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Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative
medicine. Neurospheres are themost commonly used neuroprogenitors for neuronal differentiation, but they often
clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel
method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic
and inducedpluripotent stemcells derivedneurospherewithout anygeneticmanipulation. Round andbright-edged
neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM) with 10% CO2,
whichdoubled the expressionof theNESTIN, PAX6 and FOXG1genes comparedwith those culturedwith5%CO2. Fur-
thermore, an additional step (AdSTEP) was introduced to fragment the neurospheres and facilitate the formation of
a neuroepithelial-typemonolayer that we termed the “neurosphederm”. The large neural tube-type rosette (NTTR)
structure formed from the neurosphederm, and the NTTR expressed higher levels of the PAX6, SOX2 and NESTIN
genes compared with the neuroectoderm-derived neuroprogenitors. Different layers of cortical, pyramidal,
GABAergic, glutamatergic, cholinergic neurons appeared within 27 days using the neurosphederm, which is a
shorter period than in traditional neurodifferentiation-protocols (42–60 days). With additional supplements and
timeline dopaminergic and Purkinje neurons were also generated in culture too. Furthermore, our in vivo results
indicated that the fragmented neurospheres facilitated significantly better neurogenesis in severe combined immu-
nodeficiency (SCID) mouse brains compared with the non-fragmented neurospheres. Therefore, this neurosphere-
based neurodifferentiation protocol is a valuable tool for studies of neurodifferentiation, neuronal transplantation
and high throughput screening assays.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human embryonic and induced pluripotent stem cells (h/iPSCs) are
of considerable interest in developmental biology and regenerative
medicine, representing an enormous opportunity for generating
patient-specific cells for screening drugs and cell therapies for various
diseases. Stem cell neuronal differentiation has been used as an
in vitro model for a number of genetic conditions, such as spinal
pluripotent stem cells; SKSRM,
NPCs, neural precursor cells;
CID, severe combined immuno-
ronal maintenance medium; p-
cetylcholine receptor; iGluRs,
nuclear antigen; SHH, sonic
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muscular atrophy (Ebert et al., 2009) and familial dysautonomia (Lee
et al., 2009), as well as inherited and sporadic forms of various human
neurodegenerative conditions, including motor neuron disease,
Niemann-Pick disease (NPD), Huntington disease (HD), Parkinson's dis-
ease (PD) and Alzheimer's disease (AD) (Dimos et al., 2008; Park et al.,
2008; Yagi et al., 2011; Shi et al., 2012a; Israel et al., 2012; Devine et al.,
2011; Jeon et al., 2012). In all cases, h/iPSCs are being used to generate
large populations of healthy neurons to explore the therapeutic poten-
tial of neurotransplantation. The two basic methods for generating neu-
rons from h/iPSCs are adherent (neuroectoderm) (Chambers et al.,
2009; Shi et al., 2012b) and non-adherent (embryoid body or
neurosphere) (Matigian et al., 2010; Koehler et al., 2011; Bez et al.,
2003) culture conditions. Adherent methods (neuroectoderm) using
dual inhibition of SMAD signaling promote efficient neuronal differenti-
ation (Chambers et al., 2009; Lindvall and Kokaia, 2010). Anothermeth-
od is to generate neurons from non-adherent neurospheres or
embryoid bodies (Matigian et al., 2010; Koehler et al., 2011; Bez et al.,
2003). In neural transplantation, neurospheres are the most commonly
used neuroprogenitors that are injected into the brain, due to their easy
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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delivery and ability to rapidly migrate to the neurogenic areas of the
brain (Englund et al., 2002; Flax et al., 1998; Jensen and Parmar,
2006). Neurospheres, as dynamic three-dimensional physiological
microincubators for human neural precursor cells (NPCs), have many
advantages over the neuroectoderm (Reynolds and Weiss, 1992). In
1992, Reynold and Weiss showed that free-floating NPCs can divide
and form multicellular spheres in vitro (Reynolds and Weiss, 1992).
These neurospheres have self-renewal ability, can be cultured over 10
passages, and can be easily maintained and expanded without losing
the expression of neural progenitor markers (Jensen and Parmar,
2006; Reynolds and Rietze, 2005).

Neurospheres have the potential to generate sub-type or region-
specific neurons (Liu et al., 2013). However, their tendency to clump
in culture makes them very difficult to study and to identify the types
of neurons that can be derived after neurosphere transplantation
(Jensen and Parmar, 2006; Reynolds and Rietze, 2005). It is also difficult
to precisely monitor the morphology of single neurons from
neurosphere-derived neuronal aggregates. Moreover, generating sub-
type-specific or region-specific functional neurons from h/iPSCs takes
more than 6–8 weeks with the traditional neuronal generation proto-
cols (Shi et al., 2012b; Goulburn et al., 2012; Liu et al., 2013). Here, we
present novel culture conditions and methods to rapidly and efficiently
generate functional human sub-type or region-specific neurons from
neurospheres. This method involves a combination of supplemented
knockout serum replacement medium (SKSRM) with 10% CO2 and a
mechanical procedure termed “AdSTEP,” which involves breaking the
neurospheres into smaller fragments to increase the efficiency of neuro-
nal production. Furthermore, we injected the fragmented neurospheres
into the severe combined immunodeficiency (SCID) mouse brains to
investigate the effect of AdSTEP on neurogenesis in vivo, which might
have significant impacts on neuronal transplantation and regenerative
medicine.

2. Materials and methods

2.1. Maintenance of the H9 lines and generation of the human induced
pluripotent stem cell (iPSC) line HFS-1

A human embryonic cell line (H9 line, National Stem Cell Bank code
WA09) ordered fromWicell was cultured andmaintained inmTeSR™-1
medium (Stemcell Technologies) (Supplementary Fig. 1).

The HFS-1 human iPS cell line was generated from human foreskin
fibroblasts by transfection with the 7F-2 combination of episomal plas-
mids (pEP4EO2SEN2K, pEP4EO2SET2K and pCEP4-M2L), as previously
reported (Yu et al., 2011). Briefly, approximately 3.0 μg of
pEP4EO2SEN2K, 3.2 μg of pEP4EO2SET2K and 2.4 μg of the pCEP4-M2L
plasmids were co-transfected into ~1.0 × 10^6 human neonatal fore-
skin fibroblasts via Nucleofector™ (VPD-1001 with program U-20,
Lonza). The transfected fibroblasts were then plated and maintained
in a fibroblast culture medium. One day after transfection, the fibroblast
medium was replaced with a reprogramming medium consisting of
DMEM/F12 supplemented with N-2 supplement (Life Technologies),
B-27 supplement (Life Technologies), 0.1 mM non-essential amino
acids (NEAA), 1 mM GlutaMAX™, 0.1 mM β-mercaptoethanol, 0.5 μM
PD0325901, 3 μM CHIR99021, 0.5 μM A-83-01, 1000 U/ml human LIF
and 10 μM HA-100. The putative iPSC colonies were then picked and
plated onto Matrigel-coated plates in mTeSR™-1 after approximately
20 days in culture, and the pluripotency of the iPSCs was verified as pre-
viously described (Yu et al., 2011).

2.2. Neuronal initiation to generate neurospheres and neuroectoderm from
the h/iPSCs

The h/iPSCs (70–80% confluent) were treated with collagenase IV
(2mgml−1, Life Technologies), and harvested for neural differentiation.
To generate the neuroectoderm, the collagenase IV-treated h/iPSC
fragments were resuspended in a knockout serum replacement medi-
um (KSRM, Life Technologies) supplemented with 10 ng/ml bFGF (Life
Technologies) and 10 μM ROCK inhibitor (Y-27,632, Tocris Bioscience)
and then equally distributed onto Matrigel-coated plates. To generate
neurospheres, the collagenase IV-treated h/iPSC fragments were plated
onto a low adhesion suspension culture plate (Olympus) with KSRM
supplemented with 10 ng ml−1 bFGF, 10 μM ROCK inhibitor,
50 ng ml−1 EGF (R&D Systems), 1000 unit ml−1 LIF (Millipore) and
1 μg ml−1 heparin (Sigma-Aldrich), which was termed “SKSRM”. Both
cultures were incubated with 10% CO2 in a 37 °C incubator for 3 days.
A duplicate set of cultures was maintained in a 5% CO2/37 °C incubator
to compare the effects of the culture conditions on neuronal initiation.
2.3. Neuronal induction of the neurospheres and neuroectoderm

After the neuronal initiation, the neurospheres and neuroectoderm
weremaintained in neuronal inductionmedium (NIM). NIM is a neuro-
nal maintenancemedium (NMM) supplemented with 10 μMSB431542
(Tocris Bioscience) and 1 μMdorsomorphin (Tocris Bioscience). NMM is
a 1:1mixture of supplemented DMEM/F12 (Life Technologies) and sup-
plemented Neurobasal (Life Technologies) media (detailed description
in Supplementary Table 1). During the 7 days of neuronal induction,
the KSRMmediawere gradually replacedwithNIMmedia by increasing
the ratio of NIM versus KSRM by 20% every two days. Themedia shifted
from 0% NIM and 100% KSRM to 100% NIM and 0% KSRM over 10 days
and 5 media changes.
2.4. Generation of the neurosphederm from neurospheres using “AdSTEP”

After neuronal induction, the neurosphereswere collected in a 15ml
tube and centrifuged for 5 min at 400 ×g. The supernatant was aspirat-
ed, the pellets were gently resuspended with cell dissociation solution
(Stem Cell Technologies), and incubated for 10 min at 37 °C. The
neurospheres were collected again and resuspended in NMM. The
neurospheres were then broken down into smaller fragments by 20–
30 pounding motions using a 5 ml polystyrene serological pipette,
which we termed the “AdSTEP” mechanical procedure. Finally, the
neurosphere fragments were mixed thoroughly and transferred to
Matrigel-coated plates. After 3–5 days at 37 °C and 5% CO2, a
neuroepithelial sheet appeared and was termed the “neurosphederm”.
2.5. Differentiation of neural progenitors, sub-type specific neurons and
region-specific neurons

After the neuroectoderm and neurosphederm reached a confluence,
they were further incubated for 3–5 days to allow the neural progeni-
tors to form. Then, the neural progenitors were treatedwith collagenase
IV (2 mg ml−1) and equally distributed onto polyornithine/laminin-
coated plates and maintained with NMM until all of the neural sub-
types and functional synapses were generated. The neurons were
maintained with NMM to generate the basal forebrain cholinergic
neurons. The cholinergic neurons appeared in the culture between
19 and 27 days. Cerebellar Purkinje neurons appeared when the cul-
ture was maintained in NMM for approximately 40–45 days. To gen-
erate the mid/hindbrain dopaminergic neurons, a neuronal culture
was maintained in NMM supplemented with 200 ng ml−1 SHH
(sonic hedgehog, R&D Systems) and 20 ng ml−1 Fibroblast Growth
Factor-8 (FGF8, Life Technologies) for 7 days. Then, the neurons
were maintained for an additional 10 days with NMM supplemented
with 10 ng ml−1 brain-derived neurotrophic factor (BDNF) (Life
Technologies), 10 ng ml−1 glial cell line-derived neurotrophic factor
(GDNF) (Life Technologies), 1 ng ml−1 TGF-β3 (transforming
growth factor-β3, Life Technologies), 100 μM cAMP (cyclic adeno-
sine monophosphate) and 200 μM AA (L-ascorbic acid, Sigma).
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2.6. Immunocytochemistry and microscopy

The cellswere grownon coverslips coatedwith polyornithine/laminin
in 24-well plates, and then cells werewashedwith PBS and fixedwith 4%
paraformaldehyde (PFA) for 10 min at 25 °C. After additional washes in
PBS, the cells were permeabilized in 0.1% Triton X-100 (Sigma-Aldrich)
for 5 min at 25 °C, followed by blocking with 5% BSA in PBS containing
10% normal goat serum (NGS, Abcam) for 1 h at 25 °C. The cells were in-
cubated overnight with primary antibodies diluted in a blocking solution
at 4 °C. The details regarding the dilutions of the primary antibodies that
were used can be found in Supplementary Table 2. The next day, the cells
were washed three times with washing buffer (1× PBS containing 0.05%
Tween20and1%NGS), and then cellswere incubated for 2h at 25 °Cwith
a fluorescent secondary antibody (Life Technologies). After incubation
with the secondary antibody and washing, the coverslips with the cells
were placed onto slides with a Fluoromount-G mounting medium con-
taining DAPI (DAPI-FG, Southern Biotech). All the fluorescent immuno-
staining was validated by comparing the staining without primary
antibody but with IgG control secondary fluorescent antibody to ensure
that there are no non-specifics or background staining (Supplementary
Fig. 1G–I). An EVOS fluorescence microscope (Life Technologies) was
used to capture the fluorescent images of the neural precursor cells and
contrast images of various other cells with a phase-contrast lens. A
Nikon Ti–E inverted confocal microscope (Nikon A1Rsi Laser Scanning
Confocal Microscope, Nikon Instruments Inc., Melville, NY) was used to
obtain images to identify the sub-type- and region-specific neurons. The
images of the glutamatergic neurons and punctate synaptic staining of
PSD95 and synaptophysinwere captured on aNikon confocalmicroscope
using a higher magnification lens and the NIS-Elements C software.
ImageJ software was used to quantitate the number of MAP2-, GFAP-,
SOX2-, NESTIN- and PAX6-positive cells, as well as the number of nuclei
(DAPI) (http://imagej.nih.gov/ij/).

2.7. Flow cytometry

Flow cytometry analysis was performed to quantify the OCT4-,
BMPRII-, SOX2- and NESTIN-positive cells. The cells were prepared as
previously described (Lippmann et al., 2014). Briefly, the neurosphere-
and neuroectoderm-derived cells were blocked with 2% normal mouse
serum (NMS, Abcam) in PBS for 30 min at 4 °C. The cells were perme-
abilizedwith 0.1% Triton X-100 in PBS and then incubatedwith antibod-
ies conjugated with fluorophores (BD Biosciences, see Supplementary
Table 2 for dilution) for 3 h at 4 °C. After the incubation, the cells were
thoroughly washed and post-fixed with 4% PFA for analysis using an
Accuri C6 flow cytometer (BD Biosciences). The data and flow
histograms were analyzed and prepared by the De Novo software
(De Novo Software, Glendale, CA). The positive events were determined
by comparing the gating population to an IgG control.

2.8. Quantitative real-time polymerase chain reaction (qRT-PCR)

The total RNA was extracted from the neurospheres using a TRIzol
reagent and a Direct-zol RNA purification kit (Zymo Research). The
cDNAs were synthesized from 1 μg of RNA using a Superscript VILO®
cDNA Synthesis Kit (Invitrogen) according to the manufacturer's in-
structions. All qRT-PCR reactions were performed using the Fast SYBR
GreenMaster Mix (Applied Biosystems). The reactions were performed
on a StepOnePlus RT-PCR system (Applied Biosystems) using 1 μl of the
cDNA (1:10 dilution), and 0.5 μMof the gene-specific primers for a total
reaction volume of 20 μl. See Supplementary Table 3 for the annealing
temperatures and primer sequences. The levels of the SOX2, NESTIN,
PAX6, and FOXG1 mRNAs were normalized to the mRNA levels of the
housekeeping gene GAPDH to allow comparisons among the different
experimental groups using the delta delta Ct method (Schmittgen and
Livak, 2008).
2.9. NanoString CodeSet design and gene expression quantification

TheNanoString CodeSet for the expression of 48 geneswas designed
by NanoString Technology (http://www.nanostring.com). A total of
100 ng of RNA from fresh–frozen tissue of the neurosphederm- and
neuroectoderm-derived neurons were analyzed using the NanoString
nCounter analysis system at the University of California, Irvine Geno-
mics High Throughput Facility (http://ghtf.biochem.uci.edu/content/
genomics-services, Irvine, CA).

NanoString data processing and gene expression were analyzed
using the nSolver analysis software (Settle,WA), as previously described
(Northcott et al., 2012). Briefly, the rawNanoString counts for each gene
within each experiment were subjected to a technical normalization
using the counts obtained for the positive control probe sets prior to a
biological normalization using the three housekeeping genes included
in the CodeSet. The normalized data were log2-transformed using the
nSolver analysis software and then used as the input for the class predic-
tion analysis. Finally, the neurosphederm-derived neuronal gene ex-
pression data were compared with the neuroectoderm-derived
neuronal data and the percentage of genes that only exhibited a fold in-
crease in the neurosphederm-derived neurons was shown in the graph.

2.10. Assay of neuronal function with the Fluo-4 Ca2+ fluorescence
indicator

The neurons were grown on Matrigel-coated flat bottom 96-well
plates to perform the functional assay. The neurons were first washed
with a neurobasal medium (low Ca2+ and Mg2+) and washed again
with 1× PBS (without Ca2+ and Mg2+). Next, a 5 μM Fluo-4 Ca2+ AM
ester (Life Technologies) solution containing 0.001% pluronic F-127 (Life
Technologies) was loaded into each well, except for the negative control
andblank. The treated cellswere incubated for 1 h in the dark at 37 °C and
5% CO2. The Fluo-4 dye solution was removed and the cells were washed
twice with 1× PBS (without Ca2+ and Mg2+). Then, 0.001, 0.01, 0.1 and
1.0 mM glutamate (glutamate receptor agonist) with or without iGluRs
antagonists (+) MK801 (abcam) and NBQX (abecam) were added to
the cells to examine the increase or inhibition in the Ca2+-dependent
electrical activity with the Fluo-4 dye. Finally, the fluorescence was read
on a fluorescent microplate reader (POLARstar Omega, BMG LABTECH)
with excitation at 485 nm and emission at 520 nm. The data were ana-
lyzed by the Omega software and normalized to the blank values. The
intraneuronal calcium concentrations [Ca2+]i were calculated using the
following previously described equation: [Ca2+]i = Kd·(F − Fmin) /
(Fmax − F) Briefly, Kd is the dissociation constant for Ca2+ and F is the
fluorescence (in arbitrary units) of the unknown sample. The values for
Fmax and Fmin were determined using previously described calibration
procedures (Briz et al., 2010;Hyrc et al., 1997). Fmax and Fmin are the ratios
at saturating Ca2+ and zero Ca2+, respectively. The maximum fluores-
cence intensity (Fmax) was obtained by adding the Ca2+ ionophore
ionomycin (Life Technologies, 10 μM). The concentration of the indicators
in the calibration solutionwas selected to provide similarfluorescence in-
tensity to that of the dye-loaded neurons.

2.11. Transplantation and histological analysis

2.11.1. Cell transplantation
hESC-derived neurospheres were labeled with a Qtracker 585 Cell

Labeling Kit (Life Technologies). One set of the labeled neurospheres
was fragmented using the AdSTEP procedure and another set of labeled
neurospheres was kept intact. The fragmented (n = 5) and non-
fragmented (n = 4) Qtracker-labeled neurospheres were then
transplanted into the SCID mouse brains. Briefly, adult postnatal days
79–80 SCID mice were anesthetized using isoflurane. The surgical area
was cleansed with isopropyl alcohol followed by betadine and a cut
was made through the skin to expose the skull. A hole was then made
through the skull to allow the cells to be injected into the cortex and

http://imagej.nih.gov/ij/
http://www.nanostring.com
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http://ghtf.biochem.uci.edu/content/genomics-ervices
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subcortical areas. The mice were then given 1.5 μl of cells or a PBS vehi-
cle over the course of 2min.We injected the cells in a more ventral part
of the brain so that the cells would still be dispersed in the cortex, de-
spite the back-up pressure from the needle being removed. The needle
was left in situ for 3 min before being slowly removed. All procedures
involving animals were conducted according to the NIH guidelines
and approved by the Institutional Animal Care and Use Committee
(IACUC) at Western University of Health Sciences (Pomona, CA).

2.11.2. Tissue processing
Four weeks post-transplantation, the mice were transcardially per-

fused with PBS (50 ml) followed by chilled 4% PFA (60–70 ml). The
brains were immediately placed in fresh 4% PFA for 24 h, and then in
30% sucrose solution at 4 °C. The brains were then sliced (30 μm
thick) using a cryostat (Leica, Model CM 3050S-3-1-1, Germany) and
stored as free-floating sections in cryoprotectant at −20 °C.

2.11.3. Immunohistochemical staining and imaging
The free-floating brain sections were washed thoroughly with PBS

and then blocked using 10% Triton X-100, 10% Tween 20, 1% BSA, and
1.5% NGS in PBS. The sections were then incubated with a primary anti-
body overnight at 4 °C (see Supplementary Table 2 for the primary an-
tibodies). Next, the sections were washed with PBS, incubated with a
secondary antibody for 2 h, and then washed with PBS and dried before
Fig. 1. Flow diagram of the neurodifferentiation procedure from h/iPSCs and the characterizat
stages and the corresponding cell types generated from these cultures. Neuronal initiation wi
with SB431542 and dorsomorphin in 5% CO2 at 37 °C. The AdSTEP (*) procedure was int
neurosphederm and plating the cells, distinct neuronal rosettes appeared at 3–5 days in cultu
culture. At day 27, the neurons have fully functional synapses, as shown in the functional ass
(C, E) Generation of the neurosphederm from h/iPSCs with 10% and 5% CO2, respectively. (F).
neurosphereswith 10% and 5% CO2, respectively. The data are presented as themeans± SD. (G
in the neurosphere and neuroectoderm cultures, respectively. Scale bars, 50 μm.
being coverslipped with DAPI-FG. The in vivo images were captured on
an Olympus FluoView™ FV1000 confocal microscope with Olympus
FluoView software (Olympus America, Inc. Central Valley, PA). ImageJ
software was used to quantify the βIII Tubulin staining.

2.12. Statistical analysis

At least three (n= 3) samples were used for each statistical evalua-
tion. Significanceswere assessed by one-wayANOVAusing the post hoc
test. In all cases, p b .05 was considered to be significant. The statistical
analyses were performed using StatView (Abacus, Berkeley, CA;
discontinued) and GraphPad InStat 3.1 (La Jolla, CA).

3. Results

3.1. Ten percent CO2 facilitated the formation of neurospheres from h/iPSCs

The procedures and various stages of neuronal differentiation from
h/iPSCs with different culture conditions and time courses are shown
in Fig. 1A. Briefly, the h/iPSCs were exposed to 10% CO2 in SKSRM for
the first 3 days of neuronal initiation. At day 3, distinct round and
bright-edged neurospheres were formed (Fig. 1B). In comparison, un-
evenly aggregated neurospheres and non-uniform neuroepithelial
sheets were formed from the cells cultured with 5% CO2 (Fig. 1D). The
ion and stability of the neurospheres using defined culture conditions. (A) The five major
th SKSRM and 10% CO2 at 37 °C takes 3 days. Neuronal induction took one week in NMM
roduced to generate the neurosphederm from the neurosphere. After generating the
re, and mature neurons and other sub-type specific neurons appeared at 15–22 days in
ays. (B, D) Generation of neurospheres from h/iPSCs with 10% and 5% CO2, respectively.
Graph of the relative expression levels of the SOX2, NESTIN, PAX6 and FOXG1 genes from
, H & I, J) Flow cytometry histogram of the time-dependent expression of SOX2 andNESTIN
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neurospheres were further examined for the expression of neuronal
precursor markers (SOX2, NESTIN, PAX6, and FOXG1) via qRT-PCR. The
qRT-PCR results showed thatwith 10% CO2, the neurospheres expressed
twice as muchNESTIN, PAX6, and FOXG1 compared with the 5% CO2 cul-
ture condition, although SOX2 changed less significantly (Fig. 1F). In ad-
dition, flow cytometry showed that the expression of both SOX2 and
NESTIN was higher in neurospheres on days 10, 20 and 30 compared
with the IgG-treated control (ISO; Fig. 1G, H). However, in a similar
flow cytometry run, the expression of SOX2 and NESTIN in the
neuroectoderm-derived neuronal progenitors started to decline after
20 days, and on day 30, there was no difference in the expression of
Fig. 2. Comparison of neurogenesis with or without the AdSTEP mechanical procedure. (A). One
indicate the different shapes of the neurospheres, including a contrast sphere (white arrow),
100 μm. (B) Neuronal processes emanating from the neurospheres were observed after transf
neuronal cultures of the neurospheres (21 days) remained as clumps. These neurons express t
we were unable to identify the neuronal or astrocytic morphology due to the tight clumping o
and methods section for details) dissociated the neurosphere into neurosphere fragments. Sca
the culture, which is termed the “neurosphederm”. Scale bars, 100 μm. (F) The neurospheder
were generated as single monolayers of cells. The cells were double stained with MAP2 and G
observed in these cultures. Scale bars, 50 μm. The nuclei are stained with DAPI (blue) and th
GFAP indicated that 85.7% of the cells were MAP2-positive and approximately 8% were GFAP
using the ImageJ software.
SOX2 andNESTIN comparedwith ISO (Fig. 1 I, J). These results indicated
that the neurospheres derived with our culture conditions were more
stable over a longer period of time compared with the adherent
neuroectoderm culture method.

3.2. The AdSTEP mechanical procedure facilitated the generation of
neurosphederm and neural stem cells from the neurospheres

Clumping has always been a challenge for examiningneuronal differ-
entiation in neurosphere-derived cultures (Fig. 2B, C). To facilitate
neurosphere-derived neuronal differentiation, an AdSTEP mechanical
week after neuronal induction, round, different sized spheres were observed. The arrows
bright neurosphere (black arrow), and small sized spheres (black arrowhead). Scale bar,
erring the neurospheres to polyornithine/laminin-coated plates. Scale bar, 50 μm. (C) The
he mature neuronal marker MAP2 (red) and also the astrocyte marker GFAP (green), but
f the cells in the neurosphere. Scale bar, 50 μm. (D) The AdSTEP procedure (see Materials
le bar, 100 μm. (E) After the AdSTEP procedure, a neuroepithelial-type sheet appeared in
m was then transferred onto polyornithine/laminin-coated plates and neural stem cells
FAP (red and green, respectively) antibodies. (G) The astrocyte marker GFAP (green) was
e images were captured by confocal microscopy. (H) The flow histogram of MAP2 and
-positive. (I) The bar graph showed the quantification of the MAP2/GFAP-positive cells

Image of Fig. 2
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procedure was introduced to break the neurospheres (Fig. 2A) into
smaller fragments (Fig. 2D), which were then plated onto Matrigel-
coated plates to form a monolayer of neuroepithelial-like cells that
were termed the “neurosphederm” (Fig. 2E). After transferring the
neurosphedermonto a polyornithine/laminin-coated plate, a large num-
ber of neurons were generated that expressed MAP2, a marker for ma-
ture neurons (Fig. 2F). On the other hand, without the AdSTEP
mechanical procedure, the neurospheres are still clumped together and
produced much fewer neurons (Fig. 2C). Moreover, the neurosphere-
derived neurosphederms were multipotent and were able to differenti-
ate into astrocytes (Fig. 2G). Flow cytometry analysis determined that
the culture was approximately 86% mature neurons and 8% astrocytes,
as determined byMAP2 andGFAP staining, respectively (Fig. 2H). ImageJ
quantification also confirmed that the neurosphederm generated both
neurons and astrocytes at a ratio similar to the flow cytometric analysis
(Fig. 2I). In addition, we further examined the neurosphederm-derived
rosettes and rosette cores compared with the neuroectoderm-derived
neuronal progenitors using immunostaining. The results showed that
the neurosphederm-derived rosettes were larger and their core (Fig. 3A,
white arrowhead) differed from that of a neuroectoderm-derived culture
(Fig. 3D, white arrow). Furthermore, the neurosphederm-derived neural
tube-type rosette NTTR structures expressed significantly higher levels
of PAX6 and the tight junction protein Zo1 (arrowhead, Fig. 3B) compared
with the neuroectoderm-derived cells (Fig. 3D&E),whichwas confirmed
by ImageJ quantification of the PAX6-positive integrated cell density
(Fig. 3G). In addition, the neural stem cells (NSCs) derived from the
neurosphederm expressed higher levels of SOX2 and NESTIN (Fig. 3C)
compared with those derived from the neuroectoderm (Fig. 3F, H, I).
The total cell number, determined by counting the nuclei (blue, DAPI,
Fig. 3J), confirmed that there was no significant difference in the conflu-
ence of either culture.

3.3. Generation of sub-type and region-specific neurons from neurosphere-
derived neurosphederm

Different layers of cortical, pyramidal, GABAergic interneurons and
excitatory glutamatergic neurons were generated using our culture
method in this neurogenesis model. In our neuronal culture, the TBR1
cortical neurons appeared (Fig. 4A) within 17 days, and then the deep
Fig. 3. Comparison of the expression of neuronal progenitor genes in the neurosphederm and
neuronal induction. (B) PAX6/Zo1 staining of the neurosphederm- and neuroectoderm-derive
bars, 100 and 50 μm, respectively. (D) The neuroectoderm-derived neuronal cultures lacked N
NESTIN staining of the neuroectoderm-derived cells. Scale bars, 100 and 50 μm, respectively.
the PAX6-, NESTIN- and SOX2-positive cells. (J) The DAPI quantification represents the total
confluent. ISO and D represent the isotype control and number of days, respectively.
layer cortical neurons, the FOXP2- and EMX1-positive pyramidal neu-
rons, emerged from the culture (Fig. 4B, D) at approximately 22–
27 days. Finally, the SATB2-positive layer 5 cortical neurons were iden-
tified (Fig. 4C). GABAergic interneurons and excitatory glutamatergic
neurons (Fig. 4E, F) also appeared one week after neuronal induction
(17 days) and their populations increased at approximately day 27,
which is earlier than that observed in previously reported protocols
(Shi et al., 2012b; Liu et al., 2013). We also analyzed the expression of
specific neuronal genes from the progenitors, mature neurons, cortical
neurons and specific sub-types using the NanoString Technologies
nCounter system, and the bar graph represents the fold change percent-
age of neuronal gene expression in the neurosphederm-derived neu-
rons compared with the neuroectoderm-derived neurons (Fig. 4G).
Our results indicated that the neurosphederm protocol not only gener-
ate very similar neural sub-types as the neuroectoderm-derived meth-
od (Supplementary Fig. 2), but it is also a more efficient neurogenesis
method compared with the neuroectoderm method.

Region-specific neurons were generated using the same protocol
with different supplements or time courses. Forebrain cholinergic neu-
rons (Fig. 4H) were generated by simply following our neuronal gener-
ation timeline up to day 27. The cholinergic neurons appeared between
19 and 27 days, as shown by double staining (green, nAChR)withMAP2
(red). Purkinje neurons, which expressed a high level of the Purkinje
marker calbindin, appeared in the culture between 40 and 45 days
(Fig. 4I) (Laure-Kamionowska and Maslinska, 2009; Iritani et al.,
1999). Midbrain or hindbrain dopaminergic neurons can be generated
with additional supplements, as mentioned in the Materials and
methods section. At approximately 27 days, the neurons expressed
high levels of phospho-tyrosine hydroxylase (p-TH) (Fig. 4J), which is
an active form of tyrosine hydroxylase. Therefore, the neurosphere-
derived neurosphederm is an effectivemethod for differentiatingneural
stem cells.

3.4. Generation of functional synapses and neural networks from
neurosphederm in vitro

It is important to test whether the neurosphederm-derived neu-
rons can produce functional synapses (Hansen et al., 2011; Shi
et al., 2012c). At day 27, PSD95 and synaptophysin were expressed
neuroectoderm. (A) A distinct NTTR structure appeared (white arrowhead) 10 days after
d neuronal cultures and (C) SOX2/NESTIN staining of the neuroectoderm cultures. Scale
TTR structures. (E) PAX6/Zo1 staining of the neuroectoderm-derived cells, and (F) SOX2/
The nuclei are stained with DAPI. The bar graph shows the ImageJ quantification of (G–I)
number of cells in these experiments, which confirmed that the cultures were similarly

Image of Fig. 3


Fig. 4. Generation of sub-type- and region-specific neurons from the neurospheres. The confocal images of the cortical layer-specific neurons were produced by double staining with
(A) βIII Tubulin/TBR1 (green/red), (B) MAP2/FOXP2 (green/red), and (C) cortical layer 2 (SATB2, red). These neurons appeared over 2 weeks after neuronal induction, and (D) cortical
pyramidal neurons (EMX1, red) also appeared from the βIII Tubulin-stained (green) neurosphederm-derived neuronal cultures. (E) Interneuron expression was analyzed by staining
with the GAD67 marker (red). (F) The excitatory glutamatergic neuronal cells were observed with double staining for vGLUT1 (red) and MAP2 (green). (G) The bar graph represents
the percentage of the fold increase in gene expression in the neurosphederm-derived neurons compared with the neuroectoderm-derived neurons. Gene expression analysis was per-
formed using NanoString Technologies software as described in detail in the Materials and methods section. (H) The forebrain cholinergic neurons were detectable between 19 and
27 days in culture. These cells were confirmed by the presence of the nicotine acetyl choline receptor (nAChR, green) and a mature neuronmarker (MAP2, red). (I) Purkinje neurons ap-
peared between 40 and 45 days and expressed high levels of calbindin, a human Purkinje cell marker (red). (J) Dopaminergic neuronswere detected between 25 and 27 days in the pres-
ence of additional supplements (see Materials and methods section). The dopaminergic neurons were identified by staining with antibodies to p-tyrosine hydroxylase (p-TH, red) and
MAP2 (green). All of the images in this panel were captured by confocal microscopy. The nuclei are stained with DAPI. All scale bars, 25 μm.
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in the neurons derived from both the neurosphere-derived
neurosphederm (Fig. 5A) and the neuroectoderm (Fig. 5C). On the
same day, the neurosphederm-derived neurons also showed higher ex-
pression of PSD95 and vGLUT1 (Fig. 5B). Therefore, the neuronal func-
tional assay was performed on this day. For the functional assay, Fluo-
4, a Ca2+ indicator dye,was added to the neuronal culture for 1 h. Prom-
inent green fluorescencewas detected in the neurons derived fromboth
the neurosphederm (Fig. 5D) and neuroectoderm (Fig. 5E), indicating
ongoing, spontaneous Ca2+ activity in those neurons. When glutamate,
amajor excitatory neurotransmitter, was added to the neurons, it elicit-
ed a dose-dependent increase in Fluo-4 fluorescence, with the excep-
tion of 1 mM glutamate (Fig. 5F). Time-lapse imaging showed that the
neurosphederm-derived neurons had higher spontaneous Ca2+ activity
(Supplementary Video 1) compared with the neuroectoderm-derived

Image of Fig. 4


Fig. 5. Generation of functional synapses and a neural network in vitro from the neuroectoderm- and neurosphederm-derived neurons. The confocal images of the excitatory synapses
were obtained from day 27 neurosphederm-derived neurons (A,B). The expression of the post-synaptic density protein PSD95 (green) and presynaptic marker synaptophysin (SYN,
red) appeared punctate staining that were expressed on opposing neurons. PSD95 (green) and vGLUT1 (red) were co-localized in the neurosphederm-derived neurons. Scale bars,
20 μm. (C) For comparison, the neuroectoderm-derived neurons were stained with PSD95 (green) and the presynaptic marker synaptophysin (SYN, red). Scale bars, 20 μm. (D, E) The
functional activity of the neurosphederm- and neuroectoderm-derived neurons was determined using the Fluo-4 Ca2+ AM ester dye, which indicated the spontaneous Ca2+ activity
through green fluorescence. Scale bars, 80 μm. The nuclei are stained with DAPI. (F) The graph shows a dose-dependent increase in the intraneuronal Ca2+ activity (μM) in response to
glutamate, with the exception of 1 mM glutamate, which shows no activity in either the neurosphederm (dotted line)- and neuroectoderm (solid line)-derived neuronal cultures.
(G) The bar graph shows the glutamate-dependent neuronal activity and specific inhibition via the glutamate receptor antagonists iGluRs, MK801 and NBQX. The black and white bars
show the neurons from the neurosphederm and neuroectoderm cultures, respectively. The data are presented as the means ± SD, N = 3. *p b 0.05 or *p b 0.05 represent significant dif-
ferences. neuroSPH and neuroECT represented the neurosphederm and neuroectoderm, respectively.
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neurons (Supplementary Video 2). In addition, the cells were treated
with the iontropic glutamate receptors (iGluRs) antagonists (+)-MK-
801 (Abcam) and NBQX (Abcam) to block the NMDA and AMPA/and
receptors, respectively, in the presence of 100 μM glutamate. The result
showed that the inhibitors block the spontaneous Ca2+ activity of the
neurosphederm-derived neurons (Fig. 5G). The ability of these neurons
to actively respond to glutamate receptor antagonists and agonists indi-
cates that the neurosphederm-derived neurons can form neural net-
works in vitro.

3.5. Comparing neurogenesis using the fragmented and non-fragmented
neurospheres in the mouse brain

The fragmented and non-fragmented neurospheres were labeled
with Qtracker and injected into SCID mouse brains. Six weeks after the
neurosphere transplantation, themicewere sacrificed and a histological
analysiswas performed to determinewhether the neurospheres had in-
tegrated into the mouse brains. The arrow and insert box represent the
site of injection and image acquisition, respectively (Fig. 6A & B). We
used an antibody against human-specific nuclear antigen (HumN) to
identify the transplanted human cells, which were clearly overlaid
with the Qtracker-labeled cells (the arrowhead shows the Qtracker-
labeled cells that co-localized with HumN). The results showed that
the transplanted neurospheres differentiated into PAX6-positive cells
(arrowhead, Fig. 6C). The PAX6-positive cells are the predominant neu-
ral progenitors for the developing cortex during neurogenesis (Eiraku
et al., 2008; Muzio et al., 2002), as shown in the illustration (Fig. 6D)
(Eiraku et al., 2008; Muzio et al., 2002). Most importantly, a large num-
ber of βIII Tubulin-positive neuronal cells were observed in the
fragmented neurosphere sections (Fig. 6E) compared with the sections
with the non-fragmented neurospheres (Fig. 6G). Most of the βIII
Tubulin-positive neurons from the fragmented neurospheres overlaid
with the Qtracker-labeled cells (indicated by an arrowhead, Fig. 6F),
but those in the non-fragmented neurosphere sections exhibited little
overlap and lacked distinct neuronal soma (indicated by an arrowhead,
Fig. 6G & H). ImageJ quantification of the βIII Tubulin staining showed
significant differences in the fragmented andnon-fragmented engrafted
sections (Fig. 6L). GFAP staining also showed that the transplanted cells

Image of Fig. 5


Fig. 6. Comparison of neurogenesis of the AdSTEP-fragmented and non-fragmented neurospheres in the mouse brain. (A) Representative image of the fragmented Qtracker-labeled
neurospheres in a mouse; the implanted site is indicated by an arrow. Dispersion of the fragmented neurospheres into the cortex (CTX, cortex; and RSG, retrosplenial granular). Scale
bars, 200 μm. (B) Staining of the area with antibodies against human-specific nuclear antigen (HumN) (an arrow shows the injection site) that overlaid with the Qtracker-labeled
(red) cells (arrowhead). Scale bars, 50 μm. (C) After transplantation, a significant number of PAX6-positive cells were observed in the AdSTEP-fragmented neurosphere-implanted
graft, and they co-localized with the Qtracker-labeled cells (Qtracker-labeled cell co-localized with the PAX6 cell indicated by the arrowhead). Scale bars, 50 μm. (D) Illustration of the
mechanism of neurogenesis from the neurospheres. The cells cultured with 10% CO2 and SKSRM produce large and bright neurospheres. After introducing the AdSTEP process to the
neurospheres, NTTR structures with increased numbers of PAX6-positive cells appeared in the culture within 3–5 days. (E) βIII Tubulin-positive neurons were abundant in the graft
from the AdSTEP-fragmented neurospheres. (F) The arrowhead in the inset showed that the implanted cells overlaid with the Qtracker-labeled cells had differentiated into neurons.
Scale bars, 25 μm. (G) The non-fragmented neurospheres displayed very few βIII Tubulin-positive cells. (H) The arrowhead in the inset showed the Qtracker-labeled cells with no overlaid
neurons. Scale bars, 25 μm. (I) GFAP-positive astrocytes in the graft, and the arrowhead showed the overlaid Qtracker-labeled implanted cells (J) with or (K)without GFAP staining. Scale
bars, 25 μm. The nuclei of all images are stained with DAPI and all of the images in this panel were captured by confocal microscopy. (L) The bar diagram represents the ImageJ quanti-
fication of the integrated density of the βIII Tubulin-positive cells from the implanted AdSTEP-fragmented and non-fragmented neurospheres. The data are presented as themeans± SD,
N = 4. *p b 0.05 represents a significant difference. Frag and NonFrag represented the implanted AdSTEP-fragmented and non-fragmented neurospheres, respectively.
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expressed a large number of astrocytes (Fig. 6I) and that some of them
were overlaid with the Qtracker-labeled cells (arrowhead, Fig. 6 J,K),
suggesting that the engrafted AdSTEP-fragmented neurospheres facili-
tated the differentiation of neurospheres into multipotent neural stem
cells and mature neurons in vivo compared with the non-fragmented
neurospheres.

4. Discussion

The neurosphere-derived cultures for neuronal differentiation are a
valuable model system for studying neurogenesis and understanding
themolecularmechanisms associated with neurodegenerative diseases
(Jensen and Parmar, 2006; Reynolds and Rietze, 2005). Recent studies
on iPSC-derived neurospheres and 3D cultures showed a significant
promise for the development of disease-specific cells with the desired
genetic backgrounds, which would facilitate the study of many
important diseases, such as Timothy syndrome, Fragile X syndrome or
NPD (Kumari et al., 2015; Macauley et al., 2008; Pasca et al., 2011,
2015). Here, we present a new defined culture medium and conditions:
SKSRM medium and 10% CO2. This new culture condition doubled the
expression of the neuroprogenitor genesNESTIN, PAX6, and FOXG1 com-
pared with the traditional 5% CO2 culture conditions. The molecular
mechanism by which the higher CO2 levels facilitate neurogenesis is
still not clear. It could be due to reduced oxygenation or hypoxia, as pre-
viously reported (Heinrich et al., 2011; Morrison et al., 2000; Putnam
et al., 2004; Clarke and van der Kooy, 2009). There are several groups
that have reported that hypoxia or reduced oxygenation enhances neu-
ral stem cell colony survival and increased NESTIN, SOX1, SOX2, and
FOXG1 expression (Morrison et al., 2000; Clarke and van der Kooy,
2009; Xie et al., 2014), similar to our study (Fig. 4G).

Neurospheres are also a good source of neural progenitors for neural
transplantation due to their easy delivery and ability to migrate
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(Matigian et al., 2010; Englund et al., 2002; Flax et al., 1998; Betarbet
et al., 1996). However, clumping has been a challenge for
neurodifferentiation both in vivo and in vitro. AdSTEP was another im-
portant mechanical procedure that enabled us to overcome the chal-
lenge of neurosphere-based neurodifferentiation. AdSTEP was able to
facilitate the generation of the monolayer neuroepithelium, which we
call the ‘neurosphederm’. The neurosphedermnot only allowedus to in-
crease the number of neuroprogenitor cells but also generated a robust
multipotent NSC population and enabled us to clearly identify the neu-
ronal phenotypes. In addition, AdSTEP increased the expression of PAX6
five-fold, and also increased the expression of FOXG1 (Fig. 1F). PAX6 is a
downstreameffector (a transcription factor) ofWnt/β-catenin signaling
in the proliferation and neuronal differentiation of cortical radial glia, a
major NSC population in the developing cortex (Hansen et al., 2011;
Gan et al., 2014). FOXG1 is a telencephalic marker that induces the ex-
pression of pallial determinants. PAX6 and NGN2 are involved in cortical
patterning (FOXG1 N PAX6, NGN2 N TBR1 N Cortical layers, e.g., FOXP2,
SATB2, EMX1) (Muzio and Mallamaci, 2005; Muzio et al., 2002, 2005).
An interesting aspect of these gene expression results is the fact that
the 10% CO2 culture condition, which mimics reduced oxygenation,
was sufficient to induce and give rise to the different layers of cortical
neurons, suggesting that this culture method is a promising potential
neural model system for studying cortical development.

Furthermore, our neurosphederm not only generate more
neuroprogenitors, but it can also give rise to all of the sub-type-specific
neurons and synapses, e.g., glutamatergic, GABAergic and cortical neu-
rons. In addition, the neurosphederm-derived neurons also showed
stronger spontaneous neuronal activity, as shown by the Ca2+ fluores-
cence activity (Supplementary Video 1), which was accelerated by glu-
tamate in a dose-dependent manner. Therefore, it is clear that the
neurosphere-derived neurons respond via glutamatergic neurotrans-
mission, and the enhancement or suppressed electrical activity with
glutamate receptor agonists or antagonist, respectively, confirmed the
development of an excitatory neural network in vitro (Fig. 5G). Here,
we used calcium-dependent fluorescent indicator dyes that allowed
us to measure the synchronized activity across a network of cells
(Eiraku et al., 2008; Dawitz et al., 2011). In contrast, it is also possible
to determine single-cell resolution neuronal activity using patch-
clamp electrophysiology, but the ability tomeasure a network is limited
to typically one or two neurons. Therefore, the Fluo-4 Ca2+ indicator
dye was used in this study to identify the neural networks created by
the neurosphederm-derived neurons.

Another important feature of this system is the generation of region-
specific neurons from the neurosphederm,which provides amodel sys-
tem for future studies of various neurological disorders. The early and
substantial loss of basal forebrain cholinergic neurons (BFCNs) is a con-
stant feature of AD (Shi et al., 2012a; Duan et al., 2014). BFCNswere rap-
idly generated within 3 weeks using the neurosphederm, making it a
usefulmodel system for studyingAD.Mid/hindbrain dopaminergic neu-
rons (DNs) play a critical role in PD (Park et al., 2008; Devine et al.,
2011). DNs were generated using the same timeline over 27 days (3–4
weeks). However, SHH and FGF8 were added after neuronal induction
to generate these neurons. Cerebellar Purkinje neurons, which are
known to have a crucial role in NPD (Macauley et al., 2008) and HD
(Dougherty et al., 2012, 2013), appeared in our culture between 40
and 45 days, which is relatively longer and is a similar pattern as that
observed in the developing cerebellum in vivo (Laure-Kamionowska
and Maslinska, 2009; Iritani et al., 1999). Thus, our method can rapidly
generate sub-type-specific or region-specific neurons compared with
the other currently available neurodifferentiation methods (Chambers
et al., 2009; Shi et al., 2012b; Goulburn et al., 2012; Liu et al., 2013).

In addition, we also injected the neurospheres into SCID mouse
brains. The confocal images showed that the AdSTEP-fragmented
neurospheres had abundant PAX6-positive cells in the cerebral cortex
(Fig. 6C) that contained larger NTTR structures, similar to those ob-
served in vitro. These results suggested that the engrafted neurospheres
were further differentiated to neural precursor cells, which further con-
tributed to neurogenesis (Fig. 6D). Therefore, our AdSTEP neurospheres,
generated under defined culture conditions, easily integrated into the
mouse brains, demonstrating a great promise for neurogenesis studies
and stem cell therapy. Overall, this novel and rapid virus-free method
for generating neuronal populations from neurospheres has many ad-
vantages, all of which will have a great impact on our understanding
of neuronal identity after neurosphere transplantation as well as the
mechanisms of disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2015.10.014.

Authors' contributions

Aynun N. Begum: performedmost of the experiments, prepared the
figures and wrote the manuscript.

Caleigh Guoynes: performed the brain tissue processing and
immunohistochemistry.

Jane Cho: involved in the qPCR experiment and edited the
manuscript.

Kabirullah Lutfy: performed the stem cell transplantation and edited
the manuscript.

Jijun Hao: generated the iPSC lines from foreskin fibroblasts using an
episomal vector and edited the manuscript.

Yiling Hong: directed the research, wrote and edited themanuscript.

Acknowledgments

Thisworkwas supported by theNational Institutes of Environmental
Health Sciences (1R15 ES019298-01A1).

References

Betarbet, R., Zigova, T., Bakay, R.A., Luskin, M.B., 1996. Migration patterns of neonatal
subventricular zone progenitor cells transplanted into the neonatal striatum. Cell
Transplant. 5 (2), 165–178.

Bez, A., Corsini, E., Curti, D., Biggiogera, M., Colombo, A., Nicosia, R.F., Pagano, S.F., Parati,
E.A., 2003. Neurosphere and neurosphere-forming cells: morphological and ultra-
structural characterization. Brain Res. 993 (1–2), 18–29.

Briz, V., Galofre, M., Sunol, C., 2010. Reduction of glutamatergic neurotransmission
by prolonged exposure to dieldrin involves NMDA receptor internalization and
metabotropic glutamate receptor 5 downregulation. Toxicol. Sci. 113 (1),
138–149.

Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., Studer, L.,
2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition
of SMAD signaling. Nat. Biotechnol. 27 (3), 275–280.

Clarke, L., van der Kooy, D., 2009. Low oxygen enhances primitive and definitive neural
stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27
(8), 1879–1886.

Dawitz, J., Kroon, T., Hjorth, J.J., Meredith, R.M., 2011. Functional calcium imaging in devel-
oping cortical networks. J. Vis. Exp. 56.

Devine, M.J., Ryten, M., Vodicka, P., Thomson, A.J., Burdon, T., Houlden, H., Cavaleri, F.,
Nagano, M., Drummond, N.J., Taanman, J.W., Schapira, A.H., Gwinn, K., Hardy, J.,
Lewis, P.A., Kunath, T., 2011. Parkinson's disease induced pluripotent stem cells
with triplication of the alpha-synuclein locus. Nat. Commun. 2, 440.

Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft,
G.F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C.E., Eggan, K.,
2008. Induced pluripotent stem cells generated from patients with ALS can be differ-
entiated into motor neurons. Science 321 (5893), 1218–1221.

Dougherty, S.E., Reeves, J.L., Lucas, E.K., Gamble, K.L., Lesort, M., Cowell, R.M., 2012. Dis-
ruption of Purkinje cell function prior to huntingtin accumulation and cell loss in
an animal model of Huntington disease. Exp. Neurol. 236 (1), 171–178.

Dougherty, S.E., Reeves, J.L., Lesort, M., Detloff, P.J., Cowell, R.M., 2013. Purkinje cell dys-
function and loss in a knock-in mouse model of Huntington disease. Exp. Neurol.
240, 96–102.

Duan, L., Bhattacharyya, B.J., Belmadani, A., Pan, L., Miller, R.J., Kessler, J.A., 2014. Stem cell
derived basal forebrain cholinergic neurons from Alzheimer's disease patients are
more susceptible to cell death. Mol. Neurodegener. 9, 3.

Ebert, A.D., Yu, J., Rose Jr., F.F., Mattis, V.B., Lorson, C.L., Thomson, J.A., Svendsen, C.N., 2009.
Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457
(7227), 277–280.

Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M.,
Wataya, T., Nishiyama, A., Muguruma, K., Sasai, Y., 2008. Self-organized formation of
polarized cortical tissues from ESCs and its active manipulation by extrinsic signals.
Cell Stem Cell 3 (5), 519–532.

http://dx.doi.org/10.1016/j.scr.2015.10.014
http://dx.doi.org/10.1016/j.scr.2015.10.014
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0005
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0005
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0005
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0010
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0010
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0015
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0015
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0015
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0015
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0020
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0020
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0025
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0025
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0025
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0030
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0030
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0035
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0035
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0040
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0040
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0045
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0045
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0045
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0050
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0050
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0050
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0055
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0055
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0055
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0060
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0060
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0065
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0065
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0065


741A.N. Begum et al. / Stem Cell Research 15 (2015) 731–741
Englund, U., Fricker-Gates, R.A., Lundberg, C., Bjorklund, A., Wictorin, K., 2002. Transplan-
tation of human neural progenitor cells into the neonatal rat brain: extensive migra-
tion and differentiation with long-distance axonal projections. Exp. Neurol. 173 (1),
1–21.

Flax, J.D., Aurora, S., Yang, C., Simonin, C., Wills, A.M., Billinghurst, L.L., Jendoubi, M.,
Sidman, R.L., Wolfe, J.H., Kim, S.U., Snyder, E.Y., 1998. Engraftable human neural
stem cells respond to developmental cues, replace neurons, and express foreign
genes. Nat. Biotechnol. 16 (11), 1033–1039.

Gan, Q., Lee, A., Suzuki, R., Yamagami, T., Stokes, A., Nguyen, B.C., Pleasure, D., Wang, J.,
Chen, H.W., Zhou, C.J., 2014. Pax6 mediates ss-catenin signaling for self-renewal
and neurogenesis by neocortical radial glial stem cells. Stem Cells 32 (1), 45–58.

Goulburn, A.L., Stanley, E.G., Elefanty, A.G., Anderson, S.A., 2012. Generating GABAergic ce-
rebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell
Res. 8 (3), 416–426.

Hansen, D.V., Rubenstein, J.L., Kriegstein, A.R., 2011. Deriving excitatory neurons of the
neocortex from pluripotent stem cells. Neuron 70 (4), 645–660.

Heinrich, C., Gascon, S., Masserdotti, G., Lepier, A., Sanchez, R., Simon-Ebert, T., Schroeder,
T., Gotz, M., Berninger, B., 2011. Generation of subtype-specific neurons from postna-
tal astroglia of the mouse cerebral cortex. Nat. Protoc. 6 (2), 214–228.

Hyrc, K., Handran, S.D., Rothman, S.M., Goldberg, M.P., 1997. Ionized intracellular calcium
concentration predicts excitotoxic neuronal death: observations with low-affinity
fluorescent calcium indicators. J. Neurosci. 17 (17), 6669–6677.

Iritani, S., Kuroki, N., Ikeda, K., Kazamatsuri, H., 1999. Calbindin immunoreactivity in the
hippocampal formation and neocortex of schizophrenics. Prog. Neuro-
Psychopharmacol. Biol. Psychiatry 23 (3), 409–421.

Israel, M.A., Yuan, S.H., Bardy, C., Reyna, S.M., Mu, Y., Herrera, C., Hefferan, M.P., Van, G.S.,
Nazor, K.L., Boscolo, F.S., Carson, C.T., Laurent, L.C., Marsala, M., Gage, F.H., Remes,
A.M., Koo, E.H., Goldstein, L.S., 2012. Probing sporadic and familial Alzheimer's dis-
ease using induced pluripotent stem cells. Nature 482 (7384), 216–220.

Jensen, J.B., Parmar, M., 2006. Strengths and limitations of the neurosphere culture sys-
tem. Mol. Neurobiol. 34 (3), 153–161.

Jeon, I., Lee, N., Li, J.Y., Park, I.H., Park, K.S., Moon, J., Shim, S.H., Choi, C., Chang, D.J., Kwon,
J., Oh, S.H., Shin, D.A., Kim, H.S., Do, J.T., Lee, D.R., Kim, M., Kang, K.S., Daley, G.Q.,
Brundin, P., Song, J., 2012. Neuronal properties, in vivo effects, and pathology of a
Huntington's disease patient-derived induced pluripotent stem cells. Stem Cells 30
(9), 2054–2062.

Koehler, K.R., Tropel, P., Theile, J.W., Kondo, T., Cummins, T.R., Viville, S., Hashino, E., 2011.
Extended passaging increases the efficiency of neural differentiation from induced
pluripotent stem cells. BMC Neurosci. 12, 82.

Kumari, D., Swaroop, M., Southall, N., Huang, W., Zheng, W., Usdin, K., 2015. High-
throughput screening to identify compounds that increase Fragile X mental retarda-
tion protein expression in neural stem cells differentiated from Fragile X syndrome
patient-derived induced pluripotent stem cells. Stem Cells Transl. Med. 4 (7),
800–808.

Laure-Kamionowska, M., Maslinska, D., 2009. Calbindin positive Purkinje cells in the pa-
thology of human cerebellum occurring at the time of its development. Folia
Neuropathol. 47 (4), 300–305.

Lee, G., Papapetrou, E.P., Kim, H., Chambers, S.M., Tomishima, M.J., Fasano, C.A., Ganat,
Y.M., Menon, J., Shimizu, F., Viale, A., Tabar, V., Sadelain, M., Studer, L., 2009. Model-
ling pathogenesis and treatment of familial dysautonomia using patient-specific
iPSCs. Nature 461 (7262), 402–406.

Lindvall, O., Kokaia, Z., 2010. Stem cells in human neurodegenerative disorders—time for
clinical translation? J. Clin. Invest. 120 (1), 29–40.

Lippmann, E.S., Estevez-Silva, M.C., Ashton, R.S., 2014. Defined human pluripotent stem
cell culture enables highly efficient neuroepithelium derivation without small mole-
cule inhibitors. Stem Cells 32 (4), 1032–1042.

Liu, Y., Liu, H., Sauvey, C., Yao, L., Zarnowska, E.D., Zhang, S.C., 2013. Directeddifferentiation
of forebrain GABA interneurons fromhuman pluripotent stem cells. Nat. Protoc. 8 (9),
1670–1679.

Macauley, S.L., Sidman, R.L., Schuchman, E.H., Taksir, T., Stewart, G.R., 2008. Neuropathol-
ogy of the acid sphingomyelinase knockout mouse model of Niemann-Pick: a disease
including structure–function studies associatedwith cerebellar Purkinje cell degener-
ation. Exp. Neurol. 214 (2), 181–192.

Matigian, N., Abrahamsen, G., Sutharsan, R., Cook, A.L., Vitale, A.M., Nouwens, A., Bellette,
B., An, J., Anderson, M., Beckhouse, A.G., Bennebroek, M., Cecil, R., Chalk, A.M.,
Cochrane, J., Fan, Y., Feron, F., McCurdy, R., McGrath, J.J., Murrell, W., Perry, C., Raju,
J., Ravishankar, S., Silburn, P.A., Sutherland, G.T., Mahler, S., Mellick, G.D., Wood,
S.A., Sue, C.M., Wells, C.A., Mackay-Sim, A., 2010. Disease-specific, neurosphere-
derived cells as models for brain disorders. Dis. Model. Mech. 3 (11–12), 785–798.

Morrison, S.J., Csete, M., Groves, A.K., Melega, W., Wold, B., Anderson, D.J., 2000. Culture in
reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by
isolated neural crest stem cells. J. Neurosci. 20 (19), 7370–7376.

Muzio, L., Mallamaci, A., 2005. Foxg1 confines Cajal–Retzius neuronogenesis and hippo-
campal morphogenesis to the dorsomedial pallium. J. Neurosci. 25 (17), 4435–4441.

Muzio, L., Di, B.B., Stoykova, A., Boncinelli, E., Gruss, P., Mallamaci, A., 2002. Emx2 and
Pax6 control regionalization of the pre-neuronogenic cortical primordium. Cereb.
Cortex 12 (2), 129–139.

Muzio, L., Soria, J.M., Pannese, M., Piccolo, S., Mallamaci, A., 2005. A mutually stimulating
loop involving emx2 and canonical wnt signalling specifically promotes expansion of
occipital cortex and hippocampus. Cereb. Cortex 15 (12), 2021–2028.

Northcott, P.A., Shih, D.J., Remke, M., Cho, Y.J., Kool, M., Hawkins, C., Eberhart, C.G., Dubuc,
A., Guettouche, T., Cardentey, Y., Bouffet, E., Pomeroy, S.L., Marra, M., Malkin, D.,
Rutka, J.T., Korshunov, A., Pfister, S., Taylor, M.D., 2012. Rapid, reliable, and reproduc-
ible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol.
123 (4), 615–626.

Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan,
C., Hochedlinger, K., Daley, G.Q., 2008. Disease-specific induced pluripotent stem
cells. Cell 134 (5), 877–886.

Pasca, S.P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Pasca, A.M., Cord, B.,
Palmer, T.D., Chikahisa, S., Nishino, S., Bernstein, J.A., Hallmayer, J., Geschwind, D.H.,
Dolmetsch, R.E., 2011. Using iPSC-derived neurons to uncover cellular phenotypes as-
sociated with Timothy syndrome. Nat. Med. 17 (12), 1657–1662.

Pasca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, J.Y.,
O'Rourke, N.A., Nguyen, K.D., Smith, S.J., Huguenard, J.R., Geschwind, D.H., Barres, B.A.,
Pasca, S.P., 2015. Functional cortical neurons and astrocytes from human pluripotent
stem cells in 3D culture. Nat. Methods 12 (7), 671–678.

Putnam, R.W., Filosa, J.A., Ritucci, N.A., 2004. Cellular mechanisms involved in CO(2) and
acid signaling in chemosensitive neurons. Am. J. Physiol. Cell Physiol. 287 (6),
C1493–C1526.

Reynolds, B.A., Rietze, R.L., 2005. Neural stem cells and neurospheres—re-evaluating the
relationship. Nat. Methods 2 (5), 333–336.

Reynolds, B.A., Weiss, S., 1992. Generation of neurons and astrocytes from isolated cells of
the adult mammalian central nervous system. Science 255 (5052), 1707–1710.

Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative
C(T) method. Nat. Protoc. 3 (6), 1101–1108.

Shi, Y., Kirwan, P., Smith, J., MacLean, G., Orkin, S.H., Livesey, F.J., 2012a. A human stem cell
model of early Alzheimer's disease pathology in Down syndrome. Sci. Transl. Med. 4
(124), 124ra29.

Shi, Y., Kirwan, P., Livesey, F.J., 2012b. Directed differentiation of human pluripotent stem
cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7 (10), 1836–1846.

Shi, Y., Kirwan, P., Smith, J., Robinson, H.P., Livesey, F.J., 2012c. Human cerebral cortex de-
velopment from pluripotent stem cells to functional excitatory synapses. Nat.
Neurosci. 15 (3), 477–486, S1.

Xie, Y., Zhang, J., Lin, Y., Gaeta, X., Meng, X., Wisidagama, D.R., Cinkornpumin, J., Koehler,
C.M., Malone, C.S., Teitell, M.A., Lowry,W.E., 2014. Defining the role of oxygen tension
in human neural progenitor fate. Stem Cell Rep. 3 (5), 743–757.

Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H.,
Suzuki, N., 2011. Modeling familial Alzheimer's disease with induced pluripotent
stem cells. Hum. Mol. Genet. 20 (23), 4530–4539.

Yu, J., Chau, K.F., Vodyanik, M.A., Jiang, J., Jiang, Y., 2011. Efficient feeder-free episomal
reprogramming with small molecules. PLoS ONE 6 (3), e17557.

http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0070
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0070
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0070
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0070
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0075
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0075
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0075
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0080
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0080
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0085
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0085
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0085
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0090
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0090
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0095
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0095
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0100
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0100
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0100
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0105
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0105
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0105
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0110
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0110
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0115
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0115
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0120
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0120
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0120
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0125
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0125
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0130
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0130
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0130
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0130
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0130
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0135
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0135
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0135
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0140
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0140
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0140
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0145
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0145
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0150
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0150
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0150
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0155
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0155
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0155
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0160
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0160
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0160
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0160
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0165
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0165
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0170
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0170
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0170
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0175
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0175
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0180
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0180
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0180
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0185
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0185
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0185
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0190
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0190
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0190
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0195
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0195
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0200
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0200
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0205
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0205
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0210
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0210
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0210
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0215
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0215
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0220
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0220
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0225
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0225
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0230
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0230
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0230
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0235
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0235
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0240
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0240
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0240
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0245
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0245
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0250
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0250
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0255
http://refhub.elsevier.com/S1873-5061(15)00149-X/rf0255

	Rapid generation of sub-�type, region-�specific neurons and neural networks from human pluripotent stem cell-�derived neurospheres
	1. Introduction
	2. Materials and methods
	2.1. Maintenance of the H9 lines and generation of the human induced pluripotent stem cell (iPSC) line HFS-1
	2.2. Neuronal initiation to generate neurospheres and neuroectoderm from the h/iPSCs
	2.3. Neuronal induction of the neurospheres and neuroectoderm
	2.4. Generation of the neurosphederm from neurospheres using “AdSTEP”
	2.5. Differentiation of neural progenitors, sub-type specific neurons and region-specific neurons
	2.6. Immunocytochemistry and microscopy
	2.7. Flow cytometry
	2.8. Quantitative real-time polymerase chain reaction (qRT-PCR)
	2.9. NanoString CodeSet design and gene expression quantification
	2.10. Assay of neuronal function with the Fluo-4 Ca2+ fluorescence indicator
	2.11. Transplantation and histological analysis
	2.11.1. Cell transplantation
	2.11.2. Tissue processing
	2.11.3. Immunohistochemical staining and imaging

	2.12. Statistical analysis

	3. Results
	3.1. Ten percent CO2 facilitated the formation of neurospheres from h/iPSCs
	3.2. The AdSTEP mechanical procedure facilitated the generation of neurosphederm and neural stem cells from the neurospheres
	3.3. Generation of sub-type and region-specific neurons from neurosphere-derived neurosphederm
	3.4. Generation of functional synapses and neural networks from neurosphederm in vitro
	3.5. Comparing neurogenesis using the fragmented and non-fragmented neurospheres in the mouse brain

	4. Discussion
	Authors' contributions
	Acknowledgments
	References




