
UC San Diego
Technical Reports

Title
The Virtual Instrument: Support for Grid-enabled Scientific Simulations

Permalink
https://escholarship.org/uc/item/0n00q0bt

Authors
Casanova, Henri
Bartol, Thomas
Berman, Francine
et al.

Publication Date
2002-05-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0n00q0bt
https://escholarship.org/uc/item/0n00q0bt#author
https://escholarship.org
http://www.cdlib.org/

The Virtual Instrument: Support for Grid-enabled Sienti�

Simulations

Henri Casanova

1;2

Thomas Bartol

3

Franine Berman

1;2

Adam Birnbaum

1

Jak Dongarra

4

Mark Ellisman

5

Mario Faerman

2

Erhan Gokay

3

Mihelle Miller

4

Graziano Obertelli

6

Stuart Pomerantz

7

Terry Sejnowski

3

Joel Stiles

7

Rih Wolski

6

1

San Diego Superomputer Center

2

Dept. of Computer Siene and Engineering, University of California, San Diego

3

Computational Neurobiology Laboratory, Salk Institute

4

Dept. of Computer Siene, University of Tennessee, Knoxville

5

National Center for Mirosopy and Imaging Researh,

University of California, San Diego

6

Dept. of Computer Siene, University of California, Santa Barbara

7

Pittsburgh Superomputer Center

Ensembles of distributed, heterogeneous resoures, or Computational Grids, have emerged as popular platforms for

large-sale sienti� appliations. This paper presents the Virtual Instrument projet whih targets those platforms.

More spei�ally, the projet seeks to provide an integrated appliation exeution environment that enables end-users

to run and interat with running sienti� simulations on the Grid. This work is performed in the spei� ontext

of a omputational biology appliation: MCell. Even though MCell provides the basis for running simulations, its

apabilities are urrently limited in terms of sale, ease-of-use, and interativity. Those limitations prelude usage

senarios that are ritial for sienti� advanes. Our goal is to reate a sienti� \Virtual Instrument" from MCell

by allowing its users to transparently aess Grid resoures while being able to steer running simulations. In this

paper, we motivate the need for an MCell Virtual Instrument. We then introdue a sheduling strategy that exploits

the struture of MCell simulations and uses task priorities to aommodates omputational steering. Finally, we

desribe our innovations and ontributions in terms of Grid software design and development.

Key Words: Grid Computing, Computational Neurosiene, Interative Simulation, Computational

Steering, Sheduling, Event System.

1. INTRODUCTION

Computational Grids [21, 24℄ are large olletions of resoures (omputational devies, networks, on-

line instruments, storage arhives, et.) that have enormous potential and are beoming popular platforms

for running large-sale, resoure-intensive appliations. Many hallenges are to be addressed in order to

provide the neessary mehanisms for aessing, disovering, monitoring, and aggregating Grid resoures.

Consequently, a tremendous e�ort has been made and is still underway to provide a number of middleware

tehnologies [28, 29, 22, 32, 48℄. However, even though middleware provides fundamental building bloks, it

is not designed to be used diretly by Grid users. Instead, Grid appliation exeution environments must

be provided with the goal of hiding the Grid omplexity, both in terms of hardware and software, from the

end-user. One approah is to build \Grid portals" whih provide a familiar Web browser interfae to Grid

servies [31, 30℄. Alternatively, several projets implement programming models that provide abstrations for

building Grid appliations [13, 41℄. Finally, another possibility is to build integrated software environments

that are either general purpose [8℄, or targeted to spei� domains and appliations. Our work belongs in

This work was supported by the National Siene Foundation under Award ACI-0086092.

that last ategory; our ultimate goal is to build software that makes an appliation behave as a sienti�

Virtual Instrument (VI) that the user an easily on�gure, observe, and dynamially ontrol.

This work is performed in the spei� ontext of the MCell appliation [39, 38, 55, 52℄. MCell is a

omputational biology simulation framework that is urrently used by neurosientists to study di�usion and

hemial reations of moleules in living organisms. A single exeution instane of MCell onsists of multiple

omputational simulations, eah produing output that is then analyzed by neurosientists en masse. Even

thoughMCell provides the basis for running simulations, its apabilities are urrently limited in terms of sale,

ease-of-use, and interativity. For example, sientists often observe interesting phenomena that emerge in the

middle of an MCell run. If MCell ould be re-direted to onentrate on those phenomena while exeuting, a

great deal of CPU time ould be saved. This and other limitations prelude usage senarios that are ritial

for sienti� advanes. The goal of the VI is to alleviate most of the urrent limitations in MCell usage and

to provide an integrated Grid appliation exeution environment for MCell users. This environment should

provide transpareny for aess to the Grid, as well as omputational steering apabilities. In this paper,

we highlight two main ontributions of our work. First we introdue a sheduling strategy that uses task

priorities to aommodate omputational steering. We present simulation results obtained to validate that

strategy. Seond, we desribe aomplishments in terms of Grid software design and development. This

development primarily entails the realization of an event system apable of delivering user and resoure

events to the sheduler, and of an overall arhiteture for generalized VI Grid software.

We desribe our e�orts as follows. In Setion 2 we introdue MCell and highlight spei� limitations of

its urrent usage senarios. In Setion 3 we motivate the VI projet, present our ontributions in terms of

sheduling and Grid software, and desribe the VI's software design and implementation. Setion 4 disusses

related work and Setion 5 onludes the paper with future researh and development diretions.

2. MOLECULAR BIOLOGY SIMULATIONS WITH MCELL

2.1. MCell Overview

MCell [39, 38, 55, 52℄ uses Monte Carlo algorithms to simulate simultaneous di�usion and hemial rea-

tions of moleules in omplex 3-D spaes. Highly realisti reonstrutions of ellular or subellular boundaries

an be used to de�ne 3D di�usion spaes, whih an then be populated with di�erent moleules [53℄. Suh

moleules might reat with others that are released periodially from di�erent loations within the struture,

to simulate the prodution of biologial signals. The di�using moleules move aording to a 3-D random

walk based on a Brownian motion model. Possible reation events, suh as binding and unbinding, are tested

on a moleule-by-moleule basis using random numbers and Monte Carlo probability values. The advantages

and signi�ane of this approah are detailed in [51℄.

In essene, omputational modeling with MCell enompasses 4 steps, eah of whih an require onsid-

erable omputing resoures:

1. Surfae design or reonstrution { In simple ases, a set of planes might be used to de�ne di�usion

boundaries. In omplex ases, ell membranes an be reonstruted as tessellated meshes from eletron

mirosope data, and may ontain on the order of 10

6

triangles.

2. Model visualization and design { Di�erent types of moleules must be added to the surfaes and

spaes aording to realisti biologial distributions and densities. The total number of moleules is

highly variable but an easily reah or exeed 10

6

even for a surfae area or reation volume muh

smaller than a single ell.

3. Simulation { This step involves repeatedly running MCell with varied input parameters Monte Carlo

random number streams. The total number of suh runs an range from 10

2

to 10

5

and beyond. We

detail relevant usage senarios for this step in the next setion.

4. Visualization and analysis of results { In the simplest ase this might require 2-D plotting of one

output parameter as a funtion of time. In the more typial ase, some ombination of 2-D plotting

and 3-D imaging and/or animation is required to visualize the simulation's output.

2

At present, all simulation objets and run-time onditions are spei�ed using a high- level Model Desrip-

tion Language (MDL) designed for readability by sientists. When a simulation is run, one or more MDL

input �les are parsed to reate the simulation objets, and then exeution begins for a spei�ed number of

time-step iterations. MCell is highly optimized for speed and for memory usage. This makes it possible to

run individual simulations of omplex strutures on single proessors rather than using parallel arhitetures.

So far, MCell simulations have been used to study synapses : strutures used by nerve ells to ommuniate

with themselves and other ells. MCell (and its predeessors) originally foused on the popular vertebrate

neuromusular juntion, the synapse between a nerve ell and a musle ell [50, 53℄. MCell's Monte Carlo

simulations have been suessfully employed to obtain a variety of new results [5, 2, 55, 52, 53, 54, 53℄. In

addition, MCell has been in limited release [39, 38℄ to a worldwide group (∼25) of Neurosiene and other

researh laboratories sine 1997 [27, 49, 20, 19℄. MCell is urrently the objet of many development e�orts

and urrent simulations are allowing sientists to explore new areas of ellular physiology.

2.2. MCell Usage Senarios

Sine MCell models are now approahing the level of strutural and biohemial omplexity present

in living ells, the models typially ontain numerous input parameters that an be varied independently.

Consequently, simulations an span an enormous range of omputational and data requirements. We detail

here three relevant usage senarios. We give orders of magnitudes for the aggregate simulation CPU time

assuming a single workstation (the fastest urrently available on the market).

(A) \Look & See" { A small number of MCell runs are used to determine the predited behavior of the

modeled system under limited input onditions { between 1 hour and several days of CPU time are

required.

(B) Parameter Fitting { Tens to thousands of runs may be required to identify input parameter values

whih produe model output that mathes given riteria suh as experimental measurements { several

weeks of CPU time.

(C) Parameter Sweep { The sale of individual simulations is similar to that for the parameter �tting

senario, but many thousands of runs are required to map a region of the input parameter spae {

anywhere from 1 month of CPU time to several years or deades.

Even though (A) has been the most ommon senario in early stages of the MCell projet, it is inreasingly

being replaed/omplemented by senarios (B) and (C). These last two senarios require a tremendous

amount of ompute and storage resoures. For (B), the user generally navigates toward a \best �t" by

iterative parameter adjustments made aording to some potentially ad-ho heuristis. Thus a high degree

of interativity between the user and the omputing resoures is desirable to maximize produtivity. Senario

(C) does not require interativity as the user has already identi�ed an \interesting" region of the parameter

spae to explore, perhaps via senario (B). In [12℄, we gave an example of a small-sale simulation for (C),

whih required approximatively 3 months of aggregate CPU time and and generated 94GB of raw output,

whih were then redued to 600KB of synthesized output. Note that in all senarios, the CPU time of

individual simulations an vary by several orders of magnitude solely depending on input parameter values.

2.3. Current Limitations

Currently, MCell imposes severe limitations on the usage senarios desribed in the previous setion.

Ideally, users would have aess to integrated software whih guides them through the 4 steps identi�ed in

Setion 2.1 and whih enables all three usage senarios on large-sale distributed omputing environments.

In its urrent inarnation, MCell onsists of a single exeutable whih takes MDL �les as input. The

user is responsible for reating those �les and for managing eah MCell \projet" in an ad-ho fashion. The

user is entirely responsible for running the individual simulations and olleting the output. This involves

labor-intensive ativities suh as resoure seletion, remote proess reation/monitoring, fault-detetion and

restart, or appliation data movements. Those tasks are generally performed via a set of ad-ho sripts. In

senarios (B) and (C), this proves to be infeasible for most users given the desired sale of the simulations.

In addition, there is no support for interative simulation as required by senario (B).

3

The MCell exeutable generally produes one or more output �les. Users are responsible for averaging,

post-proessing, visualizing, and analyzing output �les. In senarios (B) or (C), this amounts to manipulating

and mining large datasets, again in an ad-ho fashion. MCell users typially use the �le system as a database

for appliation data, whih does not sale and annot support senarios (B) or (C). Generally, OpenDX [44℄

is used for most rendering and visualization tasks.

Our earlier work on the AppLeS Parameter Sweep Template (APST) [15, 4℄ provides limited support for

(C) in terms of running MCell simulation on Grid resoures. It is a lear improvement over the traditional

usage. However, sine APST is ompletely generi, it fails to address most of the MCell-spei� limitations

listed above.

As senarios (B) and (C) are the future of MCell simulations for new sienti� disoveries, it is ritial

to provide orresponding omprehensive software support. This is one of the goals of the VI projet.

3. THE VIRTUAL INSTRUMENT

In this setion we desribe the VI projet in terms of spei� goals, relevant researh issues, and software.

3.1. Goals

The main motivation behind the VI software development e�ort is to address the limitations highlighted

in Setion 2.3. More spei�ally, this is aomplished by providing the following apabilities:

Framework for MCell projet development { The VI must provide a framework in whih MCell users an

easily speify individual \projets" in terms of input parameters, initial ranges for those parameters, number

of repeats for Monte Carlo averaging, nature of output �les, and nature of output post-proessing steps (see

Setion 3.2 for a detailed desription of MCell projets). The only omponent of an MCell simulation that

annot be automatially reated is the ore MDL ode as it embodies the user's oneptual model. However,

all the aforementioned omponents an be standardized. The VI must then provide a framework for users

to plug in their ore MDL ode and be freed of all other responsibilities. This framework an easily be

embedded as part of a user interfae. Finally, the VI must handle all appliation data management issues.

This an be done, for instane, with a relational database.

User interfae { At the moment, MCell laks a user interfae. The VI should provide a graphial interfae

for users to reate MCell projets within the framework desribed above. In addition, that interfae should

be able to invoke data visualization and rendering apabilities provided by tools like OpenDX [44℄. Clearly,

a full-edged user interfae for MCell is a multi-year projet and is not our fous here. Instead, we aim at

providing a simple interfae that will allow us to explore omputer siene researh issues involved when

running large-sale distributed MCell simulations. Our goal is also to allow urrent MCell users to perform

�rst generation runs under senarios (B) and (C).

Transparent deployment { The VI should handle the logistis of appliation deployment on behalf of the

user. This inludes resoure disovery, seurity, remote job reation/ontrol, appliation data movements,

fault-detetion and reovery. This an be ahieved by building and using deployed Grid servie.

Interative simulation { In order for senario (B) to be e�etive, the VI must provide a way for users to

interat with running simulations in order to guide, or steer, the omputation. The question of omputational

steering has been explored in other work and poses many hallenges, inluding preise appliation ontrol,

high performane, and onsisteny of state (see Setion 4 for a disussion of related work in that area).

High performane { Given the sale of MCell simulations in senarios (B) and (C), it is ritial that the

VI exploit available resoure e�etively. This is to be ahieved by the use of sheduling strategies, and an

build on our previous work [14℄. However, in this work, there is the added omplexity of omputational

steering: how does one shedule (and re-shedule) an appliation whose omputational goals are onstantly

being hanged and/or re�ned by the user?

4

FIG. 1 The Struture of an MCell Projet in the Virtual Instrument Framework: a projet onsists of n

meta-tasks, and eah meta-task onsists of a number of idential MCell tasks whose outputs are averaged

and synthesized into �nal output data.

3.2. MCell Projet in the VI Framework

Before desribing our work on sheduling and on Grid software design and development, we formalize the

notion of an MCell projet whih an be reated and exeuted by the VI user. The struture of a projet is

depited in Figure 1 and onsists of: (i) a set of parameter spei�ations (number of parameters, data types,

initial value ranges); (ii) a set of MDL sripts written by the user { the MDL ore; (iii) potential additional

input �les suh as large geometry �les that have been produed by 3-D reonstrution of eletron mirosope

data. The MCell simulation onsists of a (generally large) number of parameter spae point evaluations,

or meta-tasks (n meta-tasks are shown on the �gure). Eah evaluation onsists of an instantiation of the

parameter values and of a number of idential MCell tasks, eah using di�erent streams of random numbers

for the Monte Carlo simulation. Eah task produes raw output �les that are then averaged and synthesized

into �nal output. That �nal output is typially orders of magnitude smaller (in terms of bytes) than raw

and averaged output. That �nal data must be analyzed by the user in order to understand the behaviors

of the simulated biologial system. This must be done on-the-y to steer the omputation in senario (B).

Note that raw and average output data is still of interest to the MCell user and may need to be retrieved in

order to perform in-depth analyses.

5

A run of an MCell projet then onsists in exeuting large numbers of independent meta-tasks and

retrieving both intermediate and �nal output. In the following two setions we present researh issues and

our initial work for sheduling/steering and for targeting the VI to the Grid.

3.3. Sheduling/Steering Issues

Sheduling sets of independent tasks onto sets of distributed resoures has long been identi�ed as an

NP-hard problem [57℄. Therefore, muh researh work has been dediated to the development of appropriate

sheduling heuristis (see [10℄ for a survey). Grid omputing adds several hallenges to the traditional

sheduling problem: resoures are not only heterogeneous, they exhibit dynami performane behaviors due

to sharing among users. Also, they are loated on diverse network topologies interonneted over the wide-

area. To address those issues, adaptive sheduling has been employed with suess [9, 7℄. As a result, we

developed adaptive sheduling strategies for MCell in our earlier work [14℄. That work foused on sheduling

data movement, data staging, and data dupliation, with respet to storage and ompute resoure loations

and harateristis.

In this work, we have to ope with the omplexity added by omputational steering, that is the problem of

sheduling an appliation whose omputational goals hange over time aording to potentially arbitrary user

behaviors. Computational steering is a diÆult problem that has been addressed by several researhers [45,

35, 58, 59, 25℄. Those e�orts mostly addressed the problems of onsisteny of state among omponents

of tightly oupled appliations. In the limited ontext of MCell, onsisteny is not a key issue as the

appliation onsists of large sets of tasks whih an be stopped and re-started independently and without

need for synhronization. Therefore, we fous on designing a sheduling strategy that take steering into

aount in order to ahieve high performane.

As illustrated in Figure 1, MCell simulations onsist of many independent meta-tasks, eah orresponding

to the evaluation of one point in a large multi-dimensional parameter spae. In this work we urrently ignore

issues onerning appliation input/output data (those issues were explored in [14℄). We assume that the VI

user employs the following searh strategy. The user's goal is to loate some partiular point in the parameter

spae that satis�es some subjetive riteria. She initially selets parameter spae points uniformly distributed

over the parameter spae. As results ome bak from the VI, they are displayed to the user who an then

assign levels of importane to regions of the parameter spae. Regions with higher levels of importane are

more promising and should therefore be ompleted sooner. This an be ahieved by assigning appropriate

frations of the available ompute resoures to the exploration of eah region. For instane, if the user has

identi�ed 3 regions that should be explored and assigned levels of importane 2, 2, and 1, then the �rst

two regions should both get 40% of the resoures, and the last region should get 20%. Our approah is to

assign a priority to eah point of the parameter spae, orresponding to the level of importane of the region

to whih the point belongs. If eah of the urrent n points being omputed has a priority p

i

, then point i

should get p

i

=

P

n

j=1

p

j

perent of the available resoures. Region exploration is performed by re�ning the

resolution within that region, i.e. by omputing inreasingly dense parameter spae point meshes. There

are several ways to inrease mesh density in regions, e.g. inreasing the resolution by some fator in all

dimensions of the parameter spae (progressive re�nement), or by seleting a number of random points in

the region (random loal searh).

Development of sheduling/steering strategies for the VI faes an inherent diÆulty: user behaviors are

unknown until the VI software is in prodution mode. In addition, MCell users will use the VI to searh for

data patterns that are rather subjetive and therefore diÆult to speify a-priori (e.g. look for something that

is \interesting"). We make the observation that user-direted searhes share ommonalities with algorithmi

searhes : typial user steering patterns are really instanes of searh algorithms that use a ombination of

loal and global searhes. Rather than waiting for a fully developed VI software whih is used in prodution

mode by neurosientists, we drive our sheduling researh by emulating user behavior: our approah is to

use global/loal optimization algorithms to optimize several well-known objetive funtions. Remember that

our goal is to evaluate the e�etiveness of priority-based sheduling to redue overall searh time. The

behavior of an atual MCell user is arguably di�erent from that of an automated algorithm but we believe

that the similarities are suÆient for us to evaluate our sheduling approah. Also, searh algorithms might

be provided as a VI feature when users an learly speify their goal (e.g. look for the minimum of this

funtion). Finally, this approah allows us to make a broader ontribution as we validate that our sheduling

6

sigma=0.01 sigma=0.1 sigma=1.0 sigma=10.0 sigma=100.0
0

2000

4000

6000

8000

10000

12000

A
v
e

ra
g

e
 S

e
a

rc
h

 T
im

e
 i
n

 s
e

c
o

n
d

s
 (

V
a

lu
e

 <
 0

.1
)

MaxTrials = 16 / No Priority
MaxTrials = 16 / Priority
MaxTrials = 64 / No Priority
MaxTrials = 64 / Priority

FIG. 2 Legend

strategy is appliable to parallel searh algorithms.

We implemented a simulator using the Simgrid toolkit [11℄ in order to study a wide range of senarios

in terms of searh algorithms and objetive funtions. Figure 2 shows one set of results obtained with that

simulator. We simulated a searh for a global minimum over the well-known positive \hard-to-optimize"

3-D Griewank funtion [56℄. That funtion is parametrized by a positive real number, �. For �ve values

of � we simulated a popular global/loal searh pattern. The searh starts with a generation of random

parameter spae points at whih the Griewank funtion is evaluated. Then, at eah generation, loal searhes

are onduted around points from the previous generation. For eah loal searh, the best 2 points (i.e. the

ones with the lowest Griewank value) are propagated to the next generation. Eah loal searh onsists of

a maximum number of trials, that is: if a loal searh does not return a better result than its parent then

another loal searh is attempted until the maximum number of suh trials is reahed. We use two values

for maxTrials: 16 and 64. The �rst one onsists of a rather fast aggressive searh, where the seond one

attempts to be more thorough by doing a larger number of loal searhes before giving up on one region.

We laim that this searh algorithm is representative of an exeution of the VI where the user would

steer the simulation at eah generation by seleting promising regions to explore. The simulated platform

onsidered here onsists of a single, \ontinuously partitionable" proessor. In other words, it is possible to

assign any fration of that proessor's ompute power to a given task. Therefore, our assumption is that it is

possible to implement task priorities exatly. For eah steering pattern (MaxTrials=16 and MaxTrials=64),

we simulated exeution with and without task priorities. When used, priorities are simply omputed as the

inverse of the Griewank values (lose to zero implies a promising region, hene high priority). The results

on Figure 2 show average searh times (over 100 repetitions), where we delare a searh omplete when the

Griewank value is under 0.1. In those onditions the searh generally used under 20 generations.

As expeted, results vary with � and the searh patterns. It is diÆult to preisely understand whih

searh pattern is more e�etive in whih situations. Indeed, muh researh work has been dediated to

understanding, designing, and tuning searh algorithms. However, our fous here is on sheduling. We an

see that, in all ases, the use of priorities redues the overall searh time, by 5% to 34% for maxTrial = 16,

7

and by 14% to 51% for maxTrial = 64. Our laim is that for many steering patterns when using the VI, the

use of priorities when sheduling tasks onto the Grid will redue searh time. This is further substantiated

by many other results that we obtained with many objetive funtions (both ontinuous and disrete) for

many searh algorithms.

These results are learly enouraging. However, note that in these simulations we assume that tasks

get exatly the portion of the resoures ditated by their priorities. In pratie, it is not possible to assign

preise quanta of Grid resoures to tasks of an appliation. This is due in part to the fat that Grid

resoures are heterogeneous and with dynami performane behavior. Also, the appliation, Grid middleware,

and/or operating systems might not provide the neessary degree of ontrol. An atual implementation of

a sheduling strategy an only hope to ahieve an approximation of the priorities. For instane, the VI

sheduler ould deide to assign tasks to resoures in order of priorities and let eah task run to ompletion

uninterrupted. Alternatively, using job ontrol mehanisms, the VI ould interrupt and hekpoint tasks

in favor of others, thereby ahieving some level of time-sharing among tasks. This would lead to a better

approximation of the original priorities at the added ost of hekpointing overhead. We are urrently

onduting a quantitative study of those trade-o�s.

We have given here broad diretions and early results for sheduling/steering in the ontext of the VI

projet. We will report on the details of our work on sheduling in upoming papers.

3.4. Grid Computing Issues

The VI projet faes most of the issues inherent in Grid omputing as it seeks to make the use of the Grid

as transparent as needed so that the user an fous on the MCell simulations rather than on the logistis

of appliation deployment. To that end, we reuse many of the reent Grid middleware e�orts to ahieve

automati resoure disovery [17℄, resoure aess [18, 13, 6℄, seurity [23℄, distributed data management [16℄,

and resoure monitoring [61℄.

In this setion we desribe spei� issues in whih the VI approah makes a ontribution to Grid omput-

ing. Some of these ontributions ome from our experiene with the APST projet [15, 4℄. APST provides

a simple, generi way to run parameter sweep appliations and is urrently used by MCell users for senario

(C). When designing the VI arhiteture we were able to learn from and improve on APST's priniples.

3.4.1. Event System

EÆient sheduling for steerable appliations on the Grid relies on three soures of information: applia-

tion resoure requirements, user steering input, and available resoure performane. These three information

soures an be haraterized by measures of their unertainty and their dynamism. Both measures are ne-

essary for automati shedulers to make e�etive deisions in Grid settings. The most natural and salable

arhiteture for delivering suh information to the appliation sheduler is via a distributed event system.

Rather that having the sheduler atively poll a potentially large number of resoures, an event system

monitors performane onditions on behalf of the sheduler, and then noti�es it when a sheduler-spei�ed

set of onditions ours. For example, the sheduler might determine that a partiular mahine o�ers exel-

lent exeution performane for ertain appliation tasks, but that (due to the urrent load on the mahine)

insuÆient memory is available to support those tasks. It is infeasible to have the sheduler onstantly poll

the resoure to determine if and when enough memory beomes free. While it might work for a small number

of mahines, the sheduler would spend all of its time polling (potentially reeiving negative answers most

of the time) if a large number of resoures and harateristis are to be onsidered. Therefore, a distributed

event system is one of the neessary omponents for software suh as the VI.

Key to the onstrution of the event system is an event model { a set of abstrations and the rules for

their interation whih, when implemented, will provide eÆient and useful event handling for the appliation

sheduler.

The event model we propose to explore an be desribed in terms of three abstrations: events, triggers,

and noti�ers. An event is a tuple onsisting of a timestamp, an event type, and a measurement value. A

trigger is a set of onstraints over events whih, when satis�ed, auses a set of noti�ers to be invoked. The

onstraints are spei�ed as a range of values that a partiular resoure performane pro�le an assume, and a

boolean ag indiating whether the trigger should \trip" when an observed value falls either inside or outside

the range. The VI sheduler an then speify a set of triggers for any given exeution instane about whih

8

it wishes to be noti�ed. A noti�er is a funtion or method invoked as result of an enabled trigger. These

de�nitions are simple and leave issues suh as global time or event omposition unspei�ed. However, we

believe that they are suÆient to support VI ativities. We have built a simple multi-threaded event system

in C++ whose interfae is tailored to the VI sheduler. We are also developing an event registry so that the

sheduler an disover event soures. This builds on an ongoing e�ort within the Global Grid Forum [29℄ for

de�ning an LDAP shema for naming and registering Grid events.

We also make use of performane foreasting when deiding to trip a trigger. On the Grid, resoure

performane an vary dramatially. As performane utuates, it is important not to burden the sheduler

for many \false alarms." For example, if an event is to be triggered when network performane drops below

say, 2 megabits/se, on a link between the University of Tennessee and University of California, San Diego,

the sheduler will be noti�ed onstantly if the \normal" network performane onstantly utuates around

this value.

Foreasting, however, allows the event system to determine whether the urrent network reading is

onsistent with previously observed utuation. By keeping a history of previous performane measurements,

and applying fast statistial analysis tehniques, the system automatially identi�es outlying data values.

In [37℄ we demonstrated the e�etiveness of this approah to building performane alarms for Grid resoures.

We are leveraging the same tehniques in the VI event system.

Our initial goal in this area is to foster researh results using prototypes we understand well, thus

we have opted for a \home grown" event system. Distributed event systems, however, are not new. It

is possible that as we go forward, we may wish to adopt an extant tehnology for managing distributed

events. For instane, FALCON [34℄ provides a runtime environment spei�ally designed to support the

steering of sienti� appliations. In a Grid environment, where resoure performane utuation must be

aounted for, the event system itself must be adaptive and high-performane. Our goal is to leverage the

suessful infrastruture we have built for monitoring and foreasting performane data in the form of the

Network Weather Servie (NWS) [62℄. By ombining extant event tehniques with ommonly aepted Grid

tehnologies we will give the VI implementation of MCell the maximum exibility we an in terms of a target

exeution platform.

3.4.2. Resoure Aess and Data

One of the lessons we learned with APST is that targeting several underlying tehnologies for deploying

user appliation makes it possible to (i) gain early aeptane from the users; (ii) inrease the number of

resoures available to appliations. This is true beause Grid omputing is still an emerging tehnology that

is not yet ubiquitous. This may hange in years to ome, for instane when Grid omputing evolves toward

a Web servie arhiteture as proposed in [22℄.

The VI targets a number of middleware servies, suh as Globus [28℄, NetSolve [13℄, NWS [61℄, IBP [46℄.

These servies an be uses simultaneously in order to expand the range of resoures that an be used for

a single MCell simulation. In addition, the VI provides default mehanisms that use SSH to start remote

jobs and move appliation data. SSH does not provide the levels of job ontrol and the salability o�ered

by say, Globus. However, our experiene with APST is that users generally start using SSH mehanisms

and progressively move towards Grid middleware tehnology as their simulation needs grow in sale. The

main notion here is that urrent Grid appliation exeution environments should be able to use whatever

Grid middleware is available, but also degrade to default ubiquitous mehanisms if neessary. We expet

this approah to be replaed with standard Grid tehnology when it beomes available [29℄.

One of the limitations of APST is that it does not maintain persistent state about appliations and

resoures. Given the life-span of MCell simulations, it is ritial that the ore VI software be resilient to

software and hardware rashes. In addition the VI an exploit spei�s of MCell, inluding data management

requirements, whih is not possible with APST as it is general purpose. We use a relational database in

order to maintain persistent state about running MCell projets, data generated by those projets, and

available resoures. This database has two roles. First, it allows the VI software to be resilient to faults: all

state is periodially saved into the database and an be used for restart. Seond, it provides a struture for

storing, retrieving, and mining appliation data, whih is fundamental for ahieving the �rst goal presented

in Setion 3.1. Our approah is to store only �nal appliation output data into the database (see Figure 1).

Raw and intermediate output, whih an be enormous, is left in plae on remote Grid storage resoures and

9

FIG. 3 The Virtual Instrument: the three main omponents are the VI Daemon, the VI Database, and the

VI Interfae.

an be downloaded on demand by the user.

3.5. Virtual Instrument Software

The Virtual Instrument software follows a strit objet-oriented design and is onstruted of three prin-

iple omponents: a software daemon to manage resoures and remotely run jobs; a user interfae to allow

users to initiate, run, monitor, and stop MCell projets; and a database to store �nal appliation results

and user-entered data. These omponents an run on separate mahines and the daemon makes use of

distributed/Grid resoures.

Figure 3 depits the interations of the three main omponents of the VI arhiteture: the VI Daemon,

the VI Interfae, and the VI Database. The VI Daemon interats with Grid resoures and servies, as well as

utilizing the Event System desribed in Setion 3.4.1. These servies allow the Daemon to disover resoures,

start and ontrol remote jobs, move data between distributed storage loations, and monitor resoures as

well as the running appliation. The Daemon uses the VI Database to store information suh as the available

resoures, the user-de�ned spei�ations of running MCell projets, and the status of these running projets,

inluding their pending tasks. To the greatest extent, the Daemon uses an out-of-ore approah, so that if it

fails, the relevant information about running MCell projets is in the Database. The only appliation data

10

stored in the Database are MCell �nal output that an be visualized and analyzed by the user and used to

steer further simulations. This �nal output data is stored in the Database by the Daemon. All raw and

intermediate output is left in plae in Grid storage. As depited in Figure 3, the Database keeps trak of

the raw and intermediate output data for possible retrieval by the user (see Setion 3.4.2).

The VI Interfae allows the user to steer the omputation and to perform visualization. The Interfae

ommuniates ontrol information to the Daemon, inluding ommands to reate or start or stop MCell

projets or trigger the retrieval of a partiular output �le. In addition, the Interfae an request the retrieval

of appliation data from the Database itself. Visualization of the data an be performed by OpenDX at the

user's diretion, as invoked from the Interfae.

The main responsibility of the VI Daemon is to shedule and atuate �le transfers and omputations

using available omputational and network resoures. These funtions are performed by three lasses within

the the Daemon: the Projet lass, the Sheduler lass, and the Atuator lass. The Projet keeps trak of

all of the parameter spae points and task inter-dependenies. For example, in Figure 1, it is the Projet

that is aware of the requirement to omplete several runs of MCell with their parameter instantiations before

running a post-proessing task to average the output. The Sheduler retrieves information on tasks from

the Projet, sets their relative priorities (see Setion 3.3), and assigns tasks to resoures aordingly. The

Sheduler is designed as a base lass so that alternate sheduling strategies an be easily integrated as they

are developed. After tasks have been assigned to resoures by the Sheduler, the Atuator launhes them

on Grid resoures. As with the Sheduler, the Atuator is designed as a base lass, permitting speialization

for various remote job exeution and data transfer methods from Grid middleware servies.

The VI arhiteture has several key advantages over the APST design. The use of a relational database

makes the design of the Daemon more simple in terms of data strutures, and makes it possible to reover

from failures. In addition, the Interfae does not need to implement an ad-ho protool with the Daemon,

but an just pull data out of the Database in a standard fashion. In this way, a user an start an MCell

projet, disonnet, and hek the status of the simulation from any loation.

Based on previous experiene with APST the use of multi-threading dramatially improves the eÆieny

of launhing tasks, sine it e�etively hides network and software latenies (see quantitative assessments

in [15℄). For that reason, eah Sheduler and eah Atuator runs in its own thread, and there is an indepen-

dent Atuator for eah resoure. Throughout the VI Daemon, the Database is aessed through a ommon

set of interfaes whih streamline and automate the proess of generating and exeuting SQL queries.

3.6. Status of the Implementation

At the moment, the VI software onsists of approximatively 20,000 lines of C++. It uses pthreads and

tools from the AppleSeeds libraries [3℄. We opted for MySQL [40℄ to implement the VI Database as it is well

aepted by the Linux ommunity and provides a standard API. A later version of the VI software ould use

the more generi ODBC [43℄. In the urrent release, the atuators within the VI Daemon target SSH and

Globus's GRAM for starting/monitoring remote jobs, sp and GridFTP for moving appliation data on the

Grid. Other atuators are underway (e.g. NetSolve [13℄ and IBP [46℄). Our implementation of the VI event

system targets NWS [61℄ for resoure monitoring. The VI Interfae is still underway and at the moment

we provide a text-only interfae for evaluation purposes. This interfae allows us to gather information

about user behaviors and requirements for onverging towards a graphial interfae. That interfae is also

written in C++ on top of VI omponents. Finally, we have implemented a simulator in order to evaluate

our sheduling/steering strategies (as shown in Setion 3.3). The simulator is written with the Simgrid [11℄

toolkit, and has been integrated with the VI software. This allows us to simulate a variety of user behaviors

and to test and validate the VI implementation throughout development.

A beta version of the VI software was released to a limited number of MCell users/developers in February

2002 for evaluation and omments. The software is making rapid progress and will be demonstrated at the

SC'02 onferene. More information an be found on the projet's Webpage at [60℄.

4. RELATED WORK

Our work is related to a number of large e�orts that seek to provide Grid appliation exeution envi-

ronments for sienti� simulations. Like our work, those projets are targeted to spei� appliations or

11

domains [33, 42, 47℄. Combining the experiene gathered in all those projets, given that projet teams on-

sist of omputer sientists and disiplinary sientists, is ritial to moving Grid tehnology forward. Related

works also inlude portal ativities [31, 30℄ and the VI software ould ultimately be integrated as a user

portal. Our work on an event system is related to e�orts like FALCON [34℄, JAMM [36℄, as well as Grid

noti�ation ativities in the Global Grid Forum [26℄. Even though we opted for a ustom approah for our

event system, we will ertainly investigate how those systems ould be of bene�t to the VI.

Computational Steering has been an ative �eld of researh and several projets have provided models,

methodologies, and software for steering sienti� appliations (SCIRUN [45℄, VASE [35℄, Progress [58℄,

Magellan [59℄, CUMULVS [25℄). One of the main hallenges addressed in these works is the notion of

state onsisteny. Several tehniques from the area of distributed systems and fault-tolerane have been

used suessfully to build high performane onsistent omputational steering environments. Our work is

related to those e�orts in that we provide omputational steering apabilities. However, given the struture

of MCell simulations, i.e. parallel searhes with loose task and data synhronization requirements, state

onsisteny is not a ruial issue. Therefore, our work fouses mostly on performane issues and proposes a

sheduling/steering strategy based of task priorities for appropriate resoure sharing.

This work builds on our earlier work on the AppLeS Parameter Sweep Template (APST) [15, 4℄ whih

is related to projets suh as Nimrod [1℄ or ILAB [63℄. APST provides a generi Grid appliation exeution

environment for Parameter Sweep Appliations (PSA). PSAs are appliations that onsist of large numbers

of omputational tasks that exhibit few or no interdependenies. This ategory of appliations enompasses

many methodologies suh as Monte Carlo simulations, parametri studies, parameter searhes, and arises

in many �elds of siene and engineering. This work uses APST as a learning experiene to provide a

full-edged exeution environment ustomized for MCell. APST addresses a few of the limitations listed in

Setion 2.3 and is urrently used for medium-sale MCell parameter sweep runs. Moreover, neither APST,

Nimrod, nor ILAB provide apabilities for omputational steering.

5. FUTURE WORK AND CONCLUSIONS

In this paper we have presented the Virtual Instrument (VI) projet, whih targets the deployment of

large-sale, interative MCell simulations. MCell is a moleular biology simulator whih is gaining great

popularity in the omputational neurosiene ommunity. Even though the urrent MCell software provides

basi apabilities to run simulations, it does not enable interative simulation, and leaves many responsibil-

ities to the user in terms of deployment, sheduling, and data management. These limitations prelude the

use of MCell for large-sale exeutions, espeially on the Grid platform. The goal of the VI projet is to

provide an integrated Grid exeution environment for MCell that o�ers interative omputational steering

apabilities. We �rst desribed our initial approah for a sheduling strategy that e�etively exploits Grid

resoures when users an steer MCell simulations on-the-y. We also desribed key ontributions of our

software e�ort, inluding the design and implementation of an event system, and explained how our software

design targets the Grid platform and existing middleware servies. Several of those ontributions are relevant

for Grid software development in a more general ontext than that of the VI projet.

Many future diretions are urrently being explored in this projet. We have highlighted only the basis

of our sheduling/steering strategy and future papers will detail our approah and give many results obtained

with our simulation framework. We will validate those results with atual runs of the VI software. We will

also report on the implementation and e�etiveness of the VI event system. In terms of software development,

we will add support for additional Grid middleware systems, �nalize the graphial VI Interfae, and release

the software to MCell users at large.

One of our goals is to deploy our software in a prodution environment to (i) validate our implementa-

tion; (ii) log information about usage and learn about user behaviors; (iii) enable new disiplinary results.

Ultimately, the Virtual Instrument will have a large and quanti�able impat on the MCell ommunity. It

will lead to new sienti� advanes that would not be possible without the Grid platform and without our

fully integrated software environment.

12

REFERENCES

[1℄ J. Abramson, D. Giddy and L. Kotler. High Performane Parametri Modeling with Nimrod/G: Killer Appli-

ation for the Global Grid? In Proeedings of the International Parallel and Distributed Proessing Symposium

(IPDPS), Canun, Mexio, pages 520{528, May 2000.

[2℄ L. Anglister, J. R. Stiles, and M. M. Salpeter. Aetylholinesterase density and turnover number at frog

neuromusular juntions, with modeling of their role in synapti funtion. Neuron, 12:783{794, 1994.

[3℄ AppleSeeds Webpage. http://grail.sds.edu/projets/appleseeds.

[4℄ APST Webpage. http://grail.sds.edu/projets/apst.

[5℄ T. M. Bartol, B. R. Land, E. E. Salpeter, and M. M. Salpeter. Monte Carlo simulation of miniature endplate

urrent generation in the vertebrate neuromusular juntion. Biophys. J., 59(6):1290{1307, 1991.

[6℄ J. Basney and M. Livny. Deploying a High Throughput Computing Cluster. In High Performane Cluster

Computing, volume 1, hapter 5. Prentie Hall, May 1999.

[7℄ F. Berman. The Grid, Blueprint for a New omputing Infrastruture, hapter 12. Morgan Kaufmann Publishers,

In., 1998. Edited by Ian Foster and Carl Kesselman.

[8℄ F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis Gannon, K. Kennedy, C. Kesselman,

D. Reed, L. Torzon, and R. Wolski. The GrADS projet: Software support for high-level grid appliation

development. International Journal of High Performane Computing Appliations, 15(4):327{344, Winter 2001.

[9℄ F. Berman, R. Wolski, S. Figueira, J. Shopf, and G. Shao. Appliation-Level Sheduling on Distributed

Heterogeneous Networks. In Pro. of Superomputing'96, Pittsburgh, 1996.

[10℄ R. Braun, H. Siegel, N. Bek, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hens-

gen, and R. Freund. A Comparison Study of Stati Mapping Heuristis for a Class of Meta-tasks on Hetero-

geneous Computing Systems. In Proeedings of the 8th Heterogeneous Computing Workshop (HCW'99), pages

15{29, Apr. 1999.

[11℄ H. Casanova. Simgrid: A Toolkit for the Simulation of Appliation Sheduling. In Proeedings of the IEEE/ACM

International Symposium on Cluster Computing and the Grid, May 2001.

[12℄ H. Casanova, T. Bartol, J. Stiles, and F. Berman. Distributing MCell Simulations on the Grid. The International

Journal of High Performane Computing Appliations, 14(3):243{257, 2001.

[13℄ H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Siene Problems. The

International Journal of Superomputer Appliations and High Performane Computing, 11(3):212{223, 1997.

[14℄ H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristis for Sheduling Parameter Sweep Appli-

ations in Grid Environments. In Proeedings of the 9th Heterogeneous Computing Workshop (HCW'00), pages

349{363, May 2000.

[15℄ H. Casanova, G. Obertelli, H. Berman, and R. Wolski. The AppLeS Parameter Sweep Template: User-level

middleware for the Grid. In Proeedings of Superomputing, November 2000.

[16℄ A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tueke. The Data Grid: Towards an Arhiteture

for the Distributed Management and Analysis of Large Sienti� Datasets. Journal of Network and Computer

Appliations, 2000. to appear.

[17℄ C. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Servies for Distributed Resoure

Sharing. In Proeedings of the 10th IEEE Symposium on High-Performane Distributed Computing, August

2001.

[18℄ K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tueke. A Resoure Manage-

ment Arhiteture for Metaomputing Systems. In Proeedings of IPPS/SPDP'98 Workshop on Job Sheduling

Strategies for Parallel Proessing, 1998.

[19℄ D. Egelman, R. King, and P. Montague. Interation of nitri oxide and external alium utuations: a possible

mehanism for rapid information retrieval. Progress in Brain Researh, 118:199{211, 1998.

[20℄ D. Egelman and P. Montague. Computational properties of peri-dendriti alium utuations. J. Neurosi.,

18(21):8580{8589, 1998.

[21℄ I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New omputing Infrastruture. Morgan Kaufmann

Publishers, In., San Franiso, USA, 1998.

[22℄ I. Foster, C. Kesselman, J. Nik, and S. Tueke. The Physiology of the Grid: An Open Grid Servies Arhiteture

for Distributed Systems Integration. Available at http://www.globus.org, 2002.

[23℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tueke. A Seurity Arhiteture for Computational Grids. In

Proeedings of the 5th ACM Conferene on Computer and Communiations Seurity, pages 83{92, 1998.

[24℄ I. Foster, C. Kesselman, and S. Tueke. The Anatomy of the Grid: Enabling Salable Virtual Organizations.

International Journal of High Performane Computing Appliations, 15(3), 2001.

[25℄ G. Geist, J. Kohl, and P. Papadopoulos. CUMULVS: Providing Fault Tolerane, Visualization, and Steer-

ing of Parallel Appliations. The International Journal of Superomputer Appliations and High Performane

Computing, 11(3):224{235, 1997.

13

[26℄ Working Group on Grid Information Servies at the Global Grid Forum. http://www.gridforum.org/1_GIS/

GIS.htm.

[27℄ J. Gieger, A. Roth, B. Taskin, and P. Jonas. Glutamate-mediated synapti exitation of ortial interneruons.

In P. Jonas and H. Moyner, editors, Handbook of Experimental Pharmaology, Retinoids, Ionotropi glutamate

reeptors in the CNS, volume 141, pages 363{398, Berlin, 1999. Springer-Verlag.

[28℄ Globus Webpage. http://www.globus.org.

[29℄ Global Grid Forum Webpage. http://www.gridforum.org.

[30℄ GridPort Webpage. http://gridport.npai.edu.

[31℄ Grid Portal Collaboration Webpage. http://www.ipg.nasa.gov/portals/.

[32℄ A. Grimshaw, F. Ferrari, A. Knabe, and M. Humphrey. Wide-Area Computing: Resoure Sharing on a Large

Sale. 32(5), May 1999.

[33℄ GriPhyN Webpage. http://www.griphyn.org.

[34℄ W. Gu, G. Eisenhauer, K. Shwan, and J. Vetter. Falon: On-line Monitoring for Steering Parallel Programs .

Conurreny: Pratie and Experiene, 10(9):673{698, 1998.

[35℄ D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. VASE: The Visualization and Appliation Steering Environ-

ment. In Proeedings of SuperComputing 1993, pages 560{569, 1993.

[36℄ JAMM Webpage. http://www-did.lbl.gov/JAMM.

[37℄ C. Krintz and R. Wolski. NwsAlarm: A Tool for Aurately Deteting Degradation in Expeted Performane

of Grid Resoures. In Proeedings of CCGrid 2001, May 2001.

[38℄ MCell Webpage at the Pittsburgh Superomputer Center. http://www.mell.ps.edu.

[39℄ MCell Webpage at the Salk Institute. http://www.mell.nl.salk.edu.

[40℄ MySQL Webpage. http://www.mysql.org.

[41℄ H. Nakada, M. Sato, and Sekiguhi. Design and Implementations of Ninf: towards a Global Computing Infras-

truture. Future Generation Computing Systems, Metaomputing Issue, 1999.

[42℄ National Virtual Collaboratory for Earthquake Engineering Researh Webpage. http://www.neesgrid.org.

[43℄ ODBC Webpage. http://www.odb.org.

[44℄ OpenDX Webpage. http://www.opendx.org.

[45℄ S. Parker, M. Miller, C. Hansen, and C. Johnson. An integrated problem solving environment: The SCIRun

omputational steering system. In Proeedings of the 31st Hawaii International Conferene on System Sienes

(HICSS-31), vol. VII, pages 147{156, January 1998.

[46℄ J. Plank, M. Bek, W. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet Bakplane Protool: Storage

in the Network. In Proeedings of NetSore'99: Network Storage Symposium, Internet2, 199.

[47℄ Partile Physis Data Grid Webpage. http://www.ppdg.net.

[48℄ The Purdue University Network Computing Hubs Home Page. http://punh.en.purdue.edu.

[49℄ R. Rao-Mirotznik, G. Buhsbaum, and P. Sterling. Transmitter onentration at a three-dimensional synapse.

J. Neurophysiol., 80(6):3163{3172, 1998.

[50℄ M. M. Salpeter. The Vertebrate Neuromusular Juntion, pages 1{54. Alan R. Liss, In., New York, 1987.

Edited by Salpeter, M. M.

[51℄ J. R. Stiles and T. M. Bartol. Monte Carlo methods for simulating realisti synapti mirophysiology using

MCell. In E. DeShutter, editor, Computational Neurosiene: Realisti Modeling for Experimentalists, Boa

Raton, 2001, in press. CRC Press.

[52℄ J. R. Stiles, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter. Monte Carlo simulation of neurotransmitter

release using MCell, a general simulator of ellular physiologial proesses. In J. M. Bower, editor, Computational

Neurosiene, pages 279{284, New York, NY, 1998. Plenum Press.

[53℄ J. R. Stiles, T. M. Bartol, M. M. Salpeter, E. E. Salpeter, and T. J. Sejnowski. Synapti variability: new

insights from reonstrutions and Monte Carlo simulations with MCell. In W. M. Cowan, T. C. S�udhof, and

C. F. Stevens, editors, Synapses, pages 681{731, Baltimore, 2001. Johns Hopkins University Press.

[54℄ J. R. Stiles, I. V. Kovyazina, E. E. Salpeter, and M. M. Salpeter. The temperature sensitivity of miniature

endplate urrents is mostly governed by hannel gating: evidene from optimized reordings and Monte Carlo

simulations. Biophys. J., 77:1177{1187, 1999.

[55℄ J. R. Stiles, D. Van Helden, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter. Miniature endplate urrent

rise times <100 �s from improved dual reordings an be modeled with passive aetylholine di�usion from a

synapti vesile. Pro. Natl. Aad. Si. U.S.A., 93:5747{5752, 1996.

[56℄ A. Torn and A. Zilinskas. Global Optimization, volume 350 of Leture notes in omputer siene. Springer-Verlag,

1989.

[57℄ J. Ullman. NP-omplete sheduling problems. Journal of Computer and System Sienes, 10:434{439, 1975.

[58℄ J. Vetter and K. Shwan. PROGRESS: A Toolkit for Interative Program Steering. In Proeedings of the 1995

International Conferene on Parallel Proessing, pages 139{149, 1995.

[59℄ J. Vetter and K. Shwan. High Performane Computational Steering of Physial Simulations. In Proeedings of

IPPS'97, pages 128{132, 1997.

14

[60℄ Virtual Instrument Webpage. http://grail.sds.edu/projets/vi_itr.

[61℄ R. Wolski. Dynamially Foreasting Network Performane Using the Network Weather Servie. In 6th High-

Performane Distributed Computing Conferene, pages 316{325, August 1997.

[62℄ R. Wolski, N. Spring, and J. Hayes. The Network Weather Servie: A Distributed Resoure Performane

Foreasting Servie for Metaomputing. Future Generation Computer Systems, 15(5-6):757{768, Otober 1999.

[63℄ M. Yarrow, K. MCann, R. Biswas, and R. Van der Wijngaart. An Advaned User Interfae Approah for

Complex Parameter Study Proess Spei�ation on the Information Power Grid. In GRID 2000, Bangalore,

India, Deember 2000.

15

