UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title

Natural Problem Solving Strategies
And

Programming Language Constructa

Permalink

bttgs:géescholarshiQ.orgéucéitem40n2070vg

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Author
Bonar, Jeffrey

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0n2070vg
https://escholarship.org
http://www.cdlib.org/

Natural Problem Solving Strategies

and

Programming Language Constructs (1)

Jeffrey Bonar

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

1. Introduction

Any interesting computerized task soon
involves programming. Experience with statistics
packages, word processing, and even microwave ovens
shows that we always want our systems to be able to
follow a step-by-step specification involving
decisions and repeated actions. Even with a very
intelligent computerized assistant, we would like
to give it detailed instructions at an appropriate
level of abstraction.

This wubiquity of programming presents a
problem, however. It 1is widely known that
programming, even at a simple level, is a difficult
activity to learn. {2} What is it about this
cognitive skill that is so difficult? Is it
inherent in programming, or directly related to the
nature of the programming tools currently used for
novices? In this report we will present evidence
that current programming languages do not
accurately reflect human problem solving strategies
developed in a context of step-by-step natural
language specification. This evidence was gained
by studying novice computer programs collected from
their terminal sessions (Bonar et al, 1982],
video-taped interviews of novices programming, and
written studies focusing on specific aspects of
novice programming techniques. (3}

Step-by-step natural language specification
provides powerful intuitions for novice programmers
using a programming language. We hypothesis that
these intuitions take the form of frame-like plans
- regular but flexible techniques for specifying
how to accomplish a task. Programming knowledge
also involves frame-like plans (Soloway et al,
1982] (Waters, 19791]. While an individual
programming language plan may have many lexical and
syntactic similarities to a corresponding natural
language plan, the two plans often have
incompatible semantics and pragmatics. Many novice
programmer's misconceptions derive directly from
these incompatibilities.

In this brief report we will show an example
of natural language and programming language
plans. Using those plans we will discuss a
transcripts of novice programmers using a natural
language plans while attempting a programming

{11} This work was supported by the National
Science Foundation under NSF Grant SED=-81-12403.
Any opinions, findings, conclusions, or

recommendations expressed in this report are those
of the author, and do not necessarily reflect the
views of the U.S. Government.

(2} Our own conservative estimate from several
introductory programming courses is that more than
40% of the conscientious students never really
understand the rudiments of programming.

(3} Du Boulay and 0'Shea ([1981] present an
excellent overview of research into how novices
learn programming.

146

language problem. We conclude with a brief
discussion of the implications of this work.

2. A Mismatch Between a Natural Language Plan and
a Program

Consider the following problem:

Problem 1: Please write a set of
explicit instructions to help a junior
clerk collect payroll information for a
factory. At the end of the next
payday, the clerk will be sitting in
front of the factory doors and has
permission to look at employee pay
checks, The clerk is to produce the
average salary for the workers who come
out of the door. This average should
include only those workers who come out
before a supervisor comes out, and
should not include the supervisor's
salary.

The following natural language specification for
this problem, written by one of our subjects, is
typical:

Te Identify worker, check name on
list, check wages

2. Write it down

3. Wait for next worker, identify
next, check name, and so on

4. When super comes out, stop

5. Add number of workers you've
written down

6. Add all the wages

7. Divide the wages by the number
of workers

There are several natural language specification
plans used here. Note how steps 1 through 4
specify a loop: steps 1 to 3 describe the first
iteration of the loop, indicating repetition with
the phrase "and so on". Step 4 adds a stopping
condition, assuming that this condition will act as
a "demon", always watching the action of the loop
for the exit condition to become true. The
specification also assumes "canned procedures” for
counting inputs, step 5, and for summing a series
of numbers, step 6. Note however, that these two
procedures are both denoted with the word "add".

Now focus on the two actions performed in
steps 1 and 2. The plan to describe these actions
is "get a value (step 1), and process that value
(step 2)". This plan is nearly universal in this
sort of description. Unfortunately, many
programming languages support a far less natural
plan: "process the last value, get the next value".
To see why this is so, consider a problem analogous
to Problem 1 but in a programming language domain:

Problem 2: Write a program which
repeatedly reads in integers until it
reads they integer 99999. After seeing

99999, it should print out the correct
average. That is, it should not count
the final 99999.

In Pascal, a popular novice programming language,
the correct solution to Problem 2 is:

program Problem 2 Expert;
var Count, Total, New : integer;
begin
Count ;= 0; Total := O;
Read (New);
while New <> 99999
do begin
Count := Count + 1;
Total := Total + New;
Read (New)
end;
if Count > 0
then
Writeln ('Average =',fTotal/Count)
else
Writeln ('No data.')
end.

Notice the peculiar while 1loop construction.
Because a while loop tests only at the top of the
loop, it is necessary to have a Read both above the
loop and at the bottom of the loop. Within the
loop we see the plan "process the last value, read
the next value”, This plan is part of the
knowledge used by experienced Pascal programmers.
Do novice programmers easily acquire such a plan?
Apparently, no.

First of all, novices want the while to have a
demon like structure. Consider, for example, the
following transeript:

S: How do I get [the while loop] to do that over
again? See, I guess I don't know, I thought
I had it. What happens now, how do I get it
to go back? ... I say to myself, why would
it do [the while test] after [the last line
of the loop bodyl]? It seems to me that it
would do it as soon as the ([variable tested
in the while condition] changes. ...

I: So how will the while statement behave?

S: Again, total guess here, I'm saying the while
statement, here's a logical guess o
everytime [the variable tested in the while
condition] 13 assigned a new value, the
machine needs to check that value ...

The subjects "logical guess" is that the while
benaves like a demon and not as a specific testing
step among other steps. This is consistant with
English phrases like "while you are on the highway,

watch for the Northfield sign". Soloway et al
[1981a] report that 34% of an introductory
programming course had the "while demon™
misconception.

Novices also try to implement the "get a
value, process that value" plan, even though they
are programming in Pascal. Consider. the following
novice program fragment,

var Count, Total, I : integer;
begin
Count := 0
Total := 0
Writeln ('Enter integer')
Read (I)
while I <> 99999 do

begin

Count := Count + 1
Total := Total + I
Read £33 (crossed out>
end

and a transcript of the subject discussing this
program:

S: If I put a number in [at the top of the
loop], it comes through [the loop body]. I
don't think I want [the inside Read] read
again, I want it read up (at the top of the
loop] ... If I read it [at the bottom of the
loop body], what's that going to do for me?
It's not going to do anything for me. OK, if
I come out of the loop, having entered [a
value], finish all [the loop body], then if I
read in another one [points to Read above the
while, traces a flow from that outside Read
down through the loop]. I guess what I need
to figure out is how do I get back up here
[points to the Read above the while].

The subject wants to put the Read at the top of the
loop, making the test in the middle of the loop.
This allows the "get a value, process that value"
plan. In a separate study Soloway, et al [1981b]
show that a new Pascal looping construct
supporting this plan significantly improved novice
and intermediate performance with Problem 2.

3. Conclusions

The implication of these results is not simply
to make syntactic fixes to programming languages.
Instead, we are suggesting that the knowledge
people bring from natural language has a key effect
on their early programming efforts. Shneiderman
and Mayer [1979] have proposed a model of
programmer behavior based on language specific
knowledge (which they call "syntactic") and more
general programming knowledge (called "semantic").
Our results suggest that there is a third body of
"natural language step-by-step specification
knowledge™ which strongly influences novice
programming behavior.

Miller [1981], Green [1981], and others have
previously looked at step-by-step natural language
specifications. They concentrated on looking at
the suitability of natural language for directing
computers, Based on the ambiguities and complexity
limitations of natural language, they concluded it
would be quite difficult to "program"™ in natural
languages. Here, we are not contradicting that
result, but extending it. We are finding that

‘novice programmers do use natural language, even

when they think they are using a programming
language.

There are several implications of this work
for programming education. We are beginning to
explain many novice programming errors through the
idea of natural language step-by-step specification
plans. The quality of these explanations has
proved important in the development of a tutor to
do intelligent computer assisted instruction of
programming [Soloway et al, 1981¢]. 1In the future,
we hope to extend the tutor to understand a
stylized form of these natural language plana.

Finally, what is the key to cognitively

appropriate novice computing systems? Our work
suggests that we need serious study of the

147

knowledge novices bring to a computing sSystem,
For most computerized tasks there is some model
that a novice will use in his or her first
attempts, We need to understand when i3 it
appropriate to appeal to this model, and how to
move a novice to some more appropriate model,.

Acknowledgements - My deepest thanks to Elliot
Soloway for his support and guidance. I would also
like to thank John Clement for his critical
comments,

4, References

Bonar, Jeffrey, Kate Ehrlich, Elliot Scloway, and
Eric Rubin, (1982) "Collecting and Analyzing
On-Line Protocols from MNovice Programmers", in
Behavioral Research Methods and
Instrumentation, May 1982.

Du Boulay, B. and T. 0'Shea (1981) "Teaching
Novices Programming"”, in Computing Skills and
the User Interface edited by M.J. Coombs and
J.L. Alty, Academic Press, New York.

Green, Thomas (1981) "Programming As a Cognitive
Activity", in Human Interaction With
Computers, edited by C. Smith and T. Green,
Academic Press.

Miller, Lance A, (1981) "Natural language

programming: Styles, strategies, and
contrasts®, IBM Systems Journal, 20:2, pp.
184-215.

148

Shneiderman, Ben and Richard Mayer (1979)
"Syntactic/Semantic Interactions in Programmer
Behavior: A Model and Experimental Results",
International Journal of Computer and

—

Information Science, 8:3, pp. 219-238.

Soloway, Elliot, Jeffrey Bonar, Beverly Woolf, Paul
Barth, Eric Rubin, and Kate Ehrlich (1981a)
"Cognition and Programming: Why Your Students
Write Those Crazy Programs", appeared in
proceedings of the National Educational
Computing Conference.

Soloway, Elliot, Jeffrey Bonar, and Kate Ehrlich
(1981b) "Cognitive Factors in Looping
Constructs”. Computer and Information Science
Technical Report 81-10, University of
Massachusetts, Amherst, May.

Soloway, Elliot, Beverly Woolf, Eriec Rubin, and
Paul Barth (1981c) "Meno-II: An Intelligent
Tutoring System for Novice Programmers",
Proceedings of International Joint Conference
in Artificial Intelligence, Vancouver, British
Columbia,

Soloway, Elliot, Kate Ehrlich, Jeffrey Bonar,
Judith Greenspan, (1982) "What Do Novices Know
About Programming?®, To appear in Directions
in Human-Computer Interactions, edited by B.
Shneiderman and A. Badre, Ablex Publishing
Company .

Waters, Richard C., (1979) "A Method for Analyzing
Loop Programs”, IEEE Transactions on Software
Engineering, SE-5:3, May.

	cogsci_1982_146-148

