e. qPCR was performed to quantify 
mRNA expression of PHLDA2 in metastatic breast cancer models, MDA-MB-231 GFP and HCI010 GFP. Gene expression 
was normalized to housekeeping gene control, GAPDH. f. Experimental schematic of experimental metastasis model for 
IV delivery of MDA-MB-231 tumor cells expressing Scrambled GFP (control) or shPHLDA2 GFP in NSG mice. g. Images 
show whole mount fluorescence microscopy of metastatic lungs from mice injected with MDA-MB-231 tumor cells 
expressing Scrambled GFP (control) or shPHLDA2 GFP. Images are shown with brightfield and GFP filters. h. 
Representative flow cytometry plots of metastatic lungs from mice intravenously injected with MDA-MB-231 cells 
expressing Scrambled GFP (control) or shPHLDA2 GFP. Bar plot shows quantification of lung metastatic burden using 
cancer cell GFP marker (n=15/group). P value was calculated using a student’s t-test. 
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Figure 2-4: Modulation of PHLDA2 expression has limited effects on cancer cell proliferation 
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a. Experimental schematic of spontaneous metastasis model for HCI010 PDX tumor cells expressing Scrambled 
GFP (control) or shPHLDA2 GFP in NSG mice. b. Images show primary tumors from mice injected orthotopically in 
the mammary fat pad region with HCI010 PDX tumor cells expressing Scrambled GFP (control) or shPHLDA2 GFP 
(n = 11/group). Scale bar = 1 cm. Bar plot shows tumor volume (cm3). P value was calculated using a student’s t-
test. c. Representative images show whole mount fluorescence microscopy of metastatic lungs from mice injected 
subcutaneously in the mammary fat pad region with HCI010 PDX tumor cells expressing Scrambled GFP (control) 
or shPHLDA2 GFP. Images are shown with brightfield and GFP filters. d. Representative flow cytometry plots of 
metastatic lungs from mice injected orthotopically in the mammary fat pad region with HCI010 PDX tumor cells 
expressing Scrambled GFP (control) or shPHLDA2 GFP. Bar plot shows quantification of lung metastatic burden 
using cancer cell GFP marker (n=10/group). P value was calculated using a student’s t-test. e. Cell viability 
represented by Cell Titer Glo demonstrates in vitro proliferation of HCI010 GFP (control) or PHLDA2 GFP organoids. 
Bar plots represent average luminescence values of organoids at three seeding densities (20,000, 50,000, 100,000 
cells). Each point represents an average of 4 technical replicates. P values were calculated using multiple student’s 
t-tests. f. Western blot image for PHLDA2 protein expression in HCI010 GFP (control) and PHLDA2 GFP sorted 
tumor cells. Bar plot represents densitometry of PHLDA2 normalized to densitometry of β-actin control. Image 
densitometry was performed using ImageJ. g. Western blot image for PHLDA2 protein expression in HCI010 
Scrambled GFP (control) and shPHLDA2 GFP sorted tumor cells. Bar plot represents densitometry of PHLDA2 
normalized to densitometry of β-actin control. Image densitometry was performed using ImageJ. h. Representative 
images of immunofluorescence staining for DAPI (blue), tumor cells (green) and Ki67 (red) of HCI010 GFP and 
HCI010 PHLDA2 metastatic lung tissue. Scale bar = 50 μm. Quantification was performed for Ki67+ GFP+ area. See 
methods for detailed description of quantification. Graph is displayed as mean ± SD where each point represents 
one lung value obtained by the average of 5-10 20x microscopic fields. P value was calculated using a student’s t-
test. i. Western blot image for PHLDA2 protein expression in MDA-MB-231 Scrambled GFP (control) and shPHLDA2 
GFP primary tumors. Bar plot represents densitometry of PHLDA2 normalized to densitometry of β-actin control. 
Image densitometry was performed using ImageJ. j. Cell viability represented by MTT demonstrated in vitro 
proliferation of MDA-MB-231 Scrambled GFP (control) or shPHLDA2 GFP cells. Bar plot represents Normalized 
OD570  which is related to cell proliferation. Each point represents an average of 12 technical replicates. P value was 
calculated using a student’s t-test. k. Representative images of immunofluorescence staining for DAPI (blue), tumor 
cells (green) and Ki67 (red) of metastatic lung tissue from mice intravenously injected with MDA-MB 231 Scrambled 
GFP (control) or shPHLDA2 GFP. Scale bar = 50 μm. Quantification was performed for Ki67+ GFP+ area. See 
methods for detailed description of quantification. Graph is displayed as mean ± SD where each point represents 
one lung value obtained by the average of 5-10 20x microscopic fields. P value was calculated using a student’s t-
test. 
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2.5.4. Identification of cellular programs associated with PHLDA2 overexpression  
 

We investigated potential mechanisms for how PHLDA2 drives metastasis using RNA 

sequencing to identify cellular programs that change in response to increased PHLDA2 

expression. Tumors were generated from HCI010 control (n=4) and PHLDA2-overexpressing 

(n=4) cells and dissociated to single cell suspension (Figure 2-5a). Human cells were isolated by 

flow cytometry based on GFP and CD298 expression (Figure 2-5a). Libraries were generated 

using the Illumina TruSeq mRNA stranded protocol and sequenced on the NovaSeq 6000 using 

paired end 100-base pair read sequencing at 50 million reads per sample. Sequencing reads 

were aligned to the human reference genome (hg38), and differential gene expression analysis 

was performed using DESeq2. This revealed 530 significantly upregulated and 288 

downregulated genes (adjusted p value > 0.05; log2 fold change ≤ 0.5) (Figure 2-5b, Figure 2-

6, Table 1) in PHLDA2-overexpressing tumor cells relative to controls. Gene set enrichment 

analysis (GSEA) using the Gene Ontology Biological Processes (GO BP) database revealed 

several recurrent cellular programs upregulated in PHLDA2-overexpressing tumors (Figure 2-5c, 

Table 1). These included extracellular matrix (ECM) organization, cell-substrate adhesion, 

integrin binding, regulation of vascular development, and regulation of cell migration (Table 1). 

Top-ranked genes associated with the ECM included numerous collagens (COL1A1, COL1A2, 

COL2A1), other ECM genes (VIT, MFAP5, LUM, FBLN1), matrix metalloproteinases (MMP2, 

MMP11, MMP14), and regulators of ECM restructuring (SPARC) (Table 2), suggesting PHLDA2 

may promote metastasis through modulating genes that alter the ECM. Top genes associated 

with cell-substrate adhesion and integrin binding include adhesion molecules such as CEACAM1 

and BCAM, metalloproteases like MMP14, and integrins such as ITGA6 and ITGA3, among 

others (Table 2). Genes associated with vascular development included C3, CHI3L1, SPHK1, as 

well as SPARC, which has also been shown to increase vascular permeability, extravasation, and 

lung metastasis in melanoma models (Table 2)88–93. Of note, we found that these top-ranked gene 
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sets contain many overlapping genes, suggesting that PHLDA2 may regulate a ‘meta-program’ 

that regulates ECM remodeling, cellular adhesion, and vascular remodeling, and may have 

pleiotropic effects on promoting metastasis.  
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Figure 2-5: Bulk RNA sequencing reveals cellular programs associated with PHLDA2 overexpression 

a. Experimental schematic illustrating how bulk sequencing of HCI010 GFP/PHLDA2 primary tumors was performed. 
HCI010 GFP and HCI010 PHLDA2 primary tumors were collected and tumor cells were sorted using GFP and human-
specific CD298 expression. Mouse cells were excluded during sort using a mouse specific MHC-I antibody. RNA was 
then isolated from tumor cells followed by library preparation and RNA sequencing. b. Volcano plot depicts differentially 
expressed genes in HCI010 PHLDA2 overexpression versus GFP tumor cells. Plot was generated using the R package 
EnhancedVolcano. c. Chart depicting top ten gene set enrichment analysis (GSEA) pathways in HCI010 PHLDA2 
overexpressing tumor cells. GSEA was performed using R package ClusterProfiler and plot was generated with ggplot2. 
d. GSEA enrichment plot of collagen-containing extracellular matrix gene term (GO:0062023). Plot was generated using 
the R package enrichplot. e. GSEA enrichment plot of regulation of vasculature development gene term (GO:1901342). 
Plot was generated using the R package enrichplot. f. GSEA enrichment plot of positive regulation of cell migration 
(GO:0030335). Plot was generated using the R package enrichplot. 
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Figure 2-6: Top differentially expressed genes show a conserved upregulation across PHLDA2 
overexpressing sample replicates   
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PHLDA2 overexpression samples. Top 20 significantly differentially expressed genes are visualized. 
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2.5.5. PHLDA2 promotes ECM remodeling  
 

We further investigated whether PHLDA2 overexpression leads to changes in the ECM in 

vivo. ECM remodeling can promote metastasis in many ways, such as through increased tissue 

stiffness, alternation of cellular signaling, or providing a scaffold for migration (PMID: 33037194). 

We first evaluated the expression of several key ECM-associated genes identified by RNA 

sequencing. qPCR analysis showed increased expression of SPARC, COL1A1, MFAP5 and LUM 

in PHLDA2-overexpressing primary tumors relative to controls (Figure 2-7a). Western blot 

analysis further confirmed increased SPARC expression in tumors at the protein level (Figure 2-

7b). We also performed in situ analyses of protein expression in metastatic tissues. MFAP5 is 

glycoprotein component of microfibrils in the extracellular matrix that has been associated with 

breast cancer cell proliferation and migration94. Immunofluorescence staining for MFAP5 showed 

significantly increased expression in metastatic lesions in the lungs of animals transplanted with 

PHLDA2-overexpressing tumors relative to controls (Figure 2-7c,d, Figure 2-8a). We also 

observed numerous collagens upregulated in PHLDA2-overexpressing tumors by RNA 

sequencing (Table 2). Increased collagen density can increase tumor tissue stiffness and 

promote metastasis8,95,96. Collagen fibers can be quantified in tissues using Masson’s Trichrome 

staining, where aniline blue binds to basic amino acid residues on collagens turning them blue97. 

Masson’s Trichrome staining showed 3-7-fold increase in collagen fiber density in metastatic 

lesions in the lungs of animals transplanted with PHLDA2-overexpressing tumors relative to 

controls (Figure 2-7e,f, Figure 2-8b). Together, these data demonstrate a clear role for PHLDA2 

in promoting ECM remodeling, which can have pleiotropic effects on promoting metastasis.  
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Figure 2-7: PHLDA2 promotes ECM remodeling in metastatic lung lesions  

a. qPCR was performed to quantify mRNA expression of ECM related genes in HCI010 primary tumors. Gene expression 
was normalized to housekeeping gene control, GAPDH, and displayed on graph as fold change relative to HCI010 GFP. b. 
Western blot for SPARC protein expression in HCI010 GFP and HCI010 PHLDA2 sorted tumor cells. Densitometry 
quantification for SPARC and β-actin was performed using ImageJ. SPARC densitometry was normalized to β-actin control 
and graphed. c. Representative images of immunofluorescence staining for DAPI (blue), tumor cells (green), MFAP5 (red) 
in HCI010 GFP and HCI010 PHLDA2 metastatic lung tissue. Scale bar = 50 μm. d. Quantification of the percent of MFAP5+ 

area normalized to DAPI+ area (n= 4-6/group). Graph is displayed as mean ± SD; each point represents one lung tissue value 
obtained by the average of 5-10 20x objective microscopic fields. Student's t test results are represented on the graph.  e. 
Representative brightfield images of collagen deposition (blue) in HCI010 GFP and HCI010 PHLDA2 metastatic lung tissue. 
Collagen was stained for using Masson’s Trichrome stain. Scale bar = 100 μm. f. Quantification of percent of collagen+ area 
normalized to lesion area in HCI010 GFP or HCI010 PHLDA2 metastatic lung tissue (n=6 for HCI010 GFP and n=16 for 
HCI010 PHLDA2). See methods for detailed description of quantification. Graphs are displayed as mean ± SD; each point 
represents the value of one metastatic lesion. Student's t test result is represented on the graph. 
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Figure 2-8: PHLDA2 increases MFAP5 expression and collagen deposition in metastatic lung lesions 

a. Additional images of immunofluorescence staining of DAPI (blue), tumor cells (green), and MFAP5 (red) in HCI010 
GFP and HCI010 PHLDA2 metastatic lung tissue. Scale bar = 50μm. b. Additional brightfield images of collagen 
deposition (blue) in HCI010 GFP and HCI010 PHLDA2 metastatic lung tissue. Collagen was stained for using Masson’s 
Trichrome stain. Scale bar = 100μm. 
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2.5.6. PHLDA2 promotes vascular permeability  
 

Previous work has demonstrated that increases in tumor density correlated with increased 

risk of metastasis across cancer types vessel size98. We further investigated whether PHLDA2 

overexpression leads to changes in tumor vessel morphology vasculature in vivo. We performed 

immunofluorescence staining for CD31 to compare vessels in tumors grown from PHLDA2-

overexpressing versus control HCI010 cells. Surprisingly, we found no changes in vessel number, 

average vessel length, number of elongated vessels, or micro vessel density (Figure 2-9a,b).  

We next assessed changes in vessel functionality. Interestingly, several genes relating to 

the ‘vascular development’ gene set have been reported to specifically promote vessel 

permeability, including SPHK1, SPARC, C3 and CEACAM188,90,91,93,93,99. The kinase SPHK1 

catalyzes the production of Sphingosine 1 Phosphate (S1P) which binds to S1PR2 on endothelial 

cells, increasing vascular permeability90. SPARC is a secreted factor that binds to VCAM1 on 

activated endothelial cells and disrupts endothelial cell barrier function88. C3, a complement 

component, is part of the C3a/C3a receptor (C3aR) axis that upregulates VCAM1 on endothelial 

cells, which SPARC binds to for increased vessel permability88,92. Finally, CEACAM1 is an 

adhesion molecule that can anchor cells to blood vessels through homo or heterophilic 

binding91,92,100–103. This molecule facilitates their extravasation and likely alters vascular 

permeability due to the role of CEACAM family member in regulating barrier function91.  Bulk 

sequencing demonstrated these factors were all upregulated in PHLDA2 overexpressing tumors 

indicating, collectively they may weaken endothelial barrier function and promote metastasis. To 

investigate whether PHLDA2 promotes vessel permeability in vitro, we first utilized an in vitro 

vascularized micro-tumor (VMT) assay (Figure 2-10a,b)76–81. The VMT model was created by 

embedding lung fibroblasts, endothelial cells, and cancer cells (MDA-MB-231 GFP, PHLDA2-

GFP, Scramble-GFP or shPHLDA2-GFP) in a fibrinogen matrix and polymerizing the mixture in 

microtissue chambers. Microvessel permeability was analyzed using fluorescence imaging to 
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quantify leakage of 70kD dextran which was perfused through the microvessels on day 4. We 

found that PHLDA2 overexpression results in two-fold increase in vessel permeability in vitro, 

while PHLDA2 knockdown significantly reduces vessel permeability (Figure 2-10c,d).  

We further evaluated the effects of PHLDA2 modulation on vessel permeability in vivo. 

We quantified vessel permeability in primary tumors and metastatic tissues using 

immunofluorescence staining for albumin. Due to the large size of the protein, albumin cannot 

leak out of vessels with intact barrier function making albumin leakage into tissues a surrogate 

marker for vessel permeability104. In HCI010 primary tumors, we found a marked but not 

significant increase in vascular permeability (Figure 2-9c). In metastatic lungs from HCI010 

PHLDA2 spontaneous tumors, we observed a pronounced effect where PHLDA2 promotes nearly 

2.3-fold higher levels of albumin (Figure 2-10e). This suggests PHLDA2 overexpression 

increases vascular permeability specifically in lungs. Inversely, albumin signal was 0.4 times the 

control in lungs containing MDA-MB-231 PHLDA2 knockdown experimental metastases (Figure 

2-10f). Together this data demonstrates that PHLDA2 expression in tumor cells promotes vessel 

permeability in the metastatic lung tissue, while not changing primary tumor vessel permeability. 
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Figure 2-9: PHLDA2 increases vascular permeability in vitro and in vivo  
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a. Human endothelial cells, stromal cells, and MDA-MB-231 cancer cells were collected from 2D monolayer 
cultures and combined with extracellular matrix to establish vascularized microtumors (VMT). b. Schematic 
illustrates our device unit with a single 6 mm-long tissue chamber with medium inlets and outlets. The cell-ECM 
mixture was loaded into the tissue chamber through two ports. Loading is facilitated by a pressure regulator, and 
tissues are supported by hydrostatic pressure created across microfluidic channels connecting the media wells. 
Microfluidic resistors maintain physiological flow rates. c. Representative fluorescent images of VMTs containing 
MDA-MB-231 tumor cells (green) and vasculature (CD31, red), formed with either MDA-MB-231 GFP, MDA-MB-
231 PHLDA2, MDA-MB-231 Scrambled, or MDA-MB-231 shPHLDA2. The greyscale images in the middle panel 
show 70 kD dextran perfused into the VMTs on day 4. The bottom panel displays a merge of the dextran (cyan) 
with the VMT images. Scale bar = 500μm. d. Quantification of dextran leakage for each VMT condition 
(n=5/group). Graph is displayed as mean ± SD; each point represents one VMT value obtained by the average of 
multiple 10x objective microscopic fields. e. Representative images of immunofluorescence staining for DAPI 
(blue), tumor cells (green), albumin (red) in HCI010 GFP and HCI010 PHLDA2 metastatic lung tissue. Percent of 
albumin+ area normalized to DAPI+ area was quantified (n= 2-3/group). Graph is displayed as mean ± SD; each 
point represents one lung tissue value obtained by the average of 5-10 20x objective microscopic fields. Student's 
t test results are represented on graph according to the following: P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01. f. 
Representative images of immunofluorescence staining for DAPI (blue), tumor cells (green), albumin (red) of 
metastatic lung tissue from mice intravenously injected with MDA-MB 231 Scrambled GFP (control) or shPHLDA2 
GFP. Percent of albumin+ area normalized to DAPI+ area was quantified (n= 5-6/group). Graph is displayed as 
mean ± SD; each point represents one lung tissue value obtained by the average of 5-10 20x objective microscopic 
fields. Student's t test results are represented on graph according to the following: P > 0.05; *, P ≤ 0.05; **, P ≤ 
0.01. 
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Figure 2-10: Increased PHLDA2 expression does not change vessel morphology but increases vessel permeability 
in primary tumors 
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a. Representative merged images of immunofluorescence staining for DAPI (blue) and CD31 (cyan) in HCI010 GFP and 
HCI010 PHLDA2 primary tumors. Scale bar = 50 μm. b. Quantification of vessel morphology parameters including 
number of vessels (n=3/group), average vessel length (n=3/group), number of elongated vessels greater than 50μm in 
length (n=3/group), and microvessel density (n=3/group). See methods for detailed description of quantification. Graph 
is displayed as mean ± SD; each point represents one tumor obtained by the average of 5-10 random 20x objective 
microscopic fields. c. Representative merged images of immunofluorescence staining for DAPI (blue) and albumin (red) 
in HCI010 GFP and HCI010 PHLDA2 primary tumors. Scale bar = 100 μm. d. Quantification of the percent of albumin+ 

area normalized to DAPI+ area in HCI010 GFP and HCI010 PHLDA2 primary tumors (n=3/group). Graph is displayed as 
mean ± SD; each point represents one tumor obtained by the average of 5-10 random 20x objective microscopic fields. 
Student's t test result is displayed on the graph.  
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Chapter 2.6. Discussion 
 

To address the clinical challenges of treating breast cancer metastasis, it is necessary to 

discover molecular drivers and define their role in metastatic disease. Understanding the 

mechanisms of metastatic drivers will reveal novel drug targets which can greatly improve 

therapeutic strategy and patient survival. Our study addresses a significant gap of knowledge 

investigating the role of PHLDA2, a gene largely known for regulating placental development, in 

cancer. Specifically, we investigate the function of PHLDA2 in breast cancer metastasis 

demonstrating that it is a pro-metastatic gene in TNBC models. 

PHLDA2 is a small 17kD protein containing, most notably, a Pleckstrin Homology (PH) 

domain. PH domains interact with phosphoinositides (PIPs) in the plasma membrane and can 

function in potentiating signal transduction or act as scaffolds45. PHLDA family proteins have 

been demonstrated to bind to PIPs, inhibiting AKT signaling through competitive binding33,38,44. 

Additionally, PHLDA2 has been shown to bind to phosphatidic acid (PA) and phosphatidylserine 

(PS)52,53. PA is a secondary messenger that facilitates dynamics required for cell signaling 

through direct activation of kinases such as MAPK and PDK1, leading to cellular pathway 

regulation105. PS is presented on the surface of cancer cells, assisting in immune cell evasion105. 

Our bulk sequencing revealed hundreds of upregulated genes in response to PHLDA2 

overexpression; thus, it is plausible that PHLDA2 interacts with lipids on the cell membrane to 

promote signal transduction resulting in the transcription of a pro-metastatic meta-program.  

Pathway analysis revealed genes upregulated in PHLDA2 overexpressing cells were 

largely associated with ECM and blood vessel function. ECM components play critical roles in 

promoting cancer metastasis, including supporting circulating tumor cells, enhancing 

extravasation into the metastatic site, and promoting the formation a suitable metastatic niche7. 

Our data demonstrates that expression of PHLDA2 and ECM related genes such as COL1A1, 

SPARC and MFAP5 are positively correlated. Interestingly, PHLDA2 increased collagen 



 57 

deposition in metastatic lungs, but no change was detected in primary tumor tissue suggesting a 

differential regulation of collagen in the metastatic niche. In tumors, increased deposition of 

structural proteins including collagen, promote growth and survival of cancer cells7. This is 

consistent with a significant increase of Ki67+ cells and overall number of lesions observed in 

our PHLDA2 overexpressing model, suggesting an enhancement in proliferation and seeding 

capacity. However, further studies are required to establish a causal relationship between ECM 

proteins and metastatic seeding and outgrowth.  

 Loss of endothelial cell barrier integrity resulting in vascular permeability enhances 

metastasis106. Consistent with this, we found overexpression of PHLDA2 increases vascular 

permeability while knockdown decreases permeability in the metastatic lung. In our 

spontaneous model, PHLDA2 overexpression also increased vascular permeability in primary 

tumor vasculature, illustrating that PHLDA2 influences vessel leak regardless of tissue site. Bulk 

sequencing revealed upregulation of several genes associated with secreted factors which are 

reported to induce vascular permeability. Additionally, genes associated with cell-cell interaction 

were upregulated suggesting an enhancement in the attachment of tumor cells to endothelium 

to facilitate their extravasation. Cell transmigration and microvessel permeability are related 

though the mechanisms by which are still not fully understood. We hypothesize that collectively 

secreted factors and adhesion molecules contribute to vessel permeability and promote 

metastasis in PHLDA2 overexpressing cells. Additionally, increased ECM stiffness reduces 

vascular barrier integrity; thus, ECM deposition may promote vessel permeability in the 

metastatic niche95. Others have linked PHLDA2 expression to tumor angiogenesis; however, 

our study is the first to our knowledge to demonstrate PHLDA2 expression alters vessel 

permeability54.  

Consistent with its pro-tumorigenic roles discussed above, PHLDA2 is more highly 

expressed in primary breast tissue compared to normal. However, the mechanisms underlying 

its increased expression in breast tumor tissue remains elusive. Given that PHLDA2 is an 
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imprinted gene, we hypothesized that its expression levels are modulated through 

demethylation. Consistent with this, we uncovered that loci cg04720330 and cg05167973 were 

significantly demethylated in primary tumor compared to normal tissue. Methylation levels at 

these loci negatively correlated with PHLDA2 gene expression in normal breast and breast 

tumor tissue. Hypomethylation driven PHLDA2 expression has been similarly reported in the 

context of clear cell renal carcinoma86. Notably, these two significant loci are located within the 

gene body, rather than in the promoter region. Thus, methylation at these loci likely cause 

chromatin densification making the gene less accessible to transcription machinery and 

resulting in less of gene expression, which we observe in normal tissue107.  

Overall, these results suggest a role for epigenetic regulators like demethylases in the 

regulation of PHLDA2 expression in breast cancer. TNBC is considered broadly hypomethylated 

based on its low levels of methylation compared to other subtypes and normal breast tissue23. 

Interestingly, demethylase TET1 is upregulated in about 40% of TNBC patients and has been 

shown to increase oncogenic signaling through demethylation23. This illustrates a potential 

mechanism by which PHLDA2 loci become demethylated in cancer to drive increased 

expression. Further investigation will be performed to define the relationships between 

demethylases, PHLDA2, and breast cancer metastasis. 

 

Chapter 2.7. Conclusion 
 

In summary, our work is the first evidence that expression of the metastatic gene, 

PHLDA2, is potentially regulated by a demethylation event in tumor cells. We further 

demonstrate that PHLDA2 enhances cancer cell migration in addition to increasing ECM 

deposition and vascular permeability. Taken together, our study identified a marker of 

metastatic breast cancer that could be targeted to improve survival for those with metastatic 

disease, particularly in the TNBC subtype. 
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Chapter 3: Developing a Novel Methodology for Tissue Digestion and Flow Cytometry of 
Cancer Cells for Metabolomics 

 

Chapter 3.1. Overview.   
 

Cancer cell migration to secondary organs through metastasis is terminal and drives 

breast cancer patient fatality13. A better understanding of the metabolic drivers of metastasis can 

lead to targeted treatments which will affect patient outcome. Our lab performed single cell 

sequencing on primary tumors and metastatic lungs and lymph nodes from immunocompromised 

NOD scid gamma (NSG) mice carrying patient derived primary tumors (PDX)17. In this study we 

discovered that breast cancer cells switch their metabolism from glycolysis to oxidative 

phosphorylation (OXPHOS) during lung metastasis17. We further demonstrated that 

pharmacologic inhibition of OXPHOS attenuates metastatic spread in vivo.17 This provided 

evidence that OXPHOS is critical for metastasis17. However, it remains unclear what nutrient 

source allows for metastatic cancer cells to make this metabolic switch during the metastatic 

cascade. Understanding what nutrient sources promote this invasive cancer cell behavior could 

lead to treatment of metastasis through cellular nutrient starvation mechanisms or macroscopic 

dietary intervention. 

To determine what drives this metabolic switch in metastatic cancer cells, we have 

adapted and optimized a novel methodology for LC-MS using solid lung tissues sorted by 

florescence activated cell sorting (FACS). We have demonstrated that this method preserves the 

native metabolic signatures of tissues and allows for obtention of high-quality LC-MS 

metabolomics data. Using this novel method, steady state metabolomics can be performed to 

compare the profile of primary tumor and metastatic cells in the lungs in robust models of breast 

cancer metastasis. We found using a lung tropic MDA-MB 231 cell line, that metastatic cells in 

the lungs have higher levels of citrate metabolite than matched primary tumor cells. This finding 

gives us insights into what drives the metastatic capacity of breast cancer cells.  
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Chapter 3.2. Significance 
 

To support increased proliferation, migration, and adaptation to new tissue environments, 

cancer cells frequently reprogram their metabolism to meet the high energy demands and 

biosynthetic requirements of metastasis65. Therefore, it is crucial to identify the specific metabolic 

changes that occur in metastatic cancer cells to develop innovative strategies for preventing 

metastasis by targeting key nutrient pathways. This project establishes a foundation for 

uncovering the metabolic profiles of both primary tumor cells and lung metastatic cancer cells 

through the development of a novel single-cell metabolomics methodology, which allows for 

analysis of cellular metabolism of rare cell populations. Furthermore, this work has identified a 

preliminary metabolite that appears to play a critical role in enhancing the metastatic potential of 

breast cancer cells, providing a promising target for future therapeutic interventions aimed at 

limiting cancer progression and improving patient outcomes. 

Chapter 3.3. Innovation 
 
 The inability to assess the metabolic profile of cells that are in minority in a tissue is a 

significant limitation in the field of metastatic cancer metabolomics. To identify and characterize 

metastatic cancer cells, cell sorting methodology such as fluorescence activated cell sorting 

(FACS) is necessary to isolate cancer cells from a tissue. Metabolomics is typically performed on 

whole tissues which are preserved by flash freezing in liquid nitrogen. When studying cancer 

metastasis, the population of cancer cells of interest are in a vast minority in a tissue. Therefore, 

in a breast cancer lung metastasis model, performing metabolomics on whole lung tissue fails to 

distinguish the metabolic signatures of metastatic breast cancer cells from those of native lung 

cells.  

Typically, to isolate metastatic breast cancer cells, lung tissues are enzymatically digested 

at 37°C to obtain single cell suspensions suitable for FACS sorting. However, it has been 

established that digestion at physiological temperatures does not preserve metabolomic 
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signatures64. A group has published a protocol that employs kidney tissue digestion using a serine 

protease optimal at cold temperatures to reduce single cell sequencing artifacts65. Additionally, 

another group has established a flow sorting protocol to recover rare hematopoietic stem cells for 

metabolomics66. By optimizing and integrating these published protocols for cold tissue digestion 

and flow sorting, we've developed a novel method to extract high yields of rare metastatic breast 

cancer cells from murine lungs while preserving their metabolic data. This protocol will allow for 

improved understanding of metabolomic profiles of cancer cells in their metastatic sites as well 

as comparison of profiles from the corresponding primary tumor.  

 

Chapter 3.4. Materials and Methods   

3.4.1. Generation of MDA-MB 231 Lung Tropic (LM2) Cell Line  
 
 250,000 MDA-MB 231 parental cells were intravenously (IV) injected into the tail vein of 

4-6 week old NSG mice. After a 30-day incubation period, mice were sacrificed using asphyxiation 

with CO2 followed by cervical dislocation and perfusion with 10 mM EDTA in PBS. Using sterile 

tools and a sterile work environment to prevent cell contamination, murine lungs were dissected 

and digested using Collagenase IV solution at 37°C. Cells were filtered and red blood cells were 

lysed using ACK Lysis Buffer. Cells were resuspended in DMEM media with 10% FBS and plated 

into a cell culture plate. The following day, media was changed to fresh DMEM with 10% FBS. 

Two days post dissociation, DMEM without FBS was added to eliminate fibroblasts. Media was 

changed to DMEM with 10% FBS and 1% Penicillin-Streptomycin antibiotic the following day. 

Once cells grew out, this was repeated to generate LM1 line. Once LM1 cells were growing well 

in vitro, cells were injected via IV as above. After 23 days post injection, mice were sacrificed as 

described prior to generate LM2 cell line. After generation of line, MDA-MB 231 LM2 cells were 

transfected with eGFly virus to generate a line with a traceable label by flow cytometry and in vivo 
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imaging capacity. This transduction reduced time in tissue digestion by eliminating staining step 

for flow cytometry as all cancer cells are labeled with GFP.  

3.4.2. Orthotopic Mammary Fat Pad Implantation 
 

All animal experiments were reviewed and approved by the University of California, 

Irvine Institutional Animal Care and Use Committee (IACUC). For bilateral orthotopic tumor 

injections, mice were placed under isoflurane anesthesia (1.5–2.0%). Mammary fat pad area 

was prepared by shaving and cleaning with alcohol swabs. 500,000 or 250,000 (study 

dependent) MDA-MB 231 Parental or LM2/LM2-eGFly cells were resuspended in 50 µL of 

phosphate buffered saline (PBS). Cells were mixed in a 1:1 ratio with Corning Matrigel Matrix 

and placed on ice until injection. Using sterilized tools, a small incision was made into the skin of 

the mouse in the center of the lower abdomen. Cell suspension (100 µL) was injected in the 

fourth mammary fat pad of 10-12 week old NSG mice on each side. Skin was secured using 

staples and veterinary glue bond. Pain killer was administered as directed. Tumors were 

allowed to grow and metastasize over a 30-day period. The study was compliant with all 

relevant ethical regulations regarding animal research. 

3.4.3. Cold Protease Tissue Digestion  
 

Mice were fasted from food 6 hours before sacrifice to eliminate variability of chow 

consumption on the metabolome. Mice were sacrificed by cervical dislocation as asphyxiation 

with CO2 alters the metabolic profile of the tissue. Lungs and tumors were harvested onto ice-cold 

PBS on ice without perfusion which disrupts the metabolomic profile. 20-50 µL of blood was 

collected from the chest cavity and placed in a tube on ice to clot for 20-30 minutes to serve as a 

control. Blood was spun down at max speed for 10 minutes. Blood supernatant was collected and 

frozen at -80°C until ready for analysis. Enzyme mix was made on ice consisting of:  10 mg 

protease/1 mL tissue (Protease from Bacillus licheniformis Type VIII, Sigma Aldrich, Cat. No: 
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P5380), 5 mM CaCl2, DNAse I (125 U/mL) (Worthington Biochemical, Cat. No. LS002139), and 

DPBS with Ca2+ and Mg2+ up to 1 mL volume. Tissues were minced on chilled petri dishes placed 

on ice with a razor blade. Tissue and enzyme mix (2 mL of enzyme mix /organ) were left on in a 

15 mL conical tube ice for 7 minutes while pipetting 15 strokes using a 1 mL pipet (with tip cut off) 

every 2 minutes set to 700 µL. After 7 minutes, digest mix and tissue were transferred to a 

Miltenyi-C tube placed on ice. Program lung_02 was ran once for lungs and tumor sample. MACS 

tubes were gently spun at 4°C. Digestion of cells continued in tube on ice for 8 minutes while 

titrating every 2 minutes, 15 strokes using a 1 mL pipet. 6 mL ice cold 10% FBS/PBS was added 

to digest mix in C-tube to inhibit protease. The quenched mix was transferred to a 15 mL conical 

tube and spun at 600 x G for 5 minutes at 4°C. Supernatant was discarded and lung and tumor 

pellets were resuspended in 2 mL ice-cold PBS. Resuspended cells were filtered through a 40 

µM filter into a sterile 50 mL conical on ice. Filter was rinsed with 5 mL ice cold PBS. To tumor 

cells, 45 mL of ice-cold PBS was added. Filtered tumor cells were spun at 100 x G for 5 minutes 

at 4°C to eliminate debris. Supernatant was aspirated. Pellet was resuspended in 1 mL DMEM 

media. Conical tube containing lung filtered cells was spun at 600 x G for 5 minutes at 4°C, before 

discarding the supernatant and resuspending the pellet in 1 mL DMEM media. During this 

procedure, always keep samples on ice or at 4°C. Mice should also be sacrificed individually so 

to minimize delays in sorting samples and loosing critical metabolites. The study is compliant with 

all relevant ethical regulations regarding animal research. 

3.4.4. Flow Cytometry Set up for Sorting of Cold Digested Tissues  
 

Flow cytometer was set up as detailed in previously published literature66. Sheath fluid 

that was used for these experiments was either 1X or 0.5X PBS. Sorted cells were sorted into 

cooled tube holders.  

3.4.5. Labeling Cancer Cells for Flow Cytometry  
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For unlabeled human cell lines (MDA-MB 231 Parental, MDA-MB 231 LM2), human-

specific antibody CD298, diluted 1:100 (APC, BioLegend, Cat. No. 341706), and the mouse-

specific antibody MHC-I, diluted 1:100 (PE/Cy7, BioLegend, Cat. No. 114717) were used to label 

human cancer cells. Cell viability was determined by negative staining for SYTOX Blue, diluted 

1:1000 (ThermoFisher Scientific Cat. No. S34857). Unlabeled cells were sorted for CD298+, 

MHCI-, Sytox-. eGFly labeled cells were sorted for Sytox-, GFP+.  

  

3.4.6. Metabolomics Protocol and Analysis—Collaboration with Dr. Cholsoon Jang and Johnny 
Le  
 
 A quadrupole orbitrap mass spectrometer (Q Exactive; ThermoFisher Scientific) was 

operated in negative ion mode with electrospray ionization and used to scan from m/z 70 to 

1,000 at 2 Hz, with a 140,000 resolution. MS was coupled to a Vanquish UHPLC system 

(ThermoFisher Scientific) with autosampler temperature set at 5°C and injection volume 3ul. LC 

separation used a XBridge BEH Amide column (2.1 × 150 mm2, 2.5um particle size, 130 Å pore 

size; Waters Corporation) and run on a gradient of solvent A (95:5 water: acetonitrile with 20 

mM of ammonium acetate and 20 mM of ammonium hydroxide, pH 9.45) and solvent B 

(acetonitrile). Flow rate was 150ul/min. The LC gradient was: 0 min, 85% B; 2 min, 85% B; 3 

min, 80% B; 5 min, 80% B; 6 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min, 

50% B; 12 min, 50% B; 13 min, 25% B; 16 min, 25% B; 18 min, 0% B; 23 min, 0% B; 24 min, 

85% B; and 30 min, 85% B. Preliminary data informed targeted analysis using MAVEN 

software.  Metabolites were assessed that are related to glycolysis and the TCA cycle. Analysis 

was conducted utilizing R. Statistical testing was conducted using a t-test. 
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Chapter 3.5. Results  

3.5.1. Novel Single Cell Metabolomics Method Recovers a Metabolomic Profile from Live 
Cancer Cells 
 
 To be able to identify metabolite profiles from metastatic lung cancer cells, it was 

necessary to optimize effective digestion of both lung and tumor tissues. In our experimentation, 

we have optimized the amount of cold protease enzyme necessary for effective digestion of lung 

and tumor tissues. The previously published protocol employs a mechanical tissue homogenizer 

for rapid and consistent tissue digestion of liver tissue65. Therefore, we refined the appropriate 

settings for lung and tumor tissue dissociation that can sufficiently digest these tissues while 

suitably recovering live and viable cells using the Countess Cell Counter (Figure 3-1a).  

Additionally, we have confirmed that with cold protease digestion, live, GFP positive cancer 

metastatic cells can be recovered from the tumor and lung by flow cytometry. Finally, we have 

demonstrated that with cold protease digestion, significant metabolites can be effectively 

recovered from cold protease digested lung tissue using LC-MS analysis (Figure 3-1b). Together, 

this approach enabled us to obtain a metabolic profile from live cancer cells using the optimized 

protocol. (Figure 3-1c).  
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Figure 3-1: Cold Protease Tissue Digestion Recovers a Metabolomic Profile from Live Cancer Cells.  

a. Table depicts average live cell count and viability of lung and tumor tissues digested with standard 
(37°C) protocol and novel digestion (cold protease) protocol. Countess was used to determine cell 
count and viability. b. Bar graph demonstrates average ion counts of select metabolites detected in 
high abundance in lung samples digested with the novel digestion (cold protease) methodology. 
These metabolite ion counts were normalized to the corresponding blood sample controls. c. 
Experimental schematic of single cell metabolomics digestion protocol sample prep and sorting.   
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3.5.2. At least 300,000 cells Must Be Recovered to Generate a Significant Metabolite Signature  
  

To ensure we had enough cancer cells to obtain a significant metabolomic signature, we 

performed metabolomics on sorted quantities of cold digested and flow sorted live native lung 

cells. We sorted 10,000, 100,000 and 300,000 cells to determine the smallest ppm window for 

analysis and detection. In analyzing these samples, we sought to reduce background and 

visualize a true metabolite peak. We determined that 300,000 cells were minimally necessary to 

generate a significant metabolomics signature (Figure 3-2).  
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Figure 3-2: 300,000 Cells are Necessary to Recover a Significant Metabolite Profile.  

Table demonstrates detected metabolites at various cell numbers. 10,000, 100,000 and 300,000 
live lung cells were sorted using SytoxBlue Live/Dead stain. Green boxes with an o denote 
metabolite is detected with appropriate cell dose. X denotes peaks in samples that were less 
than the blank (sheath) or undetected. Ppm window denotes reduction of analysis window in 
order to reduce background and visualize metabolite peak in the sample. 
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3.5.3. A Breast Cancer Lung Tropic Cell Line Can Generate a Higher Yield of Lung Metastatic 

Cells than other Models  

To recover 300,000 lung cancer cells, it was necessary to generate a new murine model 

to increase the yield of metastatic cancer cells in the lungs. MDA-MB 231 cells were passaged 

twice through the tail vein of mice, to select for cells with a lung metastatic capability to generate 

MDA-MB 231 LM2 lung tropic cells108. Generation of the lung tropic cell line assisted with 

increasing metastatic cancer cell yield in the lungs (Table 3). This cell line was later labeled with 

the eGFly fluorescent tag to eliminate the tissue staining step necessary with prior flow cytometry. 

Additionally, to compare metabolic profiles between primary tumor and metastatic cells more 

fairly, it is necessary to obtain an approximately equal amount of primary tumor and lung 

metastatic cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70 

 
Table 1: Cell Counts of Sorted Primary Tumor and Metastatic Lung Cells from Breast Cancer Models 

Cell 

Line 

Injection 

Type 

Cell # 

Injected Duration 

Tumor Cells Sorted at 

Sacrifice  

Metastatic Cells 

Sorted from 

Lung at Sacrifice 

MDA-

MB 231 

Parental 

Bilateral 

orthotopic 

MFP 

injection 

500,000 30 days 
Mouse 1: 86,000# 

Mouse 2: 86,000* 

Mouse 1: 1 

Mouse 2: 414 

MDA-

MB 231 

Parental 

Bilateral 

orthotopic 

MFP 

injection 

250,000 30 days Mouse 1: 86,000* Mouse 1: 604 

MDA-

MB 231 

Parental 

Bilateral 

orthotopic 

MFP 

injection 

250,000 35 days 
Mouse 1: 100,000 

Mouse 2: Did not run 

Mouse 1: 2 

Mouse 2: 3 

MDA-

MB 231 

LM2 

Bilateral 

orthotopic 

MFP 

injection 

500,000 24 days 

Mouse 1: 45,926 

Mouse 2: 35,792 

Mouse 3: 37,088 

Mouse 1: 221.286 

Mouse 2: 52,273 

Mouse 3: 600,000 

MDA-

MB 231 

LM2 

eGFly 

Bilateral 

orthotopic 

MFP 

injection 

500,000 
22-24 

days 

Mouse 1: 450** 

Mouse 2: 64,662# 

Mouse 3: 33,147*** 

Mouse 4: 36,441**** 

Mouse 1: 450** 

Mouse 2: 155,004 

Mouse 3: 

33,147*** 
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Mouse 5: 32,354#  

Mouse 6: 170,153# 

Mouse 7: 93,393# 

Mouse 8: 257,587# 

Mouse 4: 

36,441**** 

Mouse 5: 88,620 

Mouse 6: 

300,000& 

Mouse 7: 

300,147&  

Mouse 8: 292,593 

 

Note: * denotes matched tumor/lung counts, # indicates if a primary tumor was sorted to sample 

completion, & denotes that sample was sorted to 300,000 cells and sorting was stopped)  
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3.5.4. Breast Cancer Lung Metastatic Cells have higher significantly expression of Citrate than 
Primary Tumor Cells  
 
 Through combination of MDA- MB 231 LM2 and MDA-MB 231 eGFly cohorts as described 

above with removal of low signal samples and scaling samples by their means for each 

metabolite, we found a significant presence of citrate in lung metastatic cells that was absent in 

primary tumor cells (Figure 3-3). There were non-significant changes in metabolites associated 

with Glycolysis (Glucose, Pyruvate and Lactate), Essential Amino Acids (Lysine and Arginine), 

Non-essential Amino Acids (L-Alanine and Glutamine) and Branched Chain Amino Acids 

(Isoleucine, Leucine and Valine) (Figure 3-3). This indicates that metastatic breast cancer cells 

in the lung have more citrate which might promote their metastatic capacity and survival in the 

metastatic niche.  
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Bar plots compare steady state metabolite levels in breast cancer metastatic lung versus 
corresponding primary tumor in MDA-MB 231 LM2 a spontaneous tumor metastasis model. 
Samples were normalized to corresponding blood samples. Additionally, 2 cohorts of mice (MDA-
MB 231 LM2-black points and MDA-MB 231 LM2 eGFly-grey points) were pooled together for 
analysis through normalization by scaling mean metabolite levels. MDA-MB 231 LM2 cohort was 
sorted using 1X PBS sheath fluid whereas MDA-MB 231 LM2 eGFly cohort was sorted into 0.5X 
PBS sheath fluid. The sheath fluid marginally improved metabolite yield (data not shown). 
Statistical significance was determined by a t-test 
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Figure 3-3: Significant Increase in Citrate was Observed in Metastatic Breast Cancer Cells as compared 
to Primary tumor cells  
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Chapter 3.6. Discussion  
  

Assessing the metabolic differences between primary tumor and metastatic cells has been 

greatly limited by sample preparation constraints. Metabolomics techniques rely on whole tissue 

samples, which prevents recovery of minority metastatic cells from a tissue using flow cytometry. 

Additionally, tissues are often digested under 37°C conditions for flow cytometry which has been 

demonstrated to alter the metabolomic profile of tissues64. To address these challenges, we have 

developed a novel method for recovering significant metabolites from live breast cancer tumor 

and lung metastatic cells (Figure 3-1). While a published protocol existed for cold protease 

digestion of kidney tissue for single-cell sequencing, we optimized the digestion protocol for lung 

and tumor tissue65. This optimization addressed the architectural differences of kidney tissue from 

the adapted protocol to our tissues of interest65. Additionally, despite the presence of a flow sorting 

protocol for rare stem cells for metabolomics applications, we tailored the sorting conditions 

specifically for our cancer cell types of interest66.  

 Alongside development of the digestion method, it was necessary to develop a model 

suitable for this protocol. Metastatic breast cancer cells are a largely rare cell population within 

the lung, so it is critical to be able to recover a high yield of viable cells with tissue digestion. 

Although metastatic breast cancer cells are in vast minority in the lung, these cells can significantly 

impact animal survival. Therefore, it was necessary to develop a breast cancer lung metastatic 

model that would yield the required cell number input necessary to recover significant 

metabolomic signatures (Figure 3-2).  Through experimentation, we determined that due to the 

presence of the immune system in a 4T1 breast cancer model, it was difficult to obtain a significant 

number of lung metastasis while primary tumor size was within IACUC limitations. Additionally, 

our HCI010 PDX breast cancer model utilized in our prior work yields a small number of metastatic 

cells as the model is limited in its metastatic aggression. Using a more aggressive breast cancer 

cell line model, MDA-MB 231, that were passaged twice through the lungs of NSG mice to 
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generate the MDA-MB 231 LM2 line we were able to yield the most cancer cells in the lung without 

distress to the animal. While this model still faces challenges due to the significant mouse-to-

mouse variability, using the MDA-MB 231 LM2 line we were able to recover the metastatic cell 

number necessary to perform metabolomics. The successful establishment of the MDA-MB 231 

LM2 model allowed us to perform a pilot study examining the differences between metabolic 

profiles of primary tumors and metastatic breast cancer cells in a few independent animals.  

 Using the two spontaneous metastasis cohorts where we had recovered cell numbers 

sufficient for steady state metabolomics, MDA-MB 231 LM2 and MDA-MB 231 LM2 eGFly, we 

were able to observe differences in metabolites between primary tumors and their matched 

metastatic lungs (Table 2). We found that while there were no significant changes in amino acids 

or metabolites associated with glycolysis, we observe a significant change in citrate, a metabolite 

produced in the first step TCA cycle (Figure 3-3). We observe a higher content of citrate in 

metastatic breast cancer cells in the lung than their matching primary tumor (Figure 3-3). Using 

single cell sequencing, we have previously defined in a triple negative breast cancer PDX model 

that cancer cells make a metabolic switch from glycolysis to rely on oxidative phosphorylation 

(OXPHOS) from primary tumor to metastatic site17.  As the TCA cycle is a critical part of OXPHOS, 

this finding aligns with our prior understanding that metastatic breast cancer cells rely on the TCA 

Cycle/OXPHOS for their metastatic potential17. Additionally, citrate has been found to play a role 

in metabolic regulation of cancer cells109. A shortcoming of steady state metabolomics is that 

presence of a metabolite does not discern if cells are using less of a highly detected metabolite 

or excreting more of this metabolite into their environment. To determine how citrate might be 

benefitting metastatic cancer cells, an isotope tracing study with radio-labeled citrate should be 

employed to understand how cancer cells are interacting with citrate during the metastatic 

cascade. 
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Chapter 3.7 Conclusion 
 

To address the technical challenges of observing metabolic differences in primary tumor 

cells versus cancer cells in metastatic organs, we have established a novel single cell 

metabolomics method for primary tumor and metastatic lung cells. This method is compatible with 

flow cytometry sorting of live, rare cancer cells. Additionally, we have developed a best fit model 

to accommodate cell yield requirements for obtaining significant metabolite profile. Through a 

paired single cell metabolomics experiment with primary tumor and metastatic MDA-MB 231 LM2 

cells, we found that metastatic lung cells have significantly higher levels of citrate than their 

primary tumors. This finding is aligned with our previous finding that breast cancer metastatic cells 

switch their metabolism to OXPHOS during the metastatic cascade as citrate is produced in the 

TCA cycle17.  

To better understand if citrate is consumed or generated by metastatic breast cancer cells, 

further experimentation with a radio-labeled citrate compound must be used. Additionally, citrate 

production can be reduced by targeting citrate synthase which is responsible for generating 

citrate109. The effect of reduced citrate on cancer cell metastasis can be observed using a knock-

down of citrate synthase in the MDA-MB 231 LM2 cell line. This finding has potential to reduce 

metastatic cancer cells through cellular citrate nutrient restriction or citrate reduction by targeting 

its formation in the TCA Cycle in metastatic cancer cells. Overall, this method allows us to better 

study metabolic changes in rare cell populations in a tissue, such as metastatic cells.   
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Chapter 4: Conclusions and Final Remarks 
 
 Metastatic disease is a critical determinant of survival for breast cancer patients. The 

aggressive nature of metastatic cancer cells, combined with a lack of targeted treatment 

options, leads to significantly reduced survival rates as these cells spread to distant organs. My 

thesis work focuses on investigating novel genetic and metabolic drivers of breast cancer 

metastasis. A deeper understanding of the factors that drive cancer cells to metastasize not only 

illuminates the metastatic cascade but also creates opportunities for the development of 

innovative drug targets and biomarkers for the disease. 

Chapter 2 of this thesis delves into PHLDA2 as a genetic driver of breast cancer 

metastasis. Our prior research indicated that PHLDA2 expression is elevated exclusively in 

metastatic cells compared to primary tumor cells, prompting us to investigate its role in 

metastatic burden and the mechanisms by which it facilitates metastasis. Notably, PHLDA2 

expression correlates with poor prognosis and decreased relapse-free survival in human 

patients. Additionally, PHLDA2 expression is significantly elevated in tumor tissue relative to 

normal breast tissue. Given that PHLDA2 is an imprinted gene, we aimed to elucidate the 

regulatory mechanisms governing its expression in cancer. Our findings suggest that 

methylation likely drives overexpression of this gene in cancer. 

We demonstrated in vivo that PHLDA2 promotes spontaneous metastasis in patient-

derived xenograft (PDX) models. In experiments involving MDA-MB-231 cells, the loss of 

PHLDA2 resulted in a notable reduction in metastatic burden. To further explore the role of 

PHLDA2 in metastasis, we employed bulk sequencing to identify its downstream effects. Our 

analysis revealed that PHLDA2 expression enhances pathways related to extracellular matrix 

(ECM) remodeling, and vascular development. We validated these pathways, demonstrating 

that PHLDA2 promotes collagen deposition and increased expression of ECM markers SPARC 

and MFAP5. Additionally, PHLDA2 expression strongly influenced vessel permeability in vitro 
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using a vascularized organ-on-a-chip system. In vivo, we observed enhanced permeability in 

primary tumors with PHLDA2 overexpression, which was even more pronounced in metastatic 

lungs.  Together, these findings suggest that PHLDA2 activates specific programs that facilitate 

metastasis. However, questions remain regarding the precise role of PHLDA2 within the 

metastatic cascade and whether it directly regulates protein activity related to ECM dynamics 

and vascular permeability. Addressing these questions could provide valuable avenues for 

future exploration. 

Metabolomics has limitations that make it challenging to study metastatic cells. Since 

cancer cells comprise a minority of the cellular composition in metastatic tissues, standard 

whole tissue metabolomics is ill-equipped to address these questions. Additionally, traditional 

tissue digestion methods can be disruptive to metabolomic analyses. In Chapter 3, I developed 

a protocol for flow sorting cancer cells that preserves their metabolic profiles. I also generated a 

lung tropic MDA-MB 231 model of spontaneous metastasis that can obtain a sufficient number 

of metastatic cells, 300,000, to facilitate significant metabolomics analysis. Through this work, I 

determined that citrate levels differ significantly between metastatic and primary tumor cells. 

However, this finding does not clarify whether the consumption of citrate drives this process or if 

citrate uptake does. To elucidate this, we would employ radiolabeled isotope tracing. For a 

spontaneous metastasis model, this would involve tracking the incorporation of the radiolabeled 

citrate into metabolic pathways, allowing us to determine the dynamics of citrate metabolism in 

both metastatic and primary tumor cells. 

In conclusion, this thesis provides valuable insights into the genetic and metabolic 

factors driving breast cancer metastasis, a critical determinant of patient survival. Chapter 2 

highlights the role of PHLDA2 as a potential genetic driver, revealing its association with poor 

prognosis and its impact on metastatic processes through mechanisms such as ECM 

remodeling and vascular permeability. Finally, Chapter 3 introduces a novel approach to 

studying the metabolomics of metastatic cancer cells, paving the way for a deeper 
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understanding of metabolic alterations associated with metastasis. By elucidating the dynamics 

of citrate metabolism and its potential implications, this work opens avenues for the 

development of targeted therapies and biomarkers that could improve outcomes for breast 

cancer patients. Moving forward, it is imperative that we integrate our findings on genetic and 

metabolic drivers to unravel the complexities of the metastatic cascade, ultimately leading to the 

identification of transformative therapeutic strategies that can significantly enhance patient 

survival. 
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