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Abstract

The introduction of deep learning and CNNs to image recogni-
tion problems has led to state-of-the-art classification accuracy.
However, CNNs exacerbate the issue of algorithm explainabil-
ity due to deep learning’s black box nature. Numerous explain-
able AI (XAI) algorithms have been developed that provide de-
velopers insight into the operations of deep learning. We aim
to make XAI explanations more user-centric by introducing
modifications to existing XAI algorithms based on cognitive
theory. The goal of this research is to yield intuitive XAI ex-
planations that more closely resemble explanations given by
experts in the domain of bird watching. Using an existing base
XAI algorithm, we conducted two user studies with expert bird
watchers and found that our novel averaged and contrasting
XAI algorithms are significantly preferred over the base XAI
algorithm for bird identification.
Keywords: Explainable AI; Explanation; Image Classification

Introduction
Significant progress in image classification using deep learn-
ing (Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio,
& Hinton, 2015) has created considerable interest in applying
these techniques to a broad range of applications including
medical diagnosis and classification of animals. Furthermore,
a variety of eXplainable Artificial Intelligence (XAI) methods
have emerged for explaining image classification to develop-
ers or end users (Lapuschkin et al., 2016; Chattopadhyay et
al., 2018). These approaches typically highlight regions of
the image that are important to the classification decision.

As many researchers turned their attention to XAI, Miller
et al. (2017) argued

While the re-emergence of explainable AI is positive,
this paper argues most of us as AI researchers are build-
ing explanatory agents for ourselves, rather than for the
intended users. But explainable AI is more likely to suc-
ceed if researchers and practitioners understand, adopt,
implement, and improve models from the vast and valu-
able bodies of research in philosophy, psychology, and
cognitive science; and if evaluation of these models is
focused more on people than on technology.

In spite of this, most XAI papers, even those with user stud-
ies, focus on developer-centric explanations. Langley (2021)
draws a distinction between these two purposes for explana-
tions. Here, we explore how cognitively motivated modifi-

cations to an existing XAI algorithm can result in increased
acceptance to end-users.

Our motivation for exploring principled modifications that
might apply to any XAI is twofold. First, we seek to test
how changes to existing explainability algorithms based on
known human explanation and reasoning practices can im-
prove end-user experiences. Second, we seek to push against
the methodological trend where highly dissimilar explainabil-
ity types are compared and instead focus on the principles be-
hind how a cognitively-motivated change to any existing ex-
planation approach impacts the quality of explanation. This
can bring an understanding of how specific properties or tech-
niques may improve visual explanations for image classifica-
tion more generally.

Deep Learning and XAI
Within the domain of deep learning, convolutional neural net-
works (CNNs) are specialized for image recognition. CNNs
are able to capture complex, non-linear relationships present
in images. The basic CNN architecture consists of successive
pairs of convolutional and pooling layers: convolutional lay-
ers apply a filter to the image to yield feature maps. These
feature maps then pass through an activation function, which
serves to introduce non-linearity to the network. The output
image is then passed through the pooling layer to reduce the
dimensionality of the image by downsampling pixels in close
proximity to each other. One may serially add pairs of convo-
lutional and pooling layers to their desire before flattening the
last output to feed into a fully connected layer, which clas-
sifies the image using an activation function. The network
may be further trained by using the back-propagation algo-
rithm where the weights of the network may be fine-tuned for
greater classification accuracy (Kim, 2017). Convolutional
neural network architectures contribute to the obscured, black
box nature of deep learning algorithms, however, thus limit-
ing their value.

There have been several general approaches to gaining in-
sight into why deep learning algorithms arrive at a certain
classification through XAI:

Increasing Transparency of Opaque Methods Research
in this field identifies regions of importance for the classi-
fication of images. Some approaches, such as GradCAM
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Figure 1: Heatmaps from GradCAM on the same image from
two deep nets. It can be observed that entirely disparate areas
of the bird are emphasized as important areas for classifica-
tion.

(Selvaraju et al., 2017) analyze the activation of hidden units
to visualizing the regions of input that are “important” for
predictions from these models. Others, such as LRP (Binder
et al., 2016) propagate relevance information from the output
layer of the neural network to input layer to find the regions
most responsible for activating the output.

Model Agnostic (Black Box Methods) Instead of expos-
ing the logic of an underlying model, model agnostic meth-
ods make changes to the image and examine the changes to
the decisions made by any “black box” algorithm. Black box
XAI algorithms include occlusion sensitivity (Zeiler & Fer-
gus, 2014), and Local Interpretable Model-Agnostic Expla-
nations, known as LIME (Ribeiro, Singh, & Guestrin, 2016).

Our observation from applying several XAI algorithms and
several architectures revealed some common problems: far
too often, the XAI algorithms missed some features that bird
guides considered important in distinguishing one bird from
another. This may even vary among different runs with dif-
ferent random weights: e.g., sometimes the XAI algorithm
will focus on the wing area, other times the head, and some-
times both. Figure 1 illustrates an example of this problem
using GradCAM. In addition, the XAI algorithms occasion-
ally highlighted areas of the bird image that bird guides do not
consider particularly important. Even so, these highlightings
may give insight into how the XAI algorithm operates, which
lends itself to a developer-centric focus for the algorithm.

We propose that defects of XAI algorithms can be alle-
viated through leveraging cognitive theories related to what
makes for a satisfactory explanation and applying them to
XAI algorithms. By addressing the pitfall that XAI algo-
rithms often produce explanations that are not well-aligned
with human experts, we aim to pivot away from the estab-
lished developer-centric focus of XAI and towards a user-
centric focus.

XAI and Cognition
Significant work in the fields of cognitive science, psychol-
ogy, and philosophy have contributed to theories of explana-
tion (Miller, 2019; Hoffman et al., 2018). Because the studies
in this paper focus on the task of classifying birds by species,
we start with a short discussion on classification. Murphy
(2004) goes into much more details on these issues. We dis-

cuss two issues here: contrasting explanations and discrimi-
native classification.

One of our studies and algorithm modifications is moti-
vated by the importance of drawing contrasts. In the philos-
ophy literature, Lipton (1990) differentiates the fact (which
did occur) from the hypothesized event which did not occur,
called the foil. Miller (2019, 2021) summarizes the cognitive
literature on the utility of contrasts in explanation. In Arti-
ficial Intelligence, Pazzani et al. (2018) and Le et al. (2020)
have argued for explainable AI algorithms that are sensitive
to contrasting categories. Contrasts occur in tasks such as dif-
ferential diagnosis or distinguishing between easily confused
animal species. In these cases, explanations tend to focus on
features that differentiate the true fact class from the related-
but-false foil class.

The second study focuses on whether it is better to focus
on one way to discriminate between categories or to include
all features with high cue validity (Rosch & Mervis, 1975). In
discrimination learning, a single way of separating one class
from others is found (Medin, 1975). Neural nets are exam-
ples of discrimination learning. A single network will over-
look features with high cue validity if they are not necessary
to distinguish an example in one category from examples in
other categories. Furthermore, a single network may find an
irrelevant feature that is not shared with other networks. We
investigate whether by combining the results from an ensem-
ble of networks, we may mitigate these problems.

Several recent studies have focused on end-user evaluation
of XAIs as well. Gunning et al. (2021) summarize a variety
of studies associated with DARPA’s XAI program. Numer-
ous studies showed that users prefer systems that provide de-
cisions with explanations over systems that provide only de-
cisions. However, since many alternative explanation strate-
gies have been compared to the strategy of having no expla-
nation, these studies yield no insight into the nature of ex-
planation. Other studies (Muddamsetty et al., 2021; Petsiuk,
Das, & Saenko, 2018) compare different algorithms, but the
differences are not intended to show why users prefer one al-
gorithm to another.

An interesting study by Nourani et al. (2019) on images
with manually created highlights showed that users could dis-
tinguish between highlighting on relevant and irrelevant parts
of the image. Relevant regions for identifying dog species in-
cluded the eyes and ears while the trees in the background are
irrelevant. XAI systems that emphasized less relevant areas
were judged to be less accurate than they actually were.

Here, we explore two minor variations of an existing XAI
algorithm. In one variation, the algorithm is changed to
emphasize regions that distinguish one class from another
closely-related (contrasting) class. In the other variation, we
use an ensemble of several neural nets to classify, and we
combine the explanation produced by each network. This al-
lows features with high cue validity to be identified even if
there are alternative ways to discriminate categories that do
not include them.
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The XAI explanations tested in this work were motivated
by cognitive theories, such as cue validity and work on con-
trastive explanations. We hypothesize these explanations will
be preferred by end-users of a system due to their propensity
to generate more human-meaningful information.

User Studies of XAI for Image Classification
In this paper, we aim to address the shortcomings of XAI al-
gorithms by exploring slight modifications to an existing XAI
algorithm and how the modifications impact preference for
the novel algorithm. We used with the MATLAB implemen-
tations of VGG16 for image classification (Simonyan & Zis-
serman, 2015) and ImageLIME for XAI (imageLIME, 2022).
ImageLime with the default superpixel algorithm and did not
experiment with alternative superpixel approaches (Schallner
et al., 2019). We consider two enhancements to using VGG16
and LIME: averaging explanations over multiple network
models and explaining contrasting categories—henceforth re-
ferred to as averaged LIME and contrasting LIME.

We conducted two user studies to determine the preference
for standard LIME-generated explanations compared to ex-
planations generated from averaged LIME and contrasting
LIME. We solicited the opinion of bird watchers on which an-
notation methods produced the best heatmaps for highlighting
areas of birds that are pertinent to identification. In order to
gauge the generalizability of the heatmaps beyond tools for
experts, we additionally asked bird watchers if they would
recommend the heatmap to others for identification of the
bird species. The bird watchers were also asked to classify
the bird species to see if the aid of either novel explanation
method resulted in increased classification accuracy.

Methods
Heatmap Algorithms
We consider two changes to how LIME is used with VGG16.
Although our techniques are general and work with any tech-
nique for heatmaps, we selected LIME in our studies be-
cause it finds regions with coarse quantum differences in im-
portance as opposed to a continuous gradient of importance.
These quantum areas often correspond to regions of the bird
such as the bill or an area of the wing.

Averaging Explanations Over Multiple Network Models
Ensemble learning (Sagi & Rokach, 2018) has been shown to
increase the accuracy of prediction by averaging over multi-
ple models. Here, we focus on using ensembles to improve
the explanation. Instead of a single run of VGG16, we run
VGG16 several times, compute the relevance of each pixel of
each run separately, and then average over several runs. The
motivation for combining explanations is that although each
run finds an accurate classifier, they may find different local
minima, each finding a sufficient way of making the classifi-
cation. By combining across runs, we may find important but
redundant features. Furthermore, irrelevant features that are
seldom present have lower weights in the combined model
and are often de-emphasized entirely. In our study, we take

the average of 11 networks, but we have seen similar results
for averaging of 7 through 15 networks. Figure 2 illustrates
how the averaged explanation is computed.

Explaining Contrasting Categories The goal behind this
approach is to identify regions that distinguish one class from
its most similar classes (Pazzani et al., 2018). That is, in-
stead of answering why is this an X, they are designed to
answer why is this an X and not a Y. In medical systems,
these are analogous to methods that attempt to find regions
important for differential diagnosis (e.g., to distinguish bac-
terial from viral pneumonia). We use a method suggested by
(Feghahati et al., 2020) that looks for the regions that are sug-
gestive of belonging to category X and features that are sug-
gestive of belonging to category Y and finds the difference.
This is computed on a pixel-by-pixel basis on the heatmaps.
There are several ways to identify the foil category Y. One is
to identify the contrasting class as the one with the second-
highest activation of the neural network. Alternatively, such
as in this study, the AI may be given the second most likely
class. An example of contrastive explanations is such: an im-
age A may have the ground-truth label of “western grebe”.
Image B of a “Clark’s grebe” may be the second most likely
class label for image A. Thus, the difference between the
heatmap for “western grebe” and the heatmap for “Clark’s
grebe” images are computed pixel-wise to yield a contrastive
explanation for why image A belongs to the “western grebe”
class. This method is applicable to any algorithm that gener-
ates heatmaps, but we use imageLime in our studies. It should
be noted that this method can be used at multiple levels of a
hierarchy (e.g., explaining why a bird is a western vs. Clark’s
grebe or more generally a grebe vs. a heron). Figure 3 depicts
an example of how contrasting explanations are generated.

Data Selection
We collected a database of publicly available images from
Flickr of 66 bird species for a total of 14,380 images. Due to
the number and quality of images, most deep learning algo-
rithms achieve less than 2% error on classification, allowing
one to study the explanation of accurate classifiers. Due to
the accuracy of the classifier and large number of high-quality
examples per class, we did not observe the XAI algorithm fo-
cusing on totally irrelevant areas of the image such as water
or trees.

Participant Recruitment
Participants for both studies were expert bird watchers who
were recruited from mailing lists that report rare bird sight-
ings in Southern California. 28 participants were recruited
for the LIME vs. averaged LIME study, and 20 participants
were recruited for the LIME vs. contrasting LIME study. One
participant from each of the LIME vs. averaged LIME and
LIME vs. contrasting LIME studies self-excluded due to lack
of familiarity with the bird species included in the studies.
One participant was excluded from the LIME vs. averaged
LIME study for being under the age of 18, which may point
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Figure 2: An illustration of how averaged explanations are
achieved. X̄ contains the output from n individual runs of
standard LIME (n is 11 in the case of our studies), and X̄
represents the pixel-wise mean of the n images in X . Note
that the individual runs in X are likely to contain fewer areas
of relevance than the aggregated, averaged final X̄ since the
output of a single run of LIME is non-deterministic.

Figure 3: An illustration of how contrasting explanations are
achieved. Image Y represents the evidence for the bird being
a “common goldeneye” whereas Z represents the evidence for
it being a “Barrow’s goldeneye.” Pixel-wise subtraction of Z
from Y yields a contrasting explanation that depicts why this
bird is indeed a “common goldeneye” rather than a “Barrow’s
goldeneye.”

to less real-world bird watching experience. Excluding the
data from these participants did not alter the significance of
the results. In total, 26 and 19 participants were included in
analyses for the LIME vs. averaged LIME and LIME vs. con-
trasting LIME studies, respectively. There was no participant
overlap between these studies. The median participant age
was 46 and 43 for the LIME vs. averaged LIME and LIME
vs. contrasting LIME studies, respectively. Participants in the
LIME vs. averaged LIME study had a median of 15 years of
bird watching experience while the participants in the LIME
vs. contrasting LIME study had a median of 13 years of bird
watching experience.

Study Design
Prior to beginning their respective studies, participants from
both studies were shown an example of LIME used on an
image of a dog to identify the features most important to
classifying its breed. This example was intended to familiar-
ize participants with how to interpret the colors on a LIME-
generated heatmap.

Each study contained 24 unique bird images. Each of the
24 unique bird images was shown once to each subject with
LIME-generated annotations and another time with averaged
LIME-generated or contrasting LIME-generated annotations,
depending on the study in question. This results in a total
of 48 trials evenly split between LIME and averaged or con-
trasting LIME for each study. Furthermore, the 24 unique
bird images were comprised of 10 bird species, and these 10
bird species were chosen such that they were composed of 5
commonly confused pairs: the Barrow’s goldeneye and com-
mon goldeneye; black-headed grosbeak and blue grosbeak;
Clark’s Grebe and western grebe; eastern towhee and spotted
towhee; indigo bunting and lazuli bunting.

During the study, each trial displayed the heatmap-
annotated and unannotated images side-by-side on the left-
hand side of the screen; a bird species classification task and
questions about annotation preferences were displayed on the
right-hand side of the screen. A screen capture of the study
interface is shown in Figure 4. Participants were asked to
identify the species of the bird shown on the left-hand side by
checking 1 of 10 radio buttons, each option being a unique
bird species present in the study. Participants were asked to
indicate their opinions on the novel highlighting method on
the left-hand side by answering two questions: “This high-
lighting emphasizes the areas of the bird that I think are im-
portant for identification” (Question 1), and “I would recom-
mend using this highlighting to help identify this bird” (Ques-
tion 2). Participants were asked to respond using a 7-point
Likert scale ranging from “Strongly Disagree” (a value of 1)
to “Strongly Agree” (a value of 7) with “Neutral” (a value of
4) at the midpoint.

Results
For each of the two studies, we compared the median prefer-
ence ratings for LIME trials to averaged or contrasting LIME
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Figure 4: An example screen capture from the LIME vs. contrasting LIME study. Images were placed side-by-side for ease of
comparison.

trials. Additionally, we compared overall bird species classi-
fication accuracy for LIME trials to averaged or contrasting
LIME trials. Because accuracy may be a dubious measure
of whether one is qualified to advise on useful annotations
for bird identification, we did not use classification accuracy
to exclude individual trials or participants. An experienced
bird watcher may be aware that the shape of a white patch
on the face of a common goldeneye or Barrow’s goldeneye
is a reliable method of distinguishing the two species. While
a bird watcher may fail to accurately assign the round patch
to the common goldeneye and the crescent patch to the Bar-
row’s goldeneye (i.e. failure of the classification task), they
remain knowledgeable on which areas of a bird are crucial
for classification. Additionally, excluding trials with incor-
rect classifications did not result in a significant difference in
the distribution of median ratings for any question; this is true
for both studies (uncorrected p values of .7 or greater). This
may be due to the consistently high classification accuracy
across all participants.

Thus, all participants and their data were used for the
subsequent analyses. All reported p values are Bonferroni-
corrected for 3 pairwise Wilcoxon signed-rank tests in each
study. Broadly, subjects exhibit a significant preference for
averaged or contrasting LIME over standard LIME. The p
values and median ratings for the two questions regarding
preferences can be found in Table 1 and Table 2, respectively.

The preference for annotations output by averaged LIME
was significantly higher than the preference for annotations
output by LIME for both questions in the study (p < .001).
The median rating of Question 1 for the LIME images was 4.0
(“Neutral”) while the median rating for the averaged LIME

images was 5.5 (“Slightly Agree”/ “Agree”). The median rat-
ing of Question 2 for the LIME images was 3.0 (“Slightly
Disagree”) while the median rating for the averaged LIME
images was 5.0 (“Slightly Agree”). Bird species classification
accuracy, with a mean of 90.1% and 91.3% for LIME and av-
eraged LIME, respectively, did not differ between these two
explanation methods (p > .99).

Likewise, the preference for annotations output by con-
trasting LIME was significantly higher than the preference for
annotations output by LIME for both Question 1 (p = .014)
and Question 2 (p = .004). The median rating of Question 1
for the LIME images was 4.5 (“Neutral”/ “Slightly Agree”)
while the median rating for the contrasting LIME images was
5.0 (“Slightly Agree”). The median rating of Question 2 for
the LIME images was 4.0 (“Neutral”) while the median rat-
ing for the contrasting LIME images was 5.0 (“Agree”). Bird
species classification accuracy was again strikingly similar
between LIME and contrasting LIME trials with respective
mean classification accuracies of 84.9% and 86.0% (p > .99).

Discussion

The results of our two user studies showed that expert bird
watchers prefer averaged LIME and contrasting LIME ex-
planations significantly more than standard LIME explana-
tions using two measures. Specifically, they report that the
modified explanation techniques emphasized the areas they
believed to be important for the identification of the bird in
question and are more likely to recommend the novel high-
lighting technique to others as a tool for bird identification.
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Table 1: Bonferroni-corrected p valuesa for median ratings in
LIME vs. averaged LIME and LIME vs. contrasting LIME
studies.

LIME vs. Averaged LIME
(N = 26)

LIME vs. Contrasting LIME
(N = 19)

Question 1b < .001 .014

Question 2c < .001 .004
a 3 pairwise comparisons were made for each study using the Wilcoxon
signed-rank test.
b “This highlighting emphasizes the areas of the bird that I think are
important for identification.”
c “I would recommend using this highlighting to help identify this bird.”

Table 2: Median responses on 7-point Likert scale (1 =
“Strongly Disagree” and 7 = “Strongly Agree”) for LIME vs.
averaged LIME and LIME vs. contrasting LIME studies.

LIME vs. Averaged LIME
(N = 26)

LIME vs. Contrasting LIME
(N = 19)

Lime
Averaged

LIME LIME
Contrasting

LIME

Question 1a 4.0 5.5 4.5 5.0

Question 2b 3.0 5.0 4.0 5.0
a “This highlighting emphasizes the areas of the bird that I think are
important for identification.”
b “I would recommend using this highlighting to help identify this bird.”

We believe that averaged LIME was preferred over stan-
dard LIME for two reasons. At the most basic level, aver-
aging across several runs of LIME means that features that
may be present in a single run but truly irrelevant to classi-
fication will end up having a lower weight overall. The re-
sult is that attention is drawn away from these less relevant
features and focused more on the features whose relevance is
prominent across more runs. Further, as the algorithm is aver-
aging across more runs, alternative features that are found in
perhaps half of the runs but not the other half will be caught.
These techniques may be particularly helpful if there are more
than one distinguishing feature of a bird in question. Though
this redundancy may result in the highlighting of more fea-
tures than is truly necessary for a given classification, the end
result is a cleaner explanation. Highlighting all of the rele-
vant attributes helps users clearly attend to features which are
important for consideration in category membership.

We note that these can also be related to Grice’s conversa-
tional maxims of quantity—sharing the right amount of infor-
mation, no more and no less—and relation—keeping com-
munications relevant—as they establish the precedent that
pixel-based visual explanations such as those produced us-
ing LIME should communicate sufficient information while
eliminating anything unnecessary (Grice, 1975). In our case,
the cleaner image prominently shows relevant features and
has given less weight to features that are less important to
classification.

In a similar manner, we believe that contrasting LIME was
preferred over standard LIME in that it directs attention to
particular features of the bird which may be singularly impor-
tant or unique to the identification of that bird compared to the
other birds in question. For example, by subtracting the fea-
tures which belong to a “western grebe” (the fact) from those
of a “Clark’s grebe” (the foil), we are left with the most dis-
tinguishing features of a western grebe. By drawing a user’s
attention to these important features, it streamlines the pro-
cess of differentiating between the two and allows the user
to more easily draw their attention to what is relevant in that
determination. The resulting elimination of foils is more ef-
ficient and thus less cognitively demanding, and should theo-
retically lead to increased understanding of features differen-
tiating category membership.

It is worth noting that although we used explainable AI
methods in our study, we asked subjects questions that did not
use the word “explanation.” Instead, we asked how well the
“highlighting emphasizes the areas of the bird that I think are
important for identification” and whether they “would recom-
mend using this highlighting to help identify this bird.” We do
this because current XAI methods identify regions of interest,
but they do not indicate why they are interesting. We believe
a better explanation would not only identify but also describe
the regions of interest with terms such as “spotted wing” or
“sharp talons.” Many books on bird identification both point
out distinctive regions with arrows or circles, and also label
why they are distinctive.

Conclusion
Our study focused on automatically manipulating visual ex-
planations to have averaged or contrasting properties and see-
ing whether experts would recommend using this highlight-
ing to help others. Our results reveal that averaging across
runs of LIME and utilizing contrasting explanations makes a
significant difference in experts’ willingness to use and rec-
ommend the explanation as opposed to the standard presenta-
tion of LIME. At present, the results of our two user studies
have implications for both practical applications of XAI and
on future methodological directions for XAI explanation re-
search. First, we contend that averaging and contrasting ex-
planation techniques are viable improvements for XAI expla-
nations that use heatmaps. Further, our results lend credence
to the notion that methods should be more fine-grained, focus
on theory-driven techniques, and incisive in their ability to
identify which factors contribute to increased preference for
XAI explanations.
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