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Abstract

We consider the idea of conceptual autonomy of
natural and artificial agents. We claim that agents
that have explicit, propositional representations are
limited in their conceptual autonomy. We dis-
cuss how partial conceptual autonomy is obtained
through an self-organization process. The input for
the agents consists of perceptions on the context,
expressions communicated by other agents as well
as recognized identities of the other agents.

Agents and communication

Agents communicate by sending and receiving mes-
sages. In the primitive case, all the agents have a
common model of their environment, and the mes-
sages are signals that have fixed and common in-
terpretations. In the advanced level of multi-agent
co-operation each agent has its own model of the
environment. Thus, each agent has a “subjective”
interpretation for the relation between the messages
and its environment. The differences in the mod-
els motivate development of methods for providing
learning abilities. Each agent might then learn to
interpret messages from other agents. In this paper
a general scheme for multi-agent communication is
first presented providing views on the applicational
and methodological alternatives.

The basic elements of a generalized model of
multi-agent communication are: the environment of
the agents, the language used in the communica-
tion, and the input-output functions, and the mem-
ory and processing mechanisms of the agents.

The agents can perceive their environment, they
are part of it, and possibly they can change it. The
environment may be computerized representation,
constructed, or natural. The borderlines of these
domains may, of course, be vague. Especially a nat-
ural environment is changing, and consists of various
continuous phenomena.

In its simplest form, communication may be based
on a fixed set of distinct signals. Here we consider
the possibility of applying a natural, or near-to-
natural language as communication media. The gen-
eral properties of natural languages necessitate some
capabilities that autonomous agent need to have in

such a case. The basic properties of natural lan-
guages and their interpretation include ambiguity,
contextuality, open-endedness, vagueness, and sub-
jectivity.

Ambiguity, for instance, is a “virtue” when the
communication media is used in an open and chang-
ing environment in which having a distinct and
before-hand determined symbol, or combination of
symbols would be difficult, or practically impossi-
ble. To ensure successful communication, the send-
ing and the receiving agent must have similar enough
framework of interpretation, and the message or the
situation (“context”) must contain enough informa-
tion to activate proper framework of the receiver.

Cognitive capabilities of agents
The basic cognitive functions of agents consist of
their input and output functions, memory and pro-
cessing mechanisms. The agents can perceive their
environment and have a model or representation of
it. This representation may be

• static or dynamical,

• given from outside or autonomously learned,

• common with the other agent or individual which
makes learning capabilities necessary, and

• symbolic, non-symbolic or hybrid (Wermter &
Sun, 2000)

Steels (1995), among others, presents division into
explicit and implicit representation. He states that
in the traditional AI models usually use explicit rep-
resentation. Implicit one is defined to emerge once
the agent behaves appropriately in a specific situa-
tion with respect to the task, and to the other agents
without having any explicit model. The robots
of Brooks are perhaps the best-known example of
agents based on such representations (Brooks 1991).
According to Brooks the robots should react directly
to the stimulus based on their behavioral models.

Brazdil and Muggleton (1991) show how to use
symbolic inductive inference as a means to learn
to relate terms in a multiple agent communication.
They have shown how to overcome language differ-
ences between agents automatically in a situation
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where the agents do not have the same predicate
vocabulary. The system consists of a number of sep-
arate agents that can communicate. Each agent has
certain perceptive, communicative and reasoning ca-
pabilities, being able to (1) perceive a portion of the
given, possibly simulated world, (2) accept facts and
rules from another agent, (3) formulate queries and
supply them to another agent, (4) respond to queries
formulated by another agent, (5) interpret answers
provided by another agent, (6) induce rules on the
basis of facts, and (7) integrate knowledge. Such
symbolic model of the environment is closely related
to the model-theoretic approaches in defining the se-
mantics of formal languages. The problem lies in the
fact that the meaning of an expression (queries, re-
sponses) in a natural domain is fuzzy and changing,
biased by the particular context.

It is also important to mention that the notion of
autonomy can be considered critically as, e.g., Al-
terman (1997) does. He points out that the aspects
of collaboration and distributed cognition have to be
taken into account. These considerations are central
also in this paper. In particular, the domain of con-
ceptual autonomy will be studied in more detail and
the concept of partial autonomy will be adopted.

Kirsh (2001) expresses that in ecological systems
each component of the system has a causal influ-
ence on the other. In the biological world organ-
isms interact with their environment and with other
organisms, who, of course, also tend to be part of
each other’s environment, the whole system of com-
ponents being interdependent and interlocked. The
result is a highly complex system displaying attrac-
tors, instabilities and cycles typical of dynamical sys-
tems. (Kirsh, 2001)

Subjectivity and vocabulary problem
In the field of information retrieval, Furnas et
al. (1987) have found that in spontaneous word
choice for objects in five domains, two people fa-
vored the same term with less than 20% probability.
Bates (1986) has shown that different indexers, well
trained in an indexing scheme, might assign index
terms for a given document differently. It has also
been observed that an indexer might use different
terms for the same document at different times.

Moore & Carling (1988) state: “Languages are in
some respect like maps. If each of us sees the world
from our particular perspective, then an individual’s
language is, in a sense, like a map of their world.
Trying to understand another person is like trying
to read a map, their map, a map of the world from
their perspective.”

As an example related to the vocabulary problem,
two persons may have different conceptual or termi-
nological “density” of the topic under consideration.
A layman, for instance, is likely to describe a phe-
nomenon in general terms whereas an expert uses
more specific terms. This aspect of partial concep-

tual autonomy will be discussed later in this paper
in more detail.

Communication and
Context Sharing

The model of communicating agents consists of three
modalities:

• expressions used in communication (shortened as
“E”),

• contexts (“C”), and

• agents’ identifications (“A”).

An agent can process any channel of input alone if
the other two are missing, or it can associate two of
the pairs (the “A” channel is only present when the
“E” is in use), or even all the three input domains.

Alternatives of abstract situations
Next we’ll consider the most relevant input combi-
nations one by one using a distinction into separate
learning and communication phases. Such separa-
tion is not strictly necessary but it simplifies the
description of the model. In the learning phase the
main input combinations are:

• C as input: formation of the representation of the
context domain

• C+E as input: associating contexts patterns with
the expressions

• C+E+A as input: associating context-symbol as-
sociations with the agent identifications, or more
accurately, associating all the three input “chan-
nels”.

Also the secondary input combinations may be
listed for completeness.

• E as input.

• A as input.

• E+A as input.

In the communication phase the following input-
output combinations are the most relevant.

• C as input, E as output: the agent names the
“object” it has been “shown”.

• E as input, best-matching instance of a list with
C as output: the agent points out from a list an
“object” that best matches the expression.

• C+A as input: E as output: the agent names the
“object” taking into account the receiving agent
of the message.
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• E+A as input, best-matching instance of a list
with C as output: the agent points out from a
list an “object” that best matches the expression
taking into account the agent that expressed itself.

• E+C as input, E as output: the agent evaluates
whether it would use the same expression as the
description of the “object”.

• E+C as input, A as output: the agent specifies
which agent is the likely utterer of the expression
in the particular case.

Example: color naming
A practical example can be given related to the do-
main of colors. Naming the colors in particular has
certain invariant features as well as a potentially
large number of borderline cases in which two sub-
jects often name the same color differently. The
alternatives considered above give rise to following
cases: two subjects are comparing their expressions
on some color that the both can perceive. Strictly
speaking, the different visual points of view should
be taken into account which was one essential fac-
tor in the Talking Heads project (Steels & Kaplan,
2002). If two subjects state same expression the sit-
uation is unproblematic. If they use different ex-
pressions the following options are possible: on can
agree that the expression used by the other subject
is a viable alternative, e.g., a piece of furniture is
considered sky blue by the other and plainly blue by
the other but they agree that both expressions can
be used. As another options, they may disagree on
the applicability of each other’s expressions. An ad-
ditional level of increased realism and complexity to
the model can be obtained by considering the fuzzi-
ness of the color naming process. The borderlines
of three-dimensional domains of color features for
each color name are not crisp. Similarly, the degree
of agreement or disagreement on the use of a color
term can be considered in the framework of fuzzy set
theory (Zadeh, 1965). Another point of view can be
obtained by taking into account the distinction into
active and passive vocabulary. One agent names one
color with a certain term but is ready to accept al-
ternative expressions denoting the same color (e.g.
’dark salmon’ versus ’rosy brown’).

The previous discussion handled a situation in
which both subjects experienced the same (or ap-
proximately the same) color perception and were
comparing their associated color terms. However,
if the perceptual input is missing for one or both of
the agents, there is no direct source of evidence to
check the agreement on naming. Thus, if one agent
expresses a color name the other agent interprets this
name within its own scheme. However, there may be
other, indirect evidence on (dis)agreement. Namely,
the color names can be expressed in the context of
symbol-level context, i.e., for instance, with associ-
ated nouns. The two subjects can check whether

they share the conception of the color name ’sienna’
by comparing whether they agree upon the nouns
that this adjective can readily qualify. Similarly, the
agents may compare the conceptually neighboring
color terms within some, implicit similarity metrics
scheme. For instance, one agent might state that
the color ’light coral’ is between the colors ’salmon’
and ’rosy brown’. MacWhinney (1989) mentions
that the prototype theory fails to place sufficient
emphasis on these kinds of relations between con-
cepts. MacWhinney also points out that prototype
theory has not covered the issue of how concepts de-
velop over time in language acquisition and language
change, and, moreover, it does not provide a the-
ory of representation. MacWhinney has presented a
model of emergence in language based on the SOM
(MacWhinney, 1997). Gärdenfors (2000) has pre-
sented a detailed account on the motivation for the
use of the SOM in modeling conceptual spaces. This
topic will be discussed in more detail in the following
section.

From color naming to societies of agents

An additional aspect of modeling is obtained if the
agent takes into account in its internal interpreta-
tion the utterer of the color expression. Namely,
if one agent uses a particular color term in an un-
usual manner, the other agent can learn this specific
relation and use this naming convention while com-
municating with each other. In general, this phe-
nomenon is called meaning negotiation. The phe-
nomenon can be considered as something happening
between two communicating individual agents. In
addition, the consideration is important while com-
paring the naming conventions between two more or
less isolated agent communities.

Agent Learning and
Self-Organizing Maps

One novel approach to aim at modeling the learn-
ing, interpretation and use of natural language has
been to develop systems that simulate the learning
process. In the area of machine learning methods
for generalization, i.e. inductive inference have been
implemented. However, many of such models are
based on symbolic representation of rules that makes
it difficult to create means for symbol grounding into
continuous and changing perceptual domains.

The self-organizing map (SOM) (Kohonen, 1982,
1995) is a information processing model which is
often considered as an artificial neural network
model, especially of the experimentally found or-
dered “maps” in the cortex. There exists quite a lot
of neurophysiological evidence to support the idea
that the self-organizing map captures some of the
fundamental processing principles of the brain.
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Knowledge Representation Aspects
The self-organizing map can be viewed as a model
of unsupervised machine learning and also, impor-
tantly in this context, as an adaptive knowledge rep-
resentation scheme. The traditional knowledge rep-
resentation formalisms (semantic networks, frame
systems, predicate logic, to provide some examples)
are static and the reference relations of the elements
are determined by a human. Those formalisms are
based on the tacit assumption that the relationship
between natural language and world is one-to-one:
the world consists of objects and the relationships
between the objects, and these objects and relation-
ships have straightforward correspondence to the el-
ements of language. Moreover the representations
are ”programmed”, not learned through experience.

The self-organizing map is described in the follow-
ing using agent terminology (slightly adapted from
(Lagus et al., 1996). Consider a collection or sys-
tem of agents which must learn to carry out very
different tasks. Let us assume that the system may
assign different tasks to different agents of the col-
lection that are able to learn from what they do.
Each new task is given to the agent that can best
complete the task. Since the agents learn, and since
they receive tasks that they can do well, they be-
come even more competent in those tasks. This is a
model of specialization by competitive learning. If
the agents are interconnected in such a way that also
the neighbors of the agent carrying out a task are al-
lowed to learn some of the task, the system slowly
becomes ordered so that agents near each other have
similar abilities, and the abilities change slowly and
smoothly over the whole system. This is the general
principle of the self-organizing map.

Self-organizing map algorithm
In the following, the self-organizing map algorithm
is described in some more detail based on (Kohonen,
1995). Assume that some sample data sets have to
be mapped onto a two-dimensional array, a sample
set is described by a real vector x(t) ∈ Rn where
t is the index of the sample, or the discrete-time
coordinate. In setting up the Self-Organizing Map,
we first assign to each unit in the array a parame-
ter vector mi(t) ∈ Rn called the codebook vector,
which has the same number of elements as the in-
put vector x(t). The initial values of the parameters
(components of mi(t)) can be selected at random.
The process described below changes these parame-
ters.

The “image” of an input item on the map is
defined to be in the location, the mi(t) of which
matches best with x(t) in some metric. The self-
organizing algorithm that creates the ordered map-
ping can be described as a repetition of the following
basic tasks:

1. An input vector x(t) is compared with all the

codebook vectors mi(t).

2. The best-matching unit on the map, i.e., the unit
where the parameter vector is most similar to the
input vector in some metric, called the winner, is
identified.

3. The codebook vectors of the winner and a number
of its neighboring units in the array are changed
incrementally according to the learning principle
specified below. (Kohonen, 1995)

The basic idea in the self-organizing map is that,
for each input sample vector x(t), the parameters
of the winner and units in its neighborhood are
changed closer to x(t). For different x(t) these
changes may be contradictory, but the net outcome
in the process is that ordered values for the mi(t) are
finally obtained over the array. If the number of in-
put vectors is not large compared with the number of
codebook vectors (map units), the set of input vec-
tors must be presented many times reiteratively. As
mentioned above, the codebook vectors may initially
have random values, but they can also be selected in
an ordered way. Adaptation of the codebook vectors
in the learning process takes place according to the
following equation:

mi(t+ 1) = mi(t) + α(t)[x(t)−mi(t)]

for each i ∈ Nc(t), where t is the discrete-time
index of the variables, the factor α(t) ∈ [0, 1] is a
scalar that defines the relative size of the learning
step, and Nc(t) specifies the neighborhood around
the winner in the map array. At the beginning of
the learning process the radius of the neighborhood
is fairly large, but it shrinks during learning. This
ensures that the global order is obtained already at
the beginning, whereas towards the end, as the ra-
dius gets smaller, the local corrections of the code-
book vectors in the map will be more specific. The
factor α(t) decreases during learning.

Partial Conceptual Autonomy
through Self-Organization

Consider that an agent is to denote an interval of a
single continuous parameter using a limited number
of symbols. These symbols are then used in the com-
munication between the agents. In a trivial case two
agents would have same denotations for the sym-
bols, i.e. the limits of the intervals corresponding to
each symbol would be identical. If the “experience”
of the agents is acquired from differing sources, the
conceptualization may very well differ.

One may then ask how to deal with this kind of
discrepancies. The following section describes self-
organizing maps and a model of their use in this task.
The key idea is to provide the means for each agent
to associate continuous-valued parameter spaces to
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sets of symbols, and furthermore, to “be aware” of
the differences in this association and to learn those
differences explicitly. These kinds of abilities are es-
pecially required by highly autonomous agents that
need to communicate using an open set of symbols
or constructs in the agent language.

The self-organizing map is especially suitable for
the central processing element of autonomous agents
because of the following reasons:

• The self-organizing map algorithm modifies its in-
ternal presentation, i.e., the codebook vectors ac-
cording the external input which enables the adap-
tation of the agents.

• The self-organizing map is able process natural
language input to, e.g., form “semantic maps”
(Ritter & Kohonen, 1989) Natural language in-
terpretation using self-organizing map has further
been examined by Miikkulainen (1993), Scholtes
(1993) and Honkela (1991, 1995, 1997). In
(Honkela 1995), the input data consisted of a set
of English translations fairy tales collected by the
Grimm brothers. Word trigrams were used as
input vectors taking the encoded representations
of three subsequent words from the preprocessed
text. Summarizing the results of the statistical
analysis conducted by the map algorithm all verbs
were to be found in the top section whereas the
nouns are located in the opposite site. Among the
nouns inanimate and animate nouns formed areas
of their own. Similar results can be obtained using
other clustering algorithms.

• Symbols and continuous variables may be com-
bined in the input, and they are associated by
self-organizing map (Honkela, 1991). Continuous
variables may be quantized, and a symbolic inter-
pretation can be given for each section in the pos-
sibly very high-dimensional space of perceptional
variables (Honkela, 2000).

• Because the self-organizing map is based on unsu-
pervised learning, processing external input with-
out any prior classifications is possible (Kohonen,
1995). The autonomous agent may form an indi-
vidual model of the environment and of the rela-
tion between the expressions of the language and
the environment.

• The interpretation of the messages need to be
identical among the agents. self-organizing map
enables creating a model of the relation between
the environment and the expressions of the lan-
guage used by the other agents. In addition,
generalizations of this relations can be formed
(Honkela, 1993).

Discussion
We have presented a framework for considering
the level of conceptual autonomy of communicat-

ing agents. Based on the framework various prac-
tical applications can be build. The use of the self-
organizing map algorithm was considered as one op-
tion for modeling the internal conceptual and adap-
tive processes was presented.

The conceptual spaces of partially autonomous
agents were earlier discussed in the context of color
names. Different situations related to “subjective”
variance of naming the colors were studied. The is-
sue of the cultural and societal levels of conceptual
spaces of agents is of great importance when practi-
cal political and societal phenomena are considered.
Instead of names of colors the differences in the con-
ceptual spaces can be related to expressions such as
’democracy’, ’freedom’, ’equality’, and ’terror’, etc.
Whether the scientific community dealing with the
study of societies of agents and conceptual spaces
will ever be able to contribute to solving such prob-
lems in the future remains to be seen.
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