
UC San Diego
Technical Reports

Title
The Virtual Instrument: Support for Grid-enabled Scientific Simulations

Permalink
https://escholarship.org/uc/item/0n00q0bt

Authors
Casanova, Henri
Bartol, Thomas
Berman, Francine
et al.

Publication Date
2002-05-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0n00q0bt
https://escholarship.org/uc/item/0n00q0bt#author
https://escholarship.org
http://www.cdlib.org/

The Virtual Instrument: Support for Grid-enabled S
ienti�

Simulations

Henri Casanova

1;2

Thomas Bartol

3

Fran
ine Berman

1;2

Adam Birnbaum

1

Ja
k Dongarra

4

Mark Ellisman

5

Mar
io Faerman

2

Erhan Go
kay

3

Mi
helle Miller

4

Graziano Obertelli

6

Stuart Pomerantz

7

Terry Sejnowski

3

Joel Stiles

7

Ri
h Wolski

6

1

San Diego Super
omputer Center

2

Dept. of Computer S
ien
e and Engineering, University of California, San Diego

3

Computational Neurobiology Laboratory, Salk Institute

4

Dept. of Computer S
ien
e, University of Tennessee, Knoxville

5

National Center for Mi
ros
opy and Imaging Resear
h,

University of California, San Diego

6

Dept. of Computer S
ien
e, University of California, Santa Barbara

7

Pittsburgh Super
omputer Center

Ensembles of distributed, heterogeneous resour
es, or Computational Grids, have emerged as popular platforms for

large-s
ale s
ienti�
 appli
ations. This paper presents the Virtual Instrument proje
t whi
h targets those platforms.

More spe
i�
ally, the proje
t seeks to provide an integrated appli
ation exe
ution environment that enables end-users

to run and intera
t with running s
ienti�
 simulations on the Grid. This work is performed in the spe
i�

ontext

of a
omputational biology appli
ation: MCell. Even though MCell provides the basis for running simulations, its

apabilities are
urrently limited in terms of s
ale, ease-of-use, and intera
tivity. Those limitations pre
lude usage

s
enarios that are
riti
al for s
ienti�
 advan
es. Our goal is to
reate a s
ienti�
 \Virtual Instrument" from MCell

by allowing its users to transparently a

ess Grid resour
es while being able to steer running simulations. In this

paper, we motivate the need for an MCell Virtual Instrument. We then introdu
e a s
heduling strategy that exploits

the stru
ture of MCell simulations and uses task priorities to a

ommodates
omputational steering. Finally, we

des
ribe our innovations and
ontributions in terms of Grid software design and development.

Key Words: Grid Computing, Computational Neuros
ien
e, Intera
tive Simulation, Computational

Steering, S
heduling, Event System.

1. INTRODUCTION

Computational Grids [21, 24℄ are large
olle
tions of resour
es (
omputational devi
es, networks, on-

line instruments, storage ar
hives, et
.) that have enormous potential and are be
oming popular platforms

for running large-s
ale, resour
e-intensive appli
ations. Many
hallenges are to be addressed in order to

provide the ne
essary me
hanisms for a

essing, dis
overing, monitoring, and aggregating Grid resour
es.

Consequently, a tremendous e�ort has been made and is still underway to provide a number of middleware

te
hnologies [28, 29, 22, 32, 48℄. However, even though middleware provides fundamental building blo
ks, it

is not designed to be used dire
tly by Grid users. Instead, Grid appli
ation exe
ution environments must

be provided with the goal of hiding the Grid
omplexity, both in terms of hardware and software, from the

end-user. One approa
h is to build \Grid portals" whi
h provide a familiar Web browser interfa
e to Grid

servi
es [31, 30℄. Alternatively, several proje
ts implement programming models that provide abstra
tions for

building Grid appli
ations [13, 41℄. Finally, another possibility is to build integrated software environments

that are either general purpose [8℄, or targeted to spe
i�
 domains and appli
ations. Our work belongs in

This work was supported by the National S
ien
e Foundation under Award ACI-0086092.

that last
ategory; our ultimate goal is to build software that makes an appli
ation behave as a s
ienti�

Virtual Instrument (VI) that the user
an easily
on�gure, observe, and dynami
ally
ontrol.

This work is performed in the spe
i�

ontext of the MCell appli
ation [39, 38, 55, 52℄. MCell is a

omputational biology simulation framework that is
urrently used by neuros
ientists to study di�usion and

hemi
al rea
tions of mole
ules in living organisms. A single exe
ution instan
e of MCell
onsists of multiple

omputational simulations, ea
h produ
ing output that is then analyzed by neuros
ientists en masse. Even

thoughMCell provides the basis for running simulations, its
apabilities are
urrently limited in terms of s
ale,

ease-of-use, and intera
tivity. For example, s
ientists often observe interesting phenomena that emerge in the

middle of an MCell run. If MCell
ould be re-dire
ted to
on
entrate on those phenomena while exe
uting, a

great deal of CPU time
ould be saved. This and other limitations pre
lude usage s
enarios that are
riti
al

for s
ienti�
 advan
es. The goal of the VI is to alleviate most of the
urrent limitations in MCell usage and

to provide an integrated Grid appli
ation exe
ution environment for MCell users. This environment should

provide transparen
y for a

ess to the Grid, as well as
omputational steering
apabilities. In this paper,

we highlight two main
ontributions of our work. First we introdu
e a s
heduling strategy that uses task

priorities to a

ommodate
omputational steering. We present simulation results obtained to validate that

strategy. Se
ond, we des
ribe a

omplishments in terms of Grid software design and development. This

development primarily entails the realization of an event system
apable of delivering user and resour
e

events to the s
heduler, and of an overall ar
hite
ture for generalized VI Grid software.

We des
ribe our e�orts as follows. In Se
tion 2 we introdu
e MCell and highlight spe
i�
 limitations of

its
urrent usage s
enarios. In Se
tion 3 we motivate the VI proje
t, present our
ontributions in terms of

s
heduling and Grid software, and des
ribe the VI's software design and implementation. Se
tion 4 dis
usses

related work and Se
tion 5
on
ludes the paper with future resear
h and development dire
tions.

2. MOLECULAR BIOLOGY SIMULATIONS WITH MCELL

2.1. MCell Overview

MCell [39, 38, 55, 52℄ uses Monte Carlo algorithms to simulate simultaneous di�usion and
hemi
al rea
-

tions of mole
ules in
omplex 3-D spa
es. Highly realisti
 re
onstru
tions of
ellular or sub
ellular boundaries

an be used to de�ne 3D di�usion spa
es, whi
h
an then be populated with di�erent mole
ules [53℄. Su
h

mole
ules might rea
t with others that are released periodi
ally from di�erent lo
ations within the stru
ture,

to simulate the produ
tion of biologi
al signals. The di�using mole
ules move a

ording to a 3-D random

walk based on a Brownian motion model. Possible rea
tion events, su
h as binding and unbinding, are tested

on a mole
ule-by-mole
ule basis using random numbers and Monte Carlo probability values. The advantages

and signi�
an
e of this approa
h are detailed in [51℄.

In essen
e,
omputational modeling with MCell en
ompasses 4 steps, ea
h of whi
h
an require
onsid-

erable
omputing resour
es:

1. Surfa
e design or re
onstru
tion { In simple
ases, a set of planes might be used to de�ne di�usion

boundaries. In
omplex
ases,
ell membranes
an be re
onstru
ted as tessellated meshes from ele
tron

mi
ros
ope data, and may
ontain on the order of 10

6

triangles.

2. Model visualization and design { Di�erent types of mole
ules must be added to the surfa
es and

spa
es a

ording to realisti
 biologi
al distributions and densities. The total number of mole
ules is

highly variable but
an easily rea
h or ex
eed 10

6

even for a surfa
e area or rea
tion volume mu
h

smaller than a single
ell.

3. Simulation { This step involves repeatedly running MCell with varied input parameters Monte Carlo

random number streams. The total number of su
h runs
an range from 10

2

to 10

5

and beyond. We

detail relevant usage s
enarios for this step in the next se
tion.

4. Visualization and analysis of results { In the simplest
ase this might require 2-D plotting of one

output parameter as a fun
tion of time. In the more typi
al
ase, some
ombination of 2-D plotting

and 3-D imaging and/or animation is required to visualize the simulation's output.

2

At present, all simulation obje
ts and run-time
onditions are spe
i�ed using a high- level Model Des
rip-

tion Language (MDL) designed for readability by s
ientists. When a simulation is run, one or more MDL

input �les are parsed to
reate the simulation obje
ts, and then exe
ution begins for a spe
i�ed number of

time-step iterations. MCell is highly optimized for speed and for memory usage. This makes it possible to

run individual simulations of
omplex stru
tures on single pro
essors rather than using parallel ar
hite
tures.

So far, MCell simulations have been used to study synapses : stru
tures used by nerve
ells to
ommuni
ate

with themselves and other
ells. MCell (and its prede
essors) originally fo
used on the popular vertebrate

neuromus
ular jun
tion, the synapse between a nerve
ell and a mus
le
ell [50, 53℄. MCell's Monte Carlo

simulations have been su

essfully employed to obtain a variety of new results [5, 2, 55, 52, 53, 54, 53℄. In

addition, MCell has been in limited release [39, 38℄ to a worldwide group (∼25) of Neuros
ien
e and other

resear
h laboratories sin
e 1997 [27, 49, 20, 19℄. MCell is
urrently the obje
t of many development e�orts

and
urrent simulations are allowing s
ientists to explore new areas of
ellular physiology.

2.2. MCell Usage S
enarios

Sin
e MCell models are now approa
hing the level of stru
tural and bio
hemi
al
omplexity present

in living
ells, the models typi
ally
ontain numerous input parameters that
an be varied independently.

Consequently, simulations
an span an enormous range of
omputational and data requirements. We detail

here three relevant usage s
enarios. We give orders of magnitudes for the aggregate simulation CPU time

assuming a single workstation (the fastest
urrently available on the market).

(A) \Look & See" { A small number of MCell runs are used to determine the predi
ted behavior of the

modeled system under limited input
onditions { between 1 hour and several days of CPU time are

required.

(B) Parameter Fitting { Tens to thousands of runs may be required to identify input parameter values

whi
h produ
e model output that mat
hes given
riteria su
h as experimental measurements { several

weeks of CPU time.

(C) Parameter Sweep { The s
ale of individual simulations is similar to that for the parameter �tting

s
enario, but many thousands of runs are required to map a region of the input parameter spa
e {

anywhere from 1 month of CPU time to several years or de
ades.

Even though (A) has been the most
ommon s
enario in early stages of the MCell proje
t, it is in
reasingly

being repla
ed/
omplemented by s
enarios (B) and (C). These last two s
enarios require a tremendous

amount of
ompute and storage resour
es. For (B), the user generally navigates toward a \best �t" by

iterative parameter adjustments made a

ording to some potentially ad-ho
 heuristi
s. Thus a high degree

of intera
tivity between the user and the
omputing resour
es is desirable to maximize produ
tivity. S
enario

(C) does not require intera
tivity as the user has already identi�ed an \interesting" region of the parameter

spa
e to explore, perhaps via s
enario (B). In [12℄, we gave an example of a small-s
ale simulation for (C),

whi
h required approximatively 3 months of aggregate CPU time and and generated 94GB of raw output,

whi
h were then redu
ed to 600KB of synthesized output. Note that in all s
enarios, the CPU time of

individual simulations
an vary by several orders of magnitude solely depending on input parameter values.

2.3. Current Limitations

Currently, MCell imposes severe limitations on the usage s
enarios des
ribed in the previous se
tion.

Ideally, users would have a

ess to integrated software whi
h guides them through the 4 steps identi�ed in

Se
tion 2.1 and whi
h enables all three usage s
enarios on large-s
ale distributed
omputing environments.

In its
urrent in
arnation, MCell
onsists of a single exe
utable whi
h takes MDL �les as input. The

user is responsible for
reating those �les and for managing ea
h MCell \proje
t" in an ad-ho
 fashion. The

user is entirely responsible for running the individual simulations and
olle
ting the output. This involves

labor-intensive a
tivities su
h as resour
e sele
tion, remote pro
ess
reation/monitoring, fault-dete
tion and

restart, or appli
ation data movements. Those tasks are generally performed via a set of ad-ho
 s
ripts. In

s
enarios (B) and (C), this proves to be infeasible for most users given the desired s
ale of the simulations.

In addition, there is no support for intera
tive simulation as required by s
enario (B).

3

The MCell exe
utable generally produ
es one or more output �les. Users are responsible for averaging,

post-pro
essing, visualizing, and analyzing output �les. In s
enarios (B) or (C), this amounts to manipulating

and mining large datasets, again in an ad-ho
 fashion. MCell users typi
ally use the �le system as a database

for appli
ation data, whi
h does not s
ale and
annot support s
enarios (B) or (C). Generally, OpenDX [44℄

is used for most rendering and visualization tasks.

Our earlier work on the AppLeS Parameter Sweep Template (APST) [15, 4℄ provides limited support for

(C) in terms of running MCell simulation on Grid resour
es. It is a
lear improvement over the traditional

usage. However, sin
e APST is
ompletely generi
, it fails to address most of the MCell-spe
i�
 limitations

listed above.

As s
enarios (B) and (C) are the future of MCell simulations for new s
ienti�
 dis
overies, it is
riti
al

to provide
orresponding
omprehensive software support. This is one of the goals of the VI proje
t.

3. THE VIRTUAL INSTRUMENT

In this se
tion we des
ribe the VI proje
t in terms of spe
i�
 goals, relevant resear
h issues, and software.

3.1. Goals

The main motivation behind the VI software development e�ort is to address the limitations highlighted

in Se
tion 2.3. More spe
i�
ally, this is a

omplished by providing the following
apabilities:

Framework for MCell proje
t development { The VI must provide a framework in whi
h MCell users
an

easily spe
ify individual \proje
ts" in terms of input parameters, initial ranges for those parameters, number

of repeats for Monte Carlo averaging, nature of output �les, and nature of output post-pro
essing steps (see

Se
tion 3.2 for a detailed des
ription of MCell proje
ts). The only
omponent of an MCell simulation that

annot be automati
ally
reated is the
ore MDL
ode as it embodies the user's
on
eptual model. However,

all the aforementioned
omponents
an be standardized. The VI must then provide a framework for users

to plug in their
ore MDL
ode and be freed of all other responsibilities. This framework
an easily be

embedded as part of a user interfa
e. Finally, the VI must handle all appli
ation data management issues.

This
an be done, for instan
e, with a relational database.

User interfa
e { At the moment, MCell la
ks a user interfa
e. The VI should provide a graphi
al interfa
e

for users to
reate MCell proje
ts within the framework des
ribed above. In addition, that interfa
e should

be able to invoke data visualization and rendering
apabilities provided by tools like OpenDX [44℄. Clearly,

a full-
edged user interfa
e for MCell is a multi-year proje
t and is not our fo
us here. Instead, we aim at

providing a simple interfa
e that will allow us to explore
omputer s
ien
e resear
h issues involved when

running large-s
ale distributed MCell simulations. Our goal is also to allow
urrent MCell users to perform

�rst generation runs under s
enarios (B) and (C).

Transparent deployment { The VI should handle the logisti
s of appli
ation deployment on behalf of the

user. This in
ludes resour
e dis
overy, se
urity, remote job
reation/
ontrol, appli
ation data movements,

fault-dete
tion and re
overy. This
an be a
hieved by building and using deployed Grid servi
e.

Intera
tive simulation { In order for s
enario (B) to be e�e
tive, the VI must provide a way for users to

intera
t with running simulations in order to guide, or steer, the
omputation. The question of
omputational

steering has been explored in other work and poses many
hallenges, in
luding pre
ise appli
ation
ontrol,

high performan
e, and
onsisten
y of state (see Se
tion 4 for a dis
ussion of related work in that area).

High performan
e { Given the s
ale of MCell simulations in s
enarios (B) and (C), it is
riti
al that the

VI exploit available resour
e e�e
tively. This is to be a
hieved by the use of s
heduling strategies, and
an

build on our previous work [14℄. However, in this work, there is the added
omplexity of
omputational

steering: how does one s
hedule (and re-s
hedule) an appli
ation whose
omputational goals are
onstantly

being
hanged and/or re�ned by the user?

4

FIG. 1 The Stru
ture of an MCell Proje
t in the Virtual Instrument Framework: a proje
t
onsists of n

meta-tasks, and ea
h meta-task
onsists of a number of identi
al MCell tasks whose outputs are averaged

and synthesized into �nal output data.

3.2. MCell Proje
t in the VI Framework

Before des
ribing our work on s
heduling and on Grid software design and development, we formalize the

notion of an MCell proje
t whi
h
an be
reated and exe
uted by the VI user. The stru
ture of a proje
t is

depi
ted in Figure 1 and
onsists of: (i) a set of parameter spe
i�
ations (number of parameters, data types,

initial value ranges); (ii) a set of MDL s
ripts written by the user { the MDL
ore; (iii) potential additional

input �les su
h as large geometry �les that have been produ
ed by 3-D re
onstru
tion of ele
tron mi
ros
ope

data. The MCell simulation
onsists of a (generally large) number of parameter spa
e point evaluations,

or meta-tasks (n meta-tasks are shown on the �gure). Ea
h evaluation
onsists of an instantiation of the

parameter values and of a number of identi
al MCell tasks, ea
h using di�erent streams of random numbers

for the Monte Carlo simulation. Ea
h task produ
es raw output �les that are then averaged and synthesized

into �nal output. That �nal output is typi
ally orders of magnitude smaller (in terms of bytes) than raw

and averaged output. That �nal data must be analyzed by the user in order to understand the behaviors

of the simulated biologi
al system. This must be done on-the-
y to steer the
omputation in s
enario (B).

Note that raw and average output data is still of interest to the MCell user and may need to be retrieved in

order to perform in-depth analyses.

5

A run of an MCell proje
t then
onsists in exe
uting large numbers of independent meta-tasks and

retrieving both intermediate and �nal output. In the following two se
tions we present resear
h issues and

our initial work for s
heduling/steering and for targeting the VI to the Grid.

3.3. S
heduling/Steering Issues

S
heduling sets of independent tasks onto sets of distributed resour
es has long been identi�ed as an

NP-hard problem [57℄. Therefore, mu
h resear
h work has been dedi
ated to the development of appropriate

s
heduling heuristi
s (see [10℄ for a survey). Grid
omputing adds several
hallenges to the traditional

s
heduling problem: resour
es are not only heterogeneous, they exhibit dynami
 performan
e behaviors due

to sharing among users. Also, they are lo
ated on diverse network topologies inter
onne
ted over the wide-

area. To address those issues, adaptive s
heduling has been employed with su

ess [9, 7℄. As a result, we

developed adaptive s
heduling strategies for MCell in our earlier work [14℄. That work fo
used on s
heduling

data movement, data staging, and data dupli
ation, with respe
t to storage and
ompute resour
e lo
ations

and
hara
teristi
s.

In this work, we have to
ope with the
omplexity added by
omputational steering, that is the problem of

s
heduling an appli
ation whose
omputational goals
hange over time a

ording to potentially arbitrary user

behaviors. Computational steering is a diÆ
ult problem that has been addressed by several resear
hers [45,

35, 58, 59, 25℄. Those e�orts mostly addressed the problems of
onsisten
y of state among
omponents

of tightly
oupled appli
ations. In the limited
ontext of MCell,
onsisten
y is not a key issue as the

appli
ation
onsists of large sets of tasks whi
h
an be stopped and re-started independently and without

need for syn
hronization. Therefore, we fo
us on designing a s
heduling strategy that take steering into

a

ount in order to a
hieve high performan
e.

As illustrated in Figure 1, MCell simulations
onsist of many independent meta-tasks, ea
h
orresponding

to the evaluation of one point in a large multi-dimensional parameter spa
e. In this work we
urrently ignore

issues
on
erning appli
ation input/output data (those issues were explored in [14℄). We assume that the VI

user employs the following sear
h strategy. The user's goal is to lo
ate some parti
ular point in the parameter

spa
e that satis�es some subje
tive
riteria. She initially sele
ts parameter spa
e points uniformly distributed

over the parameter spa
e. As results
ome ba
k from the VI, they are displayed to the user who
an then

assign levels of importan
e to regions of the parameter spa
e. Regions with higher levels of importan
e are

more promising and should therefore be
ompleted sooner. This
an be a
hieved by assigning appropriate

fra
tions of the available
ompute resour
es to the exploration of ea
h region. For instan
e, if the user has

identi�ed 3 regions that should be explored and assigned levels of importan
e 2, 2, and 1, then the �rst

two regions should both get 40% of the resour
es, and the last region should get 20%. Our approa
h is to

assign a priority to ea
h point of the parameter spa
e,
orresponding to the level of importan
e of the region

to whi
h the point belongs. If ea
h of the
urrent n points being
omputed has a priority p

i

, then point i

should get p

i

=

P

n

j=1

p

j

per
ent of the available resour
es. Region exploration is performed by re�ning the

resolution within that region, i.e. by
omputing in
reasingly dense parameter spa
e point meshes. There

are several ways to in
rease mesh density in regions, e.g. in
reasing the resolution by some fa
tor in all

dimensions of the parameter spa
e (progressive re�nement), or by sele
ting a number of random points in

the region (random lo
al sear
h).

Development of s
heduling/steering strategies for the VI fa
es an inherent diÆ
ulty: user behaviors are

unknown until the VI software is in produ
tion mode. In addition, MCell users will use the VI to sear
h for

data patterns that are rather subje
tive and therefore diÆ
ult to spe
ify a-priori (e.g. look for something that

is \interesting"). We make the observation that user-dire
ted sear
hes share
ommonalities with algorithmi

sear
hes : typi
al user steering patterns are really instan
es of sear
h algorithms that use a
ombination of

lo
al and global sear
hes. Rather than waiting for a fully developed VI software whi
h is used in produ
tion

mode by neuros
ientists, we drive our s
heduling resear
h by emulating user behavior: our approa
h is to

use global/lo
al optimization algorithms to optimize several well-known obje
tive fun
tions. Remember that

our goal is to evaluate the e�e
tiveness of priority-based s
heduling to redu
e overall sear
h time. The

behavior of an a
tual MCell user is arguably di�erent from that of an automated algorithm but we believe

that the similarities are suÆ
ient for us to evaluate our s
heduling approa
h. Also, sear
h algorithms might

be provided as a VI feature when users
an
learly spe
ify their goal (e.g. look for the minimum of this

fun
tion). Finally, this approa
h allows us to make a broader
ontribution as we validate that our s
heduling

6

sigma=0.01 sigma=0.1 sigma=1.0 sigma=10.0 sigma=100.0
0

2000

4000

6000

8000

10000

12000

A
v
e

ra
g

e
 S

e
a

rc
h

 T
im

e
 i
n

 s
e

c
o

n
d

s
 (

V
a

lu
e

 <
 0

.1
)

MaxTrials = 16 / No Priority
MaxTrials = 16 / Priority
MaxTrials = 64 / No Priority
MaxTrials = 64 / Priority

FIG. 2 Legend

strategy is appli
able to parallel sear
h algorithms.

We implemented a simulator using the Simgrid toolkit [11℄ in order to study a wide range of s
enarios

in terms of sear
h algorithms and obje
tive fun
tions. Figure 2 shows one set of results obtained with that

simulator. We simulated a sear
h for a global minimum over the well-known positive \hard-to-optimize"

3-D Griewank fun
tion [56℄. That fun
tion is parametrized by a positive real number, �. For �ve values

of � we simulated a popular global/lo
al sear
h pattern. The sear
h starts with a generation of random

parameter spa
e points at whi
h the Griewank fun
tion is evaluated. Then, at ea
h generation, lo
al sear
hes

are
ondu
ted around points from the previous generation. For ea
h lo
al sear
h, the best 2 points (i.e. the

ones with the lowest Griewank value) are propagated to the next generation. Ea
h lo
al sear
h
onsists of

a maximum number of trials, that is: if a lo
al sear
h does not return a better result than its parent then

another lo
al sear
h is attempted until the maximum number of su
h trials is rea
hed. We use two values

for maxTrials: 16 and 64. The �rst one
onsists of a rather fast aggressive sear
h, where the se
ond one

attempts to be more thorough by doing a larger number of lo
al sear
hes before giving up on one region.

We
laim that this sear
h algorithm is representative of an exe
ution of the VI where the user would

steer the simulation at ea
h generation by sele
ting promising regions to explore. The simulated platform

onsidered here
onsists of a single, \
ontinuously partitionable" pro
essor. In other words, it is possible to

assign any fra
tion of that pro
essor's
ompute power to a given task. Therefore, our assumption is that it is

possible to implement task priorities exa
tly. For ea
h steering pattern (MaxTrials=16 and MaxTrials=64),

we simulated exe
ution with and without task priorities. When used, priorities are simply
omputed as the

inverse of the Griewank values (
lose to zero implies a promising region, hen
e high priority). The results

on Figure 2 show average sear
h times (over 100 repetitions), where we de
lare a sear
h
omplete when the

Griewank value is under 0.1. In those
onditions the sear
h generally used under 20 generations.

As expe
ted, results vary with � and the sear
h patterns. It is diÆ
ult to pre
isely understand whi
h

sear
h pattern is more e�e
tive in whi
h situations. Indeed, mu
h resear
h work has been dedi
ated to

understanding, designing, and tuning sear
h algorithms. However, our fo
us here is on s
heduling. We
an

see that, in all
ases, the use of priorities redu
es the overall sear
h time, by 5% to 34% for maxTrial = 16,

7

and by 14% to 51% for maxTrial = 64. Our
laim is that for many steering patterns when using the VI, the

use of priorities when s
heduling tasks onto the Grid will redu
e sear
h time. This is further substantiated

by many other results that we obtained with many obje
tive fun
tions (both
ontinuous and dis
rete) for

many sear
h algorithms.

These results are
learly en
ouraging. However, note that in these simulations we assume that tasks

get exa
tly the portion of the resour
es di
tated by their priorities. In pra
ti
e, it is not possible to assign

pre
ise quanta of Grid resour
es to tasks of an appli
ation. This is due in part to the fa
t that Grid

resour
es are heterogeneous and with dynami
 performan
e behavior. Also, the appli
ation, Grid middleware,

and/or operating systems might not provide the ne
essary degree of
ontrol. An a
tual implementation of

a s
heduling strategy
an only hope to a
hieve an approximation of the priorities. For instan
e, the VI

s
heduler
ould de
ide to assign tasks to resour
es in order of priorities and let ea
h task run to
ompletion

uninterrupted. Alternatively, using job
ontrol me
hanisms, the VI
ould interrupt and
he
kpoint tasks

in favor of others, thereby a
hieving some level of time-sharing among tasks. This would lead to a better

approximation of the original priorities at the added
ost of
he
kpointing overhead. We are
urrently

ondu
ting a quantitative study of those trade-o�s.

We have given here broad dire
tions and early results for s
heduling/steering in the
ontext of the VI

proje
t. We will report on the details of our work on s
heduling in up
oming papers.

3.4. Grid Computing Issues

The VI proje
t fa
es most of the issues inherent in Grid
omputing as it seeks to make the use of the Grid

as transparent as needed so that the user
an fo
us on the MCell simulations rather than on the logisti
s

of appli
ation deployment. To that end, we reuse many of the re
ent Grid middleware e�orts to a
hieve

automati
 resour
e dis
overy [17℄, resour
e a

ess [18, 13, 6℄, se
urity [23℄, distributed data management [16℄,

and resour
e monitoring [61℄.

In this se
tion we des
ribe spe
i�
 issues in whi
h the VI approa
h makes a
ontribution to Grid
omput-

ing. Some of these
ontributions
ome from our experien
e with the APST proje
t [15, 4℄. APST provides

a simple, generi
 way to run parameter sweep appli
ations and is
urrently used by MCell users for s
enario

(C). When designing the VI ar
hite
ture we were able to learn from and improve on APST's prin
iples.

3.4.1. Event System

EÆ
ient s
heduling for steerable appli
ations on the Grid relies on three sour
es of information: appli
a-

tion resour
e requirements, user steering input, and available resour
e performan
e. These three information

sour
es
an be
hara
terized by measures of their un
ertainty and their dynamism. Both measures are ne
-

essary for automati
 s
hedulers to make e�e
tive de
isions in Grid settings. The most natural and s
alable

ar
hite
ture for delivering su
h information to the appli
ation s
heduler is via a distributed event system.

Rather that having the s
heduler a
tively poll a potentially large number of resour
es, an event system

monitors performan
e
onditions on behalf of the s
heduler, and then noti�es it when a s
heduler-spe
i�ed

set of
onditions o

urs. For example, the s
heduler might determine that a parti
ular ma
hine o�ers ex
el-

lent exe
ution performan
e for
ertain appli
ation tasks, but that (due to the
urrent load on the ma
hine)

insuÆ
ient memory is available to support those tasks. It is infeasible to have the s
heduler
onstantly poll

the resour
e to determine if and when enough memory be
omes free. While it might work for a small number

of ma
hines, the s
heduler would spend all of its time polling (potentially re
eiving negative answers most

of the time) if a large number of resour
es and
hara
teristi
s are to be
onsidered. Therefore, a distributed

event system is one of the ne
essary
omponents for software su
h as the VI.

Key to the
onstru
tion of the event system is an event model { a set of abstra
tions and the rules for

their intera
tion whi
h, when implemented, will provide eÆ
ient and useful event handling for the appli
ation

s
heduler.

The event model we propose to explore
an be des
ribed in terms of three abstra
tions: events, triggers,

and noti�ers. An event is a tuple
onsisting of a timestamp, an event type, and a measurement value. A

trigger is a set of
onstraints over events whi
h, when satis�ed,
auses a set of noti�ers to be invoked. The

onstraints are spe
i�ed as a range of values that a parti
ular resour
e performan
e pro�le
an assume, and a

boolean
ag indi
ating whether the trigger should \trip" when an observed value falls either inside or outside

the range. The VI s
heduler
an then spe
ify a set of triggers for any given exe
ution instan
e about whi
h

8

it wishes to be noti�ed. A noti�er is a fun
tion or method invoked as result of an enabled trigger. These

de�nitions are simple and leave issues su
h as global time or event
omposition unspe
i�ed. However, we

believe that they are suÆ
ient to support VI a
tivities. We have built a simple multi-threaded event system

in C++ whose interfa
e is tailored to the VI s
heduler. We are also developing an event registry so that the

s
heduler
an dis
over event sour
es. This builds on an ongoing e�ort within the Global Grid Forum [29℄ for

de�ning an LDAP s
hema for naming and registering Grid events.

We also make use of performan
e fore
asting when de
iding to trip a trigger. On the Grid, resour
e

performan
e
an vary dramati
ally. As performan
e
u
tuates, it is important not to burden the s
heduler

for many \false alarms." For example, if an event is to be triggered when network performan
e drops below

say, 2 megabits/se
, on a link between the University of Tennessee and University of California, San Diego,

the s
heduler will be noti�ed
onstantly if the \normal" network performan
e
onstantly
u
tuates around

this value.

Fore
asting, however, allows the event system to determine whether the
urrent network reading is

onsistent with previously observed
u
tuation. By keeping a history of previous performan
e measurements,

and applying fast statisti
al analysis te
hniques, the system automati
ally identi�es outlying data values.

In [37℄ we demonstrated the e�e
tiveness of this approa
h to building performan
e alarms for Grid resour
es.

We are leveraging the same te
hniques in the VI event system.

Our initial goal in this area is to foster resear
h results using prototypes we understand well, thus

we have opted for a \home grown" event system. Distributed event systems, however, are not new. It

is possible that as we go forward, we may wish to adopt an extant te
hnology for managing distributed

events. For instan
e, FALCON [34℄ provides a runtime environment spe
i�
ally designed to support the

steering of s
ienti�
 appli
ations. In a Grid environment, where resour
e performan
e
u
tuation must be

a

ounted for, the event system itself must be adaptive and high-performan
e. Our goal is to leverage the

su

essful infrastru
ture we have built for monitoring and fore
asting performan
e data in the form of the

Network Weather Servi
e (NWS) [62℄. By
ombining extant event te
hniques with
ommonly a

epted Grid

te
hnologies we will give the VI implementation of MCell the maximum
exibility we
an in terms of a target

exe
ution platform.

3.4.2. Resour
e A

ess and Data

One of the lessons we learned with APST is that targeting several underlying te
hnologies for deploying

user appli
ation makes it possible to (i) gain early a

eptan
e from the users; (ii) in
rease the number of

resour
es available to appli
ations. This is true be
ause Grid
omputing is still an emerging te
hnology that

is not yet ubiquitous. This may
hange in years to
ome, for instan
e when Grid
omputing evolves toward

a Web servi
e ar
hite
ture as proposed in [22℄.

The VI targets a number of middleware servi
es, su
h as Globus [28℄, NetSolve [13℄, NWS [61℄, IBP [46℄.

These servi
es
an be uses simultaneously in order to expand the range of resour
es that
an be used for

a single MCell simulation. In addition, the VI provides default me
hanisms that use SSH to start remote

jobs and move appli
ation data. SSH does not provide the levels of job
ontrol and the s
alability o�ered

by say, Globus. However, our experien
e with APST is that users generally start using SSH me
hanisms

and progressively move towards Grid middleware te
hnology as their simulation needs grow in s
ale. The

main notion here is that
urrent Grid appli
ation exe
ution environments should be able to use whatever

Grid middleware is available, but also degrade to default ubiquitous me
hanisms if ne
essary. We expe
t

this approa
h to be repla
ed with standard Grid te
hnology when it be
omes available [29℄.

One of the limitations of APST is that it does not maintain persistent state about appli
ations and

resour
es. Given the life-span of MCell simulations, it is
riti
al that the
ore VI software be resilient to

software and hardware
rashes. In addition the VI
an exploit spe
i�
s of MCell, in
luding data management

requirements, whi
h is not possible with APST as it is general purpose. We use a relational database in

order to maintain persistent state about running MCell proje
ts, data generated by those proje
ts, and

available resour
es. This database has two roles. First, it allows the VI software to be resilient to faults: all

state is periodi
ally saved into the database and
an be used for restart. Se
ond, it provides a stru
ture for

storing, retrieving, and mining appli
ation data, whi
h is fundamental for a
hieving the �rst goal presented

in Se
tion 3.1. Our approa
h is to store only �nal appli
ation output data into the database (see Figure 1).

Raw and intermediate output, whi
h
an be enormous, is left in pla
e on remote Grid storage resour
es and

9

FIG. 3 The Virtual Instrument: the three main
omponents are the VI Daemon, the VI Database, and the

VI Interfa
e.

an be downloaded on demand by the user.

3.5. Virtual Instrument Software

The Virtual Instrument software follows a stri
t obje
t-oriented design and is
onstru
ted of three prin-

iple
omponents: a software daemon to manage resour
es and remotely run jobs; a user interfa
e to allow

users to initiate, run, monitor, and stop MCell proje
ts; and a database to store �nal appli
ation results

and user-entered data. These
omponents
an run on separate ma
hines and the daemon makes use of

distributed/Grid resour
es.

Figure 3 depi
ts the intera
tions of the three main
omponents of the VI ar
hite
ture: the VI Daemon,

the VI Interfa
e, and the VI Database. The VI Daemon intera
ts with Grid resour
es and servi
es, as well as

utilizing the Event System des
ribed in Se
tion 3.4.1. These servi
es allow the Daemon to dis
over resour
es,

start and
ontrol remote jobs, move data between distributed storage lo
ations, and monitor resour
es as

well as the running appli
ation. The Daemon uses the VI Database to store information su
h as the available

resour
es, the user-de�ned spe
i�
ations of running MCell proje
ts, and the status of these running proje
ts,

in
luding their pending tasks. To the greatest extent, the Daemon uses an out-of-
ore approa
h, so that if it

fails, the relevant information about running MCell proje
ts is in the Database. The only appli
ation data

10

stored in the Database are MCell �nal output that
an be visualized and analyzed by the user and used to

steer further simulations. This �nal output data is stored in the Database by the Daemon. All raw and

intermediate output is left in pla
e in Grid storage. As depi
ted in Figure 3, the Database keeps tra
k of

the raw and intermediate output data for possible retrieval by the user (see Se
tion 3.4.2).

The VI Interfa
e allows the user to steer the
omputation and to perform visualization. The Interfa
e

ommuni
ates
ontrol information to the Daemon, in
luding
ommands to
reate or start or stop MCell

proje
ts or trigger the retrieval of a parti
ular output �le. In addition, the Interfa
e
an request the retrieval

of appli
ation data from the Database itself. Visualization of the data
an be performed by OpenDX at the

user's dire
tion, as invoked from the Interfa
e.

The main responsibility of the VI Daemon is to s
hedule and a
tuate �le transfers and
omputations

using available
omputational and network resour
es. These fun
tions are performed by three
lasses within

the the Daemon: the Proje
t
lass, the S
heduler
lass, and the A
tuator
lass. The Proje
t keeps tra
k of

all of the parameter spa
e points and task inter-dependen
ies. For example, in Figure 1, it is the Proje
t

that is aware of the requirement to
omplete several runs of MCell with their parameter instantiations before

running a post-pro
essing task to average the output. The S
heduler retrieves information on tasks from

the Proje
t, sets their relative priorities (see Se
tion 3.3), and assigns tasks to resour
es a

ordingly. The

S
heduler is designed as a base
lass so that alternate s
heduling strategies
an be easily integrated as they

are developed. After tasks have been assigned to resour
es by the S
heduler, the A
tuator laun
hes them

on Grid resour
es. As with the S
heduler, the A
tuator is designed as a base
lass, permitting spe
ialization

for various remote job exe
ution and data transfer methods from Grid middleware servi
es.

The VI ar
hite
ture has several key advantages over the APST design. The use of a relational database

makes the design of the Daemon more simple in terms of data stru
tures, and makes it possible to re
over

from failures. In addition, the Interfa
e does not need to implement an ad-ho
 proto
ol with the Daemon,

but
an just pull data out of the Database in a standard fashion. In this way, a user
an start an MCell

proje
t, dis
onne
t, and
he
k the status of the simulation from any lo
ation.

Based on previous experien
e with APST the use of multi-threading dramati
ally improves the eÆ
ien
y

of laun
hing tasks, sin
e it e�e
tively hides network and software laten
ies (see quantitative assessments

in [15℄). For that reason, ea
h S
heduler and ea
h A
tuator runs in its own thread, and there is an indepen-

dent A
tuator for ea
h resour
e. Throughout the VI Daemon, the Database is a

essed through a
ommon

set of interfa
es whi
h streamline and automate the pro
ess of generating and exe
uting SQL queries.

3.6. Status of the Implementation

At the moment, the VI software
onsists of approximatively 20,000 lines of C++. It uses pthreads and

tools from the AppleSeeds libraries [3℄. We opted for MySQL [40℄ to implement the VI Database as it is well

a

epted by the Linux
ommunity and provides a standard API. A later version of the VI software
ould use

the more generi
 ODBC [43℄. In the
urrent release, the a
tuators within the VI Daemon target SSH and

Globus's GRAM for starting/monitoring remote jobs, s
p and GridFTP for moving appli
ation data on the

Grid. Other a
tuators are underway (e.g. NetSolve [13℄ and IBP [46℄). Our implementation of the VI event

system targets NWS [61℄ for resour
e monitoring. The VI Interfa
e is still underway and at the moment

we provide a text-only interfa
e for evaluation purposes. This interfa
e allows us to gather information

about user behaviors and requirements for
onverging towards a graphi
al interfa
e. That interfa
e is also

written in C++ on top of VI
omponents. Finally, we have implemented a simulator in order to evaluate

our s
heduling/steering strategies (as shown in Se
tion 3.3). The simulator is written with the Simgrid [11℄

toolkit, and has been integrated with the VI software. This allows us to simulate a variety of user behaviors

and to test and validate the VI implementation throughout development.

A beta version of the VI software was released to a limited number of MCell users/developers in February

2002 for evaluation and
omments. The software is making rapid progress and will be demonstrated at the

SC'02
onferen
e. More information
an be found on the proje
t's Webpage at [60℄.

4. RELATED WORK

Our work is related to a number of large e�orts that seek to provide Grid appli
ation exe
ution envi-

ronments for s
ienti�
 simulations. Like our work, those proje
ts are targeted to spe
i�
 appli
ations or

11

domains [33, 42, 47℄. Combining the experien
e gathered in all those proje
ts, given that proje
t teams
on-

sist of
omputer s
ientists and dis
iplinary s
ientists, is
riti
al to moving Grid te
hnology forward. Related

works also in
lude portal a
tivities [31, 30℄ and the VI software
ould ultimately be integrated as a user

portal. Our work on an event system is related to e�orts like FALCON [34℄, JAMM [36℄, as well as Grid

noti�
ation a
tivities in the Global Grid Forum [26℄. Even though we opted for a
ustom approa
h for our

event system, we will
ertainly investigate how those systems
ould be of bene�t to the VI.

Computational Steering has been an a
tive �eld of resear
h and several proje
ts have provided models,

methodologies, and software for steering s
ienti�
 appli
ations (SCIRUN [45℄, VASE [35℄, Progress [58℄,

Magellan [59℄, CUMULVS [25℄). One of the main
hallenges addressed in these works is the notion of

state
onsisten
y. Several te
hniques from the area of distributed systems and fault-toleran
e have been

used su

essfully to build high performan
e
onsistent
omputational steering environments. Our work is

related to those e�orts in that we provide
omputational steering
apabilities. However, given the stru
ture

of MCell simulations, i.e. parallel sear
hes with loose task and data syn
hronization requirements, state

onsisten
y is not a
ru
ial issue. Therefore, our work fo
uses mostly on performan
e issues and proposes a

s
heduling/steering strategy based of task priorities for appropriate resour
e sharing.

This work builds on our earlier work on the AppLeS Parameter Sweep Template (APST) [15, 4℄ whi
h

is related to proje
ts su
h as Nimrod [1℄ or ILAB [63℄. APST provides a generi
 Grid appli
ation exe
ution

environment for Parameter Sweep Appli
ations (PSA). PSAs are appli
ations that
onsist of large numbers

of
omputational tasks that exhibit few or no interdependen
ies. This
ategory of appli
ations en
ompasses

many methodologies su
h as Monte Carlo simulations, parametri
 studies, parameter sear
hes, and arises

in many �elds of s
ien
e and engineering. This work uses APST as a learning experien
e to provide a

full-
edged exe
ution environment
ustomized for MCell. APST addresses a few of the limitations listed in

Se
tion 2.3 and is
urrently used for medium-s
ale MCell parameter sweep runs. Moreover, neither APST,

Nimrod, nor ILAB provide
apabilities for
omputational steering.

5. FUTURE WORK AND CONCLUSIONS

In this paper we have presented the Virtual Instrument (VI) proje
t, whi
h targets the deployment of

large-s
ale, intera
tive MCell simulations. MCell is a mole
ular biology simulator whi
h is gaining great

popularity in the
omputational neuros
ien
e
ommunity. Even though the
urrent MCell software provides

basi

apabilities to run simulations, it does not enable intera
tive simulation, and leaves many responsibil-

ities to the user in terms of deployment, s
heduling, and data management. These limitations pre
lude the

use of MCell for large-s
ale exe
utions, espe
ially on the Grid platform. The goal of the VI proje
t is to

provide an integrated Grid exe
ution environment for MCell that o�ers intera
tive
omputational steering

apabilities. We �rst des
ribed our initial approa
h for a s
heduling strategy that e�e
tively exploits Grid

resour
es when users
an steer MCell simulations on-the-
y. We also des
ribed key
ontributions of our

software e�ort, in
luding the design and implementation of an event system, and explained how our software

design targets the Grid platform and existing middleware servi
es. Several of those
ontributions are relevant

for Grid software development in a more general
ontext than that of the VI proje
t.

Many future dire
tions are
urrently being explored in this proje
t. We have highlighted only the basi
s

of our s
heduling/steering strategy and future papers will detail our approa
h and give many results obtained

with our simulation framework. We will validate those results with a
tual runs of the VI software. We will

also report on the implementation and e�e
tiveness of the VI event system. In terms of software development,

we will add support for additional Grid middleware systems, �nalize the graphi
al VI Interfa
e, and release

the software to MCell users at large.

One of our goals is to deploy our software in a produ
tion environment to (i) validate our implementa-

tion; (ii) log information about usage and learn about user behaviors; (iii) enable new dis
iplinary results.

Ultimately, the Virtual Instrument will have a large and quanti�able impa
t on the MCell
ommunity. It

will lead to new s
ienti�
 advan
es that would not be possible without the Grid platform and without our

fully integrated software environment.

12

REFERENCES

[1℄ J. Abramson, D. Giddy and L. Kotler. High Performan
e Parametri
 Modeling with Nimrod/G: Killer Appli-

ation for the Global Grid? In Pro
eedings of the International Parallel and Distributed Pro
essing Symposium

(IPDPS), Can
un, Mexi
o, pages 520{528, May 2000.

[2℄ L. Anglister, J. R. Stiles, and M. M. Salpeter. A
etyl
holinesterase density and turnover number at frog

neuromus
ular jun
tions, with modeling of their role in synapti
 fun
tion. Neuron, 12:783{794, 1994.

[3℄ AppleSeeds Webpage. http://grail.sds
.edu/proje
ts/appleseeds.

[4℄ APST Webpage. http://grail.sds
.edu/proje
ts/apst.

[5℄ T. M. Bartol, B. R. Land, E. E. Salpeter, and M. M. Salpeter. Monte Carlo simulation of miniature endplate

urrent generation in the vertebrate neuromus
ular jun
tion. Biophys. J., 59(6):1290{1307, 1991.

[6℄ J. Basney and M. Livny. Deploying a High Throughput Computing Cluster. In High Performan
e Cluster

Computing, volume 1,
hapter 5. Prenti
e Hall, May 1999.

[7℄ F. Berman. The Grid, Blueprint for a New
omputing Infrastru
ture,
hapter 12. Morgan Kaufmann Publishers,

In
., 1998. Edited by Ian Foster and Carl Kesselman.

[8℄ F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis Gannon, K. Kennedy, C. Kesselman,

D. Reed, L. Tor
zon, and R. Wolski. The GrADS proje
t: Software support for high-level grid appli
ation

development. International Journal of High Performan
e Computing Appli
ations, 15(4):327{344, Winter 2001.

[9℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf, and G. Shao. Appli
ation-Level S
heduling on Distributed

Heterogeneous Networks. In Pro
. of Super
omputing'96, Pittsburgh, 1996.

[10℄ R. Braun, H. Siegel, N. Be
k, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hens-

gen, and R. Freund. A Comparison Study of Stati
 Mapping Heuristi
s for a Class of Meta-tasks on Hetero-

geneous Computing Systems. In Pro
eedings of the 8th Heterogeneous Computing Workshop (HCW'99), pages

15{29, Apr. 1999.

[11℄ H. Casanova. Simgrid: A Toolkit for the Simulation of Appli
ation S
heduling. In Pro
eedings of the IEEE/ACM

International Symposium on Cluster Computing and the Grid, May 2001.

[12℄ H. Casanova, T. Bartol, J. Stiles, and F. Berman. Distributing MCell Simulations on the Grid. The International

Journal of High Performan
e Computing Appli
ations, 14(3):243{257, 2001.

[13℄ H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational S
ien
e Problems. The

International Journal of Super
omputer Appli
ations and High Performan
e Computing, 11(3):212{223, 1997.

[14℄ H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristi
s for S
heduling Parameter Sweep Appli-

ations in Grid Environments. In Pro
eedings of the 9th Heterogeneous Computing Workshop (HCW'00), pages

349{363, May 2000.

[15℄ H. Casanova, G. Obertelli, H. Berman, and R. Wolski. The AppLeS Parameter Sweep Template: User-level

middleware for the Grid. In Pro
eedings of Super
omputing, November 2000.

[16℄ A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tue
ke. The Data Grid: Towards an Ar
hite
ture

for the Distributed Management and Analysis of Large S
ienti�
 Datasets. Journal of Network and Computer

Appli
ations, 2000. to appear.

[17℄ C. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Servi
es for Distributed Resour
e

Sharing. In Pro
eedings of the 10th IEEE Symposium on High-Performan
e Distributed Computing, August

2001.

[18℄ K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tue
ke. A Resour
e Manage-

ment Ar
hite
ture for Meta
omputing Systems. In Pro
eedings of IPPS/SPDP'98 Workshop on Job S
heduling

Strategies for Parallel Pro
essing, 1998.

[19℄ D. Egelman, R. King, and P. Montague. Intera
tion of nitri
 oxide and external
al
ium
u
tuations: a possible

me
hanism for rapid information retrieval. Progress in Brain Resear
h, 118:199{211, 1998.

[20℄ D. Egelman and P. Montague. Computational properties of peri-dendriti

al
ium
u
tuations. J. Neuros
i.,

18(21):8580{8589, 1998.

[21℄ I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New
omputing Infrastru
ture. Morgan Kaufmann

Publishers, In
., San Fran
is
o, USA, 1998.

[22℄ I. Foster, C. Kesselman, J. Ni
k, and S. Tue
ke. The Physiology of the Grid: An Open Grid Servi
es Ar
hite
ture

for Distributed Systems Integration. Available at http://www.globus.org, 2002.

[23℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke. A Se
urity Ar
hite
ture for Computational Grids. In

Pro
eedings of the 5th ACM Conferen
e on Computer and Communi
ations Se
urity, pages 83{92, 1998.

[24℄ I. Foster, C. Kesselman, and S. Tue
ke. The Anatomy of the Grid: Enabling S
alable Virtual Organizations.

International Journal of High Performan
e Computing Appli
ations, 15(3), 2001.

[25℄ G. Geist, J. Kohl, and P. Papadopoulos. CUMULVS: Providing Fault Toleran
e, Visualization, and Steer-

ing of Parallel Appli
ations. The International Journal of Super
omputer Appli
ations and High Performan
e

Computing, 11(3):224{235, 1997.

13

[26℄ Working Group on Grid Information Servi
es at the Global Grid Forum. http://www.gridforum.org/1_GIS/

GIS.htm.

[27℄ J. Gieger, A. Roth, B. Taskin, and P. Jonas. Glutamate-mediated synapti
 ex
itation of
orti
al interneruons.

In P. Jonas and H. Moyner, editors, Handbook of Experimental Pharma
ology, Retinoids, Ionotropi
 glutamate

re
eptors in the CNS, volume 141, pages 363{398, Berlin, 1999. Springer-Verlag.

[28℄ Globus Webpage. http://www.globus.org.

[29℄ Global Grid Forum Webpage. http://www.gridforum.org.

[30℄ GridPort Webpage. http://gridport.npa
i.edu.

[31℄ Grid Portal Collaboration Webpage. http://www.ipg.nasa.gov/portals/.

[32℄ A. Grimshaw, F. Ferrari, A. Knabe, and M. Humphrey. Wide-Area Computing: Resour
e Sharing on a Large

S
ale. 32(5), May 1999.

[33℄ GriPhyN Webpage. http://www.griphyn.org.

[34℄ W. Gu, G. Eisenhauer, K. S
hwan, and J. Vetter. Fal
on: On-line Monitoring for Steering Parallel Programs .

Con
urren
y: Pra
ti
e and Experien
e, 10(9):673{698, 1998.

[35℄ D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. VASE: The Visualization and Appli
ation Steering Environ-

ment. In Pro
eedings of SuperComputing 1993, pages 560{569, 1993.

[36℄ JAMM Webpage. http://www-did
.lbl.gov/JAMM.

[37℄ C. Krintz and R. Wolski. NwsAlarm: A Tool for A

urately Dete
ting Degradation in Expe
ted Performan
e

of Grid Resour
es. In Pro
eedings of CCGrid 2001, May 2001.

[38℄ MCell Webpage at the Pittsburgh Super
omputer Center. http://www.m
ell.ps
.edu.

[39℄ MCell Webpage at the Salk Institute. http://www.m
ell.
nl.salk.edu.

[40℄ MySQL Webpage. http://www.mysql.org.

[41℄ H. Nakada, M. Sato, and Sekigu
hi. Design and Implementations of Ninf: towards a Global Computing Infras-

tru
ture. Future Generation Computing Systems, Meta
omputing Issue, 1999.

[42℄ National Virtual Collaboratory for Earthquake Engineering Resear
h Webpage. http://www.neesgrid.org.

[43℄ ODBC Webpage. http://www.odb
.org.

[44℄ OpenDX Webpage. http://www.opendx.org.

[45℄ S. Parker, M. Miller, C. Hansen, and C. Johnson. An integrated problem solving environment: The SCIRun

omputational steering system. In Pro
eedings of the 31st Hawaii International Conferen
e on System S
ien
es

(HICSS-31), vol. VII, pages 147{156, January 1998.

[46℄ J. Plank, M. Be
k, W. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet Ba
kplane Proto
ol: Storage

in the Network. In Pro
eedings of NetSore'99: Network Storage Symposium, Internet2, 199.

[47℄ Parti
le Physi
s Data Grid Webpage. http://www.ppdg.net.

[48℄ The Purdue University Network Computing Hubs Home Page. http://pun
h.e
n.purdue.edu.

[49℄ R. Rao-Mirotznik, G. Bu
hsbaum, and P. Sterling. Transmitter
on
entration at a three-dimensional synapse.

J. Neurophysiol., 80(6):3163{3172, 1998.

[50℄ M. M. Salpeter. The Vertebrate Neuromus
ular Jun
tion, pages 1{54. Alan R. Liss, In
., New York, 1987.

Edited by Salpeter, M. M.

[51℄ J. R. Stiles and T. M. Bartol. Monte Carlo methods for simulating realisti
 synapti
 mi
rophysiology using

MCell. In E. DeS
hutter, editor, Computational Neuros
ien
e: Realisti
 Modeling for Experimentalists, Bo
a

Raton, 2001, in press. CRC Press.

[52℄ J. R. Stiles, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter. Monte Carlo simulation of neurotransmitter

release using MCell, a general simulator of
ellular physiologi
al pro
esses. In J. M. Bower, editor, Computational

Neuros
ien
e, pages 279{284, New York, NY, 1998. Plenum Press.

[53℄ J. R. Stiles, T. M. Bartol, M. M. Salpeter, E. E. Salpeter, and T. J. Sejnowski. Synapti
 variability: new

insights from re
onstru
tions and Monte Carlo simulations with MCell. In W. M. Cowan, T. C. S�udhof, and

C. F. Stevens, editors, Synapses, pages 681{731, Baltimore, 2001. Johns Hopkins University Press.

[54℄ J. R. Stiles, I. V. Kovyazina, E. E. Salpeter, and M. M. Salpeter. The temperature sensitivity of miniature

endplate
urrents is mostly governed by
hannel gating: eviden
e from optimized re
ordings and Monte Carlo

simulations. Biophys. J., 77:1177{1187, 1999.

[55℄ J. R. Stiles, D. Van Helden, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter. Miniature endplate
urrent

rise times <100 �s from improved dual re
ordings
an be modeled with passive a
etyl
holine di�usion from a

synapti
 vesi
le. Pro
. Natl. A
ad. S
i. U.S.A., 93:5747{5752, 1996.

[56℄ A. Torn and A. Zilinskas. Global Optimization, volume 350 of Le
ture notes in
omputer s
ien
e. Springer-Verlag,

1989.

[57℄ J. Ullman. NP-
omplete s
heduling problems. Journal of Computer and System S
ien
es, 10:434{439, 1975.

[58℄ J. Vetter and K. S
hwan. PROGRESS: A Toolkit for Intera
tive Program Steering. In Pro
eedings of the 1995

International Conferen
e on Parallel Pro
essing, pages 139{149, 1995.

[59℄ J. Vetter and K. S
hwan. High Performan
e Computational Steering of Physi
al Simulations. In Pro
eedings of

IPPS'97, pages 128{132, 1997.

14

[60℄ Virtual Instrument Webpage. http://grail.sds
.edu/proje
ts/vi_itr.

[61℄ R. Wolski. Dynami
ally Fore
asting Network Performan
e Using the Network Weather Servi
e. In 6th High-

Performan
e Distributed Computing Conferen
e, pages 316{325, August 1997.

[62℄ R. Wolski, N. Spring, and J. Hayes. The Network Weather Servi
e: A Distributed Resour
e Performan
e

Fore
asting Servi
e for Meta
omputing. Future Generation Computer Systems, 15(5-6):757{768, O
tober 1999.

[63℄ M. Yarrow, K. M
Cann, R. Biswas, and R. Van der Wijngaart. An Advan
ed User Interfa
e Approa
h for

Complex Parameter Study Pro
ess Spe
i�
ation on the Information Power Grid. In GRID 2000, Bangalore,

India, De
ember 2000.

15

