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We show theoretically that the periodically corrugated sur-
face of a high-index dielectric medium can support a leaky
surface electromagnetic wave. This wave is bound to the
surface in the vacuum, but radiates into the dielectric.
Despite this radiative damping, the surface wave can have
a long lifetime. © 2016 Optical Society of America

OCIS codes: (050.0050) Diffraction and gratings; (240.0240) Optics

at surfaces; (240.6690) Surface waves.

http://dx.doi.org/10.1364/OL.41.002229

It is well known that a planar vacuum–dielectric interface does
not support a surface electromagnetic wave of either p or s
polarization when the dielectric constant of the dielectric
medium is real and positive. Such a surface also does not sup-
port a leaky surface wave. In this Letter, we show that if the
vacuum–dielectric interface is periodically corrugated instead
of planar and the dielectric constant of the dielectric medium
is real, positive, and large, it can support a leaky surface wave.
This wave is bound to the surface in the vacuum region but
radiates into the dielectric medium.

In order to avoid any misunderstanding, we note that if the
dielectric medium has a complex dielectric constant whose real
part is positive and constant, and whose imaginary part is pos-
itive, constant, and larger than the real part, its planar interface
supports a generalized surface wave [1]. However, this wave is
attenuated by the ohmic losses in the dielectric. For this reason,
we do not consider lossy dielectric media in this Letter.

Our calculations are guided by the following considerations.
A periodically corrugated, perfectly conducting surface in con-
tact with vacuum supports a p-polarized surface electromag-
netic wave that, in the simplest case, propagates normally to
the generators of the surface [2]. If the substrate supporting
this wave departs slightly from perfect conductivity, it is tempt-
ing to assume that the surface wave is slightly perturbed, but
still exists. There are two ways to approach perfect conductivity.
The most commonly considered one is to assume a metal at
lower and lower frequencies at which the real part of its dielec-
tric function is negative and approaches negative infinity. The
second approach is to assume a dielectric medium characterized

by a real, positive, frequency-independent dielectric constant
that is allowed to become larger and larger.

With the latter approach in mind, in this Letter, we study
the propagation of a p-polarized surface electromagnetic wave
on a high-index dielectric grating and examine the conditions
for its existence. In view of the current interest in alternative
plasmonic materials [3], the existence of such a wave on a
lossless medium should be of interest.

The physical system we study consists of a dielectric
medium whose dielectric constant is ε1 in the region x3 >
ζ�x1� and a dielectric medium whose dielectric constant is
ε2 in the region x3 < ζ�x1�. We assume that both ε1 and
ε2 are real, positive, and frequency independent. The interface
profile function ζ�x1� is assumed to be single valued, differen-
tiable, and a periodic function of x1 with period a,
ζ�x1 � a� � ζ�x1�. We consider the case of a p-polarized
electromagnetic field in this system, whose plane of incidence
is the x1x3 plane.

We begin by considering the diffraction in reflection and
transmission of a plane wave of frequency ω incident from
the region x3 > ζ�x1� on the interface x3 � ζ�x1�. The
dispersion relation for the surface electromagnetic wave sup-
ported by the interface can be extracted from the equation
for the diffraction amplitudes, while the degree to which the
diffracted and refracted fields satisfy unitarity provides an
indication of the accuracy of our numerical work.

The single nonzero component of the magnetic field in the
region x3 > ζ�x1� that satisfies the boundary conditions as
x3 → ∞ of an incoming incident wave and outgoing diffracted
beams, and the Floquet–Bloch condition due to the periodicity
of the interface, can be written as

H>
2 �x1; x3jω� � exp�ikx1 − iα1�k;ω�x3�

�
X∞
n�−∞

An�k;ω� exp�iknx1 � iα1�kn;ω�x3�:

(1)

Here kn � k � 2πn∕a and αj�k;ω� � �εj�ω∕c�2 − k2�12. The
reduced Rayleigh equation for the diffraction amplitudes
fAn�k;ω�g is [4]
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X∞
n�−∞

Mmn�k;ω�An�k;ω� � −Nm�k;ω�; m ∈ N; (2)

where

Mmn�k;ω� �
Im−n�α2�km;ω� − α1�kn;ω��

α2�km;ω� − α1�kn;ω�
× �kmkn � α2�km;ω�α1�kn;ω��; (3a)

Nm�k;ω� �
Im�α2�km;ω� � α1�k;ω��
α2�km;ω� � α1�k;ω�

× �kmk − α2�km;ω�α1�k;ω��: (3b)

In Eq. (3), we have introduced the function

Im�γ� �
1

a

Z a
2

−a2

dx1 exp

�
−i
2πm
a

x1

�
exp�−iγζ�x1��: (4)

The manner in which the branch cuts defining the square roots
in the definitions of α1�k;ω� and α2�k;ω� are chosen will be
described below.

The diffraction efficiency of the mth scattered beam is
defined as the fraction of the total time-averaged incident flux
that is diffracted into this beam. It is given by

e�s�m � α1�km;ω�
α1�k;ω�

jAm�k;ω�j2: (5)

The reflectivity is given by e�s�0 .
The single nonzero component of the magnetic field in the

region x3 < ζ�x1� that satisfies the boundary condition of
outgoing refracted beams as x3 → −∞ can be written as

H<
2 �x1; x3jω� �

X∞
n�−∞

Bn�k;ω� exp�iknx1 − iα2�kn;ω�x3�: (6)

The reduced Rayleigh equation for the refraction amplitudes
fBn�k;ω�g is [4]

X∞
n�−∞

Im−n�α2�kn;ω� − α1�km;ω��
α2�kn;ω� − α1�km;ω�

× �kmkn � α1�km;ω�α2�kn;ω��Bn�k;ω�

� δm0
2ε2α1�k;ω�
ε2 − ε1

; m ∈ N: (7)

The refraction efficiency of the mth transmitted beam is

e�t�m � ε1α2�km;ω�
ε2α1�k;ω�

jBm�k;ω�j2: (8)

In this lossless structure, the conservation of energy in
diffraction and refraction (unitarity) is expressed byX

m
0 e�s�m �

X
m
0 e�t�m � 1; (9)

where the primes on the sums mean that they are taken over
only the open channels, i.e., those for which α1�km;ω� and
α2�km;ω� are real.

To obtain the dispersion relation for the surface electromag-
netic waves by the periodically corrugated interface between
two dielectric media, we have only to remove the incident field
from the right-hand side of Eq. (1). This is equivalent to
deleting the inhomogeneous term from Eq. (2). In this way,
we obtain the homogeneous system of equations for the
amplitudes fAn�k;ω�g:

X∞
n�−∞

Mmn�k;ω�An�k;ω� � 0; m ∈ N: (10)

The solvability condition for this system of equations,
namely the vanishing of the determinant of the matrix
M�k;ω�,

D�k;ω� � det�Mmn�k;ω�� � 0; (11)

is the dispersion relation we seek. The same dispersion relation
is obtained from the homogeneous version of Eq. (7).

The magnetic field of the surface wave in medium 1 is then
given by the second term on the right-hand side of Eq. (1):

H>
2 �x1; x3jω� �

X∞
n�−∞

An�k;ω� exp�iknx1 � iα1�kn;ω�x3�:

(12)

The magnetic field of the surface wave in medium 2 is still
given by Eq. (6).

In the determination of the dispersion curve of the surface
electromagnetic wave, for specificity, we will assume that the
region x3 > ζ�x1� is vacuum, while the region x3 < ζ�x1� is
the high-index dielectric medium. Thus we will assume that
ε1 � 1, while ε2 � ε. The dispersion curve is insensitive to
the interchange ε1↔ε2.

There are two light lines in this problem. One is the vacuum
light line, ω � ck. The wavenumber k has to be larger than
ω∕c in order that the electromagnetic fields in the vacuum re-
gion be bound to the surface. The second light line is the
dielectric light line ω � ck∕

ffiffiffi
ε

p
. The wavenumber k must

be larger than
ffiffiffi
ε

p �ω∕c� in order that the electromagnetic field
in the dielectric be bound to the surface. In the region between
these two light lines, the surface wave is a leaky wave: it is
bound to the surface in the vacuum and radiates into the di-
electric. The frequency of the wave in this region becomes com-
plex, ω � ωR − iωI , with the negative imaginary part reflecting
the radiative loss of the energy in the wave as it propagates.
Thus we will conduct our search for solutions of Eq. (11)
in the region k > ω∕c. In this way, we will capture what leaky
waves and true surface waves exist.

There is a subtle point here. In order that the surface wave
be bound to the surface in the vacuum region and radiate into
the dielectric medium, the branch cut defining the square root
in the definitions of α1�kn;ω� and α2�kn;ω� must be chosen
correctly. Since α21�kn;ω� � ��ω2

R − ω
2
I �∕c2 − k2n� − i2ωRωI∕c2,

we see that it is in the third or fourth quadrant. It has been
shown [5] that if the branch cut is taken along the negative
imaginary axis, then when k2n > �ω2

R − ω
2
I �∕c2, the nonradia-

tive region, α21�kn;ω� is in the third quadrant. This means that
α1�kn;ω� will be in the second quadrant with a negative real
part and a positive imaginary part. The positive imaginary part
of α1�kn;ω� means that the nth term on the right-hand side
of Eq. (12) decreases exponentially with increasing x3, as is
required of a surface wave. Similarly, since α22�kn;ω� �
�ε�ω2

R − ω
2
I �∕c2 − k2n� − i2εωRωI∕c2, we see that it is also in the

third or fourth quadrant. If the branch cut is taken along
the negative imaginary axis, then when k2n < ε�ω2

R − ω
2
I �∕c2,

the radiative region, α22�kn;ω� is in the fourth quadrant.
Therefore, α2�kn;ω� is also in the fourth quadrant, with a pos-
itive real part and a negative imaginary part. The positive real
part of α2�kn;ω� corresponds to a wave that is radiating from
the surface into the dielectric medium. The negative imaginary
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part of α2�kn;ω� corresponds to a wave whose amplitude in-
creases exponentially with increasing distance into the dielectric
from the surface. This exponential increase of the amplitude of a
leaky surface wave with increasing distance in the medium into
which it is radiating is physically correct. It has been discussed in
detail by Lim and Farnell [6], Tonning and Ingebrigtsen [7],
and by Glass and Maradudin [8]. The reader is referred to these
papers for an explanation of this counterintuitive result.

The solution ω�k� of the dispersion relation is an even func-
tion of k that is periodic in k with a period 2π∕a. All of the
distinct solutions are obtained if we restrict k to the interval
0 ≤ k ≤ π∕a. The region of the �ω; k� plane within which sur-
face waves can exist is therefore the triangular region bounded
from the left by the vacuum light line ω � ck and from the
right by k � π∕a.

The numerical determination of the dispersion curves for
the leaky surface electromagnetic waves supported by the
high-index dielectric grating starts by approximating the infin-
ite dimensional equation system Eq. (10) by a finite dimen-
sional system (jmj; jnj ≤ N ). Instead of solving Eq. (11) to
obtain the dispersion curves, it is more convenient in numerical
calculations to use the fact that D�k;ω� � QN

n�−N λn�k;ω�,
where λn�k;ω� denotes one of the eigenvalues of matrix
M�k;ω� and solve the equation

Λ�k;ω� ≡min fjλn�k;ω�jgNn�−N � 0: (13)

The region 0 ≤ k ≤ π∕a is then divided into L� 1 equally
spaced points kl � lΔk, with l � 0; 1; 2;…; L and
Δk � �π∕a�∕L, and the function Λ�kl;ω� is minimized with
respect to the complex angular frequency ω�k�. To this end, we
use the Nelder–Mead simplex optimization algorithm [9–11]
and treat ωR ≥ 0 and ωI ≥ 0 as two real variables and kl as
a known parameter [5]. For each value of kl, the minimization
starts by assuming ω�kl� to be on the vacuum light line klc.
The values ω�kl� identified by the algorithm are used to
record Λ�kl;ω�kl�� and the reciprocal condition number of
M�kl;ω�kl�� to make sure we are on the dispersion curve.
In our calculations, these numbers were found to be at least
as small as 10−13 and 10−14, respectively.

In performing the numerical calculations of this work, we
assumed the sinusoidal profile function

ζ�x1� � ζ0 cos

�
2πx1
a

�
; (14)

where a denotes the period. For this choice, the function Im�γ�
defined in Eq. (4) becomes

Im�γ� � �−i�mJm�γζ0�; (15)

where Jm�z� is the Bessel function of the first kind and order m.
In Fig. 1, we plot the real and imaginary parts of ω�k� as

functions of the wavenumber k for the cases where the surface is
a perfect electric conductor (PEC) and where ε � 12, 15, 20,
25, and 50. The value of ζ0∕a assumed in obtaining these six
dispersion curves was ζ0∕a � 0.10. A value of N � 15 was
used in these calculations. In the upper panel of Fig. 1, the
vacuum light line is also indicated. We see from these results
that no portion of these dispersion curves lies to the right of the
dielectric light lines ω � ck∕

ffiffiffi
ε

p
(not indicated in Fig. 1).

Consequently, they correspond to leaky surface waves in the
entire domain of their existence. We also see that as ε is in-
creased for a fixed value of ζ0∕a, so that the dielectric medium
approaches the limit of a PEC, the dispersion curve approaches

that of the PEC, as it should. This is more clearly seen in the
inset of Fig. 1, in which these dispersion curves are enlarged in
the vicinity of ka∕π � 1 and ωa∕cπ � 1. It should be stressed
that the dispersion curve for the perfect electric conductor
shown in Fig. 1 was obtained on the basis of the Rayleigh equa-
tion for the system (see Ref. [12], Glass and Maradudin, for
details) and not as the ε → ∞ limit of the reduced Rayleigh
equation, Eq. (2). Moreover, it should be remarked that the
value ε � 50 assumed for one of the dispersion curves in
Fig. 1 probably is unrealistically high. However, it was included
in order to more explicitly show the transition toward the PEC
limit with increasing ε.

The lower panel of Fig. 1 indicates that the magnitude of
ωI �k� decreases as the value of ε is increased, as it should, be-
cause in the PEC limit, the surface waves it supports have in-
finite lifetimes. This trend has been confirmed for values of ε
larger than those assumed in obtaining Fig. 1. The values of ωI
are of the order 0.05ωR − 0.10ωR, but can be made smaller by
increasing the value of ε.

For several frequencies ω � ωR�k� of the incident light in
the range 0.90 < ωR�k�a∕�cπ� < 1.00, we explicitly checked
the fulfillment of the energy conservation condition (9). It
was found to be satisfied with an error whose magnitude was
smaller than 10−3, or better, for all angles of incidence, i.e., in
the region to the left of the light line in Fig. 1 and for all values
of the dielectric constant assumed in obtaining the results of this
figure (including ε � 50). This testifies to the accuracy of the
approach used in performing the numerical simulations and
therefore in obtaining the dispersion curves depicted in Fig. 1.

We now turn our attention to the excitation/observation of
these surface waves. To this end, we study the dependence of
the reflectivity and several other low-order diffraction efficien-
cies on the angle of incidence θ0. It is well known that in the
diffraction of light from a grating that supports a surface wave,
these angular dependencies display anomalies of two types. The
first, called Rayleigh anomalies, occur at values of θ0 at which
a diffraction order appears or disappears in either reflection

Fig. 1. Real and imaginary parts of ω�k� are plotted as functions of
k for ε � 12, 15, 20, 25 and 50, as well as for a PEC. The vacuum
light line is indicated by dashed lines. The inset presents an enlarge-
ment of ωR�k� in the vicinity of ka∕π � 1 and ωa∕cπ � 1. The
parameters assumed in obtaining these results were ζ0∕a � 0.10
and N � 15.
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(ϵ � ε1) or transmission (ϵ � ε2). These angles are obtained
from the relation

sin θ0 � �
ffiffiffiffiffi
ϵ

ε1

r
−
2mffiffiffiffiffi
ε1

p cπ
ωa

; (16)

where ω is the frequency of the incident light and m is an in-
teger. The second type of anomaly, called a Wood anomaly, oc-
curs at angles of incidence at which the surface waves are excited
through the grating by the incident light. The values of θ0 at
which these anomalies occur are obtained from the relation

sin θ0 �
1ffiffiffiffiffi
ε1

p cπ
ωa

�
�ksw�ω�

a
π
− 2m

�
: (17)

In this expression, ksw�ω� is the wavenumber of the surface
wave at the frequency ω of the incident light in the region
0 < ksw�ω� < π∕a, and m is an integer. Equations (16) and
(17) predict that the angles of incidence at which Rayleigh
anomalies in transmission and the angles at which Wood
anomalies occur coincide when the frequency ω of the incident
light is that of a point on the vacuum light line when ε2 � 1.

In calculating the angular dependencies of the diffraction
efficiencies e�s�m , we have assumed that the medium of incidence
is the high-index dielectric material and vacuum is the medium
of transmission, as this is a more favorable geometry for the
observation of these anomalies. In these calculations, the
branch cut defining the square root in αj�k;ω� was taken along
the negative real axis, and ω and k were real. In solving Eq. (2),
we have assumed either (i) ε1 � 15 or (ii) ε1 � 20 and ε2 � 1.
For the wavenumber of the surface waves, we assumed
ksw�ω�π∕a � 0.9908, which corresponds to a frequency of
the incident light of (i) ωa∕�cπ� � 0.9808 and (ii) ωa∕
�cπ� � 0.9733, respectively. For these frequencies, leaky
surface waves are predicted to exist for ksw�ω� and complex

frequency ωR − iωI, where ωR � ω and (i) ωI a∕�cπ� �
8.2770 × 10−2 and (ii) ωI a∕�cπ� � 7.1480 × 10−2 (see Fig. 1).
According to Eq. (17), their existence, for instance, gives rise to
Wood anomalies at angles (i) θ0 � 15.12°, 15.41°; and
(ii) 43.40°, 43.74°. Moreover, Eq. (16) predicts Rayleigh
anomalies at (i) θ0 � 14.96°, 15.56°; and (ii) θ0 � 43.40°,
43.74°. Observe that these anomalies are spread over a fairly
narrow angular interval of width smaller than 1°; this is a con-
sequence of the dispersion relation for the leaky surface waves
being close to the vacuum light line. Additional anomalies are
predicted by Eqs. (16) and (17), but they are not discussed
here. The values of the remaining parameters assumed in these
calculations were ζ0∕a � 0.10 and N � 15. In these calcula-
tions, unitarity was checked and was found to be satisfied with
an error no larger than 10−3.

In Fig. 2, we have plotted the dependence of e�s�m on θ0 for
the reflectivity, m � 0, for m � −1, 1, −2, and −3, and for the
two values of ε1 considered. The agreement between the pre-
dicted and observed angles at which Rayleigh anomalies occur
is excellent. For the Wood anomalies, the agreement is fair. We
believe that this is due to the predicted angular positions of the
Wood anomalies being determined from the real part of the
surface wave frequency. The imaginary part of the frequency,
which is taken into account in the calculation of the diffraction
efficiencies, shifts the position of a Wood anomaly and broad-
ens it. The existence of the Wood anomalies demonstrates that
it is possible to excite the leaky surface wave with an incident
plane wave. Excitation of this wave in the Otto-attenuated,
total reflection geometry is also being investigated.

Thus, by a simple calculation, we have shown in this Letter
that a periodically corrugated interface between vacuum and a
high-index dielectric medium supports a long-lived p-polarized
leaky surface electromagnetic wave. This result could be applied
to gratings fabricated on such high-index dielectric materials as
SnO2 (ε � 9.86 [13]), Al0.6Ga0.4As (ε � 10.24 [14]), silicon
(ε � 12), and germanium (ε � 16). These waves could be
useful in the fabrication of surface electromagnetic wave-based
devices in contexts where a metallic substrate is not suitable,
e.g., in an oxidizing atmosphere.

Funding. Research Council of Norway (216699).
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Fig. 2. Diffraction efficiencies in reflection, e�s�m , as functions of the
angle of incidence θ0 for ε1 � 15 (left column), ε1 � 20 (right col-
umn), and ε2 � 1. The remaining parameters are given in the text.
The angular positions of some of the Rayleigh and Wood anomalies
are indicated as dash-dotted and dashed lines, respectively.
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