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Strategies for simulating time evolution of Hamiltonian lattice field theories

Siddharth Hariprakash∗,1, 2, 3 Neel S. Modi∗,1, 2 Michael

Kreshchuk,2 Christopher F. Kane,4 and Christian W Bauer2

1Center for Theoretical Physics and Department of Physics,
University of California, Berkeley, California 94720, USA

2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3National Energy Research Scientific Computing Center (NERSC),
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,

4Department of Physics, University of Arizona, Tucson, Arizona 85719, USA

Simulating the time evolution of quantum field theories given some Hamiltonian H requires de-
veloping algorithms for implementing the unitary operator e−iHt. A variety of techniques exist that
accomplish this task, with the most common technique used so far being Trotterization, which is a
special case of the application of a product formula. However, other techniques exist that promise
better asymptotic scaling in certain parameters of the theory being simulated, the most efficient of
which are based on the concept of block encoding.

In this work we study the performance of such algorithms in simulating lattice field theories. We
derive and compare the asymptotic gate complexities of several commonly used simulation techniques
in application to Hamiltonian Lattice Field Theories. Using the scalar φ̂4 theory as a test, we also
perform numerical studies and compare the gate costs required by Product Formulas and Signal
Processing based techniques to simulate time evolution. For the latter, we use the the Linear
Combination of Unitaries construction augmented with the Quantum Fourier Transform circuit to
switch between the field and momentum eigenbases, which leads to immediate order-of-magnitude
improvement in the cost of preparing the block encoding.

The paper also includes a pedagogical review of utilized techniques, in particular Product Formu-
las, LCU, Qubitization, QSP, as well as a technique we call HHKL based on its inventors’ names.
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I. INTRODUCTION

Performing precise numerical simulations is an es-
sential ingredient in the studies of Quantum Field
Theories (QFTs), which describe the most funda-
mental interactions within the Standard Model of
particle physics. Some of the difficulties arising in
such studies include: a large, non-conserving num-
ber of degrees of freedom; different types of particles
and their interactions; and non-perturbativity of the
strong interaction at large distances. A common ap-
proach to numerical simulation of field theories is
provided by Euclidean Lattice Field Theory, where
space-time is discretized and observables are calcu-
lated using the imaginary-time path integral formal-
ism. For a recent overview of the field, see [1]. Such a
conventional approach to lattice field theory relies on
Monte-Carlo integration to perform the integral over
the vast Hilbert space [2], which requires the weight
of each field configuration to be real and positive.
While this has been very successful, there are many
observables, including those requiring dynamical in-
formation, for which Monte-Carlo integration is not
possible due to the so-called sign problem [3, 4]. The
issue of the sign problem, however, can be avoided
entirely by computing such observables within the
framework of Hamiltonian Lattice Field Theories
(HLFTs), in which space is discretized, while time
is kept continuous [5–8].2 While resources required
for the simulation of HLFTs on classical comput-
ers scale exponentially with the number of lattice
sites [15], Jordan, Lee, and Preskill showed that
quantum computers provide an exponential advan-
tage over classical computers for this problem [16].
In fact, simulating QFT with the aid of quantum
computers served as one of the motivations for the
development of quantum computation [17], and is
still considered as one of its most promising appli-
cations. For a recent review of the applications of
quantum computing to high-energy physics, see [18].
A major task in such a scenario is the ability to

efficiently simulate on a quantum computer the time
evolution of a given Hamiltonian. In Ref. [19] Jor-
dan, Lee, and Preskill made a detailed proposal to
simulate a scalar field theory on quantum computers.
Similarly to the earlier research [20–22], their work

2 Note that while HLFTs sometimes refer solely to quan-
tum field theories in the equal-time formulation, discretized
on a spatial lattice [5, 6], in this work we assume (un-
less explicitly stated otherwise) a more general scenario
which applies to any type of spatial discretization (e.g.,
spatial/momentum lattice [9] or any other single-particle
basis set [10]), any type of field discretization (first or sec-
ond quantization [9, 11]), as well as to both equal-time and
light-front quantization [7, 8, 12–14].

relies on the Suzuki-Trotter approximation [23–28]
to compute the exponential of the Hamiltonian, and
hence time evolve the scalar field theory.

This paper compares the asymptotic resource
requirements of various techniques to implement
the time evolution operator of quantum field theo-
ries, including Suzuki-Trotter expansions and nearly-
optimal simulation strategies, such as Quantum Sig-
nal Processing (QSP) [29–33] and the HHKL method
named after the authors of Ref. [34]. For each
method, we compute the asymptotic dependence
with respect to various parameters characterizing the
problem at hand, such as the error allowed in the ap-
proximation of the evolution operator, measures of
Hamiltonian size / complexity, as well as the time
for which the system is evolved. This comparison
is carried out for two very general classes of lattice
Hamiltonians, but we also provide more detailed re-
sults for a scalar quantum field theory as an explicit
example.

Using nearly-optimal methods requires querying
matrix elements of the Hamiltonian, typically in the
form of the Block Encoding (BE) subroutine. In this
work, we consider the BE for a bosonic degree of
freedom, based on the Linear Combination of Uni-
taries (LCU) algorithm [35], and achieve a signifi-
cant reduction in the number of gates and ancillary
qubits by taking advantage of the quantum Fourier
transform for switching between the eigenbases of
the field and conjugate momentum operators. We do
not consider BEs based on the sparse oracle access
input model, for two reasons. First, their construc-
tion is highly problem-specific [36–40]. Second, for
local lattice field theories, which we consider as one
of the major applications of the present work, our
studies [40] indicate that the LCU-based approach
is more efficient than that based on the sparse oracle
access.

A. Paper Structure

We start with setting up our notation in Sec. I B
before summarizing the main results of this paper
in Sec. I C, with most of the information contained
in Tables II to IV. In Sec. II we present a review of
the various simulation algorithms. No new informa-
tion is presented in this section, and the presentation
is generic, not yet adapted for lattice field theory
simulations. In Sec. III we compute the asymptotic
gate complexity of using these techniques to simu-
late the time evolution of 2 generic classes of lattice
field theories. This section will provide derivations
for the results presented in Sec. I C. In Sec. IV we
present concrete asymptotic gate complexities for a
quartic scalar field theory. We provide a discussion
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of our results in Sec. V and conclude in Sec. VI.

B. Definitions and Notations used in this work

We begin by presenting the standard mathemati-
cal notation used to describe the asymptotic behav-
ior of functions

Definition 1 (Asymptotic Notations). Let f, g :
R → R be functions of real variables. Then we say
that f = O(g) if there exists a positive constant c
such that |f(x)| ≤ c|g(x)| for all sufficiently large
choices of x, i.e. ∀x ≥ x0 ∈ R. We say that
f = Ω(g) if g = O(f) and that f = Θ(g) if f = O(g)
and g = O(f).

We see that O(·) and Ω(·) denote asymptotic up-
per and lower bounds respectively, while Θ(·) de-
notes an asymptotically tight bound. We will make
use of these notations throughout this work to denote
the asymptotic scaling / behavior of the variables we
present in this section.
In HLFTs the degrees of freedom are typically the

discretized quantum fields (in first quantization) or
the eigenstates of the number operator (in second
quantization) which live on the sites, links, or pla-
quettes of a lattice Λ.3 For many Hamiltonians of
interest, each term in the Hamiltonian couples fields
belonging to a small subset of sites [5]. Depending on
which fields get coupled together, one finds different
types of Hamiltonians.
We first consider k-site local Hamiltonians of the

form

H =
∑
J∈S

HJ ,

J = {j1, . . . , jk} ∈ S , ji ∈ Λ ,

(1)

where each HJ acts nontrivially only on at most k
sites. The multi-index variable J , used to label each
summand appearing in Eq. (1), consists of a subset
(containing k elements) of the NΛ total lattice sites.
Each lattice site is comprised of nq qubits, each term
HJ acts on knq qubits, and the total system con-

3 In some cases, the lattice is naturally embedded into some
metric space, e.g., when a lattice in real or momentum space
is used. More generally, it can be considered as the space
which the index enumerating the degrees of freedom belongs
to. Furthermore, we use the term “lattice site” for any local
ingredient of the lattice that can support a Hilbert space.
While for fermions and scalar fields these are the actual
lattice sites, for gauge fields this terminology also covers
the links and plaquettes of the lattice.

tains n = NΛnq qubits.4 The cardinality of the set S,
which contains sets of indices used to label individ-
ual terms HJ , is also the total number of individual
terms (denoted by NH) that form the full Hamilto-
nian H. We assume that in general, for a k-site-local
Hamiltonian, the following scaling relation holds:

NH ≡ |S| = O(NΛ
m) , (2)

where m
(
∈ R≥0

)
≤ k is a parameter fixed by the

choice of a specific theory.
We note that each summand HJ can be expressed

in the Pauli basis as

HJ =
∑

i∈[NP
(J)]

c
(J)
i P

(J)
i , (3)

where each P
(J)
i ∈ C2n×2n represents an n-qubit

Pauli operator, each c
(J)
i ∈ C \ {0} is a complex co-

efficient, and NP
(J) enumerates the number of terms

with non-zero coefficient in the Pauli decomposition
of HJ . We introduce the quantity NP as the max-
imum number of Pauli strings appearing in the de-
composition of any single term HJ . We define it as
follows:

NP ≡ max
J

(
NP

(J)
)
. (4)

In this way, the total number of Pauli strings ap-
pearing in a Hamiltonian with NH summands can be
upper bounded by NHNP. Note that for a k-site-local
Hamiltonian NP = O(4knq ) always holds as an upper
bound.

An important quantity in asymptotic gate com-
plexity estimates is the 1-norm of a Hamiltonian H,
denoted by ∥H∥1, which we define as

∥H∥1 ≡
∑
J∈S

∥HJ∥ , (5)

where ∥ · ∥ represents the spectral / operator norm.
The induced 1-norm of the Hamiltonian, denoted by
|||H|||1, can then be defined by maximizing the fol-
lowing sum over the qubit-index (i.e. the location
within the multi-index variable J ∈ S) ℓ ∈ {1, . . . , k}
and the site-index jℓ ∈ Λ:

|||H|||1 ≡ max
ℓ

max
jℓ

∑
J

(jℓ)

ℓ ∈S
(jℓ)

ℓ

∥HJ∥ ,

J
(jℓ)
ℓ = {j1, . . . , jℓ−1, jℓ+1, . . . , jk} ∈ S

(jℓ)
ℓ ,

J = {j1, . . . , jℓ−1, jℓ, jℓ+1, . . . , jk} ∈ S . ji ∈ Λ .

(6)

4 We note that our definition of k-site-local Hamiltonian re-
duces to the usual definition of a k-local Hamiltonian on
n-qubits [27] if we set nq = 1 and Λ = {1, 2, . . . , n}, in
which case NH ∼ nk and NP ∼ 4k.
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In other words, the induced 1-norm performs the
sum over all norms ∥HJ∥ which have the lattice site
jℓ at the ℓ’th position, both of which are chosen to
maximize the sum appearing in Eq. (6). This in-
duced norm provides an upper bound on the strength
of the Hamiltonian at any single site due to interac-
tions with the remaining (allowed by locality restric-
tions and the specific theory under consideration)
sites in the lattice, such that the qubit-index of that
site within the multi-index variable J ∈ S is fixed.
We denote by Nind the number of terms in the sum
appearing in Eq. (6):

Nind ≡ |S(jℓ∗ )
ℓ∗ | ,

ℓ∗, jℓ∗ = argmax
ℓ

argmax
jℓ

∑
J

(jℓ)

ℓ ∈S
(jℓ)

ℓ

∥HJ∥ . (7)

For a general k-site-local Hamiltonians, we write

Nind = O
(
NΛ

mind
)
, (8)

where mind (∈ R≥0) ≤ k − 1 is again a parameter
fixed by the choice of a specific theory. We also de-
fine a quantity cP ∈ R to be the maximum absolute
value of the individual coefficients in the expansion
of each HJ in terms of Pauli operators. Writing each
summand HJ as in Eq. (3), one finds

cP ≡ max
J,i

{|c(J)i |} , (9)

so that ∥H∥1 ≤ cPNPNH and |||H|||1 ≤ cPNPNind.
We define the exponentiation error ε as the dif-

ference between the exact time evolution operator
e−iHt and an approximate implementation U(t)

ε ≡ ∥U(t)− e−iHt∥ . (10)

We summarize these results in a few definitions,
that will be used throughout this paper

Definition 2 (Site-local lattice Hamiltonian). A k-
site-local Hamiltonian on a lattice Λ of size NΛ = |Λ|
is one of the form:

H =
∑
J∈S

HJ ,

J = {j1, . . . , jk} ∈ S , ji ∈ Λ ,

where the number of terms in the set S are given by
NH, each each HJ acts nontrivially only on at most k
sites ji, labeled by J = {j1, . . . , jk}, and each lattice
site is comprised of nq qubits. Let each term HJ take
the form (3) and, as in (4), let NP be an upper bound
on the number of distinct Pauli strings appearing in
the decomposition of any single term HJ . Let cP be
the largest magnitude of any Pauli coefficient over all
terms as in (9), and Nind be the number of terms in
the induced 1-norm of the Hamiltonian as in Eq. (7).

Many HLFT Hamiltonians have the property that
they only couple fields at neighboring lattice lo-
cations together, giving rise to a geometric local-
ity. Defining a distance metric to the different lat-
tice sites, allows to define a k-geometrically-site-local
Hamiltonian, which is a sum of operators, each in-
volving only sites belonging to a connected set.

Definition 3 (Geometrically-site-local lattice
Hamiltonian). A k-geometrically-site-local lattice
Hamiltonian is a k-site-local lattice of Hamilto-
nian in which each individual term HJ acts on a
connected set of sites J .5

The restriction of geometric locality implies that
each term HJ acts upon belong to a ball of diameter
k, which imposes a tighter bound on Nind:

6

Nind ≤
(
kd

k

)
= O(1) , (11)

i.e., Nind no longer scales with NΛ (note that here
we have assumed a constant value for the spatial
dimension d). Furthermore, since each set J can be
labeled by the center of the corresponding ball, the
number of sets and hence terms in the Hamiltonian
is given by

NH = O(NΛ) . (12)

Hamiltonians of relativistic quantum field theories
typically depend on the values of fields and their
derivatives at a given point and thus one can ex-
pect that lattice formulations of these theories exist
such that they are geometrically local. This is the
case for the scalar field theory considered later in this
paper for example. For gauge theories, gauge invari-
ance needs to be included into the considerations,
and the locality of the Hamiltonian now depends on
what basis is chosen for the fields. In so-called elec-
tric bases, Gauss’s law constraints are still local, such
that the final Hamiltonian is geometrically local in
this basis. On the contrary, magnetic bases, behav-
ing better at small bare coupling (which is required
in the continuum limit), require non-geometrically
local interactions [41–46].
As we will also consider Hamiltonians that act only

on O(1) number of lattice sites, we will also provide
the definition for them:

5 One typically assumes that the lattice is embedded into
some metric space. In our work, we assume a hypercubic
lattice with spacing 1. In principle, one could define local-
ity without introducing a metric structure, e.g., by using a
more general topology on S.

6 The precise upper bound in Eq. (11) is given for a hyper-
cubic lattice, but statement on independence of Nind on NΛ

is general.
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Λ Lattice
NΛ = |Λ| Lattice size

J
Multi-index enumerating

Hamiltonian terms
H =

∑
J∈S HJ Hamiltonian

k Hamiltonian site-locality
HJ Term acting on k sites
S Set containing sets of indices J
NH = |S| Number of summands forming H
nq Number of qubits per lattice site
n = NΛnq Total number of qubits

NP
(J) Number of Pauli terms representing

a single term HJ

NP maxJ(NP
(J))

cP Maximum Pauli coefficient in H
D Hamiltonian geometric locality
d Spatial dimension
d Degree of Chebyshev polynomial
ε Exponentiation error

m
Parameter describing the scaling of NH

with respect to NΛ, see Eq. (2)

mind
Parameter describing the scaling of Nind

with respect to NΛ, see Eq. (8)
χ Total number of elementary gates

Table I. Notations used throughout the paper.

Definition 4. [O(1) lattice Hamiltonian] Let H be
a (k = NΛ = O(1))-site-local Hamiltonian, with NP

and cP defined as in Eqs. (4) and (9). Note that
NΛ = O(1) also implies NH = O(1), and that there
is no difference between a site-local and geometrically
site-local Hamiltonian in this case.

C. Main results

The main results of this paper are summarized in
Tables II to IV. In this section we summarize only
the results, while the detailed derivations of these
expressions will be given in Sec. III.
We first consider the results for a lattice contain-

ing O(1) sites, and compare the implementation of
the time evolution operator after a Product Formula
(PF) based splitting to the implementation using
Quantum Signal processing (QSP). Both of those
techniques will be introduced and defined in Sec. II.
The important parameters that the time evolution
operator depends on are the time t the system is
evolved for, the exponentiation error ε, as well as the
maximum number of Pauli terms NP and the max-
imum coefficient cP appearing in the Pauli decom-
position of any single term in the Hamiltonian. The
scaling with respect to these parameters is shown
in Table II, where p denotes the order of the PF

used. While the scaling of the PF implementation on
all parameters improves as p is increased, the num-
ber of gates needed is typically exponential in p, so
the order of the PF is typically chosen as p = O(1).
One can therefore see that QSP has a better scaling
than PFs in all parameters, with the most dramatic
improvement being in the scaling in ε, which is ex-
ponentially better.

Next, we include the asymptotic scaling with the
size of the lattice NΛ for a k-site local Hamiltonian.
The Hamiltonian is a sum of termsHJ , each of which
acts on k = O(1) lattice sites and in general do not
commute with one another. One approach is to as-
semble the terms HJ using a PF, with the imple-
mentation of each HJ performed either using a PF
or QSP, as just discussed. These two choices are
compared in the first column of Table III. One can
see that the scaling is more favorable in all param-
eters when the individual terms HJ are themselves
implemented using a PF.

A second approach is to use QSP for the entire
Hamiltonian, with the corresponding scaling shown
in the second column of Table III. One can see that
this leads to worse scaling (in general) with the num-
ber of lattice sites than the PF, while giving a much
better scaling with ε. Therefore, the usage of PF
may be preferential in situations when NH ≫ 1/ε,
which is often the case in field theory.

Local
implementation

Complexity
for O(1) sites

Product formula O
[
(NP)

2+ 1
p (cPt)

1+ 1
p ε

− 1
p

]
QSP O

[
NP logNP

(
NPcPt+ log(1/ε)

)]
Table II. Scaling of a Hamiltonian defined onO(1) lattice
sites. The scaling is given in terms of the number of Pauli
strings NP of a single term in the Hamiltonian Eq. (4), the
largest coefficient of each of these Pauli strings cP Eq. (9),
and the exponentiation error ε, defined in Eq. (10).

Finally, we consider the case of geometrically-local
Hamiltonians. In this case one still has the same two
possibilities for the implementation, shown in the
first two columns of Table IV. Both have an improved
scaling in the number of lattice sites NΛ due to the
geometric locality, and as before the QSP approach
wins in terms of dependence on ε while the PF-based
wins in terms of scaling with NΛ. The geometric lo-
cality of the Hamiltonian, however, allows for the use
of the HHKL algorithm, introduced in Sec. II C, to
assemble the HJ terms, with each local term again
implemented via either PF or QSP. The scaling of
this approach is shown in the third column of Ta-
ble IV. We can see that this leads to a better scal-
ing in NΛ, with a combination of HHKL with QSP
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leading to the best overall scaling. The scaling of
course does not give any information on the prefac-
tor, that could be considerably larger for HHKL than
for product based approaches [26]. Furthermore, the
scaling given here is not tight, so it could be that for
realistic scenarios product based formulas still out-
perform HHKL based methods. Note that the scal-
ing of PFs is identical to that of HHKL combined
with PFs.

As a case study, we consider a scalar lattice field
theory and express the obtained asymptotic gate
complexities in terms of model parameters. This re-
quires specifying the BE used, and we consider two
methods for constructing the BE subroutine UH in
the scalar lattice field theory. The first method uses
the standard Linear Combination of Unitaries (LCU)
algorithm [35] to prepare a BE of the Hamiltonian
H of the entire system; this approach is efficient for
arbitrary local Hamiltonians. The second method
improves upon the first by using the Fourier Trans-
form to switch between the eigenbases of position
and momentum operators, which exponentially im-
proves the asymptotic cost of constructing each UHJ

in terms of the number of qubits nq per site. The
BE of the full Hamiltonian is then constructed using
LCU to combine each UHJ

. The comparisons of costs
for these approaches is shown in Fig. 9. Finally, we
use the best available construction of BE in order to
compare the gate counts between the PF and QSP
approaches in application to a single site of the φ4

theory, see Fig. 10.

II. REVIEW OF SIMULATION
ALGORITHMS

In this section, we review some algorithms com-
monly used in the literature for simulating the
time evolution of generic quantum systems. We
will focus on algorithms based on Product Formu-
las (PFs) [26, 27] and Quantum Signal Processing
(QSP) [29, 30], both of which can be applied to
small and spatially extended systems. We also re-
view the HHKL algorithm [34], which may serve as
a “nearly-optimal wrapper” of local evolution opera-
tors in geometrically-local system. These algorithms
will serve as the building blocks from which we ex-
press algorithms for Hamiltonian lattice field theories
in later chapters.

The discussion in this section aims to be a stan-
dalone discussion that gives the reader a basic un-
derstanding of the different tools used to implement
a time evolution operator. While we aim to make
this section accessible to readers without much back-
ground in the topic, we will still provide a precise set
of statements and theorems that will be used later.

Note that this section is not detailed enough to re-
derive all of these results, and for this we refer the
reader to the papers cited in this section.

Note also that this discussion is kept very gen-
eral, without restricting ourselves to the Hamilto-
nians considered in this work (except when stated
explicitly otherwise).

A. Time evolution by Product Formulas

We begin by considering a time-independent
Hamiltonian

H =

Γ∑
γ=1

Hγ (13)

comprised of Γ summands, such that one can effi-
ciently construct quantum circuits to implement the
exponential e−iHγt of each summand appearing on
the RHS of Eq. (13). The unitary operator (called
the time evolution operator for H) given by the ex-
ponential e−iHt describes evolution under the full
Hamiltonian H for some arbitrary time t. PFs allow
us to construct an approximation to the full time
evolution operator by decomposing it into a product
of exponentials, each involving a single summand.
The general form of a PF (see Ref. [27]) is given by

e−iHt ≈ S(t) =

Υ∏
υ=1

Pυ

 Γ∏
γ=1

e−ita(γ)
υ Hγ

 , (14)

such that each a
(γ)
υ ∈ R and

∑Υ
υ=1 a

(γ)
υ = 1 ∀γ ∈

[Γ] ≡ {1, 2, . . . ,Γ}. The latter condition ensures that
each individual term Hγ is evolved for the total time
t. The parameter Υ determines the total number of
stages in the PF, and for each stage υ ∈ [Υ] there
exists a corresponding permutation operator Pυ that
determines the ordering of the individual exponen-
tials within that stage (the specific actions of the op-
erators Pυ depend on the chosen PF construction).
PFs of the form Eq. (14) provide good approxima-
tions to the full time evolution operator when the
evolution time t is small, and in particular one de-
fines a pth order PF Sp(t) as one that is correct up
to pth order in t

Sp(t) = e−iHt +O(tp+1) . (15)

The simplest example of a PF arises from the use of
the Baker-Campbell-Hausdorff formula

eA+B = eAeB +O([A,B]) , (16)

and thus we can write

e−iHt ≈ S1(t) =

Γ∏
γ=1

e−iHγt . (17)
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Local implementation Assembly using PF QSP for entire system

Product formula a) O
(
NindNP (NHNPcPt)

1+ 1
p ε

− 1
p

)
QSP b)

O
[
Nind (NHNPcPt)

1+ 1
p ε

− 1
pNP

× logNP log(NindNHNPcPt/ε)
] c) O

[
NHNP log(NHNP)

(
NHNPcPt+ log(1/ε)

)]

Table III. Resource scaling for site-local Hamiltonians as in Definition 2. The two rows label the local implementation
for each term e−iHJ t either using a PF (top row) or using QSP (bottom row). The two columns show how the various
terms HJ are combined together, either using a PF (left column) or doing the whole evolution using QSP (bottom
right). Cases a), b), and c) are studied in Sec. IIIA 1, Sec. III C, and Sec. III B 1, correspondingly.

Local implementation Assembly using PF QSP for entire system Assembly using HHKL

Product formula d) O
(
NP (NΛNPcPt)

1+ 1
p ε

− 1
p

)
e) O

(
NP (NΛNPcPt)

1+ 1
p ε

− 1
p

)
QSP f)

O
[
(NΛNPcPt)

1+ 1
p ε

− 1
pNP

× logNP log(NΛNPcPt/ε)
] g)

O
[
NΛNP log(NΛNP)

×
(
NΛNPcPt+ log(1/ε)

)] h)
O
[
NΛNP

2cPt
[
log(NΛt/ε)

]d
× log(NP log(NΛt/ε))

]
Table IV. Resource scaling for geometrically site-local Hamiltonians as in Definition 2. The two rows label the local
implementation for each term e−iHJ t either using a PF (top row) or using QSP (bottom row). The three columns
show how the various terms HJ are combined together, either using a PF (left column), using the HHKL algorithm
(right column), or doing the whole evolution using QSP (bottom middle). Cases d), f), and g) are obtained from
cases a), b), and c), respectively, in Table III upon setting NH = O(NΛ) and Nind = O(1). Cases e) and h) are studied
in Sec. IIID.

This approximation is known as the first order Lie-
Trotter formula. The higher (even) order Suzuki-
Trotter formulas are defined recursively as

S2(t) :=

Γ∏
i=1

e
−iHit

2

1∏
i=Γ

e
−iHit

2 ,

S2k(t) := S2k−2(ukt)
2S2k−2((1− 4uk)t)

× S2k−2(ukt)
2 , (18)

where uk ≡ 1/
(
4− 41/(2k−1)

)
, and the product

given by
∏1

i=Γ (·) corresponds to reversing the or-
der in which we choose the variable i with respect

to the first product given by
∏Γ

i=1 (·). In theory,
one could use such a construction to build arbitrar-
ily large order PFs. However the number of stages
Υ, and hence the number of elementary gate oper-
ations required to construct a circuit implementing
such a PF, grows exponentially with the order p (see
[27]). For this reason, we use relatively low order
formulas for practical applications and our results
assume that p,Υ(p) = O(1). Note that Eq. (18) is
only one possible form of Eq. (14), and investigating
alternatives to it is an active area of research [47–53].
Since PFs have corrections that depend polynomi-

ally on the evolution time t, they give good approx-
imations for small t. Given a PF valid for small t,
however, we can obtain one for longer times. The
general procedure is to divide the full evolution time

t into r (known as the Trotter number) smaller time
steps, and apply the chosen pth order PF to each
step, describing the evolution for a smaller time t/r,
before multiplying together the results from the in-
dividual steps

Sp(t) = (Sp(t/r))
r, (19)

and the associated exponentation error ε is given by

ε = ∥(Sp(t/r))
r − e−iHt∥ . (20)

To work out the resource requirements to satisfy such
an error bound, we ask for the required Trotter num-
ber r for a pth order formula to satisfy Eq. (20) given
a fixed value of ε. In general the answer depends on
the asymptotic scaling on the evolution time t, as
well as the norms of the individual summands Hγ

and the commutators amongst them.
While Eq. (15) provides the correct asymptotic

dependence of the error on t, [27] and [54] present
bounds that show explicit dependence on the 1-norm

of the full Hamiltonian (given by
∑Γ

γ=1 ∥Hγ∥). Note
however, that these bounds are not tight. For ex-
ample, when all the summands Hγ commute, the
exponentiation error ε becomes zero while these er-
ror bounds can become arbitrarily large. This was
further addressed in [27], where the authors present
another (tighter) bound that results from exploiting
the commutativity properties of the summands Hγ .
This led to the following asymptotic scaling of the
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Trotter number

r = O

(
α̃

1
p t1+

1
p

ε
1
p

)
, (21)

where α̃ ≡
∑Γ

γ1,γ2,...,γp+1=1||[Hγp+1 , ...[Hγ2 , Hγ1 ]]||.
Note that not every Trotter number r satisfying

the asymptotic upper bound (21) will yield the de-
sired error bound. Rather, the above result merely
provides an asymptotic upper bound on the mini-
mum Trotter number r needed.

B. Time evolution by Qubitization

While most applications to date simulating rela-
tivistic quantum field theories use PFs as discussed
in Sec. II A, there is an alternate approach for sim-
ulating the time evolution of quantum systems that
is based on a very general technique called Quantum
Signal Processing (QSP) [29]. As described in more
detail in Sec. Sec. II B 4, QSP can be used to apply
broad classes of matrix functions of the Hamiltonian
to a quantum state.
We begin by clarifying the terminology as confu-

sion often arises in the literature. QSP is an algo-
rithm which, given access to a circuit implement-
ing a unitary operator W with eigenvalues {eiθλ},
constructs a circuit implementing a unitary V with
eigenvalues {eih(θλ)}, for a wide class of polynomials
h. In the context of quantum simulation the unitary
W is taken to be the so-called Szegedy quantum walk
operator WH associated with the Hamiltonian H.
The quantum walk operator WH is a particular type
of Hamiltonian block encoding operator, which can
be constructed from more general block encodings
UH by means of the Qubitization [30] procedure.

Confusingly, the term Qubitization is also often
used for the entire process of simulating time evo-
lution based on the usage of QSP and calls to WH .
Moreover, sometimes Qubitization serves as an um-
brella term for all the simulation techniques which
are not based on product formulæand/or rely on
some form of block encoding. On top of that, Qubiti-
zation has also been used in a completely unrelated
context, for denoting the process of mapping physi-
cal degrees of freedom onto qubits [55, 56]. In this
work, Qubitization will be used in the first, restricted
sense, referring to the process of constructing WH .
There are two main motivations for studying QSP-

based quantum simulation algorithms. First, they
have a better asymptotic complexity than PFs [29,
30]. Second, they are compatible with a wider class
of Hamiltonians than those which can be efficiently
mapped onto Pauli Hamiltonians, and for which the
number of qubits is sublinear in the number of de-
grees of freedom in the system [38, 39, 57].

As with PFs, the aim of this section is a pedagogi-
cal overview of techniques based on QSP, however we
do provide precise statements of the theorems needed
in the rest of the paper. We will rely on results from
the literature to provide proofs of these theorems.

Simulating the time evolution operator of a given
Hamiltonian using QSP relies on a a few key insights,
which we will now review in turn.

1. Idea of block encoding

|g⟩a
UA

|g⟩a

|ψ⟩s
A|ψ⟩s

∥A|ψ⟩s∥

Figure 1. Circuit implementing the block encoding UA

of an operator A, as defined in Eq. (22). If the ancillary
register is measured in the state |g⟩a, the state of the
system is A|ψ⟩s/∥A|ψ⟩s∥.

Block encoding (BE) is a technique that allows one
to implement the action of a given operator A on an
arbitrary quantum state directly in a quantum cir-
cuit, despite this operator not being unitary. This
can be accomplished by rescaling A and padding
it with extra entries to fit it into a unitary matrix
that can act simultaneously on the given quantum
state together with an appropriate number of ancilla
qubits. Schematically, this means that the opera-
tor A, which acts on a system Hilbert space Hs, is
embedded into a unitary matrix acting on a larger
Hilbert space Ha⊗Hs, where Ha is the Hilbert space
of the ancillary qubits. Schematically, UA is given by

UA =

(
A/α ∗
∗ ∗

)
. (22)

The rescaling by the parameter α > 0, known as
scale factor, is required, since the norm of any sub-
block of a unitary matrix has to be less than unity.
Equation (22) therefore implies that UA is, in fact,
a BE for the entire equivalence class of matrices A
differing by a constant factor.

If we define the state |g⟩a = G|0⟩a as the state that
projects out the block of UA containing the operator
A/α, we can write

A/α = (⟨g|a ⊗ 1s)UA(|g⟩a ⊗ 1s) , (23)

UA|g⟩a|ψ⟩s = |g⟩a(A/α|ψ⟩s) + |⊥⟩as , (24)

where |⊥⟩as is a vector perpendicular to |g⟩a. This
implies that A is only applied to |ψ⟩s iff the ancillary
register is measured in |g⟩a. We shall term the prob-
ability of this to happen the “success probability of
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the block encoding”, which is given by ||A |ψ⟩s ||/α.
In the commonly considered case |g⟩a = |0⟩a one can
schematically write

|0⟩a|ψ⟩s =
(
|ψ⟩s
0

)
, (25)

UA|0⟩a|ψ⟩s =
(
(A/α)|ψ⟩s

∗

)
. (26)

The success probability depends on how exactly
UA is constructed. In order for the algorithm to
be considered efficient, the success probability has
to scale inverse polynomially with problem parame-
ters. The scale factor plays its role in defining the
complexity of the simulation algorithm, as will be
discussed later.
In much of this work we will use this technique

to block encode a Hamiltonian H, and we call the
corresponding BE UH . The scale factor can then be
absorbed by evolving a rescaled Hamiltonian

H̃ = H/α, (27)

for the time

t̃ = α t , (28)

so that

Ht = H̃t̃ . (29)

In the following discussion, we will choose a di-
agonal basis for the (rescaled) system Hamiltonian,
such that basis vectors of the system Hilbert space
are eigenstates of the Hamiltonian

H̃|λ⟩s = λ|λ⟩s , (30)

with |λ| < 1. This basis is used only to simplify the
discussion of the technique. Being able to diagonal-
ize the Hamiltonian is not required for its use.
As already discussed, the vector |g⟩a of the ancil-

lary Hilbert space Ha defines the block in which the
Hamiltonian is encoded in the unitary matrix UH .
In other words, the BE acts on the tensor product
of a state |λ⟩s and |g⟩a as

UH |g⟩a|λ⟩s = λ |g⟩a|λ⟩s +
√
1− λ2|⊥λ⟩as , (31)

where we have defined a normalized transverse state
that is orthogonal to the vector |g⟩a, such that (⟨g|a⊗
1s)|⊥⟩as = 0. Thus, the action of H̃ can be extracted
by acting with UH on an enlarged Hilbert space and
post-selecting on the ancilla qubit being in the |g⟩a
state, i.e.

⟨g|aUH |g⟩a|λ⟩s = λ |λ⟩s . (32)

Note that if the ancillary Hilbert space Ha is 2-
dimensional, one could choose |g⟩a = |0⟩a and
|⊥⟩a = |1⟩a.
Many different techniques for BE have been dis-

cussed in the literature. Among many others, one
can use general algorithms such as the FABLE al-
gorithm [58], approaches that rely on a technique
called linear combination of unitaries (LCU) [35, 59],
a technique called QETU [60], and techniques using
access to the matrix elements of the sparse matrix
and compact mappings H [30, 36, 38, 39, 59, 61].
The choice of BE is typically dictated by the num-
ber of ancillary qubits required, the value of the scale
factor α, the gate complexity required for its imple-
mentation, whether an approximate implementation
of the Hamiltonian is sufficient, and whether it is
applicable to general sparse Hamiltonians.

One issue with BEs discussed so far is that the
action of the BE does not stay in the Hilbert space
spanned by span{|g⟩a|λ⟩s, |⊥λ⟩as}. In other words,
the action of UH on |⊥λ⟩as can produce a state with
different value of λ′ ̸= λ, such that in general

⟨g|a⟨λ′|sUH |g⟩a|⊥λ⟩as ̸= 0

⟨⊥λ′
|asUH |⊥λ⟩as ̸= 0 .

(33)

Therefore, repeated actions of the unitary UH are
not easily known. This can be dealt with by con-
structing a more constrained BE WH , for which one
can ensure that multiple actions of this BE on a given
eigenstate will never produce a state with a different
eigenvalue. This constrained BE is called a qubitized
block encoding and is discussed in Sec. II B 3.

2. Block encoding by LCU

A generic subroutine, called Linear Combination
of Unitaries (LCU), can be used as a general-purpose
technique for constructing BEs of qubit Hamiltoni-
ans. After introducing the general technique, we
briefly discuss several modifications of LCU as well
as alternative approaches to constructing BEs.

Consider the situation were one has a combination
of M unitary operators U0, . . . , UM−1, each acting
on a system Hilbert space Hs and the goal is to con-
struct the operator

T =

M−1∑
i=0

βi Ui , (34)

acting on the same system Hilbert space.7 8

7 We assume βi > 0 since the complex phases of βi can be
absorbed by Ui.

8 This technique can also be used to add non-unitary op-
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· · ·

· · ·

...
...

...
. . .

...
...

...

· · ·

· · ·

|0⊗k⟩a prep prep†

0

0

0

|ψ⟩s U0 U1 UM−1 T |ψ⟩s/∥T |ψ⟩s∥

sel

Figure 2. Linear Combination of Unitaries (LCU) implements the BE UT of an operator T expressed as a sum of
elementary operators with known circuit implementations, reproduced from [35]. Each operator Ui is controlled on
the binary string representing its index i. The size of the ancillary register is k = ⌈log2M⌉. For illustration purposes,
log2(M) is assumed to be an integer k such that the binary string of M − 1 contains all 1’s.

This can be achieved in the following way. First,
consider an ancilla register with Hilbert space Ha

containing k = ⌈logM⌉ qubits. Labeling the com-
putational basis of these states through the integers
corresponding to the binary string encoded in the
qubits, one defines a so-called prepare oracle (prep)
to create a state |β⟩:

|β⟩a = prepa|0⟩a =
1√
β

M−1∑
i=0

√
βi|i⟩a , (35)

where |0⟩a corresponds to the state with all qubits in

Ha in the |0⟩a state and we have defined β ≡ ∥β⃗∥1 =∑
i |βi|.
Next, using the so-called select oracle (sel), one

performs operations Ui on states in Hs, controlled
on the values of qubits in Ha

sel =

M−1∑
i=0

|i⟩a⟨i|a ⊗ Ui . (36)

At the end one reverses the prepare oracle. The com-
plete circuit on the Hilbert space Has = Ha⊗Hs can
therefore be written as

UT = (prep†a ⊗ 1s) sel (prepa ⊗ 1s) . (37)

Letting this operator act on a state |0⟩a|ψ⟩s one finds

UT |0⟩a|ψ⟩s =
1

β
|0⟩aT |ψ⟩s + |⊥⟩as , (38)

erators by first block-encoding them and then adding the
unitaries using LCU.

where |⊥⟩ is an unnormalized state transverse to
(|0⟩a ⊗ 1s). This implies that UT is a BE of T with
a scale factor β.

From the above discussion it is clear that the num-
ber of ancilla qubits to combine M unitaries is given
by dim(Ha) ∼ logM , and the number of gates is
given byM gates that are controlled on logM qubits,
which can be reduced to O(M logM) elementary
gates.

While the presented approach to LCU relies on the
binary encoding of terms on the RHS of Eq. (34) in
the ancillary register, other encodings can be used
as well. In particular, a variation of the LCU algo-
rithm exists, which takes advantage of the Hamilto-
nian locality [62]. For an k-local nq-qubit Hamilto-
nian, it requires 2nq ancillary qubits yet only uses
2k-controlled gates.
The LCU algorithm can be applied to a Hamil-

tonian provided in a form of a 2nq × 2nq matrix,
upon decomposing it into Pauli strings as H =∑4nq−1

i=0 βiPi, where Pi are the Pauli strings and the
coefficients ci are found as ci = 1

2nq Tr(HPi). An
alternative approach to constructing BEs for Hamil-
tonians given in the matrix form is considered in [58].

The LCU approach is often combined with other
methods. In Sec. IVC2 we shall consider its mod-
ification which takes into account the structure of
particular lattice Hamiltonians.

Lastly, we briefly mention that simulation tech-
niques based on BE, considered in the next section,
are compatible with a wide class of sparse Hamil-
tonians, including those which cannot be efficiently
mapped onto Pauli strings. A general approach to
constructing BEs for such systems is based on the
usage of sparse oracle subroutines. As was men-
tioned in Sec. I, their construction is highly problem-
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specific [36–40] and does not seem to provide advan-
tage over LCU for local HLFTs [40], which are con-
sidered the main application of this work.

3. Qubitization

In approaches to quantum simulation based on
Quantum Signal Processing (QSP), one approxi-
mates the time evolution operator e−iHt by con-
structing polynomials of the Hamiltonian operator.
In what follows we shall base our algorithms upon
the Qubitization technique [30], which utilizes a spe-
cial qubitized form of block encodingWH , also known
as Szegedy quantum walk operator or the iterate).9

The qubitized block encoding WH is designed so
that its successive applications to states of the form
|g⟩a|λ⟩s produce a state belonging to the subspace
span{|g⟩a|λ⟩s, |⊥λ⟩as}, for all eigenstates |λ⟩. This
fact implies that repeated applications of WH pro-
duce block encodings of powers of H, which would
not be true for UH . Such a scenario is realized iff
each state |⊥λ⟩as factorizes as |⊥λ⟩as ≡ |⊥λ⟩a|λ⟩s:

WH |g⟩a|λ⟩s = λ |g⟩a|λ⟩s −
√
1− λ2|⊥λ⟩as

=
(
λ |g⟩a −

√
1− λ2|⊥λ⟩a

)
|λ⟩s .

(39)

Note that the minus sign between the two terms is
conventional.
For any dimension of Ha, the orthogonal state

|⊥λ⟩a can now be defined as

|⊥λ⟩a|λ⟩s =
λ1as −WH√

1− λ2
|g⟩a|λ⟩s , (40)

which implies that for each eigenvalue λ of the
Hamiltonian there is one specific transverse vector
|⊥λ⟩a in Ha.
From Eq. (39) it follows that the operator WH is

block diagonal (in the sense that it doesn’t mix the
Hamiltonian eigenstates), and can be written as(

1a ⊗ ⟨λ′|s
)
WH

(
1a ⊗ |λ⟩s

)
= W̃

(λ)
H δλλ′ , (41)

9 A different QSP-based approach to approximating e−iHt

amounts to using Quantum Singular Value Transforma-
tion [59, 63]. This method is advantageous in the sense that
it avoids controlled calls to the block encoding, and uses di-
rectly UH instead of WH . However, as such an approach
does not allow one to simultaneously implement both even
and odd parts of e−iHt, it requires adding them using LCU
at the final stage. This, in turn, leads to success probabil-
ities which (even upon potential amplitude amplification)
cannot be made exponentially close to 1, as required by the
HHKL algorithm.

where W̃
(λ)
H is some operator acting on the register

a. Information relevant to block encoding of H is

contained in two-dimensional blocks of W̃
(λ)
H corre-

sponding to subspaces

h(λ)
a = span{|g⟩a, |⊥λ⟩a} ∈ Ha , (42)

which we denote by W
(λ)
H :

W
(λ)
H =

(
⟨g|aW̃ (λ)

H |g⟩a ⟨g|aW̃ (λ)
H |⊥λ⟩a

⟨⊥λ|aW̃ (λ)
H |g⟩a ⟨⊥λ|aW̃ (λ)

H |⊥λ⟩a

)
h
(λ)
a

=

(
λ −

√
1− λ2√

1− λ2 λ

)
h
(λ)
a

= exp(−iY θλ) ,
(43)

where

θλ = arccos(λ) . (44)

While the qubitized BE WH gives the same result
as the original BE UH when acted on |g⟩a|λ⟩s, it
has a much simpler structure when applied multiple
times:(

1a ⊗ ⟨λ′|s
)
(WH)

k (
1a ⊗ |λ⟩s

)
=
(
W̃

(λ)
H

)k
δλ′λ .

(45)

Using Eq. (43), one can show that(
W

(λ)
H

)k
=

 ⟨g|a
(
W̃

(λ)
H

)k
|g⟩a ⟨g|a

(
W̃

(λ)
H

)k
|⊥λ⟩a

⟨⊥λ|a
(
W̃

(λ)
H

)k
|g⟩a ⟨⊥λ|a

(
W̃

(λ)
H

)k
|⊥λ⟩a


h
(λ)
a

=

(
Tk(λ) −

√
1− λ2 Uk−1(λ)√

1− λ2 Uk−1(λ) Tk(λ)

)
h
(λ)
a

= exp (−iY kθλ) ,
(46)

where Tk(λ) and Uk(λ) are Chebyshev polynomials
of the first and second kind, respectively. Given that
Chebyshev polynomials are an excellent polynomial
basis for approximating L∞ functions on a finite in-
terval, one can hope to construct a general function
of the eigenvalues (and therefore of the Hamiltonian
matrix itself) by combining powers of theWH opera-

tor. Note that while the matrix of W̃
(λ)
H may contain

blocks of size larger than 2×2 when the ancillary reg-
ister contains more than a single qubit, only its 2×2

blocks W
(λ)
H are relevant for the block encodings of

H and its powers. In the next section we discuss
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how this technique can be used for approximating
the time evolution operator.
While so far we have only defined the unitary WH

through its action on a given state, a very important
result is that it can be obtained from a BE of the
Hamiltonian UH using a process known as qubitiza-
tion [30], which we now describe. In many cases of
interest, it is possible to construct the iterate by as-
suming a form WH = S′UH , and searching for some
S′ that acts only on the ancillary qubits. The condi-
tions S′ must satisfy can be stated more succinctly
by first letting S′ be a product of a reflector Rg about
the state |g⟩a and another operator S that acts only
on the ancillary qubits, i.e.

WH =
(
Rg ⊗ 1s

)
(S ⊗ 1s)UH , (47)

where

Rg =
(
2|g⟩a⟨g|a − 1a

)
. (48)

The circuits for WH and Rg are shown in Figs. 3
and 4.

|⟩a
UH

S Rg

|⟩s

Figure 3. Circuit for the qubitized block encoding WH

defined in Eq. (47).

...
...

...|⟩a G† G

X Z X −1

Figure 4. Circuit for the reflection operator Ra defined
in Eq. (48) and used in Eq. (47), see [59] for alternative
implementations. G is the oracle for preparing the state

|g⟩a, i.e. G|0⟩a = |g⟩a. The −1 gate adds an overall

phase to the circuit (negative sign), and can be imple-
mented, e.g., as XZXZ.

Written in this way, it was shown [30] that one can
construct WH from Eq. (47) if S satisfies(

⟨g|a ⊗ 1s

)
(S ⊗ 1s)UH

(
|g⟩a ⊗ 1s

)
= H/α, (49a)(

⟨g|a ⊗ 1s

) [
(S ⊗ 1s)UH

]2 (|g⟩a ⊗ 1s

)
= 1a .

(49b)

One particularly simple case is when UH is its own
inverse, i.e. U2

H = 1as. In this case, one can sim-
ply set S = 1a. This construction can be applied
to the case when the block encoding UH is con-
structed via the LCU procedure [37]. To see this, we
must modify our perspective slightly. In the origi-
nal construction, we had UH = (prep†)sel(prep)
and |g⟩a = |0⟩a. Alternatively, we can regroup
terms and instead take UH → ULCU

H ≡ sel and
|g⟩a → |gLCU⟩a ≡ prep|0⟩a = |β⟩a. Because
(ULCU

H )2 = sel2 = 1as, we can simply set S = 1a to
construct WH :(

⟨0|a ⊗ 1s

)
UH

(
|0⟩a ⊗ 1s

)
=
(
⟨0|a ⊗ 1s

)
(prep†)sel(prep)

(
|0⟩a ⊗ 1s

)
=
(
⟨β|a ⊗ 1s

)
ULCU
H

(
|β⟩a ⊗ 1s

)
.

(50)

It is important to note that the BE ULCU
H is defined

with |g⟩a = prep|0⟩a.
The construction described above also applies to

cases where the block encoding is based on Hamilto-
nian sparsity, since one can use sparse oracles to con-
struct block encodings that are Hermitian and thus
self-inverse [59]. In more general scenarios where this
is not necessarily the case (e.g., as in Ref. [64]), the
operator S′ can always be constructed at the expense
of introducing a single ancillary qubit and perform-
ing two controlled calls to UH [30]. Note that while
this procedure does not increase the asymptotic cost
of preparing WH , it does result in a significant in-
crease of the overall prefactor. Importantly, for all
methods used in this work, the BE’s are also Hermi-
tian, and the general procedure requiring an extra
qubit was avoided. For completeness, the procedure
for constructing WH from an arbitrary UH is pre-
sented in App. A.

4. QSP using Qubitization

Having just demonstrated that repeated applica-
tions ofWH construct block encodings of Chebyshev
polynomials of the Hamiltonian, one natural strat-
egy for constructing a polynomial approximation to
e−itH is as follows. One would first construct circuits
with different powers of WH and then add these cir-
cuits with the appropriate coefficients using an LCU
procedure. However, this would result in a block en-
coding approximating e−iHt with a scale factor that
grows with the degree of the polynomial approxima-
tion and cannot be made arbitrarily close to one.
This is highly undesirable for the reasons previously
discussed in Footnote 9, and below we discuss how
this limitation can be overcome with the aid of QSP.

In order to use the operator WH of the pre-
vious section to calculate the exponential of the
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· · ·

· · · · · ·

· · ·

|0⟩b H

VH(ϕ1) VH(ϕ2) VH(ϕNϕ)

H 0

|0⟩a 0

|ψ⟩s ≈ e−iHt|ψ⟩

Figure 5. Quantum Signal Processing (QSP) circuit used for simulating time evolution, reproduced from [64]. The
circuit prepares a block encoding for the approximation of the time evolution operator e−iHt|ψ⟩. Circuit for VH(ϕ) is
shown in Fig. 6. When all the ancillary qubits are measured in the zero states, the desired operator is applied to the
system register |ψ⟩s. Without loss of generality, |g⟩a is set to |g⟩a = |0⟩a.

|⟩b Rz(−ϕ
2
) H H Rz(

ϕ
2
)

|⟩a
WH

|⟩s

Figure 6. Circuit for VH(ϕ), as defined is Eq. (54).

Hamiltonian, we first note that within the subspaces
span{|g⟩a|λ⟩s, |⊥λ⟩as} the qubitized operator WH

can be diagonalized by defining the states

|θλ±⟩as ≡
1√
2

(
|g⟩a ± i|⊥λ⟩a

)
|λ⟩s . (51)

Using Eq. (39) one can easily show that

WH |θλ±⟩as = eiθ
λ
± |θλ±⟩as , (52)

with

θλ± = ∓θλ , (53)

where θλ is defined in Eq. (44).10

Given this form, one can now define a new opera-
tor VH(ϕ), parameterised by ϕ, which can be con-
structed from the operator WH . It requires one
more ancillary qubit |b⟩ ∈ Hb, such that the op-
erator VH(ϕ) acts on the Hilbert space Hbas ≡
Hb ⊗Ha ⊗Hs. It is defined by (see Fig. 6)

VH(ϕ) = (e−iϕZb/2 ⊗ 1as)W
′
H(eiϕZb/2 ⊗ 1as) , (54)

10 The fact that WH encodes information about the spec-

trum of the system via specW
(λ)
H = {e±i arccos(λ)} can be

used for implementing a highly efficient version of Quantum
Phase Estimation algorithm based using controlled calls to
WH [37].

where Zb is the usual Pauli Z operator acting on the
qubit |b⟩, and W ′

H is the WH operator controlled on
the qubit |b⟩, which now acts on the Hilbert space
Hbas:

W ′
H = |+⟩b⟨+|b ⊗ 1as + |−⟩b⟨−|b ⊗WH . (55)

One can show through explicit computation that(
1b ⊗ ⟨θλ

′

± |as
)
VH(ϕ)

(
1b ⊗ |θλ±⟩as

)
= V

(θλ
±)

H (ϕ) δλλ′ ,
(56)

with

V
(θ)
H (ϕ) = ei

θ
2

 cos θ
2 −i sin θ

2e
−iϕ

− i sin θ
2e

iϕ cos θ
2


b

= ei
θ
2 e−i θ

2 (Xb cosϕ+Yb sinϕ) ,

(57)

where Xb and Yb denote the Pauli-X and Y matrices
in Hb.

What this construction has accomplished is to cre-
ate a unitary operator VH(ϕ) that is block diagonal
in the original Hilbert space Hs, with the entries of
the 2 × 2 matrix in Hb given by functions of the
eigenvalues of the Hamiltonian (through cos θλ±), pa-
rameterized by some ϕ. By multiplying several of
these operators in sequence (each with a different
value of ϕ), one obtains an operator

V
(θ)
H (ϕ⃗) ≡ V

(θ)
H (ϕNϕ

) . . . V
(θ)
H (ϕ1) , (58)

that is still block diagonal in Hs. The resulting oper-
ator is a 2× 2 matrix in Hb which acquires the form
of

V
(θ)
H (ϕ⃗) = A(θ)1b + iB(θ)Xb + iC(θ)Yb + iD(θ)Zb ,

(59)

where the functions A(θ) . . .D(θ) are all parameter-

ized by the angles ϕ⃗ = (ϕ1, . . . , ϕNϕ
) and, similarly

to Eq. (46), can be expressed in terms of Chebyshev
polynomials of λ upon substituting θ = arccos(λ).
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The classes of functions A(θ) . . .D(θ) that can be
realized by the above procedure are described by the
theory of Quantum Signal Processing. In particular,
it was shown in [65] that one can construct the vector

of angles ϕ⃗ to obtain functions A(θ) and C(θ) of the
form

|A2(θ)|+ |C2(θ)| ≤ 1 , A(0) = 1 ,

A(θ) =

Nϕ/2∑
k=0

ak cos(kθ) ,

C(θ) =
Nϕ/2∑
k=1

ck sin(kθ) .

(60)

The two other functions, B(θ) and D(θ) are not rel-
evant to the calculation since projecting onto |+⟩b
leaves only A(θ), C(θ). Reversing this logic, one
can start from some desired functions A(θ), C(θ),
and determine phases ϕ⃗ such that V

(θ)
H (ϕ⃗) reproduces

these functions (approximately). This can be accom-
plished using an efficient classical procedure given
in [65].11

We omit now a few final details, which can be
found in [30], and simply state the relevant results.
As can be confirmed from Eq. (59), letting the oper-

ator V
(θ)
H (ϕ⃗) act on the state |+⟩b and post-selecting

on ⟨+|b picks out the function

⟨+|b⟨g|a⟨λ′|sVH(ϕ⃗)|+⟩b|g⟩a|λ⟩s
= δλλ′

[
A(λ) + iC(λ)

]
.

(61)

The functions A(λ) and C(λ) are directly related to
the functions A(θ), C(θ), with the detailed relation
given in Ref. [30]. The success probability for mea-
suring the system in the state |+⟩b|g⟩a for a given
value λ depends on the functions and is given by

p ≥ |A2(λ)|+ |C2(λ)| . (62)

The final task is to determine which functions A(λ)

and C(λ) (and therefore which phases ϕ⃗) approxi-
mate the time evolution operator with uncertainty
bounded by ε,∣∣∣eiλt̃ − [A(λ) + iC(λ)]

∣∣∣ < ε . (63)

Since A(λ) and C(λ) can be expressed in terms
of Chebyshev polynomials, they can be used for

approximating the real and imaginary part of eiλt̃

11 A recent version of QSP, generalized QSP, significantly im-
proves the cost of calculating phases ϕ⃗ [32].

through the rapidly converging Jacobi-Anger expan-
sion [29]:

A(λ) = J0(t) + 2

Nϕ/2∑
k even>0

(−1)k/2Jk(t̃)Tk(λ) , (64a)

C(λ) = 2

Nϕ/2∑
k odd>0

(−1)(k−1)/2Jk(t̃)Tk(λ) , (64b)

(note that Nϕ is always chosen to be even). In this
case, the circuit in Fig. 5 would implement the ap-
proximate BE of the evolution operator e−iHt. The
number of phases needed for a given value of ε is
bounded by [29]

Nϕ = O
(
t̃+ log(1/ε)

)
= O

(
αt+ log(1/ε)

)
. (65)

Note also that Eqs. (62) and (63) imply that

p ≥ 1−O(ε) , (66)

since the time evolution operator has unit magni-
tude. Note that due to the log(1/ϵ) scaling, one
can require the success probability to be exponen-
tially close to one for only a polynomial cost (see
also Footnote 9).

It is worth mentioning that the success rate of
QSP is always O(1), independent of the success rate
O(1/α) of the BE UH used. This is due to the fact
that we have used QSP to implement a unitary func-
tion (e−iHt) which has unit norm. This implies that
A(λ)2 + C(λ)2 ≈ 1, which together with Eq. (62)
gives a success probability that is close to one. While
this is a desirable feature, the cost of a poor success
probability of the BE is now reflected in the num-
ber of phases Nϕ required to approximate the time
evolution operator to an error ϵ, as seen by Eq. (65).
For this reason, significant savings can be achieved
by performing dedicated studies to minimize α.
A number of algorithms, based on the concept of

QSP, can be used for quantum simulation. Algo-
rithms such as Quantum Singular Value Transforma-
tion (QSVT) [59, 63] and (QETU) [60, 66, 67] can
be utilized for near-optimal state preparation [60,
67, 68] and construction of block encodings [69],
while utilizing the recently developed Generalized
QSP (GQSP) algorithm [32] can readily improve by
a constant factor the gate counts obtained with the
QSP procedure [69].

C. HHKL

The results presented so far (PFs and QSP) can be
applied to general site-local Hamiltonians (see Defi-
nition 2). For geometrically-site-local Hamiltonians
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(see Definition 3) one can use the fact that informa-
tion from one area of the lattice can only spread
to areas not directly connected to it through re-
peated actions of the time evolution operators, which
implies that the speed with which this information
spreads is bounded. This is formalized by the Lieb-
Robinson bound [70]. This idea was used in a paper
by Haah, Hastings, Kothari and Low (HHKL) [34]
to devise a scheme for simulating the time evolution
of geometrically-site-local Hamiltonians.
As before, this section is aimed at giving the reader

a basic understanding of the technique, without go-
ing into too many of the details. In order to un-
derstand these details the reader is encouraged to
read the excellent description of the algorithm in the
original work, where all statements are also carefully
proved.
The main ingredient to the HHKL algorithm is

that the time evolution of a large quantum sys-
tem with geometrically local Hamiltonian can be ob-
tained from the time evolution of two smaller sys-
tems that share some overlap, which has to be of at
least the size given by the ball of size O(1) used
in Definition 3. Thus, the system Hilbert space
Hs is divided into three parts, Ha,b,c such that
Hs = Ha ⊗ Hb ⊗ Hc. In the discussion of [34] is
assumed that the local Hamiltonian HJ such that
||HJ || ≤ 1. Thus, in the remainder we work with

H̃J =
HJ

||HJ ||
, t̃ = ||HJ ||t . (67)

First, one uses that the evolution of a system for
some long time t̃ can be split into the product of
unitaries over shorter times ∆t = O(1):

U(t̃, 0) = U(t̃, t̃−∆t) · · ·U(∆t, 0) . (68)

The total number of such unitaries is O(t̃).
Lemma 6 of [34] states that the time evolution

Us(∆t) of a Hamiltonian on the whole system over
time ∆t can be obtained by multiplying together the
forward time evolution in the system Ha∪b = Ha ⊗
Hb andHb∪c = Hb⊗Hc and the backwards evolution
in the system Hb as

Ua∪b∪c(∆t) = Ua∪b(∆t)U
†
b (∆t)Ub∪c(∆t) +O(δ) ,

(69)

where the error due to this approximation is given
by

δ ≡ δ(a, b, c) = O

e−µ d(a,c)
∑

X∈BD(ab,c)

||H̃X ||

 .

(70)

For now we assume that each of the U(∆t) on the
RHS of Eq. (69) is implemented exactly. In Eq. (70)

µ > 0 is a constant, d(a, c) is the smallest distance
between any point in a and any point in c, and the
norm ||H̃J || is summed over all terms that are on the
boundary of a∪b and c, indicated by BD(ab, c). The
uncertainty is therefore exponentially suppressed in
the distance between the regions a and c. This im-
plies that this approximation works well for large
enough distance ℓ ≡ d(a, c).
This result can be applied recursively, splitting

the evolution into smaller and smaller pieces, each
of which just have to be larger than the ball of size
∼ O(1). If the size of the original system is given
by Ld (where d represents the dimension of the Eu-
clidean space we consider with size L in each dimen-
sion) and the final pieces are each of size ℓd, one ends
up with

m = O

(
Ld

ℓd

)
(71)

individual pieces. Taking into account the O(t̃) evo-
lution operators we started from, the final error O(ε)
can be reached by requiring

δ = O
(

ε

t̃m

)
. (72)

We see that the sum of the norms of the boundary
terms appearing in Eq. (70) is O(Ld−1) and thus
from Eqs. (70) and (72) one finds it suffices to choose

ℓ = Θ

log

(
Ldt̃

ε

) . (73)

One can then estimate the required resources using
the fact that one needs to compute

O(t̃m) = O

Ldt̃ log−d

(
Ldt̃

ε

) (74)

time evolution operators on a system of size O(ℓd).12

The cost and the associated additional error for im-
plementing each of these “local” pieces depends on
the algorithm used for their implementation. In par-
ticular, if an algorithm with cost polynomial in ℓ
and polylogarithmic in 1/ε is used (such as Qubitiza-
tion), then the cost of the HHKL algorithm remains
O(Ldt̃polylog(Ldt̃/ε)). Implementing the time evo-
lution of local blocks using PF would lead to an al-
gorithm whose asymptotic cost dependence on ε is

12 Note that decreasing ε is logarithmically decreasing the
number of evolution operators. This number clearly has
to be larger than unity, meaning ε cannot be exponentially
small with system size.
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given by that of the employed PF method, i.e., no
longer polylogarithmic in ε. This can make sense if,
for a given value of ε, the PF-based method leads to
lower gate counts as compared to a nearly-optimal
implementation – for a system of size ℓ but not of
size L [26].

D. Summary and precise statement of
techniques used

1. General Product Formulas

Definition 5. A pth order PF Sp(t) is a PF of the
form (14), such that it approximates the true expo-
nential e−iHt to pth order in t, i.e.,

e−iHt = Sp(t) +O(tp+1) . (75)

Theorem 6 (Trotter number with commutator scal-

ing). Let H =
∑Γ

γ=1Hγ be an operator comprised of

Γ Hermitian summands. Let Sp(t) be a pth order PF
as defined by (75), with t ≥ 0. Then, if we require
an exponentiation error O(ε), as defined by (20), it
suffices to choose

r = O

(
α̃

1
p t1+

1
p

ε
1
p

)
, (76)

where α̃ ≡
∑Γ

γ1,γ2,...,γp+1=1||[Hγp+1
, ...[Hγ2

, Hγ1
]]||

Proof. This theorem follows directly from Theorem
11 and Corollary 12 of [27].

2. QSP

In this section we summarize the results of the
section on QSP in a concise and precise form which
will be referred to later in the text.

Definition 7 (Block encoding). Let H be a Hamil-
tonian acting on the n-qubit Hilbert spaceHs

∼= C2n .
Let k ≥ 0 be an integer and let UH be a unitary op-
erator on the joint Hilbert space Ha ⊗ Hs, where

Ha
∼= C2k denotes the Hilbert space of k ancil-

las. Then, for α ∈ R+, the unitary operator UA is
called an (α, k)-block-encoding of A if for every state
|ψ⟩ ∈ Hs:(

1s ⊗ ⟨g|g
)
UA

(
1s ⊗ |g⟩a

)
= A/α , (77)

where |g⟩a is some state in Ha, 1s is the identity
operator on Hs. The value α chosen such that
∥A∥/α ≤ 1 is called the scale factor of the BE.

BEs can be constructed using LCU as follows

Lemma 8 (LCU block encoding). Let U0, . . . , UM−1

be M unitary operators acting on a system Hilbert

space Hs and define the operator T =
∑M−1

i=0 βiUi.
The LCU method provides a (β, logM) BE of the

operator T , where β ≡
∑M−1

i=0 ∥βi∥. The gate com-
plexity is given by O(M logM) elementary gates.

Proof. The proof of this Lemma can be found in
many textbooks, see for example [59]. The asymp-
totic cost stems from the complexity of implement-
ing the sel subroutine, since the cost of prepar-
ing an arbitrary state on log2M qubits in prep
is O(M) [71, 72], which is cheaper than the cost
of sel, as we explain next. The gate complexity
of sel is O(M logM), which comes from sequen-
tially implementing M unitaries, each being con-
trolled on k = logM ancillary qubits. Decompos-
ing k-controlled gates into elementary gates can be
achieved at a cost linear in k, with the constant pref-
actor being smallest if k additional ancillary qubits
are allowed to be used [37, 73]. For applications con-
sidered in this work, this gives a minor overhead in
the qubit cost since k is logarithmic is the parameters
of the system.

Given a BE of the Hamiltonian, one can obtain an
approximation to the time evolution operator using
QSP.

Theorem 9 (QSP with Qubitization). Let UH be a
an (α, k)-block-encoding of a Hamiltonian H acting
on a Hilbert space Hs. Furthermore, let t and ε be
positive real values. Then there is a quantum cir-
cuit that produces a

(
1±O(ε), k + 2

)
-block-encoding

of the time evolution operator e−iHt up to exponen-
tiation error ε, and possesses a complexity of

O
(
αt+ log(1/ε)

)
, (78)

relative to the oracle UH . The probability for this BE
to succeed is

p > 1−O(ε) . (79)

Proof. We will not prove this result rigorously, but
point the reader to the pedagogical sections of this
paper, with all statements made there having been
rigorously proved in the literature [30]. The fact that

the BE is (α̃, k̃) = (1 ± O(ε), k + 2) can be easily
understood. First, the BE of the time evolution op-
erator requires two additional qubits, one (|q⟩) for
the qubitization and one (|b⟩) to add the functional

dependence on ϕ, giving k̃ = k + 2. The fact that
α̃ = 1±O(ε) follows from the fact that the operator
we are block-encoding is a unitary operator, and our
approximation is good up to error ε. Since the norm
of a unitary operator is 1, this gives that both α̃ and
the success probability are unity (up to O(ε)).
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3. HHKL

Theorem 10 (HHKL Algorithm). Let Λ be a lat-
tice of qubits embedded in d-dimensional Euclidean
space of size L in each dimension, and let Ĥ be
a geometrically-local Hamiltonian, normalized such
that each local term has a norm of order unity. Fur-
thermore, let t̃ and ε be positive real values. Then

there exists an algorithm that approximates e−iH̃t̃ to
exponentiation error ε, which requires13

O

 Ldt̃

logd
(
Ldt̃/ε

)
 (80)

calls to a helper function that implements the time
evolution for a system of size

ℓ = Θ

(
log
(
Ldt̃/ε

))
, (81)

with error

δ = O

(
ε logd(Ldt̃/ε)

Ldt̃

)
(82)

Proof. The results follow directly from our discussion
in Sec. II C. For formal proofs of the results stated
there we refer the reader to the original paper [34].

III. SIMULATING TIME EVOLUTION ON
THE LATTICE

In this section, we apply the algorithms and meth-
ods of Section II to the case of Hamiltonians de-
fined in Sec. I B. Similar to Sec. II, this section is
organized by the techniques used (PFs, QSP, and
HHKL). For each of these sections, we begin by con-
sidering the case of O(1)-site-local RHLFTs defined
on O(1)-many sites, which behave very similarly to
generic quantum systems, and will serve as a review
of the relationship between our notation and other
common notations. We then proceed to the case of
k-site-local and k-geometrically-site-local Hamiltoni-
ans, whose simulation can roughly be categorized as
being composed of simulation methods for O(1)-site-
local Hamiltonians that are “glued” via PFs, LCU,
or HHKL, depending on the flavor of locality whose
preservation is desired.

13 We assume that the error ε large enough that the number
of calls to the helper function is larger than one.

A. Product Formulas

Before we investigate the scaling of PFs for dif-
ferent local Hamiltonians with different numbers of
lattice sites, we give two results that apply to all
Hamiltonians considered in this work.

The general results on PFs depended on a parame-
ter α̃, which was related to the commutator of terms
in the Hamiltonian. Our first Lemma relates this to
the norm of the Hamiltonian

Lemma 11. Let H be a k-site-local Hamiltonian, as
defined in Definition 2. Then the nested commutator
α̃ ≡

∑
J1,J2,...,Jp+1∈S ||[HJp+1 , . . . [HJ2 , JJ1 ]]|| can be

asymptotically bounded as

α̃ = O
(
|||H|||p1||H||1

)
. (83)

Proof. This result has been proven in Appendix G of
[27].

The next Lemma will give an expression that will
allow to combine a PF with another approximation
to the exponentials that make up the PF. The PF
introduced in Eq. (14) is used as an approximation to

e−iHt, and another approximation U
(J)
υ (t/r) is used

to approximate each term of the form e−ita(J)
υ HJ/r.

Lemma 12. Let H be a site-local Hamiltonian as
defined by 2. Let Sp(t) be a pth order PF for e−iHt

as given in Eq. (14), and let the unitary U
(J)
υ (t/r)

be an approximation to e−ita(J)
υ HJ/r for all choices

of allowed pairs (υ, J), with υ ∈ {1, . . . ,Υ(p)} and

J ∈ S. Define the PF S̃p(t) as the PF for e−iHt

obtained by replacing e−ita(J)
υ HJ/r in Eq. (14) with

U
(J)
υ (t/r)

S̃p(t/r) ≡
Υ(p)∏
υ=1

Pυ

∏
J∈S

U (J)
υ (t/r)

 . (84)

If

∥∥∥U (J)
υ (t/r)− e−ita(J)

υ HJ/r
∥∥∥ = O

(
ε

NHrΥ(p)

)
, (85)

it is true that∥∥∥S̃p(t)− e−iHt
∥∥∥ = O(ε) . (86)

Proof. Demanding that the new PF still reproduces
the time evolution operator with the same exponen-
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tiation error we can write∥∥∥e−iHt − S̃p(t)
∥∥∥

=

∥∥∥∥e−iHt − Sp(t) +
[
Sp(t/r)

]r − [S̃p(t/r)
]r∥∥∥∥

≤ O(ε) +

∥∥∥∥[S̃p(t/r)
]r

−
[
Sp(t/r)

]r∥∥∥∥
= O(ε) + rNHΥ(p)

∥∥∥U (J)
υ (t/r)− e−it/raυJHJ

∥∥∥
= O(ε) .

(87)

1. General site-local Hamiltonian

We can now give results that apply to both general
site-local Hamiltonians (see Definition 2).

Theorem 13 (Product Formulas for site-local
Hamiltonians). Let H be a site-local Hamiltonian as
defined in Definition 2 or Definition 3. To simulate
the time evolution operator e−iHt up to exponentia-
tion error O(ε) it suffices to choose a Trotter number
r such that:

r = O

NindNH
1/p (NPcPt)

1+ 1
p

ε
1
p

 . (88)

Furthermore, if the Trotter number r is chosen with
tight the asymptotic scaling

r = Θ

NindNH
1/p (NPcPt)

1+ 1
p

ε
1
p

 , (89)

then the associated elementary gate count χ can be
asymptotically bounded as

χ = O

NindNP
(NHNPcPt)

1+ 1
p

ε
1
p

 . (90)

Proof. Using Theorem 6 and Lemma 11one finds that
the Trotter number r is given by

r = O

 |||H|||1||H||
1
p

1 t
1+ 1

p

ε
1
p

 . (91)

Using previously established notation, we have

||H||1 = O

NH

∑
J

||HJ ||

 = O(NHNPcP) ,

|∥H∥|1 = O(NindNPcP) ,

(92)

which immediately gives

r = O

NindNH
1/p (NPcPt)

1+ 1
p

ε
1
p

 . (93)

Assume now that we wish to compute the total
gate count χ for a quantum circuit implementing an
approximation of e−iHt to total exponentiation er-
ror O(ε) based on the splitting

(
Sp(t/r)

)r
, where

the Trotter number r in fact satisfies (89) (i.e., the
asymptotic scaling is tight) so that the spectral norm

∥
(
Sp(t/r)

)r − e−iHt∥ = O(ε). This splitting takes
the following form (see Eq. (14))

[
Sp(t/r)

]r
≡

Υ(p)∏
υ=1

Pυ

∏
J∈S

exp

(
−ita(J)υ HJ

r

)


r

.

(94)
Each Sp(t/r) thus consists of O

(
NHΥ(p)

)
-many ex-

ponentials of the form exp
(
−ita(J)υ HJ/r

)
. Each of

these exponentials can be approximated using a dif-

ferent PF S̃
(υ,J)
p̃ (t/rr̃) based on the Pauli decompo-

sition of each term HJ (see Eq. (3)). This splitting
takes the form[
S̃
(υ,J)
p̃ (t/(rr̃))

]r̃
≡

Υ(p̃)∏
υ=1

P̃υ

NP
(J)∏

i=1

exp

(
−itã(i)υ c

(J)
i P

(J)
i

rr̃

)


r̃

.

(95)
From Lemma 12 we know that to ensure that the
total error remains O(ε), the accuracy of this PF
has to be∥∥∥∥∥∥

(
S̃
(υ,J)
p̃ (t/rr̃)

)r̃
− exp

(
−ita(J)υ HJ

r

)∥∥∥∥∥∥
= O

(
ε

NHrΥ(p)

)
.

(96)

Substituting this into the result of Theorem 6 we
therefore find

r̃ = Ω

(NPcPt

r

)1+ 1
p̃
(

ε

NHΥ(p)r

)− 1
p̃


= Ω

(
Υ(p)

Nind

(
NPcPt

NHε

) p
p̃

)
.

(97)

We choose p̃ = p and use that Υ(p) = O(1). We also
have that r̃,Nind ∈ N have to both be at least 1, and
hence one finds r̃ = Ω(1).
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Using that Υ(p̃) = O(1), we have that the resource
scaling is thus given by

χ = O(NHNPr)

= O

NindNP
(NHNPcPt)

1+ 1
p

ε
1
p

 .
(98)

2. O(1) site-local Hamiltonian

Having obtained the results for a general site-local
Hamiltonian, one can obtain the results for an O(1)
site-local Hamiltonian

Theorem 14 (Product Formulas for NΛ = O(1)
sites). Let H be an O(1) Hamiltonian as defined
in Definition 4 Let Sp(t) be a pth order PF as given
by Eq. (14) and Eq. (75). Then to simulate the time
evolution operator e−iHt up to exponentiation error
O(ε) it suffices to choose a Trotter number r such
that:

r = O

 (NPcPt)
1+ 1

p

ε
1
p

 . (99)

Furthermore, if the Trotter number r is chosen with
the tight asymptotic scaling

r = Θ

 (NPcPt)
1+ 1

p

ε
1
p

 , (100)

then the associated elementary gate count χ can be
asymptotically bounded as

χ = O

NP (NPcPt)
1+ 1

p

ε
1
p

 . (101)

Proof. This result is obtained immediately by setting
NH ∼ Nind = O(1) in Theorem 13.

3. Geometrically-site-local Hamiltonian

Theorem 15 (Product Formulas for geometrical-
ly-site-local Hamiltonians). Let H be a geometrically
site-local Hamiltonian as defined in Definition 3. To
simulate the time evolution operator e−iHt up to ex-
ponentiation error O(ε) it suffices to choose a Trotter
number r such that:

r = O

NΛ
1/p (NPcPt)

1+ 1
p

ε
1
p

 . (102)

Furthermore, if the Trotter number r is chosen with
tight the asymptotic scaling

r = Θ

NΛ
1/p (NPcPt)

1+ 1
p

ε
1
p

 , (103)

then the associated elementary gate count χ can be
asymptotically bounded as

χ = O

NP
(NΛNPcPt)

1+ 1
p

ε
1
p

 . (104)

Proof. This result follows directly from Theorem 13
making the replacements Nind = O(1) and NH =
O(NΛ) as given in Eqs. (11) and (12).

B. Quantum Signal Processing

As discussed in detail in Sec. IID 2, QSP provides
a technique to take the BE of a given Hamiltonian
and obtain the approximation to the BE of its time
evolution operator. We will begin by deriving the
general result of using QSP to implement the time
evolution operator of the full system Hamiltonian.

We will also derive results that combine the tech-
niques of PFs with those of QSP. In this approach
we will use a PF to split the full time evolution
operator into products of exponentials of the form

e−ita(J)
υ HJ/r, and then use QSP to to obtain expres-

sion for these exponentials requiring only O(1) lat-
tice sites.

In both of these approaches we assume that the
original BE is achieved using LCU, as explained
in Sec. II B 2, but we note that other techniques are
possible as well.

1. General site-local Hamiltonian

We first establish the scaling of the LCU that will
be used for the BE

Lemma 16 (LCU for site-local Hamiltonians). Let
H be a site-local Hamiltonian as as in Definition 2.
There exists a quantum circuit acting on n ≡ NΛnq-
many qubits together with k = O

(
log(NHNP)

)
-many

ancillas that produces an
(
O (NHNPcP) , k

)
-block-

encoding of H on the n qubits, and requires a total
of O

(
NHNP log(NHNP)

)
-many elementary quantum

gates.

Proof. This follows directly from Lemma 8, if we ob-
serve that the total number of Pauli strings is given
by NHNP and the sum of the coefficients of all Pauli
strings is bounded by β < NHNP.
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Given this result now allows us to state the central
QSP result we use in this work:

Theorem 17 (QSP for site-local Hamiltonians).
Let H be a site-local Hamiltonian as defined by
2, and let t and ε be positive values. Then
there exists a quantum circuit that serves as a(
1±O(ε),O(log(NHNP))

)
-block-encoding for e−iHt

up to exponentiation error ε, and requires an ele-
mentary gate count of

χ = O
[
NHNP log(NHNP)

(
NHNPcPt+ log(1/ε)

)]
.

(105)

Proof. This result follows from Lemma 16 and The-
orem 9. From Lemma 16 one obtains that LCU give

a
(
O (NHNPcP) ,O

(
log(NHNP)

))
BE of the Hamil-

tonian. Using this result in Theorem 9 one finds
that QSP gives a

(
1±O(ε),O(log(NHNP))

)
-block-

encoding for e−iHt. Using the resource scaling
from Theorem 9, with the scale factor and resource
scaling of LCU from Lemma 16, gives the resource
requirements stated in the theorem.

Remark 18. Note that we have assumed that the
block-encoding is formed from a sum over all Pauli
strings appearing in the Hamiltonian. When more
structure is known about a given field theory, the
factor in the complexity due to the block-encoding
may be reduced.

2. O(1) site-local Hamiltonian

As for the PF, we can obtain the QSP require-
ments of an O(1) site-local Hamiltonian:

Theorem 19 (QSP for O(1) sites). Let H be an
O(1) Hamiltonian as defined in Definition 4, and let
t and ε be positive values. Then there exists a quan-
tum circuit that serves as a

(
1±O(ε),O(log(NP))

)
-

block-encoding for e−iHt up to exponentiation error
ε, and requires an elementary gate count of

χ = O
[
NP logNP

(
NPcPt+ log(1/ε)

)]
. (106)

Proof. This follows directly from Theorem 17 by tak-
ing the limit NH = O(1).

3. Geometrically-site-local Hamiltonian

Theorem 20 (QSP for geometrically-site-local
Hamiltonians). Let H be a geometrically site-local
Hamiltonian as defined by 2, and let t and ε be pos-
itive values. Then there exists a quantum circuit that

serves as a
(
1±O(ε),O(log(NHNP))

)
-block-encoding

for e−iHt up to exponentiation error ε, and requires
an elementary gate count of

χ = O
[
NΛNP log(NΛNP)

(
NΛNPcPt+ log(1/ε)

)]
.

(107)

Proof. This result follows directly from Theorem 17
making the replacements NH = O(NΛ) as given
in Eq. (12).

C. Combining Product Formulas with QSP

In this section we consider combining a PF with
QSP. We will use Lemma 12 to write a PF for

e−iHt, but then use QSP for U
(J)
υ (t/r), which serves

as an approximation to each term of the form

exp
(
−ita(J)υ HJ/r

)
appearing in the PF.

Theorem 21 (QSP applied to Product Formulas).
Let H be a site-local Hamiltonian as defined by 2,
and let t and ε be positive values. By using QSP
(see Theorem 19) to simulate each exponential term

e−ia(J)
v HJ t/r appearing in the PF Sp(t/r) to error

ε/(rNH), and taking

r = Θ

NindNH
1/p (NPcPt)

1+ 1
p

ε
1
p

 , (108)

we obtain a quantum circuit that serves as a (1 ±
O(ε), log(NHNP))-block-encoding for the full time
evolution operator e−iHt to exponentiation error
O(ε). The gate count for this circuit is given by

χ = O
[
Nind (NHNPcPt)

1+ 1
p ε−

1
pNP logNP

× log(NindNHNPcPt/ε)
]
.

(109)

Proof. From Lemma 12 we know that the simula-

tion of a single exponential of the form e−ia(J)
v HJ t/r

acting on O(1) sites is needed to accuracy ε/(NHr).
Performing this approximation using QSP (see The-
orem 19) requires a gate count

χJ = O

(
NP logNP

(
NPcP

t

r
+ log(NHr/ε)

))
= O

(
NP logNP log(NHr/ε)

)
,

(110)
where the first term can be discarded because the
asymptotic assumption on r given by (108) indicates
that NPcPt/r = O(ε/(NPcPt)

1/p), which is asymp-
totically bounded from above by a constant.
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The total gate count from the (NHr)-many appli-
cations of this QSP subroutine is then given by

χ = NH r χJ

= O
[
Nind (NHNPcPt)

1+ 1
p ε−

1
p

× NP logNP log(NindNHNPcPt/ε)
]
.

(111)

Since the block-encoding produced by QSP has
a scale factor 1 ± O(ε/(rNH)), the final block-
encoding produced by multiplying (Υ(p)NHr)-many
such block-encodings will again be a block-encoding,
this time with scale-factor 1±O(ε). This completes
the proof.

Remark 22. The results above were for a general
site-local Hamiltonian. To obtain the results for a
geometrically site-local Hamiltonian one makes the
replacement Nind = O(1) and NH = O(NΛ) from
Eqs. (11) and (12).

D. HHKL

As discussed in Sec. II C the HHKL technique is
a method of “gluing” together implementations of
a time evolution operator on a “local” lattice with
size ℓd. In this section we consider HHKL with two
approaches for the implementation of the local evo-
lution operator, first using a PF and then QSP.

Theorem 23 (HHKL with PF as helper). Let H be
a geometrically site-local Hamiltonian as defined by
3, and let t and ε be positive values. Using the HHKL
algorithm with a PF for the helper function gives rise
to an algorithm that approximates the time evolution
operator e−iHt with exponentiation error requiring a
gate complexity of

χ = NP (NΛNPcPt)
1+ 1

p ε−
1
p . (112)

Proof. From Theorem 10 we need the helper function
to implement a time evolution operator for time t̃ =
∥HJ∥t = O(NPcPt) on a system of size Nℓ = O(ℓd)
with exponentiation error δ, where ℓ and δ are given
in Eqs. (81) and (82).

From Theorem 13 we find that a PF to implement
the time evolution on a system with Nℓ lattice sites
and exponentiation error δ requires resources (taking

t = O(1) in Eq. (105))

χPF = O
(
NP (NℓNPcP)

1+ 1
p δ−

1
p

)
= O

(
NP (NPcP)

1+ 1
p

[
log
(
NΛt/ε

)]d(1+ 1
p

)

×

(
NΛt

ε logd
(
NΛt/ε

)) 1
p
)

= O

NP (NPcP)
1+ 1

p logd
(
NΛt

ε

)(
NΛt

ε

) 1
p

 .

(113)
Furthermore, we know from Theorem 10 that the
number of calls to this helper function is given
by Eq. (80), such that the final gate complexity is

χ = O

(
NΛt

logd
(
NΛt/ε

)χPF

)
= O

(
NP (NΛNPcPt)

1+ 1
p ε−

1
p

)
.

(114)

as desired.

Theorem 24 (HHKL with QSP as helper). Let H
be a geometrically site-local Hamiltonian as given by
Definition 3, and let t and ε be positive values. Using
the HHKL algorithm with QSP for the helper func-
tion gives rise to an algorithm that approximates the
time evolution operator e−iHt with exponentiation
error requiring a gate complexity of

χ = O
(
NP

2NΛcPt log
d
(
NΛt/ε

)
log
(
NP log

(
NΛt/ε

)))
.

(115)

Proof. Theorem 10 states that we need the helper
function to implement a time evolution operator for
time t̃ = ∥HJ∥t = O(NPcPt) on a system of size
Nℓ = O(ℓd) with exponentiation error δ, where ℓ
and δ are given in Eqs. (81) and (82). From Theo-
rem 17 we find that implementing the time evolution
on a system with Nℓ lattice sites and exponentiation
error δ with QSP requires resources (taking t = O(1)
in Eq. (105))

χQSP = O
(
NℓNP log (NℓNP)

(
NℓNPcP + log(1/δ)

)]
= O

(
logd

(
NΛt/ε

)
NP log

[
NP log

(
NΛt/ε

)]
×

[
NPcP log

d
(
NΛt/ε

)
+ log

(
NΛt

ε logd
(
NΛt/ε

))]).
(116)
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In the limit of large system size, the second term
in the last square bracket (the one originating from
the log(1/δ) term) is subdominant to the first, which
allows us to write

χQSP = O
(
NPcP log

2d
(
NΛt/ε

)
log
[
NP log

(
NΛt/ε

)])
.

(117)

Using the number of calls to this helper function
from Eq. (80), the final gate complexity is

χ = O

(
NΛt

logd
(
NΛt/ε

)χQSP

)

= O
(
NP

2NΛcPt log
d
(
NΛt/ε

)
log
[
NP log

(
NΛt/ε

)])
,

(118)
as desired.

IV. LATTICE QUARTIC THEORY

The results we have discussed so far are theoret-
ical worst-case asymptotic complexities, applicable
to any lattice field theory with prescribed locality
properties. In this section, we specialize to a partic-
ular model of interacting quantum field theories: the
lattice scalar field theory. From the computational
perspective, this theory is similar to lattice gauge
theories and so intuition can be drawn from its con-
sideration. Furthermore, it is often used as a prover-
bial example in the studies of quantum simulation
algorithms [9, 15, 19], and so detailed comparisons
with past work can be performed.
In this section, we review the Hamiltonian of the

theory and our procedure for digitizating the bosonic
field. Throughout the discussion, we will keep track
of the parameters of the theory required for quoting
the asymptotic gate complexities derived in Sec. III,
e.g., NP, cP, NH, etc. We then determine the asymp-
totic gate complexities for implementing time evolu-
tion using PFs, QSP with two different BE methods,
and the HHKL algorithm. To determine the coeffi-
cients in these asymptotic gate complexities, we ex-
plicitly construct circuits that implement time evo-
lution for a single site. We first compare the gate
cost of constructing controlled calls to the walk op-
erator WH obtained using the näıve and improved
LCU procedures. Then we compare the gate costs
for time evolution simulated via 4th order PF and
QSP.

A. Introduction

The model we consider is defined on a hypercubic
lattice Λ of spatial dimension d with lattice spacing

a. Assuming the simplest finite-difference approxi-
mation to the spatial derivative (∇µφ̂)

2, the Hamil-
tonian is given by14

Ĥquartic = Ĥφ + Ĥπ , (119a)

Ĥφ = ad

 NΛ∑
i=1

m

2
φ̂2
i +

λ

4!
φ̂4
i +

∑
⟨ij⟩

(φ̂j − φ̂i)
2

2a2

 ,
(119b)

Ĥπ = ad
NΛ∑
i=1

1

2
π̂2
i , (119c)

where the indices i and j label lattice sites, and the
notation ⟨ij⟩ runs over all distinct links joining near-
est neighbors in the lattice. In the remainder of this
work, we will denote operators with a hat to differ-
entiate between their digitized eigenvalues.

The Hamiltonian in Eq. (119) is 2-site-
geometrically-local, which implies that Nind = O(1).
We see that the Hamiltonian is a sum of NH = O(NΛ)
terms.

The operators π̂i and φ̂i are conjugate operators
satisfying [φ̂j , π̂i] = ia−dδij . This relation implies
that the so-called field basis, in which the φi opera-
tors are diagonal, is related to the so-called momen-
tum basis, where the πi operators are diagonal, by
the usual Fourier transform. The parameters m and
λ are bare quantities, and are in general complicated
non-perturbative functions of the lattice spacing, i.e.
m = m(a) and λ = λ(a). In principle, this func-
tional dependence could be included to determine
the asymptotic complexity of a realistic physical cal-
culation in terms of the lattice spacing. In order to
keep our expressions as general as possible, however,
we choose to leave the bare parameters m and λ as
free variables in our quoted asymptotic complexities;
this allows our results to be adapted in a straight-
forward way to any specific physical use case. For
the remainder of this work, we use units where the
lattice spacing a = 1.
The above Hamiltonian, although discretized on

the lattice, is still an unbounded operator acting on
an infinite dimensional Hilbert space. In order to
obtain concrete time-evolution operators whose ac-
tion can actually be simulated on a system of qubits,
we must first truncate this Hamiltonian to a finite-
dimensional operator. This is achieved by a pro-
cedure known as digitization, in which the Hilbert

14 The following discussion can be generalized to the case of
higher-order finite-difference approximations to the deriva-
tive operator. One common approach is to first perform
integration by parts to get the term φ̂∇2φ̂ and then use a
symmetric approximation for the second derivative.
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space at each lattice site is represented using nq
qubits; the details of our digitization procedure are
given in the next section.

1. Digitization

The basic idea is that we wish to construct a se-
quence of matrix operators Hnq that can act on nq
qubits at a time, and whose spectrum converges to
any prescribed single-site HamiltonianH as nq → ∞.
There are numerous ways to proceed with such a con-
struction [74–76], but the one we follow is outlined
in [11, 77].
The strategy is to digitize the field on a given lat-

tice site into N = 2nq allowed field values

φ ∈ {−φmax,−φmax + δφ, . . . , φmax − δφ, φmax} ,
(120)

where the spacing δφ is given by

δφ =
2φmax

N − 1
. (121)

This restriction of the field values is to be under-
stood as a restriction of the Hilbert space at the
given lattice site, identifying the eigenvalues of the
restricted field operator precisely with this set of al-
lowed field values. In other words, the digitized field
operator in the field basis at site i becomes the di-
agonal matrix

φ̂i = diag (φmin, φmin + δφ, . . . , φmax)i . (122)

This single-site field operator acts nontrivially only
on the nq-qubit Hilbert space attributed to the site
labeled by i. Note that all lattice sites use the same
digitized φ values.
Because π̂i and φ̂i are conjugate operators, the

momentum operator in the field basis can be written
as

π̂i = FT · π̂(p)
i · FT−1 ,

π̂
(p)
i = diag (−πmax,−πmax + δπ, . . . , πmax)i ,

(123)
where the superscript (p) indicates the operator is
represented in the momentum basis, FT denotes the
symmetric Fourier transform [11] and

πmax =
π

δφ
, δπ =

2πmax

N − 1
. (124)

Note that this choice implies anti-periodic boundary
conditions in field space. Using this definition, the
momentum part of the Hamiltonian can be written
as

Ĥπ =

NΛ∑
i=1

1

2
FTi ·

(
π̂
(p)
i

)2 · FT−1
i . (125)

The final component of the digitization strategy is
the choice of φmax. It was shown in [11] that, for a
given value of nq and λ, there is an optimal choice of
φmax that minimizes the digitization error of the low
lying spectrum of the digitized Hamiltonian. The
procedure for determining φmax involved scanning
over many values to minimize the digitization error.
While this procedure is in general possible, an ex-
plicit formula for the optimal value of φmax for the
λ = 0 case was given in [74, 76, 78]. As argued in [11],
because λ ̸= 0 results in a smooth deformation of the
wavefunction, this choice of φmax is expected to work
well even in the λ ̸= 0 case. Therefore, we use the
value

φmax = 2nq
√

2π

2nq+1 + 1
, (126)

as in [43].
Altogether, these definitions allow for the con-

struction of 2nq × 2nq Hermitian matrices that dig-
itize each of the single-site terms in Hamiltonian
(119) into operators that can act on nq qubits at
a time. An appropriate full digitization of Hamilto-
nian (119) is then obtained by directly substituting
the definitions of the digitized single-site operators
φ̂i and π̂i into (119), together with the link terms
φ̂iφ̂j = φ̂i ⊗ φ̂j .

We are now in a position to discuss the parame-
ters of this theory necessary for determining the cost
of the various methods described in Sec.IID. Recall
that we found NH = O(NΛ) and Nind = O(1). The fi-
nal parameters needed are NP and cP, which we now
discuss.
To determine the maximum number of Pauli

strings NP appearing in any term in Ĥ, we start by
writing the various operators in terms of Pauli oper-

ators. Note that the nq qubit operators φ̂i and π̂
(p)
i

are diagonal operators with evenly spaced eigenval-
ues. It was shown in [11] that operators of this form
can be decomposed into nq single Pauli-Z gates. For

example, one has φ̂ = φmax

2nq−1

∑nq−1
j=0 2jZj , where Zj is

a single Pauli-Z gate acting on qubit j. Using this
relation, we see that NP for the various terms in Hφ

are

NP
(φ2

i ) = O(n2q) , (127a)

NP
(φ4

i ) = O(n4q) , (127b)

NP
(φiφj) = O(n2q) . (127c)

Turning now to Ĥπ, while the operator (π̂
(p)
i )2 is

a sum of O(n2q) gates, the same is not true for π̂2
i =

FT · (π̂(p)
i ) · FT†; after using the Fourier transform

to change to the field basis, the operator π̂2
i is dense

and requiresO(4nq) Pauli strings. Since the quantum
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Fourier transform requires O(n2q) gates, it is more

cost effective to first decompose (π̂
(p)
i )2 into O(n2q)

Pauli strings, and then change to the field basis using
the Fourier transform. Using this method results in

NP
(π2) = O(n2q) . (128)

From this we see that NP for the entire Hamiltonian
is dominated by the φ̂4 term, and is given by

NP = O(n4q) . (129)

This result for NP is significantly more favorable than
the worst case scaling for an arbitrary 2-site-local
Hamiltonian of O(42nq).
The final piece is to determine the maximum co-

efficient cP of any Pauli string in Ĥ. Using the
fact that our choice of digitization leads to πmax =
O(2nq/2) and φmax = O(2nq/2), we see

cP
(π2) = O(π2

max) = O(2nq), (130)

cP
(φ2) = O(m2φ2

max) = O(m22nq), (131)

cP
(φ4) = O(λφ4

max) = O(λ4nq) , (132)

cP
(φiφj) = O(φ2

max) = O(2nq) . (133)

As was the case with NP, the overall value of cP is
dominated by the φ̂4 term, and is given by

cP = O(λ4nq) . (134)

These values for NP, cP and NH will be used in
the following sections to determine the asymptotic
gate complexity of the various time-evolution algo-
rithms discussed in Sec. IID for geometrically site-
local Hamiltonians.

B. Product Formulas

In this section, we consider using a pth order PF
(introduced in Sec. II A) to time evolve the scalar
field theory Hamiltonian (given by Eq. (119)) that
has been digitized using the formalism presented in
Section IVA1.
Specifically, we construct concrete error bounds

and asymptotic gate complexity estimates as a spe-
cial case of the results obtained in Sec. III A for gen-
eral geometrically site-local Hamiltonians. We use
the result of Theorem 15 for the asymptotic bound
on the elementary gate count χ (see Eq. (104)) and
make the following substitutions based on the dis-
cussion provided in Section IVA1:

NH = O(NΛ), (135)

NP = O(n4q), (136)

cP = O(λ4nq). (137)

These follow from Eq. (12), Eq. (129), and (134) re-
spectively. Putting this all together, the asymptotic
gate complexity is thus given by

χ = O

n
4
(
2+ 1

p

)
q

(4nqNΛλt)
1+ 1

p

ε
1
p

 . (138)

C. Quantum Signal Processing

Obtaining gate counts for the case of pure QSP re-
quires two logical steps. The first is to determine the
number of calls to the local block encoding, and the
second is to estimate the complexity of implement-
ing this block encoding. By Theorem 9, the query
complexity for simulating with evolution time t to
exponentiation error ε is given by

O(αt+ log(1/ε)) , (139)

where α is the scale factor of the BE used.
We now consider two approaches to implement the

local block encoding. The first approach is based on
the fully general LCU procedure, and does not take
into account any features of the model. The second
approach is a modification of the former which takes
advantage from splitting the Hamiltonian into the
field and momentum parts, in analogy with how it
was done in the product-formula-based approach. In
this section, we consider only asymptotic gate com-
plexities; detailed gate count comparisons of these
techniques will be given in Sec. IVE.

1. Block encoding via LCU

In this section, we determine the cost of simulat-
ing time-evolution via QSP when the BE is imple-
mented using a fully general LCU procedure. This
involves first digitizing the Hamiltonian Ĥ and then
decomposing it into Pauli operators. In such a sce-
nario, the dominant cost arises from the π̂2

i operator,
which is represented by O(3nq) Pauli strings (exclud-
ing Z gates in all combinations). The value of cP in
this case is the same as in Eq. (134). Lastly, we
have NH = O(NΛ). Plugging these results into The-
orem 17 leads to gate complexity

χ = O
[
NΛ3

nq log (NΛ3
nq)
(
NΛ3

nq(λ4nq)t+ log(1/ε)
)]
.

(140)
We see that the naive decomposition of the π̂2

i opera-
tors into Pauli gates results in a poor scaling with nq.
By exploiting the fact that sel2 = 1, the walk oper-
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|⟩b

|⟩a
WH

|⟩s

=

|⟩b

|⟩a
sel

Rprep

|⟩s

=

...
...

|⟩b

|⟩a
sel

prep† prep

X Z X −1

|⟩s

Figure 7. Circuit for controlled call to WH when the BE is prepared using LCU. Note that |g⟩a = prep|0⟩a and so
the reflector Rprep (see Fig. 4) uses G = prep.

ator WH can then be constructed without ancillary
qubits using Eq. (50), as was discussed in Sec. II B 3.

The final step is to construct a controlled call to
WH . Rather than naively controlling every gate in
WH , one can achieve this by only controlling the sel
oracle and the multi-controlled Z gate in the reflec-
tor R; the prep oracle does not need to be con-
trolled [37]. This can be understood by noting that
if one wanted to implement a controlled call to some
operator U = A†BA where A†A = 1, one only has
to control B. The circuit for the controlled imple-
mentation of WH is shown in Fig. 7.

2. Block encoding via LCU and FT

In order to take advantage of the decomposi-
tion (125) within the LCU construction, one needs to
slightly modify the prep and sel oracles. To write
Ĥ in the form required for LCU, we first write the
momentum component of Ĥ in the momentum basis
as a sum of Mπ unitary operators

Ĥ(p)
π =

Mπ∑
j=0

β
(π(p))
j Û

(π(p))
j . (141)

Next, we write the full Hamiltonian as

Ĥ =

Mφ−1∑
i=0

β
(φ)
i Û

(φ)
j +FT

Mπ−1∑
j=0

β
(π(p))
j Û

(π(p))
j

FT† ,

(142)
where it is understood that the Fourier transform is
performed locally at each site. The Hamiltonian is
now in a form suitable for the modified LCU proce-
dure.

First, the prep oracle is used to encode the real

positive coefficients β
(φ)
i and β

(π(p))
j . The new sel

oracle is shown in Fig. 8 and is given by

sel = (1a ⊗ FT)

⊗

Mπ−1∑
j=0

|j⟩a⟨j|a ⊗ Û
(π(p))
j

 (1a ⊗ FT†)

+

Mφ−1∑
i=0

|i+Mπ⟩a⟨i+Mπ|a ⊗ Û
(φ)
i ,

(143)

where, again, it is understood that the Fourier trans-
form is performed locally at each site. It is important
to note that the modified sel operator still satisfies
sel2 = 1, which enables the use of the efficient con-
struction of WH .

Note that the sel oracle prepared using this
method encodes the same operators as the sel or-
acle prepared using the naive LCU procedure in
Sec.IVC1; the only difference is how it is imple-
mented. This different implementation, however, re-
sults in a more favorable scaling for NP. This can
be understood by noting that the NP associated with

the momentum Hamiltonian is reduced to NP
(π(p)) =

O(n2q), implying that the value of NP is dominated by

the φ̂4 term. Substituting NP = O(n4q), cP = O(λ4nq)
and NH = O(NΛ) into the result in Theorem 17 gives
the gate complexity

χ = O
[
NΛn

4
q log(NΛn

4
q)
(
NΛn

4
q(λ4

nq)t+ log(1/ε)
)]
,

(144)
which has a more favorable scaling with nq than the
naive LCU implementation in Sec. IVC1. Since
sel2 = 1, the controlled call to WH can be con-
structed in the same way as the naive LCU case in
Sec. IVC1.
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· · · · · ·

· · · · · ·

...
...

. . .
...

...
. . .

...
...

· · · · · ·

· · · · · ·

|0⊗k⟩a

|ψ⟩s U
(φ)
0

U
(φ)
Mφ−1 FT U

(π)
0 U

(π)
Mπ−1 FT†

Figure 8. Circuit for sel oracle in Eq. (143). As compared to O(3nq) and O(nq) in the usual LCU implementation
from Sec. IVC1, the usage of Fourier Transform described in Sec. IVC2 allows one to reduce the circuit depth and
the number of ancillary qubits to O(n4q) and O(log nq), correspondingly. Note that while in the usual LCU procedure

the gate complexity O(3nq) stems from the number of terms in Ĥπ, upon adding the Fourier Transform to the circuit,

the O(n4q) complexity stems from the φ̂4 term in Ĥφ.

D. HHKL

In order to apply the HHKL results formulated
in our conventions in Theorem 23 and Theorem 24,
note that we must scale down the Hamiltonian (119)
by the appropriate factor that brings the local terms
to at most unit spectral norm, and simultaneously
rescale evolution time up by the same factor. This
factor is precisely the maximum spectral norm of any
local term H̃J ,

max
J∈S

∥H̃J∥

=

∥∥∥∥∥∥12 π̂2
i +

1

2
m2φ̂2

i +
λ

4!
φ̂4
i +

∑
j∈⟨ij⟩

(φ̂j − φ̂i)
2

2

∥∥∥∥∥∥
= O(NPcP) = O(n4q(λ4

nq)) ,

(145)

where we have used NP = O(n4q) and cP = O(λ4nq),
and where any lattice site with index i in the interior
of the lattice (or on the boundary if there are no
sites in the interior) can be chosen to compute the
spectral norm, and the sum runs over all lattice sites
j neighboring i. We therefore make the rescalings

H̃ =
H

maxJ∈S ∥HJ∥
(146)

t̃ = tmax
J∈S

∥HJ∥ = O(4nqn4qλt) . (147)

For HHKL built out of local Trotter operations,
Theorem 23 implies a gate complexity

χ = O
[
n4q(NΛn

4
q(λ4

nq)t)1+
1
p ε−

1
p

]
. (148)

where we substituted cP = O(λ4nq) and NP = O(n4q).
Similarly, for HHKL built out of local QSP oper-

ations, Theorem 24 then implies a gate complexity

χ = O
[
(n4q)

2NΛ(λ4
nq)t logd

(
NΛt/ε

)
× log

(
n4q log

(
NΛt/ε

)) ]
.

(149)

To conclude our discussion on HHKL scalings, we
again stress an important point. As we have pre-
viously remarked, while the purely asymptotic scal-
ing of the Trotter-based HHKL gate count is worse
than that for QSP-based HHKL, the difference is not
striking when the Trotter order p is taken to be large.
This allows for the possibility of lower constant pre-
factors due to the smaller overhead involved in imple-
menting Trotter operations compared to QSP oper-
ations, and may even be a prudent choice for a more
practical implementation on near-term devices, if the
exact gate counts follow suit before asymptotics take
over.

E. Numerical results.

In the previous section we worked out the asymp-
totic gate count scaling for several time-evolution al-
gorithms. While these expressions are helpful for
identifying which methods have the best scaling in
a particular parameter, the practical question of the
size of the prefactors requires a dedicated numerical
study, which we perform in this section. In particu-
lar, we first compare the cost of the two BE methods
described in the previous section. For the compari-
son, we choose to compare the cost of constructing
a single controlled call to the WH operator. This
choice allows a more direct comparison of the cost of
each method as in some cases significant circuit sim-
plifications occur compared to naively controlling ev-
ery gate in theWH operator. From there, we turn to
time evolution and compare the cost of using QSP to
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that of a 4th order PF, focusing on the scaling with
time t and error ε.

We choose to focus on a single site Hamiltonian
given by

Ĥ =
1

2
π̂2 +

1

2
φ̂2 +

λ

4!
φ̂4 , (150)

where we set λ = 32 (similarly to [11]) as an instance
of the strongly coupled regime where perturbation
theory breaks down. While this will not provide an
explicit scaling with the number of lattice sites, an-
alyzing the single site case in detail will provide in-
tuition for what values of t and ε QSP outperforms
PF methods for NΛ > 1.

Before comparing gate counts of the various meth-
ods, we describe the details of constructing the cir-
cuits. All gate counts were found using QISKIT’s
transpile function with an optimization level of 1;
higher optimization levels result in the dropping of
gates with small arguments and were therefore not
used. We use the universal gate-set containing Rx,
Rz, and CNOT gates. When implementing multi-
controlled gates, we compared the cost using two
different methods. The first uses QISKIT’s built-
in functionality to decompose the multi-controlled
gates into O(M2) CNOT gates, where M is the
number of qubits being controlled on. The second
method uses O(M) additional work qubits to decom-
pose the multi-controlled gates into O(M) gates [73].
For each value of nq, we compare the two and choose
the method that results in the smallest number of
gates. Lastly, it is important to note that, when
implementing multi-controlled gates, global phases
must also be controlled. Because using LCU requires
the coefficients in the prep oracle to be real and
positive, any overall phase must necessarily be ab-
sorbed into the individual operators in the sel ora-
cle. Controlling these phases requires an additional
controlled single-qubit rotation. Alternatively, one
could use the generalized LCU method to allow the
coefficients in the prep oracle to be complex and
set the phase of the operators in the sel oracle to
have zero overall phase (see e.g. [59]). While this
avoids having to control the phases, it leads to a more
complicated prep oracle. Additionally, because the
generalized LCU method uses circuits of the form
p̃rep× sel× prep with p̃rep× prep ̸= 1, one will
have to also control both prep and p̃rep in the con-
trolled WH circuits in Fig. 7. For these reasons, we
use the former method to control the overall phases.
We now compare the cost of implementing the

controlled WH operator using the two different BE
methods. The top and middle plots in Fig. 9 show
the CNOT gate count and rotation gate count, re-
spectively, as a function of nq. The blue points show
the gate counts using the LCU method where one

naively decomposes the full digitized Hamiltonian
into Pauli strings as described in Sec. IVC1. As
expected, this method scales least favorably with
nq. As previously discussed in Sec. IVC2, this poor
gate scaling with nq can be improved by utilizing
the Fourier Transform to implement the momentum
component of the Hamiltonian. This improved scal-
ing can be seen by looking at the orange squares in
the top and middle plots in Fig. 9.

The bottom plot in Fig. 9 shows the number of an-
cillary qubits required to implement a controlled call
toWH for each method. As expected from the O(nq)
scaling, using the naive LCU method requires the
most ancillary qubits. Using LCU combined with the
FT reduces the scaling to O(log nq). Note that, for
both methods, the overall coefficient in the number
of ancillary qubits is large due to needing additional
work qubits to efficiently implement multi-controlled
gates.

Taken together, the gate count and ancillary qubit
count comparisons show that using LCU combined
with the FT is superior to the naive LCU method
for all values of nq.
Now that we have identified the optimal method

for preparing BEs, we turn to the cost of performing
time evolution. The first method we implement is a
4th order PF. The second uses QSP, where the BE
is prepared using the BE method that minimizes the
number of rotation gates, i.e., using LCU combined
with the FT. The top (bottom) plot in Fig. 10 show
the rotation (CNOT) gate count for both methods as
a function of evolution time t and error ε for nq = 3.
The value of the scale factor α for the QSP data
is α = 134.5. Due to QSP’s large overall prefac-
tor from implementing the BE, using the 4th order
PF requires less rotation and CNOT gates for errors
ε ≳ 10−9. For errors ε ≲ 10−9, QSP wins due to
its exponentially better scaling with respect to ε.

It is interesting to note that the QSP gate count
scaling is almost independent of the desired error ε.
This is due to the fact that the αt term in the asymp-
totic cost is significantly larger than the log(1/ε)
term (see e.g. Eq. (139)). These findings therefore
show that the additional cost of implementing time
evolution to floating point precision using QSP is
negligible compared to implementing time evolution
approximately (not accounting for the increased cost
from requiring higher precision rotation gates). In
Sec. V we discuss the implications of these results
for multi-site systems.

V. DISCUSSION

In this section we discuss how results of Sec. III
provide guidance for choosing a simulation algorithm
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Figure 9. The top, middle, and bottom plots show
the CNOT gate count, rotation gate count, and num-
ber of ancillary qubits needed to prepare a controlled
call to the WH operator corresponding to the single site
Hamiltonian in Eq. 150 as a function of nq. Blue circles
correspond to using the naive LCU method described in
Sec. IVC1. Orange squares correspond to using LCU
combined with the Fourier Transform as described in
Sec. IVC2. Using LCU combined with the FT results
in an exponential improvement with nq in both the gate
count and number of ancillary qubits required.

for the particular physical model and then examine
the results of Sec. IV.

The major parameters of interest defining the
asymptotic complexities of time evolution algorithms
are the evolution time t, the error of the time-evolved
state ε, as well as some measure of Hamiltonian
size/complexity. For lattice systems, this can be the
number of terms in the Hamiltonian NH. For a par-
ticular theory, NH can also be expressed in terms of

Non-geometrically-local

ε t NH

a) PF ε
− 1

p t
1+ 1

p NH
1+ 1

pNind

b) QSP+PF ε
− 1

p log(1/ε) t
1+ 1

p
NH

1+ 1
pNind

× log(NHNind)

c) QSP log(1/ε) t NH
2 log(NH)

Geometrically-local

ε t NΛ

d) PF ε
− 1

p t
1+ 1

p NΛ
1+ 1

p

e) PF+HHKL ε
− 1

p t
1+ 1

p NΛ
1+ 1

p

f) QSP+PF ε
− 1

p log(1/ε) t
1+ 1

p NΛ
1+ 1

p log(NΛ)

g) QSP log(1/ε) t NΛ
2

h) QSP+HHKL log(1/ε) t
NΛ[log(NΛ)]

d

× log log(NΛ)

Table V. Asymptotic dependence (O omitted) on major
problem parameters for algorithms in Tables III and IV.
Boldface indicates best asymptotic scaling among appli-
cable methods. While Nind is constant for geometrically-
local theories, it typically scales polynomially with NΛ

otherwise. For most non-geometrically-local theories, the
order p can be chosen large enough so that PFs demon-
strate better scaling with NΛ than QSP.

lattice size NΛ. The dependence of NH on NΛ is lin-
ear for geometrically-site-local Hamiltonians and is,
more generally, polynomial. For algorithms based on
PFs, one additionally needs to consider a parameter
Nind related to the induced norm of the Hamiltonian.
The asymptotic dependence on individual parame-
ters for algorithms discussed in Secs. II and III is
summarized in Table V.

The parameter for which the difference in asymp-
totic dependence is most striking for PF- and QSP-
based algorithms is the error ε. Nevertheless, using
algorithms with log(1/ε) dependence may not neces-
sarily be an optimal choice for several reasons. First,
their asymptotic cost comes with large constant pref-
actors stemming from the implementation of the BE
subroutine. While progress is being made in this di-
rection, the value of ε at which using such techniques
clearly becomes advantageous is ε ∼ 10−9, which is
much smaller than uncertainties coming from other
sources (e.g., from digitizing a theory with bosonic
degrees of freedom, finite lattice spacing and volume
effects, to name just a few). Second, as discussed
below, in some scenarios PF-based algorithms have
better dependence on problem size than those based
on QSP. Third, and least importantly (in the fault-
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Figure 10. The top (bottom) plot shows the rotation (CNOT) gate count for implementing the time evolution operator
for the single site Hamiltonian in Eq. (119) with nq = 3. Results are shown as a function of time t and error ε. The
orange and blue colored surfaces show results using a 4th order PF and QSP, respectively. The BE used in the QSP
calculation was implemented using the method in Sec. IVC2. The PF requires less rotation and CNOT gates for
errors ε ≳ 10−9. For error tolerances ε ≲ 10−9, QSP wins due to its exponentially better scaling with ε. Furthermore,
the QSP gate count is almost independent of the error due to the optimal scaling with ε.

tolerant regime), PF based algorithms do not require
the usage of ancillary qubits, while QSP-based algo-
rithms typically require a logarithmic (in problem
parameters) number of those.

Recent research [40] indicates that the error tol-
erance at which near-optimal algorithms start out-
performing the PF-based ones is highly problem-
dependent. In particular, when simulating lattice
gauge theories, the complexity of PF-based simula-
tion is likely to scale exponentially with the number
of colors [79, 80], while the near-optimal algorithms
can have polynomial scaling with the number of col-
ors, which is achieved by leveraging the sparsity of
gauge field operators. As a result, the usage of near-
optimal techniques may lead to tremendous savings
starting at error rates as low as ε = 10−1 [40].

In terms of the asymptotic dependence on problem
size, a clear winner is the HHKL algorithm, assum-

ing that for implementing the time evolution of local
blocks, an algorithm with log(1/ε) scaling is chosen,
such as QSP. Note, however, that for higher-order
PFs [26] the improvement reached by the HHKL al-
gorithm in terms of problem size may not be par-
ticularly pronounced, especially, unless a very high
precision is required, as discussed above.

For non-geometrically-local Hamiltonians, the sit-
uation is largely determined by the Hamiltonian
structure defining the dependence of Nind on NΛ.
In particular, in the second-quantized formulation,
this dependence will be defined by the choice of
single-particle basis states (plane waves [9, 38],
wavelets [81], harmonic oscillator eigenstates [10],
etc.). Importantly, whether the Hamiltonian is
geometrically-local or not, one can imagine scenarios
in which, at a fixed value of ε, switching from PF to
QSP would make sense as one increases the problem
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size. However, given the sharp difference in the de-
pendence on ε for these approaches, such scenarios
are not highly probable.
Lastly, we note that the dependence on t is likely

to not be a crucial parameter in choosing the simu-
lation algorithm. Nevertheless, a situation in which
considering longer times can motivate one to switch
from PF to QSP is possible as well.
In addition to factors considered in this work,

other considerations should also be taken into ac-
count. Most notably, the compatibility of methods
based on BE with general sparse Hamiltonians and
modern simulation techniques [82–84] and the po-
tential for applying the PF-based methods on early-
fault-tolerant quantum computers [60, 85].
Construction of efficient block encodings (BEs) is

critical for improving the efficiency of QSP-based al-
gorithms. In [11, 19] it was shown how digitizing a
bosonic degree of freedom in the eigenbases of posi-
tion/momentum operator is advantageous from the
perspective of using PF algorithms. There, the key
factors are a) an economical qubit representation of
arbitrary powers of position/momentum operators
in their respective eigenbases and b) the efficiency
of switching between the position and momentum
bases with the aid of Fourier Transform implemented
on the quantum computer. In Sec. IVC2 we showed
how this approach can be equally well applied when
constructing a BE with LCU.

VI. CONCLUSION

In this work we studied various approaches to sim-
ulating time evolution in application to Hamiltonian
Lattice Field Theories (HLFTs). We started off by
providing a review of existing techniques based on
Product Formula (PF) splitting [27], Quantum Sig-
nal Processing (QSP) [29] and Qubitization [30], Lin-
ear Combination of Unitaries (LCU) [35], as well as
the HHKL algorithm [34]. Following that, we derived
asymptotic costs of these methods in terms of pa-
rameters describing site-local and geometrically-site-
local Hamiltonians arising in HLFT, see Tables III
and IV. While in this work we chose to contrast the
most accessible and widely used algorithms based
on PF with the methods having the best asymptotic
scaling (QSP, HHKL), we note that there exist in-
termediate approaches. Most notably, this includes
the direct usage of Taylor series and LCU without
QSP [86].
Next, we focused on a particular type of HLFT,

the quartic scalar field theory defined on a hyper-
cubic lattice. Our specific choice was guided by the
fact that all the fundamental interactions are me-
diated by bosons, and from the computational per-

spective the scalar field theory is largely reminiscent
of lattice gauge theories [41–46, 87]. Besides this,
an extensive volume of literature exists focusing on
simulations of fermionic systems [36, 37, 57, 88–95].
Developing simulation algorithms for systems com-
bining particles of both statistics is an exciting direc-
tion which was pursued in [74, 75, 96] where authors
assumed the usage of PF-based methods, and is cur-
rently investigated in the context of nearly-optimal
techniques [40].

For the scalar field theory, we worked out the
query complexities of various simulation methods as
well provided explicit gate counts (not the upper
bounds) for the case of simulating the system on a
single lattice site using PF and QSP. Next, we fo-
cused on block encoding a single site in scalar field
theory and left to further work additional improve-
ments, such as reducing the cost of sel operator
from O(NΛ logNΛ) to O(NΛ) [37] or taking into ac-
count the structure of coefficients in the Hamilto-
nian operator while/in constructing prep operator.
We developed an improved version of the LCU block
encoding for digitized bosons [11, 19] which utilizes
the Quantum Fourier Transform circuit for switch-
ing between the field and momentum eigenbases, see
Fig. 8. We then provided explicit gate counts for
simulating time evolution which showed that PF-
based simulation works exceptionally well for simple
systems, such as anharmonic oscillator, and outper-
forms the QSP-based algorithm for ε ≳ 10−9. We
note, however, that considering more complex mod-
els (such as non-Abelian lattice gauge theories) and
larger lattice system sizes may result in near-term
algorithms outperforming PF for error tolerances as
little as ε ≲ 10−1 [40].

Another important distinction between PF and
QSP methods is the ease of quoting accurate error
bounds for the final result. Starting with QSP meth-
ods, all that is needed to place an upper bound on
the error is the scale factor α, the time t, and the
degree of the polynomial approximation. While the
error determined in this way is only an upper bound,
because QSP methods have optimal scaling log(1/ε)
in the error, the cost of overestimating the error is
low compared to the contribution stemming from the
αt term in Eq. (65).

For PF methods on the other hand, while rigorous
error bounds also exist, they are known to gener-
ally significantly overestimate the actual error [27].
Choosing the value of the Trotter number r based
on these loose error bounds would therefore result in
significant extra computational costs due to the sub-
optimal (1/ε)1/p scaling of PF methods. Tighten-
ing error bounds in this case implies either perform-
ing laborious problem-specific commutator calcula-
tions [27, 96] or performing numerical simulations at
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several values of the Trotter number in order to ex-
trapolate the results. As shown in Ref. [97], since
using PFs to approximate the time evolution oper-
ator is equivalent to introducing a temporal lattice
with spacing at, such an extrapolation would necessi-
tate a renormalization procedure with a costly scale
setting procedure at each value of at.
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Appendix A: General qubitization procedure

In all the cases considered in this work the quantum walk operator WH can be constructed from the block
encoding UH using the recipe given in Eq. (47). For completeness, below we provide a general approach
from [30] which allows one to assemble the circuit for the WH operator using an ancillary qubit and two
controlled calls to UH . This is necessary in cases when one is unable to find an operator S satisfying Eq. (49).

The general construction requires adding one qubit |q⟩ to the ancillary Hilbert space, such that Ha →
Hqa = Hq ⊗Ha. In this new ancillary Hilbert space we define

|g⟩qa = |+⟩q|g⟩a , (A1)

and the operator WH is defined on the Hilbert space Hqas = Hq ⊗ Ha ⊗ Hs. As was shown in Section 4

|⟩q H X

Rqa

H

|⟩a

UH U†
H

|⟩s

U ′
qas

Figure 11. Circuit for the qubitized block encoding WH , given an arbitrary block encoding UH . The circuit for Rqa

is shown in Fig. 12.

...
...

...

|⟩q H H −1

|⟩a G† G

X Z X

Figure 12. Circuit for the reflection operator Rqa defined in Eq. (A3) and used in Eq. (A2), see [59] for alternative

implementations. G is the oracle for preparing the state |g⟩a, i.e. G|0⟩a = |g⟩a. The −1 gate adds an overall phase

to the circuit (negative sign), and can be implemented, e.g., as XZXZ.

of [30], it is given by

WH =(Hq ⊗ 1as)(Rqa ⊗ 1s)(Xq ⊗ 1as)

× U ′
qas(Hq ⊗ 1as) ,

(A2)

where Hq and Xq are the Hadamard and X gate on the qubit |q⟩, Rqa is a standard reflection operator

Rqa = 2|g⟩a|+⟩q⟨+|q⟨g|a − 1qa , (A3)

and

U ′
qas = |0⟩q⟨0|qUH + |1⟩q⟨1|qU†

H , (A4)
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is an operator that applies the UH or U†
H operator, depending on the state of |q⟩.

One can show through explicit computation that

WH |g⟩qa|λ⟩s =
(
λ |g⟩qa −

√
1− λ2|⊥λ⟩qa

)
|λ⟩s , (A5)

with

|⊥λ⟩qa = |−⟩q|⊥λ⟩a , (A6)

verifying that Eq. (39) gives indeed a qubitized BE of H. The circuits for operators WH , U ′
qas, and Rqa are

shown in Figs. 11 and 12.
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