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 Perception depends upon the coordinated activity of populations of neurons. How 

neural populations represent structure in the outside world through their activity is an 

important open question. One approach to this problem is the concept of the receptive field, 

which quantifies how external stimulation modulates the activity of individual neurons. While 
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receptive fields are a powerful concept for the experimenter, the brain itself does not have 

access to its own receptive fields.  This dissertation applies methods from the field of 

algebraic topology to characterize the structure of neural population activity in the secondary 

auditory region NCM of the European starling. Chapter 2 demonstrates that the simplicial 

complex associated to population activity in NCM carries behaviorally-relevant information 

about learned categories.  Along the way, a new similarity measure for population activity is 

developed, called the Simplicial Laplacian Spectral Entropy.  It is shown that this measure 

quantifies the similarity of simplicial complexes associated with neural activity in a way that 

depends upon their global topological structure. Chapter 3 explores the connection between 

neural topology and classical receptive fields, by showing that the intrinsic geometry of the 

population activity matches the geometry of the receptive fields.  This shows that the temporal 

coativity structure of the population contains a direct representation of the stimulus structure 

without requiring explicit computation of receptive fields.  This validates a previously 

described theoretical mechanism in a sensory system for the first time in-vivo, and provides a 

new understanding for population activity in sensory regions.  This chapter also introduces a 

technique for reconstructing acoustic spectrograms of complex, natural vocal signals from 

neural activity, which will be a powerful technique for exploring population level 

representations in future studies.  The final chapter of this dissertation describes a new 

mathematical description of the phenomenon of polychronization in spiking neural networks.  

This serves as a bridge between the experimental results of this dissertation and a theoretical 

understanding of the emergence of spatiotemporal structure in the activity of neural 

populations.   
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Chapter 1 - Introduction 

Perception is the capability of an organism to extract, through its senses, information 

about an environment that is useful for the organism’s behavior and survival.  For the purposes 

of this thesis, an animal is said to perceive a feature if it is capable of making behavioral 

distinctions that depend on knowledge of that feature.  Perception depends on the organism’s 

nervous system, since perturbations to the nervous system yield perturbations in perception. A 

major goal of neuroscience is to understand how perception arises from the organization and 

activity of the nervous system. What is an understanding of perception? There must be four 

components to any understanding of perception: 

● What in the environment constitutes information for the animal? 

● How the organism’s senses transduce that information into nervous system activity. 

● How changes in the environment correspond to changes in the organism, in particular, to 

changes in the activity in the organism’s nervous system. 

● How these nervous system activity changes influence the organism’s behavior. 

There are two high-level approaches to understanding perception: direct and indirect. 

Each approach agrees on the need to explain perception in terms of nervous system activity, but 

they differ strongly in their underlying conceptual frameworks.  The conceptual tension between 

these approaches has led to an extensive debate over many decades. This debate is important 

because it informs the underlying assumptions behind every experiment in perceptual 

neuroscience, and each side has far-reaching implications for our understanding of nervous 

systems as a whole. Current trends in perceptual neuroscience favor approaches falling under 

indirect perception, but the debate is far from settled. Advances in experimental and theoretical 

neuroscience mean that the conceptual distinctions that differentiate these approaches are now 
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subject to empirical tests.  We begin with an overview of indirect and direct perception, and then 

discuss their implications for neuroscience research.  

 

Indirect Perception 

Indirect perception began with a consideration of the phenomenological aspects of 

perception compared to the burgeoning scientific understanding of sense organs.  As science was 

evolving to place emphasis on empirically measured quantities and the relationships between 

them, scientists began describing the physical structure and operation of sense organs with the 

same “objective” terminology used to describe the features of inanimate objects in the world.  

From this emerged the consensus that the only relevant description of stimulation for an animal’s 

perception was based on physically measurable quantities.  Perceptual qualities, such as color or 

timbre, became secondary to primary qualities, such as wavelength and amplitude.   

 Describing stimuli purely with physical quantities revealed  a disparity between 

stimulation and perception.  Namely, there are features to percepts that have no direct 

manifestation in the physical variables.  A prototypical example of this is three-dimensional 

depth perception.  A physical description of light impinging on the retina consists of a 

specification of a “retinal image” - a two dimensional surface with a function describing the 

wavelength and amplitude of light hitting each point on the surface.  

Indirect perception starts from a set of assumptions motivated by dissimilarities between 

the nature of sensations and the nature of our subjective knowledge of the environment. 

Apparently, our knowledge of the environment contains details that are not immediately present 

in the underlying sensations.   Stimuli, the physical antecedent to sensations, are described as 

would a physicist describe them, consisting of physical quantities such as wavelength, intensity, 
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or frequency. Animals have the capability to make distinctions between (that is, produce 

alternative behaviors depending on) features of the environment that are not present in the 

physical description of the stimulation informing these distinctions.  

A prototypical example is three-dimensional depth perception.  Animals, including 

humans, can distinguish the positions of objects in a three dimensional space. The stimulation 

informing these distinctions is the pattern of light falling on the retina: without such stimulation, 

this distinction cannot be made, and this is the level closest to the sensory epithelia that such a 

dependence manifests. The physical description of light on the retina consists of a map of 

wavelengths and intensities of light on a two-dimensional surface.  There is nothing in this 

physical description that directly corresponds to the x,y, and z coordinates of the objects.  Thus, 

perception of the objects’ positions (i.e. knowledge that informs this distinction) is indirectly 

related to the stimulation.  This implies that some process must elaborate (Marr, 2010; Michaels 

& Carello, 1981)  the stimulation to produce the perception of position in three-dimensional 

space .  

Indirect approaches treat perceptions as discrete products of computational processes that 

begin with the senses.  This forces the question of the relation between perception and neural 

activity to factor into three parts, most famously articulated by David Marr: 

● What is the computation that must be performed on the sensory inputs to yield 

perceptions? 

● What is the algorithm that accomplishes this computation? 

● How is this algorithm implemented in neural systems? 

Thus, indirect approaches require a strict, sequential information-processing point of view 

because they assume that raw stimulation transduced by the sensory epithelia does not contain 
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enough information on its own to account for the richness of information present in the resultant 

perceptions (Bickhard & Richie, 1983).  

 

Direct Perception 

Direct perception begins with the observation that each animal occupies a particular niche 

in its environment.  This niche was not present a priori, but came to be just as the animal itself 

did: through evolution.  Since the animal’s niche contains the most relevant aspects of its 

environment, on evolutionary timescales, the animal determines its environment as the 

environment determines the animal (Corris, 2020). Direct perception postulates that this 

intertwining of animal and environment exists at the level of a single individual. Since 

perception is the acquisition of knowledge about the environment, this postulate has strong 

implications for the nature of perception.  

 Both the animal and environment are dynamic entities.  If the animal and environment 

mutually determine each other, any knowledge about the environment the animal has must 

manifest over a continuous span of time.  This means that, fundamentally, perception cannot be 

considered as a series of static percepts.  Instead, knowledge of the environment manifests as 

systems of relationships that hold between the animal and the environment, over varying spans 

of time.  Since perception is the acquisition of this information, direct perception requires the 

animal to be sensitive to these relationships.   

 

Indirect/Direct perception and neuroscience 

Acquiring an understanding of the nervous system’s role in perception looks different 

under indirect and direct perception.  Indirect perception’s requirement of successive processing 
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stages maps well onto the observed hierarchy of sensory structures in most nervous systems 

(Riesenhuber & Poggio, 1999; Yamins et al., 2014).  The task for neuroscientists is to identify 

which perceptual computations correspond to each level of the hierarchy and which 

representations exist at the intermediate steps.  To do this, neuroscientists take advantage of the 

fact that neural activity is correlated with variables in the world outside the animal that the 

experimenter themself can measure. Because, according to indirect perception, such physical 

variables are the only relevant specification for the stimulus, for the system to perceive, the 

experimenter must be able to extract or “decode” these physical variables from the neural 

activity.  Thus, a significant fraction of the work in sensory systems neuroscience is involved in 

establishing maps (i.e. models) between external physical variables and neural activity.  There 

are a variety of approaches to accomplish this, but most can be described as single 

neuron/population and statistical/dynamical.  

Single neuron, statistical models attempt to define the map as a statistical relationship 

between two random variables: the external physical variable(s) and the neuron’s activity.  The 

parameters for such models can be found by matching the statistical correlations between the 

experimentally observed neural response to a distribution of physical stimuli. With these 

parameters, a neuron is said to represent a physical variable if changes in that variable 

correspond to changes in the probability of that neuron to produce a spike or increase its firing 

rate.   

Population statistical models operate similarly to the single neuron case.  An 

experimenter seeks a statistical model of the response of multiple neurons in such a way that 

correlation between the model-predicted activity distribution and the stimulus distribution match.  

In the population case, activity from multiple cells can be thought of as a point in a high 
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dimensional “neural activity space”; postulated to be a linear space in which dimensions 

correspond to the activity of individual cells.  This “extra room” allows for more complex 

interpretations of the modulations in neural activity due to changes in stimulus variables, leading 

to ideas such as mixed selectivity (Fusi et al., 2016; Rigotti et al., 2013).  Purely statistical 

models of population activity suffer from the curse of dimensionality, meaning that the data 

required to estimate model parameters grows exponentially with the number of neurons in the 

population. This places severe limits on the order of statistical correlations that can be adequately 

constrained by the available data (Fitzgerald et al., 2011; Ganguli & Sompolinsky, 2012; 

Sharpee, 2013). It may be that higher order correlations are not even necessary, as pairwise 

correlations can capture a surprising fraction of the variance (Barreiro et al., 2014; Leen & Shea-

Brown, 2015; Schneidman et al., 2006).  

Recent technological advances in electrophysiology allow for recording the activity of 

many neurons simultaneously.  In these large populations of cells, it is commonly found that a 

significant fraction of the variance in the activity across the population can be accounted for by 

far fewer dimensions than the total number of cells.  This leads to the slogan that neural activity 

is low-dimensional, and forms the motivation for a large class of models characterized as 

population dynamical models. The idea is that neural activity can be described as a noisy 

realization of a low-dimensional dynamical system.  Borrowing the concept of neural activity 

space from the preceding discussion, this dynamical system manifests as a lower-dimensional 

subset (a ‘submanifold’) of the higher-dimensional neural space (Cunningham & Yu, 2014; 

Gallego et al., 2017).  Again, the point of these models is to provide maps between neural 

activity and physical dimensions of the external world.  The purpose of the geometric description 

of neural activity is to again provide “extra room” to define and classify these maps.  Once 
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neural activity is cast into this high dimensional space, such maps may take the form of linear 

decoders or other functions operating on the trajectories of the dynamical system (Aghagolzadeh 

& Truccolo, 2014; Aoi et al., 2020; Mante et al., 2013; Vyas et al., 2020). 

More recent approaches combine the ideas of statistical and dynamical population models 

(Pandarinath et al., 2018; Yu et al., 2009).  The goal with these approaches is to account for the 

bulk modulations of neural population activity by using a low-dimensional dynamical system. 

On top of this dynamical model, a stochastic process introduces variability in such a way to 

capture the residual statistical relationships between neurons and between neurons and external 

variables.   

In all these cases, the point is to define a space to serve as the domain of some map 

between neural activity and external physical variables.  If such a map exists and adequately 

preserves the correlations between neural activity and external variables, then the neuron or 

population is said to represent the variable that is specified by the map.  Following the logic of 

indirect perception, these representations serve as intermediate steps between the computations 

that elaborate sensations into perceptions.   

Neuroscientists have found exquisite and robust examples of maps between neural 

activity and external variables (Hafting et al., 2005; Kim et al., 2019).  Nevertheless, the 

underlying logic of this avenue of investigation has structural issues that limit its ability to 

provide a complete understanding of the neural basis of perception.  

Most importantly, the maps sought by neuroscientists that define the representations are 

entities that exist only for the experimenter.  This is because only the experimenter has 

simultaneous access to the neural activity and the external physical variables necessary to define 

the map (Brette, 2018).  There is no way for the nervous system to know its own mapping. Such 
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maps may (and in fact do) exist, but the nervous system itself cannot make use of them.  This is 

also demonstrated by the nature of physical measurement underlying the physical variables that 

indirect perception postulates as the substrate of perception: in all cases, the value of a physical 

variable is established by bringing some other object (e.g. a ruler) in contact with the system 

under test, and the experimenter, who has access to both the system under test and the ruler, 

reads the correlation between the two.  The measurement of a physical variable requires an 

experimenter external to both system and ruler. Since the organism’s nervous system cannot 

serve the roles of ruler and observer at the same time, physical variables cannot be the substrate 

for perception. This demonstration does not contradict the existence of robust maps between 

neural activity and external physical variables, but shows that an understanding of the neural 

basis of perception cannot be built on representations of those variables and computations on 

these representations (Bickhard & Richie, 1983).  By postulating information that an animal 

cannot have access to, any understanding of perception based on the assumptions of indirect 

perception falls into contradiction in answering the question, “What in the environment 

constitutes information for the animal?”  To fix this, neuroscientists must carefully consider what 

information is available to the animal (Brette, 2013). 

Sensory systems neuroscience research  under the assumptions of direct perception is 

comparatively impoverished with respect to research under indirect approaches. Direct 

perception recognizes that since the animal is embedded in a continuous stream of interaction 

with the external world, the animal defines its environment and the environment defines the 

animal (Corris, 2020).  Since perception is the acquisition of knowledge about the environment, 

this implies that the knowledge about the environment consists of knowledge about regularities 

in the animal-environment interaction.  In contrast to indirect perception, these regularities, or 
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relationships, are directly available to the animal; hence the term direct perception. Such 

relationships are features of the animal environment interaction that remain stable or  invariant 

over periods of time.  These invariants lie at the level of the interaction between animal and 

environment, and do not necessarily correspond to features in the animal or environment 

considered separately.  A classic example is optic flow (Gibson, 2014).  When an animal is 

moving in a fixed direction, its visual experience consists of constantly changing patterns of light 

falling on the retina: there are no static features.  Nevertheless, there is an invariant structure in 

this continuous change.  The flow of patterns on the retina specifies a unique point in the visual 

field, and this point corresponds to the direction in which the animal is heading.  By detecting 

this optic flow, the animal in principle knows its heading exactly..  The flow is specified directly 

by the sensory information, and does not require elaborating this information into a 

representation of 3-dimensional space and then computing a heading vector from this 

representation.  

Direct perception claims that this example generalizes to more abstract relationships 

between the animal and environment. The set of all possible sensory/motor interactions is 

constrained by the natural laws of physics and specifies all of the knowledge an animal can know 

about its environment. Thus, the aim of research in sensory neuroscience under direct perception 

is to identify these relationships and the neural mechanisms for their detection. Because the 

relationships sought manifest invariant structure in the environment/animal interaction, one 

strategy for their identification is to search for invariants in neural activity.   

 

Neural invariants through Topology 
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Requiring that neural invariants be specified by information that is entirely internal to the 

animal places strong constraints on the forms they can take.  A powerful approach to this 

problem was put forward by Curto and Itskov (Curto & Itskov, 2008).  In their highly original 

work, they reasoned that in the hippocampal place cell system, the place fields that tiled a 

physical environment were analogous to the concept of open covers, a central concept in the 

mathematical field of topology.  This insight led directly to their definition of a novel method for 

capturing invariants in population spiking activity.  By interpreting temporal coactivation as 

instructions for constructing a mathematical object called a simplicial complex, they were able to 

show that the temporal coactivation structure in a population manifests topological invariants in 

this simplicial complex.  What’s more, this structure does not depend on any information outside 

of the animal, since it is defined by the relative spike times of neurons in the population.   

 Curto and Itskov showed that, in the case of simulated hippocampal place cell activity, 

the information contained in the simplicial complex was sufficient to reconstruct the physical 

environment the simulated animal explored. This powerful result opened up the possibility of 

relating concepts from indirect and direct perception through neural physiology. From the direct 

perception side, the simplicial complexes can be thought of as manifestations of relationships 

between the receptive fields of individual neurons.  From the direct perception side, the 

simplicial complex can be thought of as manifestations of network constraints that produce 

specific temporal coactivation patterns through the dynamic interaction between the animal and 

its environment.  By expressing both sides in a commensurate mathematical language, the Curto-

Itskov construction provides a point of contact between the disparate approaches to perception, 

and allows for the relative merits of each approach to be weighed empirically.  
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While interesting in its own right, their original work was restricted to a simulated case, 

namely, 2-dimensional flat physical environments. In this case the relevant spatial variables and 

structure are known precisely and are analytically tractable.  One of the advantages of the Curto-

Itskov construction is that it provides a way to define an abstract “sensory space” when an 

appropriate space is unknown a priori. A sensory space is defined by the relevant features 

(dimensions) along which variation produces perceptible changes, and the relations between 

these features (their geometry).  Receptive field techniques find relevant sensory features, but 

their geometry is constrained by a priori specification of the receptive field model. Additionally, 

as mentioned previously, receptive fields are quantities external to the animal. The Curto-Itskov 

approach reconstructs the system of relationships between features (through the topology of the 

simplicial complex) directly from neural activity, without a priori assumptions on the geometry, 

but does not associate these relata with stimulus features.  If the geometry defined by the 

receptive fields and by the simplicial complex correspond, it shows that the receptive fields are 

not necessary, because every question one could ask about the receptive field features that is 

meaningful for the animal is contained in the system of relationships recovered by the simplicial 

complex.  

The central insight of their original paper, that topological (i.e. relational) structure in 

spaces of natural stimuli is present in the combinatorial structure of neural population activity, 

should apply to any sensory system. It is the central aim of this thesis to show that the ideas of 

Curto-Itskov (2008) are applicable to higher-order sensory systems and provide valuable insight 

into the neural underpinnings of higher order perception.  

To accomplish this, the bulk of this thesis rests on two projects.  The first is a 

demonstration that the abstract sensory space defined by the topology of the simplicial complex 
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associated to population spiking activity contains invariants that are relevant to behavior.  The 

second is a demonstration that, when receptive fields of higher order sensory neurons are 

definable, the interpretation of the simplicial complex as manifesting relationships between 

receptive fields is appropriate.  Similar to the original Curto and Itskov work, this is 

demonstrated through reconstructions of natural stimuli, and showing that the metric 

relationships that enable these reconstructions are obtainable directly from the population.   

 

Songbird auditory system 

The specific perceptual system studied in this thesis is the songbird auditory system.  The 

European starling (Sturnus vulgars) is a species of songbird that, like other songbirds, is a vocal 

learner that uses complex, extended acoustic signals (songs) as a part of its natural behavior 

(Eens, 1997). Starlings are capable of fine perceptual distinctions in their song ( null Gentner & 

Hulse, 1998; T. Q. Gentner & Hulse, 2000), indicating that their cortical auditory pathways are 

adapted for representing complex acoustic information. 

The anatomy of the songbird auditory systems shares several analogies with mammalian 

auditory cortices.  In particular, the system is arranged hierarchically.  In the songbird, auditory 

input arrives at the forebrain in a region called Field L (Vates et al., 1996).  Regions NCM and 

CMM/CLM receive projections from field L and are anatomically higher order sensory regions, 

analogous to the superior temporal gyrus in mammals (Bolhuis et al., 2010).  This 

characterization is supported by their functional properties.  In particular, NCM is known to be 

involved in song memory, song recognition, and learning (Bailey et al., 2002; Chew et al., 1996; 

George et al., 2008; Thompson & Gentner, 2010) 
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Due to its anatomical relationships and functional properties, NCM is a prime target for 

identifying neural mechanisms underlying the perception of higher-order features in natural 

acoustic signals.  

 The songbird auditory system is also appealing for contrasting indirect and direct 

perception.  Acoustic signals are, by nature, temporally extended.  There is no acoustic analog of 

a static image, a commonly used idealization in vision research upon which many results 

favoring indirect perception rest.  Perceptually relevant acoustic modulations happen at multiple 

timescales (Narayan et al., 2006).  Furthermore, auditory responses are often seen to be 

temporally precise (Sen et al., 2001; Wehr & Zador, 2003). This challenges indirect approaches, 

because for these modulations to affect behavior, the neural dynamics underlying this perception 

must occur on similar timescales.  This places constraints on algorithmic processes that are 

postulated to produce these perceptions.  

 

Polychronization 

The two main chapters of this thesis show that neural activity is structured at the 

population level.  This structure must emerge from the physiological structure of the network 

that produces this activity.  Currently, starlings lack comparable genetic and molecular 

techniques for teasing apart fine detail in the structure of the avian connectome. This limits the 

amount that can be known concerning the biophysics that produces the organized population 

activity patterns seen in these studies.  Nevertheless, judicious theoretical considerations 

combined with what is known about avian networks yields promising hypotheses about the 

emergence of structure population activity.  The final chapter of this thesis describes a 
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mathematical approach to understanding the phenomenon of polychronization in spiking 

networks.   

Polychronization (Izhikevich, 2006) is the appearance of self-reinforcing time-locked but 

asynchronous patterns of spiking activity distributed across a neural population.  The 

phenomenon emerges from two fundamental observations of cortical networks. First, for most 

cortical cells, individual presynaptic spikes are not sufficient to trigger postsynaptic action 

potentials in-vivo. However, fine temporal coincidences in presynpatic input can significantly 

modulate postsynaptic spiking (Rossant et al., 2011). Despite the observation of significant 

variability in neural responses (Shadlen & Newsome, 1994; Softky & Koch, 1993), neural spike 

generation under physiological conditions is remarkably temporally precise (Mainen & 

Sejnowski, 1995), especially in systems where the relevant temporal modulations occur on fast 

timescales (Bair & Koch, 1996; Bale et al., 2015; Kayser et al., 2010; Mackevicius et al., 2012; 

Reinagel & Reid, 2002). Second, there is a non-zero temporal propagation delay along axons, 

even when presynaptic and postsynaptic partners are anatomically located in the same brain 

region (Egger et al., 2019; Ferraina et al., 2002; Swadlow, 1990).  What’s more, this delay is 

heterogeneous and varies between presynaptic partners of a given postsynaptic neuron.  The 

effect of this delay is to force temporal coincidence to be a relative notion that depends on the 

neuron. For example, two spikes may arrive coincidentally to postysnaptic neuron A but arrive 

with a temporal offset to neuron B, due to the heterogeneous delays.  Spike patterns that conform 

to these temporal offsets form self-reinforcing patterns of activity, called polychronous groups. 

Because of their discreteness, these groups have been discussed as a substrate for neural 

computation (Brette, 2015; Izhikevich, 2006).   
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Polychronization requires few biological commitments beyond long-established and 

repeatable experimental observations, and so is an eminently plausible component of neural 

computation. Recently, next-to-direct evidence for polychronization was found in the avian song 

production pathway (Egger et al., 2019).  Furthermore, the results of the two main studies in this 

thesis square nicely with a view of neural population activity based on polychronization, because 

temporally-precise, information-containing distributed patterns of spiking activity are central to 

both these studies and the concept of polychronization. Thus, polychronization is a promising 

approach to relate structure population activity to the biophysics of the spiking network.   

One of the advantages of polychronization as a mechanism for neural computation is that 

relatively small networks have the potential to produce exponentially large numbers of 

polychronous groups.  This is advantageous for computation but makes systematic study of 

polychronization difficult.  The final chapter of this thesis develops a mathematical, 

compositional approach to polychronization describing how larger polychronous groups are built 

from smaller polychronous groups. This provides a tentative step in the theory of 

polychronization beyond the brute force approaches for studying polychronization in spiking 

networks (Chrol-Cannon et al., 2017; Hereld et al., 2014) to quantitative theories linking network 

structure and neural topology.  

 

This thesis 

Taken together, the chapters of this thesis demonstrate that the biological spiking 

networks that underlie sensory perception organize their activity into temporal patterns at the 

population level.  This organization is not arbitrary, but manifests specific topological and 

geometric structure that coincides with structure in the outside world.  This provides a 
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mechanism for the direct representation of stimulus structure by spiking networks, without the 

conceptual commitments of indirect perception and their associated limitations.  Along the way, 

several new techniques are introduced for analyzing population spiking activity.  The first is a 

new similarity measure for population spike trains based on the similarity of their associated 

simplicial complexes.  This measure takes into account the temporal organization of activity 

across the whole population and across time. The second is a technique for reconstructing 

acoustic spectrograms from neural activity. Unlike previous methods for reconstructing 

spectrographic stimuli, this method does not require knowledge of the stimulus autocorrelation 

(Mesgarani et al., 2009).  The final chapter of this thesis introduces a new mathematical 

description of polychronization that centers on the compositional nature of polychronous groups.  

This connects with the previous chapters by providing a route to a plausible explanation of the 

origin of the temporal patterns characterized by the first two studies.   
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Chapter 2 – Spike Train Coactivity Encodes Learned Natural Stimulus Invariances in 

Songbird Auditory Cortex 

Abstract 

The capacity for sensory systems to encode relevant information that is invariant to many 

stimulus changes is central to normal, real-world, cognitive function. This invariance is thought 

to be reflected in the complex spatiotemporal activity patterns of neural populations, but our 

understanding of population-level representational invariance remains coarse. Applied topology 

is a promising tool to discover invariant structure in large datasets. Here, we use topological 

techniques to characterize and compare the spatiotemporal pattern of coactive spiking within 

populations of simultaneously recorded neurons in the secondary auditory region NCM of 

European starlings (Sturnus vulgaris). We show that the pattern of population spike train 

coactivity carries stimulus specific structure that is not reducible to that of individual neurons. 

We then introduce a topology-based similarity measure for population coactivity that is sensitive 

to invariant stimulus structure and show that this measure captures invariant neural 

representations tied to the learned relationships between natural vocalizations. This demonstrates 

one mechanism whereby emergent stimulus properties can be encoded in population activity and 

shows the potential of applied topology for understanding invariant representations in neural 

populations. 

 

Significance Statement 

Information in neural populations is carried by the temporal patterns of spikes.  We 

applied novel mathematical tools from the field of algebraic topology to quantify the structure of 

these temporal patterns. We found that in a secondary auditory region of a songbird, these 
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patterns reflected invariant information about a learned stimulus relationship. These results 

demonstrate that topology provides a novel approach for characterizing neural responses that is 

sensitive to invariant relationships that are critical for the perception of natural stimuli. 

Introduction 

Functional sensory systems must express a degree of representational invariance in order 

to convey relationships or abstract properties, such as category membership, between otherwise 

distinguishable stimuli. At the neural level, invariant representations may manifest as robustness 

to “noise”, or consistency across trials or learned stimuli in a single animal, or across animals. 

For high-dimensional natural signals in particular, whose representation is distributed, invariant 

representations likely involve the coordinated spiking activity of neuronal populations across 

time. The nature of this coordination and how it supports invariance is an important open 

question in neuroscience. 

Most current methods for quantifying neuronal population structure rely on converting 

spiking activity into a vector of instantaneous firing rates (Cunningham et al., 2009; Churchland 

et al., 2012; Gallego et al., 2018).  Over time, these vectors trace out a path in a high-dimensional 

space. The dynamics of this path can be correlated with simultaneous information about the 

stimulus or behavior. However, these methods require averaging activity over time or space to 

overcome putative noise in single neuron firing rates. This is problematic for populations that 

must represent intrinsically time-varying objects, such as vocal communication signals, on fast 

time scales. Auditory populations that do so often exhibit lifetime-sparse firing, sometimes 

complicating the estimation of instantaneous firing rates. Thus, while firing rate vectors may be 

decodable in some cases (Ince et al., 2013; Rigotti et al., 2013), they belie the near instantaneous 

and continuous nature of natural perception. 
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 Alternatively, information may be carried in patterns of coincident spiking, or a 

“coactiviation code” (Curto and Itskov, 2008; Brette, 2012).  Curto and Itskov developed an 

algorithm for converting neural coactivity into a kind of topological space called a simplicial 

complex (Curto and Itskov, 2008). The spatial structure of this complex is determined by the 

relative timing of spikes in a population. Their simulations showed that invariant topological 

measures of the spike-derived simplicial complex matched several measures of the space of 

stimuli driving the neural response. This powerful property allowed them to reconstruct some 

stimulus space properties solely from the population activity without having to correlate physical 

positions to population firing rates, i.e. compute receptive fields. To our knowledge, this 

topological approach has not been used to examine the invariant properties of the temporal 

coactivation patterns of in-vivo sensory system responses.  

Here, we apply the Curto-Itskov construction to extracellular responses from the caudal 

medial neostriatum (NCM), a secondary auditory cortical region, in European starlings, a species 

of songbird. Starlings adeptly learn complex acoustic signals, and provide an important model 

for the neural basis of vocal learning and perception (Kiggins et al., 2012). The NCM, an 

auditory forebrain region analogous to secondary auditory cortex in mammals (Karten, 1967; 

Vates et al., 1996; Wang et al., 2010), is involved in processing complex behaviorally relevant 

acoustic signals (birdsongs) (Sen et al., 2001; Grace et al., 2003; Thompson and Gentner, 2010). 

NCM neurons respond selectively to subsets of conspecific songs (Bailey et al., 2002; De Groof 

et al., 2013), and single neuron responses display complex receptive fields (Theunissen et al., 

2000; Kozlov and Gentner, 2016). How the responses of single NCM neurons combine to 

represent invariant structure from natural vocal signals at the population level remains unknown. 

We hypothesized that invariant song representations in NCM are carried in the coactivation 
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pattern of spikes in the population, and that these patterns manifest as a topologically invariant 

structure. Our results support this hypothesis. We show that the coactivity-based topology of 

NCM neural activity is non-trivial and carries stimulus specific information. Using a novel 

mathematical approach to compare simplicial complexes, we find evidence that temporal 

coactivity patterns in NCM represent both stimulus identity and learned relationships between 

stimuli. We suggest that understanding the topology of sensory-driven neural population 

coactivity offers novel insight into the nature of how invariant representations are constructed 

from complex natural signals by neural populations. 

 

Materials and Methods 

Lead Contact and Materials Availability 

Requests for resources, reagents, and further information is available from the Lead 

Contact, Timothy Gentner (tgentner@ucsd.edu). This study did not generate new unique 

reagents. 

 

Experimental Model and Subject Details 

All protocols were approved by the UC San Diego IACUC. 

Subjects 

Four birds were used in the study, identified as B1083, B1056, B1235, and B1075. All 

birds were wild-caught in southern California and housed communally in large flight aviaries 

prior to training and physiological testing. During behavioral training, birds were housed in 

isolation along with a custom operant apparatus in sound-attenuation chambers (Acoustic 

Systems, Austin, TX) and maintained on a light schedule that followed local sunrise and sunset 
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times. Birds had unrestricted access to water at all times. During behavioral training, birds 

received all food (chick chow) through the operant apparatus, contingent on task performance. 

All subjects were at least one year of age or older at the start of the experiment. We did not 

control for the sex of the subjects. 

Method Details 

Stimuli 

Starlings (both male and female) produce long, spectro-temporally rich, and 

individualized songs composed of repeating, shorter acoustic segments known as ‘motifs’ that 

are learned over the bird’s lifespan. Motifs are on the order of 0.5 to 1.5 seconds in duration. In 

these experiments, a library of 16 six-second long “pseudo-songs” were used as stimuli. Each 

pseudo-song was constructed from six one-second-long motifs manually extracted from a larger 

library of natural starling song produced by several singers. The first motif of each pseudo-song 

was an introductory whistle motif, as commonly occurs in natural starling songs. The same 

whistle was used for all 16 pseudo-songs. After the introductory whistle, all motifs were unique 

to one pseudo-song (i.e none of the other motifs occurred in more than one song). The amplitude 

of each pseudo-song was normalized to 65 dB SPL. 

Behavioral Training 

We trained four birds on a two-alternative forced-choice task to recognize four 

naturalistic pseudo-song stimuli, following previously described operant conditioning procedures 

(Knudsen and Gentner, 2013). Briefly, the operant apparatus afforded access to three separate 

response ports. Subjects learned to peck at the center response port to trigger the playback of one 

of four pseudo-songs associated with two different responses: a peck to the left response port or a 

peck to the right response port. Pecking at the left response port following the presentation of 
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two songs, or at the right response port following the other two songs, allowed for brief (1-2 sec) 

access to a food hopper. Incorrect responses – pecking the response port not associated a given 

song – resulted in a short time out during which the house light was extinguished and the bird 

could not feed from the hopper. The twelve remaining pseudo-songs were never presented during 

operant training for that bird. Assignment of songs for behavioral training was counterbalanced 

across subjects. The accuracy of the birds over the last 500 trials prior to neural recording was 

B1083: 86.2%, B1056: 95.4%, B1235: 97.6%, B1075: 91.2%. All birds exceeded 90% accuracy 

during training. Acquisition of the behavior was fast; the number of 500 trial blocks required to 

first exceed 90% accuracy was B1083: 30, B1056: 14, B1235: 5, B1075: 13.  

Electrophysiology 

Once trained, we prepared the birds for physiological extracellular recording from caudo-

medial nidopallium (NCM). We anesthetized birds (20% Urethane, 7 ml/kg IM), affixed a metal 

pin to their skull with dental cement, removed an approximately 1mm square window from the 

top layer of skull, and placed a small craniotomy dorsal to NCM. We inserted a 16- or 32-

channel silicon microelectrode (NeuroNexus Technologies, Ann Arbor, MI) through the 

craniotomy into the NCM of the head-fixed bird positioned on a foam couch within a sound 

attenuation chamber (Acoustic Systems). Auditory stimuli were presented from a speaker 

mounted ~20 cm above the center of the bird’s head, at a mean level of 60 dB SPL measured at 

20 cm. The microelectrode was lowered until all recording sites were within NCM, and then 

allowed to sit for approximately 15 minutes to allow any tissue compression that might have 

occurred during insertion to relax and stabilize before stimulus presentations began. Auditory 

activity was confirmed by exposing the birds to non-task-related sounds and observing sound 

evoked responses in the raw voltage signal on one or more channels. The 16 pseudo-song stimuli 
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in the block were presented pseudo-randomly until a total of 20 repetitions for each stimulus. For 

B1083, after the completion of the first block, the electrode was driven deeper into NCM by a 

distance greater than the electrode length, to obtain another block from a disjoint population. 

Raw voltages recorded from each microelectrode site were buffered and amplified (20X gain) 

through a headstage (TBSI, Durham, NC), bandpass filtered between 300 Hz and 5 kHz and 

amplified (AM-systems model 3600, Sequim, WA) and sampled digitally at 20 kHz (16 bit; CED 

model 1401, Cambridge, UK) via Spike2 software (CED). We saved the full waveforms for 

offline analysis.   

Experimental Design and Statistical Analysis 

Spike Sorting 

Extracellular waveforms were spike sorted offline using the Phy spike sorting framework 

(Rossant et al., 2016). After automatic clustering, the sort was completed manually using the 

KwikGUI interface. Clusters with large signal-to-noise ratio and less than 1% refractory period 

violations (taken to be 1 ms) were labelled as “Good” clusters and included in the analysis. 

Because the analyses are meant to quantify population level structure, sorting priority was given 

to extracting as many neural signals as possible. Clusters identified automatically were mostly 

kept separate unless obvious duplicates were observed. Duplicate clusters were defined by 

overlapping distributions in PCA space, similar waveform shape, and cross-correlations that 

respected refractory periods. Despite these measures, the set of clusters labelled “Good” are 

likely to contain multi-unit activity as well as single units.  

Data Processing 

Data processing began by converting the neural population activity on each trial into an n 

x m matrix comprising all the spikes across all the isolated clusters and binned into 10 ms 
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windows with a 5 ms overlap between windows. We used the Perseus persistent homology 

software for computing Betti numbers from simplicial complexes (Mischaikow and Nanda, 

2013). For computing samples from the simplicial configuration model, we used the code 

described in (Young et al., 2017). All other computations were performed using custom-written 

Python and C code available at: http://github.com/theilmbh/NeuralTDA 

Mathematical Background 

Outside of neuroscience, invariance has been the subject of intense mathematical 

investigation. In particular, the mathematical field of topology is dedicated to studying the 

properties of arbitrary spaces that are invariant to different classes of transformations. This 

research has produced a wealth of techniques and methods for defining and quantifying invariant 

structures.  Recently, these techniques have been increasingly applied to the problem of finding 

invariant structure in large datasets. Topology takes a global point of view, and the “quantities” 

of interest are entire spaces, rather than single numerical measures.  By converting neural 

population activity into a topological space instead of reducing it to a series of numerical 

measures, we gain access to the library of techniques topology offers for characterizing invariant 

structure.  

Here, we introduce the basics of the mathematics used for our analysis. More thorough 

introductions are available elsewhere (Hatcher, 2002), including for the many applications of 

algebraic topology (Ghrist, 2014). Our analyses work by constructing mathematical objects 

known as simplicial complexes. Simplicial complexes are topological spaces that are built from 

discrete building blocks known as simplexes. For each dimension, there is only one prototype 

simplex. For example, 0-dimensional simplexes are points, 1-dimensional simplexes are line 

segments, and 2-dimensional simplexes are triangles. Simplexes exist in every dimension, 
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including dimensions greater than 3 where visualization is not possible. For every simplex of 

dimension d, there is a collection of d-1 simplexes called faces. Consider the tetrahedron, which 

is the prototype 3-dimensional simplex (or 3-simplex). The faces of the tetrahedron are the 4 

triangles, which themselves are 2-simplexes. The “faces” of the triangles are the 6 edges, which 

are 1-simplexes, and so on.  

Simplicial complexes are built by “joining” simplexes along common faces. That 

information is carried through the boundary operators, which are linear maps encoding which d-

simplexes are attached to which (d-1)-simplexes. Given a simplicial complex, we construct a 

series of vector spaces, one for each dimension of simplex in the complex. These vector spaces 

are called “chain groups.” The basis vectors of these vector spaces are taken to be, formally, the 

simplexes in the various dimensions. For example, a graph has a chain group in dimension 0 

consisting of all formal linear combinations of vertices, and a chain group in dimension 1 

consisting of all formal linear combinations of edges. The boundary maps are linear maps 

(matrices) between chain groups of adjacent dimensions, mapping the dimension d chain group 

to the d-1 chain group. These matrices contain all the structure of the simplicial complex, which 

allows for all the computations described in this work to be performed using the standard, highly 

optimized numerical linear algebra routines available in scientific programming packages like 

SciPy. 

Constructing Simplicial Complexes for Neural Data 

To construct the simplicial complex associated to a population spike train, we follow 

methods similar to those developed by Curto and Itskov (Curto and Itskov, 2008). For each 

presentation of a stimulus, the neural response was divided into time bins of width dt and a 

percentage overlap between adjacent bins, both free parameters for the analysis. Unless 
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otherwise noted, for all analyses, dt was 10 ms with 50% overlap, to preserve continuity of the 

spike trains. Each spike in the time-period was assigned to its associated time bins. The result is 

an N_cells x N_bins x N_trials multidimensional array D, representing the population activity, 

where each element is a spike count in the time window dt. The spike counts were then divided 

by the window width to determine a “firing rate” for that cell in that time bin. The time-average 

was taken to yield an N_cells x N_trials matrix of average instantaneous firing rates for each cell 

for each trial. Then, the multidimensional array D was thresholded by determining which bins 

had a firing rate greater than some threshold value times the average firing rate. This yielded an 

N_cells x N_bins x N_trials binary array B that represents significantly active cells. Unless 

otherwise noted, the threshold value of 4 times the average firing rate of the unit was used. Since 

the average firing rate of the units was low, the threshold value did not make a significant impact 

on the results.  

For each trial and for each time bin in B, the N_cell-long binary vector V was used to 

create a list of cells that were active in that time bin. This was repeated across all time bins to 

create a list of “cell groups” active during the trial, much like the cell groups defined by Curto 

and Itskov (Curto and Itskov, 2008). This list of cell groups was taken to define the maximal 

simplexes for the simplicial complex. Using algorithms derived from published work (Kaczynski 

et al., 2006) this list of cell groups was turned into a list of lists of basis vectors for the chain 

complex. The n-th sublist represents the chain complex basis vectors corresponding to the n-

dimensional simplexes in the simplicial complex. We also computed the matrices that represent 

the boundary operators in the chain complex.  

Betti Curves 
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 Homology is one of the most basic topological invariants one can use to describe a 

topological space. Loosely speaking, homology counts the number of n-dimensional holes in the 

space. These holes are described purely algebraically by computing how n-dimensional cycles 

(such as a circle) are not the boundary of an n+1-dimensional simplex. For each dimension n, the 

number of such holes is called the nth Betti number. The reason that Betti numbers are a useful 

characterization of the topological spaces we construct is that any two topological spaces which 

differ in their Betti numbers cannot be topologically equivalent. Furthermore, topological holes 

interpreted neurally represent “gaps” in the coactivation pattern (which neurons do not fire 

together) and thus carry information about how the population activity is structured. We 

summarized the topology of neurally derived simplicial complexes by computing these Betti 

numbers across time to yield Betti curves.  

Figure 2.1d illustrates the temporal filtration. From the start of the stimulus, cell groups 

from each time bin are added to the growing simplicial complex.  The Betti numbers for the 

entire complex are computed to yield the value of the Betti curve for that bin.  Then, the next bin 

is added, and the Betti  numbers are recomputed.  Simplicial complexes were fed into the Perseus 

persistent homology program (Mischaikow and Nanda, 2013; Nanda, 2013), which computed the 

sequence of Betti numbers in the evolving simplicial complex. In the language of applied 

topology, we computed the homology of the filtered simplicial complex using time as the 

filtration parameter (Giusti et al., 2016). Betti curves were computed for each dimension and for 

each trial of a given stimulus. Because the Betti numbers are discrete, we interpolated the output 

from Perseus using step functions. This allowed us to average the Betti curves across trials. We 

varied the time bin width dt between 5-250ms and observed that the shape of the Betti curves 

was consistent for values of dt between 5-50ms. For values of dt longer than 50ms, the Betti 
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curves looked like low-pass filtered versions of the small-dt curves. Varying the percentage 

overlap from 0 to 50% did not appear to significantly alter the Betti curves.  

The Betti curves reflect the accumulated effects of moment-to-moment spatiotemporal 

structure in the population activity. To serve as a control, we used various shuffling procedures 

to break this structure. We computed “fully shuffled” Betti curves by taking the neural response 

matrix for each trial and shuffling each row independently across columns. Since each row 

corresponds to a cell’s response, this approach shuffles each cell’s response independently across 

trials and across cells. The effect is to break the temporal correlations between cells while 

preserving the total number of spikes from a given cell in a given trial. We computed trial-

shuffled Betti curves by employing a similar shuffling procedure but instead of shuffling a cell’s 

response across time independently for each trial and each cell, we shuffled each response across 

trials independently for each cell and each time bin.  

Spatiotemporal structure in population responses to stimuli reflects two kinds of 

correlation. The first is correlation between individual cell spike trains and individual stimuli. 

We call this the stimulus specificity of single unit responses. The other kind of correlation is the 

set of n-wise correlations between neurons on a single trial across time (sometimes referred to as 

the noise correlation). The fully shuffled condition destroys both these forms of correlation, by 

assigning different single unit spike trains, and therefore a random n-wise correlation structure, 

to each neuron on each presentation of each stimulus. To dissociate these two correlation 

sources, we created an additional shuffle of the population data, termed the “within-stimulus 

mask shuffle”, in which each stimulus is associated with a unique time bin-to-time bin 

permutation mask. We then shuffle the spiking response of each neuron in time individually and 

independently within a single trial for each stimulus, applying the same bin-to-bin permutation to 
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all trials of that same stimulus. This creates a new, independent, stimulus-specific response for 

each neuron, and replaces the empirical n-wise population correlations with a random pattern of 

co-activity that repeats across repetitions of each stimulus. 

Stimulus Specificity 

 We analyzed the stimulus specificity of the empirical and shuffled Betti curves by first 

computing the distribution of the correlations between the Betti curves of pairs of trials. Then we 

compared the distributions of correlations from a pair of trials within a single stimulus to 

correlations from pairs of trials between different stimuli. The significance of these differences 

was computed using a linear mixed effects model (Lindstrom and Bates, 1988). The model 

predicted the correlation between Betti curves on pairs of trials treating the within-stimulus 

versus between-stimulus distinction as a random effect and treating the average firing rate and an 

interaction of firing rate and pair type as fixed effects. We included firing rate effects since the 

shuffles preserve average firing rate but destroy precise temporal correlations.  

Simplicial Configuration Model 

To test whether the topology of the neurally-derived simplicial complexes is likely to be 

seen in a random simplicial complex, we employed the simplicial configuration model (Young et 

al., 2017). Due to the computational constraints of the configuration model, for each stimulus, 

we averaged the neural activity over trials to yield an average population spike train. The 

simplicial complex for this spike train was computed and seeded the simplicial configuration 

model software (Young et al., 2017). This algorithm produces a Markov chain that yields 

samples from the uniform distribution over all simplicial complexes with local connectivity 

structure identical to the seed complex derived from neural activity. For each sample, the Betti 

numbers were computed using Perseus. The distribution of these Betti numbers serves as a null 
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distribution against which Betti numbers derived from the empirical data can be compared. We 

interpret data having Betti numbers that fall well outside the null distribution as containing non-

random topological structure. To quantify how far outside the null distribution an observed Betti 

number falls, we calculated empirical p-values using the formula(Davison and Hinkley, 1997)	 

" = $%	∑(()*(+)
-%$

(1) 

Where bi represents the Betti number for the i-th sample from the simplicial configuration model, 

N is the number of samples from the simplicial configuration model, and be is the empirically 

observed Betti number.  

Simplicial Laplacian 

We generalized the methods of (De Domenico and Biamonte, 2016) to define 

information-theoretic quantities related to simplicial complexes. Equipped with the boundary 

operator matrices /0, the simplicial Laplacians (Horak and Jost, 2013) were computed as: 

10 = 	/0∗/0 +	/0%$/0%$∗ 	 (2) 

 

where * indicates the adjoint, which in these analyses means the matrix transpose. Given a 

simplicial Laplacian 15, the related density matrix was computed as: 

65 = 	
789:;

<=	789:;	
(3) 

 

where beta is a free parameter. Given a density matrix expressed in its eigen-basis, the 

eigenvalues represent the probability distribution over eigenstates with maximum entropy under 

the Hamiltonian given by the Laplacian. We can define the Kullback-Leibler (KL) divergence 

between any two such density matrices, 6	and ?, by first diagonalizing both 6	and ? and then 

sorting each vector of eigenvalues by magnitude. The KL divergence is then defined by: 
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AB:(6, ?) =C60(log60 −	 log?0)
0

(4)	 

Where 60 is the i-th eigenvalue. The Jensen-Shannon Divergence was defined using: 

I =	
6 + 	?
2

(5) 

 

AKL(6, ?) =
1
2
MAB:(6,I) + AB:(?,I)N (6)	

	

The advantage of sorting the eigenvalues is that the divergence becomes invariant to the labels 

assigned to individual neurons. This is desirable because these measures should depend only the 

neural activity and not the specific labels assigned to neurons, analogous to how different maps 

of the world describe the same geography with different coordinates. This definition of JS and 

KL divergence ignores the eigenvectors of rho and sigma. Indeed, rho and sigma may not be 

simultaneously diagonalizable (or even of the same dimension). Rectifying these issues requires 

a choice in the definition of the metrics, which like any other metric is justified by its ultimate 

use. We explain our choices in the following paragraph. Regardless, the eigenspectra of rho and 

sigma do form discrete probability distributions, and the definitions of KL and JS divergence 

here agree with the usual definitions of these divergences on discrete probability distributions.  

One limitation in the naive generalization of the foregoing metrics to neural data is that 

they rely on the density matrices being square and of the same dimension. For real data, 

however, different stimuli or repetitions of the same stimulus often evoke different numbers of 

active neurons, giving rise to chain groups, boundary operators, and density matrices of different 

dimension. To address this, given two Laplacians of different dimensions, we expanded the 

dimension of the smaller Laplacian by padding with zeros. An alternative approach is to collapse 
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the two simplicial complexes together along their common simplexes and derive “masked” 

boundary operators that only operate on the simplexes within the original, individual complexes, 

and then define the Laplacians using these masked boundary operators. Both the “zero-padding” 

and the “masking” approaches yielded similar results for our data sets. We report results from the 

computationally simpler method of zero-padding. In all analyses, the simplicial Laplacian was 

computed from the final simplicial complex constructed from the population response to an 

entire trial. 

Beta Parameter. The free parameter, beta, that appears in the expression for the density 

matrix originates in statistical physics, where it is interpreted as “inverse temperature”, i.e. beta 

is proportional to 1 / temperature. The significance of beta in the context of network theory is 

actively under study (Nicolini et al., 2018). Here we interpret beta by noting that it acts to 

renormalize the Laplacian matrix, and by extension, the eigenvalues of the Laplacian. In this 

sense, beta acts as a “scale parameter” that sets the scale of the spectral features of interest. The 

eigenvalues of the Laplacian are always non-negative, and if beta is large, then large eigenvalues 

are significantly damped by the negative exponential. Heuristically, increasing beta decreases the 

proportion of larger eigenvalues that contribute to the quantities of interest. In our case, if beta is 

too large, too little of the spectrum will be relevant for the JS or KL divergences, and we 

reasoned the results would be less interpretable. To confirm this exponential damping, we 

computed the proportion of eigenvalues above a threshold of 1e-14 as beta varied from 0.1 to 

100. Generally, this proportion started decreasing from 100% with beta ≅ 1, to below 20% when 

beta > 10. We set beta = 1 in all of our analyses, but the main conclusions do not change as along 

as beta was below the upper bound of 10.  

Simulated Spiking Populations 
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We used synthetic spike trains to examine how well the proposed metrics reveal invariant 

properties between neural populations. For “target” spike trains, we simulated a population of 20 

Poisson spiking neurons for 1000 time-steps with a rate parameter selected from the set {0.01, 

0.02, 0.03, 0.04}. We generated “test” spike trains by choosing 50 rate parameters evenly in the 

range of [0.001, 0.1] and simulating 25 population spike trains for each rate. We computed the 

simplicial KL divergence between each test spike train and the target spike train, then computed 

the average divergence between the target and the model at the given rate parameter.  

We applied the same procedure to simulate heterogeneous Poisson populations, except 

that half of the neurons were simulated with rate parameter 0.02 and the other with 0.05. The 

assignment of neurons to rate-parameter subgroups was random. The above-described parameter 

sweep procedure was repeated over the two population rate parameters.  

Simulated Environments 

We simulated physical environments similarly to the environments used in Curto and 

Itskov’s original work(Curto and Itskov, 2008). We randomly placed 0 to 4 holes of radius 0.3 

meters inside a 2 x 2 m arena, ensuring hole centers did not overlap. We then randomly 

distributed 100 place fields of radius 0.2 meters in the environment using an algorithm that 

ensured that the environment was fully tiled. To model movement, we constructed a random 

walk trajectory simulating a 10-minute traverse of the environment sampled at 10 samples per 

second to ensure the whole arena was explored. We constructed spike trains by simulating 

Poisson spike trains at a constant rate for each neuron while the random walk trajectory was 

within the cell’s place field, and silent outside of it.  

 We constructed five different environments with each specified number of holes. For 

each environment, 10 random walks were simulated. The pairwise 1-JS divergence between pairs 
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of individual trials was computed by taking the simulated spike trains’ 1-Laplacians and 

computing the spectral JS divergence as defined above. We averaged the 1-JS divergences over 

all walks for each environment to yield the plot in Figure 2.5 panel a. Then, the JS divergences 

for each of the 25 environment pairs with given numbers of holes were averaged to yield the plot 

in Figure 2.5 panel b.  

In-vivo JS Divergences 

Data from trained, anesthetized birds was recorded and preprocessed to yield population 

spike trains as described earlier. The JS divergence analyses were restricted to the 4 learned 

stimuli and 4 other unfamiliar stimuli. For an arbitrary pair of responses from two separate 

stimulus presentations, the 1-Laplacian of each response was computed by first converting the 

neural data into a simplicial complex as described above, using a bin size of 10 ms with 5 ms 

overlaps. Then, the JS divergences between the 1-Laplacians were computed as described above. 

It is important to note that the JS divergences were computed using the final simplicial complex 

from each trial.  As a result, it may “miss” homological features that do not persist through the 

whole trial.  We do not consider this a limitation in the present study, since the final simplicial 

complex reflects the aggregate effects of temporal coactivations through the entire trial, and thus 

tells us something about the population response to the entire stimulus considered as a unit.  

Nevertheless, it will be valuable for future work to explore the properties of these features that 

may be missed by the current analysis.  

Correlation-based population response similarity 

As an alternative to the Simplicial Laplacian Spectral Entropy measure of population 

similarity, we also compute a correlation-based measure to quantify the trial-to-trial similarity in 

the response of a population, C(A,B),  where A and B are the responses of the same population 
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on different trials responding to either the same stimulus or to different stimuli. We first smooth 

the population spike trains with a gaussian kernel with a width of 10 ms, then compute the 

correlation coefficients between the spike train of a neuron in response A and the spike train 

from the same neuron in response B, then average across all the correlation coefficients to a yield 

a raw scalar estimate of similarity, C, between the two populations. We use 1-C in place of the 

raw correlation measure so that smaller values of both correlation and JS divergence indicated 

more similar spike trains, such that 1 - C = 0 when the response of every single neuron in the 

population for population response A is perfectly correlated with its corresponding response for 

population response B.  Comparing this similarity measure to the SLSE measures allows us to 

test whether physically dissimilar responses (in terms of the actual spike trains) may evince 

similar topologies. 

We also compute the distance between pairs of population responses using covariance 

matrices. For each trial, we calculated the pairwise covariance matrix between gaussian-

smoothed spike trains, again with a 10 ms window. This yields an Ncell x Ncell matrix for each 

trial in which each i,j entry is the temporal covariance between the smoothed spike trains from 

neurons i and j on that trial. We obtained a distance between pairs of trials by computing the 

Frobenius norm of the difference between each trial’s covariance matrix.  The distance matrix 

was normalized by its maximum value over all pairs of trials to yield a normalized distance 

measure. This measure places two trials close to each other if the second order (pair-wise) 

correlation structure in the population for response A is similar to the second order correlation 

structure for response B.  
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The correlation between population responses with relabeled neurons was obtained by 

shuffling the rows of the gaussian smoothed population response matrix and repeating the 

population correlation computation described above on the shuffled matrices. 

JS divergence and correlation measures were compared using the relative accuracy of 

logistic regressions. We fit logistic regressions to predict whether a pair of responses to different 

stimuli came from stimuli that belonged to either the same or different behaviorally trained class 

based on the value of either the JS divergence or the specific correlation measure of interest 

between the responses. Regressions were fit to a random subset of 80% of the data and tested on 

the remaining 20%. A total of 240 separate regressions were performed for each condition.  

We measured the similarity of topological structure across disjoint sub-populations by 

randomly splitting the full dataset from B1083 population 1 into two disjoint subgroups each 

with 50 neurons. Then we conducted an identical analysis to the logistic regression described in 

the preceding paragraph but using the JS divergence between responses from the two disjoint 

populations.  We repeated this 40 times with a different (randomly chosen) split of the original 

population.  We assessed the difference between the means of the accuracies of the regressions 

fit to the JS divergence or correlations with a gaussian GLM from the statsmodels python library 

with the type of measure (JS divergence / correlation) and the type of shuffle (shuffle / no 

shuffle) as regressors, and included an interaction term between the shuffle and measure. 

Linear Mixed Effects Model 

We used a linear mixed effects model to examine the stimulus specificity of the 

empirically derived Betti curves associated with each stimulus, and those derived from the 

various shuffled versions of the spiking responses. The regression models predicted the 

correlation between Betti curves in a given dimension between pairs of trials, as a function of 
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whether the pair came from two trials of a single stimulus or two trials of different stimuli. The 

model included population identity as a random effect. The model was implemented using 

MixedLM from the statsmodels python library. We included firing rate (and its interaction with 

stimuli) as a separate fixed effect in the model and exclude this from all reported effects on Betti 

curve correlations tied to stimulus specificity. Overall, the mean firing rate on a pair of trials 

tends to increase the strength of the correlation between Betti curves on those trials, in part 

because it tends to smooth over small moment-to-moment variations in a manner equivalent to 

computing simplicial complexes from spike trains quantized into larger time bins.  

Data and Code Availability 

Data is available upon request.  All of the custom code used for the topological analyses 

described here is available at https://github.com/theilmbh/NeuralTDA 

Results 

Stimulus Specific Topological Structure in Auditory Neural Populations 

 We first asked whether auditory stimulus-driven NCM population activity can be well-

described by its spike-based topological structure. We recorded song-evoked responses from 

five, distinct, large populations of neurons in the NCM of adult starlings (323 neurons total, 

distributed across 4 birds; B1083: 101, 95 neurons in two separate populations; B1056: 54; 

B1235: 40; B1075: 33). For each presentation of each song stimulus within each population, we 

re-represented the full population spike train as a simplicial complex, then computed the Betti 

curves (Methods) associated with each song stimulus. Each Betti curve describes structure in the 

population coactivity pattern across time. More specifically, each curve captures the evolution of 

the homology of the simplicial complex in a single dimension, as defined by the time-resolved 

spiking pattern across each neural population for a given stimulus (Figure 2.1). Visual inspection 
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of the trial-averaged Betti curves (Fig. 1e) suggests consistent stimulus-specific temporal 

dynamics in the homology of dimensions 0, 1, and 2. Although the simplicial complexes 

sometimes display three-dimensional homology (Fig.1e, bottom row), these are not consistent 

across birds or stimuli. We note that the trajectories of the Betti curves in dimensions 0-2 tended 

to overlap during the first motif for each stimulus, consistent with their stimulus specificity, as 

the first motif was the same for all songs. 

 Betti numbers provide one measure of topological properties present in the underlying 

neural population coactivity, and so can be interpreted as abstract proxies for structure. They also 

provide insight into more concrete aspects of the underlying population activity.  Betti 0 counts 

the number of connected components in the simplicial complex.  Thus for neural data, increasing 

Betti 0 suggests multiple independent subsets of neurons firing coincidently within a group but 

not across groups.  Higher dimensional Betti numbers, 1 to N, count the number of n-

dimensional ‘holes’ in the simplicial complex. For neural population coactivity patterns, the Betti 

n count corresponds loosely to the number of gaps (i.e., periods of simultaneous inactivity 

among neurons, or “missing” patterns of coactivity). As these gaps fill in, due to coincident 

activity, the corresponding Betti numbers may decrease. 
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Figure 2.1:  NCM population activity produces non-trivial topological features. (a) 
Spectrogram from a typical 6-second stimulus with motif boundaries marked with black dotted 
lines. (b) Spike raster from 100 units from region NCM during one trial of the presentation of the 
stimulus in (a). (c) Normalized average Betti curves from the population in (b) for the stimulus in 
(a). The values of the Betti numbers are normalized to their maximum during the stimulus 
presentation, to facilitate visualization of all dimensions on the same plot. The Betti curves are 
averaged over 20 presentations of the same stimulus. (d) Schematic of the temporal filtration.  
Beginning with the start of the stimulus, the elementary simplex from each time bin is added to 
the growing simplicial complex. At each time bin, the Betti numbers for the entire complex up to 
that point in time are computed.  Then, the next bin is added, and the values of the Bettis are 
recomputed. (e) Betti curves for Betti numbers 0-3 for all stimuli for all populations. Each color 
represents a different stimulus, and identical colors across panels represent the same stimulus. 
Shaded regions indicate standard error of the mean. Individual stimuli produce unique Betti 
curves.  Betti curves for different stimuli overlap during the first 1 second of the stimulus, 
consistent with the first 1 second of all stimuli being identical. 

 



 

 45 

To quantify stimulus specificity, we computed all the correlations between Betti curves 

from pairs of trials with the same stimulus and pairs of trials from different stimuli. We defined 

the population as being stimulus specific if the distribution of within-stimulus correlations is 

significantly larger (ie. closer to 1, more similar) than the distribution of between-stimulus 

correlations. By this measure, all Betti curves show significant stimulus specificity (linear mixed 

effects model, Z ≤ -4.083 p ≤ 4.45e-5 for all dimensions), with the coefficient significantly less 

than zero (Table 1), indicating that between-stimulus correlations are significantly lower than 

within-stimulus correlations. That is, the topology of auditory stimulus-driven population activity 

in NCM is stimulus specific. 
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Table 2.1: Stimulus Specificity of Empirical and Shuffled Betti Curves. A linear mixed-
effects model was used to compute the dependence of the Betti curve correlation on the type of 
trial pair (within stimulus or between stimuli). For all Betti numbers, the empirical curves show 
significant stimulus specificity, and this specificity is abolished by both fully shuffling the spikes 
and performing the within-stimulus mask shuffle (Methods). 

 

Data set Betti Number Coefficient Z P-Value 97.5% CI 

Empirical 0 -0.031 -4.083 4.45e-05 [-0.046, -0.016] 

Shuffled 0 -0.010 -1.275 0.202 [-0.024, 0.005] 

Within-Mask 0 -0.003 -0.33 0.741 [-0.017, 0.012] 

Empirical 1 -0.032 -5.571 2.53e-08 [-0.043, -0.021] 

Shuffled 1 0.000 0.303 0.762 [-0.003, 0.004] 

Within-Mask 1 0.002 1.432 0.152 [-0.001, 0.005] 

Empirical 2 -0.149 -15.603 6.96e-55 [-0.167, -0.130] 

Shuffled 2 -0.030 -2.993 0.003 [-0.050, -0.010] 

Within-Mask 2 -0.008 -0.857 0.391 [-0.027, 0.011] 
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To further characterize the stimulus specific dynamics of the Betti curves and examine 

the source of the stimulus specificity in the empirical population response, we compared the 

original Betti curves to those obtained after shuffling the spiking response of each neuron in time 

individually and independently, within each trial (Methods). This shuffle, which we call the full-

shuffle, preserves the total number of spikes and spike rate per trial, but destroys all the original 

spike-time coincidences between neurons in the population. Because the topological structure of 

the population depends on the spike-time coincidences, any stimulus specificity tied explicitly to 

the spike-time based topology (rather than the overall spike rate) should be abolished in the full-

shuffled data. This is turn should yield Betti curves that are more similar across different stimuli 

and birds compared to the original Betti curves. Figure 2.2 shows the Betti curves that result 

from the full-shuffle (in orange) for a single stimulus from each of the populations. In each 

dimension, the fully shuffled curves show a degeneration to a stereotypical trajectory across 

populations. The same pattern is observed for all other stimuli. We quantified this explicitly by 

again comparing correlations between Betti curves from pairs of trials within and between 

stimuli. For Betti 0 and 1, the shuffled curves were not stimulus specific (linear mixed effects 

model, p > 0.202). For Betti 2, some marginal stimulus specificity remained (linear mixed effects 

model, Z = -2.993, p = 0.003), but the magnitude of the specificity was significantly smaller than 

that for the empirical data (linear mixed effects model, Z=-21.24, p < 1e-13). Based on these 

results, we conclude that the topological structure of NCM population activity reveals stimulus 

specific coincident patterns of neuronal firing.  
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Figure 2.2: Shuffled Betti Curves. (a) Example empirical and shuffled population responses 
from an example trial. (b) The average Betti curve for dimensions 0-3 from an example stimulus 
is plotted for all populations. The empirically observed Betti curves (blue) are obtained from the 
raw neural data. Control Betti curves are computed from “fully shuffled” (orange) neural data in 
which the responses of individual cells are independently shuffled in time (Methods), or the 
same neural data with the single trial spike responses permuted by either a within-stimulus mask 
(green) or across trials (red). A different within-stimulus mask was generated for each stimulus, 
and the same mask was used for all trials of a given stimulus. 
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How is it that the temporal coactivity pattern of the population response, as measured by 

the topology, carries stimulus specific information? One possibility is that the population simply 

inherits specificity from single unit responses. Individual NCM neurons have complex receptive 

fields (Kozlov and Gentner, 2016) and their responses are likely to be stimulus specific 

(Thompson and Gentner, 2010). The collective responses of many such neurons is therefore also 

likely to be stimulus specific, but the specific pattern of coactivations among individual neurons 

that defines the topology may or may not be determined by chance. That is, the topology may 

reflect random coactivity between independent spike trains driven by individual stimuli (i.e., the 

stimulus specificity of single unit responses), and/or a unique non-random n-wise pattern of 

coactivity between neurons that is associated with a given stimulus, where n ranges from 2 to the 

number of recorded neurons. The full-shuffle destroys both these forms of co-activity by 

permuting single unit spike trains on each presentation of each stimulus, which in turn yields a 

unique n-wise coactivity structure on each trial. To further investigate these two possible sources 

of population co-activity structure, we created an additional shuffle of the original population 

data using a “shuffle mask” that describes how to permute the time bins for a given neuron on a 

single trial. We randomly generated a shuffle mask independently for each stimulus, and then 

applied the same mask to all trials from a single stimulus. This creates a new random correlation 

pattern between the spike trains of individual neurons and individual stimuli, and a random n-

wise co-activity pattern between individual neurons, that are both preserved across separate trials 

from the same stimulus. If the observed stimulus specific topologies emerge from a random 

alignment of spiking responses repeated across trials of the same stimulus, the mask-shuffled 

data should resemble an empirical response to a novel stimulus. If, however, the empirical n-
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wise correlation structure is privileged in some way, then the mask-shuffled data should 

resemble the full-shuffle responses.  

We recomputed the Betti curves for the within-stimulus mask-shuffled data. Figure 2.2 

shows the various shuffled Betti curves from an arbitrarily chosen stimulus for each population. 

Like the full-shuffle, the Betti curves for the mask-shuffled data do not appear to be stimulus 

specific. To test this, we again measured stimulus specificity by computing the distributions of 

correlations between pairs of Betti curves from trials with either the same or different stimuli. 

The mask-shuffled Betti curves did not show significant stimulus specificity (linear mixed 

effects model, P > 0.152 for all Betti numbers). Table 1 gives the results of the linear mixed 

effects model (Methods) that assesses the significance of stimulus specificity in the Betti curves 

from the within-stimulus mask shuffle. Figure 2.3 presents histograms of the Betti curve 

correlations for within-stimulus and between-stimulus pairs of trials, for both the empirical and 

shuffled data, for population B1083. The lack of stimulus specificity in both the full- and mask-

shuffled data supports the conclusion that stimulus evoked coactivity in NCM carries stimulus 

specific information that is not a trivial product of randomly aligned stimulus-specific single 

neuron responses.  
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Figure 2.3: Example Betti curve correlation distributions. Stimulus selectivity of the Betti 
curves is assessed by computing the distributions of the pairwise correlations between Betti 
curves on pairs of trials. Shown are distributions from bird B1083. The blue distributions come 
from trial pairs that belonged to the same stimulus. The orange distributions come from pairs that 
belong to different stimuli. The original, empirical distributions show significant differences, 
indicating stimulus selectivity of the Betti curves. The distributions computed from shuffled data 
show little difference among within or between stimulus pairs. The significance of the 
differences in these distributions was assessed using a linear mixed effects model.  Table 1 lists 
the significance for the empirical and shuffled conditions. 
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The differing shapes of the Betti curves for the empirical and both the full- and mask-

shuffled spike trains suggests that the NCM population activity is structured non-randomly at 

scales above the single neuron. To test this idea directly, we asked how likely it is that the 

observed topological structure in a given population might occur by chance. We constructed a 

null model for simplicial complexes that produces samples from the uniform distribution over all 

simplicial complexes that match the “local structure” of a given “seed” complex (Young et al., 

2017), and used this model as the basis to compare the final Betti numbers for each stimulus 

(Figure 2.4). For each bird, the majority of the stimuli showed responses with at least one Betti 

number significantly outside the null distribution (B1083: 8/8 stimuli, B1056: 8/8 stimuli, 

B1235: 8/8 stimuli, B1075: 7/8 stimuli). Thus, the stimulus specific topology in NCM population 

spiking is not produced by chance spike coincidences between neurons.  
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Figure 2.4: Most Betti numbers lie outside their null distributions. Each plot shows the null 
distribution of values of a given Betti number for a given stimulus and neural population 
generated by the simplicial configuration model (Methods). Black dashed lines denote the 
observed value of the Betti numbers in dimensions 1 and 2 at the end of the trial-averaged 
response to the indicated stimulus. Asterisks indicate the degree to which the dashed lines lie 
outside of the null distributions, interpreted as an empirical p-value (***: p < 0.01; **: p < 0.05; 
*: p < 0.1). 
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As noted, the topological analyses we detail differ in fundamental ways from traditional 

correlation-based measures of population co-activity. Nonetheless, it is helpful to understand our 

results within the context of classically defined noise correlations (i.e. the stimulus independent 

covariance in simultaneous firing rates between neurons). To do this, we again shuffled the 

empirical data, this time by permuting spikes across trials rather than time.  The Betti curves for 

these trial-shuffled data show similar trajectories compared to those for the empirical data 

(Figure 2.5), but with larger magnitudes. This suggests that the relative temporal dynamics of the 

co-activity pattern are governed largely by what would be referred to, classically, as the ‘signal 

correlation’, whereas the absolute number of “holes” in a given topological dimension is 

constrained by the ‘noise-correlation’. Recall that the magnitude of Betti n corresponds roughly 

to the number gaps in the population responses that are bounded by co-active cell groups of order 

n, and that as these gaps fill in, Betti n decreases.  In other words, noise correlations increase the 

numbers of co-active cell groups. Overall, both the signal and noise correlation contribute to the 

topological structure of coactivity on each trial. This is consistent with previous studies (Jeanne 

et al., 2013) that show NCM signal and noise correlations are not independent. 
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Figure 2.5: Trial Shuffled Betti Curves.  The red curves result from shuffling spikes across 
trials rather than across time.  Betti curves show similar trajectories but different magnitudes. A 
single stimulus from each population is shown, and this stimulus is different than that displayed 
in Figure 2.2.  
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Topological Tools for Comparing Population Spiking Activity 

Representing population spiking activity with a simplicial complex has the advantage of 

providing a single mathematical object that encodes the entirety of the spatiotemporal structure 

of the population response on a single trial. This entity is non-numerical, however, and so to 

facilitate numerical comparisons we sought to define a numerical measure of similarity between 

simplicial complexes. To do this, we generalized recent advances in network theory to define 

information-theoretic measures of simplicial complex structure and similarity. A detailed 

description of these measures is provided in the Methods; Table 2 gives the principle formulas in 

this analysis. We refer to this general approach of computing information theoretic quantities 

from simplicial complexes as Simplicial Laplacian Spectral Entropy (SLSE). 

Fitting Spiking Models Using Simplicial Laplacian Spectral Entropies 

The Kullback-Leibler divergence is often used as a cost function for statistical model 

fitting, in which one attempts to choose the parameters of a statistical model such that the model 

distribution is as close to the data distribution as possible. The Kullback-Leibler divergence can 

be defined to allow for this same sort of model fitting, but for graphs (De Domenico and 

Biamonte, 2016). We extended the Kullback-Leibler divergence to simplicial complexes 

(Methods) with the reasoning that it could be used similarly to fit the parameters of spiking 

neural network models. To test this reasoning, we began with a proof-of-concept: fitting the rate 

parameter of a simulated population of Poisson-spiking neurons. The population consisted of 20 

neurons each firing independently and with a rate parameter that was constant across the 

population. We simulated a single trial of 1000 time samples to serve as the “target” population 

spike train. We then performed a parameter sweep by simulating the population with a rate 

parameter that varied in some range. For each choice of rate parameter, 25 “test” trials from the 
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model were simulated and the 1-KL divergence between the “target” population spike train and 

each “test” trial population spike train was computed. The 1-KL divergences from each of the 25 

trials of the chosen parameter were averaged together. Figure 2.6a displays the 1-KL divergence 

as a function of the test rate parameter for four different models with different “target” rate 

parameters. The dotted lines indicate the true value of the rate parameter used to generate the 

target population spike train for each model, separated by color. For each model, the minimum of 

the KL divergence closely approximates the true value of the rate parameter. 
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Table 2.2: Summary of the main formulas for Simplicial Laplacian Spectral Entropy. 
Included are the names, formulas, and the most important properties of each quantity. The 
formulas should be taken as definitions. 
 

Quantity Formula Major Property 

Simplicial Laplacian 10 = 	/0∗/0 +	/0%$/0%$∗  Dimension of kernel 

is i-th Betti number 

Density Matrix 
6 = 	

789:	
<=	789:	 

Eigenvalues form 

discrete probability 

distribution 

Kullback-Leibler 

(KL) Divergence 

AB:(6, ?) =C60(log60
0

− 	 log?0) 

Measure of 

distinction between 

density matrices 

Jensen-Shannon (JS) 

Divergence 

I =	
6 + 	?
2  

AKL(6, ?) =
1
2
MAB:(6,I)

+ AB:(?,I)N 

 

Symmetrized version 

of KL divergence 
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We next tested a slightly more complicated model that had two distinct populations of 

neurons. Each population was again Poisson, but the two populations had differing rate 

parameters. Figure 2.6b shows a heat map plotting the 1-KL divergence as a function of the two 

rate parameters. The white dots indicate the true parameters. There is a degeneracy in this model 

in that it doesn’t matter which subpopulation is labeled A and which is labeled B. Again, the 

minima of the 1-KL divergence closely approximate the true values of the parameters for the 

heterogeneous population. 

Importantly, for all of the Poisson spike train simulations, the “test” and “target” spike 

trains never coincided. Instead, similarities quantified by the simplicial KL divergence rely on 

the global topological structure of the population spike trains, not on the match between specific 

spike trains of single neurons. The SLSE is sensitive to how the activity of an individual neuron 

relates to the simultaneous activity of all the other neurons in the population in which it is 

embedded.  
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Figure 2.6: Simplicial Laplacian Spectral Entropy captures invariant population activity 
structure. (a) KL divergence as a function of the rate parameter for four different models 
(denoted by color), show that the minimum aligns with the target parameter (dotted vertical line) 
in each model. Error bars show SEM. (b) Heat map showing KL divergence as a function of rate 
for a model consisting of two independent Poisson subnetworks with different rate parameters 
(white dots show the true values for each network). (c) Two example simulated environments 
with 1 and 4 holes (red circles) tiled by place fields (filled green circles). (d) Average JS 
divergence between simplicial complexes derived from simulated place cell activity in 
environments with the indicated number of holes. (e) As in (d), but averaged over all similar 
environments, showing that the JS divergence grows with the differences between environments. 
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Reconstructing Latent Stimulus Relationships using Simplicial Laplacian Spectral 

Entropies 

Our observation that NCM populations produce non-random, stimulus-specific, 

topologies implies that Poisson spike trains are not a good source of biologically relevant 

topologies, and so the above evaluation of these metrics is limited.  As a more biologically 

relevant validation of the SLSE measures, we turned to the place cell system used in the original 

Curto and Itskov (2008) study of neural population-derived simplicial complexes and began by 

replicating these earlier results. We simulated the activity of hippocampal place cells during free 

exploration of a 2-dimensional rectangular arena, within which we randomly placed different 

numbers of circular “holes.” A virtual animal explored the space through a random walk 

trajectory that was excluded from the holes in the simulated environment. Population spike trains 

were generated by covering the simulated environment with place fields and for each field, 

generating spikes from simulated place cells as a function of the random walk trajectory. 

Environments differed in the number and position of the holes in each space, and the position of 

the simulated place fields.  

The functional utility of any neural representation rests on its ability to encode the 

relationships between stimuli. Consider, for example, a pair of our simulated environments that 

happen to share the same number of holes. This invariance in the stimulus is independent of how 

different sets of place fields might cover either environment, or the paths that different animals 

might take when navigating through either environment. If the neural topology mirrors the 

topology of physical stimulus structure, as is thought to be the case (Curto and Itskov, 2008), 

then the relationships between our simulated environments should be reflected in some of the 

relationships between the associated neural topologies. Thus, we hypothesize that the simplicial 
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JS divergence on simulated population spike trains from these environments should capture the 

invariant relationships between environments. That is, population spike trains from an 

environment with N holes should be most similar to those from other environments with N holes, 

and the simplicial JS divergence should increase as the difference between the number of holes 

in the environments increases. The results of our simulations (Figure 2.6 c-e) support this 

hypothesis and show that the simplicial JS divergence can detect similarities in the neural 

representation induced by relationships between the stimuli. As the difference in the number of 

holes between a pair of environments grows, the 1-JS divergence between spike trains from each 

environment grows. Importantly, these similarities persist across trials with unique paths through 

the arena, across populations that sample from different receptive fields, and across 

environments with different arrangements (but similar numbers) of holes. In each case, the SLSE 

technique detects similar representations of similar environments. Even though two spike trains 

may manifest wildly different spatiotemporal spike patterns, the structure encoded in their 

coactivity patterns can encode invariant relationships between the stimuli they represent. 

Because stimuli have no intrinsic value to the neural population, we argue that these 

relationships define the stimuli themselves.  

 

Spectral Entropy-based Divergences between in-vivo Neural Population Activities 

Having demonstrated that SLSE-based divergences are useful in quantifying invariant 

representations in simulated neural populations, we next applied these techniques to activities 

recorded from the brains of anesthetized birds trained to perform a two-alternative choice task 

(Methods). Briefly, birds were trained using established techniques to peck at assigned locations 

on an operant panel in response to different acoustic stimuli, responding “left” when presented 
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with two pseudo-songs and to respond “right” when presented with another two. From this 

training, the birds learned an arbitrary categorical structure (invariance) independent of any 

similarities in physical acoustics of the stimuli. We hypothesized that since the simplicial JS and 

KL divergences are designed to capture latent invariant structure in population activity, these 

divergences should reveal the learned categorical structure imposed on the stimuli by the 

behavior and presumably reflected in the population-level representation of the stimuli. Figure 

2.7 shows the JS divergence between 1-Laplacians computed from the single-trial responses to 

both learned and unlearned songs in B1083, the bird with the most units recorded. Panels a and b 

show the divergences for learned stimuli in two disjoint populations in the same bird. Population 

2 was located deeper than population 1 by more than one probe length, in this case 600 um. The 

stimuli are organized so that the two left-signaling stimuli are adjacent, followed by the two 

right-signaling stimuli. In both populations, the block structure of the JS divergence matrix 

shows that temporal coactivity patterns elicited by stimuli in different behavioral classes are 

“farther apart” (less similar) than the coactivity patterns elicited by different stimuli in the same 

behavioral class. This allows for the reconstruction of the learned latent categorical structure of 

the stimuli, supporting our hypothesis. Shuffling individual neurons’ spike trains in time 

abolishes the categorical structure (panels c and d). As a control, computing the JS divergences 

between trials for four unfamiliar stimuli shows no consistent categorization of the stimuli 

among the two populations (panels e-h).  

To see whether learned behavioral categories could be encoded by the physically 

similarity of the population spike trains, we computed the correlations (Methods) between the 

population spike trains on single trials. Figure 2.7 panels i-l show the dissimilarity (1 – 

Correlation) for each pair of trials. Under this measure, physically similar population responses 
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result in lower values, like the JS divergence. Not surprisingly, the single-trial population 

responses to individual stimuli are physically similar (Figure 2.7 i-l), as the population 

correlation reflects the trial-to-trial repeatability of the stimulus-locked timing of spikes in 

individual neurons. In contrast to the JS-divergence, which captures the relative timing of spikes 

across neurons, the learned behavioral categories are not observable in the correlation (Figure 2.7 

i, k). Thus, behaviorally relevant invariances captured by the coactivity spiking pattern are not 

observable in a measure of trial-to-trial repeatability that considers each neuron as independent. 
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Figure 2.7: JS divergence between in-vivo neural populations. (a-h) Each pixel represents a 
JS divergence between two trials. White lines demarcate trials belonging to different stimuli, 
identified by letters A-H. (a,b) JS divergence between trials for familiar stimuli for populations 1 
and 2, respectively, on which the bird was trained to peck either left or right as indicated. Both 
populations show categorical structure reflecting the learned behavioral categories. (c,d) Same 
data as (a,b) but each neuron’s spike train has been shuffled in time, breaking correlations but 
keeping absolute firing rates, and abolishing categorical structure. (e,f) JS divergence between 
trials for untrained stimuli. No overarching categorical pattern is observed. (g,h) Results from 
shuffling the data in (e,f, respectively. (i,l) Correlation dissimilarity between population spike 
trains (Methods), where 1 or 0 indicate perfect or no correlation, respectively, and behavioral 
categories are not observable for either population. (m) Accuracy of predicting same/different 
behavioral classes from the two different populations using either the JS divergence between 
simplicial complexes (black) or spike train correlation (gray; ***: p < 0.001). 
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To quantify the foregoing observation, we trained logistic regressions, using either the 

JS-divergence scores or the raw population correlations, to predict whether the population 

responses to two different stimuli belonged to either the same or different learned classes, then 

tested the accuracy of each decoder on held-out data (Methods). Figure 2.7m shows the accuracy 

of each decoder. For both populations, the accuracy of the decoded using JS divergence was 

significantly higher that the decoders using correlations, in both populations (t-test, t=95.36, 

34.6; p=3.1e-313, 2.96e-132). Both population response measures outperformed decoders trained 

on shuffled datasets (JS-divergence: t-test; t=122.4, 44.49;  p < 1e-313, =4.62e-172; correlation: 

t-test; t=12.42, 29.62; p=6.36e-31, 2.87e-110) indicating the even the raw correlations contain 

some information about the learned invariances.  

If neurons are not independent, then trial-to-trial repeatability may not manifest in the 

stimulus-locked spiking of individual neurons but may instead be present in their statistical 

covariances.  To test this, we computed the neuron-to-neuron pairwise covariance matrix for 

each trial (Methods), then found the normalized distance between these covariance matrices for 

pairs of trials (Methods).  Figure 2.8c shows the distances between these covariance matrices. As 

in the independent neuron correlations (Fig. 7 i-l), we did not observe a strong signature of 

learned behavioral categories in the similarity between pairwise covariance matrices.  We again 

quantified this observation by comparing the accuracy of logistic regression-based decoders 

trained to detect the learned behavioral class from the distance between covariance matrices on 

pairs of trials (Figure 2.8e) to that for the JS-divergence. Accuracy using the JS-divergence was 

significantly higher than that for the covariance matrix distance (t-test, t=102.43, 89.62; p < 1e-

313, =5.0e-301; Fig. 7e). 
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Figure 2.8: JS Divergence outperforms correlational measures of coactivity. (a, b) Distance 
matrices determined using the JS divergence and population dissimilarity (as in Fig. 6). (c) 
Normalized distance between neuron-neuron covariance matrices on pairs of trials, showing no 
segregation into behavioral classes. (d) Correlation between trials with neuron identities 
randomly relabeled on each trial, showing no segregation by behavioral class. (e) Accuracies of a 
logistic decoder trained to determine whether a pair of trials belongs to the same or different 
behavioral classes for each measure of population similarity. The JS divergence significantly 
outperforms all other measures tested, for both populations (***: p < 0.001). 
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To understand why the JS-divergence might capture information in the population 

representation that measures of correlation do not, it is helpful to note that statistical measures of 

coactivity, like correlation, assume coactivity is tied to fixed collections of neurons. Correlations 

at the population level (as in Fig. 7) assume each neuron is independent and simply track 

response reliability within each neuron across trials. Pairwise (or higher order) correlations (as in 

Fig. 8) require one to sample a defined pair (or larger set) of neurons multiple times, either 

across time within a trial or across trials to estimate variance. Moreover, because most pair-wise 

responses are not correlated, these effects can wash out as population sizes increase. The JS 

divergence measure is, by definition, invariant to the arbitrary labelling of neurons, can be 

computed over any interval, and is immune to addition of non-coactive neurons. Thus, the 

population coactivity pattern is different from a correlation. To highlight this, we computed the 

quantity 1-Correlation between population responses on each trial, having relabeled the neurons 

independently for each trial. The resulting distance matrix is shown in Figure 2.8d, again 

demonstrating a lack of segregation by behavioral class.  Comparing this measure of correlation 

to the JS divergence using logistic regression (Figure 2.8e) again revealed a significant 

difference between the two measures (t-test, t=144.62, 51.06; p < 1e-313, =1.12e-195). 

We performed the same logistic regression analysis between the 1-JS and correlation 

measures of response similarity on the neural populations obtain from the remaining birds. 

B1056 showed a statistically significant difference between JS and correlation (t-test; t=6.09, 

p=2.3e-09) and between JS and covariance matrix distance (t-test; t=7.06, p=5.7e-12). B1235 

also showed a statistically significant difference between JS and correlation (t-test; t=11.8, 

p=1.4e-28) and between JS and covariance matrix distance (t-test; t=5.85, p=9.25e-9), but the 

regressions on the JS from fully shuffled data slightly outperformed the JS on empirical data (t-
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test; t=-8.36; p=6.5e-16). B1075 did not have enough neurons in the population to robustly 

compute simplicial Laplacians on individual trials. In total, the JS divergence outperformed 

correlations in all of the 5 populations for which the JS divergence was computable.  

The results so far suggest that the topological structure within a population is specific to 

behavioral classes. We next asked whether this topological structure was similar across disjoint 

but simultaneously recorded populations. To test this we took population 1 from B1083 and split 

it into two disjoint populations containing equal numbers of neurons.  Then, we computed both 

the JS divergence and correlation between individual trials both within and between these 

subpopulations.  Finally, we computed the accuracy of a logistic regression model to predict 

whether trials from physically distinct stimuli nevertheless belonged to the same behavioral 

class.  We repeated this measurement for 40 random, independent splits of the original 

population.  Figure 2.9 shows that the JS Divergence outperforms correlation (glm; z=2.501; 

p=0.012), indicating there is some similarity between the topological structures produced by 

simultaneous but independent populations that reflects the learned behavioral class.  

Furthermore, both the JS divergence and correlation outperform the shuffled versions of their 

own measures (t-test; t=3.876, 4.61; p=0.0003, 1.57e-5). The large variance in the JS divergence 

we attribute to the fact that the split populations have half as many neurons as in Figure 2.7, 

leading to a “lower resolution” reconstruction of the topology.   
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Figure 2.9: JS Divergence shows behavioral selectivity across disjoint populations.  
Accuracy of logistic regression for predicting whether two trials from different stimuli belong to 
the same behavioral class, for either JS divergence (black) or correlation (grey). Each dot 
corresponds to a random split of the population into two disjoint subpopulations. Xs correspond 
to shuffled data. Included in the regression is the JS divergence or correlation between the 
responses from the joint populations, indicating that simultaneous disjoint populations share 
some topological similarity.(*: p < 0.05; ***: p < 0.001).   
  



 

 72 

Discussion 

We have shown that the population activity in a secondary auditory region of a songbird 

contains non-trivial structure in the temporal relationships between the spiking activities of 

individual neurons. The population coactivity structure can be captured directly using the Curto-

Itskov construction. We demonstrated that the population coactivity, as captured by its topology, 

is not due solely to the aggregation of independent, stimulus specific responses from individual 

neurons. Instead, the structure emerges intrinsically at the population level. Using novel 

mathematical tools to compare simulated topological population structures, we revealed an 

invariant structure common to distinct neural populations which corresponds to learned 

invariances between sensory stimuli. Using these same tools to examine in-vivo neural 

population activity, we showed that learned categorial relationships between natural stimuli yield 

invariant relationships in the topological population structure of avian auditory cortex, despite 

low pair-wise correlations between single-trial spike trains. From these results, we conclude that 

algebraic topology offers a valuable tool for understanding invariant representations in neural 

populations. 

One concern with computing Betti curves from spike coactivations aggregated across 

time (temporal filtration) is that “noise” in the responses may lead to spurious coactivations that 

fill in (and thus destroy) the holes that the Betti curves measure.  While valid, we did not 

consider it a severe limitation in this case because declaring any particular spikes to be noise 

amounts to an assumption of what constitutes “signal” – an assumption that we did not want to 

make. Instead, we intended for the actual observed topology to define the signal. We wanted to 

see how individual trials related to each other through their topology, agnostic to the precise 

origins of the coactivations in the population.  This informed our decision to use the simplicial 
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complex that results from coactivations aggregated across the whole trial, rather than the most 

persistent homological features.  This also motivated our use of time as a parameter in the Betti 

curves, to characterize how the simplicial complex evolved to this final state.  Nevertheless, the 

results presented necessarily include contributions from possible “spurious” spikes, and 

exploration and comparison of other filtration strategies on similar datasets would be an 

important addition to the literature.  

Our analysis differs from other approaches to population activity in that we do not begin 

by separating stimulus induced structure (signal correlations) from within-trial covariation (noise 

correlations).  Our approach does not consider the population responses as variations around a 

mean response from individual neurons, but rather seeks to understand how a single event is 

represented by the population on a single ‘trial’. There is increasing evidence that there exists 

stimulus-specific noise correlations (Gu et al., 2011; Jeanne et al., 2013; Ramalingam et al., 

2013; Bondy et al., 2018) and separating these sources of variance may be an artificial 

convenience of the way responses have traditionally been measured. Separating these two forms 

of correlation at the outset of an analysis is liable to miss behaviorally relevant structure in the 

population response. Our results suggest that structures in the population response do carry 

information about behaviorally-relevant stimuli. Furthermore, these structures are not reducible 

to collections of individual neuron responses. Thus, these coincidence patterns carry meaning of 

their own. 

This approach is a conceptual alternative to neural representations centered on the 

concept of receptive fields.  By definition, computing a receptive field requires access to both 

neural activity and the ground-truth stimulus.  Since neural networks do not have access to the 

stimulus outside of their own stimulus-induced activity, neural networks cannot, in principle, 
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perform this computation. In other words, they do not have access to their own receptive fields 

(Curto and Itskov, 2008). However, because natural stimuli are not random, structure in the 

stimulus will induce structure in the firing responses of neurons (Brette, 2015). One way this 

structure manifests is as temporal structure of spike coactivations in populations of neurons. 

Neural networks can in principle access this structure, because it requires only the ability to 

detect temporal coincidences among spikes within the neural population itself, and no 

information from outside the animal.  Thus, the approach avoids some of the conceptual 

difficulties with receptive fields. At the same time, the approach is consistent with the idea of 

receptive fields. Indeed, a key insight of Curto and Itskov is that relationships between spikes 

captured in the topology of the population response are sufficient to reconstruct some features of 

the physical environment without knowledge of explicit place fields (Curto and Itskov, 2008). In 

other words, while receptive fields can be computed, they are not required. 

Receptive field-based analyses also require strong a priori assumptions about the basis 

feature space for external stimulus representation. The Curto-Itskov construction allows for an 

alternative definition of stimulus space, as the topological space constructed from neural activity. 

This alternative definition offers advantages in higher order sensory systems. Like other natural 

signals, the relevant stimulus space for birdsong does not easily lend itself to simple (low-

dimensional) parameterizations, such as, for example, the orientation angle of drifting gratings 

that one might use to parameterize simple stimuli for the visual system. While useful in 

quantifying neural responses, these experimenter-imposed parameterizations are not guaranteed 

to align with the dimensional axes for neural “tuning”. In contrast, the intrinsic relationships 

between neuronal responses, regardless of their receptive field tuning, are precisely the response 

properties that are parameterization invariant. The topological constructions used here directly 
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capture some of these relationships. As for most natural stimuli, we do not have access to the 

“correct” parameterized stimulus space for bird song. Using the topological methods described 

here allows us to avoid this problem altogether, measure invariant properties of the neural 

representation, and reconstruct a neurally-defined stimulus space intrinsically defined by 

secondary auditory neurons in songbirds. 

Understanding invariance is central to understanding perception, and the general notion 

features prominently in a longstanding debate regarding the nature of sensory systems and neural 

computation. The classical view, identified most strongly with Marr (Marr, 1982), conceives of 

sensory systems as computational pipelines, taking discrete stimuli (or stimulus features) as 

inputs and implementing algorithms to produce more complex representations as output. 

Accordingly, a class of algorithms may be specified to extract similarities from multiple stimulus 

representations and output an invariant representation (Riesenhuber and Poggio, 1999). A 

contrasting view, articulated by Gibson (Gibson, 1986), posits that sensory systems encode 

invariances directly, through a sensitivity to the patterns of information in the environment that 

define the relationships (i.e., changes or the lack thereof) between stimuli. Neuroscience has the 

potential to inform these deep debates on the nature of perception, but to do so we must improve 

the currently limited methods for quantifying invariant representations.  Searching for 

invariants in neural activity, however, by correlating aggregate measures of neural activity with 

stimulus properties is problematic. As noted, the animal cannot perform the same computation 

(Curto and Itskov, 2008), because it does not have direct access to the stimulus. Gibson used this 

“closed” property of sensory systems to infer that invariant representations must be encoded 

directly from patterns of information in the environment (Gibson, 1986). We have demonstrated 

how to extract potential sensory representational invariants using only the information directly 
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available to the nervous system – the spatiotemporal relationships between spikes. These 

techniques provide a route to understanding representational invariances and their foundational 

role in perception. 

The precise computational mechanisms for how neural populations might make use of 

this topological structure remain a topic for future research.  However, previous studies 

illuminate possible avenues of investigation. In the dynamical regime of excitation-inhibition (E-

I) balance, neurons can be highly sensitive to these temporal coincidences, with a sensitivity 

surpassing the limits of experimentally measurable statistical correlations between spike trains 

(Rossant et al., 2011). A state of E-I balance is commonly observed throughout the cortex of 

mammals and has been observed in songbird NCM neurons (Rossant et al., 2011; Perks and 

Gentner, 2015), and could support the use of temporal coincidences as a substrate for 

computation (Brette, 2012). As a general phenomenon, coincidence detection is a nearly 

ubiquitous capability in neurophysiological systems.   

A growing body of literature investigates neural systems from the point of view of 

topology. Recent demonstrations that driven and spontaneous activity produce characteristic 

dynamics in the functional topology (Reimann et al., 2017) agree qualitatively with our findings.  

Likewise, persistent homology applied to spontaneous and evoked activity in cortical area V1 of 

monkeys is able to reconstruct the spherical topology of orientation selective cells (Singh et al., 

2008), and theoretical work demonstrates how topological structure in the hippocampus can 

persist in the face of noise (Babichev and Dabaghian, 2017). Our work represents the first use 

algebraic topology to examine representational invariance in a sensory system. Combined with 

the earlier theoretical and empirical studies, this work helps to establish neural topology as a 

useful tool to investigate neural activity.  
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Chapter 3 - Direct Representation of Stimulus Space Geometry by Temporal Coactivity 

Patterns in Neural Populations 

Abstract 

Perception depends only on representations carried in the collective activity of neural  

populations. Yet, our understanding of these representations requires direct correspondence to 

stimuli external to the neural system. Recent trends in neuroscience have highlighted the 

importance of the geometry of neural representations of natural stimuli by a population.  In 

higher-order sensory regions, the representational geometry is harder to capture because neuronal 

responses in these regions are driven by complex stimulus features. Here, recording from 

neurons in NCM, a secondary auditory region of the songbird, we show that the intrinsic 

geometry of the temporal coactivation of spiking  activity carries a direct representation of 

complex, natural vocal communication signals.  Previous work has demonstrated this 

correspondence in simulation, but to our knowledge this is the first demonstration of this 

correspondence in a sensory system in vivo.  This validates a theoretical mechanism for 

representing stimulus structure in population activity consistent with individual cell receptive 

fields but without requiring their explicit computation.  

 

Introduction 

The collective activity of populations of neurons underlies the perception of the natural 

world.  A central task of neuroscience is to understand how structure in neural activity relates to 

structure in the stimulation.  These relationships are commonly approached by correlating neural 

activity with measures of external variables made by the experimenter.  This yields the concept 
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of the receptive field, which is defined as the regions of sensory space that are associated with a 

response from a neuron (Meyer et al., 2017; Sharpee, 2013).  

The receptive field concept is of fundamental importance to neuroscience. Nevertheless, 

receptive fields are quantities that are only meaningful for the experimenter. This is because only 

the experimenter has access to both the neural activity and the external stimulus needed to define 

the field. The brain itself does not have access to its own receptive fields (Curto & Itskov, 2008); 

its knowledge of the external world has to be completely contained within its own activity 

patterns. Therefore, to understand the neural basis of perception it is necessary to understand 

how the structure of external stimulation is manifested directly by the neural activity, without the 

requirement of explicit receptive fields.  

 Curto and Itskov (Curto & Itskov, 2008) recognized this important point and developed a 

technique for reconstructing information about the external world directly from neural activity.  

In the context of the hippocampal place cell system, they used temporal coincidences between 

neurons in a population to define a mathematical object called a simplicial complex.  Using 

simulated neural activity, they showed in principle that the geometry of the external environment 

could be reconstructed from the simplicial complex associated with the neural activity. Because 

the simplicial complex is defined solely by temporal coincidences, this demonstrates a potential 

mechanism for the direct representation of stimulus information in a neural population without a 

receptive field intermediary. However, whether such a relationship holds for sensory systems in 

vivo is an important open question. 

 To test whether the temporal coactivation structure of neural activity directly represents 

stimulus structure, we measured population activity in region NCM, a secondary auditory region 

of the European starling while passively listening to natural birdsong.  We computed the 
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simplicial complex associated to the population following the methods of Curto and Itskov. The 

neural topology of this population has previously been shown to carry information about learned 

acoustic categories (Theilman et al., 2021). To compare the geometry of the associated simplicial 

complexes with the structure of the acoustic stimulation, we first introduce a technique for 

reconstructing acoustic spectrograms from population activity and the receptive fields given by 

the Maximum Noise Entropy (MNE) model (Fitzgerald et al., 2011), which has been used 

previously to characterize the responses of individual NCM cells (Kozlov & Gentner, 2016). 

These reconstructions allow us to link metric relationships between receptive fields to the 

structure of stimulus spectrograms and vice versa.  Finally, we report the relationship between 

these distinct topology- and receptive field- derived geometries, showing that the Curto-Itskov 

insight that the coactivation structure of the population contains direct information about the 

stimulus space holds for this sensory population.  

 

Results 

Curto-Itskov graph associated to population responses 

We recorded distinct subpopulations of NCM neurons from anesthetized birds using 

silicon microelectrodes while presenting audio recordings of natural starling song. We binned the 

response of each cell to agree with the stimulus spectrogram time bins (~21 ms, Methods)) and 

used these binned spikes to construct the simplicial complex associated to the population. For 

each bin, the cells with firing rates above a certain multiple of their own lifetime average firing 

rate defined what is called a cell group. Each cell group defines an elementary simplex: pairs of 

coactive cells correspond to line segments, triplets to triangles, quadruplets to tetrahedra, etc.  

These elementary simplices are attached along their common faces, forming a larger structure 
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called a simplicial complex.  The simplicial complex is a manifestation of the temporal 

coactivation structure in the population across all stimuli. With population sizes on the order of 

100 units, there are ~2^100 possible cell groups. The vastness of this number means that only a 

fraction of the possible cell groups will be observed in an actual population, and a significant 

amount of information is carried in the identity of the cell groups that actually appear.  The 

simplicial complex is a higher-order structure that keeps track of this information and its 

interrelations (Giusti et al., 2016).  

We define a metric on cell groups using a modified form of Dijkstra’s algorithm on the 

simplicial complex (Methods). To each simplicial complex we associate an ordinary graph, 

where each simplex in the complex is associated to a vertex in the graph.  There is an edge 

between two vertices in the graph precisely when one simplex is the face of the other. All edges 

are weighted with unit weight.  Applying Dijkstra’s algorithm to this graph yields the length of 

the shortest path between any two simplices, and hence, cell groups.  

 

MNE Receptive fields of NCM neurons 

If the simplices correspond to the pattern of overlaps of receptive fields, then the 

simplicial complex should reconstruct the underlying acoustic stimulus space topologically.  The 

cell group metric defined above adds natural geometric information to the complex.  In their 

simulations, Curto and Itskov showed that this geometry matched the geometry of the physical 

environment. Similarly, we want to show that NCM cell group geometry corresponds to the 

geometry of the space of physical stimuli.   

To do this, we computed receptive fields for NCM neurons to relate acoustic 

spectrograms to neural activity.  Previous work has shown that the Maximum Noise Entropy 
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(MNE) model well-describes the sensitivity to higher-order features exhibited by NCM cells 

(Kozlov & Gentner, 2016).  

For each single unit in each simultaneously recorded population, we independently 

computed the optimal parameters a, h, and J for the MNE model of the neuron’s response, taken 

as a binary value, using 80% of the stimulus spectrograms for training. Example MNE features 

for a single MNE cell are shown in Figure 3.1b.  After obtaining the MNE parameters for each 

cell on the training data, we evaluated the MNE model by predicting the response of the unit on 

the remaining test stimulus spectrogram segments.  We evaluated the prediction by computing 

the correlation between the predicted response and the empirical response for that cell. Figure 

3.1d shows an example response prediction for a single cell and stimulus.  

To evaluate the quality of the MNE model, we again computed MNE parameters but 

from shuffled spike trains.  Using the MNE parameters obtained from shuffled spike trains, we 

evaluated the correlation of the predicted shuffled response to the actual shuffled response.  

Figure 3.1e shows the distribution of correlations between predicted and actual responses 

for both empirical and shuffled data.  Consistent with previous results, we found that the MNE 

model accurately predicted individual cell’s responses to held-out stimuli, and that individual 

neurons had composite receptive fields (Kozlov & Gentner, 2016).  

The receptive fields obtained from shuffled datasets show poor prediction accuracy, 

demonstrating that the MNE model is picking up the statistical relationships between individual 

cell’s activity and the spectrographic features of the stimulus.   
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Figure 3.1: MNE receptive fields for NCM populations.  a) top: Spectrogram of an acoustic 
stimulus composed of segments of natural starling song. Middle: Spike raster showing the 
response of a single NCM cell to multiple presentations of the stimulus above.  NCM cells 
typically show sparse, highly selective responses to natural birdsong. b) MNE composite 
receptive field for a single NCM cell. The linear feature corresponds to the MNE h parameter.  
The excitatory quadratic features (top row) are the eigenvectors associated with the four most 
negative eigenvalues of the MNE J matrix. Likewise, the inhibitory features are associated with 
the four most positive eigenvalues.  c) The eigenvalue spectrum of the MNE J matrix for a 
typical cell.  NCM cells display significant positive and negative eigenvalues. d) Response 
prediction by the MNE model.  The black curve shows the predicted firing probability to the 
lower resolution stimulus shown above.  The red curve shows the binned, binarized, trial 
averaged response of the cell. e) Distribution of correlations between predicted and actual 
response across all cells and all birds (N=1,235 units).  Each color represents a different shuffle 
condition (Methods).  The MNE better predicts the responses for original data compared to 
shuffled data (Mann-Whitney U Test, p<1e-20 for all conditions).  
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Reconstructing spectrograms using a spherical subspace 

The receptive field for a neuron allows the experimenter to know which features in the 

stimulus are associated with that neuron’s response.  In principle, knowledge of these receptive 

fields allows for the stimulus to be reconstructed from the response. For NCM cells, this is more 

complicated because the MNE model reveals that multiple features drive or inhibit the response 

from individual NCM cells.  Thus, to reconstruct the acoustic spectrogram from NCM activity, 

some method for disambiguation must be specified.  One approach is to aggregate the features 

from multiple neurons, and use the population itself for disambiguation. 

The product of the response probabilities of each neuron in a population gives the 

probability of the population response under the assumption of conditional independence 

between the neurons. Since these probabilities depend on the stimulus, the population response 

probability equivalently defines the likelihood of a stimulus given a population response.  

Maximizing this likelihood over the space of spectrograms yields a reconstructed stimulus.   
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Figure 3.2: Spherical projection of MNE models yields classic, convex receptive fields. a) Along 
any ray in the 156 dimensional space of spectrogram segments, two points are related by a scalar 
multiplication.  This transformation preserves the ratios of spectrotemporal power in different 
bins. Thus, these two spectrograms have the same “shape”. b) The quadratic kernel of the MNE 
model implies that surfaces of constant firing probability for NCM cells are high-dimensional 
hyperboloids. Evaluating the probability on a two-dimensional slice (for visualization) reveals a 
probability density that never attains a maximum, preventing optimization of the likelihood. The 
axis of the hyperboloid is aligned with a ray in spectrogram space, corresponding to an 
equivalence class of spectrogram segments. c) Evaluating the model instead on the sphere 
reveals convex regions of high firing probability that resemble class receptive fields or place 
fields. The model shows selectivity to the antipodal point because the MNE kernel is quadratic.  
This implies the further identification of antipodal points, reducing the sphere to real projective 
space and implying the need for the Fubini-Study metric. 
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Naive maximization of the product of MNE models over an NCM population fails, 

however, because the likelihood function never attains its maximum over the full space of 

spectrograms. Careful consideration of the geometry of the MNE model reveals that the full 

space of spectrograms is, in fact, not the appropriate space for the optimization.  

For NCM cells, the observation of significant positive and negative eigenvalues in the J 

matrix spectrum (Figure 3.1c) means that surfaces of constant probability are high-dimensional 

hyperboloids.  Projecting these hyperboloids onto planes reveals that the quadratic kernel is 

unbounded, spoiling optimization (Figure 3.2b).  Instead, projecting the MNE model to a sphere 

in the high-dimensional spectrogram space reveals convex regions of high spiking probability, 

resembling classic receptive fields seen in other sensory domains (Figure 3.2c). Mathematically, 

the likelihood function is a continuous function.  Restricting to a compact domain, such as the 

sphere, guarantees it obtains its maximum.   

Restricting spectrograms to a sphere has a natural interpretation.  For all spectrograms, 

the unit used to measure energy in a particular time-frequency dimension is arbitrary. The brain 

itself cannot depend on any particular system of units. Thus, the relative values of energy in 

different bins define the ‘shape’ of the spectrogram.  This means that two spectrograms should 

be regarded as equivalent if they are positive scalar multiples of each other.  The sphere is 

precisely the space of equivalence classes of spectrogram segments under this equivalence 

relation (Figure 3.2a).  

For each binary response vector from a population of neurons, applying the maximum 

likelihood approach described above yields a reconstructed spectrogram segment.  The 

reconstructed point occupies the region of overlap of the receptive fields corresponding to the 

spiking units in the response vector.  A sequence of population response vectors yields a 
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sequence of reconstructed spectrogram segments (Figure 3.3a).  By overlapping and adding the 

elements of this sequence, we obtain the reconstruction of the full spectrogram.  Figure 3.3b 

shows example reconstructions of full spectrograms compared to the actual spectrograms. By 

pooling the responses of a population of cells, the reconstruction fidelity is high.  We evaluated 

the quality of the reconstructions by computing the cosine distance between the reconstructed 

and original spectrogram segments (Methods). Figure 3.3c shows the reconstruction performance 

across populations compared to the shuffled MNE models, showing that this method reliably 

allows for high-fidelity spectrographic reconstructions from neural population activity.   
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Figure 3.3: Maximum likelihood stimulus reconstructions. a) Binary response vectors from the 
population define a likelihood function over spectrogram segments.  Maximizing this function 
constrained to the sphere yields reconstructed spectrogram segments (below).  Each binary 
response is associated with a single reconstruction, even though individual cells have composite 
receptive fields. The reconstructions are shifted in time by the temporal offset of their response 
vector and added together. b) Example reconstructed full spectrograms.  c) Reconstruction 
performance measured by the cosine similarity of reconstructed segments to the original 
segments for the different shuffle conditions, on held-out test data, across all populations (n = 
11). Arrows indicate the median of each distribution. The reconstructions on original data 
outperform all shuffle conditions (Mann-Whitney U Test, p<1e-18 for all conditions). 
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Relationship between Receptive Fields and Neural Topology 

The maximum likelihood procedure associates a spectrogram segment to each cell group. 

These spectrograms live on the surface of a high-dimensional sphere. The metric on the surface 

of this sphere defines an alternative metric on cell groups, where the distance between cell 

groups is defined as the distance between their reconstructed spectrograms. However, there is an 

additional symmetry that affects the definition of distance between spectrograms.  Antipodal 

points on the sphere have the same spectral power ratios that define the “shape” of the 

spectrogram, but inverted in sign.  Because the MNE model is quadratic, it cannot distinguish 

between these points. This is also demonstrated by the appearance of two peaks in Figure 3.2c  

Thus, antipodal points of the sphere must be identified.  This yields what is known as real 

projective space (Hatcher, 2002), and the spherical metric is replaced with the Fubini-Study 

metric on projective space (Study, 1905). We used the Fubini-Study metric to compute the 

distances between pairs of cell groups induced by their spectrographic reconstructions. This 

metric is analogous to the physical Euclidean distance between points in space used by Curto and 

Itskov (Curto & Itskov, 2008).   

Our hypothesis that the temporal coactivation pattern in the NCM population corresponds 

to relationships between receptive fields implies that the topological and spectrographic metrics 

on cell groups should be strongly related. This would show that the geometry intrinsic to the 

population defined by temporal coactivations directly represents stimulus structure without the 

explicit mappings to external stimuli carried by receptive fields. Figures 3.4a and 3.4b show 

distance matrices for a subset of 32 cell groups computed using the graph distance (3.4a) or 

Fubini-Study metric (3.4b). We observed a consistent relationship between these two metrics, 

shown in the example in Figure 3.4c. To compare these two metrics, we measured the correlation 
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between the distances between pairs of cell groups given by the two metrics.  We found strong 

correlation between the two distance matrices across different populations and birds, and that this 

correlation was weakened under the shuffle conditions (Mann-Whitney U Test, p<1e-80 in all 

cases) (Figure 3.4d).   
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Figure 3.4: Cell group geometry corresponds to spectrogram geometry. a) Distance matrix 
between 32 randomly chosen cell groups computed using the shortest path length in the Curto-
Itskov simplicial complex. b) Distance matrix between the reconstructed spectrogram segments 
corresponding to the cell groups in a, computing using the Fubini-Study metric. c) Scatter plot of 
spectrogram distance vs. graph distance showing the correlation between the two geometries. 
The maximum possible distance between points under the Fubini-Study metric is pi/2. d) 
Distribution of correlations between the graph distance matrices and spectrogram distance 
matrices across all populations. The correspondence is strongest for the original data, which 
preserves both the temporal coactivity structure in the population and the relationship between 
that structure to the stimulus (Mann-Whitney U Test, p<1e-80 in all cases).  
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Discussion  

We have shown that the temporal coactivation structure of neural population activity in a 

secondary auditory region contains a direct manifestation of stimulus structure that does not rely 

on the computation of receptive fields.  The intrinsic geometry of the population given by the 

simplicial complex and associated graph metric correlates with the geometry of the reconstructed 

spectrograms under the Fubini-Study metric.  These reconstructions depend on the relationships 

between receptive fields, and the receptive fields of individual neurons induce the 

representational geometry (Kriegeskorte & Wei, 2021). The correspondence of the two 

geometries shows that the relationships between receptive fields correspond to the relationships 

between simplices in the simplicial complex. This validates the central insight of Curto and 

Itskov (2008), for the first time in a sensory system in vivo. While we have demonstrated the 

intrinsic geometry of the population coactivity structure relates to the geometry of the receptive 

fields, we note that this relationship is nonlinear and complex for an auditory sensory system.  A 

deeper investigation into the mathematics of the reconstruction procedure will reveal the precise 

nature of this relationship.   

This demonstration opens up promising new lines of theoretical and experimental 

investigation. Because the temporal coactivation structure of population activity is determined by 

the biophysics of the underlying network, we have demonstrated a mechanism by which stimulus 

information can be processed directly by spikes (Brette, 2015).  What is missing is an 

understanding of the emergence of precise temporal patterns in neural populations.  Recent work 

finding evidence for polychronization (Izhikevich, 2006) in the songbird motor nucleus HVC 

(Egger et al., 2020) suggests a plausible theoretical route for understanding how stimulus-
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evoked, temporally-precise patterns of activity are generated by neural populations.  The 

relationship between neural topology and polychronization is a priority for future research. 

Careful consideration of the relevant symmetries of the space of acoustic spectrograms 

revealed that the appropriate stimulus space was not the full high-dimensional space of 

spectrograms, but a spherical subspace. This yielded a well-defined optimization procedure for 

reconstructing complex, natural, acoustic stimuli from population spiking activity.  The approach 

we implemented is an improvement over other methods for reconstructing acoustic stimuli as it 

does not require knowledge of the stimulus autocovariance (Mesgarani et al., 2009). We expect 

that this procedure will facilitate future experiments probing how population level 

representations of complex acoustic stimuli change during processes such as learning or sleep.  

 

Methods 

Electrophysiology 

All protocols were approved by the UC San Diego IACUC. Five birds were used in this 

study. All birds were wild-caught in southern California.  We did not control for the sex of the 

subjects.  Naive European starlings were anesthetized with urethane (0.7 mg/kg) and head-fixed 

in an acoustic isolation chamber (Acoustic Systems).  A small craniotomy was opened over the 

region NCM. We placed multi-channel silicon electrodes (Masmanidis 128DN or 64F) (Yang et 

al., 2020) in NCM until auditory-evoked activity was observed on the majority of channels. After 

placing the electrode, we left the bird in silence for 30-60 minutes prior to starting trials.  We 

repeated each stimulus 20 times in a random order with a random inter-trial interval of 2-5 

seconds.  Once a block of 1200 trials finished, we advanced the electrode by one probe-length 
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further into NCM to record another block from an independent population of cells. Recording 

blocks were obtained from both hemispheres.  

 

Spike Sorting 

Simultaneously recorded blocks were spike sorted with Kilosort2 (Stringer et al., 2019). 

After automatic sorting, putative units were manually curated using the phy interface.  Units 

were manually sorted into putative single units and multiunit activity.  We considered units well-

isolated if they showed fewer than 1% refractory period violations with a period of 2 ms. Only 

putative single units were used for further analyses.   

Preprocessing acoustic stimuli 

A library of 60 stimuli were compiled for these experiments.  The stimuli consisted of 10 

full starling songs (30s - 1 min in length) and 50 song segments (3 - 6 seconds in length).  

Stimuli were downsampled to 24 kHz and then the STFT spectrogram was computed with an 

NFFT=128, a Hanning window of length 128, and 50% window overlap. We excluded the DC 

component and the spectrogram magnitudes were log scaled.  Spectrograms were averaged as in 

(Kozlov & Gentner, 2016): time bins were averaged pairwise 3 times and frequency bins were 

averaged pairwise twice.  This yielded spectrograms with 16 frequency bins and with time bins 

approximately 21 ms in length.  Spectrograms were divided into overlapping segments of 16 

time bins in length (~300 ms) to form 16 x 16 (256) dimensional spectrogram segments that 

serve as the stimulus for the MNE algorithm. We projected each stimulus segment to a sphere of 

fixed radius R = 10 by normalizing each stimulus vector. 

 

Preprocessing spiking data for MNE 
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For each single unit and for each trial, the unit's spike train was binned in time to 

correspond with the output of the STFT spectrogram described above.  Likewise, the temporal 

spike bins were added pairwise along with the spectrograms to yield bins ~21 ms in length 

indicating the number of spikes in from this neuron in that bin. We computed the trial average 

spike count in each bin.  Finally, responses were binarized by setting bins with a non-zero 

average spike count to 1, leaving the remaining bins at 0.  

 

Shuffling spiking responses 

To isolate the effects of different levels of spatiotemporal organization, we computed 

shuffled versions of the population responses that broke different levels of spatiotemporal 

correlation between individual cell’s responses and between cells and the stimuli.  

The first shuffle we term the “full shuffle” condition.  For each cell and each trial, we 

permuted the cell’s spike times.  This preserves the total number of spikes from each cell on each 

trial, but destroys cell-stimulus and cell-cell correlations.   

Next, we computed the “masked shuffle” by generating a random “mask” for each cell 

that assigns spikes from that cell to new time bins.  We applied the same cell-specific masks 

across all trials.  This shuffle breaks inter-neuronal coordination but generates a new stimulus-

specific spike train for each cell. 

Finally, we computed the “permuted shuffle” by shuffling each time bin across the entire 

stimulus set, while preserving the spiking coactivity across all cells within a single time bin and 

trial.  This shuffle destroys stimulus-locked responses but preserves the temporal coactivation 

structure of the population response.  
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Fitting MNE models 

MNE models were fit according to the methods described in (Fitzgerald et al. 2011).  

We divided the data for each population into training and test sets, with the training sets 

consisting of 80% of the data. We estimated parameters using a jackknife procedure; averaging 

estimates from two subsets of the training datasets to yield the final parameters.  To regularize 

the estimates, we used early stopping.   

 

Predicting responses from MNE parameters 

To predict the response of a unit with the MNE model, the a, h, and J parameters 

computed from the training set were applied to test stimulus spectrogram segments. This 

generated a time series of predicted spiking probability.  To evaluate the prediction, we 

computed the correlation between the predicted spiking probability and the empirical response 

given by the binarized trial-average spike counts (Figure 3.1d). 

 

Reconstruction of stimulus spectrograms from MNE models 

For a population of N units, we write the MNE model associated to unit i as (Fitzgerald et 

al., 2011):  

 

Where  is either 1 or 0 if unit i spikes or is silent, respectively. Assuming conditional 

independence of the units, the probability of an arbitrary response vector from the population as 

the product of individual cell MNE models: 
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This gives the probability of a response pattern given a stimulus, but is also interpreted as 

the likelihood of a stimulus given a response pattern.  

Taking the logarithm of this expression yields the log likelihood: 

 

Given a fixed binary response vector, maximizing this function with respect to the 

stimulus dimensions, with the stimulus constrained to a sphere of radius R, yields the maximum 

likelihood estimate, or reconstruction, of the stimulus spectrogram segment associated to this 

response vector. 

 

 

We implemented this constrained optimization using TensorFlow and the RiemOpt library for 

optimization on Riemanninan manifolds (Smirnov, 2021). 

Given a sequence of population response vectors, applying the above maximum 

likelihood procedure yields a sequence of spectrogram segments.  The full reconstructed 

spectrogram results from overlapping and adding the elements of this sequence of spectrogram 

segments, with each segment shifted according to the temporal position of the associated 

response vector. 

 

Evaluation of spectrogram reconstructions 

Because we consider spectrograms the same if they are scalar multiples, our evaluation of 

reconstruction quality must be invariant to this transformation.  We used the cosine distance to 



 

 102 

evaluate the similarity between two spectrograms.  The cosine distance between spectrograms u 

and v is given by:  

 

Constructing the simplicial complex associated to population activity 

Binary spiking responses were binned to correspond with the spectrogram segments 

described previously.  Within each time bin, the co-active cells define the cell group associated 

with that bin.  Each cell group is assigned an elementary simplex corresponding to the number of 

cells in the cell group: line segments represent pairs of cells, triangles represent triplets, 

tetrahedra represent quadruplets, and so on.  The vertices of each elementary simplex were 

labelled with the corresponding cell ID.  Elementary simplices were glued along their common 

faces/vertices. 

 

Computing the topological graph-distance metric on cell groups 

To define a metric on cell groups, we follow (Curto & Itskov, 2008) and define a graph 

from the simplicial complex.  Each simplex in the complex is assigned a vertex in the graph, and 

an edge links two graph vertices if the two simplices associated to each vertex are faces of one 

another.   

 We computed distances in this graph using Dijkstra’s algorithm to find the length of the 

shortest path that connects any two vertices. Since each vertex in the graph corresponds to a cell 

group, this yields a (discrete) metric on the cell groups. The population sizes we obtained 

produced simplicial complexes too large to compute in their entirety.  To overcome this 

limitation, we ranked cells according to the spectral radius of their MNE J-matrix as a measure 

for the strength of stimulus modulation.  We computed distances for the Curto-Itskov graph 
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associated with the top 15% of cells in each population by spectral radius.  This yielded a graph 

that was small enough to fit in memory but large enough to demonstrate the existence of the 

geometric relationships. Still, these graphs were large (~5000 cell groups) and dense, making 

computing the shortest path between all pairs of simplices computationally expensive.  To 

overcome this limitation, we selected random subsamples of 32 cell groups from the full set and 

computed the 32 x 32 pairwise distances between the elements of these subsets.   

 

Computing the Fubini-Study metric on cell groups 

On a sphere, the great circle distance is the shortest distance between any two points.  It 

is related to the angle between two points: 

 

When antipodal points of the sphere are identified under the symmetry x = -x, this spherical 

metric restricts to the Fubini-Study metric: 

 

The Fubini-Study metric has a maximum value of pi/2.   

 To compute the Fubini-Study metric on cell groups, we reconstructed the spectrogram 

segments associated to each cell group in the subsets taken from the full Curto-Itskov graph, and 

used the above expression to compute the distance between spectrogram segments.  

 

Comparing graph and spectrogram geometries 

 Once we computed the distance matrices for each geometry and each subset, we 

computed the correlation between the independent components of each matrix excluding the 
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main diagonal.  We pooled these correlations across populations for each shuffle condition to 

assess the significance of the correlation between the geometries.  
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Chapter 4 ­ An Algebraic Approach to Polychronization

4.1 Introduction

Natural behavior depends upon the temporal dynamics of neural activity. These dy­

namics ultimately depend upon the physical structure of the neural network. One of the central

aims of neuroscience is to understand how the structure of a neural network determines its

temporal patterns of neural activity, and how these patterns of activity determine behavior.

An important example of a complex, natural behavior depending on precise tempo­

ral patterns of activity is the songbird vocal motor system. In the avian brain, nucleus HVC is

critical for the production of natural birdsong. Numerous experiments have shown that during

song production, HVC neurons exhibit sparse, temporally precise bursts of activity (Hahn­

loser et al., 2002; Long and Fee, 2008; Markowitz et al., 2015). Many competing models of

the HVC song circuit have been proposed to explain the emergence of these temporal patterns,

but precisely how the HVC circuit generates these patterns remains a mystery (Armstrong and

Abarbanel, 2016; Long et al., 2010; Verduzco­Flores et al., 2012; Yildiz and Kiebel, 2011).

Recently, experimental observations have shown that song­related population activity in HVC

is better explained by a neural network model that exhibits polychronization, a mechanism

by which spikes in a neural network interact with long, heterogeneous conduction delays

between neurons to reinforce specific temporal patterns of activity over others (Egger et al.,

2019). Polychronization is a promising mechanism to explain the origin of temporal patterns

in neural activity in a variety of systems, and warrants deeper theoretical and experimental

investigations.
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Polychronization was introduced by Izhikevich (Izhikevich, 2006) as a mechanism by

which networks generate time­locked but asynchronous patterns of activity. These patterns

arise from heterogeneous conduction delays between neurons. Heterogeneous delays cause

specific temporal orderings of presynaptic spikes to arrive simultaneously at a postsynaptic

neuron. This large coincident synaptic drive produces a spike in the postsynaptic neuron. This

postsynaptic spike interacts with its own axonal delays and other spikes in the network to con­

tinue the pattern. These self­reinforcing time­locked patterns of spiking activity are called

polychronous groups.

The study of polychronization is challenging because in even modestly sized networks,

the number of polychronous groups grows immensely, making the enumeration of individ­

ual polychronous groups difficult (Chrol­Cannon et al., 2017; Izhikevich, 2006; Pauli et al.,

2018). This property is often used to support the representational capacity of polychronous

networks, but also makes such networks resistent to theoretical analysis. What is needed is a

precise mathematical characterization of polychronization, polychronous groups, and their re­

lationship to network structure. Such a characterization links physical network structures with

their spiking repertoires and provides a foundation for relating temporal patterns of activity to

representation and ultimately, behavior.

This work introduces an algebraic description of polychronous groups as spaces of so­

lutions of systems of polynomial equations. We apply ideas from category theory to formulate

the compositional structure of polychronous groups, which allows us to construct a category­

theoretic description of all the possible polychronous groups that make up the spiking reper­

toire of a given network. The mathematical description we provide formalizes the concept of
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polychronization and will aid in further theoretical investigations of the phenomenon itself and

its relationship to spiking dynamics in biological neural networks.

4.2 Polychronous Groups

Intuitively, a polychronous group is a specific temporal pattern of spikes that interacts

with the physical structure of a spiking neural network to sustain itself. In Figure 4.6b, spikes

from neurons 1 and 4 arrive simultaneously at neuron 2, causing neuron 2 to spike. This spike

travels to neuron 3, arriving at the same time the original spike from neuron 1 reaches neuron

3. The simultaneous arrival of these spikes causes neuron 3 to spike. This spike may go on

to interact with more neurons, continuing the pattern. Any time neurons 1 and 4 spike with

that same temporal offset, the rest of the sequence will follow with the same temporal relation­

ships, as long as the conduction delays and synaptic weights remain the same. In this way, we

can think of this pattern as a unified whole, a “polychronous group.” Thus, the spikes defining

a polychronous group are locked together by the physical structure of the spiking network into

precise temporal relationships. However, these groups have an important degree of freedom:

their occurrence in time. The pattern of spikes defining a polychronous group specifies when

spikes must occur in relation to each other, but not their absolute time. Given a set of n spikes,

we need n real numbers to specify when each spike occurs. Another way to specify the spikes

is to arbitrarily pick one spike as a “reference” spike. Every other spike can be specified by

its time of occurrence relative to this reference spike. These relationships require n − 1 real

numbers. By specifying the absolute time of occurrence of the reference spike, we automati­

cally specify the absolute times of the other spikes. By leaving its absolute time unspecified,
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there is a 1­dimensional space of possible times for the reference spike. Each one of these

possible reference spike times yields a set of absolute spike times for the rest of the spikes in

the group that respect the temporal relations between spikes. Thus, these spikes behave as a

cohesive pattern that can occur anywhere in time: a polychronous group. This consideration

allows us to give a precise definition of a polychronous group, namely, a particular kind of

one­dimensional subset of a space of spike times.

The set of possible spike times for a set of n spikes is in bijective correspondence with

the points of Rn. A polychronous group is a set of spikes with fixed offsets relative to a refer­

ence spike. For concreteness, consider 3 spikes and label their spike times as t1, t2, t3. Arbi­

trarily choose t1 to be the reference spike. Then, the fixed temporal offsets imply

t2 = t1 + d21

t3 = t1 + d31

for some real numbers d21 and d31. Choosing a parameter t, interpreted as the time of occur­

rence of the first spike, these relationships can also be expressed as

⎡

⎢⎢⎢⎢⎢⎢⎣

t1

t2

t3

⎤

⎥⎥⎥⎥⎥⎥⎦
= t

⎡

⎢⎢⎢⎢⎢⎢⎣

1

1

1

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

0

d21

d31

⎤

⎥⎥⎥⎥⎥⎥⎦

This is the equation for a line in R3. We could use many different parametrizations of this

line, but it is the geometry of this line, not the parameterization, that defines the polychronous

group.

110



1 ms 3 ms
2 ms

2 ms

2 ms

2 ms

1 ms

1 ms

Figure 4.1: An example minimal polychronous network. The times next to connec­
tions represent axonal conduction delays. While given in milliseconds here, the unit is
arbitrary. This network is supplemented by the spiking condition that any two coinci­
dent spikes on a neuron cause that neuron to spike.
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4.3 Minimal Polychronous Model

In this section we give a formal definition of the minimal spiking network model in

(Izhikevich, 2006) that is used to demonstrate polychronization. This model is the simplest

model that exhibits polychronization, and so we refer to it as the Minimal Polychronous Model.

A spiking neural network consists of neurons and one­way synaptic connections be­

tween them. Thus, specifying the model starts by specifying a directed graph, consisting of a

set V of neurons (vertices), and a set E of synapses (edges). The orientation of the synapses

is specified by a pair of functions between these sets, s, t : E → V . The function s maps

each edge to its source vertex, and the function t maps each edge to its target vertex. In neu­

roscience parlance the function s maps a synapse to its presynaptic neuron, and the function t

maps a synapses to its postsynaptic neuron. The physical structure of the graph is determined

entirely by these sets and functions. The spiking dynamics are determined by additional struc­

tures defined over the directed graph.

The first additional structure is the set of synaptic delays. These delays are represented

by positive real numbers associated to each synapse. Mathematically this requires an addi­

tional function d : E → R+ that assigns a delay to each synapse in the directed graph.

The next additional structure is a set of rules for transforming presynaptic spikes into

postsynaptic spikes. In most spiking neural networks, this is given by differential equations

that describe the evolution in time of the various state variables associated to each neuron,

along with conditions for spike initiation, reset, and the influence of synaptic conductances.

There is much flexibility here, as the numerous spiking network models present in the liter­
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ature can attest. However, what all spiking models have in common is that certain temporal

patterns of presynaptic activity causally drive a postsynaptic neuron to produce a spike at a

specific time, while other patterns do not. This is the essential property that the minimal poly­

chronous model captures.

To capture this property, for each neuron in the model we associate a set of spiking

conditions. A spiking condition is a subset of the set of synapses onto a given neuron. The

interpretation of a spiking condition is that the coincident arrival of spikes from the presy­

naptic neurons in a spiking condition drives a spike from the postsynaptic neuron. Because

coincident arrival is what counts, the synaptic delays imply that specific temporal patterns of

presynaptic activity yield the required coincident arrivals of spikes to elicit a spike from the

postsynaptic neuron.

The requirement of coincident arrival is related to the idea of temporal integration in

spiking models. In these models, synaptic inputs drive contributions to the membrane po­

tential that are filtered by the RC properties of the postsynaptic membrane. Due to the time

constant of this filter, synaptic inputs that arrive within a certain window of one another will

sum together, while those outside of these windows will not, because the contribution of the

first will have decayed. Thus, the minimal polychronous model can be seen as a limit of an

integrate and fire model in which these integration windows become vanishingly small. Phys­

iological neurons are subject to thousands of synaptic inputs, causing them to enter high­

conductance states (Destexhe et al., 2003). In these states, the membrane time constant is

short, meaning that neural activity is significantly driven by coincident activity (Rossant et al.,

2011). This motivates the simplification inherent in the definition of the spiking conditions.
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Another aspect of the minimal polychronous model that differs from most other spik­

ing models is the lack of explicit synaptic weights. Conceptually, synaptic weights are real

values that quantify the degree of causal influence of presynaptic spiking activity on a post­

synaptic neuron. The minimal polychronous model captures this causal relationship by di­

rectly specifying the input patterns that drive the postsynaptic neuron to spike, so a real­valued

synaptic weight is not needed. However, specifying synaptic weights in typical spiking net­

works has ultimately the same effect: selecting particular input patterns that drive a postsy­

naptic spike. The spiking conditions in the minimal polychronous model are a generalization

of the effect of synaptic weights. In biological neural networks, the synapse is itself a com­

plex dynamical system, and reducing its influence to a single numerical value might introduce

unnecessary or unrealistic constraints on the kinds of models and theories that are produced

to account for this synaptic influence. The minimal polychronous model captures the causal

structure underlying both biological synapses and numerical synaptic weights, and this gener­

ality allows it to fit between both frameworks.

We end this section with a summary of the formal definition of a minimal polychronous

model.

Definition. A minimal polychronous network consists of

1. A directed graph G = (V,E, S, T ) with vertices (neurons) V , edges (synapses) E, a

source (presynaptic) function S : E → V , and a target (postsynaptic) function T : E →

V .

2. A function D : E → R+ specifying the propagation delays along each connection.
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3. For each u ∈ V , a subset Cu ⊂ {0, 1}|Pre(u)| of binary vectors that specify spiking con­

ditions, or presynaptic coincidence codes, which are patterns of coincident presynaptic

activity that cause neuron u to spike.

4.3.1 Example

Here we introduce an explicitly defined minimal polychronous model that will serve as

a running example of the techniques in the rest of this paper. Figure 4.1 illustrates the model.

There are four neurons, with directed connections illustrated by the arrows. The numbers ad­

jacent to each neuron give the delay associated to that synapse, in arbitrary time units. This

network structure is supplemented with the global spiking condition that any two or more co­

incident inputs to any neuron drive it to spike.

4.4 Synaptic Polynomials

The structure of a spiking neural network determines the dynamics of the network by

constraining the possible spiking patterns. Even under these constraints, the space of possible

patterns is enormous. We refer to this space of possible spiking patterns of a given network as

the network’s spiking repertoire. Since the constraints determine the repertoire, studying spik­

ing neural networks by way of constraints is a fruitful way of managing their combinatorial

enormity.

The constraints imposed by the minimal polychronous model are the finite signal prop­

agation delays and the spiking conditions. Constraints are often synonymous with equations,

and solutions of these equations satisfy the constraints. Here we write the constraints imposed
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by the minimal polychronous model as special systems of polynomial equations. This links

algebraic geometry to the study of polychronous spiking networks.

We associate a polynomial to each synapse in the minimal polychronous model. For an

edge connecting neuron j to neuron i, we associate

pij = ti − (tj + dij)

where dij is the conduction delay from neuron j to neuron i.

This polynomial is an element of the ring R[ti, tj]. Roots of this polynomial, such that

pij = 0, are spike times ti and tj that are consistent with the conduction delay between neu­

rons i and j. Thus, this polynomial picks out possible spike times for these two neurons that

satisfy a constraint imposed by the structure of the polychronous network.

Polynomials of this form are fundamental to the algebraic description of polychroniza­

tion, so we give them a formal definition.

Definition. A synaptic polynomial is a polynomial in R[ti, tj] of the form ti − (tj + dij) with

dij ∈ R+. Given a minimal polychronous modelM , to each edge e ∈ E with presynaptic

neuron i = S(e) and postsynaptic neuron j = T (e), we associated the synaptic polynomial

ti − (tj +D(e)) Given a synaptic polynomial pij = ti − (tj + d), we say that p has target i and

source j.

Since each synapse has an associated synaptic polynomial, and each spiking condition

is a collection of synapses with common postsynaptic neuron, each spiking condition yields a

system of polynomial equations. For each such system, the number of indeterminates is equal
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to the number of presynaptic neurons, plus one for the postsynaptic neuron. However, there is

only one equation for each presynaptic neuron. This means the space of solutions to this sys­

tem has one degree of freedom and is geometrically a line. Specifying the absolute spike time

of any neuron in the system determines the absolute spike times of all the others. Thus, this

solution space is a polychronous group in the sense of the discussion in section 2. The poly­

chronous groups emerging from individual spiking conditions constitute the most fundamental

polychronous groups. All other polychronous groups must be built from the spiking condi­

tions, because the spiking conditions determine the spiking dynamics of the network. As such,

we call these “elementary polychronous groups” and give them a precise definition.

Definition. An elementary polychronous group on neuron i, E, is a set of synaptic polynomi­

als E = {p1, . . . , pk} each with target i.

4.4.1 Example

Because these elementary polychronous groups identify all the ways that individual

neurons can spike, every spike train necessarily decomposes into elementary polychronous

groups. In Figure 4.2 we give the elementary polychronous groups associated to the minimal

polychronous model depicted in Figure 4.1. There are four elementary polychronous groups

in this model, since each neuron has two presynaptic partners, and a neuron is triggered by

the simultaneous arrival of spikes from these partners. . Each elementary polychronous group

consists of two synaptic polynomials.
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Neuron 1 Neuron 2

p11 = t1 − (t3 + 1)

p12 = t1 − (t2 + 2)

p21 = t2 − (t1 + 2)

p22 = t2 − (t4 + 1)

Neuron 3 Neuron 4

p31 = t3 − (t2 + 1)

p32 = t3 − (t4 + 2)

p41 = t4 − (t1 + 2)

p42 = t4 − (t3 + 3)
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Figure 4.2: Elementary polychronous groups defined by the example network. Black
lines connecting spikes represent the causal interactions leading to the final spike. The
absolute times on the time axis are unspecified because the polychronous groups could
happen at any time.
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4.5 Polychronous Rings

We have established that polychronous groups arise from the constraints placed on the

dynamics by the physical structure of the spiking network. These constraints are expressed

mathematically with systems of polynomial equations. The solution spaces of these systems

are geometric entities that represent the polychronous groups. We exploit the duality between

algebra and geometry to give an algebraic description of polychronous groups.

Given an elementary polychronous group Ei on neuron i, we can form the set of inde­

terminates appearing in the system: {ti, tj1 , . . . , tjk}. Thus, the polynomials in Ei live in the

polynomial ring R[ti, tj1 , . . . , tjk ]. The polynomials in Ei generate an ideal in this ring,

Ii = {α1pi1 + · · ·+ αkpik|αt ∈ R[ti, tj1 , . . . , tjk ]}

Because this is an ideal, we can form the quotient ring Ai = R[ti, tj1 , . . . , tjk ]/Ii. This

quotient ring is an algebraic representation of the geometric polychronous group associated to

Ei. To fix our terminology, we give definitions of elementary polychronous ideals and rings

Definition. An elementary polychronous ideal is an ideal generated by the polynomials defin­

ing an elementary polychronous group.

Definition. An elementary polychronous ring is the quotient ring R/I where I ⊂ R is an

elementary polychronous ideal.

By virtue of being quotients of commutative polynomial rings, elementary polychronous rings

also have the structure of commutative algebras.
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4.5.1 Example

The elementary polychronous rings obtained from the model of Figure 4.1 yield the

following elementary polychronous rings

A1 = R[t1, t3, t4]/⟨p11, p12⟩

A2 = R[t2, t1, t4]/⟨p21, p22⟩

A3 = R[t3, t2, t4]/⟨p31, p32⟩

A4 = R[t4, t1, t3]/⟨p41, p42⟩

4.6 Composing elementary polychronous groups

The interesting features of polychronization come from their compositionality. If a

polychronous group contains a subpattern of spikes that matches a subpattern in another poly­

chronous group, then activation of the first polychronous group can lead to activation of the

second, and the polychronous groups may be chained together. A single neuron may belong to

multiple polychronous groups, and a spike from a neuron may be part of several groups simul­

taneously. To understand polychronization, it is necessary to have a mathematical formulation

of this compositional structure. Category theory provides a language for formalizing and un­

derstanding compositionality, and in this section use category theoretic ideas to characterize

the compositional structure of polychronous groups via their algebraic representations.

Given two systems with inputs and outputs, composing them means identifying (’glu­

ing’) the outputs of one system with the inputs of the other. In spiking networks, polychronous
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groups are glued together via spikes: a set of spikes with a particular pattern in polychronous

group A is time­aligned with and locked (glued) to a matching pattern of spikes in polychronous

group B.

The ring associated to a polychronous group represents a 1­dimensional space of pos­

sible spike times that respect the pattern that defines the polychronous group. Now, the solu­

tion space for two independent polychronous groups must be two dimensional, as there is one

free parameter for each polychronous group: the time times at which each pattern occurs. The

two polychronous groups can slide past each other in time, and, importantly, overlap. Alge­

braically, this operation on polychronous groups is described by the tensor product of commu­

tative algebras. Gluing two polychronous groups along common spikes is achieved by identi­

fying the common spikes by means of an equivalence relation defined on this tensor product.

Definition. Given two commutative R­algebras A and B, the tensor product A ⊗R B is the

commutative algebra made up of elements of the form a ⊗ b, a ∈ A and b ∈ B. The structure

of this algebra is defined by

• 1A⊗RB = 1A ⊗ 1B

• a⊗ b+ a′ ⊗ b = (a+ a′)⊗ b

• a⊗ b+ a⊗ b′ = a⊗ (b+ b′)

• (a⊗ b)(̇a′ ⊗ b′) = aa′ ⊗ bb′

There are obvious homomorphisms A → A⊗R B and B → A⊗R B given by a (→ a⊗ 1B and

b (→ 1A⊗b. For polynomial rings A1 and A2, the tensor product can be obtained by forming all

formal products of polynomials from each ring ensuring each ring has unique indeterminates.
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Figure 4.3: Gluing polychronous groups A2 and A3. Group A2 is in red and A3 in
blue. A: Unconstrained, the two polychronous groups are free to slide past each other
in time. However, regardless of their absolute timing they share common relative tim­
ing for neurons 2 and 4 (dotted arrows). The polychronization principle states that
these groups can be combined into a larger polychronous group. B: The combined
polychronous group obtained by constraning the spikes from neurons 2 and 4 to over­
lap between the two subgroups. Algebraically, this gluing is achieved by taking a quo­
tient by another polynomial ideal. Constrained in this way, the two groups are not free
to slide past each other in time, but must remain locked together, as a group.
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4.6.1 Gluing constraints

If two polychronous groups share a subpattern of spikes, then when the polychronous

groups are aligned relative to each other in time such that this common pattern overlaps, the

absolute spike times from the spikes in each group’s matching subpattern will be identical.

To lock these two groups together, we add the constraint that the times for the spikes in the

common subpatterns are identical. In our running example, polychronous groups A2 and A3

share a common pattern defined by the spikes from neurons 2 and 4. This situation is de­

picted in Figure 4.3a with the dotted arrows. Because they share the same temporal pattern

between the groups, the spikes from group A2 can trigger group A3, and result in a larger

polychronous group. This gluing is depicted in Figure 4.3b, where the spikes from neurons 2

and 4 are shaded both red and blue to indicate they are shared by the two separate elementary

polychronous groups.

Constraining separate spikes from neurons 2 and 4 to align amounts to taking the quo­

tient by the ideal ⟨t2−s2, t4−s4⟩. Thus the ring corresponding to this composed polychronous

group is given by

A2 ⊗R A3/⟨t2 − s2, t4 − s4⟩ ≃ R[t2, t1, t4, s3, s2, s4]/⟨p21, p22, p31, p32, t2 − s2, t4 − s4⟩

Iterating this process creates algebraic representations of ever larger polychronous

groups by attaching smaller polychronous groups along common subpatterns. This process

embodies the essence of the idea of polychronization. In the next sections, we will use cate­

gory theory to systematize this process.
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Colimits in the category of commutative R­algebras contain the idea of forming the

quotient of a tensor product. In fact, the bare tensor product of such algebras is a colimit of a

discrete pair of R­algebras as in the following diagram.

A⊗R B

A B
φA φB

where φA sends a ∈ A to a⊗1B and φB sends b ∈ B to 1A⊗b. The coproduct (tensor product)

of two polychronous rings

A = R[ti1 , . . . , tik ]/⟨{pi(t)}⟩

and

B = R[tik+1
, . . . , tik+l

]/⟨{qi(t)}⟩

is given by

A⊗R B = R[ti1 . . . , tik , sik+1
, . . . , sik+l

]/⟨{pi(t)}, {qi(s)}⟩

That is, the indeterminates are extended and the constraints that define each polychronous

group are applied concurrently, with the indeterminates appropriately renamed. As we have

seen, the coproduct corresponds to the case where two polychronouos groups are free to slide

past one another in time. Now, consider a diagram such as

A B

R[x]

It is generally true that colimits can be described via coproducts and coequalizers. The colimit
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of this diagram corresponds to the coequalizer of (diagram) The coequalizer is given by quoti­

enting the coproduct by the ideal generated by relations of the form f(r)− g(r) for r ∈ R[x].

As mentioned, gluing polychronous groups together along common spikes amounts

to quotienting the tensor product of their corresponding rings by ideals generated by relations

of the form ti − si, where i indicates the neuron with spikes that match up in both groups.

Consider the process of gluing groups A2 and A3 in the running example above. We form the

diagram
A2 A3

R[x, y]
f g

The R­algebra morphisms f and g are defined by their actions on x and y in R[x, y]. We de­

fine f through the assignment f(x) = t2, f(y) = t4 and g through the assignment g(x) = s2,

g(y) = s4, and then extend by linearity. Under this definition, the colimit for this diagram

becomes
A2 ⊗R A3/⟨t2 − s2, t4 − s4⟩

A2 A3

R[x, y]
f g

This is precisely the ring corresponding to the glued polychronous group illustrated in Figure

4.3.

From this example, we see that pushouts produce rings that result from gluing two

polychronous groups along common spikes, where the common spikes are identified by the

morphisms f and g. No matter which homomorphisms are used as f and g in this diagram,

the colimit will exist. However, if the two polychronous groups do not align along the spikes
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identified by f and g, then the resulting constraints will have no common solution. Thus, the

ideal generated by these constratins will be the whole polynomial ring R[ti1 , . . . , tik ], and so

the colimit will be the zero ring. This is the first indication of a separation between the syntax

of polychronous groups and their semantics. We can always write down a hypothetical combi­

nation of polychronous groups, but it may turn out that such a combination does not actually

exist, because of the constraints put on the dynamics by the structure of the network. This is

similar to how we can always construct an arbitrary syntactically correct computer program in

some programming language, but when compiled it may not even run.

4.6.2 Presheaves and Free Cocompletions

We know now that gluing polychonronous groups along common spikes can be ex­

pressed as a colimit. All polychronous groups can be built from elementary polychronous

groups by constructing all the possible ways of gluing the elementary polychronous groups

together. In this section, we describe constructions for freely gluing together elementary poly­

chronous groups. This will yield a categorical description of all possible polychronous groups

for a given network.

To motivate these constructions, we first consider directed graphs. As we have already

seen in the definition of a minimal polychronous model, a directed graph consists of two sets

and two functions between these sets. The two sets are identified with sets of edges and ver­

tices, and the functions identify the source and target vertex associated with each edge. In

some sense, all directed graphs are built from one common building block: an arrow (Vigna,

2003). Larger directed graphs are made by gluing arrows together.
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Now, a presheaf G on this category is simply a contravariant functor from this cate­

gory to the category of sets. What this means is that a presheaf is equivalent to the data of a

set G(V ), a set G(E), and two functions G(s), G(t) : G(E) → G(V ). This is precisely the

data that defines a directed graph. So directed graphs are equivalent to presheaves on this base

category.

Changing the base category allows us to form more general structures than directed

graphs. In all cases, the mechanics of the construction is the same: we use the base category

to define our “building blocks” and the rules by which they join together. Then we construct

every possible structure consistent with those rules. Since this construction is the same re­

gardless of the base category used, it is an example of a universal property. Specifically, it is

known as the free cocompletion. It should be thought of as freely adding all the possible col­

imits of diagrams in the base category.

Theorem 4.6.1. Given a small category C, a cocomplete category D, and a functor F : C →

D, there is a unique functor F̂ : SetCop → D such that the following diagram commutes

C D

SetCop

Y

F

F̂

Where Y is the Yoneda embedding, Y (c) = Hom(−, c)

Constructing a formula for the free cocompletion begins by defining the category of

elements of a presheaf P , denoted
∫
P .

Definition. Given a presheaf P : Cop → Set, the category of elements
∫
P is the category
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consisting of

• Objects are pairs (c, p) for each c an object of C and each p ∈ P (c)

• Morphisms (c′, p′) → (c, p) are morphisms u : c′ → c such that p′ = Pu(p).

There is an important projection functor πP :
∫
P → C given by

πP (c, p) = c

The category of elements of a presheaf P serves as the index category for a diagram whose

colimit is isomorphic to P . It is an important theorem that every presheaf of sets on a small

category can be expressed as a certain colimit:

Theorem 4.6.2. For C a small category, every presheaf P ∈ SetCop is isomorphic to the col­

imit

P = colim
(∫

P
πP−→ C Y−→ SetCop

)

Now, if we define the extension functor using the formula

F̂ (P ) = colim
(∫

P
πP−→ C F−→ D

)

then it turns out that F̂ is a left adjoint (Mac Lane and Moerdijk, 1994), and so preserves

colimits. Since every presheaf is a colimit, and colimits are unique up to isomorphism, F̂ is

unique up to isomorphism. This establishes the universal property of the free cocompletion.

General polychronous groups are built from elementary polychronous groups by glu­

ing the elementary polychronous groups together subject to certain syntactic rules. We can use
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the universal property of the free cocompletion to study all the possible polychronous groups

in a given spiking network. This requires defining a new base category that captures the ele­

mentary polychronous groups and their rules for composition.

Definition. Given a minimal polychronous model, the polychronous base category PG is de­

fined to have

• Objects xi for each neuron i.

• Objects Aα for each elementary polychronous group.

• Morphisms fiα : xi → Aα if neuron i spikes in elementary polychronous group Aα.

• Requisite identity morphisms on each object.

Figure 4.4 illustrates the category PG for the running example network
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Figure 4.4: Illustration of the category PG for the example polychronous network.
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Using the Yoneda embedding we can pass to the category of presheaves of sets on PG.

This is exactly analogous to the construction of directed graphs, but now we have many dif­

ferent kinds of ”edges” and ”vertices” and many non­trivial relationships between them. This

category is denoted SetPGop
and a presheaf F ∈ SetPGop

is defined by the data

• A set F (xi) for each neuron i.

• A set F (Aα) for each elementary polychronous group Aα.

• For each morphism fiα : xi → Aα, a function F (fiα) : F (Aα) → F (xi).

Note that some of these sets may be empty. The interpretation is that the set associated to

each elementary polychronous group is the set of instances of that elementary polychronous

group in the larger, glued polychronous group. The sets associated to each neuron represent

the spikes from that neuron along which multiple elementary polychronous groups may be

joined. The functions mapping the elementary polychronous group sets to sets of neurons de­

fine how different instances of polychronous groups are matched up along common spikes.

Figure 4.5 presents an example of such a presheaf, in this case depicting the gluing of elemen­

tary polychronous groups A2 and A3 as described above.
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Figure 4.5: A presheaf in SetPGop
that represents stitching elementary polychronous

groups A2 and A3 along spikes from neurons 2 and 4.
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Having defined the PG base category and its associated category of presheaves of sets,

we can begin to add semantics. To do this we define a functor S : PG → CAlgR

Definition. Given a minimal polychronous model, the spiking semantics functor S : PG →

CAlgR is defined by

• S(Aα) = Aα, the elementary polychronous ring associated with elementary poly­

chronous group Aα.

• S(xi) = R[xi], the polynomial ring on a single indeterminate xi.

• For each morphism f : xi → Aα, the morphism S(f) : R[xi] → Aα is the unital

R­algebra homomorphism that sends xi to [ti] ∈ Aα.

• The implicit identity morphisms in PG are sent to identity morphisms in CAlgR

The category SetPGop
satisfies the universal property of the free cocompletion, meaning given

the functor S into the cocomplete category CAlgR there exists a unique functor Ŝ making the

following diagram commute
PG CAlgR

SetPGop

Y

S

Ŝ

In fact, the functor Ŝ is given explicitly by

Ŝ(P ) = colim
(∫

P
πP−→ PG S−→ CAlgR

)

where P ∈ SetPGop
is a presheaf and

∫
P is the category of elements of P .
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This is exactly the colimit that corresponds to gluing together elementary polychronous

groups indexed by
∫
P . The extension Ŝ maps presheaves to commutative algebras, and in the

language of polychronization it assigns the appropriate polychronous ring to each presheaf

interpreted as a syntactic combination of elementary polychronous groups. Because SetPGop

is universal, Ŝ it is uniquely defined up to isomorphism. This is another way of saying that

the structure of the neural network uniquely determines the possible polychronous groups and

hence the spiking dynamics.
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Figure 4.6: A larger polychronous graph and its corresponding polychronous group
generated by the example network. A: The polychronous graph is a depiction of a
functor (presheaf) S : PGop → Set. B: This functor corresponds to a colimit with
spiking semantics illustrated by this spike raster. Colors label corresponding elemen­
tary polychronous groups from which the larger group is built.
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4.7 Discussion

This chapter introduces a compositional, categorical theory of polychronization in

spiking neural networks. Here we summarize the main points of the approach.

• A polychronous spiking network defines a category PG that inventories the elementary

polychronous groups and their relationships to the individual neurons in the network.

• These elementary polychronous groups are the atoms from which larger polychronous

groups and whole spike trains are constructed

• A polychronous spiking network also defines a functor F : PG → CAlgR that defines

the semantics associated to the elementary polychronous groups. Each elementary poly­

chronous group is associated to a polynomial ring that is interpreted as the coordinate

ring obtained from the ideal of constraints yielded by the temporal pattern of spikes in

the elementary polychronous group.

• The Yoneda embedding of PG into SetPGop
gives the free colimit completion of PG.

This presheaf category consists of all the possible syntactical combinations of elemen­

tary polychronous groups. That is, a presheaf consists of elementary polychronous

groups putatively glued together via shared spikes.

• By the universal property of the free colimit completion, we automatically obtain the

unique Yoneda extension of the semantics functor F : F̂ : SetPGop → CAlgR. This func­

tor gives the polynomial ring associated to every syntactic combination of elementary

polychronous groups.
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• If some syntactic combination is forbidden by the semantics of temporal pattern of ac­

tivity implied by the combination, F̂ will yield the zero ring.

Expressing polychronization in the domain of category theory provides a mathemati­

cally precise formulation of the phenomenon that exposes many theoretical “handles” which

will support deeper investigations of the topic. For example, as a category of presheaves of

sets on a small category, SetPGop
has the structure of the topos. As a result, there is a rich in­

ternal logical language defined precisely by the properties of polychronous spiking activity.

This is potentially connected to the idea of “sensory invariants” in subjective physics (Brette,

2013), which are logical laws that embody the invariant structure in the environment that Gib­

son (Gibson, 2014) postulated as fundamental to perception. The algebraic side of this theory

of polychronization connects spiking neural networks with many powerful tools from com­

putational algebra (Cox et al., 2015). Future research may show these algorithms solving fun­

damental computational questions such as enumerating all the possible polychronous group

given a particular network structure, or enumerating all the possible network structures con­

sistent with a particular set of polychronous groups. Such algorithms would allow for direct

contact with experimental data and significantly enhance our understanding of spiking dynam­

ics in biological neural networks.
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