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ABSTRACT OF THE THESIS
The Expansion of the Major Facilitator Superfamily (MFS) to Include Novel Transporters, and

the Potential Relationship between the MFS and the LysE Superfamily

A Thesis submitted in partial satisfaction of the requirements for the degree

Master of Science

in

Biology

by

Pauldeen Mikail Davejan

University of California San Diego, 2018

Professor Milton H. Saier Jr., Chair
Professor Randolph Y. Hampton, Co-Chair

The Major Facilitator Superfamily (MFS) [1] is currently the largest characterized

superfamily of transmembrane secondary transport proteins [2]. Its diverse members are found in
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all organisms in the biosphere and function by uniport, symport, and/or antiport mechanisms. In
2012 we described a total of 74 recognized families, classified phylogenetically within the MFS,
all of which included only transport proteins [3]. In this study, we assign several previously
uncharacterized transport protein families in the Transporter Classification Database (TCDB;
http://www.tcdb.org) to the MFS using established statistical methodologies. In addition,
relationships at the superfamily level between the Major Facilitator Superfamily (MFS) and the
(LysE) Superfamily have been discovered. Specifically, for the MFS having a common origin
with the Resistance to Homoserine/Threonine Family (RhtB; TC# 2.A.76), Tellurium Ion
Resistance Family (TerC; TC# 2.A.109), and (17) Nickel/cobalt Transporter (NicO; TC#
2.A.113) is presented. Global alignments and hydropathy plots of transport proteins were
generated to assist in determining homology. The use of several sequence analysis programs to
search for internal repeats, combined with existing protein structural data, provide strong
evidence that the ubiquitous 12 transmembrane segment (TMS) topology arose from a 6 TMS
gene duplication which in turn, arose from a 3 TMS duplication. Furthermore analysis of PFAM
domains, 3D structures, provided further evidence for homology. Negative control studies were
conducted between members of TCDB that are currently not known to be members of the MFS
to ensure statistical significance. Positive control studies were conducted between members

currently within the MFS.
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Introduction

The Transporter Classification (TC #) Database is an [IUBMB approved system of
classification for recognized and hypothetical transport proteins [4-6]. Using functional and
phylogenetic information derived from publications on transport systems, TCDB classifies
transport proteins into over 1000 families[6-8]. Ongoing efforts are focused on the identification
of distant relationships between transport protein families, allowing categorization of both

existing and novel families into superfamilies (see the Superfamily hyperlink in TCDB)[6, 9].

The largest and most diverse superfamily of secondary carriers characterized to date is
the MFS. Members of the MFS recognize their substrates stereospecifically and utilize a carrier-
mediated process to catalyze transport across biological membranes[10]. MFS secondary carriers
transport by (1) uniport, where single molecular entities are transported by facilitated diffusion or
by potential driven processes for charged solutes, (2) symport, where two or more solutes are
transported in the same direction, driven by chemiosmotic energy, in this case, the
electrochemical gradient of protons, called the proton motive force (pmf), or [11] antiport, where
two or more solutes are transported in opposite directions, again using chemiosmotic energy to
drive the vectorial process. Most members of the MFS share a three dimensional structure that
consists of two domains surrounding a central substrate binding site[12]. These transporters
operate by an alternating access mechanism where the two halves of the protein move, relative to
each other, like a rocker switch, mediated in part by salt bridge formation and breakage during

the transport cycle [13].

MEFS porters, or permeases, are known to exhibit specificity for sugars, drugs,

neurotransmitters, amino acids, organic and inorganic ions, as well as many other ligands,



depending on the specific porter [14].Typical transporters of the MFS are of 400-600 amino acyl
residues (aa) in length and with few exceptions, possess either a 12 or 14 trans-membrane o-

helical segment (TMS) topology.

Aside from the MFS families listed under TC# 2.A.1, when the studies reported here
were initiated, there were 6 additional transport protein families in TCDB with evidence
supporting homology with the MFS family. These families and those reported here are

characterized within the MFS superfamily in TCDB (see Superfamily hyperlink).

The Glycoside-Pentoside-Hexuronide:Cation Symporter (GPH) Family (TC # 2.A.2), as
its name suggests, consists of symporters that catalyze uptake of glycosides in conjunction with a
monovalent ion, usually H".Most of the functionally characterized proteins of this family are
from bacteria, although some homologues are found in archaea and eukaryotes. Members of the
GPH family are usually around 500 aas in length and possess the characteristic 12 TMS

topology.

The ATP:ADP Antiporter (AAA) Family (TC # 2.A.12) contains transporters that are
obligate exchange translocases with specificity frequently for ATP and ADP [15]. They function
by taking up ATP into the cell in exchange for ADP, but can also transport inorganic phosphate
and other phosphorylated nucleosides [16].These proteins are around 500-600 aas in length with

12 putative TMS and are most commonly found in intracellular pathogens.

The Proton-dependent Oligopeptide Transporter (POT/PTR) Family (TC # 2.A.17)
contains members from animals, plants, yeasts, archaea, and bacteria, catalyzing peptide uptake.
They are usually 500-600 aas in length and exhibit 12 putative TMS. It has been suggested that

pairs of salt bridge interactions between the transmembrane a-helical structures work together to



provide the alternating access transport mechanism [17]. Mammalian members of this transporter
family, PepT1 and PepT2, are responsible for the uptake of pharmaceutically important drug

molecules such as antibiotics and antiviral agents [17].

The Reduced Folate Carrier (RFC) Family (TC # 2.A.48) includes uptake porters for
folates, reduced folates, thiamine, and folate analogues including the anti-cancer drug,
methotrexate. Folates, also known as vitamin B9, are essential vitamins for humans, and folate
deficiency contributes to a variety of health problems [18].These RFC homologues mediate the
intestinal absorption of methotrexate, pralatrexate, and dietary folates [18]. Amino acid
replacement experiments have shown that the region between TMS 1 and 2 forms a substrate-
binding pocket [19]. Like other MFS family porters, RFC members are typically between 500-

600 aas and possess 12 putative or established TMS.

The Organo Anion Transporter (OAT) Family (TC # 2.A.60) contains proteins that
catalyze facilitated transport of large amphipathic organic ions such as
bromosulfobromophthalein, prostaglandins, bile acids, steroid conjugates, thyroid hormones,
oligopeptides, drugs, toxins, and xenobiotics [20, 21]. Human OAT transporters play important
roles in drug and metabolite transport across the blood-brain barrier and in the kidneys [22, 23].
These transporters have 12 putative transmembrane segments and are usually 600-700 aas in

length. Their evolutionary histories and functional diversification have been examined [23].

Members of the Folate-Biopterin Transporter (FBT) Family (TC # 2.A.71) transport
folate and biopterin across the cell membrane and are believed to function by H" symport [24].
Most functionally characterized members of the FBT family are from mammals and protozoa,

but homologues exist in bacteria, plants, and algae [11].



In this thesis, I assign additional protein families in TCDB to the MFS superfamily. I
provide evidence that these proteins all share a common evolutionary origin. In addition to the
above described families, previously characterized as part of the MFS, evidence is presented that
members of the following families share a common origin with recognized MFS superfamily
proteins: (1) the Equilibrative Nucleoside Transporters (ENT; TC# 2.A.57), (2) Ferroportins
(Fpn; TC# 2.A.100), [11] Eukaryotic Riboflavin Transporters (E-RFT; TC# 2.A.125). We also
have obtained evidence that suggests homology on a superfamily level between the MFS and the
LysE superfamily. Members of the latter superfamily include, (4) the Resistance to
Homoserine/Threonine Family (RhtB; 2.A.76), (5) the Tellurium Ion Resistance Family (TerC;
TC# 2.A.109), and (6) the Nickel/cobalt Transporter (NicO; TC# 2.A.113). Sufficient evidence
using our statistical methodologies s suggest that members of these families, or domains within
these proteins, derive from a common ancestor. The families included in this study are tabulated

in Table 1-2.



Methods

Detecting Homology Between Families

We used the program areFamiliesHomologous [25] that automates the three main steps in
our strategy to detect remote homology based on the transitivity property of homology [6]. The
first step is to run famXpander to retrieve an exhaustive list of homologous proteins for each
family based on BLAST [26] searches (E-value < 10, coverage > 50%) against the National
Center for Biotechnology Information (NCBI) non-redundant (NR) protein database. Retrieved
sequences are then post-processed to remove redundancies using CD-HIT [27] with a
redundancy cutoff of 80%. This list of non-redundant candidate homologs is assumed to be

representative of the entire family.

Second, the lists of homologues generated with famXpander are then used as input to the
program Protocol2 [28] to compare each family against all families in the Major Facilitator
Superfamily (MFS). Protocol2 takes the FASTA files from two families and compares them
using the Smith-Waterman algorithm as implemented in SSEARCH [29]. For each hit Protocol2
estimates the GSAT [28]) score based on 1000 shuffles, which refers to the number of standard
deviations a given global Needleman-Wunsch score, as generated by the program Needle from
the EMBOSS suite of programs [30], is from the average score obtained from the shuffled
sequences. The result is a report in HTML format, containing the protein accessions, the GSAT
score, and the corresponding alignment highlighting the residues in TMSs as predicted by
HMMTOP [31]. Based on results from previous research [5, 7, 32] we initially considered only
hits with a GSAT score > 15.0. Given that MFS has a repeat unit of 6 TMS we also required that

the alignments should be composed of at least 100aa and include a minimum of 5 TMS.



Third, if we label two proteins from different families as A and D, any homolog of A as
B and any homolog of C as D, then Protocol2 reports the scores between C-D. For all significant
hits reported in the second steps the program calculates the GSAT scores for A-B and C-D. The
lowest of the three scores is considered the comparison score for any particular Protocol?2 hit.
The three scores are given in Table 1-3 but only the B-C comparison scores are reported for in

Table 4-5.

HVORDAN, an in-house program, was used to graphically illustrate the results of
protocol 2, it displays the hydropathy plots of all proteins in the transitivity path (A-B-C-D), as

well as the alignment between B and C. Figures 2,3, and 5-8 illustrate some of our best hits.

Conserved Domains Between Families

All members of our control sets, as well as families inferred to be related to MFS, had
their sequences scanned against the Pfam database [33]. The HHMER suite of programs [34]
was used to search for domains applying a gathering threshold. We required that proteins A-B
and C-D had direct Pfam hits with the characteristic domains of their respective families. To
identify additional evidence supporting the relationship suggested by Protocol2 between A and
D, we considered a domain as shared between B and C if there was at least 50% overlap —it is
not uncommon for Pfam domains to span 2 or more TMS repeats units—of their respective
domains in the Protocol2 alignment. The rationale is that if there is a significant similarity
between B and C in regions that contain the characteristic domains of their respective families,
then the two domains are likely to be related. This is equivalent to projecting the domain of B

onto C and vice versa.



Identification of Internal Sequence Repeats

HHreplID [35], AncientRep [28], and the unpublished program tmsRepeat
(https://github.com/SaierLaboratory), were used to detect the possible internal repeat unit of any
protein family for which the repeat unit is not known. Using based on hidden Markov Models
(HMM) HHrepld takes a single protein sequence or a multiple alignment and identifies possible
sites where a internal duplications are likely to be. We considered alignments significant if they
generated a P-value < 10s. Several programs are required as prerequisite to AncientRep. These
include extractFamily [25], which extracts proteins sequences of specified families from TCDB
in several formats, ClustalO [36], and AveHAS [37]. AncientRep receives a multiple alignment
files in Clustal format as its input and allows the user to determine in what regions to search for
internal repeats using as references the plots generated by AveHAS. GSAT scores are reported
for candidate repeat sequences along with hydropathy plots illustrating the repeated regions. All
members that are proposed to be additions of MFS show at least a score of 16.1 SD. The
program tmsRepeat splits a proteins sequence into bundles of TMS according to the expected
repeat unit size, and compares all non-overlapping TMS bundles with the Smith-Waterman
algorithm as implemented in SSEARCH [29] (using composition statistics based 10,000

shuffles). Hits with E-value < 102 were considered significant.

Analysis of Protein 3D Structures

Deuterocol is an in-house unpublished program that was used to conduct the comparison
of 3D structures among all families considered this project. The increasing availability of high-
resolution 3D structures for multiple transporter families now allows analogous analyses to
areFamiliesHomologous using 3D structural alignments. Deutorocol extracts all structures

available in PDB for multiple families, cuts them into a-helix bundles (depending on the length



of the known or expected TMS repeat unit shared among families) and superposes the resulting
structures. For our purpose we cut the a-helix bundles of 4 TMSs to 6 TMS. Results can be
filtered by several criteria including RMSD values, length and coverage of each bundle in the
alignments. We considered alignments with RMSD < 3.5 A, coverage of at least 70% of the

bundle, and where the helices aligned made sense in terms of the repeat unit of the families.

Selection of a Negative Control

Transmembrane segments contain low complexity hydrophobic regions that can generate
statistically significant alignments, but this does not necessarily entail shared ancestry, as it may
be the result of physical-chemical constraints in the membrane environment [38, 39]. As
previously reported [25], we tackle this problem by using the GSAT score as a normalizing scale
where the scores between known homologous (Positive Control) and non-homologous (Negative
Control) proteins can be compared to infer a critical value for the GSAT score that can
discriminate between the two sets. Our positive control consists of the 7 families in TCDB
currently documented to be part of MFS. The negative control was comprised of a total of 28
families from TCDB that have no known relationship to the MFS and for which the evolutionary

path leading to their TMS topology is either not known or not similar to MFS.



Results

Family expansion

All of the protein families within TCDB belonging to subclass 2.A are electrochemical
potential-driven uniporters, symporters, and antiporters [6]. Prior to the studies reported here, the
MEFS included 7 recognized protein families outside of those listed under TC# 2.A.1. As
discussed in the introduction, because of the current study, we have added 3 novel families not
currently in a superfamily to the MFS and provided preliminary evidence suggesting that 3
families currently in a superfamily (LysE) have a potential relationship with the MFS. It should
be made clear that the families within the LysE superfamily do not have nearly as strong
relationship to the MFS as the novel families discussed in this thesis. Table 1 identifies all
families that are discussed and provides scores expressed in standard deviations (SD) that in
conjunction with other types of evidence suggests homology. Protein alignments, internal repeat
analyses, domain analysis, 3D structural evidence, and a common evolutionary pathway for the
appearance of members of all of these families within the MFS provided evidence suggesting
homology. If a family was shown to have strong evidence across at least 3 of these criteria we
would consider the family as having a high potential for homology in the MFS. Our strategy is
illustrated in the flow chart depicted in figure 1. Analyses involving the ENT, FPN, E-RFT
families provide strong statistical evidence for homology. We also have preliminary evidence
that suggests members of the LysE superfamily and the MFS have a potential relationship seen
in Table 2. The members that we examine here are the RhtB, TerC and NicO families. Beyond
these families discussed in this thesis, I have also conducted research on 9 other families that

provide evidence to suggest homology with the MFS, their results can be seen in Table 5.
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Figure 1. Flowchart of the strategy to infer distant homology between pairs of families

Our strategy is based on the Superfamily principle that takes advantage of the transitivity property of homology. Proteins A and
D are considered homologous if it can be shown that there are significant structural properties shared across the path A-B-C-D.
Each pair of families is first put through the pipeline areFamiliesHomologous. Proteins A (from Familyl) and D (from
Family?) are first BLASTed against the NCBI NR database using the program famXpander to get the lists of with candidate
homologues Bs and Cs, respectively. Protocol2 then compares the lists of Bs versus Cs to identify significant B-C alignments.
The output of this pipeline is the GSAT scores for the pairs A-B, B-C, and C-D, as well as the individual hydropathy plots for
each protein including the alignment B-C. If a protein pair B-C had a significant score and good hydropathy alignment, we
would proceed to identify the TMS repeat units and Pfam domain topologies for all proteins A-B-C-D. If available, all 3D
structures associated with the families of proteins A and D were aligned with the program Deuterocol to identify significant
alignments that show congruence with the repeat units for each family. The flow chart lists all programs used; see methods for
their descriptions. Four lines of evidence were applied to infer homology between pairs of families: 1) the GSAT score, 2)

hydropathy alignments congruent with repeat units, 3) significant overlap of characteristic Pfam domains, and 4) the comparison
of 3D structures, if available, between the families of proteins A and D. We considered two families homologous if at least 3 of
the 4 criteria were satisfied.
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Comparison between Negative and Positive Controls

Twenty eight families with no known relationship to MFS (TC# 2.A.1) were selected for
this study. There were some Protocol2 hits with high z-scores between MFS and these families,
however upon further examination we saw that these scores were due to the presence of
hydrophilic regions in the Protocol2 alignments. Since hydrophilic regions are not useful to study
the relationships between transmembrane domains, we removed these regions and recalculated
the scores considering only segments that contained TMS. The removal of hydrophilic regions
dropped the GSAT score below significant levels. The highest score observed between MFS and
the 28 families in the negative control set was 14.3 SD with the Betaine/Carnitine/Choline
Transporter Family (TC # 2.A.15), a member of the APC superfamily (Table 3). All other
families within the negative control displayed scores below 15 SD. In contrast, the lower score
that connects the 7 families in our positive control was 15.1 SD (.8 SD away from 14.3).
Therefore we consider any score above 15.1 SD as one evidence of homology between the
proposed family and MFS. Throughout the course of our studies all scores contained within the

proposed additions have shown to be above 16 SD.
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The Equilibrative Nucleoside Transporter (ENT) Family (TC # 2.A.57)

Members of the ENT family are typically 350-500 aas in length and possess 11 putative
TMS. ENT family members catalyze nucleoside transport and have homologues in fungi,
protozoa, nematodes, and mammals. Members of the human ENT family, SLC29, are known to
import drugs used in cancer, AIDS, and parasitic disease treatments [40]. ENT family members
have been experimentally shown to have a topology with a cytoplasmic N-terminus and an
extracellular C-terminus [41]. Site directed mutagenesis experiments provided evidence for
structural commonality and common evolutionary origin between members of the MFS and ENT

families, suggesting similar packing of TMSs around a solvent accessible binding site [40].

Comparing TMS 1-11 of the MFS homologue WP 056965629 (12 TMS) with TMS 1-11
of the ENT homologue KVI06040 (11 TMS) gave a comparison score of 18.0 SD (Figure 2).
The domain of this MFS homologue WP 056965629 spans across TMS 1-12. The domain of the
ENT homologue KVI06040 spans across TMS 4-11. Analysis of the PFAM domains of these
proteins shows that nearly 100% of the characteristic domains of both these families are found

within their respective Protocol2 alignment.

Another example shows that TMS 4-11 of the MFS homologue WP 025791574 (12
TMS) align well with TMS 4-11 of the ENT homologue XP_ 013309414 (11 TMS) with a score
of 18.0 SD. The domain of the MFS homologue WP 025791574 is seen to span across TMS 1-
10 and the domain of the ENT homologue XP 013309414 spans across TMS 4-11. Analysis of
the PFAM domains of these proteins indicates that nearly 100% of the characteristic domains of

both families are found within their respective Protocol2 alignment.

TMS 1-9 of the MFS homologue KZT53059 (12 TMS) aligned with TMS 1-9 of the ENT

homologue XP 004996090 (11 TMS) with a score of 20.2 SD, however TMSs 8 and 9 of both

12



proteins do not align as well as TMSs 1-7. The domain of the MFS homologue KZT53059 is
shown to be across TMS 1-11, and the domain of the ENT homologue XP_ 004996090 is found
to be across TMS 4-11. Analysis of the PFAM domains of these proteins reveal that over 70% of
the characteristic domain of the ENT homologue XP 004996090 was found within the Protocol2
alignment. The MFS homologue KZT53059 has over 60% overlap of its characteristic domain
within the Protocol2 alignment, which contains one entire repeat unit of the MFS suggesting that

these domains are indeed homologous.

The results of AncientRep for the ENT family suggest a repeat unit of 6+6 with the loss
the C-Terminus TMS through an alignment of 5 TMS alignments (Table 6). Protocol2
alignments clearly support the loss of the C-terminus TMS (Figure 2). The application of these
criteria gives us confidence that these two families are homologous and allows classification of

the ENT family within the MFS.
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Figure 2. Hydropathy Plots and Alignments between families 2.A.1 and 2.A.57

Graphical output of the hvordan program displaying the hydropathy plots and Pfam domain content for proteins A-B-
C-D that correspond to a top scoring Protocol2 alignment B-C. A. Shows the hydropathy plot of the MFS protein A
(2.A.1.2.20-P25744). B. Shows the hydropathy plot of the MFS homologue B (WP_056965629). C. Shows the
hydropathy plot of the ENT homologue C (KV16040). D. Shows the hydropathy plot of the ENT protein D
(2.A.57.1.10-Q944P0). B-C. Shows the Protocol2 alignment of the MFS homologue (B) and the ENT homologue (C).
The blue and tan vertical bars seen in panels A, B, C, and D indicate the locations of the Trans-membrane segments
(TMSs).The blue and red horizontal bars in panels A, B, C, and D indicate the location of the respective Pfam domains.
The wedges seen in panels A and the top half of panel B indicate the regions of the protein A that aligned with B. The
same relationship holds true for panel D and the top half of panel C. The wedges seen in the bottom half of panels B
and C indicate the regions of these proteins that are involved in the Protocol2 alignment shown in panel B-C. The green
vertical bars seen in panel B-C indicate the areas where the TMSs of panels B and C overlap.
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The Ferroportin (Fpn) Family (TC # 2.A.100)

Proteins of the ferroportin family are required for the export of iron and manganese into
the systemic circulation [42, 43]. These iron regulated transport proteins are found in the
basolateral membranes of mammalian intestinal epithelial cells [44]. Ferroportins are essential
for iron homeostasis; studies have shown that mice lacking these proteins die during embryonic
development [45]. Members of the Fpn family are between 400 and 800 aas in length, and
studies with antisera have suggested a topology of 11 TMSs, with the C-termini exposed on the

cell surface [42].

Comparing TMSs 1-11 of the MFS homologue KYC90238 (12 TMS) with TMSs 1-11 of
the Fpn homologue KEQ60961 protein (12 TMS) gave a comparison score of 16.5 SD (Figure
3). The domain of the MFS homologue KYC90238 spans across TMS 1-12 and the domain of
the Fpn homologue KEQ60961 spans through TMS 1-12. The Pfam domains of both the Fpn

homologue and the MFS homologue are contained within their Protocol2 alignments.

In another case we see TMSs 1-9 of the MFS homologue WP 046324300 (12 TMS) with
TMSs 1-9 of Fpn homologue XP 002638873 (12 TMS) yielded a comparison score of 19.3 SD.
The domain of the MFS homologue WP 046324300 spans across TMS 1-12 and the domain of
the Fpn homologue XP 002638873 spans across TMS 1-11. In addition, this Fpn homologue
also hits the characteristic MFS domain (Pfam Id PF7690) between TMS 1-9. There is nearly
70% of the domain of the Fpn homologue, but nearly 100% of its MFS domain within the
protocol 2 alignment. The MFS homologue includes over 70% of its characteristic domain within

the protocol 2 alignment.

Examining TMSs 2-9 of the MFS homologue KPL72370 (12 TMS) with TMSs 2-9 of the

Fpn homologue CDJ86150 (12 TMS) gave a comparison scored of 18.6 SD. We see that the

15



MEFS homologue KPL72370 spans its domain across TMS 1-11 and the Fpn homologue
CDJ86150 spans its domain across TMS 1-11. The Protocol2 alignment contains over 70% of

the domain of the MFS homologue and over 70% of the domain of the Fpn homologue.

Given that structures are available for both families, we performed comparisons of sets of
4-6 alpha-helix bundles to cover more than half of one 6-TMS repeat unit. Figure 4 shows our
best result where the alignment of alpha-helices 3-6 of the MFS member 2.A.1.1.3 (PDB: 4QIQ)
with alpha-helices 3-6 of the FPN member 2.A.100.2.1 (PDB: SAYM) yields an RMSD value of
1.88 A across 104 amino acyl residues. This alignment is in agreement with the basic repeat unit
of MFS where 6 TMS arose from a duplication of 3 TMS. Le Gac et al. [46] constructed a 3D
model of Ferroportins by homology to an MFS crystal structure (EmrD), successfully predicting

critical amino acids with a generated ferroportin model.

Unfortunately we could not identify a repeat unit based on protein sequences for Fpn

using the programs AncientRep, HHrepID and tmsRepeat as detailed in methods.

Altogether, these results provide enough evidence for homology between Fpn proteins
and the MFS superfamily, and indicate that in the Fpn family, the C-terminal TMS was lost

relative to the typical 12 TMS MFS topology to generate the characteristic 11 TMS Fpn.
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Figure 3. Hydropathy Plots and Alignments between families 2.A.1 and 2.A.100

Representation of the output of the hvordan program to graphically display top scoring candidate homologs. A. Shows
the hydropathy plot of the MFS protein A (2.A.1.38.4-7T7Y0). B. Shows the hydropathy plot of the MFS homologue
B (KYC90328). C. Shows the hydropathy plot of the Fpn homologue C (KEQ60961). D. Shows the hydropathy plot of
the Fpn protein D (2.A.100.1.3-080905). B-C. Shows the Protocol2 alignment of the MFS homologue (B) and the Fpn
homologue (C). For description of the regions delimiting the wedges as well as all bars see description of figure 2.
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Figure 4. Structural alignment between families 2.A.1 and 2.A.100

Example 3D structural alignment of two 4-helix bundles generated by the program deuterocol. This alignment is
between a-helices 3-6 of protein 2.A.1.1.3 (PDB: 4QIQ; tan color) and a-helices 3-6 of protein 2.A.100.2.1 (PDB:
5AYM; cyan color). The alignment is 104 amino-acyl residues long with a root-mean square deviation (RMSD) value
of 1.88 A. A. top down view of the alignment where the top of panel B is rotated along the X axis towards the observer.
B. frontal view of the alignment.
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The Eukaryotic Riboflavin Transporter (E-RFT) Family (TC # 2.A.125)

Members of the E-RFT family are typically of 450 amino acyl residues in length and
possess 11 putative TMS. As their name suggests, the E-RFT family transports riboflavin
(vitamin B2), which is critical for cellular redox functions. Riboflavin in the forms of flavin
mononucleotide (FMN) and flavin adenine dinucleotide (FAD) act as cofactors in biological
oxidation-reduction reactions [47]. Deficiencies in riboflavin can lead to developmental
abnormalities in adolescence and is a risk factor for anemia, cancer, and cardiovascular disease
[48]. Studies performed on the rat riboflavin transporter 2 (rRFT2) showed that it is inhibited by
the presence of lumiflavin, FMN, and FAD [49]. These findings suggest that riboflavin

transporters are able to transport various riboflavin derivatives.

In our first example it should be noted that the ENT family has been shown to be
homologous to the MFS based on our previous results. Comparing TMS 1-8 of the ENT
homologue, KUI64529 (11 TMS), with TMS 1-8 of the E-RFT homologue, XP_ 008068176 (12
TMS), yielded a comparison score of 19.3 SD (Figure 5). We see the ENT homologue
KUI64529 has its domain span across TMS 4-11. The E-RFT homologue XP_ 008068176 shows
to have its domain spanning across TMS 7-9. The Protocol2 results shows that nearly 70% of the
domain of the ENT homologue is aligned and over 70% of the domain of the E-RFT homologue
within the alignment. Since we have evidence for homology between the ENT family and MFS,
and E-RFT is suggested to be related to ENT, by the superfamily principle we can suggest

homology between MFS and E-RFT.

Examining TMSs 6-11 of MFS homologue WP_049859152 (12 TMS) we observed an
alignment with TMS 6-11 of E-RFT homologue XP_ 798894 (11 TMYS) yielding a comparison

score of 17.2 SD. The domain of the MFS homologue WP_049859152 spans throughout TMSs
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1-12. The domain of the E-RFT homolog XP 798894 spans across TMSs 7-9. The MFS
homolog in this case contains nearly 70% of its domain within the Protocol2 alignment. This
alignment includes the last TMS of its first repeat domain, and the first 5 TMSs of its second
repeat domain. The E-RFT homologue has nearly 100% of its domain within the Protocol2

alignment.

TMSs 3-9 of the MFS homologue KIL83779 with TMSs 3-9 of the E-RFT homologue
XP_002670990 showed to have comparison scores of 16.4 SD. The MFS homologue KIL83779
has its domain spanning across TMSs 1-12. The domain of the E-RFT homologue
XP 002670990 spans across TMSs 7-9. The Protocol2 results show that over 50% of the domain
of the MFS homologue is within the alignment, and 100% of the domain of the E-RFT

homologue is within the alignment.

While we do have evidence suggesting homology between the MFS and E-RFT through a
direct relationship, by the superfamily principle [50] we also have evidence suggesting
homology between MFS and E-RFT through a relationship with the ENT family. The results also
suggest that the 11 TMS E-RFT family member topology could have arisen from a loss of the C-
Terminus TMS of an original 12 TMS topology. This conclusion can be reached when
examining the Protocol2 alignment between the ENT homologue and the E-RFT homologue,
where the N-terminus aligns between the two proteins while C-terminus does not. While the
repeat unit of this family has yet to be well established we have evidence that it consists of a 3+3
topology, which is consistent with MFS. This was observed with both our programs AncientRep,
and TMSRepeat where TMS 4-6 align with 7-9 in the same protein 2.A.125.1.5. Overall our data

suggests that family E-RFT is part of MFS.
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Figure S. Hydropathy Plots and Alignments between families 2.A.57 and 2.A.125

Representation of the output of the hvordan program to graphically display top scoring candidate homologs. A. Shows
the hydropathy plot of the ENT protein A (2.A.57.3.1-p31381). B. Shows the hydropathy plot of the ENT homologue
B (KUI64529). C. Shows the hydropathy plot of the E-RFT homologue C (XP_008068176). D. Shows the hydropathy
plot of the E-RFT protein D (2.A.125.1.1-BSMEV1). B-C. Shows the Protocol2 alignment of the ENT homologue (B)
and the E-RFT homologue (C). For description of the regions delimiting the wedges as well as all bars see description
of figure 2.
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The Potential Relationship between the LysE Superfamily and the MFS

The Tellurium Ion Resistance (TerC) Family (TC # 2.A.109)

The TerC family, a member of the LysE superfamily is thought to function in tellurium
ion resistance [51]. It has been documented that members of the TerC family are found in a wide
range of organisms including eukaryotes, prokaryotes, and archaea [52]. There are also findings
that show the TerC family to be involved in a metal sensing stress response system demonstrated
in bacteria as well. It is well known that this family typically has a 7 TMS core but some
members of this family are seen to have up to 9 TMSs. Members of this family tend to be

between 180 and 350 residues in length.

Comparing TMS 4-9 of the MFS homologue WP 019618799 (12 TMS) with TMS 1-6 of
the TerC homologue WP 049319872 (7 TMS) showed to have a comparison score of 22.3 SD
(Figure 6). The domain of the MFS homologue WP 019618799 spans across TMSs 1-11. The
domain of the TerC homologue WP 049319872 spans across TMSs 1-6. We observe that over
50% of the characteristic MFS domain is overlapping in the Protocol2 alignment. The TerC
homologue on the other hand shows to have nearly 100% of its domain overlapping in the the

Protocol2 alignment.

Comparing TMS 4-9 of the MFS homologue ERL43808 (12 TMS) with TMS 1-6 of the
TerC homologue WP 013626834 we see a comparison score of 17.4 SD. The domain of this
MEFS homologue shows to span from TMS 5-12 of the protein. The TerC homologue on other
hand shows to have its domain spanning across TMS 1-6. We see that there is 100% overlap of
the domain of the TerC homologue in the Protocol2 alignment, while the pfam results for the

MEFS homologue demonstrate a domain overlap above 50% of the protein.
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Comparison of TMS 4-10 of the MFS homologue WP_051266504 (12 TMS) to TMS 1-
7 of the TerC homologue AMA61886 (7 TMS) yielded comparison score of 16.1 SD. We see
that the domain of the MFS homologue WP_051266504 spans across TMS 1-11 while the
domain of the TerC homologue AMA61886 spans across TMS 1-6. The overlap of the MFS
homologue in the Protocol2 alignment appears to be over 50% overlap while the TerC

homologue shows to have 100% overlap of its domain within the protocol 2 alignment.

AncientRep supports the previously documented TMS repeat unit of 3+3 for the TerC
family [53] (Table 6). Overall the evidence we present here suggests a relationship between the
TerC family and MFS, but it is not enough to claim homology. Even if TerC has the 3+3
topology, it may have undergone rearrangements of the 3 TMS precursor repeat unit relative to
the MFS. Further studies must be conducted to increase the degree of confidence for homology
between these two families. The other LysE superfamily members that are discussed (LysE, and
NicO) in this thesis show the exact same behaviour as this family, suggesting that they all must

undergo further studies.
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Figure 6. Hydropathy Plots and Alignments between families 2.A.1 and 2.A.109

Representation of the output of the hvordan program to graphically display top scoring candidate homologs. A. Shows
the hydropathy plot of the MFS protein A (2.A.1.46.1-Q7W0Q7). B. Shows the hydropathy plot of the MFS
homologue B WP_019618799). C. Shows the hydropathy plot of the TerC homologue C (WP_049319872). D. Shows
the hydropathy plot of the TerC protein D (2.A.109.1.4-034997). B-C. Shows the Protocol2 alignment of the MFS
homologue (B) and the TerC homologue (C). For description of the regions delimiting the wedges as well as all bars
see description of figure 2.
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The Resistance to Homoserine/Threonine (RhtB) Family (RhtB); 2.A.76

Proteins of the RhtB family are known to be be amino acid efflux porters. While the first
members of this family were known to be Homoserine and Threonine exporters, there a variety
of other amino acid exporters within this family such as leucine exporters, cysteine, O-
acetylserine, and azaserine exporters as annotated by TCDB. This family is seen to have
homologues in archaea, as well as both Gram-negative and Gram-positive bacteria. Some
proteins of this family display controlled expression under the influence of the leucine-
responsive protein (Lrp) [54]. Given the involvement of the family in the export of small
molecules, there have been suggestions that these exporters play a role as mediators in the
secretion of signaling molecules or exist to avoid the accumulation of substrate compounds to
toxic levels .[4, 42, 55]. Findings have been documented that pimT, a member of this family, is
involved in the export of the quorum-sensing pimaricin inducer PI-factor (2,3-diamino-2,3-
bis(hydroxymethyl)-1,4-butanediol) [56], a positively charged molecule that acts as an
autoinducer in S. natalensis. Members of the RhtB family are proteins typically seen to be 190-
240 amino acids in length. They also display a membrane topology 6 TMSs across nearly all

members of the family.

Examining TMS 4-8 of the MFS homologue WP 018560854 (12 TMSs) we see that is
overlaps with TMS 1-5 of the RhtB homologue WP 061785927 (6 TMS) and generates an
alignment score of 16.3 SD (figure 7). The domain of the MFS homologue WP_018560854
spans across TMSs 1-8 and the domain of the LysE homologue spans across TMS 1-6.
Furthermore we observe that the domain of the RhtB homologue WP_061785927 overlaps over

70% of its domain in the Protocol2 alignment while the MFS homologue WP_018560854
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overlaps over 50% of its domain in this same alignment. We observe this overlap to be with half

of the 2 MFS domains.

We also see TMS 5-9 of the MFS homologue WP 051569412 (12 TMS) TMS 2-6 of the
RhtB homologue WP 064516356 (6 TMS) with a comparison scored of 16.3 SD. The domain of
this MFS homolgoue WP_051569412 spans across TMS 1-11 and the domain of the RhtB
homologue WP_ 064516356 spans across TMS 1-6. The domain overlap shows to be over 70%
overlap of the RhtB homologue domain in the Protocol2 alignment the MFS homologue domain
on the other hand has below 50% overlap of in the Protocol2 alignment. This overlap of the MFS

domains spans across roughly half of one of the MFS domains.

Comparing TMS 6-9 of the MFS homologue WP 049366914 (13 TMS) with TMS 2-5 of
the RhtB homologue WP 027578727 we see an alignment score of 18.0 SD. The MFS
homologue WP 049366914 appears to have an N-terminal insertion suggested by its alignment
with the MFS protein 2.A.1.20.4 (12 TMS). The alignment between these two spans across 12
TMSs, but the MFS homolog WP 049366914 only aligns TMS 2-13 and not TMS #1. This
indicates that TMS #1 is not characteristic of MFS. The MFS homolog has its domain span
across TMSs 2-11 this further confirms that TMS 1 is not characteristic of MFS. The RhtB
homologue WP 027578727 has its domain span across TMSs 1-6. We see that the domain
overlap of the RhtB homologue in this particular case to be over 70% overlap in the protocol 2
alignment. In the case of the MFS homologue this protein’s domain overlap is nearly 50% of the

proteins domain however the alignment is across 2 halves of the MFS domain.

While there is previous documentation suggesting a 3+3 repeat unit [53] for the RhtB
family our studies with AncientRep (Table 6) provide evidence to further solidify this claim. The

evolutionary pathway of the RhtB family shows to be in line with the evolutionary pathway of
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MEFS where 12 TMSs originated from the duplication of 3 TMSs to 6TMSs and the duplication
of 6TMSs to 12 TMSs total. Therefore both MFS and the RhtB family show originated from a

3+3 TMS repeat unit.
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Figure 7. Hydropathy Plots and Alignments between families 2.A.1 and 2.A.76

Representation of the output of the hvordan program to graphically display top scoring candidate homologs. A. Shows
the hydropathy plot of the MFS protein A (2.A.1.71.3-916553301). B. Shows the hydropathy plot of the MFS
homologue B (WP_018560854). C. Shows the hydropathy plot of the LysE homologue C (WP_061785927). D.
Shows the hydropathy plot of the LysE protein D (2.A.76.1.6-Q3J2V9). B-C. Shows the Protocol2 alignment of the
MES homologue (B) and the TerC homologue (C). For description of the regions delimiting the wedges as well as all
bars see description of figure 2.
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The Nickel/cobalt Transporter (NicO) Family (TC # 2.A.113)

While we do have evidence that suggests a relationship between this family and MFS
these data suggest that the relationship between this family and the MFS are not as strong as the
relationship between the other LysE superfamily members mentioned above. There has been
preliminary research on the NicO family showing that they play a role in Nickel and Cobalt
export in bacteria [57]. This transporters purpose is thought to assist in metal
resistance. Members of this family are found throughout prokaryotes, eukaryotes, and Archea.
While members of this family have a range of 6-8 TMSs they are comprised of a 6 TMS core
and are thought to have a 3+3 repeat unit [53]. Members of the NicO family are typically
comprised of 214-597 amino-acyl residues with most proteins being in the approximate range for
214-320 amino acids in length.

Comparison TMS 4-8 of the MFS homologue WP 022710359 (12 TMS) with TMS 1-5
the NicO homologue WP 052486258 (6 TMS) yields a comparison score of 16.1 SD. The
domain of this MFS homologue spans across TMS 1-11 in this protein while the domain of the
NicO homologue spans across TMS 1-6. Overall we see that over 70% of the domain of the
NicO homologue is found in the Protocol2 alignment (Figure 8). The domain of the MFS
homologue in this case shows over 50% overlap of its domain in the Protocol2 alignment.
Comparison between TMS 5-8 of the MFS homologue AKH41752 (12 TMS) and TMSs 2-5 of
the NicO homologue WP 057850321 (6 TMS) yielded a comparison score of 17.0 SD. The MFS
homologue AKH41752 has its domain span across TMSs 1-12. The Pfam database is unable to
recognize a domain for the NicO homologue, however if we project the domain of the NicO
protein (TC # 2.A.113.1.5) onto the NicO homologue WP 052486258 based on the alignment

between the two proteins we see that there TMS 1-5 overlap with TMS 1-5. This projection
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suggests that the NicO homologue WP_052486258 has the NicO domain at least across TMSs 1-
5. The NicO homologue shows over 70% overlap of its characteristic domain in the Protocol2
alignment. Conversely the domain of this MFS homologue shows a domain overlap nearly 50%
in the Protocol2 alignment.

Comparison between TMSs 3-8 of the MFS homologue KUE99291 (12 TMS) with the
NicO homologue WP 038012784 (6 TMS) yielded a comparison score of 17.2 SD.The MFS
characteristic domain of this MFS homologue KUE99291 spans across TMS 1-11. The domains
of the NicO homologue WP 038012784 spans across TMS 1-6. Overall we see 70% overlap of
the NicO homologue domain within the Protocol2 alignment while the MFS homologue shows a

domain overlap of over 50% within the Protocol 2 alignment.
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Figure 8. Hydropathy Plots and Alignments between families 2.A.1 and 2.A.113

Representation of the output of the hvordan program to graphically display top scoring candidate homologs. A. Shows
the hydropathy plot of the MFS protein A (2.A.1.6.7-POA2G3). B. Shows the hydropathy plot of the MFS homologue
B (WP_018560854). C. Shows the hydropathy plot of the NicO homologue C (WP_052486258). D. Shows the
hydropathy plot of the NicO protein D (2.A.113.1.5-Q025X6). B-C. Shows the Protocol2 alignment of the MFS
homologue (B) and the NicO homologue (C). For description of the regions delimiting the wedges as well as all bars
see description of figure 2
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Discussion
In this study, we have expanded the largest family of secondary carriers currently

recognized, the Major Facilitator Superfamily, MFS. Prior to this study, nearly 100 families were
known to comprise the MFS. However, with the exception of a few receptors, virtually all of
these proteins were known or assumed to be transport proteins. Our present efforts have allowed
us to include several additional transport protein families, members of which are believed to
function as secondary carriers. These include the Equilibrative Nucleoside Transporters (ENT;
TC# 2.A.57) with 11 TMS, the Ferroportins (Fpn; TC# 2.A.100) with 11 TMS, and the
Eukaryotic Riboflavin Transporters (E-RFT; TC# 2.A.125) with 11 TMS. All of the proteins that
comprise these families were shown to have the basic 6 TMS repeat unit, giving rise to 12 TMS,
although the predominant members of these three families appear to have lost a single TMS at

their N- or C-termini.

Interestingly, we have found evidence that suggests a relationship between
superfamilies; in this case between the MFS and the LysE superfamilyles. The RhtB, TerC and
NicO families of the LysE superfamily show significant alignments that span 6 TMSs with
members of MFS. However, these alignments cover the second and first halves of the two MFS
6 TMS repeat units. This is intriguing but not enough to support homology. The LysE families
may share with MFS the basic construction of their repeat unit (3+3), but it is possible that they
have undergone a rearrangement of the basic precursor 3 TMS repeat unit. As more 3D
structures and protein sequences become available in public repositories, we will be able to study

and greater detail the relationship between these two families.

The negative control provided a good reference to detect families homologous to MFS.

The highest z-score seen within the negative control was 14.3 SD. This contrast well with the
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lowest score of 16.4 SD obtained for the new families added to MFS. Similarly, the lowest
GSAT score observed for the 3 LysE families was 16.1 SD, clearly higher than the scores
observed for the negative control. Nevertheless, the GSAT score alone is not enough to claim
homology. The four criteria used in this project: 1) GSAT score, 2) repeat unit congruence with
good hydropathy alignments, 3) Pfam domain overlap, and 4) 3D structure alignments (when
available), clearly make the inference of homology more reliable. At least two additional criteria
can be incorporated in the detection of homology, that is, common sequence motifs between
families and conservation of functional residues. However, for the purpose of this projects we

considered the first 4 criteria strong enough to reliably infer homology.

While much is understood about the function of MFS, there is still a plethora of
members that have yet to be fully understood. Over the past years there has been a significant
amount of 3D structural data that has become available for members of MFS, however there are
still many mechanistic and functional questions that remain unanswered. Functional predictions
through conservation of genome context would allow better characterization of these families
and improve our understanding of how members of these families might be related based on

additional functional characteristics.
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