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Abstract. Let W be an irreducible Coxeter group. We define the Coxeter pop-stack-sorting
operator Pop : W → W to be the map that fixes the identity element and sends each
nonidentity element w to the meet of the elements covered by w in the right weak order.
When W is the symmetric group Sn, Pop coincides with the pop-stack-sorting map. Gen-
eralizing a theorem about the pop-stack-sorting map due to Ungar, we prove that

sup
w∈W

|OPop(w)| = h,

where h is the Coxeter number of W (with h = ∞ if W is infinite) and Of (w) denotes
the forward orbit of w under a map f . When W is finite, this result is equivalent to the
statement that the maximum number of terms appearing in the Brieskorn normal form of an
element of W is h−1. More generally, we define a map f : W → W to be compulsive if for
every w ∈ W , f(w) is less than or equal to Pop(w) in the right weak order. We prove that
if f is compulsive, then sup

w∈W
|Of (w)| ⩽ h. This result is new even for symmetric groups.

We prove that 2-pop-stack-sortable elements in type B are in bijection with 2-pop-stack-
sortable permutations in type A, which were enumerated by Pudwell and Smith. Claesson
and Guðmundsson proved that for each fixed nonnegative integer t, the generating function
that counts t-pop-stack-sortable permutations in type A is rational; we establish analogous
results in types B and Ã.
Keywords. Pop-stack-sorting, Coxeter group, weak order, Coxeter number, compulsive
map, regular language
Mathematics Subject Classifications. 05E16, 37E15, 05A05

1. Introduction

1.1. Sorting operators

Noninvertible combinatorial dynamics is the study of combinatorially-defined dynamical sys-
tems on sets of combinatorial objects, where emphasis is placed on understanding the tran-
sient (i.e., non-periodic) points. Given an arbitrary set X and a map f : X → X , let f t
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denote the tth iterate of f . The forward orbit of an element x ∈ X under the map f is the
set Of (x) = {x, f(x), f 2(x), . . .}. It is natural to consider the quantity sup

x∈X
|Of (x)|. Indeed,

if f is invertible and all orbits are finite, this is equivalent to determining the largest size of a
periodic orbit. A similar question asks for the maximum possible number of iterations needed
to send every transient point to a periodic point. If f has a fixed point x0 such that every forward
orbit under f contains x0 (as will be the case for all of the dynamical systems considered in this
paper), then these two questions are essentially equivalent.

The symmetric group Sn, which is the group of permutations of the set [n] = {1, . . . , n},
provides a rich source of noninvertible combinatorial dynamical systems. We can write a permu-
tationw ∈ Sn in one-line notation asw(1) · · ·w(n). A great amount of research in combinatorics
and computer science has focused on sorting operators, which are dynamical systems on Sn that
have the identity permutation e = 123 · · ·n as their unique periodic (necessarily fixed) point.
Some typical examples of such operators include the bubble sort map (see [17, 2] and [37, pages
106–110]), West’s stack-sorting map (see [10, 21, 22, 26, 53] and the references therein), the
map revstack defined in [28], the pop-stack-sorting map [4, 5, 6, 29, 19, 20, 45, 52], and the
Queuesort map [18, 40].

A natural condition one might wish to place on a sorting operator f : Sn → Sn, which all five
of the specific sorting operators listed in the previous paragraph satisfy, is that it does not remove
non-inversions. This means that if a, b ∈ [n] are such that a < b and a appears to the left of b inw,
then a must appear to the left of b in f(w). Among the sorting operators f that do not remove
non-inversions, we will be primarily interested in the ones that remove consecutive inversions,
meaning that if a, b ∈ [n] are such that a < b and a appears immediately to the right of b in w,
then a appears to the left of b in f(w). West’s stack-sorting map, the map revstack, and the
pop-stack-sorting map all remove consecutive inversions; the bubble sort map and Queuesort,
however, do not.

We are actually interested in generalizing these notions to arbitrary Coxeter groups. The
condition that f : Sn → Sn does not remove non-inversions is equivalent to the condition
that f(w) ⩽R w for all w ∈ Sn, where ⩽R is the right weak order on Sn. Saying that f
does not remove non-inversions and removes consecutive inversions is equivalent to saying
that f(w) ⩽R w and f(w) ⩽R ws for every w ∈ W and every right descent s of w. In what fol-
lows, we let ⩽R denote the right weak order on an arbitrary Coxeter groupW , and we letDR(w)
denote the right descent set of an element w ∈ W (see Section 2.1 for definitions).

Definition 1.1. Let W be a Coxeter group. We say a map f : W → W is compulsive1

if f(w) ⩽R w and f(w) ⩽R ws for every w ∈ W and every s ∈ DR(w).

Note that the condition f(w) ⩽R w is necessary in Definition 1.1 in order to guarantee that f
fixes the identity element e.

1Google gives the following two definitions for the word compulsive: (1) resulting from or relating to an irre-
sistible urge, especially one that is against one’s conscious wishes; (2) irresistibly interesting or exciting; compelling.
Our motivation for using this word comes from the first definition since a compulsive map on Sn compulsively
removes all consecutive inversions. However, we hope to convince the reader that the second definition is also
appropriate.
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A seminal result due to Björner [8] states that the right weak order on a Coxeter group W
is a complete meet-semilattice. This means that every set A ⊆ W has a greatest lower bound,
called the meet of A, which we denote by

∧
RA. Hence, a map f : W → W is compulsive if

and only if f(w) ⩽R

∧
R({ws : s ∈ DR(w)} ∪ {w}) for every w ∈ W . This motivates the

following definition.

Definition 1.2. LetW be a Coxeter group. The Coxeter pop-stack-sorting operator onW is the
map PopW : W → W defined by

PopW (w) =
∧

R
({ws : s ∈ DR(w)} ∪ {w})

for every w ∈ W .

We often write Pop instead of PopW if the group W is clear from context.
The Coxeter pop-stack-sorting operator is certainly compulsive; its name comes from the

fact, which we will verify in Section 2.2, that the Coxeter pop-stack-sorting operator on Sn is
precisely the pop-stack-sorting map. This map, which is a deterministic analogue of a pop-stack-
sorting machine introduced by Avis and Newborn in [7], first appeared in a different guise in a
paper of Ungar’s about discrete geometry [52]; its popularity has grown rapidly over the past
few years [4, 5, 6, 29, 45, 19, 20]. Ungar [52], motivated by a question involving directions
determined by points in the plane, proved that the maximum possible size of a forward orbit of a
permutation inSn under the pop-stack-sorting map is n; this settled a conjecture due to Goodman
and Pollack [33]. In other words, Ungar’s theorem states that Popn−1(w) = e for every w ∈ Sn

and that there exists v ∈ Sn such that Popn−2(v) ̸= e. The proof requires an unexpected amount
of insight. Recently, Albert and Vatter [4] provided an alternative proof of Ungar’s theorem.

Our first main result generalizes Ungar’s theorem to an arbitrary irreducible2 Coxeter group.
Let (W,S) be a Coxeter system. If W is finite, then a Coxeter element of W is an element
obtained by multiplying the simple generators (the elements of S) in an arbitrary order. All
Coxeter elements have the same order in the group W ; this order is called the Coxeter number
of W and is typically denoted by h. For example, the Coxeter number of Sn is n. We make the
convention that the Coxeter number of an infinite Coxeter group is ∞.

Theorem 1.3. If W is an irreducible Coxeter group with Coxeter number h, then

sup
w∈W

|OPop(w)| = h.

The preceding theorem tells us that if W is finite, then Poph−1(w) = e for all w ∈ W
and Poph−2(v) ̸= e for some v ∈ W . On the other hand, if W is infinite, this theorem says that
there are arbitrarily large forward orbits of elements ofW under Pop. Our proof of Theorem 1.3
is Coxeter-theoretic and is type-uniform for all finite Coxeter groups with even Coxeter numbers.
However, we must treat symmetric groups and dihedral groups separately from the other finite
irreducible Coxeter groups because they can have odd Coxeter numbers.

2The assumption of irreducibility does not limit the scope of the theorem. If W = W1 ×W2 is reducible, then
Pop acts on W1 and W2 independently, and one can understand the dynamics of Pop on W by “piecing together”
information about the dynamics of Pop on W1 and W2.
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Figure 1.1: A diagram of the Coxeter pop-stack-sorting operator Pop : H3 → H3. Each vertex
in the tree represents an element of H3 (we omit the labels). The root vertex is the identity
element e; the parent of each non-root vertex w is Pop(w). As predicted by Theorem 1.3, the
maximum size of a forward orbit is 10, which is the Coxeter number of H3.

It turns out that Pop is very closely related to Brieskorn normal form, which was introduced
in the foundational works of Brieskorn and Brieskorn–Saito on complex reflection groups and
Artin groups [14, 15]. This normal form is a specific factorization of an element of W into
longest elements of parabolic subgroups. It follows from equation (2.1) below that the elements
of OPop(w) are exactly the prefixes of the Brieskorn normal form of w.3 More precisely, the
Brieskorn normal form of w is β1 · · · βr, where r = |OPop(w)| − 1 and β1 · · · βi = Popr−i(w)
for all 0 ⩽ i ⩽ r. Hence, the following corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4. IfW is a finite irreducible Coxeter group with Coxeter number h, then the maxi-
mum number of terms that can appear in the Brieskorn normal form of an element ofW is h−1.

Our second main result applies to all compulsive maps on an irreducible Coxeter group. This
theorem is new even for symmetric groups.

Theorem 1.5. Let W be an irreducible Coxeter group with Coxeter number h. If f : W → W
is compulsive, then

sup
w∈W

|Of (w)| ⩽ h.

The conclusion of Theorem 1.5 is trivial if W is infinite, so we will only need to consider
the case when W is finite. Our proof of this result is delicate and makes use of the Coxeter
pop-stack-sorting operator, so we will really need to deliver it simultaneously with the proof of
Theorem 1.3.
Remark 1.6. It is perhaps tempting to think that Theorem 1.5 would follow as an immediate
corollary of Theorem 1.3 since a compulsive map f : W → W satisfies f(w) ⩽R Pop(w) for
allw ∈ W by definition. More precisely, one might think that f t(w) ⩽R Popt(w) for allw ∈ W
and t ⩾ 0 so that, by Theorem 1.3, we have (assumingW is finite) fh−1(w) ⩽R Poph−1(w) = e
for all w ∈ W . However, this is not the case. If W = S5 and s is West’s stack-sorting map (see
[10, 21] for the definition), then s3(42351) = 21345, but Pop3(42351) = 12345 = e.

3The articles [14, 15] use left weak order where we use right weak order, but this makes little difference.
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Another typical approach to noninvertible combinatorial dynamical systems, especially sort-
ing operators, concerns the enumeration of elements that require at most some fixed number t of
iterations to reach a periodic point. In the case of West’s stack-sorting map, these elements are the
t-stack-sortable permutations, which have been studied extensively, especially for t ∈ {1, 2, 3}
(see [3, 13, 10, 11, 21, 26, 27] and the references therein). For the pop-stack-sorting map, these
elements are the t-pop-stack-sortable permutations investigated in [45, 19, 29]. Given a Cox-
eter group W , let us say an element w ∈ W is t-pop-stack-sortable if PoptW (w) = e. In other
words, the set of t-pop-stack-sortable elements of W is Pop−t

W (e). At the end of Section 2.1, we
will establish the following simple proposition. The nerve of Coxeter system is defined in that
section.

Proposition 1.7. Let (W,S) be a Coxeter system with nerve N (W,S). There is a bijection
between the set Pop−1

W (e) of 1-pop-stack-sortable elements of W and N (W,S). In particular,
if W is finite, then the number of 1-pop-stack-sortable elements of W is 2|S|.

Pudwell and Smith [45] enumerated 2-pop-stack-sortable permutations in Sn. Our next theo-
rem provides an analogue of this result for the hyperoctahedral groupsBn (defined in Section 4).
Descending runs are defined in Section 2.2.

Theorem 1.8. For each n ⩾ 1 and k ⩾ 0, the number of 2-pop-stack-sortable elements of Bn

with 2k or 2k+ 1 descending runs is equal to the number of 2-pop-stack-sortable permutations
in Sn+1 with exactly k + 1 descending runs. In particular,∑

n⩾1

∣∣Pop−2
Bn

(e)
∣∣ zn =

∑
n⩾1

∣∣∣Pop−2
Sn+1

(e)
∣∣∣ zn =

2z(1 + z + z2)

1− 2z − z2 − 2z3
.

Claesson and Guðmundsson proved that for every fixed t ⩾ 0, the generating function that
counts t-pop-stack-sortable permutations in symmetric groups is rational [19]. Our final main
theorems extend this result to the hyperoctahedral groupsBn and the affine symmetric groups S̃n

(see Sections 4 and 5 for the definitions).

Theorem 1.9. For every t ⩾ 0, the generating function
∑
n⩾1

∣∣Pop−t
Bn

(e)
∣∣ zn is rational.

Theorem 1.10. For every t ⩾ 0, the generating function
∑
n⩾1

∣∣∣Pop−t

S̃n
(e)

∣∣∣ zn is rational.

1.2. Generalizations

There are (at least) two natural ways in which one could generalize the definition of the Coxeter
pop-stack-sorting operators.

First, one could replace the right weak order on a Coxeter group with an arbitrary complete
meet-semilattice M to obtain a map PopM :M →M defined by

PopM(x) =
∧

({y ∈M : y ⋖ x} ∪ {x})
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for all x ∈M . This provides a large new class of noninvertible combinatorial dynamical systems
that are ripe for investigation.4 We will explore this avenue in [23], with special emphasis on
ν-Tamari lattices.
Remark 1.11. In light of Definition 1.1, it is natural to define a map f :M →M on an arbitrary
complete meet-semilattice M to be compulsive if f(x) ⩽ PopM(x) for all x ∈ M . Together,
Theorems 1.3 and 1.5 tell us that if M is isomorphic to the right weak order on an irreducible
Coxeter group and f :M →M is compulsive, then sup

x∈M
|Of (x)| ⩽ sup

x∈M

∣∣OPopM (x)
∣∣. This does

not hold if M is replaced by an arbitrary complete meet-semilattice. For example, consider the
lattice M whose Hasse diagram is shown in Figure 1.2. If f : M → M is the compulsive map
illustrated with green arrows, then sup

x∈M
|Of (x)| = 4 > 3 = sup

x∈M

∣∣OPopM (x)
∣∣.

Figure 1.2: A compulsive map on a lattice.

For the second generalization, we make use of the left weak order ⩽L on a Coxeter groupW .
The poset (W,⩽L) is a complete meet-semilattice that is isomorphic to (W,⩽R). Let ∧L denote
the meet operation in the left weak order. A semilattice congruence on (W,⩽L) is an equiva-
lence relation ≡ on W that respects meets, meaning that x1 ≡ x2 and y1 ≡ y2 together imply
(x1 ∧L y1) ≡ (x2 ∧L y2). WhenW is finite, we define a lattice congruence on (W,⩽L) to be an
equivalence relation on W that respects both meets and joins, meaning x1 ≡ x2 and y1 ≡ y2
together imply (x1 ∧L y1) ≡ (x2 ∧L y2) and (x1 ∨L y1) ≡ (x2 ∨L y2). Semilattice congruences
and lattice congruences on weak orders of Coxeter groups have been studied extensively (see
[48, 47] and the references therein).

One of the most natural examples of a semilattice congruence on (W,⩽L) is the descent
congruence, which is defined by declaring two elements of W to be equivalent if they have
the same right descent set. Another notable example is the sylvester congruence on the sym-
metric group Sn. There is a well-known bijection I from the set of decreasing binary plane
trees with label set [n] to Sn; the sylvester congruence is defined by declaring two permuta-
tions σ and σ′ to be equivalent if the unlabeled binary plane trees obtained by removing the
labels from I−1(σ) and I−1(σ′) are equal (see [24, 34, 44] for more details). Further interesting
examples of semilattice congruences on Coxeter groups are provided by the Cambrian congru-
ences (see [46, 47, 49, 50] and the references therein). In the case of Sn, other notable examples

4Henri Mühle has informed the author that PopM (x) is the same as what he has called the nucleus of x [41, 42].
However, his results do not overlap with ours because he did not view nuclei as defining a dynamical system. Instead,
he was interested in the lattice-theoretic properties of the interval between PopM (x) and x in M .
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of lattice congruences include the permutree congruences [44], the k-twist congruences [43],
and the Baxter congruence [38, 32].

If ≡ is a semilattice congruence on the left weak order of W , then every congruence class
of ≡ has a unique minimal element. We denote by π↓ : W → W the projection map that sends
each element ofW to the unique minimal element of its congruence class. We say ≡ is essential
if the identity element e ∈ W is in a singleton equivalence class.

Definition 1.12. Let W be a Coxeter group, and let ≡ be an essential semilattice congruence
on the left weak order of W . Define the Coxeter stack-sorting operator S≡ : W → W to be the
map given by S≡(w) = w(π↓(w))

−1 for all w ∈ W .

The name Coxeter stack-sorting operator is motivated by two special cases. First, if ≡ is the
descent congruence, then S≡ is the same as the Coxeter pop-stack-sorting operator PopW (we
justify this claim at the end of Section 2.1). Second, if W = Sn and ≡ is the sylvester congru-
ence, then S≡ is West’s stack-sorting map (this is essentially the content of [24, Corollary 16],
where the projection map π↓ goes by the name swd). Coxeter stack-sorting operators provide
another broad new class of non-invertible combinatorial dynamical systems; we will investigate
them more extensively in [25], with special emphasis on permutree congruences in type A and
their analogues (in particular, analogues of the sylvester congruence) in types B and Ã.
Remark 1.13. A semilattice congruence on the left weak order of a Coxeter group is essential if
and only if it refines the descent congruence (see [35, 25]). From this, it is not difficult to show
that all Coxeter stack-sorting operators are compulsive, so they provide a wide range of maps to
which one can apply Theorem 1.5 (see [25]).
Remark 1.14. A different generalization of West’s stack-sorting map, introduced in [16], uses
pattern-avoiding stacks. While these pattern-avoiding stacks are certainly interesting, we believe
our Coxeter stack-sorting operators are more natural from an algebraic and lattice-theoretic point
of view.

1.3. Outline

In Section 2, we recall relevant definitions and facts concerning Coxeter groups, prove Propo-
sition 1.7, and verify that the Coxeter pop-stack-sorting operator on Sn coincides with the pop-
stack-sorting map. Section 3 is devoted to proving Theorems 1.3 and 1.5. We prove Theorems 1.8
and 1.9, which concern Coxeter groups of typeB, in Section 1.9. We prove Theorem 1.10, which
concerns Coxeter groups of type Ã, in Section 5. Section 6 provides additional potential ideas
for future work.

2. Preliminaries

2.1. Coxeter groups

We assume familiarity with basic notions and concepts from the combinatorial theory of Coxeter
groups and from lattice theory; a standard reference that contains all the background information
we need is [9].
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A Coxeter system is a pair (W,S), where W is a group generated by the set S with presen-
tation W = ⟨S : (ss′)m(s,s′) = e⟩ such that m(s, s) = 1 for all s ∈ S and m(s, s′) = m(s′, s) ∈
{2, 3, . . .} ∪ {∞} for all distinct s, s′ ∈ S. The elements of S are called the simple generators.
We will often refer to a Coxeter group W with the understanding that we are really referring to
a Coxeter system (W,S) for some specific choice of a generating set S. The Coxeter diagram
of W is the graph Γ(W ) with vertex set S in which two vertices s, s′ are connected by an edge
labeled with m(s, s′) if m(s, s′) ⩾ 3 (and are not adjacent if m(s, s′) ⩽ 2). Notice that s and s′
commute if and only if they are not adjacent in Γ(W ). We say W is irreducible if Γ(W ) is a
connected graph.

A reduced word for an element w ∈ W is a word s1 · · · sk over the alphabet S that, when
viewed as a product of elements ofW , equals w. The smallest length of a reduced word for w is
called the length of w and is denoted by ℓ(w). The left weak order on W is the partial order ⩽L

on W defined by declaring that x ⩽L y if ℓ(yx−1) = ℓ(y) − ℓ(x). The right weak order on W
is the partial order ⩽R on W defined by declaring that x ⩽R y if ℓ(x−1y) = ℓ(y) − ℓ(x). The
map W → W given by w 7→ w−1 is an isomorphism from the left weak order to the right weak
order. We will also need the strong Bruhat order on W , which is the partial order ⩽ on W
defined by saying that x ⩽ y if some (equivalently, every) reduced word for y contains a reduced
word for x as a (not necessarily contiguous) subword. If x ⩽R y or x ⩽L y, then x ⩽ y.

The poset (W,⩽R) is a complete meet-semilattice [8, 9], meaning that every set A ⊆ W has
a unique meet

∧
RA. If A has an upper bound in (W,⩽R), then it has a join, which we denote

by
∨

RA. Similarly, we write
∧

LA and
∨

LA for, respectively, the meet of A and the join of A
(if it exists) in the left weak order. The right and left weak orders onW are lattices ifW is finite.

A right descent of an element w ∈ W is a simple generator s ∈ S such that ℓ(ws) < ℓ(w);
the collection of all right descents ofw is the right descent set ofW , which we denote byDR(w).
Similarly, the left descent set of w is the set DL(w) = {s ∈ S : ℓ(sw) < ℓ(w)} of left descents
of w. It is a basic fact that DR(w) = {s ∈ S : s ⩽L w} and DL(w) = {s ∈ S : s ⩽R w}.

Suppose J ⊆ S. The parabolic subgroupWJ is the subgroup ofW generated by the elements
of J . For every w ∈ W , the right coset WJw has a unique representative Jw of minimal length.
Let wJ = w(Jw)−1 so that wJ ∈ WJ . The factorization w = wJ

Jw is length-additive in the
sense that ℓ(w) = ℓ(wJ) + ℓ(Jw). The set JW = {Jw : w ∈ W} is called a parabolic quotient.
The next lemma states that for any J ⊆ S, the map w 7→ Jw is order-preserving with respect to
the right weak order.

Lemma 2.1. Let (W,S) be a Coxeter system, and let J ⊆ S. If y, z ∈ W are such that y ⩽R z,
then Jy ⩽R

Jz.

Proof. It suffices to prove this in the case when z = ys for some s ∈ S \ DR(y). Deodhar’s
Lemma (see, for example, [31, Lemma 2.1.2]) tells us that either Jys ∈ JW or Jys = s′ Jy for
some s′ ∈ J . Assume first that Jys ∈ JW . Then z = ys = yJ(

Jys), so zJ = yJ and Jz = Jys.
Since s ̸∈ DR(y) and Jy ⩽L y, we must have s ̸∈ DR(

Jy). Hence, Jy ⩽R
Jys = Jz. Now

suppose Jys ̸∈ JW . Then WJ
Jys = WJs

′ Jy = WJ
Jy, so z = yJ(

Jys) ∈ WJ
Jys = WJ

Jy. It
follows that Jz = Jy.

If W is finite, we write w0 for the longest element of W . The nerve of (W,S), denoted
N (W,S), is the collection of subsets J ⊆ S such that WJ is finite. If J ∈ N (W,S), we
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write w0(J) for the longest element of WJ . The elements w0 and w0(J) are involutions. It
follows from [9, Lemma 3.2.4] that

Pop(w) = ww0(DR(w)) (2.1)

for every w ∈ W . According to [9, Lemma 3.2.3], WJ is finite if and only if
∨

L J exists;
moreover, if WJ is finite, then

∨
L J = w0(J). Since each w ∈ W is an upper bound for DR(w)

in the left weak order, the join
∨

LDR(w) must exist and equal w0(DR(w)).

Proof of Proposition 1.7. If J ∈ N (W,S), then DR(w0(J)) = J since w0(J) =
∨

L J . For
every J ∈ N (W,S), it follows from (2.1) that Pop(w0(J)) = (w0(J))

2 = e, so w0(J) is
1-pop-stack-sortable. On the other hand, if v ∈ W is 1-pop-stack-sortable, then (2.1) im-
plies that v = w0(DR(v)), and we know that DR(v) ∈ N (W,S) because v is an upper bound
for DR(v) in the left weak order. Hence, we have a surjective map N (W,S) → Pop−1

W (e) given
by J 7→ w0(J). The identity DR(w0(J)) = J implies that this map is actually a bijection.

Fix w ∈ W . If v ∈ W is such that DR(v) = DR(w), then it follows from the above dis-
cussion that w0(DR(w)) = w0(DR(v)) ⩽L v. The right descent set of w0(DR(w)) is DR(w),
so w0(DR(w)) is the smallest element in the left weak order that has the same right descent set
as w. Since the element w0(DR(w)) is an involution, this explains why, as mentioned in Sec-
tion 1.2, the Coxeter stack-sorting operator corresponding to the descent congruence on (W,⩽L)
agrees with the Coxeter pop-stack-sorting operator PopW .

2.2. The pop-stack-sorting map

The prototypical example of a Coxeter group is the symmetric group Sn. The set of simple
generators for Sn is S = {s1, . . . , sn−1}, where si is the transposition that swaps i and i + 1.
We often write a permutation w ∈ Sn as a word w(1) · · ·w(n) in one-line notation. A simple
transposition si is a right descent of w if and only if w(i) > w(i + 1). An inversion of w is
a pair (i, j) such that 1 ⩽ i < j ⩽ n and w(i) > w(j). It is well known that the number of
inversions of w is ℓ(w). The longest element of Sn, which we denote by w0(Sn) when we wish
to stress the dependence on n, is the decreasing permutation n(n− 1) · · · 321.

The direct sum of permutations u ∈ Sm and v ∈ Sn is the permutation u⊕v ∈ Sm+n defined
by

(u⊕ v)(i) =

®
u(i) if 1 ⩽ i ⩽ m;

v(i−m) +m if m+ 1 ⩽ i ⩽ m+ n.

A permutation is called layered if it can be written as w0(Sn1) ⊕ · · · ⊕ w0(Snk
), a direct sum

of decreasing permutations. Note that layered permutations are involutions. A permutation w is
layered if and only if w = w0(DR(w)).

A descending run of a permutationw ∈ Sn is a maximal consecutive decreasing subsequence
of w. For instance, the descending runs of 42135867 are 421, 3, 5, 86, and 7. The pop-stack-
sorting map is the operator on Sn that acts by reversing the descending runs of a permutation
while keeping entries in different descending runs in the same relative order. For example, the
pop-stack-sorting map sends 42135867 to 12435687. Equivalently, the pop-stack-sorting map
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acts by multiplying a permutation w on the right by the unique layered permutation that has the
same descent set as w. In other words, it sends w to ww0(DR(w)). In the above example, we
havew0(DR(42135867)) = w0({s1, s2, s6}) = 32145768, and we saw that the pop-stack-sorting
map sends 42135867 to the permutation 12435687 = 42135867 · 32145768. Hence, (2.1) tells
us that the Coxeter pop-stack-sorting operator Pop : Sn → Sn agrees with the pop-stack-sorting
map.

3. Maximum forward orbit sizes

The goal of this section is to prove Theorems 1.3 and 1.5. Our first step will be to establish
Theorem 1.3 for finite dihedral groups.

The dihedral group I2(m) has presentation ⟨s1, s2 : s21 = s22 = (s1s2)
m = e⟩. For 1⩽k⩽m,

let αk denote the element · · · s1s2s1 of I2(m) obtained by multiplying the sequence of k sim-
ple generators that alternates between s1 and s2 and ends in s1. Similarly, let βk = · · · s2s1s2 be
the product of k simple generators that alternate between s1 and s2 and end in s2.
Then I2(m) = {e} ∪ {αj : 1 ⩽ j ⩽ m} ∪ {βk : 1 ⩽ k ⩽ m− 1}. We have DR(e) = ∅ and
DR(αm) = {s1, s2}. For 1 ⩽ k ⩽ m − 1, we have DR(αk) = {s1} and DR(βk) = {s2}.
Thus, by (2.1), the map Pop : I2(m) → I2(m) is given explicitly by Pop(e) = Pop(αm) =
Pop(s1) = Pop(s2) = e, Pop(αj) = βj−1 for all 2 ⩽ j ⩽ m − 1, and Pop(βk) = αk−1 for
all 2 ⩽ k ⩽ m − 1. Therefore, the elements of I2(m) whose forward orbits under Pop are of
maximum size are αm−1 and βm−1. Indeed, |OPop(αm−1)| = |OPop(βm−1)| = m. The Coxeter
number of I2(m) is m, so this proves Theorem 1.3 for finite dihedral groups.

The Coxeter numbers of finite irreducible Coxeter groups are all known [36, Section 3.18];
in particular, the only finite irreducible Coxeter groups whose Coxeter numbers are odd are the
symmetric groups Sn with n odd and the dihedral groups I2(m) with m odd. Ungar already
proved Theorem 1.3 for symmetric groups, and we just established this theorem for dihedral
groups. Thus, we have the following lemma, which shows that we can focus much of our attention
hereafter on finite irreducible Coxeter groups with even Coxeter numbers.

Lemma 3.1. If W is a finite irreducible Coxeter group whose Coxeter number h is odd, then

max
w∈W

|OPop(w)| = h.

The Coxeter diagrams of the finite irreducible Coxeter groups W have been classified (see
[9, Appendix A1]); in particular, every such diagram is a tree. This means that it is possible
to choose a bipartition X ⊔ Y of the vertex set S of Γ(W ) (i.e., every edge in Γ(W ) has one
endpoint in X and one endpoint in Y ). The elements of X all commute with each other, and
the elements of Y all commute with each other. The map W → W given by w 7→ w0ww0 is an
automorphism of W such that w0Sw0 = S [9, Section 2.3]. In particular, this map induces an
automorphism of Γ(W ).

Lemma 3.2. LetW be a finite irreducible Coxeter group with an even Coxeter number. IfX⊔Y
is a bipartition of the vertex set Γ(W ), then w0Xw0 = X .
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Proof. Referring to the classification of Coxeter diagrams of finite irreducible Coxeter groups,
we immediately find that every automorphism of Γ(W ) must fix the set X unless W is iso-
morphic to a dihedral group, a symmetric group Sn with n odd, or the exceptional group F4.
Because W has an even Coxeter number, it is not isomorphic to a symmetric group Sn with n
odd or a dihedral group I2(m) with m odd. It is known (one can even check by hand) that if W
is isomorphic to F4 or to I2(m) with m even, then the automorphism given by w 7→ w0ww0 is
trivial.

Lemma 3.3. Let W be a finite Coxeter group. Choose s ∈ S, and let J = S \ {s}. We have
DR(

Jw0) = {w0sw0}.

Proof. Since the map w 7→ w0ww0 is an automorphism of W that fixes the set S, we have
ℓ(w0ww0) = ℓ(w) for all w ∈ W . The element (w0)J = w0(

Jw0)
−1 is equal to the involu-

tion w0(J) [9, Section 2.5], so w0(
Jw0)

−1 = (Jw0)w0. Therefore, for every r ∈ S, we have

ℓ(Jw0 · w0rw0) = ℓ(w0(
Jw0)

−1rw0) = ℓ(w0(r · Jw0)
−1w0) = ℓ((r · Jw0)

−1) = ℓ(r · Jw0).

It follows that DR(
Jw0) = w0DL(

Jw0)w0, so we are left to prove that DL(
Jw0) = {s}. An

alternative characterization of the parabolic quotient JW = {Jw : w ∈ W} is that it is the set of
elements ofW whose left descent sets are contained in the set S \J = {s} (see [9, Section 2.4]).
Since Jw0 ∈ JW is not the identity element e, its left descent set must be {s}.

The next proposition is the key to proving both Theorems 1.3 and 1.5.

Proposition 3.4. Let W be a finite irreducible Coxeter group whose Coxeter number h is even.
Choose s ∈ S, and let J = S \ {s}. We have Poph−1(Jw0) = e and Poph−2(Jw0) ̸= e.
Furthermore, for every t ⩾ 0, the right descents of Popt(Jw0) all commute with each other.

Proof. Let us choose a bipartition X ⊔ Y of the vertex set S of Γ(W ). Without loss of gen-
erality, assume s ∈ X . All of the elements of X commute with each other, so it makes sense
to define the product cX =

∏
r∈X r. Similarly, we can define cY =

∏
r∈Y r. The element

c = cXcY is a Coxeter element of W . Let us fixed a reduced word r1 · · · r|S| of cXcY such
that r1 · · · r|X| is a reduced word for cX and r|X|+1 · · · r|S| is a reduced word for cY . Without
loss of generality, we may assume r1 = s. According to [12, Chapter V, Section 6.2, Proposi-
tion 2], we have w0 = (cXcY )

h/2. It is well known [36, Section 3.18] that ℓ(w0) = |S| · h/2,
so concatenating r1 · · · r|S| with itself h/2 times produces a reduced word s1 · · · sℓ(w0) for w0.
Note that s1 = r1 = s. Let us write the word s1 · · · sℓ(w0) as the concatenation u1 · · ·uh, where
ui = r1 · · · r|X| when i is odd and ui = r|X|+1 · · · r|S| when i is even. We think of the letters
s1, . . . , sℓ(w0) as distinct entities, and we think of each sj as belonging to exactly one of the
words ui. For example, s1 belongs to u1, while sℓ(w0) belongs uh.

Let k = ℓ(w0) − ℓ(Jw0). Given indices 1 ⩽ p1 < · · · < pk ⩽ ℓ(w0) and j ∈ [k], we
can consider the word s1 · · · ŝp1 · · · ŝpj · · · sℓ(w0) obtained by removing the letters in positions
p1, . . . , pj from the word s1 · · · sℓ(w0). Let z(j) = s1 · · · ŝp1 · · · ŝpj · · · sℓ(w0) be the element of W
represented by this word. The proof of [9, Theorem 2.5.5] shows that it is possible to choose the
indices p1 < · · · < pk so that ℓ(z(j)) = ℓ(w0) − j for all j ∈ [k] and so that z(k) = Jw0. Let
us assume that we have made such a choice. Let vi be the word obtained from ui by removing
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the letters in the sequence sp1 , . . . , spk that belong to ui. Thus, v1 · · · vh is the reduced word
s1 · · · ŝp1 · · · ŝpk · · · sℓ(w0) for Jw0.

We claim that none of the words v1, . . . , vh−1 are empty. To prove this, we first assume, by
way of contradiction, that v1 is empty. This implies that p1 = 1, so the reduced word v1 · · · vh
for Jw0 is contained in the reduced word s2 · · · sℓ(w0) for sw0. Hence, Jw0 ⩽ sw0 in the strong
Bruhat order. The map W → W given by w 7→ ww0 is an antiautomorphism of the strong
Bruhat order [9, Proposition 2.3.4], so s ⩽ (Jw0)w0 = ((w0)J)

−1. Since ((w0)J)
−1 ∈ WJ , this

forces s ∈ J , which contradicts the fact that J = S \ {s}. Consequently, v1 is not the empty
word.

Now suppose there is some i ∈ {2, . . . , h − 1} such that vi is the empty word; we may
assume that this i is chosen minimally. Let j be the index such that spj belongs to ui and is
the last letter in ui. Then z(j−1) = v1 · · · vi−1spjui+1 · · ·uh and z(j) = v1 · · · vi−1ui+1 · · ·uh.
By the minimality of i, the word vi−1 is nonempty. Let s′ be the last letter of vi−1, and write
vi−1 = ṽi−1s

′. Because i− 1 and i + 1 have the same parity, s′ is an element of S that appears
in ui+1. Furthermore, the elements of S appearing in ui+1 all commute with each other, so
there is a reduced word ũi+1 such that ui+1 = s′ũi+1 (as elements ofW ). This means that z(j) =
v1 · · · ṽi−1s

′s′ũi+1 · · ·uh = v1 · · · ṽi−1ũi+1 · · ·uh, so ℓ(z(j)) ⩽ ℓ(z(j−1))−3. This contradicts the
fact that ℓ(z(j)) = ℓ(w0)− j = ℓ(z(j−1))− 1. Hence, we have proven the claim that v1, . . . , vh−1

are nonempty.
Now recall that v1 · · · vh = Jw0. Every letter in vh is also a letter in uh, and the letters in uh

are the elements of Y because h is even. It follows that if vh is nonempty, then its last letter is
in DR(

Jw0) ∩ Y . Lemma 3.3 tells us that DR(
Jw0) = {w0sw0}. Since s ∈ X , it follows from

Lemma 3.2 that w0sw0 ∈ X . Hence,DR(
Jw0)∩Y = ∅. This demonstrates that vh is the empty

word, so Jw0 = v1 · · · vh−1.
Choose some m ∈ [h − 1]. Because the letters in vm all commute with each other, they

must all be right descents of v1 · · · vm. We wish to show that the set of letters appearing in vm is
actually equal toDR(v1 · · · vm). Let xm be a word obtained by multiplying the letters that appear
in um but not vm in some order. Then um=vmxm (as elements ofW ), so v1 · · · vmxmum+1 · · ·uh
is a reduced word for some z(j). Consequently, the word v1 · · · vmxm is reduced. All of the
letters in xm commute with each other, so none of them can be right descents of v1 · · · vm.
There is an index j′ such that v1 · · · vmum+1 · · ·uh is a reduced word for z(j′). It follows that
the word v1 · · · vmum+1 is reduced. All of the letters in um+1 commute with each other, so none
of them can be right descents of v1 · · · vm. Since every element of S appears in exactly one
of the words vm, xm, um+1, this proves that DR(v1 · · · vm) is the set of letters appearing in vm.
Because the letters in vm all commute with each other, the element of W represented by vm is
w0(DR(v1 · · · vm)). Appealing to (2.1), we find that

Pop(v1 · · · vm) = v1 · · · vmw0(DR(v1 · · · vm))
= v1 · · · vm−1(w0(DR(v1 · · · vm)))2

= v1 · · · vm−1.

It now follows by induction on t that Popt(Jw0) = v1 · · · vh−t−1 for every 0 ⩽ t ⩽ h − 1.
In particular, Poph−1(Jw0) = e and Poph−2(Jw0) = v1 ̸= e. Furthermore, the right descents of
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Popt(Jw0) are the letters appearing in vh−t−1, which all commute with each other. If t ⩾ h, then
it is vacuously true that the right descents of Popt(Jw0) = e commute with each other.

Proposition 3.4 tells us already that ifW is finite and irreducible with an even Coxeter num-
ber h, then sup

w∈W
|OPop(w)| ⩾ h. To prove the reverse inequality and Theorem 1.5, we need a

couple more preparatory lemmas. Recall that ⩽ denotes the strong Bruhat order.

Lemma 3.5. Let W be a finite Coxeter group. Let x, y ∈ W , and assume that all of the right
descents of y commute with each other. If x ⩽ y, then Pop(x) ⩽ Pop(y).

Proof. Let s1, . . . , sr be the right descents of y. Because s1, . . . , sr all commute with each
other, we have w0(DR(y)) = s1 · · · sr. Let s′1 · · · s′q be a reduced word for Pop(y). Since
Pop(y) ⩽R y by definition, it follows from (2.1) and the fact that w0(DR(y)) is an involu-
tion that s′1 · · · s′qs1 · · · sr is a reduced word for y. Assume x ⩽ y. This implies that the re-
duced word s′1 · · · s′qs1 · · · sr contains a reduced word s′i1 · · · s

′
iasj1 · · · sjb for x. Here, s′i1 · · · s

′
ia

is a reduced word for some element z with z ⩽ Pop(y). Note that ℓ(z) = ℓ(x) − b. Since
sj1 , . . . , sjb all commute with each other, they are all inDR(x). Thus, sj1 · · · sjb is in the parabolic
subgroup WDR(x). Now, w0(DR(x)) is the unique maximal element in the left weak order
on WDR(x), so sj1 · · · sjb ⩽L w0(DR(x)). This means that there exists v ∈ W such that
w0(DR(x)) = vsj1 · · · sjb and ℓ(w0(DR(x))) = ℓ(v)+b. Using (2.1) and the fact thatw0(DR(x))
is an involution, we deduce that

zsj1 · · · sjb = x = Pop(x)w0(DR(x)) = Pop(x)vsj1 · · · sjb ,

so z = Pop(x)v. Since Pop(x) ⩽R x, the factorization x = Pop(x)w0(DR(x)) is length-
additive, meaning ℓ(x) = ℓ(Pop(x)) + ℓ(w0(DR(x))). Thus, ℓ(z) = ℓ(x) − b = ℓ(Pop(x)) +
ℓ(w0(DR(x))) − b = ℓ(Pop(x)) + ℓ(v). This shows that Pop(x) ⩽R z, so Pop(x) ⩽ z ⩽
Pop(y).

Lemma 3.6. Let (W,S) be a Coxeter system, and let J ⊆ S. If f : W → W is compulsive, then
J(f(w)) ⩽R Pop(Jw) for every w ∈ W .

Proof. By definition, Pop(Jw) =
∧

R{Jwx : x ∈ DR(
Jw)∪ {e}}. Therefore, it suffices to prove

that J(f(w)) ⩽R
Jwx for all x ∈ DR(

Jw) ∪ {e}. Fix x ∈ DR(
Jw) ∪ {e}. According to [51,

Proposition 2.5], the parabolic quotient JW is an order ideal in the right weak order onW . Since
Jwx ⩽R

Jw, it follows that Jwx ∈ JW . Because wx = wJ · Jwx, we must have J(wx) = Jwx.
Now, x ∈ DR(

Jw)∪{e} ⊆ DR(w)∪{e}, so it follows from the hypothesis that f is compulsive
that f(w) ⩽R wx. Invoking Lemma 2.1, we see that J(f(w)) ⩽R

J(wx) = Jwx, as desired.

We can now complete the proof of Theorem 1.5.

Proof of Theorem 1.5. Let W be an irreducible Coxeter group with Coxeter number h, and let
f : W → W be compulsive. If W is infinite, then h = ∞, so the result is trivial. Therefore, we
may assume W is finite. Fix w ∈ W ; our goal is to prove that fh−1(w) = e. It suffices to prove
that fh−1(w) ∈ WJ for every set J ⊆ S such that |J | = |S| − 1. Fix such a set J . Note that the
desired containment fh−1(w) ∈ WJ is equivalent to the identity J(fh−1(w)) = e.
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Because w ⩽R w0, we have Jw ⩽R
Jw0 by Lemma 2.1. Therefore, Jw ⩽ Jw0. By in-

duction on t, we will prove that J(f t(w)) ⩽ Popt(Jw0) for all t ⩾ 0. We have just estab-
lished the base case t = 0, so let us assume that t ⩾ 1 and that we have already proven
the inequality J(f t−1(w)) ⩽ Popt−1(Jw0). Proposition 3.4 tells us that the right descents of
Popt−1(Jw0) all commute with each other, so we can use Lemma 3.5 with x = J(f t−1(w))
and y = Popt−1(Jw0) to see that Pop(J(f t−1(w))) ⩽ Popt(Jw0). Lemma 3.6 tells us that
J(f t(w)) ⩽R Pop(J(f t−1(w))), so J(f t(w)) ⩽ Pop(J(f t−1(w))) ⩽ Popt(Jw0). This completes
the induction step. Now set t = h − 1 to find that J(fh−1(w)) ⩽ Poph−1(Jw0). It follows from
Lemma 3.1 (if h is odd) and Proposition 3.4 (if h is even) that Poph−1(Jw0) = e. We deduce
that J(fh−1(w)) = e, as desired.

Notice how the proof of Theorem 1.5 and the arguments leading up to it have utilized the
right weak order in tandem with the strong Bruhat order in a subtle manner.

Let us now wrap up the proof of Theorem 1.3.

Proof of Theorem 1.3. Let W be an irreducible Coxeter group with Coxeter number h. We first
assumeW is finite. If h is odd, then we are done by Lemma 3.1, so assume h is even. Choose s ∈
S, and let J = S \ {s}. We saw in Proposition 3.4 that Poph−2(Jw0) ̸= e, so max

w∈W
|OPop(w)| ⩾∣∣OPop(

Jw0)
∣∣ ⩾ h. On the other hand, the inequality max

w∈W
|OPop(w)| ⩽ h follows immediately

from Theorem 1.5 since Pop is compulsive.
Now assumeW is infinite so that h = ∞. Let us first suppose that S is finite. LetN (W,S) =

{J ⊆ S : |WJ | < ∞} be the nerve of (W,S). Let K = max
J∈N (W,S)

ℓ(w0(J)). Choose v ∈

W . Since v is an upper bound for DR(v) in the left weak order on W , it follows from [9,
Lemma 2.3.2] that DR(v) ∈ N (W,S). Using (2.1) and the fact that Pop(v) ⩽R v, we obtain

ℓ(Pop(v)) = ℓ(v)− ℓ((Pop(v))−1v)

= ℓ(v)− ℓ((w0(DR(v)))
−1)

= ℓ(v)− ℓ(w0(DR(v)))

⩾ ℓ(v)−K.

As this is true for all v ∈ W , we find that |OPop(w)| ⩾ ℓ(w)/K + 1 for all w ∈ W . An infinite
irreducible Coxeter group contains arbitrarily long elements, so sup

w∈W
|OPop(w)| = ∞.

Finally, suppose S is infinite. Observe that if J ⊆ S, then PopWJ
(w) = PopW (w) for every

w ∈ WJ . If there exists a finite set S ′ ⊆ S such that WS′ is infinite and irreducible, then it
follows from the preceding paragraph that sup

w∈W

∣∣OPopW (w)
∣∣ ⩾ sup

w∈WS′

∣∣∣OPopWS′
(w)

∣∣∣ = ∞. Now

suppose no such set S ′ exists. Let S1 ⊊ S2 ⊊ · · · be an infinite (strictly increasing) chain of
finite subsets of S such that for each i ⩾ 1, the induced subgraph of Γ(W ) on the vertex set
Si is connected. The parabolic subgroups WSi

are irreducible and finite. Let hi be the Coxeter
number of WSi

. For every i ⩾ 1, we have sup
w∈W

∣∣OPopW (w)
∣∣ ⩾ sup

w∈WSi

∣∣∣OPopWSi

(w)
∣∣∣ = hi.

The classification of Coxeter numbers [36, Section 3.18] implies that hi → ∞ as i → ∞, so
sup
w∈W

∣∣OPopW (w)
∣∣ = ∞.
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4. t-pop-stack-sortable elements in type B

We begin this section by recalling some basic facts about Coxeter groups of type B. The map
w 7→ w0ww0 is an automorphism of S2n; the permutations fixed by this automorphism form a
subgroupBn of S2n called the nth hyperoctahedral group. The mapw 7→ w0ww0 is also a lattice
automorphism of the right weak order on S2n, so (Bn,⩽R) is a sublattice of (S2n,⩽R). Let si
denote the simple transposition in S2n that swaps i and i+ 1. The group Bn is a Coxeter group
whose simple generators are the elements sB1 , . . . , sBn given by sBi = sis2n−i for i ∈ [n− 1] and
sBn = sn. Let us use ∧A

R (respectively, ∧B
R) and

∧A
R (respectively,

∧B
R) to denote meets in the

right weak order on S2n (respectively, Bn).
Fix w ∈ Bn, and let D be the set of indices i ∈ [n] such that sBi is a right descent of w

in Bn. The right descent set of w as an element of S2n is {si : i ∈ D} ∪ {s2n−i : i ∈ D}. If
i ∈ D∩ [n− 1], then wsi ∧A

R ws2n−i = wsis2n−i = wsBi because si and s2n−i commute. On the
other hand, if n ∈ D, then wsn ∧A

R ws2n−n = wsn = wsBn . It follows that

PopS2n
(w) =

∧A

R
({wsi : i ∈ D} ∪ {ws2n−i : i ∈ D} ∪ {w})

=
∧A

R
({wsi ∧A

R ws2n−i : i ∈ D} ∪ {w})

=
∧A

R
({wsBi : i ∈ D} ∪ {w}).

Since (Bn,⩽R) is a sublattice of (S2n,⩽R), this shows that PopS2n
(w) = PopBn

(w).
For w ∈ S2n, the one-line notation of w0ww0 is

(2n+ 1− w(2n))(2n+ 1− w(2n− 1)) · · · (2n+ 1− w(1)).

More geometrically, one can consider the plot of a permutation v ∈ S2n, which is the set of
points (i, v(i)) ∈ R2 for i ∈ [2n]. The plot of w0ww0 is obtained by rotating the plot of w
by 180◦ about the point (n+1

2
, n+1

2
). The previous paragraph shows that PopBn

is the restriction
of PopS2n

toBn. The main conclusion we wish to draw from this is that the t-pop-stack-sortable
elements of Bn are precisely the t-pop-stack-sortable elements of S2n that are fixed by the auto-
morphism w 7→ w0ww0. In other words, they are the t-pop-stack-sortable permutations in S2n

whose plots are invariant under 180◦ rotation.

4.1. Enumerating 2-pop-stack-sortable elements in type B

In order to enumerate the 2-pop-stack-sortable permutations in Bn, we first state a simple char-
acterization of 2-pop-stack-sortable permutations in Sn from [45]; this characterization also fol-
lows easily from the description of the pop-stack-sorting map given in Section 2.2.

Lemma 4.1 ([45]). Suppose w ∈ Sn is a permutation whose descending runs, read from left
to right, are δ1, . . . , δr. Then w is 2-pop-stack-sortable if and only if for every j ∈ [r − 1], the
largest (equivalently, the first) entry in δj is at most 1 more than the smallest (equivalently, the
last) entry in δj+1.
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For example, 62135847 is not 2-pop-stack-sortable because the largest entry in the first de-
scending run is 6, the smallest entry in the second descending run is 3, and 6 > 3 + 1.

In what follows, we will find it convenient to view permutations more generally as orderings
of arbitrary finite subsets of Z. For example, 3617 is the one-line notation of a permutation of
size 4. Our convention is that Sn is the set of permutations of [n]. The standardization of a
permutation w of size n is the permutation in Sn obtained by replacing the ith-smallest entry
in w with i for all i ∈ [n]. For example, the standardization of 3617 is 2314.

For n ⩾ 1, let L(n, k) be the set of 2-pop-stack-sortable permutations in Bn−1 that have
either 2k or 2k + 1 descending runs. Let M(n, k) be the set of permutations w ∈ L(n, k) such
that the last descending run of w contains exactly 1 entry. We make the convention L(1, 0) =
M(1, 0) = {ε}, where ε is the empty permutation. Furthermore, L(1, k) = M(1, k) = ∅
for k ̸= 0. The only permutation in Bn−1 that has 0 or 1 descending runs is the decreasing
permutationw0(S2n−2) = (2n−2)(2n−3) · · · 321, soL(n, 0) = {w0(S2n−2)}. All of the entries
in a decreasing permutation are in the same descending run, so M(n, 0) = ∅ whenever n ⩾ 2.

Proposition 4.2. Preserve the notation from above. If n ⩾ 2 and 1 ⩽ k ⩽ n− 1, then

|L(n, k)| = 2
n−1∑
i=1

|L(i, k − 1)| − |M(n− 1, k − 1)|

and
|M(n, k)| = 2|L(n− 1, k − 1)| − |M(n− 1, k − 1)|.

Proof. This follows from Lemma 4.1 and the fact that a permutation is in a hyperoctahedral
group if and only if its plot is invariant under 180◦ rotation. Indeed, suppose we are given
w ∈ L(n, k). If we remove the first and last descending runs and standardize the resulting
permutation, we obtain a permutation α(w) ∈

⋃n−1
i=1 L(i, k − 1). Hence, we have a map α :

L(n, k) →
⋃n−1

i=1 L(i, k − 1). Suppose v ∈ L(i, k − 1) for some 1 ⩽ i ⩽ n − 1. If
v ∈ M(n − 1, k − 1), then, upon inspecting the characterization of 2-pop-stack-sortable per-
mutations in Lemma 4.1, we find that |α−1(v)| = 1. Indeed, the only element of α−1(v) is
(in the notation of Section 2.2) 1 ⊕ v ⊕ 1. Now suppose v ̸∈ M(n − 1, k − 1). In this case,
there are exactly 2 elements of α−1(v). The first is w0(Sn−i) ⊕ v ⊕ w0(Sn−i) (recall from
Section 2.2 that w0(Sn−i) is the decreasing permutation of size n − i). The second is the per-
mutation whose plot is obtained from that of w0(Sn−i)⊕ v⊕w0(Sn−i) by sliding the rightmost
point down so that it is immediately below the highest point in the second-to-last descending
run and sliding the leftmost point up so that it is immediately above the lowest point in the sec-
ond descending run. For example, suppose n = 7, i = 4, and v = 264315. The first element
of α−1(v) is w0(S3) ⊕ v ⊕ w0(S3) = 3 2 1 5 9 7 6 4 8 12 11 10. The other element of α−1(v) is
5 2 1 4 10 7 6 3 9 12 11 8. The latter permutation was obtained from 3 2 1 5 9 7 6 4 8 12 11 10 by
decreasing the last entry so that it is 1 less than the largest entry in the second-to last descending
run (i.e., 8 = 9 − 1) and increasing the first entry so that it is 1 more than the smallest entry in
the second descending run (i.e., 5 = 4 + 1). It follows that |L(n, k)| is equal to

|M(n−1, k−1)|+2

∣∣∣∣∣
n−1⋃
i=1

L(i, k − 1) \M(n− 1, k − 1)

∣∣∣∣∣ = 2
n−1∑
i=1

|L(i, k−1)|−|M(n−1, k−1)|.
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Note that if w ∈M(n, k), then α(w) ∈ L(n−1, k−1). Let β :M(n, k) → L(n−1, k−1)
be the restriction of α to M(n, k). If v ∈ M(n − 1, k − 1), then we saw above that the unique
element of α−1(v) is 1 ⊕ v ⊕ 1, which is in M(n, k). Thus, |β−1(v)| = 1 in this case. If
v ∈ L(n− 1, k − 1) \M(n− 1, k − 1), then we saw above how to construct the two elements
of α−1(v). Both of these elements are actually in M(n, k), so |β−1(v)| = 2 in this case. This
shows that |M(n, k)| is equal to

2|L(n−1, k−1)\M(n−1, k−1)|+|M(n−1, k−1)| = 2|L(n−1, k−1)|−|M(n−1, k−1)|.

Proof of Theorem 1.8. In [45], Pudwell and Smith define a(n, k) to be the number of 2-pop-
stack-sortable permutations in Sn that have exactly k + 1 descending runs. They also define
b(n, k) to be the number of 2-pop-stack-sortable permutations w ∈ Sn with exactly k + 1 de-
scending runs such that the last descending run of w has exactly one entry. They prove (see [45,
Proposition 1]) that a(n, k) and b(n, k) satisfy the same recurrence relation that we found for
|L(n, k)| and |M(n, k)| in Proposition 4.2, even with the same initial conditions. It follows that
|L(n, k)| = a(n, k) and |M(n, k)| = b(n, k). This proves the first statement in Theorem 1.8 and
shows that ∑

n⩾1

∣∣Pop−2
Bn

(e)
∣∣ zn =

∑
n⩾1

∣∣∣Pop−2
Sn+1

(e)
∣∣∣ zn.

Pudwell and Smith also found that the generating function
∑

n⩾0

∣∣Pop−2
Sn
(e)

∣∣ zn that counts 2-

pop-stack-sortable permutations is equal to
1− z − z2 − z3

1− 2z − z2 − 2z3
(see [45, Corollary 1]). Conse-

quently,∑
n⩾1

∣∣∣Pop−2
Sn+1

(e)
∣∣∣ zn =

1

z

Å
1− z − z2 − z3

1− 2z − z2 − 2z3
− 1

ã
− 1 =

2z(1 + z + z2)

1− 2z − z2 − 2z3
.

4.2. Generating functions for t-pop-stack-sortable elements in type B

We now proceed to prove Theorem 1.10, which states that for each fixed t ⩾ 0, the generating
function that counts t-pop-stack-sortable permutations in hyperoctahedral groups is rational.
Our proof makes heavy use of the tools that Claesson and Guðmundsson developed in [19].

Fix an integer t ⩾ 1. Consider a t-pop-stack-sortable permutation w ∈ Sn. Let us write
out the one-line notations of w,Pop(w),Pop2(w), . . . ,Popt−1(w), with Popk(w) directly below
Popk−1(w) for each k ∈ [t − 1]. Draw boxes around the descending runs of each of these
permutations. The resulting array of numbers and boxes is called the sorting trace of w. If
we delete the numbers in this sorting trace, we obtain an array of boxes called the sorting plan
of w. We call n and t the length and order, respectively, of the sorting trace and the sorting
plan. For a concrete example, see Figure 4.1, which shows the sorting trace and sorting plan of
order 4 of the permutation 6524713. Let SPn(t) denote the set of all sorting plans of length n
and order t (i.e., the set of all sorting plans of t-pop-stack-sortable permutations in Sn). Let
SP(t) =

⋃
n⩾1 SPn(t). Each box in the sorting trace or sorting plan of w is called a block; the

length of a block is the number of entries that it contains in the sorting trace.
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Figure 4.1: The sorting trace (left) and sorting plan (right) of order 4 of 6524713.

Notice that the sorting trace of w is completely determined by the sorting plan of w. In-
deed, for each k ∈ [t], the permutation Popk(w) is obtained by reversing the descending runs
of Popk−1(w). The lengths of the descending runs of Popk−1(w) are precisely the lengths of the
blocks in the kth row of the sorting plan of w. Thus, Popk−1(w) can be obtained by inserting
Popk(w) into the kth row of the sorting plan of w and then reversing the entries within each
block. Since Popt(w) = e, this shows that we can determine w, and, hence, the sorting trace
of w, from the sorting plan of w. It follows that t-pop-stack-sortable permutations in Sn are in
bijection with sorting plans of length n and order t.

Define a bar code of order t to be a sequence of t vertical bars and blank spaces, each of height
1, arranged vertically from top to bottom. If we associate each vertical bar with the digit 0 and
associate each blank space with the digit 1, then a bar code corresponds to an element of {0, 1}t.
We associate each element (x1, . . . , xt) of {0, 1}t with the integer

xt + 2xt−1 + 22xt−2 + · · ·+ 2t−1x1 ∈ Σt,

where Σt = {0, . . . , 2t − 1}. Hence, we have a bijective correspondence between bar codes of
order t and elements of Σt. For example, with t = 4, the bar codes in Figure 4.2 correspond,
from left to right, to the vectors (0, 0, 0, 0), (0, 0, 1, 0), and (1, 1, 0, 1). These, in turn, correspond
to the numbers 0, 2, and 13 in Σ4.

Figure 4.2: Three bar codes of order 4.

A segment of length n and order t is a sequence of n+1 bar codes of order t that are arranged
from left to right and separated by spaces of width 1, along with t+1 separating horizontal lines
of length n. For instance, the left side of Figure 4.3 depicts a segment of length 4 and order 4.
Being (essentially) a sequence of bar codes, a segment σ corresponds to a word ψ(σ) over the
alphabet Σt. For example, if σ is the segment on the left of Figure 4.3, then ψ(σ) is the word
9 10 5 5 10. Notice that ψ is an injection from the set of segments of order t into the set of words
over Σt. Every sorting plan is a segment; we will be primarily interested in the set ψ(SP(t)) of
words over Σt that correspond to sorting plans of order t. The number of t-pop-stack-sortable
permutations in Sn is equal to |ψ(SPn(t))|, so the generating function whose rationality was
demonstrated by Claesson and Guðmundsson in [19] is

∑
n⩾1 |ψ(SPn(t))|zn.
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We say a segment σ contains a segment σ′ if the word ψ(σ) contains the word ψ(σ′) as
a factor (i.e., a contiguous subword). For example, if σ is the sorting plan on the right side
of Figure 4.1 and σ′ is the segment on the left side of Figure 4.3, then σ contains σ′ because
ψ(σ) = 0 9 10 5 5 10 4 0 and ψ(σ′) = 9 10 5 5 10.

Figure 4.3: On the left is a segment of length 4 and order 4. On the right, the left-open (respec-
tively, right-open) blocks of this segment have been shaded in pink (respectively, blue).

Imagine enclosing a segment σ of length n and order t inside a rectangle R of width n and
height t. The connected components of the complement of σ in the interior of R are called the
blocks of σ. A block is left-open if it touches R on its left side but does not touch σ on its left
side. A block is right-open if it touches R, but not σ, on its right side. On the right side of
Figure 4.3, the left-open and right-open blocks of the segment have been shaded pink and blue,
respectively. We say a segment is bounded if each of its blocks has length at most 3.

An operation array is a segment σ such that ψ(σ) starts and ends with 0 (equivalently, σ
has no left-open or right-open blocks). Suppose we are given an operation array σ of length n
and order t. Place the identity permutation 123 · · ·n below σ. Now fill the rows of σ, one at a
time, from bottom to top. At each step, copy the numbers in the (k + 1)th row into the kth row
and then reverse the numbers within each block in the kth row. Let T be the resulting array of
blocks and numbers, excluding the identity permutation at the bottom. The array T is called
the semitrace of σ (see Figure 4.4). Consider a pair of integers (a, b) with 1 ⩽ a < b ⩽ n.
Let Xa,b(T ) be the collection of blocks in T that contain a or b and do not lie in the first row
of T ; letXa,b(σ) be the corresponding collection of blocks in σ. Let σa,b be the smallest segment
contained in σ that includes all of the blocks inXa,b(σ). We say the pair (a, b) is a violating pair
of the semitrace T if there is some row of T that either contains a and b in the same block with a
immediately before b or contains a and b in different blocks with b immediately before a. We
say the segment σa,b is forbidden if (a, b) is a violating pair in T . Claesson and Guðmundsson
showed that whether or not the segment σa,b is forbidden only depends on the segment σa,b itself;
it does not depend on the pair (a, b) or the operation array σ in which σa,b is embedded.

Lemma 4.3 ([19, Proposition 3.9]). A segment σ of order t is a sorting plan if and only if the
following conditions hold:

• σ is an operation array;

• every block of σ that is not in the first row of σ has length at most 3;

• σ does not contain any bounded forbidden segments.

Lemma 4.4 ([19, Lemma 3.12]). There are finitely many bounded forbidden segments of order t.
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Figure 4.4: An operation array σ (left) and its corresponding semitrace T (middle). The blocks
in X3,6(T ) are shown in green; the corresponding blocks in σ form the set X3,6(σ). The seg-
ment σ3,6 (right) is the smallest segment contained in σ that includes all of the blocks inX3,6(σ).
The violating pairs of T are (3, 6) (because of the second row) and (5, 6) (because of the first
row). Since (3, 6) is a violating pair of T , the segment σ3,6 is forbidden.

To prove their main result, Claesson and Guðmundsson employed the theory of formal lan-
guages; we will do the same. We recall the basic notions from this theory, referring the reader
to [39] for more information.

Let A be a nonempty finite alphabet. A language over A is a collection of finite (possibly
empty) words over A. Given a language L, let L∗ denote the set of all finite words, including the
empty word, that can be obtained by concatenating words fromL. The concatenation of two lan-
guages L1 and L2 is the language L1L2 = {xy : x ∈ L1, y ∈ L2}. The reverse of a language L
is rev(L) = {rev(x) : x ∈ L}, where, for a1, . . . , ak ∈ A, we write rev(a1 · · · ak) = ak · · · a1.

A language is regular if it is the set of words accepted by a deterministic finite automaton.
The following lemma lists several standard properties of the collection of regular languages; we
refer to [39, Chapter 4] for its proof.

Lemma 4.5. Let A be an alphabet. Every finite language over A is regular. If L,L1, . . . ,Lk

are regular languages over A, then

L∗,
k⋃

i=1

Li,
k⋂

i=1

Li, L1L2, A∗ \ L, rev(L)

are all regular.

Let An denote the set of words over A of length n. The crucial fact that we need states that
if L is a regular language, then the generating function

∑
n⩾1 |L ∩ An|zn is rational (see, e.g.,

[30, Proposition I.2]). Claesson and Guðmundsson showed that ψ(SP(t)) is a regular language
over the alphabet Σt. We have seen that the words in ψ(SP(t)) are in bijection with t-pop-stack-
sortable permutations, so the regularity of ψ(SP(t)) implies the rationality of the generating
function that counts t-pop-stack-sortable permutations in symmetric groups.

We are almost ready to prove Theorem 1.9. We just need to discuss one additional concept.
Say a segment σ is symmetric if the word ψ(σ) is a palindrome. In other words, a segment is
symmetric if it is left unchanged when we reflect it through a central vertical axis. Observe that
a segment is symmetric if and only if each of its rows is a symmetric segment of order 1. Define
a type-B sorting plan to be a symmetric sorting plan of even length.
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Lemma 4.6. Let σ be the sorting plan of order t of a t-pop-stack-sortable permutationw ∈ S2n.
Then σ is a type-B sorting plan if and only if w ∈ Bn.

Proof. Suppose w ∈ Bn. We have seen that PopBn
is the restriction of PopS2n

toBn. Therefore,
the permutations in the rows of the sorting trace of w are

w,PopBn
(w),Pop2Bn

(w), . . . ,Popt−1
Bn

(w).

If k ∈ [t] and δ1, . . . , δr are the descending runs (from left to right) of Popk−1
Bn

(w), then the length
of δi is equal to the length of δr+1−i for each i ∈ [r] (because Popk−1

Bn
(w) ∈ Bn). In other words,

the kth row of σ is a symmetric segment of length 2n and order 1. As this is true for every k ∈ [t],
σ must be a type-B sorting plan.

Conversely, suppose σ is a type-B sorting plan. We will prove by backward induction on
k that Popk−1(w) ∈ Bn for all k ∈ [t + 1]; setting k = 1 will then show that w ∈ Bn. We
certainly have Popt(w) = e ∈ Bn, so let us choose k ∈ [t] and assume we have already proven
that Popk(w) ∈ Bn. Let m1, . . . ,mr be the lengths of the descending runs (from left to right)
of Popk−1(w). Let λ be the unique layered permutation in S2n whose descending runs (from
left to right) have lengths m1, . . . ,mr. By the discussion in Section 2.2, we have Popk(w) =
Popk−1(w)λ. Since σ is symmetric and m1, . . . ,mr are the lengths of the blocks in the kth row
of σ, we have mi = mr+1−i for all i ∈ [r]. It follows that λ ∈ Bn. Thus, Popk−1(w) =
Popk(w)λ−1 ∈ Bn.

Proof of Theorem 1.9. If t = 0, then
∑
n⩾1

∣∣Pop−t
Bn

(e)
∣∣ zn =

z

1− z
is rational, so we may assume

t ⩾ 1. Given a palindromic word x = x1 · · ·x2n ∈ Σ2n
t , let half(x) = x1 · · ·xn ∈ Σn

t . Note that
x is uniquely determined by half(x) since x = half(x) rev(half(x)). Let SPB(t) be the set of
type-B sorting plans of order t. Each of the words in ψ(SPB(t)) is a palindrome of even length,
so it makes sense to define the language half(ψ(SPB(t))) = {half(ψ(σ)) : σ ∈ SPB(t)}.

We have seen that the map sending each t-pop-stack-sortable permutation to its sorting plan is
a bijection from the set of t-pop-stack-sortable permutations in S2n to SP2n(t). It follows from
Lemma 4.6 that the number of t-pop-stack-sortable elements of Bn is equal to the number of
type-B sorting plans of length 2n and order t. This is also equal to the number of words of length
n in the language half(ψ(SPB(t))). Therefore, in order to prove that the generating function∑
n⩾1

∣∣Pop−t
Bn

(e)
∣∣ zn is rational, it suffices to show that half(ψ(SPB(t))) is a regular language.

Let U be the set of words u ∈ Σ∗
t such that ψ−1(u) and ψ−1(rev(u)) do not contain any

bounded forbidden segments while ψ−1(u rev(u)) does contain a bounded forbidden segment.
Consider the following six properties that a word x ∈ Σ∗

t may or may not have:

(i) x begins with the letter 0;

(ii) every block of ψ−1(x) that is not in the first row has length at most 3;

(iii) every right-open block of ψ−1(x) that is not in the first row has length at most 1;

(iv) ψ−1(x) does not contain any bounded forbidden segments;
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(v) ψ−1(rev(x)) does not contain any bounded forbidden segments;

(vi) no suffix of x is in U .
It follows from Lemma 4.3 that a word x ∈ Σ∗

t satisfies all six of these properties if and
only if ψ−1(x rev(x)) is a sorting plan. Indeed, saying x satisfies (i) is equivalent to saying that
ψ−1(x rev(x)) is an operation array. Saying x satisfies (ii) and (iii) is equivalent to saying that
every block of ψ−1(x rev(x)) that is not in the first row of ψ−1(x rev(x)) has length at most 3.
Finally, saying that x satisfies (iv), (v), and (vi) is equivalent to saying that ψ−1(x rev(x)) does
not contain any bounded forbidden segments. Consequently, half(ψ(SPB(t))) is the set of words
satisfying all six of the above properties. For each P ∈ {i, ii, iii, iv, v, vi}, let LP be the language
of words over Σ∗

t that satisfy the property (P). Since, by Lemma 4.5, the intersection of a finite
collection of regular languages is regular, our proof will be complete once we demonstrate that
each of the languages LP is regular.

We make repeated tacit use of Lemma 4.5 in this paragraph. We have Li = {0}Σ∗
t , so

Li is regular. Let Zi be the set of letters m ∈ Σt such that, when m is written in binary as
xt + 2xt−1 + 22xt−2 + · · · + 2t−1x1, we have xi = 1. Equivalently, Zi is the set of elements m
of Σt such that the ith entry of the bar code ψ−1(m) is a blank space. We have

Lii =
t⋂

i=2

(Σ∗
t \ (Σ∗

tZiZiZiΣ
∗
t )) and Liii =

t⋂
i=2

(Σ∗
t \ (Σ∗

tZiZi)) ,

so Lii and Liii are regular. Let Ft be the set of bounded forbidden segments of order t, which is
finite by Lemma 4.4. For each f ∈ Ft, the set of words x such that ψ−1(x) does not contain f
is Σ∗ \ (Σ∗

t{ψ(f)}Σ∗
t ). Therefore, the language Liv =

⋂
f∈Ft

(Σ∗
t \ (Σ∗

t{ψ(f)}Σ∗
t )) is regular.

Furthermore, Lv is regular because it is the reverse of Liv.
We are left with the task of proving that Lvi is regular. Let |x| denote the length of a word x.

Since the set Ft of bounded forbidden segments of order t is finite by Lemma 4.4, there exists
a positive integer K such that |ψ(f)| ⩽ K for all f ∈ Ft. Let U ′ be the set of words u ∈ U
such that no proper suffix of u is in U . Consider u ∈ U ′. Let a be the first letter of u, and
write u = au′. Note that u′ ̸∈ U because u ∈ U ′. Since u ∈ U , we can write u = vv′ and
rev(u) = y′y so that v′ and y′ are nonempty and ψ−1(v′y′) ∈ Ft. Either v or y must be empty
since, otherwise, u′ would be in U . Therefore, |u| = max{|v′|, |y′|} < |v′y′| ⩽ K. This proves
that every word in U ′ has length at mostK, so U ′ is finite. In particular, U ′ is a regular language
by Lemma 4.5. Note that a word x is in Lvi if and only if no suffix of x is in U ′. In symbols, this
says that Lvi = Σ∗

t \ (Σ∗
tU

′), so Lvi is regular by Lemma 4.5.

5. t-pop-stack-sortable elements in type Ã

For n ⩾ 1, an affine permutation of size n is a bijection w : Z → Z such that

w(i+ n) = w(i) + n for all i ∈ Z (5.1)

and
n∑

i=1

w(i) =

Ç
n+ 1

2

å
. (5.2)
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The set S̃n of affine permutations of size n forms a group under composition; it is a Coxeter group
of type Ãn−1. The simple generators are s̃1, . . . , s̃n, where s̃i is the affine permutation that swaps
i+mn and i+mn+1 for all m ∈ Z and fixes all other elements of Z. The simple generator s̃i
is a right descent of an affine permutation w if and only if w(i) > w(i+ 1). Furthermore, ℓ(w)
is equal to the number of pairs (i, j) ∈ [n]× Z such that i < j and w(i) > w(j).

It will be useful to consider the one-line notation of a bijection w : Z → Z, which is
simply the bi-infinite word · · ·w(−2)w(−1)w(0).w(1)w(2) · · · . The decimal point between
w(0) and w(1) is meant to indicate which letters are indexed by which integers. For example,
· · · (−1)0.123 · · · represents the identity element e of S̃n, while · · · (−1)01.23 · · · represents the
bijection given by i 7→ i+ 1, which is not an affine permutation because it fails to satisfy (5.2).

A descending run of an affine permutation w is a maximal consecutive decreasing subse-
quence of w. We say an affine permutation w ∈ S̃n is layered if there exists k ∈ {0, . . . , n− 1}
such that (w(k + 1)− k)(w(k + 2)− k) · · · (w(k + n)− k) is a layered permutation in Sn. In
other words, we can think of a layered affine permutation as an infinite direct sum of decreasing
permutations. Just as for symmetric groups, one can show that an affine permutation w ∈ S̃n

is layered if and only if w = w0(DR(w)). Hence, for an arbitrary w ∈ S̃n, we can compute
PopS̃n

(w) (using (2.1)) by multiplying w on the left by the unique layered affine permutation
that has the same right descent set as w. Using this description, it is straightforward to check
that PopS̃n

(w) is obtained by reversing all of the descending runs of w while keeping entries in
different descending runs in the same relative order.

Lemma 5.1. Let w ∈ S̃n. Every descending run of Pop(w) has length at most 3.

Proof. Let Pop(w) = v, and suppose, by way of contradiction, that there exists i ∈ Z such that
v(i) > v(i + 1) > v(i + 2) > v(i + 3). For j ∈ {0, 1, 2, 3}, let δj be the descending run
of w that contains the entry v(i + j). Since v is obtained by reversing the descending runs of
w, the descending runs δ0, δ1, δ2, δ3 are distinct and appear consecutively (in this order) in w.
This implies that the only entry in δ1 is v(i + 1) and that the only entry in δ2 is v(i + 2). Since
v(i+ 1) > v(i+ 2), this contradicts the fact that δ1 and δ2 are distinct descending runs.

Our goal in this section is to prove Theorem 1.10, which states that the generating func-
tion

∑
n⩾1

∣∣∣Pop−t

S̃n
(e)

∣∣∣ zn is rational. First, we should check that this generating function is even

well-defined! In other words, we should verify that for each t ⩾ 0, there are only finitely
many t-pop-stack-sortable affine permutations in S̃n. This follows from our proof of Theo-
rem 1.3. In that proof, we showed that

∣∣∣OPop‹Sn
(w)

∣∣∣ ⩾ ℓ(w)/K + 1 for all w ∈ S̃n, where

K = max
J∈N (S̃n,S)

ℓ(w0(J)). Since there are only finitely many elements of S̃n of each fixed length,

there are only finitely many t-pop-stack-sortable affine permutations in S̃n.
We are going to make use of the ideas from the previous section concerning sorting traces,

sorting plans, segments, and semitraces, but we need to modify them for the affine setting. Fix
t ⩾ 1, and consider a t-pop-stack-sortable affine permutation w ∈ S̃n. Write out the one-line
notations of w,Pop(w),Pop2(w), . . . ,Popt−1(w), with Popk(w) directly below Popk−1(w) for
each k ∈ [t− 1]. Draw boxes around the descending runs of each of these affine permutations.
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The resulting bi-infinite array of numbers and boxes is the affine sorting trace of w. Deleting
the numbers in the sorting trace produces a bi-infinte array of boxes called the affine sorting
plan of w. We call n and t the period and order, respectively, of the affine sorting trace and
the affine sorting plan. Note that an affine sorting plan of period n also has period dn for each
positive integer d. The columns of an affine sorting plan are indexed by Z (so an affine sorting
plan can change when it is shifted). Figure 5.1 shows the affine sorting trace and affine sorting
plan of order 3 of the affine permutation w ∈ S̃5 with w(1) = 0, w(2) = 3, w(3) = 2, w(4) = 6,
w(5) = 4. Denote by S̃Pn(t) the set of all affine sorting plans of period n and order t (i.e., the set
of all affine sorting plans of t-pop-stack-sortable permutations in S̃n). Let S̃P(t) =

⋃
n⩾1 S̃Pn(t).

As in the non-affine case, boxes in affine sorting traces and affine sorting plans are called blocks.

Figure 5.1: The affine sorting trace (top) and affine sorting plan (bottom) of order 3 of the affine
permutation w ∈ S̃5 satisfying w(1) = 0, w(2) = 3, w(3) = 2, w(4) = 6, w(5) = 4. In each
diagram, notice the decimal point between the column indexed by 0 and the column indexed
by 1.

Bar codes have the same meaning that they did in the previous section, and we still have a nat-
ural bijection ψ between bar codes of order t and elements of the alphabet Σt = {0, . . . , 2t − 1}.
Segments also have the same meaning as in the previous section, except we now allow them to
be bi-infinite (in which case, the columns are indexed by Z). Blocks of segments are defined in
the obvious way (blocks are now permitted to be infinitely long). In this setting, ψ extends to
an injection from the set of segments of order t to the set of finite or bi-infinite words over Σt.
We say a bi-infinite segment σ is n-periodic if ψ(σ) is an n-periodic word. As before, we say a
segment σ contains a segment σ′ if ψ(σ) contains ψ(σ′) as a factor. Finally, we say a segment
σ is non-Escher5 if it does not contain any infinitely long blocks.

Now suppose we are given a non-Escher bi-infinite segment σ of order t, which we assume
has its columns indexed by the integers. Place the identity affine permutation below σ so that
for each i ∈ Z, the number i is below column i. Fill the rows of σ from bottom to top. At each
step, copy the numbers in the (k+1)th into the kth row and then reverse the numbers within each
block in the kth row. The resulting array T , excluding the identity affine permutation at the very
bottom, is called the affine semitrace of σ. Given a pair of integers (a, b) with a < b, we define

5This clever terminology is stolen from [1], where it was used in a similar but different manner. The fact that an
affine sorting plan is non-Escher corresponds to the fact that an affine permutation in S̃n cannot have the entire set
S = {s̃1, . . . , s̃n} as its right descent set, contrary to M. C. Escher’s classical pieces of art that portray staircases
perpetually descending and somehow looping back on themselves.
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σa,b just as in the previous section. As before, we say the pair (a, b) is a violating pair of the
affine semitrace T if there is some row of T that either contains a and b in the same block with
a immediately before b or contains a and b in different blocks with b immediately before a. We
say the segment σa,b is forbidden if (a, b) is a violating pair in T .

Note that whether or not a finite-length segment is forbidden is a local property; this means
that a segment of finite length is forbidden in the affine setting if and only if it is forbidden in the
sense of the preceding section. Thus, the set Ft of bounded forbidden segments of order t is the
same as it was in the previous section. In particular, bounded forbidden segments are of finite
length, and the set Ft is finite by Lemma 4.4.

The map sending each affine permutation to its affine sorting plan is a bijection fromPop−t

S̃n
(e)

to S̃Pn(t). Indeed, each w ∈ S̃n is determined by its affine sorting plan σ because w is the
sequence of numbers in the first row of the affine semitrace of σ.

The following lemma serves as an affine version of Lemma 4.3.

Lemma 5.2. A segment σ of order t is in S̃Pn(t) if and only if the following conditions hold:

• σ is n-periodic and non-Escher;

• every block of σ that is not in the first row of σ has length at most 3;

• σ does not contain any bounded forbidden segments.

Proof. Suppose first that σ is in S̃Pn(t). This means that σ is the sorting plan of a t-pop-stack-
sortable affine permutation w ∈ S̃n. The lengths of the blocks in the kth row of σ are the lengths
of the descending runs of Popk−1

S̃n
(w). The condition (5.1) ensures that, for each k ∈ [t], the

right descent set of Popk−1

S̃n
(w) is not the entire set S = {s̃1, . . . , s̃n}, so σ is non-Escher. The

condition (5.1) also guarantees that σ is n-periodic. Furthermore, Lemma 5.1 implies that every
block of σ that is not in the first row has length at most 3. Because w is t-pop-stack-sortable, the
affine trace of w is the same as the affine semitrace of σ. The affine trace of w cannot contain
a violating pair since its blocks are constructed by putting boxes around the descending runs of
the affine permutations in each row. It follows that σ cannot contain a forbidden segment. In
particular, σ does not contain any bounded forbidden segments.

To prove the converse, assume σ satisfies the three bulleted conditions in the statement of
the lemma. Construct the affine semitrace T of σ. Consider the step when we fill the kth row of
the semitrace by copying the numbers in the (k + 1)th row into the kth row and then reversing
the numbers within each block in the kth row. If we already know that the entries in the (k+1)th

row form an affine permutation in S̃n, then the entries in the kth row must also form an affine
permutation in S̃n. Indeed, it follows from the first two bulleted conditions that the entries in
the kth row are obtained by multiplying the affine permutation in the (k + 1)th row by a layered
affine permutation. Let w be the bounded affine permutation in the first row of T . It follows
from the second bulleted condition that every segment contained in σ is bounded, so it follows
from the third bulleted condition that σ does not contain any forbidden segments. Consequently,
T does not contain any violating pairs. This implies that w is t-pop-stack-sortable and that T is
the affine trace of w. Hence, σ ∈ S̃Pn(t).
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Before proving our final theorem, we need one additional lemma about regular languages.
Given a word x = x1 · · ·xn over a finite alphabet A, define cyc(x) to be the cyclic shift
x2 · · ·xnx1. For a language L ⊆ A∗, define cyc(L) = {cyc(x) : x ∈ L}.

Lemma 5.3 ([39, Chapter 4, Exercise 20]). If L is a regular language over a finite alphabet A,
then so is cyc(L).

Proof of Theorem 1.10. If t = 0, then
∑
n⩾1

∣∣∣Pop−t

S̃n
(e)

∣∣∣ zn =
z

1− z
is rational, so we may assume

t ⩾ 1. Let K = max{K ′ + 1, 5}, where K ′ is the maximum length of a bounded forbidden
segment of order t (this is finite by Lemma 4.4). To prove the theorem, it suffices to show that∑
n⩾K

∣∣∣Pop−t

S̃n
(e)

∣∣∣ zn is rational.

Assume n ⩾ K. Suppose w ∈ S̃n, and let T and σ be the affine sorting trace and affine
sorting plan, respectively, of w. The ith column of T is the column of numbers whose top entry
isw(i). Recall the injection ψ that sends segments of order t to words overΣt. Also, recall that σ
can be seen as a bi-infinite sequence of bar codes; let bi be the bar code in T that is immediately
to the left of the ith column of T . Let ai ∈ Σt be the letter corresponding to bi (via its binary
expansion). Define αn(σ) to be the segment of length n− 1 such that ψ(αn(σ)) = a1a2 · · · an.
For example, if σ is the affine sorting plan in Figure 5.1, then

α5(σ) = ψ−1(20404) = .

Notice that σ can be reconstructed from αn(σ) because it is n-periodic by Lemma 5.2. Thus, αn

is an injection from S̃Pn(t) into the set of segments of length n−1 and order t. The number of t-
pop-stack-sortable affine permutations in S̃n is equal to |S̃Pn(t)|, which is equal to |αn(S̃Pn(t))|,
which is equal to |ψ(αn(S̃Pn(t)))|.

Consider the language L =
⋃

n⩾K ψ(αn(S̃Pn(t))) over Σt. In order to complete the proof of
the theorem, it suffices to show that L is regular. To do this, we define Y to be the set of finite
words y over Σt such that:

(I) y has length at least K;

(II) the first row of ψ−1(y) has at least one vertical bar;

(III) every block of ψ−1(y) that is not in the first row of ψ−1(y) has length at most 3;

(IV) ψ−1(y) does not contain any bounded forbidden segments.

Let L′ =
⋂K−1

k=0 cyck(Y ), where cyck(Y ) = {cyck(y) : y ∈ Y }.
We claim that L′ = L. To see this, first suppose x = x1 · · ·xn ∈ L′. Since x ∈ Y ,

we have n ⩾ K by (I). Let σ = ψ−1(· · ·xx.xxx · · · ) be the bi-infinite segment obtained by
concatenatingψ−1(x)with itself infinitely many times. We want to show that σ satisfies the three
bulleted conditions in Lemma 5.2; it will then follow that σ ∈ S̃Pn(t) so that x = ψ(αn(σ)).
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The n-periodicity of σ is clear from its definition, and the non-Escher property of σ follows
from (II), (III), and the fact that n ⩾ K ⩾ 5. If σ has a block of length at least 4 that is not
in its first row, then there is some k ∈ {0, 1, 2, 3, 4} such that ψ−1(cyc−k(x)) has a block of
length at least 4 not in its first row. However, this contradicts property (III) of cyc−k(x), which
is in Y because K ⩾ 5. Finally, if σ contains a bounded forbidden segment, then there is
some k ∈ {0, 1, . . . , K ′} such that ψ−1(cyc−k(x)) contains a bounded forbidden segment. This
contradicts property (IV) of cyc−k(x), which is in Y because K ⩾ K ′ + 1. Hence, L′ ⊆ L.

Now suppose x ∈ L. Then x = ψ(αn(σ)), where σ is the affine sorting plan of order t of
some w ∈ S̃n with n ⩾ K. Choose k ⩾ 0, and let y = cyc−k(x). The word y has length n,
so it satisfies (I). Notice that ψ(σ) is the bi-infinite word · · ·xx.xxx · · · , which is obtained by
shifting · · · yy.yyy · · · by k. Lemma 5.2 tells us that σ is non-Escher, so y must satisfy (II). The
second bulleted item in Lemma 5.2 implies that y satisfies (III). Similarly, the third bulleted
item in Lemma 5.2 implies that y satisfies (IV). This proves that y ∈ Y . As k was arbitrary,
x ∈

⋂
k⩾0 cyc

k(Y ) ⊆ L′.
We have now established that L = L′. We are left with the task of proving that L′ is a regular

language. We make tacit use of Lemma 4.5. For P ∈ {I, II, III, IV}, let LP be the set of words
y in Σ∗

t satisfying property (P). Note that LI is regular because it is equal to (Σt)KΣ
∗
t , where

(Σt)K is the regular language consisting of all words in Σ∗
t of length K. Let Z1 be the set of

letters m ∈ Σt such that, when m is written in binary as xt +2xt−1 +22xt−2 + · · ·+2t−1x1, we
have x1 = 1. Equivalently, m ∈ Z1 if and only if the bar code corresponding to m starts with
a blank space. Then LII = Σ∗

t \ (Z∗
1) is regular. The languages LIII and LIV are equal to the

languages Lii and Liv, respectively, from the proof of Theorem 1.9 in Section 4; we saw in that
proof that these languages are regular. We conclude that LI,LII,LIII,LIV are regular languages,
so their intersection Y is regular as well. It follows from Lemma 5.3 that cyck(Y ) is regular for
each k ∈ {0, . . . , K − 1}. Hence, L′ is regular.

6. Further directions

In Section 1.2, we mentioned two extensions of Coxeter pop-stack-sorting operators: one to other
complete meet-semilattices and one to other semilattice congruences on weak orders of Coxeter
groups. We explore the first of these extensions in [23] and explore the second in [25]. Here, we
mention some other potential avenues for future work.

The authors of [5] suggested considering the average size of the forward orbit of a permu-
tation in Sn under the pop-stack-sorting map. In [22], the current author conjectured that this
average number of iterations is asymptotically equal to n, which is the maximum possible size of
a forward orbit by Ungar’s theorem. We believe that the same statement should hold for Coxeter
groups of other classical types as well. In these cases, the maximum possible size of the forward
orbit of an element is the Coxeter number of the group by Theorem 1.3. The Coxeter number of
Bn is 2n, and the Coxeter number of Dn is 2n− 2.

Conjecture 6.1. As n→ ∞, we have
1

|Bn|
∑
w∈Bn

∣∣∣OPopBn
(w)

∣∣∣ ∼ 2n and
1

|Dn|
∑
w∈Dn

∣∣∣OPopDn
(w)

∣∣∣ ∼ 2n− 2.
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In Section 1.2, we defined a map PopM :M →M , where M is an arbitrary complete meet-
semilattice. In Remark 1.11, we defined the notion of a compulsive map f : M → M . We also
exhibited a 6-element lattice M and a compulsive map f : M → M such that sup

x∈M
|Of (x)| >

sup
x∈M

∣∣OPopM (x)
∣∣. It could be interesting to investigate which complete meet semilatticesM have

the property that sup
x∈M

|Of (x)| ⩽ sup
x∈M

∣∣OPopM (x)
∣∣ for every compulsive map f : M → M ;

Theorems 1.3 and 1.5 tell us that weak orders of Coxeter groups have this property. It is also
natural to consider this question only for finite meet-semilattices, or even just for finite lattices.
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