
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Mining Patterns and Networks from Sequence Data

Permalink
https://escholarship.org/uc/item/0n24b7gk

Author
Liu, Honglei

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0n24b7gk
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Mining Patterns and Networks from Sequence Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Honglei Liu

Committee in charge:

Professor Xifeng Yan, Co-Chair
Professor Kenneth S. Kosik, Co-Chair
Professor Ambuj Singh

September 2017

The Dissertation of Honglei Liu is approved.

Professor Ambuj Singh

Professor Kenneth S. Kosik, Committee Co-Chair

Professor Xifeng Yan, Committee Co-Chair

September 2017

Mining Patterns and Networks from Sequence Data

Copyright c© 2017

by

Honglei Liu

iii

To my parents,

Shujie Yan and Dongfang Liu,

who provided me with unconditional love and support

iv

Acknowledgements

My deepest gratitude goes to my Ph.D. advisor, Prof. Xifeng Yan. I’m grateful to

have benefited tremendously from his broad knowledge in the field, his honesty and his

attention to details. He is also a man with endless passion. He taught us to aim high

and achieve big. I have always felt enlightened when he generously shared his invaluable

advice for life and career. He inspired me in so many ways that helped shape who I am

today. I’m truly thankful for his guidance.

I would also like to thank Prof. Kenneth S. Kosik, whom I have worked with since

the start of my Ph.D. studies. Without his help, I wouldn’t have accomplished the works

presented in this dissertation. He helped me build a bridge between computer science

and neuroscience. Furthermore, I want to thank Prof. Ambuj K. Singh for serving on

my committee and providing insightful comments on my dissertation and defense.

I’m very lucky to have worked with many brilliant people. I owe my thanks to my

collaborators: Dr. Fangqiu Han, Yu Su, Dr. Bian Wu, Prof. Huan Sun, Izzeddin Gur,

Semih Yavuz, Dr. Hongjun (Robin) Zhou, Dr. Kristofer Bouchard, Daniel Bridges,

Connor Randall, Prof. Paul Hansma, Prof. Yasser Roudi, Prof. Sara A. Solla and Dr.

Ken Tovar. Not only did they help me significantly in every piece of my work, but also

I learned a lot from them during our collaborations. I also want to thank my lab mates

and friends who have inspired me and supported me during this Ph.D. journey.

During my two internships, it was a great pleasure to work with my fantastic mentors:

Dr. Jocelyne Bruand and Oleksandr Voietsa. They were kind and patient to me. The

knowledge and experiences I learned from them are lifelong assets.

Finally, I want to give special thanks to my girlfriend, Ying Yu, who loved and

supported me throughout this long Ph.D. journey. It wasn’t always happiness on this

journey, but her companionship helped me get through these difficulties.

v

Curriculum Vitæ
Honglei Liu

Education

2012-2017 University of California, Santa Barbara, USA

Ph.D. in Computer Science

Advisor : Prof. Xifeng Yan

Research Areas : sequence mining, active learning, deep learning

2010-2012 Northeastern University (NEU), Shenyang, China

M.S. Computer Science

2006-2010 Northeastern University (NEU), Shenyang, China

B.S., Computer Science

Publications

Yu Su*, Honglei Liu*, Semih Yavuz, Izzeddin Gur, Huan Sun,
Xifeng Yan, Global Relation Embedding for Relation Extraction.
(*: Equal Contribution), preprint arXiv, 2017.

Honglei Liu, Bian Wu, Active Learning of Functional Networks
from Spike Trains, In SDM, 2017.

Honglei Liu, Fangqiu Han, Hongjun Zhou, Xifeng Yan, Kenneth
S. Kosik, Fast Motif Discovery in Short Sequences, In ICDE, 2016.

Xiaochun Yang, Honglei Liu, Bin Wang, ALAE: Accelerating Lo-
cal Alignment with Affine Gap Exactly in Biosequence Databases,
In VLDB, 2012.

Honglei Liu, Xiaochun Yang, Bin Wang, Rong Jin, Approximate
Substring Query Algorithms Supporting Local Optimal Matching,
Journal of Frontiers of Computer Science and Technology, 2011.

vi

In Progress

Honglei Liu, Daniel Bridges, Connor Randall, Sara A. Solla, Bian
Wu, Ken Tovar, Paul Hansma, Xifeng Yan, Kenneth S. Kosik,
Kristofer Bouchard, Prediction and Validation of Inhibitory Con-
nections from Spike Trains

Patents

Honglei Liu, Jocelyne Bruand, Off-target Detection Tool for Strings
with Multi-level Cache, US62/395,288, pending.

Honglei Liu, Xiaochun Yang, Jiaying Wang, Bin Wang, Biological
Sequence Local Comparison Method Capable of Obtaining Com-
plete Solution, CN102750461, issued on April 22, 2015.

Honglei Liu, Xiangfei Meng, An Electric Automobile Battery Re-
placing Device, CN202089042, issued on Dec. 28, 2011.

Experience

Summer 2016 Intern, Facebook, Menlo Park, CA
Topic: Correlation Finding and Indexing for Extremely Large Scale
Time Series Data

Summer 2015 Bioinformatics intern, Illumina, San Diego, CA
Topic: Fast Specificity Checking for Multiplex PCR Primer Design

Honors and Awards

VLDB Conference Travel Award, 2012

Outstanding Graduate Student, Liaoning Province, China, 2011

Jian Long Scholarship, Northeastern University, 2011

Suzhou Industrial Park Scholarship, Northeastern University, 2009

Outstanding Undergraduate Student, Northeastern University, 2009

2nd Prize of National Undergraduate Electronic Design Contest,
China, 2009

1st Prize of the 4th National Undergraduate Intelligent Car Contest,
China, 2009

vii

Abstract

Mining Patterns and Networks from Sequence Data

by

Honglei Liu

Sequence data are ubiquitous in diverse domains such as bioinformatics, computa-

tional neuroscience, and user behavior analysis. As a result, many critical applications

require extracting knowledge from sequences in multi-level. For example, mining frequent

patterns is the central goal of motif discovery in biological sequences, while in computa-

tional neuronal science, one essential task is to infer causal networks from neural event

sequences (spike trains). Given the wide application of pattern and network mining tools

for sequence data, they are facing new challenges posted by modern instruments. That is,

as large scale and high resolution sequence data become available, we need new methods

with better efficiency and higher accuracy.

In this dissertation, we propose several approaches to improve existing pattern and

network mining tools to meet new challenges in terms of efficiency and accuracy. The first

problem is how to scale existing motif discovery algorithms. Our work on motif discovery

focuses on the challenge of discovering motifs from a large scale of short sequences that

none of existing motif finding algorithms can handle. We propose an anchor based

clustering algorithm that could significantly improve the scalability of all the existing

motif finding algorithms without losing accuracy at all. In particular, our algorithm

could reduce the running time of a very popular motif finding algorithm, MEME, from

weeks to a few minutes with even better accuracy.

In another work, we study the problem of how to accurately infer a functional network

from neural recordings (spike trains), which is an essential task in many real world

viii

applications such as diagnosing neurodegenerative diseases. We introduce a statistical

tool that could be used to accurately identify inhibitory causal relations from spike trains.

While most of existing works devote their efforts on characterizing the statistics of neural

spike trains, we show that it is crucial to make predictions about the response of neurons

to changes. More importantly, our results are validated by real biological experiments

with a novel instrument, which makes this work the first of its kind.

Furthermore, while most existing methods focus on learning functional networks from

purely observational data, we propose an active learning framework that could intelli-

gently generate and utilize interventional data. We demonstrate that by intelligently

adopting interventional data using the active learning models we propose, the accuracy

of the inferred functional network could be substantially improved with the same amount

of training data.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Introduction 1
1.1 Mining Patterns . 1
1.2 Mining Networks . 2

2 Fast Motif Discovery in Short Sequences 4
2.1 Introduction . 4
2.2 Preliminaries . 8
2.3 Anchor based similarity . 10
2.4 Anchor based clustering . 16
2.5 Motif Merging and Filtering . 26
2.6 Experiments . 27
2.7 Related Work . 36
2.8 Conclusions . 39

3 Prediction and Validation of Inhibitory Connections from Spike Trains 41
3.1 Introduction . 41
3.2 Methods . 43
3.3 Results . 52
3.4 Discussion . 55

4 Active Learning of Functional Networks from Spike Trains 62
4.1 Introduction . 62
4.2 Preliminaries . 66
4.3 Variance Model . 71
4.4 Validation Model . 77
4.5 Experiments . 79
4.6 Related Work . 84
4.7 Conclusions . 85

x

A Supplementary Materials for
Active Learning of Functional Networks from Spike Trains 86
A.1 Proof of Theorem 3 . 86
A.2 Synthetic Data . 89
A.3 Small Networks . 90

Bibliography 94

xi

Chapter 1

Introduction

1.1 Mining Patterns

Mining patterns from sequence data is an important problem in data mining research.

In this dissertation, we focus on motif discovery which is a fundamental task to many

biological problems such as antibody biomarker identification [1]. Recent advances in

instrumental techniques make it possible to generate thousands of protein sequences at

once, which raises a big data issue for the existing motif finding algorithms: They either

work only in a small scale of several hundred sequences or have to trade accuracy for

efficiency. In this dissertation, we demonstrate that by intelligently clustering sequences,

it is possible to significantly improve the scalability of all the existing motif finding

algorithms without losing accuracy at all. An anchor based sequence clustering algorithm

(ASC) is thus proposed to divide a sequence dataset into multiple smaller clusters so that

sequences sharing the same motif will be located into the same cluster. Then an existing

motif finding algorithm can be applied to each individual cluster to generate motifs. In the

end, the results from multiple clusters are merged together as final output. Experimental

results show that our approach is generic and orders of magnitude faster than traditional

1

Introduction Chapter 1

motif finding algorithms. It can discover motifs from protein sequences in the scale that

no existing algorithm can handle. In particular, ASC reduces the running time of a very

popular motif finding algorithm, MEME[2], from weeks to a few minutes with even better

accuracy.

1.2 Mining Networks

In addition to mining patterns from sequence data, many applications also require

mining networks. For example, inferring functional networks from spike trains is a fun-

damental problem in neuroscience, which could help us understand how neuronal signals

propagate in local networks. Spike trains recorded with Multi-electrode Arrays (MEAs)

have been widely used to study behaviors of neural connections. Studying the dynamics

of neuronal networks requires the identification of both excitatory and inhibitory con-

nections. The detection of excitatory relationships can be inferred by characterizing the

statistical relationships of neural spike trains. However, the identification of inhibitory

relationships is more difficult: distinguishing endogenous low firing rates from active

inhibition is not obvious. In this dissertation, we propose an in silico interventional pro-

cedure that could make predictions about the effect of stimulating or inhibiting single

neurons on the other neurons, and thereby gives us the ability to accurately identify

inhibitory causal relationships. In addition, we have developed a Neural Circuit Probe

(NCP) that can deliver drugs transiently and reversibly on individually identified neurons

to assess their contributions to the neural circuit behavior. With the help of NCP, three

inhibitory connections identified by our in silico modeling were validated through real

interventional experiments.

While the in silico interventional procedure we have proposed could help us iden-

tify inhibitory connections, we also need a unified framework to guide the interventional

2

Introduction Chapter 1

experiments and incorporate both observational and interventional data seamlessly. How-

ever, most of existing works focus on inferring the functional network purely from obser-

vational data, which could lead to undiscovered or spurious connections. We demonstrate

that by adopting experimental data with interventions applied, the accuracy of the in-

ferred network can be significantly improved. Nevertheless, doing interventions in real

experiments is often expensive and must be chosen with care. Hence, in this dissertation,

we design an active learning framework to iteratively choose interventions and learn the

functional network. In particular, we propose two models, the variance model and the

validation model, to effectively select the most informative interventions. The variance

model works best to reveal undiscovered connections while the validation model has the

advantage of eliminating spurious connections. Experimental results with both synthetic

and real datasets show that when these two models are applied, we could achieve sub-

stantially better accuracy than using the same amount of observational data or other

baseline methods to choose interventions.

3

Chapter 2

Fast Motif Discovery in Short

Sequences

2.1 Introduction

Motif discovery, finding sequence patterns from a set of protein sequences, is a very

basic problem in many critical biological and medical applications. It has been extensively

studied for more than a decade. For example, it is widely used to identify transcription

factor binding sites (TFBS) [3] and antibody biomarkers [1]. Studying TFBS could help

us learn the mechanisms that regulate gene expression, while antibody biomarkers are

useful for diagnosis of diseases.

Figure 2.1 shows an example of protein sequences. In these sequences, there are

subsequeces that are almost identical to each other with only a few mismatches. When

aligning these subsequences together, we can extract a sequence pattern, which is also

known as motif. A motif could be represented as a consensus string or a model describing

probabilities of characters appearing at different positions. A data set usually contains

more than one motifs which makes it hard to deal with even for a small number of

4

Fast Motif Discovery in Short Sequences Chapter 2

sequences.

 APFSELREIMHSYRG
 PFSEEAYWHVGGMKA

 LEWFESSGVPFSARS
 RGIGSTLKPFSATRD
 ATFSARWSNMVPDLR

 CFSELPFSVWTPKAC
 PFTEAGITADMWAWV

Figure 2.1: A Motif in Multiple Protein Sequences

Advances in instrumental techniques like Random Peptide Libraries (RPLs) [1] that

generate massive sequences with complex alphabets, e.g., protein sequences, post a Big

Data challenge for motif finding algorithms. For example, it takes MEME [2], a very

popular motif finding algorithm based on Expectation Maximization (EM), almost two

weeks to finish running for a data set with 10k sequences. Several algorithms such

as DREME [4], MEME-ChIP [5] and STEME [6] adopted combinatorial approaches to

improve the speed of MEME. Unfortunately, they can only work with DNA sequences

(4 types of alphabets, A,G,C,T) as they either do exhaustive search or rely on index

structure like suffix tree. A recently published algorithm MUSI [7], faster than MEME,

can be applied to protein sequences (20 types of amino acids). Unfortunately, its accuracy

is far below MEME according to our experiments.

To the best of our knowledge, there is no algorithm that could work with > 10k

sequences with a complex alphabet set and achieve comparable accuracy with MEME.

Rather than developing another motif finding algorithm to outperform MEME, we pro-

pose a new strategy, that is pre-processing sequences with clustering, to divide the data

into multiple small clusters and run existing motif finding algorithms on each cluster.

This strategy has several advantages. First, it could be used in any existing motif finding

5

Fast Motif Discovery in Short Sequences Chapter 2

algorithm. Second, by limiting the input to only a subset of sequences, those time-

consuming algorithms may finish in a reasonable amount of time. Figure 2.2 shows a

sketch of the clustering and motif discovery pipeline. Sequences are first grouped into

clusters before a motif finding algorithm is applied. Motifs discovered from each cluster

are merged together and delivered to users.

Input Sequences

Anchor based
Sequence
Clustering

(ASC)*

Motifs

Traditional Motif Discovery Algorithms

Motif Discovery Merge*

*Algorithms we propose

Figure 2.2: Clustering Sequences for Motif Discovery

Now the key problem is how to cluster the sequences. Could the problem be solved if

we just arbitrarily divide the sequences into several clusters (Partitioning)? The answer

is no since this method will miss most of low frequent motifs. For the same reason,

randomly sampling a subset of sequences will not work either. Another straightforward

approach is clustering sequences based on their overall similarities, for instance, K-means

with edit distance as similarity measure. This will not work for the reason that motifs

only appear in subregions of sequences. Table 2.1 compares the number of motifs found by

aforementioned methods on a real data set. It is clear that direct sampling, partitioning,

and K-means do not work well though they significantly reduce the runtime.

Can we compare sequences based on their most similar subsequences, e.g., longest

common subsequence (LCS)? This solution is intuitive but not scalable: Calculating

LCS of two sequences is nontrivial and the number of comparisons could be quadratic

6

Fast Motif Discovery in Short Sequences Chapter 2

Table 2.1: Comparisons between different methods on a real dataset with 11,642
protein sequences

Methods # of motifs found Runtime (Min.)
MEME 20 two weeks

Sampling 11 79
Partitioning 5 9

K-means 14 32
ASC 24 6

in order to select a cluster center. In this chapter, we propose an anchor based sequence

clustering (ASC) algorithm that could efficiently identify sequences potentially containing

the same motif. ASC could bypass the problem of directly calculating LCSs and identify

cluster centers with only one scan. In this algorithm, each sequence is decomposed

into a set of anchors which are similar to gapped q-grams in other literatures, but with

variable shapes. Sequences are clustered based on anchors they contain to avoid pair-wise

sequence comparisons. In particular, these anchors are not randomly selected. They are

from the most significant ones in the dataset and then iteratively refined. Afterwards,

a set of sequences are sampled from each cluster and provided to an existing algorithm

to find motifs. Table 2.1 shows the superior performance of ASC. We are able to reduce

the running time of MEME from weeks to less than 10 minutes and discover even more

motifs than MEME.

The main contributions of this work are summarized as follows.

• We introduce a new strategy for speeding up motif discovery by pre-processing

sequences with clustering. This strategy is generic for any existing motif finding al-

gorithm and a post-processing pipeline consisting of sampling, filtering and merging

is also built to discover significant motifs.

• We propose an anchor based sequence clustering (ASC) algorithm that could effi-

ciently group sequences containing the same motif together. As far as we know,

7

Fast Motif Discovery in Short Sequences Chapter 2

ASC is the first anchor (gapped q-grams with variable shapes) based clustering

algorithm.

• We provide theoretical analysis for our anchor-based similarity measure and illus-

trate that it can help check if two sequences contain the same motif with high

accuracy.

• We perform extensive experiments with both synthetic and real data sets. The

results show that ASC can discover motifs from protein sequences in the scale that

none of the existing algorithms can handle.

2.2 Preliminaries

Let S = {s1, s2, ..., sN} denote a set of N sequences over a fixed alphabet set Σ =

{β1, β2, ..., β|Σ|} with |Σ| symbols, e.g., |Σ| = 20 for protein sequences. Let s[i, j] denote

the subsequence between the ith and jth (both inclusive) character of sequence s. Usually,

the input sequences have the same length, so we use l to represent the length of the

sequences. Let w be the length of a motif m. We use a vector Θ = (θ1, θ2, ..., θ|Σ|)

to represent the background model which describes probabilities of seeing a character

βi appearing at any position in all the input sequences. θi is called the background

probability of βi, which can be calculated as the number of occurrences of βi divided by

the total number of characters N× l. Table 4.1 summarizes some common notations that

we are going to use in this chapter.

Intuitively, a motif is a sequence pattern that repeatedly appears in S. The colored

subsequences in Figure 2.1 follow a common sequence pattern as they differ from each

other with only a few mismatches. That is, their Hamming distance, which is the number

of different characters when aligned together, is small.

8

Fast Motif Discovery in Short Sequences Chapter 2

Table 2.2: Notations
Notations Description

S A set of input sequences
N Total number of input sequences
Σ Alphabet set
l Length of input sequences
m A motif
w Width of the motif
θi Background probability of βi

Definition 1 (Local Hamming Similarity) Given two sequences s1, s2 and motif

width w, the local hamming similarity between s1 and s2 under w is

lh(s1, s2, w) = max
0≤i≤l1−w
0≤j≤l2−w

h(s1[i, i+ w − 1], s2[j, j + w − 1]),

where l1 and l2 are the length of s1 and s2 respectively, and h(s1[i, i+w−1], s2[j, j+w−1])

is the hamming similarity defined as the number of exactly matched characters between

s1[i, i+ w − 1] and s2[j, j + w − 1]).

RGIGSTLKPFSATRD ATFSARWSNMVPDLR

PFSA

TFSA

Figure 2.3: Local Hamming Similarity

Figure 2.3 shows the local hamming similarity between two sequences is 3 when w = 4.

A motif is a sequence pattern extracted from a set of similar subsequences. One way

of representing motifs is using consensus string.

Definition 2 (Consensus String) Given n similar subsequences S = {s1, s2, ..., sn},

the consensus string is a sequence m whose ith character m[i] = arg maxβ∈Σ f(i, β), where

f(i, β) is the number of times that character β appears in position i for all s ∈ S.

9

Fast Motif Discovery in Short Sequences Chapter 2

For the example shown in Figure 2.1, the consensus string representation of the motif

is PFSE. There are other representations such as position weight matrix (PWM) [2]

(Section 2.5). Our proposed algorithm can work with all the representations.

An occurrence of a motif is a subsequence that matches the motif (approximately).

As shown in Figure 2.1, all the colored subsequences are occurrences of the motif, PFSE.

Given a motif, we usually need to check which sequences contain this motif. Assuming

the motif m is represented as a consensus string, we define the occurrence of motifs as

follows.

Definition 3 (Occurrence of Motifs) Given a motif m of length w, a sequence s

of length w is an occurrence of m if their hamming similarity is equal to or greater than

t. We refer to the occurrence of a motif in a sequence as motif region.

Similarly, we could say a sequence s contains an occurrence of motif m with similarity

t if their local hamming similarity lh(s,m,w) ≥ t. How to choose the value of t is vague.

A statistical approach [8] can bypass this problem by assigning a p-value to each sequence.

A sequence is considered significant when it has a very small p-value, e.g., less than 0.05.

Motif Discovery: Given a set of sequences S, the task of motif discovery is to identify

significant subsets of S that contain motifs and extract them. In this chapter, we focus on

the setting where each sequence is short and contains at most one motif. This is a widely

used setting for motif discovery from peptide sequences [7]. Even under this simplified

setting, none of the existing algorithms works well for a large number of sequences.

2.3 Anchor based similarity

As briefly discussed, clustering sequences based on motifs they contain has several

advantages and could lead us to an efficient solution without developing yet another motif

10

Fast Motif Discovery in Short Sequences Chapter 2

finding algorithm. However, the dilemma is given a sequence dataset, we do not know

the motifs beforehand. Therefore, we need to develop a measure that is able to cluster

the data without extracting motifs first.

Definition 4 (Anchor) A q-anchor consists of q characters (βi1 , βi2 , ..., βiq) drawn from

Σ with replacement, and βij appears before βij+1
with gaps between them.

Definition 5 (Anchor based Similarity) Given two sequences s1, s2 and their cor-

responding anchor sets A1, A2, the anchor based similarity between s1 and s2 is |A1∩A2|

which is the number of common anchors they share.

For example, the set of 2-anchors for PFSE is {PF, FS, SE, P S, F E, P E}. The

concept of anchor is similar to gapped q-gram [9] except that it has variable shapes.

Instead of using local hamming similarity, we propose to represent a sequence as a vector

of anchors and use the number of common anchors to cluster sequences. In order to

make anchor-based clustering work, we need to build a connection between anchor-based

similarity and sequences that contain a motif.

RGIGSTLKPFSATRD ATFSARWSNMVPDLR
... ...

AT, SA, FS,
F_A, S_ _ _P

RG, R_I, R_ _G,
R_ _ _S, …, RD

A_F, A_ _S, A_ _ _A,
…, D_R, LR

Figure 2.4: Common 2-Anchors

Figure 2.4 shows two sequences and their 2-anchors. Among all the five common

2-anchors, {FS, SA, F A} are from motif regions shown in Figure 2.3. It is possible

for two random sequences to contain some common anchors. However this probability

is relatively small compared to the cases where two sequences contain the same motif.

11

Fast Motif Discovery in Short Sequences Chapter 2

We first analyze the probability of two sequences sharing at least d common anchors in

these two cases as follows. Then we will show that when q-anchors are selected first, the

chance for a random sequence of length l to contain d q-anchors is much smaller.

Here and throughout this section, we assume in a random sequence model, called

the background model, all characters in the alphabet set Σ appear with equal probability.

This assumption simplifies the presentation of theorems. We say a sequence pair contains

an anchor if both sequences in the pair contain the anchor.

Theorem 1 Given a pair of sequences of length l drawn from the background model, the

probability that this sequence pair contains at least d common q-anchors is at most

1
d|Σ|q

∑l
i=q

(
i−2
q−2

)
(l − i+ 1)2. When q = 2, this probability is upper bounded by l3

3dΣ2l−2 .

We prove this theorem by following a counting argument: we first focus on the number

of common anchors shared by a sequence pair and compute the sum, denoted as Tca, of

this number among all sequence pairs; then the number of sequence pairs that contain

at least d common anchors is at most Tca
d

; thus the probability of one sequence pair

containing at least d common anchors will be upper bounded by Tca
d

divides by the total

number of possible sequence pairs Ts. We compute Tca and Ts in the following two

lemmas.

Lemma 1 The total number of possible length l sequence pairs Ts = |Σ|2l. Those se-

quence pairs appear with equal probability in the background model.

Proof: Each position in length l has |Σ| possible characters. Then the total number

of possible length l sequence pairs Ts = |Σ|2l, as one sequence pair has 2l positions. Note

that all characters in alphabet set Σ appear with equal probability in the background

model. Therefore all sequence pairs appear with equal probability.

12

Fast Motif Discovery in Short Sequences Chapter 2

Lemma 2 Let S be the set of all possible sequences and let Nq(s1, s2), s1, s2 ∈ S, be

the number of common q-anchors shared by s1 and s2. Then Tca =
∑

s1, s2∈S Nq(s1, s2) =

|Σ|q ·
∑l

i=q

(
i−2
q−2

)
(l − i+ 1)2.

Proof: Firstly, for each length k q-anchor, here we use a length 3 anchor A B as an

example, we count the number of possible positions in one sequence that contains this

anchor. If a sequence s1 contains anchor A B, this anchor could appear in l−k+1 = l−2

positions in this sequence. Then if two sequences in a sequence pair both contain anchor

A B, this anchor could appear in (l − k + 1)2 positions pairs in this sequence pair.

Secondly, there are |Σ|q possible choices for the characters in a q-anchor. Since the

length of sequences is l, the length of a q-anchor including gaps could range from q to l.

And for each possible length i, there are
(
i−2
q−2

)
ways to place the q − 2 characters other

than the start and end of the q-anchor. Therefore the total number of anchor matches

between all possible sequence pairs will be |Σ|q ·
∑l

i=q

(
i−2
q−2

)
(l − i+ 1)2.

Now we are ready to show the proof of Theorem 1.

Proof: Clearly, the number of sequences pairs which contain at least d q-anchors is

upper bounded by the number of common q-anchors Tca divides by d. Then the probabil-

ity of a sequence pair containing at least d q-anchor is Tca/(dTs) = 1
d|Σ|2l−q

∑l
i=q

(
i−2
q−2

)
(l−

i+ 1)2. Specially, when q = 2, Tca/(dTs) = 1
d|Σ|2l−q

∑l
i=q

(
i−2
q−2

)
(l − i+ 1)2 ≤ l3

3dΣ2l−2 .

Corollary 1 Given a sequence s of length l drawn from the background model and d

random q-anchors, the probability of s containing all d anchors is (
(l
q)

|Σ|q
∑l

i=q (i−2
q−2)

)d. When

q = 2, this probability is (l
2|Σ|2)d.

Proof: It is clear to see that sequence s contains at most
(
l
q

)
different anchors. By

Lemma 4 (Section 2.4.1), the number of possible q-anchors is |Σ|q
∑l

i=q

(
i−2
q−2

)
. Therefore

the probability of s containing one random q-anchor is
(l
q)

|Σ|q
∑l

i=q (i−2
q−2)

. As these d anchors

13

Fast Motif Discovery in Short Sequences Chapter 2

are independently selected, the probability of s containing all d anchors is (
(l
q)

|Σ|q
∑l

i=q (i−2
q−2)

)d.

Corollary 1 shows that the chance for a random sequence to contain multiple q-

anchors from a motif could be very low. If we are able to extract a few q-anchors from

potential motifs, we can quickly remove those sequences that do not contain any motif

and also group those sequences that contain the same motif together. This property will

be used in the design of anchor-based clustering in Section 2.4. Theorem 1 and Corollary

1 together show that the chance for two sequences accidently sharing d common anchors

is much higher than the chance for one sequence containing d pre-selected anchors.

Now we move to estimate the probability of discovering common anchors in motif

regions of a pair of sequences. Let s1 and s2 be two sequences which contain motif m of

width w with similarity t. Common anchors in s1 and s2 can be either anchors in motif m

or other anchors happen to be contained in both sequences. However, anchors in motif

m more likely appear as common anchors than other random anchors. We here use the

probability of discovering common anchors only from the motif as a lower bound. Denote

the motif region in s1 and s2 as o1 = o11o12 . . . o1w and o2 = o21o22 . . . o2w, respectively.

The following lemma shows that we could compute the number of common anchors in o1

and o2 by simply counting the number of identical characters found in the same positions

of o1 and o2.

Lemma 3 Given two sequences s1 and s2 and their corresponding motif occurrence o1

and o2, let I = {i|δ(o1i, o1i) = 1}, where δ(·, ·) returns 1 if its two arguments are the same

and returns 0 otherwise. Then I is the set of positions at which o1 and o2 contain the

same character. Let k = |I| is the cardinality of set I, then the number of the common

anchors in the motif regions of s1 and s2 is at least
(
k
q

)
.

14

Fast Motif Discovery in Short Sequences Chapter 2

Proof: It is easy to see that characters at the ith position of o1 and o2 are the same

if i ∈ I. Then any q-anchor composed by characters at q positions drawn from set I

without replacement is a common anchor of of s1 and s2. Therefore the number of the

common anchors in the motif regions of s1 and s2 is at least the number of draws, which

is
(
k
q

)
.

The above theorem shows that if we want to compute the probability of discovering

d common anchors in o1 and o2, we could (1) find the smallest integer k which satisfies(
k
q

)
≥ d, and (2) compute the probability of having the same characters in k positions of

o1 and o2. We apply this idea in the following theorem.

Theorem 2 Let k be the smallest integer which satisfies
(
k
q

)
≥ d. Given two sequences

s1 and s2 which contain motif m of length w with similarity t, the probability that s1 and

s2 share at least d common q-anchors is at least
∑k−1

i=0 (t
i)(

w−t
t−i)

(w
t)

.

Proof: We only need to compute the probability of having the same characters in

k positions of o1 and o2. Motif occurrence o1 share the same character with motif m at

at least t positions. Without loss of generality, we assume that o1 and m share the same

characters at the first t positions. Motif occurrence o2 also share the same character with

motif m at at least t positions. Consider event Ai = {When drawing t positions without

replacement from a length w motif, i positions are chosen in the first t positions and t− i

positions are chosen from the rest w− t positions}. The probability of o1 and o2 share the

same characters at no less than k positions is
∑t

i=k Pr{Ai}, as we assume that o1 and m

share the same characters at the first t positions. Note that the probability of event Ai

is
(t
i)(

w−t
t−i)

(w
t)

. Therefore, the probability of o1 and o2 sharing at least d common q-anchors

is lower bounded by
∑t

i=k Pr{Ai} =
∑t

i=k (t
i)(

w−t
t−i)

(w
t)

.

In order to investigate how different values of q will affect our anchor based similarity

measure, we vary q and calculate the probabilities according to Theorem 1, Corollary 1

15

Fast Motif Discovery in Short Sequences Chapter 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4 5

P
ro

b
a

b
ili

ty

q

Random sequences
Sequences with

 common motif

(a) Probabilities from Theorem 1 and
Theorem 2

0
10

-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

2 3 4 5

P
ro

b
a

b
ili

ty

q

Random sequences
Random sequences vs.

 random anchors

(b) Probabilities from Theorem 1 and
Corollary 1

Figure 2.5: The probabilities that two random sequences and two sequences containing
the same motif share at least d common q-anchors, and the probability that a random
sequence contains d random q-anchors when l = 15, w = 10, t = 7, d = 5.

and Theorem 2. Figure 2.5 shows the probabilities when we fix l = 15, w = 10, t = 7, d =

5 and range q from 2 to 5. As we can see, even though all the probabilities drop when

q is increased, for two sequences containing the same motif, their probability of sharing

d common q-anchors is always much higher than sequences that are merely generated

according to the background model. And given d random q-anchors, the probability that

a sequence contains them is extremely low. With this property, we could use the anchor

based similarity between two sequences to indicate their probability of containing the

same motif and further make clustering decisions.

2.4 Anchor based clustering

Recall that there are mainly two challenges for clustering sequences based on motifs

they contain: (1)Motifs are unknown beforehand, and (2) Pairwise sequence comparison

shall be avoided. By adopting the concept of anchor based similarity measure, both

problems can be avoided. In this section, we are going to introduce the design of anchor-

based clustering.

16

Fast Motif Discovery in Short Sequences Chapter 2

According to our theoretical analysis in Section 3, the probability for two random

sequences to have common anchors is much lower than sequences containing the same

motif. Thus we derive an initial design of our algorithm as follows. A sequence is

randomly picked as a cluster center, and then all the other sequences are compared

with it using anchor based similarity measure. For any sequence, if its anchor based

similarity with the center is equal to or greater than a threshold, it will be captured by

this cluster. Repeat this for the rest of sequences until there is no sequence left. This

method has two drawbacks. If we continuously choose sequences not containing any

motif as cluster centers, the number of comparisons could be as large as O(N2) which is

no better than pairwise comparisons. Furthermore, it might generate many small useless

clusters for sequences that do not contain any motif; yet one still needs to run a motif

finding algorithm on these clusters.

Running a traditional K-means algorithm on the anchor representation of sequences

is also problematic. The number of comparisons could be quadratic with respect to the

number of sequences in order to calculate the mean or centroid of a cluster. Hence we

propose an anchor based sequence clustering (ASC) algorithm. ASC iteratively clusters

sequences and selects a few anchors that are likely from potential motifs as cluster cen-

ters. Each sequence is first decomposed to a set of anchors and then clustered based

on their corresponding anchors. Instead of using the mean or centroid of the sequences

like traditional K-means, we carefully (re)select a set of anchors to represent the most

distinctive features of a motif as the cluster center at each iteration. At first, K cen-

ters are initialized. In each iteration, sequences are assigned to their closest cluster and

then the center of each cluster is adjusted. Not only is the center adjusted based on the

new membership, but the anchor set used to represent the center is also adjusted. This

process is repeated until all the clusters are stabilized.

Algorithm 1 outlines the anchor based sequence clustering algorithm. In our al-

17

Fast Motif Discovery in Short Sequences Chapter 2

gorithm, a cluster center is a set of anchors, not the motif or the consensus string of

sequences in the cluster.

Algorithm 1: Anchor based Sequence Clustering

input : A set of sequences S, the number of clusters K, the number of anchors d
in a cluster center

output: K clusters of sequences
for si ∈ S do

Decompose si into a set of anchors
end
Calculate the odd score (Section 2.4.1) of all the anchors
Select top d×K anchors based on their odd scores and randomly divide them into
K anchor sets; each has d anchors
repeat

Assign each sequence to a cluster
Adjust the center of each cluster

until termination condition (Section 2.4.4)
return sequences in each cluster

2.4.1 Choose Initial Anchors

Lemma 4 Given a set of sequences with length l, the maximum number of q-anchors

(q ≥ 2) that could possibly appear in it is |Σ|q ·
∑l

i=q

(
i−2
q−2

)
. It is |Σ|2 · (l− 1) when q = 2.

Proof: For each possible length i, there are
(
i−2
q−2

)
ways to place the q− 2 characters

other than the start and end of the q-anchor. And there are |Σ|q possible choices for the

characters for each of q-anchor placement. Therefore the maximum number of possible

q-anchors in length l sequence is |Σ|q ·
∑l

i=q

(
i−2
q−2

)
.

For example, if |Σ| = 20 and l = 15, the number of possible 2-anchors is 5,600.

The number of possible q-anchors increases exponentially with q as shown in Figure 2.6.

Rather than using all q-size anchors, we propose an anchor filtering method by comparing

the background probability and the observed probability of an anchor.

18

Fast Motif Discovery in Short Sequences Chapter 2

Definition 6 (Anchor’s Background Probability) Given a q-anchor a, let t be

its length including gaps. Its background probability

Pbackground(a) = 1− (1−
∏
βi∈a

θi)
l−t+1,

where l is the length of sequences.

Definition 7 (Anchor’s Observed Probability) Given a q-anchor a, its observed

probability

Pobserved(a) =
f(a)

N
,

where f(a) is the number of sequences that contain the anchor a and N is the total

number of sequences.

Those anchors that are over-represented are more useful for clustering sequences. So

all the anchors that have Pobserved . Pbackground will be discarded.

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

2 3 4 5

#
 o

f
q

-a
n
c
h
o

rs

q

Before Filtering
After Filtering

Figure 2.6: The numbers of q-anchors before and after filtering for a data set of 11,642
protein sequences

Figure 2.6 illustrates the effectiveness of our filtering method on a data set of 11,642

protein sequences. More than half of anchors are filtered out by this method. It is getting

more effective with the increase of q.

19

Fast Motif Discovery in Short Sequences Chapter 2

Intuitively, we want to use anchors that are uniquely derived from motif regions as

the cluster center, such that the number of anchors a sequence shares with the center

could indicate how likely this sequence contains the motif. That being said, we use d

anchors as the center of a cluster. These d anchors represent the most distinguishable

features of a motif. Thus the clustering algorithm will cluster the sequences based on

which features they contain the most.

The first step of the clustering algorithm would be initializing centers for clusters.

One way of doing this is to randomly assign some anchors as the center of a cluster. But

this could make our algorithm take more iterations to converge or easily get stuck in local

optimal. Here, we propose an initialization method based on the odd score of anchors.

Recall that Pbackground and Pobserved are the background probability and the observed

probability of seeing a sequence containing an anchor respectively. We use the odd score

to indicate how much an anchor is different from the background.

Definition 8 (Odd Score) The odd score of anchor a is defined as the log ratio between

the observed and background probabilities of a,

S(a) = logPobserved(a)− logPbackground(a).

For an anchor, a higher odd score means it is more distinguishable from the back-

ground, thus having a higher probability of belonging to a motif. Therefore, before

initializing centers, we first calculate the odd score for anchors and then rank them ac-

cordingly. Assume we have K cluster centers (later we will remove this requirement) and

each cluster center has d anchors, we select the top K × d anchors and randomly draw d

anchors without replacement as each cluster’s center.

20

Fast Motif Discovery in Short Sequences Chapter 2

2.4.2 Adjusting Anchors

Sequence Assignment. Let C = (C1, C2, ..., CK) refer to the K centers of clusters. In

each iteration. the ith sequence si will be assigned to its closest center C ∈ C. Since each

sequence is represented as a set of anchors, we use Ai to denote the set of anchors of si.

The distance between si and a cluster center Ck is calculated as

dist(si, Ck) = |Ck| − |Ai ∩ Ck|,

where |Ck| (i.e, d) is the number of anchors in the kth cluster’s center and |Ai ∩ Ck| is

the number of common anchors between the sequence and the center. Then for si, the

closest center C can be found by

C = arg min
C∈C

dist(si, C).

We restrict that one sequence can only belong to one cluster as in our setting one

sequence contains at most one motif.

Center Adjustment. In each iteration, centers of clusters are adjusted according to the

sequences assigned to each cluster. In order to select the anchors that not only belong

to a motif, but also represent the motif’s most distinguishable features, we propose a

ranking function based on the abundance score proposed as follows.

Definition 9 (Abundance Score) For the kth cluster and an anchor a, let fk(a) be

the number of sequences in this cluster containing the anchor and Nk be the total number

of sequences in this cluster. The abundance score is defined as

Sk(a) = log
fk(a)

Nk

− log
f(a)

N
.

21

Fast Motif Discovery in Short Sequences Chapter 2

For each cluster, we select d anchors with the highest abundance scores because they

are more abundant in the cluster than in the whole set of sequences. The anchors of

a motif are likely the most abundant ones when most of the sequences in the cluster

contain the motif.

2.4.3 Extra cluster

In addition to the K clusters, we set up an extra cluster to collect sequences that

do not share any anchor with the existing cluster centers. This is essential due to two

cases: (1) Not all the sequences in the data set contain motifs, and (2) If the number of

sequences that contain a motif is small, the anchors of that motif might not be selected.

In this case, the corresponding sequences will not belong to any cluster. If we allow the

sequences in these cases to be placed into other clusters, they could potentially affect the

center adjustment process.

2.4.4 Termination Condition

The goal of our clustering algorithm is to minimize the distance between sequences

and their cluster center so that sequences in a cluster will have a higher probability of

containing the same motif. This objective can be captured by calculating the entropy of

anchors in each cluster. The entropy of the kth cluster is

H(Ck) = − 1

|Ck|
∑
a∈Ck

fk(a)

Nk

log
fk(a)

Nk

.

We want to minimize this entropy to ensure that most of sequences in the cluster contain

anchors in the center. Therefore, the entropy can be used to measure the quality of the

cluster. For each cluster, we re-calculate H(Ck) using this objective function after the

22

Fast Motif Discovery in Short Sequences Chapter 2

assignment of sequences. Assume H i(Ck) and H i+1(Ck) are the entropy scores after the

ith and (i+ 1)th iteration for the kth cluster. Define

δk = H i+1(Ck)−H i(Ck).

We stop updating the kth cluster if δk is smaller than a pre-defined threshold.

For each iteration, the computational complexity comes from two parts: comparing

each sequence with centers and selecting top anchors according to their abundance scores.

Since we haveN sequences, K clusters, and d anchors per cluster, the number of sequence-

anchor comparisons would be O(d ·K ·N). And the time complexity of checking whether

an anchor is contained by a sequence is constant since we have built inverted index with

bit vectors of sequence ids for anchors. The time complexity of enumerating of all q-

anchors in sequences of length l is O(lq ·N). Assume the total number of anchors is |A|,

the complexity of selecting top d anchors for K clusters is O(K · |A|) in the worst case.

The complexity of each iteration is O(d ·K · N + lq · N + K · |A|) which is linear with

respect to the number of sequences N , the number of clusters K, and the number of

anchors d. Note that this complexity is only valid for one iteration. ASC takes multiple

iterations to finish the clustering task. Though the number usually is small, it might

change with respect to d.

One issue we shall pay attention to is that |A| = |Σ|q ·
∑l

i=q

(
i−2
q−2

)
according to Lemma

4. This complexity is exponential in terms of q. Fortunately, the results are already pretty

good when we set q = 2 according to our experiments. If not specifically mentioned, we

will be using 2-anchors in our implementation.

23

Fast Motif Discovery in Short Sequences Chapter 2

2.4.5 Eliminating K

The cluster number K corresponds to the number of motifs within the dataset, which

usually is not known beforehand. In practice, our algorithm still works when K is not

equal to the true number of motifs.

1. K is smaller than the true number of motifs. In this case, one cluster may contain

two or more motifs. The existing motif discovery algorithms such as MEME [2] can

handle sequence datasets with multiple motifs inside.

2. K is larger than the true number of motifs. In this case, two clusters may contain

the same motif. It is fine to have duplicate motifs. Section 2.5 will discuss merging

motifs.

Since our goal is to find motifs in sequences, not to achieve the best clustering result,

we do not have a high requirement on the quality of clusters. The above two cases show

that the setting of K is not critical in our method.

To further reduce the number of parameters, we propose a recursive clustering frame-

work to eliminate parameter K. At first the whole pool of sequences are divided into

two groups using our anchor based sequence clustering algorithm. Then each group is

recursively clustered until all of its children can not be further divided into more clusters.

Finally, we combine all the extra clusters into one set of sequences and rerun this whole

process again to generate more clusters. This recursive process runs till the size of the

combined extra clusters is small enough for the traditional motif finding algorithms to

handle.

Figure 2.7 gives an example where the sequences are divided into 11 clusters. As

the sequences are continuously being divided into two groups, some are marked as final

clusters as the size of their children is smaller than a threshold τ , which is the maximum

24

Fast Motif Discovery in Short Sequences Chapter 2

number of sequences that existing motif finding algorithms such as MEME can handle

(we set τ = 600 by default). Then after 8 clusters are generated, all the extra clusters are

combined together and go through the process recursively to generate 3 more clusters.

sequences

1 2

3 4

5 76 8

9 10 11

extra clusters

final
clusters

combined
extra clusters

recursive clustering

Figure 2.7: An example of the recursive clustering framework in which a set of se-
quences is divided into 11 groups

This framework is different from traditional hierarchical clustering as we actually have

two layers: inner loop and outer loop. Inner loop carries out recursive clustering while

the outer loop collects the sequences that are considered as ”random” in each iteration

to ensure the capture of low frequent motifs.

25

Fast Motif Discovery in Short Sequences Chapter 2

2.5 Motif Merging and Filtering

Similar motifs might be discovered in different clusters. Hence, we need to merge

them if they are close to each other. If motifs are represented as consensus string, we

could use string distance measure such as hamming distance to cluster them. If motifs

are represented as position weight matrix (PWM), we could use a similarity measure

based on Kullback-Leibler (KL) divergence.

Definition 10 (Position weight matrix (PWM)) For a motif with width w, the

PWM is a matrix M with size of w× |Σ|. Mij =
f(i,βj)

n
which is the probability of seeing

the character βj in position i of the motif.

Since discovered motifs might have different lengths, we need to consider all the

possible ways of aligning two motifs. We first segment motifs with a sliding window and

compare the motif segments using the slide window. The length of the sliding window is

chosen as the minimum length of motifs wmin.

The distance of two PWMs is defined as the minimum distance between their segments

of length wmin and the distance of segments is defined as the average distance of their

rows. Let M and M ′ denote the PWMs of two motifs, the distance between their ith and

jth rows is defined as

DKL(Mi∗||M ′
j∗) =

|Σ|∑
t=1

Mit log
Mit

Mjt

,

where Mi∗ and Mj∗ are the ith and jth rows in the corresponding PWMs. The distance

between M and M ′ is

DKL(M ||M ′) = min
i,j

1

wmin

wmin−1∑
t=0

DKL(M(i+t)∗||M ′
(j+t)∗),

where 1 ≤ i ≤ w − wmin + 1 and 1 ≤ j ≤ w′ − wmin + 1.

26

Fast Motif Discovery in Short Sequences Chapter 2

If DKL(M ||M ′) ≤ θ (we set θ = 1.5), the two motifs are considered to be similar.

The sequences in their corresponding clusters will be merged together and we go through

the motif discovery process again to get a unified motif.

2.6 Experiments

In this section, we perform experiments to evaluate the anchor based sequence clus-

tering (ASC) algorithm on both synthetic and real data sets. We have built the whole

pipeline of motif discovery upon MEME [10], MUSI [7], GibbsCluster [11] and ACME [12].

With ASC being applied, we refer to them as ASC+MEME, ASC+MUSI, ASC+GibbsCluster

and ASC+ACME. It is worth mentioning that ASC can be adopted by any existing motif

finding algorithm. (1) We first show how much ASC can actually improve existing motif

finding algorithms in terms of runtime without a quality trade-off. (2) We then examine

the characteristics of ASC and verify the design.

MEME is the most popular motif discovery algorithm with high discovery rate. In

comparison with MEME, MUSI and GibbsCluster are the two state-of-the-art proba-

bilistic methods that were developed to improve the runtime with an accuracy trade-off.

ACME is a recently proposed parallel motif extracting algorithm based on suffix tree.

It’s designed to extract motifs from an extremely long sequence and reported scaling

to large alphabet set. When ASC is applied to these algorithms as a pre-processing

step, it can be five orders of magnitude faster than MEME and 50+ times faster than

MUSI/GibbsCluster/ACME, without losing any accuracy. All the experiments are con-

ducted on a server with 2.67GHz Intel Xeon CPU (32 cores) and 1TB RAM. The real

datasets and the source code are available at http://www.cs.ucsb.edu/~honglei/abp/

download.htm.

27

http://www.cs.ucsb.edu/~honglei/abp/download.htm
http://www.cs.ucsb.edu/~honglei/abp/download.htm

Fast Motif Discovery in Short Sequences Chapter 2

2.6.1 Data Sets

We compare ASC with other algorithms using both real and synthetic data sets. Only

protein sequences are used in our experiments as there already exist several methods

[4, 5, 6] that work very well for large scale DNA sequences. In the real dataset, we

directly compare the quality of discovered motifs, while in the synthetic data, we embed

some motifs and treat them as ground truth. Most of our data sets contain fairly short

sequences, which is a common setting in deep sequencing phage-selected peptide datasets

[13, 14] for which none of the existing tools scales well.

Real data. For the real data, we use 5 datasets of protein sequences as shown in

Table 2.3. Celiac is from [1], consisting of 11,642 peptide sequences recognized by serum

antibodies from patients with Celiac Disease. Each sequence in this data set has a length

of 15. The other 4 datasets, FXIIa, uPA, SrtA and PK are from [13], containing shorter

sequences ranging from 8 to 10.

Table 2.3: Real datasets
Name # of sequences Length of sequences
Celiac 11,642 15
FXIIa 13,945 10
uPA 5,525 9
SrtA 4,993 8
PK 2,149 8

Synthetic data. We generate synthetic data sets using the same procedure as shown in

[15]. A set of N sequences with length l are generated by randomly choosing characters

from the protein alphabet set Σ (total 20 amino acids). Then K sequences with length w

are generated as parent motifs in the same manner. Finally, each parent motif is planted

to p percent of all the sequences. And e characters of the parent motif are randomly

mutated to other characters in Σ each time before being planted into a sequence. The

values of w, p and e are integers randomly drawn from [6, 12], [1, 20] and [0, d0.3we]
28

Fast Motif Discovery in Short Sequences Chapter 2

respectively to mimic the real data set, where d0.3we represents the smallest integer not

less than 0.3w. We generate different data sets by varying l, K and N . In order to

test how the noise in the data set would affect our results, we also generate data sets by

gradually increasing e from d0.3we to d0.9we.

2.6.2 Motif Discovery

Real Data. Since MEME usually finds more and better motifs than MUSI and Gibb-

sCluster, both of which trade accuracy for efficiency. We first compare the quality of

motifs discovered by ASC+MEME with MEME.

For the 11,642 protein sequences in Celiac, MEME is applied to find 20 motifs from it.

Then, we redo the process of motif discovery again with ASC+MEME (MEME is set to

find 20 motifs in each cluster) and compare their results. We say that a motif x discovered

by MEME is successfully recalled if there exists a motif y in ASC+MEME’s results and

DKL(Mx||My) ≤ 1.5 [16]. Table 2.4 shows the results of ASC+MEME with respect to

different numbers of clusters. It is possible for the number of discovered motifs to be

smaller than the number of recalled motifs since MEME may return duplicate motifs

while we have merged those motifs. With the increasing cluster number, ASC+MEME

not only recalls all the 20 motifs discovered by MEME, but also discovers new motifs.

When we remove the k constraint and use the framework proposed in Section 2.4.5 to

automatically generate clusters, 20 motifs can be fully recovered.

Table 2.4: Motifs returned by ASC+MEME for Celiac
of clusters # of motifs recalled # of motifs found

10 17 16
20 18 19
40 20 22
60 20 24

w/o k 20 24

29

Fast Motif Discovery in Short Sequences Chapter 2

For the other 4 real datasets, we use the motifs reported in [1] as ground truth. For

MEME, we set it to find 10 motifs which is already larger than the number of reported

motifs. For ASC+MEME, we try k = 10 and the case with k removed (MEME is still

set to find 10 motifs). Both MEME and ASC+MEME can recall all the motifs that are

reported by [1]. Table 2.5 shows both of them run better and ASC+MEME finds more.

Table 2.5: Comparisons with the reported motifs
FXIIa uPA SrtA PK

of reported motifs 2 2 1 1
MEME 2 4 1 2

ASC+MEME (k = 10) 7 4 2 2
ASC+MEME (w/o k) 7 4 2 2

Though MEME and ASC+MEME both can recall all the originally reported motifs

, they differ a lot in efficiency. The only two datasets MEME can finish running within

24 hours are SrtA and PK while ASC+MEME only takes minutes to run for each of the

4 datasets as shown in Figure 2.8.

 0

 5

 10

 15

 20

 25

Celiac FXIIa uPA SrtA PK

T
im

e
 (

M
in

.)

Real data sets

ASC+MEME (k=10)
ASC+MEME (w/o k)

Figure 2.8: Runtime of ASC+MEME for the real data sets

Synthetic Data. In the synthetic data experiment, we count the number of planted

motifs discovered by each method. For MEME and GibbsCluster, we set the number

of clusters identical to the number of planted motifs. For MUSI, since we always get

a segment fault whenever we set the number of motifs larger than 10, we set it to 10

30

Fast Motif Discovery in Short Sequences Chapter 2

through the experiments. For ACME, because it requires several additional parameters

(minimum number of occurrences, maximum number of allowed mismatches and number

of threads) than those probabilistic methods, we report its results separately at the end

of this section.

Since the planted motifs are a kind of consensus strings, we extract the consensus

strings from each probabilistic method by using the most frequent characters at each

position of a motif. We say that a planted consensus string x is recalled if there exists a

consensus string y in the result such that lh(x, y,min(|x|, |y|)) ≤ 2, where min(|x|, |y|)

is the smaller length of x and y. We conduct experiments by fixing d = 5 and varying

l and K, where d is the number of anchors in each cluster center, l is the length of

input sequences and K is the number of planted motifs. Figure 2.9 shows the number of

recalled motifs for these methods when we fix l = 15. We also randomly sample 10% of

all the sequences in the data set and run MEME, which is referred as Sampling+MEME.

Moreover, we refer to the naive method which randomly divides sequences into several

clusters as random sequence clustering (RSC). RSC+MEME fails to discover most of the

planted motifs. In the contrast, ASC+MEME (ASC+MUSI and ASC+GibbsCluster)

outperforms the original algorithm MEME (MUSI and GibbsCluster). We then conduct

experiments to test our method’s robustness with respect to the sequence length. Figure

2.10 shows the number of recalled motifs when we fix K = 20 and vary l. Due to space

constraint, we omitted the results of RSC+MEME since they follow a similar trend. The

improvements of ASC over existing motif finding algorithms are consistent for different

l.

Next, we check the robustness of these algorithms by gradually increasing the noise

(the number of mutated characters e) when a motif is planted to sequences. We fix

l = 15, d = 5, K = 10, N = 1k and compare our results with MEME and GibbsCluster.

We do not include MUSI here because it fails to run with unknown error. The reason

31

Fast Motif Discovery in Short Sequences Chapter 2

 0

 5

 10

 15

 20

 25

 30

 35

10 15 20 25

N
u
m

b
e
r

o
f
re

c
a
lle

d
 m

o
ti
fs

K (number of motifs)

ASC+MEME
Sampling+MEME

RSC+MEME
ASC+GibbsCluster

GibbsCluster
ASC+MUSI

MUSI

Figure 2.9: Recalled Motifs: d = 5, N = 10k, l = 15, varying K

 0

 5

 10

 15

 20

 25

 30

15 20 25 30

N
u
m

b
e
r

o
f
re

c
a
lle

d
 m

o
ti
fs

l (length of sequences)

ASC+MEME
Sampling+MEME

ASC+GibbsCluster
GibbsCluster

ASC+MUSI
MUSI

Figure 2.10: Recalled Motifs: d = 5, N = 10k,K = 20, varying l

we choose such a small data set is because it takes too much time for MEME to run on

a larger data set. As shown in Figure 2.11, ASC+MEME’s accuracy is comparable to

MEME even when there are a large amount of noises. ASC+MEME even recalled more

motifs than MEME when e = 0.6w and 0.8w where w is the width of the planted motif.

 0

 2

 4

 6

 8

 10

 12

 14

0.3w 0.6w 0.7w 0.8w 0.9w

N
u

m
b

e
r

o
f

re
c
a

lle
d

 m
o

ti
fs

e (number of mutated characters)

ASC+MEME
MEME

GibbsCluster

Figure 2.11: Number of recalled motifs when l = 15, d = 5, K = 10, N = 1k with different e

We then examine the runtime of these methods by fixing d = 5, N = 10k, and

varying l and K. In Figure 2.12, we omitted the results of MEME because it takes more

32

Fast Motif Discovery in Short Sequences Chapter 2

than two weeks to run for one data point. Figure 2.12(a) shows the overall runtime

when we fix l = 15 and vary K. Note that the runtime of ASC+MEME (ASC+MUSI

and ASC+GibbsCluster) is the cumulative running time of ASC and MEME (MUSI and

GibbsCluster). ASC+MEME is much faster than MEME, MUSI and GibbsCluster, and

its runtime does not change much over K. ASC+MUSI is still two orders of magnitude

faster than MUSI and GibbsCluster. Figure 2.12(b) shows the runtime when we fix

K = 20 and vary l. The increase of l does not affect ASC’s consistent improvement over

runtime.

10
-1

10
0

10
1

10
2

10
3

10 15 20 25

T
im

e
 (

M
in

.)

K

ASC+MEME
ASC+MUSI

ASC+GibbsCluster

MUSI
GibbsCluster

(a) When l = 15

10
-1

10
0

10
1

10
2

10
3

15 20 25 30

T
im

e
 (

M
in

.)

l

ASC+MEME
ASC+MUSI

ASC+GibbsCluster

MUSI
GibbsCluster

(b) When K = 20

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

15 20 25 30

T
im

e
 (

M
in

.)

l

ACME
ASC+ACME

(c) When K = 10

Figure 2.12: Runtime: d = 5,N = 10k

To compare ASC+ACME with ACME, we concatenate short sequences as a long

sequence. We also use 3 and 100 for the maximum number of allowed mismatches and

the minimum number of occurrences when N = 10k. Note that these parameters are

set according to how we generated the synthetic data and are usually not accessible to

33

Fast Motif Discovery in Short Sequences Chapter 2

users when working with real data. In the following experiments, we use 30 threads for

ACME. When we set d = 5,K = 10 and vary l, both ASC+ACME and ACME can recall

all the planted motifs. Moreover, as shown in Figure 2.12(c), ASC+ACME has consistent

improvements over the runtime. Results with different parameters are omitted as they

follow a similar trend.

Scalability. The scalability of these methods is tested by varying the number of se-

quences. Figure 2.13 shows the runtime and the number of recalled motifs when we

vary N from 50 thousand to 1 million. Some results are omitted because we couldn’t

get them within a reasonable amount of time for the corresponding methods. In par-

ticular, MEME didn’t finish in one month. As we can see, ASC+MEME (ASC+MUSI

and ASC+GibbsCluster) takes much less time than MUSI and GibbsCluster. Moreover,

ASC+MEME (ASC+MUSI and ASC+GibbsCluster) can work in some cases that MUSI

and GibbsCluster can’t.

10
-1

10
0

10
1

10
2

10
3

10
4

50 100 500 1000

T
im

e
 (

M
in

.)

N (x1000)

ASC+MEME
ASC+MUSI

ASC+GibbsCluster
MUSI

(a) Runtime

 0

 5

 10

 15

 20

 25

50 100 500 1000

N
u

m
b

e
r

o
f

re
c
a

lle
d

 m
o

ti
fs

N (x1000)

ASC+MEME
ASC+MUSI

ASC+GibbsCluster
MUSI

(b) Recall

Figure 2.13: Scalability w.r.t. Number of Sequences

2.6.3 Properties of ASC

In this section, we analyze the design of ASC and check its performance using syn-

thetic data.

34

Fast Motif Discovery in Short Sequences Chapter 2

Effectiveness. The goal of ASC is to group the sequences that contain the same motif

into one cluster. We call a pair of sequences a misplaced pair if the two sequences contain

the same motif but are placed into different clusters by ASC. We use misplaced sequence

ratio (MSR) to measure the ratio of misplaced pairs. MSR is defined as

MSR =
of misplaced pairs

(# ofsequences containing motifs)2
.

If a sequence contains multiple motifs, we will count it multiple times. A lower MSR

indicates better clustering accuracy.

We first conduct experiments on two data sets of 1 million sequences with the input

sequence length l = 15 and l = 20 respectively. The number of embedded motifs K and

the number of anchors d in each cluster center are varied. Figure 2.14 demonstrates that

the MSRs of ASC follow similar trends for different l. The misplaced sequence ratio is

quite small.

 0

 1

 2

 3

 4

 5

 6

10 15 20 25

M
is

p
la

c
e

d
 s

e
q

u
e

n
c
e

 r
a

ti
o

 (
%

)

K

d=5
d=10
d=15

(a) When l=15

 0

 1

 2

 3

 4

 5

 6

10 15 20 25

M
is

p
la

c
e

d
 s

e
q

u
e

n
c
e

 r
a

ti
o

 (
%

)

K

d=5
d=10
d=15

(b) When l=20

Figure 2.14: Misplaced Sequence Ratio of ASC

Efficiency. We then conduct experiments to test the clustering efficiency of ASC. Figure

2.15 shows the running time of ASC when l is fixed to 15. Due to space constraint, we

omit the results for l = 20 since they follow a similar trend. We first fix N to 1 million

and vary the values of d and K to see how ASC behaves, where d is the number of

35

Fast Motif Discovery in Short Sequences Chapter 2

anchors in each cluster center and K is the number of planted motifs. Figure 2.15(a)

shows that the runtime increases when either d or K increases. This is because larger

K or d would make the clustering process take more time to terminate. This is not a

problem since a small d can already give us a very good MSR and the running time of

ASC is negligible compared to the time taken by the following motif discovery process.

We further conduct experiments to test how ASC responds with an increasing number of

sequences by fixing K = 20 and vary d and N . Figure 2.15(b) shows that with different

d, the runtime of ASC increases almost linearly with respect to N which is consistent

with our time complexity analysis in Section 2.4.4.

 4

 6

 8

 10

 12

 14

 16

 18

5 10 15 20

T
im

e
 (

M
in

.)

d

K=10
K=15
K=20

(a) When N = 1M

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 50 100 1000

T
im

e
 (

M
in

.)

N (x1000)

d=5
d=10
d=15

(b) When K = 20

Figure 2.15: Running Time of ASC when l = 15

2.7 Related Work

Motif finding is a classic problem and has been extensively studied for more than a

decade. Federico et al. gives a very good survey of motif finding algorithms before and

after next-generation sequencing era [3]. But still, with new challenges posted by the

increasing size and complexity of big data, it is not completely solved. Most of the

existing algorithms can be divided into two categories, combinatorial and probabilistic.

Combinatorial methods. Usually these methods use a combinatorial definition of mo-

36

Fast Motif Discovery in Short Sequences Chapter 2

tif, and treat the motif finding problem as an approximate pattern matching problem.

For instance, in order to find motifs with length W , all possible 4W sequences are enu-

merated (for DNA sequence with {A,G,C,T} as the alphabet set). These sequences are

modified with ambiguity codes, e.g., setting K=A or C, to allow mismatches. An exhaus-

tive matching with the input sequences is conducted to count the frequency of sequences.

The most frequent sequences will be outputted as motifs. Methods like SMILE [17] and

Weeder [18] adopted this idea and also created index structure to speed up the matching

process. However, since they need to do exhaustive searching, they are still very slow

and can not scale w.r.t a larger alphabet set. Recently, a method named ACME [12] is

reported to be able to scale to large alphabet set by utilizing parallel computing. We

compared our algorithm with ACME in the experiments section.

The combinatorial methods usually can get optimal results. However, they need large

search space and often require a few parameters like the length of motifs and the number

of allowed mismatches, which users may not have knowledge of.

Probabilistic methods. These methods treat the data as composed of two components,

the motif model and background model. They can infer the parameters of motif and

background models that fit the data, thus classifying the subsequences either to motif or

background. Currently, there are two approaches used to perform inference: Expectation

Maximization (EM) and Gibbs Sampling.

EM. Multiple EM for Motif Elicitation (MEME) [2, 19, 10] is currently the most

popular motif finding software. It was first proposed in 1994 by T. Bailey etc. The idea

is to first break each input sequence into overlapping k-mers. Then use EM to estimate

the model that fits the data best. Even though they kept improving the algorithm,

there are still some problems with this method. It can not handle large data sets, e.g.,

larger than 600 protein sequences of length 15 in our real dataset.

STEME [6] can speed up the EM process by using suffix tree index for the sequences.

37

Fast Motif Discovery in Short Sequences Chapter 2

But due to the complexity of suffix tree, this method can only support DNA sequences.

Recently, T. Kim et al proposed MUSI [7] which is fast and can work with protein

sequences. MUSI first uses MAFFT [20] to do multiple sequences alignment and then

use EM to infer PWMs from the alignment results. We compared our algorithm with

MUSI in the experiment section.

Gibbs sampling. Gibbs Sampling has similar mechanism with EM, but adopts a

stochastic way to modify the current solution. Algorithms such as motif sampler [21]

and AlignACE [22] belong to this category. The advantage of these methods is that they

have a better chance to escape from local optima.

GibbsCluster [11] adopts the idea of Gibbs sampling to do multiple sequences align-

ment and clustering. At first, sequences are randomly divided into several clusters and

aligned together. Then, in each iteration, a sequence is selected to do “shifting” and

moved to another cluster with some probability. This process is repeated until the align-

ment score reaches a local optima. Motifs are extracted from aligned sequences in each

cluster.

Gapped q-gram. Another related topic is gapped q-gram. A gapped q-gram is a subset

of q characters of a fixed non-contiguous shape. For example, the 3-grams of shape

in the string ACAGCT are AC G, CA C and AG T. This concept is similar to

the anchors we have used in our work, but they have different focuses.

Gapped q-gram is mostly used in string matching problems to filter candidates that

could potentially match a target sequence. Most of these studies are focused on how to

find some optimal “shapes” that could maximize the filtering effects. S. Burkhardt et

al [23, 9] proposed to use gapped q-grams in a string matching problem and they also

showed how to use experiments to choose the shape of gapped q-grams. M. Fontaine

[24] introduced a method of selecting shapes of gapped q-grams for approximate string

matching. A very popular local alignment tool named PatternHunter [25, 26] is also

38

Fast Motif Discovery in Short Sequences Chapter 2

based on gapped q-gram. They used gapped q-grams as seeds to find possible aligned

regions. It was shown that the problem of finding even one optimal gapped q-gram seed

is NP-hard.

There is another work [27] that also represented a motif as a set of anchors like we

did. It is used to search for occurrences of a motif in a set of sequences, which is different

from our problem setting as we do not know the motif beforehand.

Record matching and deduplication. This problem is trying to identify records in

a database that refer to the same entity. A commonly used technique in this domain is

called “blocking” which divides the database into blocks and compare only the records

that fall into the same block [28, 29]. This idea is similar to our pre-processing strategy,

but it cannot be directly applied to motif discovery. Our design of anchor representation,

initial anchor selection and iterative anchor set adjustment is essential for successfully

identifying motifs.

To tolerant data heterogeneity, some methods [30, 31] use q-gram to do matching and

blocking. However, none of the methods have adopted gapped q-gram in any way. So,

our anchor (gapped q-grams with variable shapes) based clustering algorithm may be

also interesting to this domain.

Time series motifs. A time series is a sequence of numerical and continuous data

points. Time series motifs are frequent repeated patterns in time series data. Several

recent papers [32, 33] targeted on this problem, but their problem settings are totally

different from ours.

2.8 Conclusions

In this work, we examined the motif discovery problem in the context of big data,

where massive short sequences are generated by the newest sequencing techniques. Exist-

39

Fast Motif Discovery in Short Sequences Chapter 2

ing motif finding algorithms usually work only in a small scale or have to trade accuracy

for efficiency. Our strategy is not to develop another motif finding algorithm and make

it scalable. Instead, we resort to a different methodology which clusters a sequence

dataset into multiple small subsets and then reuses existing motif finding algorithms.

This strategy is generic. Our experimental results are extremely appealing. The anchor-

based clustering approach can reduce the runtime in more than two orders of magnitude,

without losing any accuracy. Sometimes it even discovers more motifs.

40

Chapter 3

Prediction and Validation of

Inhibitory Connections from Spike

Trains

3.1 Introduction

As proposed by D. O. Hebb [34] a cell assembly describes a network of neurons that

is repeatedly activated in a manner that strengthens excitatory synaptic connections.

An assembly of this sort has a spatiotemporal structure inherent in the sequence of acti-

vation, and consequently strong internal synaptic relationships, which distinguish them

from other groups of neurons. Although assemblies of this sort can be defined in nu-

merous ways, an informative approach consistent with mechanisms of neural encoding is

to identify statistically significant time-varying relationships among the spike trains of

simultaneously recorded neurons [35, 36, 37, 38, 39]. Obtaining these neural activity mea-

surements requires recording from many neurons in parallel that can be spatially localized

and temporally resolved at sub-millisecond time scales [40]. Widely used approaches for

41

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

recording from multiple neurons such as calcium imaging and voltage sensitive dyes as

a proxy for electrical activity or multiple implanted micro electrodes do not satisfy all

these requirements. Novel instrumentation is required to meet the challenge of drawing

complete neural circuits.

Dissociated neurons can self-organize, acquire spontaneous activity, and form net-

works according to molecular synaptogenic drivers that can be heuristically visualized

and probed with multi-electrode arrays (MEAs). The work presented here utilizes MEAs

with sub-millisecond time resolution and precise signal localization. The Neural Circuit

Probe (NCP) uses mobile probes for local chemical delivery to a neural circuit of cultured

neurons on a commercial MEA with 120 electrodes. Local drug delivery transiently and

reversibly modulates the electrical behavior of individually identified neurons to assess

their contributions to the circuit behavior. The dynamics of neuronal networks require

both excitatory and inhibitory signals. Excitatory cells alone cannot generate ”cell as-

semblies” because such interconnections would only lead to more excitation. A rivalry

between excitatory and inhibitory neurons ensures the stability of global neuronal firing

rates over larger spatial domains of brain while allowing for sharp increases in local ex-

citability which is necessary for sending messages and modifying network connections [41].

In a neuronal network described in terms of correlations among statistically significant

time-varying relationships among the spike trains of simultaneously recorded neurons,

the detection of excitatory relationships can be inferred based upon correlations between

spikes with constant latencies that approximate synaptic transmission [42, 43]. However,

the identification of inhibitory relationships is more difficult: distinguishing endogenous

low firing rates from active inhibition is not obvious.

In this chapter, we demonstrate that tools from statistical inference can predict func-

tionally inhibitory synaptic connections and show how inhibition propagates in a network

to affect other neurons. We did this by first fitting a Generalized Linear Model (GLM)

42

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

to spike trains recorded from neurons in a hippocampal culture and inferring effective

interactions between these neurons. We then used the fitted model to perform simulated

in silico experiments in which we simulated the effect of silencing individual neurons

in a network on the activity of others. We tested the predictions from these simulated

silencing experiments by performing real experiments in which we applied Tetrodotoxin

(TTX) to silence neurons and thereby validated our approach toward the detection of

inhibitory interactions between pairs of neurons.

3.2 Methods

3.2.1 Spike sorting

For each MEA recording, we first removed redundancy propagation signals [44] and

then did spike sorting [45]. Extracellular signals were band pass filtered using a digital

2nd order Butterworth filter with cutoff frequencies of 0.2 and 4 kHz. Spikes were then

detected and sorted using a threshold of 6 times the standard deviation of the median

noise level.

The data in Fig 3.3a were gathered in one recording session and each ”unit” cor-

responds to one spike train after the spike sorting algorithms were applied on the raw

data. However, the data in Fig 3.3d and Fig 3.3g were gathered in several recording

sessions. So, the labels of units could be inconsistent in different recording sessions after

the spike sorting algorithms were applied. Hence, to make the data consistent across

different recording sessions, for these two datasets, we merged the spike trains from the

same electrode as one unit.

43

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

3.2.2 A pipeline to identify and validate putative inhibitory

connections

We used a novel pipeline to first identify putative inhibitory connections from spike

trains and then validate them with a Neural Circuit Probe (NCP) that we built. Mouse

hippocampal neurons were dissociated and plated on a multi-electrode array (MEA). To

begin with, as shown in Fig 3.1a, their spontaneous spiking activity was modeled using

a Generalized Linear Model (GLM) in which the outcome is a zero or one (spike or no

spike) random variable and single neurons generate spikes according to a Poisson process.

The rate of this process was determined by the spikes from other neurons. Parameters

of the GLM were fit using a gradient descent algorithm to minimize the negative log

likelihood of the recorded spike trains.

We next conducted in silico interventional experiments to identity inhibitory con-

nections as shown in Fig 3.1b. Single neurons were silenced or activated in silico and

then these data were used to infer predicted effects on connectivity using the fixed pa-

rameters from the GLM as determined above. The procedure for running the in silico

interventional experiment was as follows. First, we selected one neuron as our inter-

ventional target. Throughout the simulation experiment, the state of this neuron was

fixed to either 0 (silenced) or 1 (activated). Then, for all the other neurons, we ran the

GLM with the inferred parameters to get the probabilities of seeing a spike at the next

time point. Each probability represented how likely it was for a neuron to generate a

spike at the next time point. Given the probability, we sampled a binary value (0 or 1)

from a Bernoulli distribution as the state of the neuron for the next time point, where

0 refers to no spike and 1 means spike. We continued doing this to generate simulated

recordings one time point at a time until a desired length T had been reached, where T

is the number of time points in our in silico interventional recording. To find inhibitory

44

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

connections, we investigated the generated simulated data to find those neurons that

were negatively correlated (Pearson correlation coefficient) with the intervention taken

on the target neuron. These neurons were considered as potentially inhibited by the

interventional target.

Finally, we conducted real TTX delivery experiments to validate the putative in-

hibitory connections predicted from the in silico interventional experiments as shown in

Fig 3.1c. In these experiments, TTX was delivered using the NCP as a delivery sys-

tem. The NCP delivered TTX in a manner highly localized to a single electrode and in

sufficiently low concentration that its potency dropped below threshold once it diffused

beyond a single electrode. The NCP can detect increased impedance as the probe ap-

proached the cell and therefore allowed us to deliver TTX as close as possible to the cell

without directly contacting the cell. Each TTX delivery resulted in the rapid onset of

complete silencing of the neuron to which it was applied. As a result, putative inhibitory

connections were validated when we observed activation of an inhibited neuron for a

duration that approximated the time of TTX-induced silencing.

3.2.3 Generalized Linear Model

We used GLM to model the spiking of neurons. Let m denote the number of neurons

being recorded and xi,t be the number of spikes of neuron i at time t. We assume xi,t is

drawn from a Poisson distribution with rate λi,t which is written as

λi,t = exp (bi +
m∑
j=1

maxlag∑
l=minlag

θi,j,lxj,t−l). (3.1)

where bi is a parameter controlling the spontaneous firing rate of neurons i and θi,j,t

denotes the effective interaction from neuron j to neuron i at time lag l. We assume that

the firing rate of neurons i depends on the activities of all neurons in a history window

45

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

1

3

2

|| | |||| || |||

Spikes

GLM filters
X

Instantaneous firing rates

| ||| ||| |||

Stochastic spiking

| |||| ||

X

+

a

b c

Generalized linear model

In silico interventional experiments Validation exerpiments

|||||||||

Pre-trained GLM filters

X

|||||||

Response

1

3

2

In silico silencing In silico activation

||||| | |

In silico spiking

X

+
Response

|||| ||||

1

3

2

||| ||| |||

Drug delivery

Figure 3.1: An overview of the procedure that we used to identify and validate direct
and indirect inhibitory connections. (a) A Generalized Linear Model (GLM), in which
the firing of a neuron is modeled as determined by the spikes from other neurons, was
used. Filters of the GLM were inferred from a training recording of spontaneous
firings. (b) In silico experiments were conducted by performing simulated interven-
tions on a neuron and generating simulated responses with pre-trained GLM filters.
Putative inhibitory connections were then identified by comparing the simulated inter-
ventions and responses. (c) Real drug delivery experiments were conducted to validate
the putative inhibitory connections.

that spans from time t−maxlag to time t−minlag, where minlag and maxlag are the

minimum and maximum time lags we consider.

Given Eq. 3.1 for the firing rate of individual neurons, the likelihood for the obser-

vation of neuron i at time t, Li,t is

Li,t = p(xi,t|λi,t) =
λi,t

xi,te−λi,t

xi,t!
. (3.2)

46

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

In spike train data with one millisecond time bin, there are at most one spike at any

time point and therefore xi,t takes the value of 0 or 1. Hence, the log-likelihood is

logLi,t = xi,t log λi,t − λi,t. (3.3)

The log-likelihood for all the observations in a recording with length T is

logL =
m∑
i=1

T∑
t=maxlag

logLi,t. (3.4)

The model described above includes too many parameters and there is nothing in

the model that ensures the inferred parameters to vary smoothly with time, something

that isas expected from interactions between pairs of neurons. Furthermore, the model

has too many parameters and this might cause problems for robustly inferring them. To

ensure the smoothness of the filters, instead of directly using a history window of spikes

in the model, following [46], we use their filtered versions that are created by convolving

with several cosine bumps. To minimize the number of fitting parameters and prevent

overfitting, we add an L− 1 regularizer to the likelihood. These remedies are described

further below.

We first design p cosine basis functions where the lth cosine basis function can be

written as:

fl(t) =
1

2
{1 + cos[a ln (t+ b)−Θl]} (3.5)

for all times t such that satisfy

−π ≤ a ln (t+ b)−Θl ≤ π

47

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

and

fl(t) = 0

outside the interval defined above. The values of a, b and Θl are manually chosen. One

of the factors to be considered when choosing their values is the locations where the

peaks of the bumps occur. During experiments, we used pairwise cross-correlations to

determine the locations of the peaks.

In the naive GLM without the basis functions, for neuron j, we used a history window

of spikes to model its influence on other neurons. Now the raw spikes are convolved with

p cosine basis functions to get the filtered versions, of which the lth value is calculated as

follows:

x̃j,l,t =
τ∑

∆=1

fl(∆)xj,t−∆,

where τ is the length of the history window that is covered by the cosine basis functions.

Eq. (3.1) is rewritten as:

λi,t = exp (bi +
m∑
j=1

p∑
l=1

βi,j,lx̃j,l,t), (3.6)

where βi,j,l is the weight of the lth basis function for the influence from the neuron j to

neuron i.

As mentioned above, to prevent overfitting, we added an L1 regularization term to

penalize non-zero filter parameters. The loss function we want to minimize is rewritten

as

J = −
m∑
i=1

T∑
t=maxlag

logLi,t + r

m∑
i=1

m∑
j=1

p∑
l=1

|βi,j,l|,

where r is the regularization constant. The value of r is decided by doing 10-fold cross

validation on a spontaneous firing recording of 60 seconds. We used the Area Under

48

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

the Receiver Operating Characteristic curve (AUC-ROC) as our metric to evaluate the

performance of the fitted model to do predictions on future spikes given previous spiking

histories.

3.2.4 in silico interventional experiments

To identify inhibitory connections from an ensemble of neurons, one straightforward

way is to investigate the GLM filters obtained by fitting the spike trains, as these filters

represent the relations of neurons captured by GLM. However, the inhibitory effects

among neurons can be rather complex than obvious, and simply using the GLM is usually

not enoughsufficient. For example, two of the inhibitory connections we identified in this

study were not observable from the their corresponding GLM filters, but became obvious

once interventions were applied. Therefore, in this study, we have proposed a method

to conduct in silico interventional experiments which could discover hidden inhibitory

connections by running simulated experiments.

To cold start the simulated experiment, we used a history window of length τ with

none spiking states (i.e., all the neurons take the value 0 in a time window of τ). The

instantaneous firing rate of neuron i at time t was calculated according to E.q. (3.6) in

Methods section. Therefore, the probabilities of seeing and not seeing a spike are

p(xi,t = 1|λi,t) = λi,te
−λi,t

and

p(xi,t = 0|λi,t) = e−λi,t

Because in our setting, there is at most one spike in the one millisecond time bin, xi,t

can only take the value of 0 or 1. However, if we run simulated experiments by directly

49

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

sampling from a Poisson distribution, the value xi,t takes could be arbitrary instead of

binary. Hence, we normalize the probability of getting a spike at time point t as

p(xi,t = 1|λi,t) =
p(xi,t = 1|λi,t)

p(xi,t = 1|λi,t) + p(xi,t = 0|λi,t)

=
λi,t

1 + λi,t
,

(3.7)

For neuron i at time point t, we generate the simulated sate by sampling a value from

a Bernoulli distribution with the probability of Eq. (3.7).

During the in silico interventional experiments, we selected one neuron as our inter-

ventional target and fixed its state to be either 0 (silenced) or 1 (activated). Then, the

responses from other neurons were gathered and compared with the intervention taken

on the target neuron by calculating their Pearson correlation coefficients. Those neu-

rons that were negatively correlated with the intervention were considered as potentially

inhibited by the interventional target. The algorithm is shown in Algorithm 2.

Algorithm 2: Identifying Putative Inhibitory Connections

input : A recording X of spontaneous firing events and a target neuron t
output: Top k neurons that are potentially inhibited by t
Train a GLM model using X
Conduct in silico experiments where neuron t is intervened
for each neuron i do

Calculate the Pearson correlation coefficient between simulated recordings of
neuron i and neuron t

end
Select top k neurons that have the largest negative Pearson correlation coefficient
with neuron t
return top k neuron ids

50

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

3.2.5 Instrumentation for validating putative inhibitory con-

nections

Identification of single cell contributions to a neuronal circuit requires precise access

to and control over functionally identified cells. To accomplish this goal we built a

neural circuit probe (NCP) consisting of (1) a head unit that accepts various probes,

(2) an integrated perfusion chamber plus light ring illumination system, (3) a probe

control system with computer interface which implements a simple feedback system for

an automated approach, and (4) a commercial MEA (MEA2100, Multi Channel Systems)

mounted to a custom X-Y translation stage (Fig 3.2).

The NCP controller uses proportional and integral feedback control to position the

various probes, and can accept a variety of input signals, such as ion current used here.

An amplifier is located on the head unit that amplifies the current signal before going

to the controller. The NCP software allows the operator to engage and disengage the

probe using feedback. It is also used to control the location of the MEA stage beneath

the probe, allowing the operator to position the probe above neurons of interest. A

pneumatic control system attached to the probe regulates a pressure line for chemical

delivery (Fig 3.2a, Fig 3.2b). An integrated pressure sensor, connected to the MEA

data acquisition system, measures the duration and magnitude of pressure for temporal

alignment with the MEA signal.

Local targeted drug delivery with the NCP can be used to modify their electrical

behavior. This was done with small pipettes typically with inner diameters of 1-2 microns.

In this example (Fig 3.2c, Fig 3.2d) we applied the Na+ channel blocker tetrodotoxin

(TTX, 500 nM) to induce a temporary and reversible cessation of activity from that cell.

Thus with the NCP we can do targeted drug delivery with high spatial resolution.

51

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

3.3 Results

3.3.1 Identifying Putative Inhibitory Connections

Following the aforementioned procedure, a recording with spontaneous activity from

17 units over a duration of 20 seconds divided into one millisecond time bins was used

to fit the GLM model (Fig 3.3a). Each unit corresponded to a spike train after spike

sorting and removal of the redundancy inherent in propagation signals[44]. Then unit

10 was chosen as the in silico interventional target, i.e. it was fixed in a silent state

(no spikes at all times) for 10 seconds and then fixed for 10 seconds in an active state

(continuous spiking). Simulations with the fitted GLM identified five units with the

highest probability to be inhibited by unit 10 (Fig 3.3c). The strongest candidate for

inhibition by unit 10 was unit 8. Note that the filters from the fitted GLM also suggested

that the connection from unit 10 to unit 8 was predominantly inhibitory (Fig 3.3b).

Additional in silico experiments on another cell culture were also conducted to identify

putative inhibitory connections by following the aforementioned procedure. For these

experiments, we used a 60 second recording of spontaneous firing events (Fig 3.3d) to fit

a GLM. The GLM parameters for the connections from unit 12 to five units are shown

in Fig 3.3e. We calculated the Pearson correlation coefficients between the in silico

intervention on unit 12 and simulated responses of every other neuron. The top five

negatively correlated units were chosen and investigated (Fig 3.3f). In another example,

we chose unit 23 as the in silico interventional target. Similarly, Fig 3.3h shows the GLM

parameters for the connections from unit 23 to five other units and Fig 3.3i shows the

top five units that were identified as candidates for inhibition by unit 23.

52

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

3.3.2 Validation of Inhibitory Connections

Given putative inhibitory connections identified in the first example (Fig 3.3c), to

validate experimentally that unit 8 was an inhibitory target of unit 10, TTX was deliv-

ered four times on unit 10 (Fig 3.4a) using the neural circuit probe as a delivery tool.

The instrument delivered TTX in a manner highly localized to a single electrode and in

sufficiently low concentration that its potency dropped below threshold once it diffused

beyond a single electrode. Each TTX delivery resulted in the rapid onset of complete

silencing of the neuron to which it was applied. Delivery of TTX to the electrode corre-

sponding to unit 10 resulted in the activation of unit 8 and activation of the target neuron

for a duration that approximated the time of TTX-induced silencing. These experimental

data clearly demonstrated that the top inhibitory connection (from 10 to 8) predicted

by our simulated experiment was validated by the actual TTX delivery experiment.

In the second example, 92 was a strong candidate for inhibition by unit 12. To

validate this inferred connection experimentally, we delivered TTX to unit 12 and, as

predicted, observed an inhibitory effect from unit 12 to unit 92 (Fig 3.4b). Its also worth

mentioning that even though unit 92 is not the top 1 candidate predicted by our in silico

interventional experiments, its within the top 5 predictions out of 120 possible units.

This shows that the in silico interventional experiments could give accurate predictions

of putative inhibitory connections. In the final example, we also delivered TTX to unit

23 and observed rebound of firing on unit 92 (Fig 3.4c) which was predicted by the in

silico interventional experiments (Fig 3.3i).

3.3.3 Indirect connections

The inhibitory connections identified in this study may not be direct. A unit could be

causing inhibitory effects on another unit through a third unit. To study the possibilities

53

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

of inhibitory connections, we have revisited the three examples of inhibitory connections

validated in Fig 3.4. For each example, we introduced a third unit and convolved the

GLM filters of the two connections in a potential inhibitory connection. Fig 3.5 shows

the convolution outputs that exhibited inhibitory effects. To understand the inhibitory

effects from unit 10 to unit 8, we show three possible cases where unit 10 could cause an

inhibitory effect on unit 8 through a third unit (Fig 3.6a).

The second example shown in Fig 3.3 and Fig 3.4 illustrates an important feature that

the in silico experiments offers in describing how signals propagate in the network. In

this example the inhibitory effects from 12 to 92 is not obviously manifested in the filters

shown in Fig 3.3e, i.e. the magnitude of the curve representing the connection from 12 to

92 is not as significant as others. However, this inhibitory effect is ranked high according

to the negative Pearson correlation score given the simulated experimental results. One

explanation for this is the indirect connections among units. It may be the case that unit

12 is not directly inhibiting unit 92, but it could cause an inhibitory effect through other

units.

To explore this possibility further, we show three possible indirect inhibitory con-

nections from unit 12 to unit 92 (Fig 3.6b). Each indirect connection consists of a

predominantly excitatory connection and a predominantly inhibitory connection, which

could cause a net inhibitory effect. Therefore, it supports the idea that the inhibitory

effect from unit 12 to unit 92 were caused by indirect inhibitory connections.

As a final example, Fig 3.4c shows another inhibitory effect between pairs of neurons,

in this case unit 23 to unit 92, as discovered from the in silico experiments on the fitted

GLM and then validated by experiments. Similarly, we show three indirect inhibitory

connections from 23 to 92 (Fig 3.6c).

54

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

3.4 Discussion

Understanding how neuronal signals propagate in local network is an important step

in understanding information processing. The standard way to predict how the activity

of one neuron influences another is through intracellular paired recordings along with

pharmacologic probes. Using such intracellular recordings, one can establish the presence

or absence of direct or indirect connections between pairs of neurons and thus to some

degree predict how activity in one neuron affects the others. Inspired by the successes of

this technology, we show here how it can be extended to larger networks of neurons using

advanced mechatronic positioning of a probe over an array of electrodes with the Neural

Circuit Probe. As a demonstration of the potential power of this device, we demonstrated

its utility in testing the predictions of in silico modeling.

We first fitted a GLM model to spikes recorded from a culture using MEAs, then

performed in silico experiments in which we silenced one of the units, and identified

what other units will change their activity upon this inactivation. We then went back

to the culture and silenced the same unit using TTX and observed that the inhibitory

effects predicted by the in silico experiments showed up when TTX was applied.

The results presented here thus opened the door to using statistical models not only

to characterize the statistics of neural spike trains or functional connectivity between

neurons, but to make predictions about the response of the network to changes. Although

using GLM to study the circuitry of a neuronal network is never going to be as accurate

as intracellular recordings, the simplicity of fitting the model to data and performing

in silico experiments with it are great advantages that support the idea of using this

approach to make educated guesses about the likely outcomes of manipulations to the

network, i.e. offering a virtual culture, similar to a previous attempt to use GLMs to

build a virtual retina. [47].

55

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

In using the GLM in neural data analysis, one typically assumes that a single neuron

generates spikes via e.g. a Poisson process. The rate of this process is determined by the

spikes from other neurons filtered by interactions that are inferred from data using convex

optimization. The inferred model is then used for a variety of purposes that include

evaluating the role of correlations in shaping population activity, for example, in the

retina [46], the motor cortex [48, 49], the functional connectivity between grid cells [50], or

the relative influence of task related covariates on shaping neural responses in the parietal

cortex [51]. Despite the widespread use of the GLM in neural data analyses, a potentially

very powerful aspect of this class of models has been left unexplored: the ability of the

GLM to make predictions about how a neuronal network responds to interventions. At

the microcircuit level, this amounts to identifying meaningful interactions between pairs

of neurons and using them to make predictions about how external manipulations of one

or more neurons can affect the others. The main reason for the fact that GLMs have not

been used for this purposes so far is that, in general, the ground truth about connectivity

is not known and, therefore, it is not possible to compare the interactions inferred by

GLM with the real ones. The results presented in this chapter add a new dimension to

how these statistical models can be used in neuroscience by showing that, although the

relationship between individual synaptic interactions and those inferred by the GLM may

not be known, the inferred connections can still be employed to make specific predictions

about the functional connectivity of a neuronal network. Our results thus demonstrate

how statistical models can be used to decipher neuronal microcircuitry at a detailed level

without using more complicated experimental techniques such as multi-unit intracellular

recordings.

To acquire the traces for analysis by the GLM we used Multi-electrode arrays (MEAs)

capable or recording extracellular action potentials (eAP) from hundreds of neurons

simultaneously. Planer MEAs serve as a substrate for glial and neuronal growth in

56

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

which neural ensembles self organize over multiple days [52, 53]. The close apposition

of neurons with each recording electrode produce recordings with high signal-to-noise

properties while the ease of making manipulations in the culture permits access not

otherwise possible in vivo. Because cultured neurons self-organize into spontaneously

active synaptic circuits and because neurons fire action potentials primarily in response

to synaptic input, recording extracellular action potentials (also referred to as spikes) can

sample the connectivity phenotypes in large groups of neurons. Here we introduce how

to use GLM based simulated experiments to identify putative inhibitory connections

and then validate our approach to these inhibitory connections by conducting in vivo

experiments.

57

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

Figure 3.2: Illustration of the Neural Circuit Probe (NCP) and real drug delivery
experiments to validate putative inhibitory connections. (a) Schematic drawing of
the key components. The probe is positioned in x and y to center it in the field of
view of the microscope. Then the MEA is translated in x and y to bring a target
neuron directly under the probe. Finally the probe is automatically lowered, with ion
conductance feedback, to just above, but not touching, the neuron. (b) Overview of
the NCP situated on an inverted microscope. (c) The changes of firing rates at all
electrodes before and after TTX application. Gray dots are electrodes with no spiking
activities recorded. Black dots are electrodes with no spiking rate changes. When we
blocked spiking at the specific electrode (red circle) it had widespread secondary effects
on the firing rates observed at other MEA electrodes. Though the firing rate decreased
for many electrodes (blue dots), for two electrodes it increased (green dots). (d) A
transient increase of probe pressure delivered TTX (500 nM), which reversibly blocked
spiking activity, with high spatial resolution. This process was repeated 3 times.

58

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

a b c

d e f

g h i

0

1
0

1
0

1
0

1
0

1

0

1

0

1

0
1
0

1

0

1

0

1

0

1

0

1

0
1
0

1
0

1

0

1

0

1

Figure 3.3: Real data examples of the procedure that we used to identify putative
inhibitory connections. (a) A training recording of 17 units for a duration of 20 seconds
which were divided into 1 millisecond time bins. The black bars represent spikes. (b)
Filters of the GLM inferred from the training recording. Note that at different time
lags, the strength of the connection between two units is also different. (c) Simulated
data for top 5 units that were negatively correlated with the intervened unit 10. The
red and blue lines represent the instantaneous firing rates for the simulated recordings.
The labels on the left of the y-axis represent the unit numbers and the labels on the
right represent the range of the instantaneous firing rates (0 to 1). Note that when unit
10 was changed from silent state to active state, conversely, unit 8 changed to silent
state from active state, which implied a putative inhibitory connection. (d) A training
recording of 120 electrodes for a duration of 60 seconds which were divided into 1
millisecond time bins. (e) Filters of the GLM inferred from the training recording.
(f) Simulated data for top 5 units that were negatively correlated with the intervened
unit 12. (g) A training recording of 120 electrodes for a duration of 60 seconds which
were divided into 1 millisecond time bins. (h) Filters of the GLM inferred from the
training recording. (i) Simulated data for top 5 units that were negatively correlated
with the intervened unit 23.

59

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

Figure 3.4: Real TTX experiments to validate putative inhibitory connections. (a)
Real TTX experimental recording where unit 10 was silenced 4 times by delivering
TTX. Unit 8 rebounded every time unit 10 was silenced, which indicated an inhibitory
connection from 10 to 8. (b) Real TTX experimental recording where unit 12 was
intervened. (c) Real TTX experimental recording where unit 23 was intervened.

a b c

Figure 3.5: Convolutions of the GLM filters from indirect connections. (a) Convolu-
tion of the GLM filters from the connection 10 → m and m → 8, where m (y-axis)
is an intermediate unit. The convolutions when m is 10 or 8, which indicates a di-
rect connection, are omitted. (b) Convolution of the GLM filters from the connection
12 → m and m → 92, where m (y-axis) is an intermediate unit. (c) Convolution of
the GLM filters from the connection 23 → m and m → 92, where m (y-axis) is an
intermediate unit.

60

Prediction and Validation of Inhibitory Connections from Spike Trains Chapter 3

0 20 40 60
0

0.2

0.4

0.6

0.8

Time lags (ms)

W
e
ig

h
ts

10 >7

0 20 40 60
1.5

1

0.5

0

0.5

Time lags (ms)

W
e

ig
h

ts

7 >8

0 20 40 60
0.3

0.2

0.1

0

0.1

0.2

Time lags (ms)

W
e

ig
h

ts

6 >8

0 20 40 60
0

0.2

0.4

0.6

0.8

Time lags (ms)

W
e

ig
h

ts

10 >6

a

b

c

10

6

8

10

7

8

0 20 40 60
0.08

0.06

0.04

0.02

0

0.02

Time lags (ms)

W
e

ig
h

ts

10 >3

0 20 40 60
0.5

0

0.5

1

1.5

Time lags (ms)

W
e

ig
h

ts

3 >8

10

3

8

0 20 40 60
0.2

0.1

0

0.1

0.2

Time lags (ms)

W
e

ig
h

ts

23 >50

0 20 40 60
0.4

0.3

0.2

0.1

0

0.1

Time lags (ms)

W
e
ig

h
ts

50 >92

0 20 40 60
0.2

0

0.2

0.4

0.6

Time lags (ms)

W
e
ig

h
ts

23 >97

0 20 40 60
0.5

0

0.5

1

1.5

2

Time lags (ms)

W
e
ig

h
ts

97 >92

23

50

92

23

97

92

0 20 40 60
0

0.1

0.2

0.3

0.4

Time lags (ms)

W
e
ig

h
ts

23 >104

0 20 40 60
0.3

0.2

0.1

0

0.1

0.2

Time lags (ms)

W
e
ig

h
ts

104 >92

23

104

92

0 20 40 60
0.6

0.4

0.2

0

0.2

0.4

Time lags (ms)

W
e
ig

h
ts

12 >97

0 20 40 60
0.5

0

0.5

1

1.5

2

Time lags (ms)

W
e
ig

h
ts

97 >92

0 20 40 60
0.3

0.2

0.1

0

0.1

0.2

Time lags (ms)

W
e

ig
h

ts

12 >119

0 20 40 60
0.5

0

0.5

1

1.5

2

Time lags (ms)

W
e
ig

h
ts

119 >92

0 20 40 60
0

0.5

1

1.5

Time lags (ms)

W
e
ig

h
ts

12 >104

0 20 40 60
0.3

0.2

0.1

0

0.1

0.2

Time lags (ms)

W
e
ig

h
ts

104 >92

12

97

92

12

119

92

12

104

92

Figure 3.6: Indirect inhibitory connections. (a) Three possible cases where unit 10 has
an inhibitory influence on unit 8 through a third unit. The first case consists of an ex-
citatory connection (10→ 7) and an inhibitory connection (7→ 8). The second case
consists of an excitatory connection (10 → 6) and an inhibitory connection (6 → 8).
The third case consists of an inhibitory connection (10 → 3) and an excitatory con-
nection (3 → 8). (b) Three possible cases where unit 12 has an inhibitory influence
on unit 92 through a third unit. The first case consists of a predominantly inhibitory
connection (12→ 97) and an excitatory connection (97→ 92). The second case con-
sists of an excitatory connection (12→ 104) and an inhibitory connection (104→ 92).
The third case consists of an inhibitory connection (12→ 119) and an excitatory con-
nection (119→ 92). (c) Three possible cases where unit 23 has an inhibitory influence
on unit 92 through a third unit. The first case consists of an excitatory connection
(23→ 104) and an inhibitory connection (104→ 92). The second case consists of an
excitatory connection (23 → 50) and an inhibitory connection (50 → 92). The third
case consists of a predominantly inhibitory connection (23 → 97) and an excitatory
connection (97→ 92).

61

Chapter 4

Active Learning of Functional

Networks from Spike Trains

4.1 Introduction

Spike trains are series of neural firing events, which are considered as the language

neurons use to encode the external world and communicate with each other. Learn-

ing functional networks from spike trains is a fundamental problem with many critical

applications in neuroscience. For example, a functional network that describes the tem-

poral dependence relations among neurons is not only the first step to understand the

function of neural circuits [54], but also has practical applications such as diagnosing

neurodegenerative diseases [55].

Since Generalized Linear Model (GLM) is commonly used as a temporal generative

model for spike trains [56, 46, 57], the routine [38, 54] of inferring functional networks

from spike trains is shown in Figure 4.1 with an example. A spike train recording of

5 neurons is used to infer the GLM, from which a functional network is derived. The

spike train dataset is a set of binary arrays, where “1” represents a firing event (spike)

62

Active Learning of Functional Networks from Spike Trains Chapter 4

and “0” describes quiet state (no spike). Meanwhile, in the functional network, the edge

between node 1 and node 4 with label “+1” represents an excitatory connection with

time lag 1 (the firing of neuron 1 at time t− 1 stimulates the firing of neuron 4 at time

t). Similarly, the directed edge from node 4 to node 3 with label “-[1,20]” represents an

inhibitory connection with time lags from 1 to 20 (the firings of neuron 4 at time t− 20

through t− 1 suppress the firing of neuron 3 at time t).

1 2

3

4

5

+2

+1

+2

+2

+2

+2

+1

-[1,20]

1
2
3
4
5

...

lag=1 lag=2 ... lag=20

Spike train recording

Parameters of GLM

Functional network

Figure 4.1: An example of inferring a functional network from spike trains.

Despite the popularity of this approach, we can not rely on it to get accurate func-

tional networks. To illustrate, we give two examples. Figure 4.2(a) shows spike trains

from three neurons where the firings of two of them are being driven by another neuron

with different time lags. When a functional network is inferred, the aforementioned algo-

rithm could easily get confused and a spurious excitatory connection will be drawn in the

resulted network. In another example shown in Figure 4.2(b), the activities of a neuron

are suppressed by an inhibitory connection and thus, there are not enough evidence to

infer the inhibitory connection. Unfortunately, most of existing works [38, 46, 58] suffer

63

Active Learning of Functional Networks from Spike Trains Chapter 4

from this problem because they are learning functional networks from purely observa-

tional data. As we will demonstrate in Section 4.5, by adopting interventional data, in

which we could selectively fix the states of some neurons, the accuracy of the inferred

functional network could be significantly improved. However, conducting interventional

experiments is often very expensive in terms of time and money, so the interventions

must be chosen with care. Hence, in this chapter, we focus on the problem of how to

design an active learning framework that could utilize as few intervential experiments as

possible to get the maximum accuracy gain when inferring a functional network.

+1

+2

010010010010
100100100100

001001001001

+1

+2

+1

Spurious
connection

(a) Example of an excitatory network

-[1,3]

100100100100 000000000000

Undiscovered
connection

(b) Example of an inhibitory network

Figure 4.2: Examples of inferred networks with only observational data.

There are previous works [56, 59] that focused on the problem of selecting external

stimuli for a better estimation of GLM. But their approach can not be directly used in

our problem, because they only consider the case where there is just one neuron while we

are interested in inferring functional connectivities among multiple neurons. Meanwhile,

learning functional networks should not be confused with learning the structure of causal

networks [60] (static or dynamic Bayesian networks). In structure learning of causal

networks, possible topological structures are searched and evaluated based on a statistical

score function such as Minimum Description Length (MDL) [61] and Bayesian Dirichlet

equivalent (BDe) score [62]. In contrast, the structure and parameters of a functional

64

Active Learning of Functional Networks from Spike Trains Chapter 4

network are jointly learned by inferring a temporal generative model. Several works

[63, 64, 65] focused on the problem of active learning for structures of causal networks

which is different from our functional network learning problem.

To the best of our knowledge, we are the first to propose active learning models for

inferring functional networks from spike trains. Our active learning framework is shown

in Figure 4.3. The functional network is iteratively updated by conducting interventional

experiments. In each iteration, the next intervention is chosen based upon the results seen

so far towards a full identification of the functional network. In particular, we introduce

two models, the variance model and the validation model, to choose interventions that

are most beneficial for learning the functional network.

The variance model (Section 4.3) uses a Gaussian distribution to approximate the

posterior distribution of GLM parameters given the data. And then the intervention

that can maximally reduce the expected entropy of the posterior distribution is chosen.

In addition, we also propose an initialization method that takes higher order interactions

into consideration, which could significantly improve the performance of the variance

model. Meanwhile, the validation model (Section 4.4) has the objective to validate the

most of our existing connections. It picks interventions by maximizing the expected

probability of our current knowledge about the GLM parameters.

These two models represent two different strategies of choosing interventions. The

variance model works best to discover hidden inhibitory connection, while the validation

model focuses on eliminating spurious excitatory connections. Experimental results with

both synthetic and real datasets show that when these two models are applied, we could

achieve substantially better accuracy than using the same amount of observational data

or other baseline methods to choose interventions.

65

Active Learning of Functional Networks from Spike Trains Chapter 4

Variance Model

Validation Model

GLM inference

Intervention

Update
GLM

Initial recording

Additional
recording

Functional
network

Figure 4.3: Pipeline of the active learning framework.

4.2 Preliminaries

In this section, we first briefly introduce the Generalized Linear Model (GLM) and

then show the framework to infer GLM when both observational and interventional data

are used. Table 4.1 summarizes some common notations that we are going to use in this

chapter.

4.2.1 Generalized Linear Model

Let m denote the number of neurons being recorded and xi,t be the number of spikes

of neuron i at time t. Usually in spike train data, there are at most one spike at any

time point, so xi,t takes the value of 0 or 1. We assume xi,t depends on all the neurons’

activities in a history window that spans from time t−maxlag to time t−minlag, where

minlag and maxlag are the minimum and maximum time lags we consider. Let θi,j,t be

the parameter that models the effect from neuron j to neuron i at time lag l. For any

neuron i, it also has a spontaneous firing rate which is controlled by a bias term bi. We

first model the instantaneous firing rate of of neuron i at time t, λi,t, as follows,

λi,t = e(bi+
∑m

j=1

∑maxlag
l=minlag θi,j,lxj,t−l). (4.1)

66

Active Learning of Functional Networks from Spike Trains Chapter 4

Table 4.1: Notations
Notations Description
m Number of neurons
minlag Minimum time lag to consider
maxlag Maximum time lag to consider
h maxlag −minlag + 1
n m× h+ 1
T Length of recordings
xi,t The state of neuron i at time

point t
θi,j,l Parameters for the effect from

neuron j to neuron i with time
lag l

bi The bias term for neuron i which
controls the spontaneous firing
rate

st Input vector at time t with di-
mensions n× 1

rt Response vector at time t with di-
mensions m× 1

s1:t A matrix of input vectors from
time point 1 to time point t, with
dimensions n× t

r1:t A matrix of response vectors from
time point 1 to time point t, with
dimensions m× t

W Parameters of GLM as a matrix
with dimensions m× n

W (i, ·) The ith row of matrix W
w Flattened copy of matrix W

We then assume that xi,t is drawn from a Poisson distribution with mean λi,t. In

other words, we assume that the firing of neurons follows a Poisson process which is a

common assumption [57, 38, 46]. Hence, the log-likelihood for the observation of neuron

i at time t, logLi,t, is calculated as

logLi,t = log p(xi,t|λi,t) = xi,t log λi,t − λi,t. (4.2)

67

Active Learning of Functional Networks from Spike Trains Chapter 4

The log-likelihood for all the observations in a recording with length T is

logL =
m∑
i=1

T∑
t=maxlag

logLi,t. (4.3)

To simplify our analysis later, we rewrite the log-likelihood function in matrix format.

First, for a recording with T time points, we reconstruct it into an input matrix s1:t

and a response matrix r1:t, where t = T − maxlag. s1:t is a n × t matrix with each

column sk representing the input vector at time point k, where n = m × h + 1 and

h = maxlag − minlag + 1. Similarly, r1:t is an m × t matrix with each column rk

representing the response vector at time point k. sk and rk are constructed as follows.

sk =

1

x1,k−minlag

...

xm,k−minlag
...

x1,k−maxlag

...

xm,k−maxlag

, rk =

x1,k

...

xm,k

We also rewrite the parameters of GLM as a matrix W with dimensions m×n. Each

row in W contains the parameters to predict responses of one neuron. For example,

W (i, ·) contains the parameters responsible for the response of neuron i, where W (i, ·)

denotes the ith row of W . W is constructed as follows.

68

Active Learning of Functional Networks from Spike Trains Chapter 4

W =

b1 . . . bm

θ1,1,minlag θm,1,minlag
...

...

θ1,m,minlag θm,m,minlag
...

...

θ1,1,maxlag θm,1,maxlag
...

...

θ1,m,maxlag . . . θm,m,maxlag

T

Following Eq. (4.1), (4.2) and (4.3), the log-likelihood function in matrix format is

logL(W , s1:t, r1:t) = sum(r1:t ◦ (W · s1:t)− eW ·s1:t),

where sum is a function that sums over all the elements in a matrix and ◦ represents

Hadamard product which is essentially element-wise multiplication.

4.2.2 Active Learning of GLM

Given a recording with input matrix s1:t and response matrix r1:t, to learn the GLM,

we use batch gradient ascent to infer the parameters that maximize the log-likelihood

function. The gradients with respect to W are calculated as

D(W , s1:t, r1:t) =
∂ logL(W , s1:t, r1:t)

∂W

= r1:t · sT1:t − eW ·s1:t · sT1:t,
(4.4)

where D(W , s1:t, r1:t) is a m× n matrix.

69

Active Learning of Functional Networks from Spike Trains Chapter 4

In the active learning framework, the interventional experiments are conducted it-

eratively to update the GLM. Let I = {ι1, ι2, ..., ιc} be the set of interventions we can

choose from. In this work, we focus on deterministic interventions which means ιi defines

an action of forcing one or several neurons to take a fixed state. For example, ιi could

represent silencing one neuron i. Let Q be the set of neurons that are intervened. Q is

empty when only observational data is used. Intuitively, for any neuron q in Q, its state

will no longer depend on its parents in the functional network. So when W is being

updated, the parameters that are responsible for the response of this neuron will not be

changed.

Assuming n recordings has been collected and Qi is the set of neurons that are

intervened in the ith recording. We first calculate the gradients Di for the ith recording

with Eq. (4.4), and then for all the q ∈ Qi, we set Dq,· = 0, where Dq,· is the qth row in

D. Eventually, the gradients for all the n recordings are calculated as follows,

D =
n∑
i=1

Di. (4.5)

In summary, the pipeline of the active learning framework is as follows: Given n

recordings we have seen so far, infer the GLM using batch gradient ascent (Eq. (4.5));

Then choose an intervention from I and conduct the intervention experiment to collect

the (n + 1)th recording; Repeat this procedure until the budget for doing experiments

has run out. In the following sections, we introduce two models to intelligently choose

the next intervention.

70

Active Learning of Functional Networks from Spike Trains Chapter 4

4.3 Variance Model

By conducting interventional experiments, previously undiscovered connections could

be revealed. However, how to choose the most informative intervention is still a hard

problem to be solved. In this section, we propose the variance model to choose interven-

tions based on the following intuitions: (1) Inhibitory connections tend to be undiscov-

ered due to lack of evidence; (2) Lacking of evidence means high uncertainty about our

knowledge of the inferred functional network; (3) The uncertainty about our knowledge

of the inferred functional network could be quantified as the entropy of the posterior

probability distribution of the parameters given the data. Moreover, we also introduce

an initialization method that takes higher order interactions into consideration, which

proves to be very effective for further improving the performance of the variance model.

4.3.1 Choose Interventions

Assuming we have a recording of t time points which is formalized as an input-

output pair (s1:t, r1:t). Let w be the flattened copy of the GLM parameter matrix W .

Our knowledge about w can be summarized by the posterior probability distribution

p(w|s1:t, r1:t) and the entropy of p(w|s1:t, r1:t), H(p(w|s1:t, r1:t)), quantifies the un-

certainty of our knowledge. Our goal is to choose the intervention that can maximally

reduce the uncertainty.

In this work, we focus on deterministic interventions which gives us the ability to

assume the next input vector with intervention, st+1, is uniquely defined by the inter-

vention type chosen from I. Now the problem can be formalized as choosing st+1 such

that the entropy of p(w|s1:t+1, r1:t+1) can be maximally reduced. Since the response

vector rt+1 is unknown, we use the expected entropy instead and the objective of the

71

Active Learning of Functional Networks from Spike Trains Chapter 4

variance model is

arg min
st+1

Ert+1
H(p(w|s1:t+1, r1:t+1)), (4.6)

where rt+1 is the response vector for st+1.

However, it’s difficult to directly compute and optimize the expected entropy exactly.

Since the likelihood function of w also belongs to the exponential family, we approximate

p(w|s1:t+1, r1:t+1) as a Gaussian distribution,

w|s1:t+1, r1:t+1 ∼ N (ut+1,Ct+1),

where ut+1 and Ct+1 denote the mean and covariance of w given (s1:t+1, r1:t+1). Ac-

cordingly, we have the following theorem.

Theorem 3 When p(w|s1:t+1, r1:t+1) is approximated as a Gaussian distribution, we

could solve the objective function (Eq. (4.6)) as

arg max
st+1

(eW ·st+1)T · (st+1
T ⊗ I) ·Ct · (st+1 ⊗ J), (4.7)

Proof: First, we have

H(N (ut+1,Ct+1)) =
1

2
log |Ct+1|+ const,

where |Ct+1| represents the determinant of Ct+1.

In order to calculate Ct+1, we have

C−1
t+1 = −∂

2 log p(w|ut+1,Ct+1)

∂w2
,

72

Active Learning of Functional Networks from Spike Trains Chapter 4

because the inverse covariance matrix equals to the second partial derivative of the log-

Gaussian density function w.r.t. w.

By expending log p(w|ut+1,Ct+1) (see supplementary materials for more details), we

can get

C−1
t+1 = C−1

t + F (w, st+1, rt+1)

= (st+1 ⊗ I) · diag(eW ·st+1) · (st+1
T ⊗ I),

(4.8)

where ⊗ represents Kronecker product, diag is a function that takes all the elements of

a matrix and reconstruct them into a diagonal matrix, I is a m×m identity matrix, and

F (w, st+1, rt+1) = −∂
2 log p(rt+1|w, st+1)

∂w2
,

which is the Fisher information (the negative of the second derivative of the log likelihood

with respect to w). It’s interesting to see that the Fisher information does not depend

on the response vector rt+1.

Finally, Eq. (4.6) can be solved as

arg min
st+1

Ert+1
H(p(w|s1:t+1, r1:t+1))

= arg max
st+1

log |C−1
t + F (w, st+1, rt+1)|

= arg max
st+1

tr(log (I + Ct · F (w, st+1, rt+1)))

= arg max
st+1

(eW ·st+1)T · (st+1
T ⊗ I) ·Ct · (st+1 ⊗ J),

where tr is the function to calculate the trace of a matrix and J is a m× 1 vector with

ones in all its entries.

As we can see from Eq. (4.7), the expected entropy relies on the value of W . We

can use the expectation of W to eliminate this unknown variable. To simplify the

73

Active Learning of Functional Networks from Spike Trains Chapter 4

calculation, we assume W (i, ·), the ith row of W , which contains the parameters to

predict the responses of neuron i, also follows a Gaussian distribution N (ui
t,C

i
t). u

i
t and

Ci
t are subsets of ut and Ct that correspond to the parameters in W (i, ·).

Now Eq. (4.6) becomes

arg min
st+1

EWErt+1
H(p(w|s1:t+1, r1:t+1))

≈ arg max
st+1

EW (i,·)∼N (u1
t ,C

1
t)e

st+1
T ·W (i,·)T

...

EW (i,·)∼N (um
t ,Cm

t)e
st+1

T ·W (i,·)T

T

· (st+1
T ⊗ Im×m) ·Ct · (st+1 ⊗ Jm×1)

= arg max
st+1

eu
1
t ·st+1+ 1

2
sTt+1·C

1
t ·st+1

...

eu
m
t ·st+1+ 1

2
sTt+1·C

m
t ·st+1

T

· (st+1
T ⊗ I) ·Ct · (st+1 ⊗ J),

(4.9)

Eq. (4.9) consists of two terms. The first term is a 1×m vector and the second term

is a m× 1 vector.

From Eq. (4.9), we can get some intuitions about the variance model. The term

eu
i
t·st+1 indicates that the model is trying to find the interventions that can increase the

activities of the neurons so that previously undiscovered connection would have a higher

chance of get revealed. The term (st+1
T ⊗ I) ·Ct · (st+1 ⊗ J) indicates that the model

will give larger weights to the interventions that have influences on the connections with

74

Active Learning of Functional Networks from Spike Trains Chapter 4

higher variance.

4.3.2 Update u and C

Without losing generality, we assume i recordings has been seen so far and Ci cor-

responds to the most updated covariance matrix. When the (i + 1)th recording comes,

we show how to calculate ui+1 and Ci+1. When i = 0, we use C0 to denote the initial

covariance matrix. In the next section, we will show how to initialize C0 to take higher

order interactions into consideration.

Since the log-likelihood function of GLM and the log-Gaussian density function are

both concave, every time a new recording comes, we just redo the inference with the

method introduced in Section 4.2.2 and use the inferred w to approximate ui+1. Given

ui+1 and Ci, we use Eq. (A.1) to update Ci+1.

4.3.3 Initialization

When calculating the covariance matrix with the initial recording, we could just set C0

to be an identity matrix. We refer to this method as the basic variance model. However,

we demonstrate that the performance of the variance model can be further improved by

proposing a heuristic initialization method that considers higher order connections.

A deeper analysis about how we update C gives us the following theorem.

Theorem 4 When C is initialized as an identity matrix and being updated according to

equations (A.1), ∀ i 6= j, i ∈ [1,m], j ∈ [1,m], k ∈ [1, n] and c ∈ [1, n], the covariance

between W (i, k) and W (j, c) will always equal to 0, where W (i, k) is the GLM parameter

in ith row and kth column of W (similarly for W (j, c)).

Proof:

75

Active Learning of Functional Networks from Spike Trains Chapter 4

According to Eq. (A.1), we have

C = (C−1
0 + (s⊗ I) · diag(eW ·s) · (sT ⊗ I))−1

By applying the Sherman-Morrison-Woodbury formula, we get

C = C0 −C0 · (s⊗ I)·

(diag(eWs)−1 + (sT ⊗ I) ·C0 · (s⊗ I))−1 · (sT ⊗ I) ·C0

When C0 is initialized as an identity matrix, we can prove Theorem 4 by carrying

out matrix operations.

The intuition behind Theorem 4 is that the parameters responsible for different neu-

rons (different rows in W) are independent with each other. As an example shown in

Figure 4.4, two connections form a chain and the covariance between their corresponding

parameters will not be updated. However, this chain represents higher order interactions

in the functional network. Taking them into consideration is beneficial when choosing

interventions. Accordingly, we propose a heuristic initialization method that proves to

be working very well.

We first calculate the average firing rates, (a1, a2 . . . am), for all the neurons using

the initial recording. Then an input vector s is constructed by using the average firing

rates as the values for each neuron in all time lags. For any two parameters W (i, k) and

W (j, c) where i 6= j, let CW (i,k)−W (j,c) denote their covariance. We initialize this value

as follows,

CW (i,k)−W (j,c) =
1

akaceW (i,·)·seW (j,·)·s

where we use the most updated u to approximate W . This initialization method is

designed to follow the intuition that more information indicates smaller (co)variance.

76

Active Learning of Functional Networks from Spike Trains Chapter 4

k

lag=1

1

c i

j

m

...
...

lag=2 lag=0

W(i,k)
W(j,c)

Figure 4.4: An example of higher order interactions.

Here, the amount of information is quantified by the average or predicted firing rate.

4.4 Validation Model

The variance model works pretty well for many cases. However, it still has some

weaknesses. For example, in Figure 4.5, we have three neurons connected in a chain

with spontaneous firing rates (0.05, 0.0001, 0.0001) and the firings of neuron 2 and 3 are

mainly driven by neuron 1. When a functional network is inferred, a spurious connection

is likely to appear. Assuming we have the ability to silence one of the neurons, and our

goal is to use the interventional data to maximally decrease the strength of the spurious

connection. Using the variance model, neuron 3 will be picked to be silenced. Clearly,

it’s not the best option as when the state of neuron 3 is fixed, all the parameters for the

incoming connections will not be updated. The variance model picks neuron 3 because

it’s trying to reduce the uncertainty about the parameters by increasing the neuronal

activities of the whole network. Picking other neurons would reduce more activities than

neuron 3. However, if we are able to pick neuron 2 as the target, the spurious connection

will be filtered because the incoming connection that is driving the firing of neuron 3 is

77

Active Learning of Functional Networks from Spike Trains Chapter 4

1
+1

+2

+1
2 3

Picked by the
variance model

Picked by the
validation model

Spurious
connection

Figure 4.5: A chain network where the variance model picks neuron 3 and the valida-
tion model picks neuron 2.

blocked and we will know whether there is a connection from neuron 1 to neuron 3 or

not. So in some cases, the variance model is not picking the best interventions.

Hence, we propose another model, called validation model, in accompany with the

variance model. Instead of trying to increase activities of the system so that we can

discover previously missed connections, the goal of the validation model is to maximally

validate our existing knowledge about the functional network. Our current knowledge

can be represented as the most updated GLM parameters, ut. For a new inverventional

input vector st+1, the objective is to maximally increase our confidence about ut, which

is measured by p(ut|s1:t+1, r1:t+1). The objective function is formalized as

arg max
st+1

log p(ut|s1:t+1, r1:t+1). (4.10)

To have more intuitions about the validation model, consider a procedure of making

decisions about the connections in a functional network given the GLM parameters. The

significance of the parameters is measured by their posterior probabilities. Any parameter

that has a posterior probability higher than a threshold will result in a connection in the

functional network. By pursuing the objective function, we can increase our confidence

about connections in the functional network or filter out spurious connections.

Since rt+1 is unknown, we use its expectation and rewrite the objective functions as

78

Active Learning of Functional Networks from Spike Trains Chapter 4

follows,

arg max
st+1

Ert+1
log p(ut|s1:t+1, r1:t+1)

= arg max
st+1

Ert+1
(logut + log p(r1:t|s1:t,ut)+

log p(rt+1|st+1,ut) + const)

= arg max
st+1

Ert+1
log p(rt+1|st+1,ut)

= arg max
st+1

m∑
i=1

Ert+1(i)log p(rt+1(i)|st+1,ut),

(4.11)

where rt+1(i) represents the ith element in the response vector rt+1. When spike train

data is considered, rt+1(i) can only take the value of 0 or 1. So, we have

arg max
st+1

m∑
i=1

∑
rt+1(i)=0,1

log p(rt+1(i)|st+1,ut)

= arg max
st+1

m∑
i=1

(−eui
tst+1 · e−e

ui
tst+1

+

(uitst+1 − eu
i
tst+1) · eui

tst+1 · e−e
ui
tst+1

)

= arg max
st+1

m∑
i=1

(eu
i
tst+1 · e−e

ui
tst+1

(uitst+1 − eu
i
tst+1 − 1))

= arg max
st+1

m∑
i=1

λi · e−λi · (log λi − λi − 1),

(4.12)

where λi = eu
i
tst+1 and uit represents the parameters in ut that are responsible for the

response of neuron i in a row vector.

4.5 Experiments

In this experimental study, we use both synthetic and real spike train data sets to

test the effectiveness of our active learning models. All the computations are conducted

on a server with 2.67GHz Intel Xeon CPU (32 cores) and 1TB RAM.

79

Active Learning of Functional Networks from Spike Trains Chapter 4

4.5.1 Data Sets

Interventions. A very recent equipment called Neuronal Circuit Probe (NCP) was de-

veloped to do interventional experiments when recording spike trains from neurons. NCP

could locate a single neuron and deliver drugs locally to this neuron. In our experiments,

a drug that could silence neurons is used. In other words, assuming we have m neurons

being recorded, there are m types of interventions we can do with each one corresponding

to fixing the sate of a neuron to 0.

Synthetic data. We use three steps to generate simulated spike train data. First,

the structure of the functional network is proposed. Then, a GLM parameter matrix

is created according to the functional network. Finally, simulated spike train data is

generated by running the GLM. If a neuron is intervened in the simulated experiment,

its value will be always set to 0. We use 1 millisecond as the time bin in the recordings

and each recording has a length of 20 seconds which are 20,000 data points. All the

parameters in the simulation process are chosen to mimic real neurons. Due to space

constraints, more details about the synthetic data could be found in the supplementary

materials.

Real data. We use a Multielectrode Array (MEA) with 120 channels to record signals

from neurons on a culture. Each channel corresponds to a node in the functional network

we want to learn. We use 1 millisecond as the time bin to discretize neuronal signals to

ensure there is at most 1 spike at each time bin.

The spike train recordings can be divided into two categories: observational recording

and interventional recording. For the observational recording, the neurons are recorded

without any drug deliveries. For the interventional recording, the neurons are recorded

while drugs that can silence neurons are delivered at channels selected by different meth-

ods. Each interventional experiment is conducted after the neurons have fully recovered

80

Active Learning of Functional Networks from Spike Trains Chapter 4

from the previous experiment. We use an observational recording with 60 seconds as

the initial recording and each additional recording has a length of 20 seconds. Finally,

another 60 seconds observational recording is reserved as the test set.

4.5.2 Evaluation

Methods. To illustrate the effectiveness of our active learning models, we compare our

approaches with several baselines. The models we have proposed could be organized as

four approaches: (1) Basic variance model . The variance model using identity matrix

as initialization; (2) Variance model . The variance model using our initialization

method; (3) Validation model ; (4) Mixture . Alternately using variance model and

validation model to choose interventions. We use two baselines to compare with: (1)

Extend . Simply adding more observational recordings without any interventions. (2)

Firing rate . Choosing the neuron that has the highest firing rate as the intervention

target.

Metrics. For the synthetic datasets, since we have the ground truth which is the GLM

parameter matrix W , the inferred W̄ is directly compared with W . The Frobenius norm

of their difference is used to characterize the error of the inferred model,

e = ‖W̄ −W ‖F .

Since we want to repeat our tests with different experimental settings (structure of

the functional networks and parameters of the GLM) and report the average, we need

to normalize the errors. Let E = {e1, e2, ..., ec} denote the set of errors when different

number of recordings and different models are used. We normalize ei as

ei − u
σ

,

81

Active Learning of Functional Networks from Spike Trains Chapter 4

where u is the mean of E and σ is the standard deviation of E.

For real datasets, since we don’t have the ground truth, we reserve some observational

recordings as the test set, and use the predictive ability of the inferred model to measure

its accuracy. So, the negative log-likelihood on the test dataset is used as the evaluation

metric. A lower negative log-likelihood means the inferred model is more accurate.

4.5.3 Random Networks

To test the effectiveness of our models, we conduct simulated experiments with ran-

dom networks of different sizes. Given the size of the network, we randomly generate 10

networks and report the average of the normalized errors. All the simulated experiments

are done interactively which means every time a new additional recording is added, the

intervention models are re-calculated to pick the next intervention.

We first test the case when the functional network contains 10 nodes. As shown

in Figure 4.6(a), for all the methods, when more additional recordings are added, the

inferred model is getting more accurate. However, when Mixture is used to guide the

intervention experiments, we can achieve the most accuracy gains. Another observation

is that the variance model works better than the basic variance model because of our

initialization method. It’s worth mentioning that the validation model is not working

very well because the size of the network is too small such that there are not a lot of

spurious connections when the network is inferred.

We then increase the size of the random networks to 20 nodes and redo the exper-

iments. As shown in Figure 4.6(b), the variance model, the validation model and the

mixture method achieves the best results. The variance model shows consistent advan-

tages over other models. The validation model shows a huge performance improvement

compared to the previous experiment for the reason that the size of the random networks

82

Active Learning of Functional Networks from Spike Trains Chapter 4

1 2 3 4 5
Number of additional recordings

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
e

Extend

Firing rate

Validation model

Basic variance model

Variance model

Mixture

(a) Random networks with 10 nodes.

1 2 3 4 5
Number of additional recordings

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

e

Extend

Firing rate

Validation model

Basic variance model

Variance model

Mixture

(b) Random networks with 20 nodes.

Figure 4.6: Averages of normalized errors with random networks.

is larger and more spurious connections will be eliminated by the validation model. In-

terestingly, when the interventions are chosen by firing rate, it performs even worse than

simply adding observational recordings.

4.5.4 Real Data

For biological reasons the neurons can not be recorded for too long. So, in real

experiments, instead of choosing interventions interactively, we use batch experimental

design. An initial recording of 60 seconds is collected to train the GLM and intervention

models. Then a ranking of interventions is generated by each intervention model. We use

this ranking without updating it to guide following experiments. We also use the negative

log-likelihood on a test set with a recording of 60 seconds to measure the accuracy of the

inferred model.

As shown in Figure 4.7, the variance model, the validation model and the mixture

method could achieve lower negative log-likelihood (higher accuracy) than simply ex-

tending observational recording or picking interventions according to firing rate. The

performance gain of our models over the Firing rate method is not as obvious in the

83

Active Learning of Functional Networks from Spike Trains Chapter 4

second intervention experiment as in the first one. The reason may be because we are

not able to update our intervention models by using the new recording. When the ex-

periments can be done interactively, more accuracy gain will be achieved.

1 2
Number of additional recordings

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N
e
g
a
ti
v
e
 l
o
g
 l
ik
e
lih

o
o
d
 (
×1

04
)

Extend

Firing rate

Validation model

Variance model

Mixture

Figure 4.7: Evaluation by real data.

4.6 Related Work

The problem of learning functional networks should not be confused with the problem

of learning the structure of a causal network [60] (static or dynamic Bayesian networks).

In structure learning of static or dynamic causal Bayesian networks, numerous works

[66, 67, 68, 62, 61] have been proposed. However, these works focus on how to efficiently

search the structure space or how to evaluate the the proposed structure.

When learning a static causal Bayesian network, it can be proved that given only

observational data, we can not differentiate networks in a Markov equivalence class, in

which the networks have the same skeleton but may have different directions for some

edges [69]. So some researchers [64, 65] try to tackle this problem with an active learning

framework. In these methods, they will choose interventions that can orientate most

84

Active Learning of Functional Networks from Spike Trains Chapter 4

edges. Another work [63] based on active learning framework keeps a distribution of

possible structures and choose interventions that can maximally reduce the entropy of

this distribution, but the ordering of nodes needs to be given.

We study the problem of learning functional networks. The structure and parameters

are jointly learned by inferring a Generalized Linear Model. GLM is widely used in

spike train analysis, but most works [38, 46] focus on learning GLM from observational

data. J. Lewi et al proposes methods [59, 70, 56] to select external stimuli for a better

estimation of GLM when there is only one neuron. However, we are interested in modeling

interactions among multiple neurons, which is a different problem.

4.7 Conclusions

In this work, we study the problem of learning functional networks from spike trains

in an active learning setting. In particular, we propose two models, the variance model

and the validation model, to choose the most informative intervention so that we can

get the maximum accuracy gain for the inferred network. Our experimental results with

both synthetic and real data show that by applying our approaches, we could achieve

substantially better accuracy than using the same amount of observational data or other

baseline methods to choose interventions.

85

Appendix A

Supplementary Materials for

Active Learning of Functional

Networks from Spike Trains

A.1 Proof of Theorem 3

Here we give the extended version of the proof.

First, we have

H(N (ut+1,Ct+1)) =
1

2
log |Ct+1|+ const,

where |Ct+1| represents the determinant of Ct+1.

In order to calculate Ct+1, we have

C−1
t+1 = −∂

2 log p(w|ut+1,Ct+1)

∂w2
,

because the inverse covariance matrix equals to the second partial derivative of the log-

Gaussian density function w.r.t. w. Furthermore, we can expand log p(w|ut+1,Ct+1) as

86

Supplementary Materials for
Active Learning of Functional Networks from Spike Trains Chapter A

follows,

log p(w|ut+1,Ct+1)

≈ log p(w|s1:t+1, r1:t+1)

= log p(w) + log p(r1:t|w, s1:t) + log p(rt+1|w, st+1)+

const

≈ log p(w|ut,Ct) + log p(rt+1|w, st+1) + const,

where ut and Ct are derived from previous observations (s1:t, r1:t) and treated as known

parameters.

Now, we can get

C−1
t+1 = C−1

t −
∂2 log p(rt+1|w, st+1)

∂w2
. (A.1)

The second term of Eq. (A.1) is the Fisher information (the negative of the second

derivative of the log likelihood with respect to w) and can be calculated as

F (w, st+1, rt+1)

= −∂
2 log p(rt+1|w, st+1)

∂w2

= −∂
2 log p(rt+1|W , st+1)

∂W 2

= −∂D(W , st+1, rt+1)

∂W

= −∂D(W , st+1, rt+1)

∂eW ·st+1
· ∂e

W ·st+1

∂W · st+1

· ∂W · st+1

∂W

87

Supplementary Materials for
Active Learning of Functional Networks from Spike Trains Chapter A

Given ∂AXB
∂X

= BT ⊗A, we have

F (w, st+1, rt+1)

= (st+1 ⊗ I) · diag(eW ·st+1) · (st+1
T ⊗ I).

where ⊗ represents Kronecker product, diag is a function that takes all the elements of

a matrix and reconstruct them into a diagonal matrix and I is a m×m identity matrix.

It’s interesting to see that the Fisher information does not depend on the response vector

rt+1.

Given the above equations, the objective function can be solved as

arg min
st+1

Ert+1
H(p(w|s1:t+1, r1:t+1))

= arg min
st+1

Ert+1
log |Ct+1|

= arg max
st+1

Ert+1
log |Ct+1

−1|

= arg max
st+1

log |C−1
t + F (w, st+1, rt+1)|

= arg max
st+1

(log |Ct
−1|+ log |I + Ct · F (w, st+1, rt+1)|)

= arg max
st+1

log |I + Ct · F (w, st+1, rt+1)|

= arg max
st+1

tr(log (I + Ct · F (w, st+1, rt+1)))

≈ arg max
st+1

tr(Ct · F (w, st+1, rt+1))

= arg max
st+1

(eW ·st+1)T · (st+1
T ⊗ I) ·Ct · (st+1 ⊗ J),

(A.2)

where tr is the function to calculate the trace of a matrix, I is an m×m identity matrix

and J is a m× 1 vector with ones in all its entries.

88

Supplementary Materials for
Active Learning of Functional Networks from Spike Trains Chapter A

A.2 Synthetic Data

Here we give the detailed procedure to generate synthetic data.

We use three steps to generate simulated spike train data. First, the structure of the

functional network is proposed. Then, a GLM parameter matrix is created according to

the functional network. Finally, simulated spike train data is generated by running the

GLM. All the parameters in the simulation process are chosen to mimic real neurons.

Propose structure of the functional network. In this step, we use two methods to build the

functional network: 1) manually creating some small networks to show the effectiveness

and intuition of our models; 2) generating random networks to evaluate the generaliz-

ability of our models. The random networks are generated as follows. First the number

of nodes m is chosen. Then for each pair of nodes in the network, they have a probability

of 0.3 of getting connected and for each connection, it has a probability of 0.2 of being

an inhibitory connection. We use [1, 20] as time lags for an inhibitory connection and a

time lag drawn from [1, 2] for an excitatory connection. Each node also has an inhibitory

connection directed to itself to mimic the refractory period of neurons.

Create GLM parameter matrix from the functional network. First, for any neuron i,

the value of bi is randomly drawn from [−9,−3], which means a spontaneous firing rate

ranging from 0.0001 to 0.05. Then other values in the parameter matrix are picked

according to the connections in this network. For example, if there is an edge from

neuron i to neuron j with time lag l, the corresponding value in the parameter matrix

W will be set to a none-zero value to represent the strength of this connection. If the

connection is excitatory, the value will be randomly drawn from [0,−bi]. If the connection

is inhibitory, the value will be set to bi to ensure the inhibition of all excitatory inputs.

Generate simulated spike train data. Given a GLM parameter matrix, we run the GLM

with initial states of neurons set to be 1. At each time step, the probabilities of getting a

89

Supplementary Materials for
Active Learning of Functional Networks from Spike Trains Chapter A

spike are computed before Gaussian noises with mean 0 and variance 0.0005 are added.

Then Bernoulli distributions with these probabilities are used to draw values of 0 or 1.

If a neuron is intervened in the simulated experiment, its value will be set to 0 no matter

what the probability is. We continue this process until the desired length of recording is

reached.

A.3 Small Networks

Here we report experiments that could validate the intuitions behind our active learn-

ing models.

Since the variance and validation model are using different strategies to choose inter-

ventions, we use some small networks to illustrate the effectiveness of their intuitions. In

the following experiments, in addition to the aforementioned two baseline methods, we

add another one, First recording, which infers the GLM only with the initial recording.

Variance model. Figure A.1(a) shows three types of functional networks with inhibitory

connections. All the neurons in these networks have a spontaneous firing rate of 0.05.

The first column in Figure A.1(a) shows the structures of the proposed networks. The

second column shows the neuron that will be picked as the intervention target if it’s

selected by firing rate. The third column shows the neuron that the variance model will

choose. For instance, in network 1, node 3 is chosen according to firing rate and node

1 is chosen by the variance model. It’s clear that when network 1 is inferred by using

only observational data, the connection from node 1 to node 2 will likely be missed. By

silencing node 1, which is chosen by the variance model, we can discover this connection.

One the other hand, choosing interventions by firing rate will not help.

To illustrate the effectiveness of the variance model, we show the error e of the inferred

model when an additional recording is add under the guidance of different methods. As

90

shown in Figure A.2(a), if the simulated intervention experiments are conducted under

the guidance of the variance model, we can always achieve the highest accuracy.

Validation model. Similarly for the validation model, we manually create three func-

tional networks shown in Figure A.1(b). The networks are constructed with only exci-

tatory connections and each node has a firing rate of 0.0001 except node 1 has a firing

rate of 0.05, which means the activities of the networks are mainly driven by node 1. By

comparing the intervention targets chosen by the validataion model and according to the

firing rate, we can see that the validation model could always choose the node that can

maximally filter spurious connections. As shown in Figure A.2(b), the validation model

could achieve the highest accuracy gain in all three cases.

91

1
-[1,20] +1

-[1,20]

-[1,20]

-[1,20]
+1

+1

Original Network Firing Rate Variance Model

2 3

1

2

3

1

2

3

4

1

2

3

1
-[1,20] +1

2 3 1
-[1,20] +1

2 3

-[1,20]

1

2

3
-[1,20]

1

2

3

-[1,20]
-[1,20]

-[1,20]
+1

+1
1

2

3

4

-[1,20]
+1

+1
1

2

3

4

(a) Examples for the variance model.

1
+1 +1

+1

+2

+1
+1

+1

Original Network Firing Rate Validation Model

2 3

1

2

3

1

2

3

4

1

2

3

1
+1 +1

2 3 1
+1 +1

2 3

+2

1

2

3 +2

1

2

3

+1 +1

+1
+1

+1
1

2

3

4

+1
+1

+1
1

2

3

4

(b) Examples for the validation model.

Figure A.1: The neurons that will be chosen by different methods for small networks.

92

network 1 network 2 network 3
Networks

0
2
4
6
8

10
12
14
16
18

e

First recording

Extend

Firing rate

Variance model

(a) When examples for the variance model are
used.

network 1 network 2 network 3
Networks

0

2

4

6

8

10

12
e

First recording

Extend

Firing rate

Validation model

(b) When examples for the validation model are
used.

Figure A.2: The errors of the inferred functional networks by different methods for
small networks.

93

Bibliography

[1] J. T. Ballew, J. A. Murray, P. Collin, M. Mäki, M. F. Kagnoff, K. Kaukinen, and
P. S. Daugherty, Antibody biomarker discovery through in vitro directed evolution
of consensus recognition epitopes, Proceedings of the National Academy of Sciences
110 (2013), no. 48 19330–19335.

[2] T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to
discover motifs in bipolymers, Proceedings of the Second International Conference
on Intelligent Systems for Molecular Biology (1994) 28–36.

[3] F. Zambelli, G. Pesole, and G. Pavesi, Motif discovery and transcription factor
binding sites before and after the next-generation sequencing era, Briefings in
bioinformatics 14 (2013), no. 2 225–237.

[4] T. L. Bailey, Dreme: motif discovery in transcription factor chip-seq data,
Bioinformatics 27 (2011), no. 12 1653–1659.

[5] P. Machanick and T. L. Bailey, Meme-chip: motif analysis of large dna datasets,
Bioinformatics 27 (2011), no. 12 1696–1697.

[6] J. E. Reid and L. Wernisch, Steme: efficient em to find motifs in large data sets,
Nucleic acids research 39 (2011), no. 18 e126.

[7] T. Kim, M. S. Tyndel, H. Huang, S. S. Sidhu, G. D. Bader, D. Gfeller, and P. M.
Kim, Musi: an integrated system for identifying multiple specificity from very large
peptide or nucleic acid data sets, Nucleic acids research (2011).

[8] C. E. Grant, T. L. Bailey, and W. S. Noble, Fimo: Scanning for occurrences of a
given motif, Bioinformatics 27 (2011), no. 7 1017–1018.

[9] S. Burkhardt and J. Kärkkäinen, One-gapped q-gram filters for levenshtein
distance, in Combinatorial pattern matching, pp. 225–234, Springer, 2002.

[10] T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren,
W. W. Li, and W. S. Noble., Meme suite: tools for motif discovery and searching,
Nucleic acids research 37 (2009), no. 2 202–208.

94

[11] M. Andreatta, O. Lund, and M. Nielsen, Simultaneous alignment and clustering of
peptide data using a gibbs sampling approach, Bioinformatics 29 (2013), no. 1 8–14.

[12] M. Sahli, E. Mansour, and P. Kalnis, Acme: A scalable parallel system for
extracting frequent patterns from a very long sequence, The VLDB Journal 23
(2014), no. 6 871–893.

[13] I. R. Rebollo, M. Sabisz, V. Baeriswyl, and C. Heinis, Identification of
target-binding peptide motifs by high-throughput sequencing of phage-selected
peptides, Nucleic acids research 42 (2014), no. 22 e169–e169.

[14] W. L. Matochko, K. Chu, B. Jin, S. W. Lee, G. M. Whitesides, and R. Derda,
Deep sequencing analysis of phage libraries using illumina platform, Methods 58
(2012), no. 1 47–55.

[15] C. Jia, M. B. Carson, and J. Yu, A fast weak motif-finding algorithm based on
community detection in graphs, BMC bioinformatics 14 (2013), no. 1 1471–2105.

[16] D. E. Schones, P. Sumazin, and M. Q. Zhang, Similarity of position frequency
matrices for transcription factor binding sites, Bioinformatics 21 (2005), no. 3
307–313.

[17] L. Marsan and M. Sagot, Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification,
Journal of Computational Biology 7 (2000), no. 3-4 345–362.

[18] G. Pavesi, G. Mauri, and G. Pesole, An algorithm for finding signals of unknown
length in dna sequences, Bioinformatics 17 (2001), no. 1 S207–S214.

[19] T. L. Bailey, N. Williams, C. Misleh, and W. W. Li., Meme: discovering and
analyzing dna and protein sequence motifs, Nucleic acids research 34 (2006), no. 2
369–373.

[20] K. Katoh, K. Misawa, K. Kuma, and T. Miyata, Mafft: a novel method for rapid
multiple sequence alignment based on fast fourier transform, Nucleic acids research
30 (2002), no. 14 3059–3066.

[21] A. F. Neuwald, J. S. Liu, and C. E. Lawrence, Gibbs motif sampling: detection of
bacterial outer membrane protein repeats, Protein science 4 (1995), no. 8
1618–1632.

[22] J. D. Hughes, P. W. Estep, S. Tavazoie, and G. M. Church, Computational
identification of cis-regulatory elements associated with groups of functionally
related genes in saccharomyces cerevisiae, Journal of molecular biology 296 (2000),
no. 5 1205–1214.

95

[23] S. Burkhardt and J. Kärkkäinen, Better filtering with gapped q-grams, Fundamenta
informaticae 56 (2003), no. 1 51–70.

[24] M. Fontaine, S. Burkhardt, and J. Kärkkäinen, Bdd-based analysis of gapped
q-gram filters, International Journal of Foundations of Computer Science 16
(2005), no. 06 1121–1134.

[25] B. Ma, J. Tromp, and M. Li, Patternhunter: faster and more sensitive homology
search, Bioinformatics 18 (2002), no. 3 440–445.

[26] M. Li, B. Ma, D. Kisman, and J. Tromp, Patternhunter ii: Highly sensitive and
fast homology search, Journal of Bioinformatics and Computational Biology 2
(2004), no. 03 417–439.

[27] E. Giaquinta, S. Grabowski, and E. Ukkonen, Fast matching of transcription factor
motifs using generalized position weight matrix models, Journal of Computational
Biology 20 (2013), no. 9 621–630.

[28] R. Baxter, P. Christen, and T. Churches, A comparison of fast blocking methods
for record linkage, in ACM SIGKDD, vol. 3, pp. 25–27, Citeseer, 2003.

[29] U. Draisbach and F. Naumann, A generalization of blocking and windowing
algorithms for duplicate detection, in Data and Knowledge Engineering (ICDKE),
2011 International Conference on, pp. 18–24, IEEE, 2011.

[30] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, Robust and efficient fuzzy
match for online data cleaning, in Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pp. 313–324, ACM, 2003.

[31] C. Xiao, W. Wang, and X. Lin, Ed-join: an efficient algorithm for similarity joins
with edit distance constraints, Proceedings of the VLDB Endowment 1 (2008), no. 1
933–944.

[32] N. Begum and E. Keogh, Rare time series motif discovery from unbounded streams,
Proceedings of the VLDB Endowment 8 (2014), no. 2 149–160.

[33] Y. Li, U. Leong Hou, M. L. Yiu, and Z. Gong, Quick-motif: An efficient and
scalable framework for exact motif discovery, ICDE, 2015.

[34] D. O. Hebb, The organization of behavior: A neuropsychological approach. John
Wiley & Sons, 1949.

[35] J. Keat, P. Reinagel, R. C. Reid, and M. Meister, Predicting every spike: a model
for the responses of visual neurons, Neuron 30 (2001), no. 3 803–817.

96

[36] J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. Chichilnisky,
Prediction and decoding of retinal ganglion cell responses with a probabilistic
spiking model, Journal of Neuroscience 25 (2005), no. 47 11003–11013.

[37] I. H. Stevenson, J. M. Rebesco, L. E. Miller, and K. P. Körding, Inferring
functional connections between neurons, Current opinion in neurobiology 18
(2008), no. 6 582–588.

[38] I. H. Stevenson, J. M. Rebesco, N. G. Hatsopoulos, Z. Haga, L. E. Miller, and
K. P. Kording, Bayesian inference of functional connectivity and network structure
from spikes, IEEE Transactions on Neural Systems and Rehabilitation Engineering
17 (2009), no. 3 203–213.

[39] J. W. Pillow, Y. Ahmadian, and L. Paninski, Model-based decoding, information
estimation, and change-point detection techniques for multineuron spike trains,
Neural computation 23 (2011), no. 1 1–45.

[40] G. L. Gerstein and K. L. Kirkland, Neural assemblies: technical issues, analysis,
and modeling, Neural Networks 14 (2001), no. 6 589–598.

[41] P. Jonas and G. Buzsaki, Neural inhibition, Scholarpedia 2 (2007), no. 9 3286.

[42] M. R. Cohen and A. Kohn, Measuring and interpreting neuronal correlations,
Nature neuroscience 14 (2011), no. 7 811–819.

[43] S. Ostojic, N. Brunel, and V. Hakim, How connectivity, background activity, and
synaptic properties shape the cross-correlation between spike trains, Journal of
Neuroscience 29 (2009), no. 33 10234–10253.

[44] K. R. Tovar, D. C. Bridges, B. Wu, C. Randall, M. Audouard, J. Jang, P. K.
Hansma, and K. S. Kosik, Recording action potential propagation in single axons
using multi-electrode arrays, bioRxiv (2017) 126425.

[45] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering, Neural computation 16
(2004), no. 8 1661–1687.

[46] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. Chichilnisky, and
E. P. Simoncelli, Spatio-temporal correlations and visual signalling in a complete
neuronal population, Nature 454 (2008), no. 7207 995.

[47] I. Bomash, Y. Roudi, and S. Nirenberg, A virtual retina for studying population
coding, PloS one 8 (2013), no. 1 e53363.

97

[48] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, A
point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects, Journal of neurophysiology 93
(2005), no. 2 1074–1089.

[49] J. M. Rebesco, I. H. Stevenson, K. P. Körding, S. A. Solla, and L. E. Miller,
Rewiring neural interactions by micro-stimulation, Frontiers in systems
neuroscience 4 (2010).

[50] B. Dunn, M. Mørreaunet, and Y. Roudi, Correlations and functional connections
in a population of grid cells, PLoS computational biology 11 (2015), no. 2 e1004052.

[51] I. M. Park, M. L. Meister, A. C. Huk, and J. W. Pillow, Encoding and decoding in
parietal cortex during sensorimotor decision-making, Nature neuroscience 17
(2014), no. 10 1395–1403.

[52] D. de Santos-Sierra, I. Sendiña-Nadal, I. Leyva, J. A. Almendral, S. Anava,
A. Ayali, D. Papo, and S. Boccaletti, Emergence of small-world anatomical
networks in self-organizing clustered neuronal cultures, PloS one 9 (2014), no. 1
e85828.

[53] M. Ivenshitz and M. Segal, Neuronal density determines network connectivity and
spontaneous activity in cultured hippocampus, Journal of neurophysiology 104
(2010), no. 2 1052–1060.

[54] S. Linderman, C. H. Stock, and R. P. Adams, A framework for studying synaptic
plasticity with neural spike train data, in Advances in Neural Information
Processing Systems, pp. 2330–2338, 2014.

[55] P. D. Maia and J. N. Kutz, Compromised axonal functionality after
neurodegeneration, concussion and/or traumatic brain injury, Journal of
computational neuroscience 37 (2014), no. 2 317–332.

[56] J. Lewi, R. J. Butera, and L. Paninski, Efficient active learning with generalized
linear models, in International Conference on Artificial Intelligence and Statistics,
pp. 267–274, 2007.

[57] Z. Chen, An overview of bayesian methods for neural spike train analysis,
Computational intelligence and neuroscience 2013 (2013) 1.

[58] D. Patnaik, S. Laxman, and N. Ramakrishnan, Discovering excitatory networks
from discrete event streams with applications to neuronal spike train analysis, in
Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on,
pp. 407–416, IEEE, 2009.

98

[59] J. Lewi, D. M. Schneider, S. M. Woolley, and L. Paninski, Automating the design
of informative sequences of sensory stimuli, Journal of computational neuroscience
30 (2011), no. 1 181–200.

[60] J. Pearl, Causality: models, reasoning and inference, Economet. Theor 19 (2003)
675–685.

[61] W. Lam and F. Bacchus, Learning bayesian belief networks: An approach based on
the mdl principle, Computational intelligence 10 (1994), no. 3 269–293.

[62] D. Heckerman, D. Geiger, and D. M. Chickering, Learning bayesian networks: The
combination of knowledge and statistical data, Machine learning 20 (1995), no. 3
197–243.

[63] S. Tong and D. Koller, Active learning for structure in bayesian networks, in
International joint conference on artificial intelligence, vol. 17, pp. 863–869,
LAWRENCE ERLBAUM ASSOCIATES LTD, 2001.

[64] Y.-B. He and Z. Geng, Active learning of causal networks with intervention
experiments and optimal designs, Journal of Machine Learning Research 9 (2008),
no. 11.

[65] M. Steyvers, J. B. Tenenbaum, E.-J. Wagenmakers, and B. Blum, Inferring causal
networks from observations and interventions, Cognitive science 27 (2003), no. 3
453–489.

[66] N. Dojer, Learning bayesian networks does not have to be np-hard, in Mathematical
Foundations of Computer Science 2006, pp. 305–314. Springer, 2006.

[67] Z. Wang and L. Chan, Using bayesian network learning algorithm to discover
causal relations in multivariate time series, in Data Mining (ICDM), 2011 IEEE
11th International Conference on, pp. 814–823, IEEE, 2011.

[68] N. X. Vinh, M. Chetty, R. Coppel, and P. P. Wangikar, Globalmit: learning
globally optimal dynamic bayesian network with the mutual information test
criterion, Bioinformatics 27 (2011), no. 19 2765–2766.

[69] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search.
MIT press, 2000.

[70] J. Lewi, R. Butera, and L. Paninski, Sequential optimal design of neurophysiology
experiments, Neural Computation 21 (2009), no. 3 619–687.

99

	Curriculum Vitae
	Abstract
	Introduction
	Mining Patterns
	Mining Networks

	Fast Motif Discovery in Short Sequences
	Introduction
	Preliminaries
	Anchor based similarity
	Anchor based clustering
	Motif Merging and Filtering
	Experiments
	Related Work
	Conclusions

	Prediction and Validation of Inhibitory Connections from Spike Trains
	Introduction
	Methods
	Results
	Discussion

	Active Learning of Functional Networks from Spike Trains
	Introduction
	Preliminaries
	Variance Model
	Validation Model
	Experiments
	Related Work
	Conclusions

	Supplementary Materials for Active Learning of Functional Networks from Spike Trains
	Proof of Theorem 3
	Synthetic Data
	Small Networks

	Bibliography

