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Abstract 
The model family proposed by Gifi (1990) is a flexible framework for the analysis of multivariate data. The common 
properties shared by all Gifi-models are the specification of a loss function solved by alternating least squares and 
transformations of the variables which lead to quantifications of the categories. The latter issue implies the concept of 
"optimal scaling" and allows to account for the scaling level of the variables. Starting from the basic model of 
homogeneity analysis, we present various extensions in terms of rank restrictions (nonlinear principal component 
analysis) and restrictions on sets of variables (nonlinear canonical correlation analysis). We focus on recent 
methodological developments and on the R package "homals" that allows for the computation of these models and 
provides new visualization techniques of the results. 
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1.  Introduction 
 
Scaling categorical variables is a problem that has been studied extensively within the area of psychometrics. As a 
common problem in social sciences, researchers have often the situation of 5-point Likert items with response 
categories varying from “I completely disagree” (1) to “I completely agree” (5). Researchers have to keep in mind that 
the values of such a “1-to-5”scale are completely ad-hoc and in some sense arbitrary. This is ok as long as this type of 
data is regarded as ordinal. But in many applications researchers consider these data as numerical (or interval scaled) 
and they compute sum scores, means, etc. 
 
In some cases, even an ad-hoc ordinal assumption can be misleading. As an example, let us consider the Galo dataset 
(Peschar, 1975) that, within the context of optimal scaling, is analyzed in Gifi (1990) and de Leeuw and Mair (2007). 
This dataset includes the variable “father’s profession” with categories lower white collar, middle white collar, 
professional/managers, shopkeepers, schooled labor, and unskilled labor. In this case, an order is not ad-hoc 
determinable. Therefore we need statistical methodology to scale the categories.  
 
This brings us to the idea of optimal scaling (see Takane, 2005, for an overview). Basically, optimal scaling is a 
procedure which transforms the observed response categories according to some specified criterion. In other words, the 
distances between the categories are stretched and squeezed until we reach a particular optimum.  
 
As a first step each variable involved in the analysis is considered as categorical (i.e. nominal). Now, if we have a priori 
knowledge about the order of the categories, we can take into account this property by posing order restrictions on the 
original scale: For instance having a Likert scale we could say that the scaled value of category (1) should be lower 
than the one for category (2). In turn, the scaled value for category (2) should be lower than the one for category (3) and 
so on. As a consequence, the original order of the variables is preserved (monotone transformations). Having a 
numerical variable involves the additional restriction that the distances between the original categories should be 
preserved. For instance, in the case of a Likert scale this would imply that the distances between the transformed 
categories are constant (affine transformations). This view on scaling properties of variables allows us to model 
variables with different scale levels.  
 



In order to achieve optimal scaling we have to define a target criterion: The categories are scaled such that they are 
optimal with respect to this particular criterion. Gifi-models are not only models of optimal scaling but they also reduce 
the dimensionality of the problem in the sense of a principal component analysis (PCA), or, more precise, of multiple 
correspondence analysis (CA). The problem is formulated by means of a loss function and it is solved by the 
alternating least squares algorithm (ALS). Eventually, we get (optimally scaled) category and object scores on each 
dimension. As we will see, the resulting scores can be represented graphically in various ways.  
 
In this paper we extend the basic HOMALS formulation (Section 2.1) in terms of rank restrictions (Section 2.2) and set 
restrictions (Section 2.3) on the category scores (or quantifications). In each section we focus on an additional “special 
task” (e.g. missing data, active/inactive variables, scale levels etc.) offered by the homals package (de Leeuw & Mair, 
2007) in R (R development core team, 2008). All technical details can be found in Gifi (1990), Michailidis and de 
Leeuw (1998), as well as in de Leeuw and Mair (2007). An example using the R package homals is computed for each 
method.  
 
 
 

2.  Gifi Models for Nonlinear Multivariate Analysis 
 
 
2.1 Homogeneity Analysis 
 
From a conceptual point of view homogeneity analysis (HOMALS) is a synonym for multiple correspondence analysis 
(CA; see e.g. Greenacre & Blasius, 2006). CA is typically solved by singular value decomposition (SVD) whereas in 
HOMALS we use ALS on a least squares loss function which represents a criterion of departure from homogeneity to 
be minimized. We start with the following basic definitions. For 1, ,i n= …  objects, data on m (categorical) variables 
are collected. Each of the corresponding  variables takes on  different values (their levels or categories). 
They are coded using 

1, ,j = … m jk

jn k×  binary indicator or dummy matrices jG . The whole set of indicator matrices can be 

collected in a block matrix [ ]1 , , mG G G= " .  
 
The first special task we consider is the incorporation of missing values. Missing observations are coded as complete 
zero row sums: if object i is missing on variable j, then the row sum of  is 0. Otherwise the row sum becomes 1 
because the category entries are disjoint. At this point all row sums of 

jG

jG  are collected in the diagonal matrix jM . Let 
us denote the average of the jM  matrices by M • . Note that jG  and jM  are matrices based on the observed data. 
 
As mentioned above, HOMALS computes object and category scores on p dimensions. In other words, we have to 
solve a projection problem  with . X is the nm →\ \ p p m� p×  matrix for the object scores and  the jY jk p×  
matrix containing the category quantifications. Both matrices have to be determined during optimization. Based on 
these definitions, the following loss function can be established:  
 

( ) ( ) (1
1

1; , ,
m

m j j j
j

)j jX Y Y tr X G Y M X G Y
m

σ
=

′= − −∑…   (1) 

 
which is optimized under the normalization conditions 0M X•′ =u  and X MX I′ =  such that the trivial solution of 
complete 0-scores is avoided.  
 
The basic idea of ALS minimization for solving this problem is the following: At iteration  we begin with a 
starting solution 

0t =
(0)X  for the object scores. Consequently, we can update the category scores (1)

jY . In a next step we 

update the object scores (1)X  and normalize them. Based on these normalized object scores, we update the category in 
the next iteration and so forth. The algorithm stops when the loss function does not decrease significantly anymore (i.e. 
the loss difference between two iterations is below a specified thresholdε ).   



 
We demonstrate this methodology using the senator dataset (ADA, 2008). The votes of all 100 senators on 20 issues 
were selected by Americans for Democratic Action. The votes selected cover a full spectrum of domestic, foreign, 
economic, military, environmental and social issues. In many instances we have chosen procedural votes: amendments, 
motions to table, or votes on rules for debate. The senators’ responses are binary. In general, Democrat candidates have 
many more “yes” responses than Republican candidates. A full description of the items can be found in the help file of 

e homals package. Note that this dataset contains several non-responses.  

ored by means of a 
aining scores computed by ALS. Americans for 

007 Congressional Voting Record Inside 
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The first column of the data set represents the party affiliation (50 Republicans, 49 Democrats and 1 Independent). This 
variable we will consider as “inactive”. This means that this variable is not part of the optimization process. The 
category and object scores are based on the 20 (active) items. After optimization, the affiliation is sc
(cone restricted) SVD without influencing the rem
2

 
Figure 1: Object scores for homals solution on senate dataset.  

 
We compute a 3-dimensional solution and the plot of the object scores for a subset of senators is given in Figure 1. The 
party affiliation is colored accordingly (blue = Democrats, red = Republicans, violet = Independent). Obviously, 
dimension 3 separates between the parties. This can be seen in the span plots in Figure 2 as well, where we slice 
through the 3-D cube and represent the scores on a 2-dimensional plane. Lieberman, which is Independent, is right in 
the middle between the two parties. The second dimension involves liberalism. For instance, on the Republican side, 
Murkowski, Stevens, and Snowe are considerably liberal. The same applies to Rockefeller, Webb, and Bingaman 
whereas Biden is rather conservative. It has to be pointed out that Obama, Clinton (both have the same response pattern 



and therefore the same object scores), McCain, and Dodd have a noticeable amount of non-responses. Therefore their 
osition is slightly apart from their colleagues.   

 

p
 

 
Figure 2: Span plots for object scores based on Figure 1. 

 
The homals package offers many more options for plotting the scores such as Voronoi plots, hull plots, projection plots, 

art plots, loadings plots etc. Some plots will be shown in the next sections of this paper. Further descriptions and 
lustrations can be found in de Leeuw & Mair (2007).  

homals allows for restrictions on the variable ranks and levels as well as defining sets of 
ariables. These options offer a wide spectrum of additional possibilities for multivariate data analysis beyond classical 

y ana

 the
pro

ppropriate (de Leeuw, 2006; Michailidis, 2005). As always in Gifi terminology, the term “nonlinear” pertains to 

ogeneity analys
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2.2 Rank Restrictions: Nonlinear PCA 
 
Gifi (1990) provides various extensions of homogeneity analysis and elaborates connections to other multivariate 
methods. The package 
v
homogeneit lysis.  
 
Having an n m×  data matrix with metric variables, PCA is a common technique to reduce  dimensionality of the 
data set, that is ject the variables into a subspace p\ . The Eckart-Young theorem states that this classical form of 
linear PCA can be formulated by means of a loss function. Its minimization leads to an n p×  matrix of component 
scores and an m p×  matrix of component loadings. In the case of nonmetric variables, nonlinear PCA (NLPCA) is 

to 

a
nonlinear transformations of the observed categories.  
 
The crucial difference to hom is concerns the category score matrix jY . In classical HOMALS, as 
described in the section above, Y  is unrestricted. In NLPCA, jY  is decomposed by a linear combination  

j j jY Z A

j

′= ,       (2) 
here jZ  is the restricted tificatio quan n matrix of dimension j jk r×  ( jr  represents the lower rank). jA  is the weight w

matrix and of dimension jp r× .  
 



From a practical point of view the most im rtant special case (see Michailidis & de Leeuw, 1998) is the rank-1 po
restricted formulation  

j j jY ′= z a . 
This restricted formulation has two major implications: First, we are able to fit more parsimonious HOMALS models 
(without reducing the number of dimensions) that are straightforward to interpret. We have object scores on the one 
hand and single (rank-restricted) category quantifications on the other hand. Second, it is straightforward to incorporate 

ifferent scale levels on the variables as quoted in the Introduction. The corresponding mathematical elaborations can 

 
Using the general linear decomposition in (2), the loss function given in equation (1) changes

d
be found in de Leeuw and Mair (2007, p. 6).  

 to 
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he variables temperature, weight, price, material, and quality rating 
ere collected on 21 sleeping bags. The first three variables are numerical, material is nominal, and the quality rating 

(scale from 1 to 3; the higher the better) is ordinal.  
 

and is again minimized by ALS.  
 
To illustrate the difference between unrestricted HOMALS and (rank-restricted) NLPCA we use the sleeping bag data 
from Prediger (1997; see also Michailidis, 2005). T
w

 
 

Figure 3: Unrestricted and rank-1 restricted homals solution for sleeping bags 
 
On the left hand side of Figure 3 we see the joint plot (object and category scores) of a HOMALS solution as described 
in the former section. Within a CA context this representation is sometimes referred to as CA map. On the axes labels 

e eigenvalues are given. They can be used as a goodness-of-fit measure. In this 2-dimensional HOMALS solution 

h the basic HOMALS but in such restricted NLPCA representations 

th
their sum is .299.  
 
On the right hand side of Figure 3 a rank-1 restricted NLPCA is computed which incorporates the scale level of the 
variables. Only one set of category scores is estimated. Obviously the category scores of dimension 2 are just linear 
combinations of the scores of dimension 2. As a practical implication, from a Marketing perspective, this more 
restricted model (sum of eigenvalues is .163) eases the positioning of products. For instance, suppliers of sleeping bags 
can immediately see the effects and the market position in the case of a price change. They might fall into a different 
segment with different competitors. Or, they could provide a material of higher quality and again examine the new 
market position. Of course, this is also possible wit



the implication of such a change is easier to explain since the bags are basically shifted along the linear alignments 
etermined by the rank-restricted category scores. 

rdegaal, R
ts of v bles. This follows the tradition of CCA. That said, we point out that nonlinear CCA 

LCCA) is not restricted to two sets only but rather to

d
 
 
2.3 Set Restrictions: Nonlinear CCA 
 
As a further extension (see van der Burg, de Leeuw, & Ve ., 1988; van der Burg, de Leeuw, & Dijksterhuis, 
1994) we can define se aria

 1, ,v K= …  sets. Note that in basic HOMALS each variable (N
forms a single set (i.e., K m= ).  
 
The aim of homogeneity analysis was to find p orthogonal vectors in m indicator matrices jG . This approach can be 
extended in terms of computing p orthogonal vectors in K general matrices vG , each of dimension n mv×  where 

1, , is the mber of variables in set v. Each can be represented as a block matrix consisting vj m= …  nu of the 
indicator matrices  of the variables that belong to the particular set v. Hence, 

vG  

jvG the loss function becomes 

( )1
1 1 1
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m j j jvv K v v
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j
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v
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where X is the n p×  matrix of object scores, G  is 
jv jn k× , and Y  is the k p

jv j ×  matrix of category scores. As before, 

missing values are taken into account in vM . Again, this loss function is minimized by ALS.  
 
At this point we can think of a combination of NLPCA and NLCCA: Rank restrictions within sets of variables. The 
loss function given in equation (4) changes straightforwardly according to equation (3). In the homals package all these 
models can be computed by means o ly. Ranf the same function; called homals(), natural k restrictions can be 

posed by the rank argument and set definitions by the sets argument. The level argument allows the 

solute 
mperature of a mixture of gases with convertible components. He applied this formula and the estimated constants to 

 Note that the numerical scale level involves linear transformations of the scores. To visualize the implication 
f different scale definitions, we compute the same model by treating the variables as ordinal, and, subsequently, as 

sformation in terms of

im
incorporation of different scale levels.  
 
Consequently, we present an example that includes all these options and extensions using the Neumann dataset 
(Wilson, 1926). Willard Gibbs discovered a theoretical formula connecting the density, the pressure, and the ab
te
65 experiments carried out by Neumann, and he discussed the systematic and accidental divergences (residuals).  
 
Thus we have three numerical variables where we impose rank-1 restrictions and incorporate the scale level 
accordingly. In addition we define two sets: The first one consists of temperature and pressure, the second one of 
density only. This set definition allows us to emulate linear regression (without being able to specify density as 
response).
o
nominal. 
 
The results are visualized in the transformation plots in Figure 4. By regarding the variables as numerical we see clearly 
the linear (affine) tran  ax b+ . Assuming an ordinal scale we have a monotone transformation of 

e scores (red line in Figure 4). Finally, in the nominal case, the scores are transformed in a clearly nonlinear (non-
notone) manner.  

  

 
 

th
mo
 
  
 



 
 

Figure 4: Transformation plots on Neumann data for different scale levels. 
 
 
 

3. Conclusion and Further Developments 
 
Gifi models and the corresponding R implementation by means of the package “homals” offer a powerful framework 
for scaling and visualizing multivariate categorical data. Embedding these models into a flexible environment like R 
allows the user to further process the results such as, for instance, using the HOMALS scores for subsequent statistical 
models. We have shown extensions in terms of rank restrictions on the category quantifications and set definitions 
based on CCA. In addition, based on the idea that each variable can basically be considered as categorical, different 
scale levels can be incorporated by means of level restrictions (monotone, linear) on the scores.  
 



Having numerical variables with a considerable amount of different values, this approach is not efficient and can be 
quite time-consuming. This problem can be solved be the incorporation of B-splines (see various chapters in van 
Rijckevorsel & de Leeuw, 1988). This idea adds a vast amount of flexibility in terms of score transformations and we 
are not limited to the transformations shown in Figure 4 anymore. This will be one future development of the homals 
package. Furthermore, we are working on the “aspect” framework which adds a different perspective to the Gifi 
methodology (see Mair & de Leeuw, 2008) and offers many additional possibilities of analyzing multivariate data.  
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