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Abstract

Most heritable traits, including many human diseases 1, are caused by multiple loci. Studies in 

both humans and model organisms, such as yeast, have failed to detect a large fraction of the loci 

that underlie such complex traits 2,3. A lack of statistical power to identify multiple loci with 

small effects is undoubtedly one of the primary reasons for this problem. We have developed a 

method in yeast that allows the use of dramatically larger sample sizes than previously possible 

and hence permits the detection of multiple loci with small effects. The method involves 

generating very large numbers of progeny from a cross between two strains and then phenotyping 

and genotyping pools of these offspring. We applied the method to 17 chemical resistance traits 

and mitochondrial function, and identified loci for each of these phenotypes. We show that the 

range of genetic complexity underlying these quantitative traits is highly variable, with some traits 

influenced by one major locus and others due to at least 20 loci. Our results provide an empirical 

demonstration of the genetic complexity of many traits and show that it is possible to identify 

many of the underlying factors using straightforward techniques. Our method should have broad 

applications in yeast and can be extended to other organisms.

Genome-wide association studies (GWAS) have recently detected many trait loci in humans 

4. Despite the large number of loci that have been identified by GWAS, case studies, such as 

human height5, have shown that we remain unable to explain the genetic basis of complex 

traits in our population 2. Controlled crosses in model organisms can shed light on this 
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problem by elucidating basic principles that govern the genetic basis of trait variation. 

However, akin to the problem in humans, mapping studies in model organisms typically 

detect only a fraction of the loci underlying heritable traits, implying that they lack statistical 

power 3.

Very large mapping populations are needed to comprehensively dissect the genetic basis of 

highly complex traits. In many cases, genotyping and phenotyping on a sufficient scale will 

not be feasible without the use of methods that examine pools of individuals. One such 

method, bulk segregant analysis (BSA), was first proposed nearly twenty years ago as an 

expeditious approach for mapping quantitative trait loci (QTLs) 6, and its modern 

implementations are commonly used to map major effect QTLs and Mendelian loci 7–11. 

However, BSA has yet to be effectively used to dissect a highly complex trait, even though 

simulations suggest it should be capable of detecting numerous small-effect loci with high 

resolution when > 105 cross progeny are used (Figures S1–S2). We have developed a 

powerful extension of BSA that can be used to comprehensively map complex traits in 

yeast. Extreme QTL mapping (X-QTL) has three key steps. The first is the generation of 

segregating populations of very large size. The second is selection-based phenotyping of 

these populations to recover large numbers of progeny with extreme trait values. This can be 

accomplished, for example, by selection for drug resistance or by cell-sorting. The final step 

is quantitative measurement of pooled allele frequencies across the genome, by either 

microarray-based genotyping or massively parallel sequencing.

To generate the pools of segregants that form the starting point for X-QTL, we implemented 

the Synthetic Genetic Array (SGA) marker scheme 12,13, which enables the recovery of 

MATa haploids from a cross of appropriately marked parental strains (Figure 1A,B). We 

used BY4716 (hereafter BY), a lab strain, and RM11-1a (hereafter RM), a wine strain, as the 

progenitors of the pools. We crossed these strains to form a diploid, sporulated the diploid, 

and selected for ~107 unique BYxRM MATa haploid segregants. We designed an allele-

specific genotyping microarray with isothermal probes 14 that assays ~18,000 SNPs 

between BY and RM. We tested the array by hybridizing the haploid and diploid progenitor 

strains, as well as multiple MATa pools, and found that we could discriminate the parental 

strains and reproducibly identify deviations in allele frequencies associated with the SGA 

markers and other loci in the segregating pools (Figure 1C,D,E). Comparable results were 

obtained by sequencing pools to ~180X coverage with the Illumina Genome Analyzer 

(Figure 1E).

We first used X-QTL to map the genetic basis of sensitivity to 4-nitroquinoline (4-NQO), a 

DNA damaging agent. We previously showed that sensitivity to 4-NQO is a complex trait in 

the BYxRM cross 15. BYxRM segregants show varying degrees of sensitivity, and the 

parental strains are both intermediate relative to their progeny, suggesting contributions of 

multiple alleles from each parent. Conventional QTL mapping with 123 genotyped 

segregants detected a single significant locus on chromosome 12, and subsequent 

experiments identified an amino acid substitution in the DNA repair gene RAD5 as the 

underlying causative polymorphism. A backcrossing strategy identified a smaller 

contributing effect of a polymorphism in the gene MKT1. The BY allele of RAD5 and the 
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RM allele of MKT1 conferred 4-NQO resistance, but these loci did not fully explain the 

observed 4-NQO responses of the segregants, implying that additional loci must exist.

To map the genetic basis of sensitivity to 4-NQO using X-QTL, we first plated segregating 

pools across a range of drug doses in order to find a highly selective 4-NQO concentration. 

We then conducted 4-NQO selections at this concentration, while in parallel growing control 

populations on rich medium without the drug. 4-NQO-resistant and control pools were 

harvested, and the extracted DNA was hybridized to genotyping microarrays. To identify 

loci that confer resistance to 4-NQO, we scanned the genome for locations at which allele 

frequencies in selected pools were significantly different than in the control pools 

(Supplementary Methods). Using this approach, we identified 14 loci in the 4-NQO 

selection at a false discovery rate (FDR) of 0.05. Similar deviations in allele frequency in the 

selected pools were observed when the genotyping step was carried out by either arrays or 

short-read sequencing (X-QTL-seq; Figure S3).

We examined whether the loci identified by X-QTL for 4-NQO resistance correspond to real 

biological effects. Using X-QTL, we observed peaks at RAD5 and MKT1, with both loci 

selected in the expected direction (Figure 2). We confirmed that the peak overlapping RAD5 

was actually due to this gene by repeating the BYxRM cross with an RM parent strain that 

had the BY version of RAD5. When 4-NQO resistance was mapped in the selected pool with 

RAD5 fixed, the resulting segregating pool exhibited increased resistance to 4-NQO, and no 

RAD5 peak was observed by X-QTL (Figure 2). Next, we isolated 96 individual progeny 

from the same cross used to generate the segregating pools, phenotyped them for 4-NQO 

sensitivity, and genotyped them at the 14 loci identified by X-QTL. Nine of the loci showed 

significant effects in this independent data set (p < 0.05), five of which were highly 

significant (p < 0.001). The loci jointly explained 59% of the phenotypic variance in 4-NQO 

sensitivity in an additive model (Figure S4). Because we measured the heritability of this 

trait to be 0.84, the loci explained 70% of the genetic variance, indicating that we have 

explained most of the genetic basis of this trait with the loci detected by X-QTL.

We next applied X-QTL to resistance to 16 diverse chemical agents (Table S1), including a 

detergent and a number of antifungal compounds, using the same methodology that was 

employed for 4-NQO. At a global FDR of 0.05, we mapped 177 total loci for these 16 traits. 

We detected between 1 and 24 peaks in pools selected on these agents. Including 4-NQO, 

we detect an average of 11 peaks per trait, suggesting high genetic complexity for many 

traits. The 17 traits show striking differences in their genetic architectures (Figure 3 and 

Figure S5). At the simpler end of the range, resistance to cadmium chloride, copper sulfate, 

and ethanol is controlled by one major locus for each trait (Figure 3A). At the other extreme, 

we identified more than 20 loci in the diamide, hydrogen peroxide, and sodium dodecyl 

sulfate selections (Figure 3B). Other traits show intermediate levels of complexity (Figure 

3C,D).

We compared the 191 peaks detected across the 17 traits. The genome was divided into 20 

kb bins and all loci within a bin were grouped together. Using this procedure, we found 123 

distinct loci (Figure 3E). Of these, 82 loci (~67%) were trait-specific. For instance, a peak 

was detected at RAD5 on Chromosome XII only in our analysis of resistance to 4-NQO. 
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Similarly, the major locus for copper sulfate resistance, which was previously mapped in a 

screen for QTLs involved in resistance to small molecules in the BYxRM cross 16, 

coincides with the location of the CUP1 genes on Chromosome VIII and was detected only 

in the copper sulfate selection. Of the 41 remaining loci, 40 were detected for two to five 

traits and one locus, which overlaps MKT1, was detected for eight different compounds. An 

amino acid polymorphism in MKT1 is known to be involved in a large number of trait 

differences between BY and other strains, including 4-NQO resistance 15, sensitivity to 

dipropyldopamine and phenylephrine 17, high temperature growth 18, sporulation efficiency 

19, gene expression 20, and growth of petite colonies 21. Our results suggest that in addition 

to these previously studied phenotypes, MKT1 also has a broadly pleiotropic effect on drug 

resistance under the conditions of our study. Furthermore, our results suggest that X-QTL 

detects loci at a fine resolution, as the locations of the peaks corresponding to MKT1 and 

RAD5 were estimated to be within two kilobases of these genes themselves (Table S2). The 

loci we have detected across 17 compounds thus provide a foundation for comprehensively 

studying the molecular mechanisms that shape phenotypic variation in response to chemical 

agents among yeast strains.

Selections for resistance to chemical agents permit only one extreme tail of the phenotype 

distribution to be sampled. Additional insights can be gained from selections where both 

high and low extreme segregants can be recovered. Fluorescence-activated cell sorting 

(FACS) provides a straightforward approach to such two-tailed selections, as large numbers 

of individuals exhibiting high and low values for a stain or reporter can easily be recovered. 

To pilot this approach, we used the dye Mitotracker Red, which stains cells depending on 

the mitochondrial proton gradient and mitochondrial volume. We harvested a MATa pool, 

stained it with Mitotracker Red, and then sorted out extreme cells by FACS. We sorted a 

population of ~5 × 106 cells and selected 3 × 104 cells from each tail. These selected cells 

were then grown up on agar plates with rich medium to generate enough cells from which to 

extract DNA. DNA pools from both tails, as well as from a subsample of the whole 

population, were hybridized to the genotyping microarray.

Comparison of the high and low extremes found multiple major peaks at an FDR of 0.05 

(Figure 4). These peaks exhibited similar heights but opposite directions in the two tails. The 

location of one of the peaks provided a strong candidate for the causal gene. The peak on 

chromosome XII spans HAP1, a zinc finger transcription factor involved in response to 

oxygen. HAP1 was previously shown to be a hotspot for trans regulation of gene expression 

differences in the BYxRM cross 22,23. BY has a partially functional allele of HAP1 due to a 

Ty transposon insertion in the HAP1 coding region 24, whereas RM has a fully functional 

HAP1 allele. Consistent with HAP1’s function, segregants carrying the RM allele of HAP1 

show increased oxidative capacity based on X-QTL mapping. Comparison of BY with a 

partially functional HAP1 to BY with a fully functional HAP1 shows that HAP1 plays a 

causal role in variation in Mitotracker Red staining (Figure S6).

X-QTL represents a powerful method for rapidly and cost-effectively mapping the multiple 

QTLs underlying a trait difference between two yeast strains. We have used X-QTL to 

empirically demonstrate that many traits have a highly complex genetic basis. These results 

are consistent with previous studies in yeast, such as those focused on transcript levels 3, 
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protein abundance 25, and sensitivity to chemical agents 16, in which genetic complexity 

was inferred from trait distributions and a lack of mapped loci, rather than from direct 

detection of multiple loci as we have accomplished here. Our results agree with those from 

the comprehensive genetic dissection of a small number of traits in other model organisms, 

such as bristle number in Drosophila 26 and flowering time in maize 27, which have shown 

that dozens of loci can underlie a difference between two individuals. Importantly, whereas 

these studies required substantial labor, time, and resources, X-QTL is a quick and easy 

approach to achieve a comparable level of genetic dissection. The levels of complexity 

observed here (e.g. 14 loci explaining 70% of the genetic variance for 4-NQO resistance) are 

still dramatically lower than those seen in for some human traits in GWAS (e.g. 40 loci 

explaining 5% of the variance for height 2,5). One obvious explanation is the difference in 

experimental designs (line crosses vs. population association studies), but differences in 

genetic architectures among species and traits may also contribute. The comprehensive 

genetic dissection of complex traits by X-QTL makes it possible to empirically answer many 

of the basic questions about the genetic architecture of complex traits, including the number 

of loci underlying a trait and the distribution of their allele frequencies in a population. 

High-resolution mapping of these loci also enables identification of the underlying genes 

and sequence variants, as well as investigation of allelic effect sizes and genetic interactions. 

We anticipate that general insights from such studies will be applicable to understanding the 

genetics of complex traits in other organisms, including humans, and that variants of X-QTL 

can be developed for other species.

Methods Summary

Microarray hybridizations

DNA was extracted from segregating pools using Qiagen Genomic-tip 100/G columns. 

DNA was labelled using array comparative genomic hybridization reagents from Invitrogen 

and Cy3- or Cy5-labelled dUTP from Enzo. Hybridization, scanning, and feature extraction 

were done using Agilent equipment and software. Normalization of arrays was done using 

the rank invariant method within the Agilent software.

Statistical analysis

For a given SNP, the difference in log2 ratios of the intensities of the BY and RM allele-

specific probes on a single array was computed, and this metric was used in downstream 

analyses. In cases where a SNP was represented by two probe sets, the probe sets were used 

as separate data points. For the drug selections, selection and control experiments were 

compared using t-tests with equal variances. A regression-based peak-finding approach was 

then used, which scans the genome for locations where the slope in –log10(P) values 

changes signs. Significance levels were determined by permutation (Figure 3C). For the 

Mitotracker Red study, the high- and low-staining pools were compared using t-tests with 

equal variances. QVALUE 28 was then used to determine an FDR based on the observed p-

values.

Full Methods and any associated references are described in the Supplement to the paper at 

www.nature.com/nature.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. X-QTL design and quantitative allele frequency measurement in DNA pools
The crossing design used for X-QTL is shown in (A), while the selection scheme used to 

generate segregating pools is shown in (B). Genotyping of parental strains (C), two 

segregating pools (D), and an unselected control pool grown on rich medium (E). Dashed 

lines at zero indicate no difference between the BY and RM allele-specific probes. 

Enrichment of the BY allele is indicated by deviations above 0 and enrichment of the RM 

allele is indicated by deviations below 0. For the segregating pools, both the control loci 

involved in MATa selection and the dye used for reference labelling are denoted. In (D), we 
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use a dye-swap experiment to show that the dye used for labelling does not cause any bias in 

allele frequency measurement. (D) and (E) differ in that (D) shows a MATa pool prior to 

plating on rich medium and (E) shows a MATa pool after two days of growth on rich 

medium. In (E), the same pool was hybridized to the genotyping microarray and was 

sequenced to ~180X coverage with the Illumina Genome Analyzer. The results in (C) and 

(D) are plots of raw data with no sites removed, while in (E) raw data was plotted with sites 

more than 1.5 standard deviations away from the local average of the 10 nearest data points 

removed for clarity.
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Figure 2. X-QTL detection of loci for 4-NQO resistance
Results for 4-NQO resistance with RAD5 segregating (top panel) and fixed (bottom panel) 

are shown. The difference between the average of the selections and the average of the 

controls generated on the same day is plotted, with enrichment of the BY allele indicated by 

deviations above 0 and enrichment of the RM allele indicated by deviations below 0. Arrows 

point to MKT1 and RAD5. The RAD5 fixed population was generated by using a RM parent 

strain in which the RAD5RM allele was replaced with a RAD5BY::NatMX allele. This strain 

was constructed by crossing strain EAY1467 15 to the RM parent strain used for X-QTL.
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Figure 3. Genetic architecture of chemical resistance traits
Examples of genetically simple traits (A), examples of genetically complex traits (B), 

relationship between the number of expected and detected peaks (C), the number of loci 

detected per trait (D), and a map of compound-specific and pleiotropic loci across the 

genome (E). In (A) and (B), the −log10(p) values are shown for t-tests comparing selected 

samples to control samples. The sliding averages within 50 kilobase windows for these tests 

are plotted. In (C), the global relationship between expected and detected peaks is plotted as 

a black line and the trait-specific relationships are plotted as grey lines. The red line plots the 
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relationship between expected and detected peaks at an FDR of 0.05. The expected counts 

were generated from permutations of the chemical resistance dataset. The histogram in (D) 

was made using loci significant at a global FDR of 0.05. In (E), detected loci were grouped 

within 20 kb windows across the genome.
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Figure 4. X-QTL mapping of mitochondrial activity by cell sorting
Segregants were stained with the dye Mitotracker Red. The comparisons of high and low 

pools to the entire population are shown, in addition to −log10(p) values for the difference 

between these groups. The dashed lines in the high or low - control plots indicate zero 

difference in a comparison, whereas the dashed line in the final plot indicates the probe-level 

threshold for an FDR of 0.05.
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