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Laser driven electron acceleration in nanorod arrays targets

A. R. Knyazev, Y. Zhang and S. I. Krasheninnikov1

University California San Diego, La Jolla, CA 92093-0411,

USA

This paper describes the stochastic electron acceleration of the electrons by the high-

intensity laser in the presence of the quasi-static fields, created from the interaction

of the laser with the nanoscale grated target. The semi-analytical model describ-

ing the formation of the quasi-static fields created during laser-target interaction is

presented. The mechanism of the stochastic electron acceleration is described using

the 3/2-Hamiltonian approach. The electron energy scaling with the laser and tar-

get parameters are obtained. The analysis is verified with a series of 2-dimensional

particle-in-cell simulations.

1



I. INTRODUCTION

Interaction of high-intensity lasers with solid targets can result in high yield of both x-

ray and energetic electrons. To efficiently convert the energy of the incident laser into the

energy of the radiated x-ray and emitted electrons, it is necessary that the target absorbs

most of the incident laser energy. Multiple studies (see1,2 and others) indicate that flat tar-

gets typically absorb < 10% of the laser pulse energy, while structured targets can absorb

> 90%. Therefore, structured targets have been regarded as a potentially efficient source

of x-ray and energetic electrons. Laser interaction with different structured targets, such as

nanorod arrays,2,3,4 ”velvet” targets5, ”smoked” targets6, ”foamed” targets7, were studied

experimentally and via computer simulations. However, the physics of the electron acceler-

ation during the laser-target interaction is not yet completely described. It was reported8

that the interaction of the micro-channel target with the laser creates the quasistatic electric

fields in the cavities of the target. Presence of static electric and magnetic field can lead to

the stochastic acceleration of the electrons by the laser, as was demonstrated in9,10,11 with

the 3/2-Hamiltonian formalism.

In this paper, we model the interaction of a laser with a periodic nanorod array target.

We show that quasistatic electric and magnetic fields can emerge in such setup, and develop

a semi-analytic model for the formation of such fields. We then use the 3/2-Hamiltonian

approach to show that formed quasistatic fields enable the mechanism of stochastic electron

acceleration and derive the corresponding maximum electron energy Emax. We present the

scalings of Emax with laser amplitude and target parameters. We verify the analytic results

with a series of 2-dimensional Particle-In-Cell (2D PIC) simulations. The maximum electron

energy in our PIC simulations can be explained with the proposed stochastic acceleration

mechanism.

The rest of the paper is organized as follows. In Section II we describe the simulation

setup, introduce the notations and unit normalization used in the rest of the paper. In

section III we describe the extraction of the electrons from the target by the laser pulse

and the formation of quasistatic electromagnetic fields during the laser-target interaction.

In section IV we present our study of the acceleration of the electron interacting with the

laser and the electrostatic fields described in Section III. We present the results of our PIC

simulations in Section V. Section VI is the conclusion.
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II. SETUP DESCRIPTION

Laser-target interaction experiments typically involve complex, often irregular structures.

Direct simulation of such structures requires a 3D consideration,7,12 which poses significant

computational challenges. Modeling complex structures can also make it hard to pinpoint

important physics mechanisms. In this work, we consider a simplified 2D model of a nanorod

target, similar to the setup in the papers.2,4 Specifically, we model the target by filling a

region of the simulation domain with the cold plasma, as shown with black color in Figure (1).

The nanorods are modeled as rectangular regions with lengths of sides d = 0.1λ and L = 20λ,

where λ is the wavelength of the incident laser pulse in our simulations. The backplate of

the target is modeled as a slab of size Lbp = λ. The gaps between neighboring nanorods are

all equal to D, with the value of D ranging from 0.25λ to 8λ in our PIC simulations. The

material of a target is modeled by a cold plasma, composed of immobile ions preionozed

to Z = 5, and the electrons. The number density of the electrons is set to ne = 50ncr,

where ncr = mω2/4πe2 = 6.97× 1021 cm−3, m is the electron mass, ω = 2πc/λ is the laser

frequency. The number dencity of ions is set to ni = ne/Z.

In the rest of the paper, we will use the Cartesian coordinates introduced in Figure (1).

We choose the reference frame so that the laser prepulse reaches the nanorods at z = 0 at

time t = 0. We denote unit vectors along the coordinate axis as ex, ey and ez.

The laser is simulated as a linearly polarized plane wave pulse propagating along the

z-axis, from the left boundary of the simulation domain. The wavelength of the laser is

λ = 400 nm. The polarization of the pulse is set to be either along the x-axis (x-polarized

pulse), or along the y-axis (y-polarized pulse). The intensity of the laser pulse is I = 5 ×

1019 W/cm2, which corresponds to the normalized vector potential a0 = eEmax/mecω = 2.4.

The pulse is 19λ long, with a 2λ prepulse, 17λ main pulse and 2λ decay. The normalized

vector potential of the laser pulse is therefor equal to a = a0F (ξ) sin(ξ), where

F (ξ) =

!
""""""""#

""""""""$

0 for ξ < 0 and ξ > 34πT

sin( ξ
8T
), for ξ from 0 to 4πT

1, for ξ from 4πT to 30πT

sin( (ξ−30πT )
8T

), for ξ from 30πT to 34πT

, ξ =
2π

c
(z − ct). (1)

The shape of the laser pulse is schematically shown on the Figure (1).
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FIG. 1. Schematic view of the simulation setup. The black region corresponds to where the target

is located in the domain. The nanorods are separated by an empty gap of width D. Each nanorod

has the width d along y-axis and length L along z-axis. Slabs are connected on the right side with

the bulk of width λ. Top and bottom boundaries of the simulation domain are periodic, left and

right boundaries are open. The laser pulse arrives from the left boundary. Electric field of the

laser at time t = 0 is shown by the red curve.

We conduct our particle-in-cell simulations with the fully relativistic 2D3V PIC code

EPOCH.13 The simulation domain has the size of 2d+ 2D along the x-axis, and 50λ along

they y-axis. Each cell has a size of 0.01λ along both x and y axes. Boundaries normal to

the y axis are periodic for both particles and fields. Boundaries normal to the z axis are

open for both particles and fields.

The rest of this paper uses normalized units described in this paragraph. To indicate that

the variable is normalized, its symbol is marked with a caret. Distances are normalized by

λ/2π. Velocities of electrons v̂ are normalized by the speed of light c. Number densities are

normalized by ncr. The time t̂ is normalized by 1/ω. Momentum of electrons p̂ is normalized
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by mc. The magnitudes of the electric Ê and magnetic B̂ fields are normalized by mcω/e.

A. Role of the laser polarization

Polarization of the laser pulse significantly affects the laser-target interaction. Firstly,

the laser pulse polarized along y axis can propagate into the gap of any size D̂, while the

pulse polarized along x is reflected if D̂ < π. Secondly, as will be discussed further in

Section III, only the y-polarization pulse creates the quasistatic fields inside the gap. The

difference between x and y polarization can be explained with a simple model of a lossless

multi-connected waveguide (see §91 in14 for details). Specifically, consider the waveguide

formed by two parallel, ideally conducting plates located at ŷ = 0 and ŷ = D̂. Such

waveguide has three types of E,B ∝ exp
%
i(ẑ − t̂)

&
modes: purely transverse (a.k.a. TEM)

modes, modes with longitudinal components of the electric field (a.k.a. TM modes), and

modes with longitudinal components of magnetic field (a.k.a TE modes). Note that due to

Ex = 0 boundary conditions, TEM modes in such a waveguide can only be polarized along

ey, and have the same electric and magnetic fields as a plane wave. Furthermore, TEM

modes can propagate in a gap of any size D̂, and have luminal phase velocity. It can explain

why in our PIC simulations with the y-polarized laser pulse, the laser pulse was able to

penetrate in the gap of any size D̂, and the field of the pulse in the gap was the same as the

y-polarized plane wave. The electric field of such TEM mode is normal to the waveguide

boundary, and therefore it can extract the electrons by the electric force. Meanwhile, the

only x−polarized modes in the aforementioned waveguide are TE modes. As a crude model

for the propagation of the x-polarized pulse inside the gap, one can simply Fourier expand

the plane wave at the gap entrance |E| = |E(y, z = 0)ex| = Ẽx = const into a sum of TE

modes. The resulting expansion of Ẽx gives ETE = αlEx,l, where

αl =
2Ẽx(1− cos(πl))

πl
, Ex,l ∝ sin

%
πl

y

D

&
, l is integer. (2)

The expression for the z-component of magnetic field BTE is BTE = αlBz,l, where Bz,l is the

z-component of magnetic field of the TE mode with electric field Ex,lex. Electrons subjected

to ETEex and BTEez experience ponderomotive force which expels these electrons from the

gap. Therefore, any electron number density in the gap will be suppressed. Since this paper

focuses on laser driven electron acceleration, in the rest of the paper we will primarily study

5



the case of the y-polarization.

III. ELECTRON EXTRACTION AND FORMATION OF QUASISTATIC

ELECTROMAGNETIC FIELD

As the y-polarized pulse propagates between the nanorods, it extracts some of the elec-

trons from them. The extracted electrons can then either return to their parent nanorod

or stream away from it. The counterpropagating bunches of streaming electrons, extracted

from the opposite boundaries of the gap between nanorods, pass through each other, mix

up and form an electron gas of homogeneous density n̄ in the gap.

To have some understanding of extraction process we consider the following model. We

consider the electron located at the boundary between the nanorod and the gap. We also

assume that the field acting on this electron is the same as the field of a plane wave,

propagating along the surface of the nanorod. Specifically, we consider a motion of single

electron in the plane wave described by a vector potential ap = a0 cos(ξ + ξ0)ey, where ξ0 is

the phase of the plane wave at the moment of electron extraction. The electron is assumed

to be initially immobile. The motion of an initially immobile electron in a plane EM wave

has three well-known integrals of motion:

p̂x = 0, p̂y − a0 cos(ξ + ξ0) = −a0 cos(ξ0), γ − p̂z = 1, (3)

where γ2 = 1+ p̂2. Without loss of generality we set the y-coordinate of the nanorod surface

from which the electron is extracted to ŷ0 = 0. From Equations (3), it follows that

dŷ

dξ
= a0

%
cos(ξ0)− cos(ξ + ξ0)

&
. (4)

Equation (4) shows that only specific values of the initial phase ξ0 lead to the extraction

of the electron into the gap. Indeed, if the gap is in the ŷ < 0 region, the electron is only

extracted if sin(ξ0) < 0. Likewise, for the gap in ŷ > 0 region, the electron is extracted if

sin(ξ0) > 0. From Equations (3) we can derive the equations for electron’s trajectory,

ŷ = a0
%
ξ cos(ξ0) + sin(ξ0)− sin(ξ + ξ0)

&
, (5)

ẑ − ẑ0 =
a20
2

'
ξ
%
1 +

1

2
cos(2ξ0)

&
+

1

4
sin

%
2(ξ + ξ0)

&
+ 2 sin(ξ + ξ0) cos(ξ0) +

3

4
sin(2ξ0)

(
, (6)

where z0 is the z-coordinate of the electron before the extraction. From Equations (5) we

conclude that depending on the phase ξ0 the extracted electron may either return to its
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parent nanorod or stream away from it. From Equations (5) and (6), we can estimate the

maximum angle θ between the radius vector of the electron and the y = 0 boundary as

lim
ξ→∞

ŷ(ξ)

ẑ(ξ)− ẑ0
=

4 cos(ξ0)

a(2 + cos(2ξ0))
<

√
2

a
= tan(θ). (7)

The estimate given by Equation (7) neglects the effect of the Coulomb forces between

the extracted electrons and the parent nanorod, and therefor is only accurate for extracted

electrons with small ŷ. As extracted electrons move away from the parent nanorod, the

value of streaming angle θ becomes less than predicted by Equation (7).

As bunches of the electrons propagate away from their parent nanorods along the y-

axis, they eventually meet a bunch of counterpropagating electrons. From Equation (7),

we conclude that the length L of the gap needs to be at least L >
√
2D/a for the first

extracted bunches of electrons to get to the center of the gap and start mixing with the

counterpropagating bunches. When the mixing occurs, mixed electron bunches form the

electron gas of homogeneous density n̄ inside the gap. The charge density en̄ inside the gap

creates the electric field Es. The current of the extracted electrons in the gap j = n̄ev̂z

creates the magnetic field Bs. Since v̂z < 1, the magnitude of the magnetic field (Bs) is

weaker than the magnitude of the electric field (Es).

Assuming the electron extraction stops when the electric field Es from the electron gas

compensates the electric field of the laser pulse at the boundary, the density of the electron

gas can be estimated as

n̄ =
2a0

D̂
. (8)

Concluding this section, we note the differences of the quasistatic electric and magnetic

fields in the gap from the quasistatic fields in another laser-plasma interaction setup, the

evacuated ion channel15. Specifically, fields associated with the electron gas create the E×B

force along the direction of laser propagation, whereas, in the ion channel, the E×B force

is directed against laser propagation.

IV. STOCHASTIC ACCELERATION IN QUASISTATIC POTENTIAL

WELLS

The scalar U(ŷ) and vectorAB(ŷ)ez potentials, corresponding to electricEs = (dU(ŷ)/dy)ey

and magnetic Bs = (dAB(ŷ)/dy)ex fields described in Section III, can be approximated with
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periodic series of quadratic potential wells as

U(ŷ) =
κU

2

)
D̂2

4
−

%
ŷ − D̂

2

&2
*
, (9)

AB(ŷ) =
κB

2

)
D̂2

4
−

%
ŷ − D̂

2

&2
*
, (10)

where κU = n and κB is taken smaller than κU , because in Section III the magnitude

of static magnetic field |Bs| is predicted to be smaller than the magnitude of electric field

|Es|. We note that Equations (9) and (10) neglect the size of the nanorods d̂, so d̂ = 0 is

assumed in this section. The presence of U(ŷ) and AB(ŷ) potential wells alongside with the

laser pulse can enable the mechanism of stochastic electron acceleration. To illustrate this

acceleration mechanism, we employ the 3/2-dimensional Hamiltonian framework.9,10,11 The

motion of a single electron in the potential wells U(ŷ) and AB(ŷ) and the laser wave with

vector potential a = a0 cos(ξ)ey, can be described with the Hamiltonian formalism as

dP̂y

dξ
= −∂H

∂ŷ
,
dŷ

dξ
=

∂H

∂P̂y

, (11)

where P̂y = p̂y − a0 cos(ξ) is the canonical momentum, and

H =
1

2

!
"#

"$

1 +
+
P̂y + a0 cos(ξ)

,2

C −W (−)(ŷ)
+W (+)(ŷ) + C

-
".

"/
= γ + U, (12)

W (±) = U(ŷ)± AB(ŷ) (13)

C = γ +W (−)(ŷ)− p̂x = const. (14)

We introduce the notations W
(−)
∗ = (κU − κB)D̂

2/8 and W
(+)
∗ = (κU + κB)D̂

2/8 ≈ a0D̂/2.

Note that the small difference between κU and κB is important, as it can lead to a smaller

electron dephasing rate γ − pz = C −W (−)(y).

In the rest of this section, we analyze the acceleration of electrons for different values of

C to find the maximum energy Emax that electron can achieve by stochastic acceleration.

Specifically, we consider three cases: C ≫ W
(−)
∗ , C < W

(−)
∗ and C ≳ W

(−)
∗ . For each

of the cases, we find the corresponding maximum energy that the electron can achieve by

stochastic acceleration and compare these energies to find the Emax. Since we are interested

in the maximum energy of the electrons, we will only consider the electrons with relatevistic

energies E ≫ max(a0D̂, C, a20/C).
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First case is C ≫ W
(−)
∗ . If C ≫ W

(−)
∗ , the impact of W

(−)
∗ can be neglected. Therefore,

electron injected from the plasma slab with the energy E < W
(+)
∗ /2 will first oscillate in the

W (+)(ŷ) potential well, with the frequency of the oscillation Ωp depending on the electron

energy E as Ωp ∼ (E/C)1/2/D̂. The electron can then undergo stochastic acceleration11 with

energy jumps of ∆E ∼ a0
0

2E/C between two consecutive passages through ŷ = 0. When

the electron heats up to the energy E > W
(+)
∗ /2, it can escape the potential well and switch

to what we will refer to as a “passing regime”. Because of the periodicity of W (+)(ŷ), the

force acting on the passing electron is also periodic. The frequency of the periodic force

acting on the passing electron is Ωp ≈ 2π(2E/C)1/2. The resonance between Ωp and the

laser frequency can then allow for further continuous acceleration of the electron in the

passing regime. The maximum energy Ep
max that passing electron can achieve by stochastic

acceleration can be obtained from ∆E and Tp = 2π/Ωp by considering the threshold for the

onset of stochastic motion of the electron with E > a0D̂/4 > a20/C,

K ≈ ∂Tp

∂E ∆E ∼ a0D̂

2E . (15)

Specifically, Ep
max corresponds to K = 1 in Equation (15), and is approximately equal to

Ep
max ∼ a0D̂/2 = (D̂C/2a0)(a

2
0/C) = ζEpond, (16)

where Epond = a20/C is the ponderomotive energy scaling, and ζ = D̂C/2a0 is the parameter

that describes the Ep
max/Epond ratio. We note that for this analysis to be valid, ζ needs to be

greater than 1, and therefore we assume ζ > 1 throughout this section. The energy Ep
max is

the maximum energy that electron can achieve in the case C ≫ W
(−)
∗ .

Next possible case is C < W
(−)
∗ . For C < W

(−)
∗ , the electrons will always remain trapped.

When C ≪ W
(−)
∗ , the electron is trapped near |y| ≪ D̂. In this regime, W (−)(y) ≈ αy, with

α = 2W
(−)
∗ /D̂ = const. The stochastic condition K = 1 predicts the maximum energy

E tr
max ∼ (D8a60C

9/(2W (−)
∗ )8)1/7 = Epondζ8/7(C/2W (−)

∗ )8/7. (17)

Equation (17) suggests that E tr
max is largest at C ≈ W

(−)
∗ , where E tr

max is greater than Ep
max.

The last possible case is C ≳ W
(−)
∗ . For C ≥ W

(−)
∗ , only the electrons with energy

2E < Etr = W ∗(+) +C + 1/(C − W
(−)
∗ ) are trapped. Furthermore, the impact of the

laser pulse is stronger at C ≈ W
(−)
∗ , given that the electron will be able to reach the

peak of the potential well at ŷ = D̂/2. Close to ŷ = D̂/2, the magnitude of the static
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electric field |Es| = |dU/dy| is small, which allows the electron to stay close to y = D̂/2 for

longer while having a small dephasing rate, and therefore enables the electron to exchange

energy with the laser field efficiently. For C = W
(−)
∗ , the time and energy variation for

such trapped electrons can be estimated as Tt ∼ D̂(C/E)1/2/2 = ζ(Epond/E)1/2 and ∆Et ∼

a0(D̂/2)1/2(E/C)1/4 = Epondζ1/2(E/Epond)1/4, where we assumed ∆Et > Epond. The maximum

possible energy due to stochastic acceleration can again be estimated from the threshold of

K = 1 to be Emax ∼ Epondζ6/5 > E tr
max > Ep

max. We conclude that W (−)(y) ∼ C facilitates

the acceleration of the electrons. Furthermore, for Emax > Etr and C ≥ W
(−)
∗ , the trapped

electrons can gain enough energy to switch to the passing regime. Since that the dephasing

rate at the peak of the potential wells for the passing electron is even smaller than the

dephasing rate of the trapped electron near the turning point, even further acceleration of

the passing electron is possible with small C −W
(−)
∗ > 0, though the resulting energy has

the maximum value of the same order as Emax.

From the analysis above we conclude that the maximum energy that electron can achieve

by stochastic acceleration is given by

Emax ∼ Epondζ6/5 ∼ a
4/5
0 (D/2)6/5C1/5, (18)

where C ≈ W
(−)
∗ . The W

(−)
∗ ≈ 1 allows initially immobile electrons to reach Emax, while

smaller W
(−)
∗ will require the electron to be pre-accelerated in order to reach Emax.

We note that, from dz/dξ = pz/[C − W (−)], the speed of longitudinal displacement of

the electron will increase due to the impact of the residual static field and thus the length

of the gap L should be large enough to have fully accelerated electrons. Another limitation

of the presented analysis is that a0 is assumed to be independent of z coordinate, while in

reality, the laser amplitude will decay as more energy gets absorbed by the target.

V. SIMULATION RESULTS

This section presents the results of our PIC simulations. We begin by presenting the

structure of the electric and magnetic fields inside the gap for the cases of x-polarized incident

laser pulse. Specifically, we plot the components of the electric and magnetic fields from the

PIC simulations with the gap size of D̂ = 4π, and compare these electric and magnetic fields

components to the predictions of the analytical model discussed in Subsection IIA. The
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FIG. 2. The x-component of the electric

field Êx inside the gap of size D̂ = 4π,

obtained from a) PIC simulation with x-

polarized laser and b) analytical model from

Subsection IIA

FIG. 3. The z-component of the magnetic

field B̂z inside the gap of size D̂ = 4π,

obtained from a) PIC simulation with x-

polarized laser and b) analytical model from

Subsection IIA

x-component of the electric field Êx from PIC simulation is shown on Figure (2(a)). The

same Êx component obtained from Equation (2) is shown on Figure (2(b)). Likewise, the

z-component of the magnetic field B̂z obtained from PIC simulation with the x-polarized

laser is shown on Figure (3(a)), and the same B̂z obtained from analytical model described

in Subsection IIA is shown on Figure (3(b)). Despite the crudeness of the analytical model

presented in Subsection IIA, its predictions for Êx and B̂z match well with results of PIC

simulations with x-polarized pulse.

To show how the field structure affects the electron density, we plot the electron number

density n̂ together with electric and magnetic field components on Figures (4(a)) and (4(b)).

As predicted in Subsection IIA, the number density of the electrons inside the gaps is small

for the case of the x-polarized incident laser.

The rest of the section shows the results of PIC simulations with the y-polarized incident

laser. The electron number density n̂ inside the gaps of size D̂ = 4π and D̂ = 8π is shown

on Figure (5). As predicted in Section III, the electrons extracted by the laser mix up into

the electron gas of homogeneous density, creating electric and magnetic fields. Associated

with these fields are electric ÛPIC and vector ÂPICez potentials. Profiles of ÛPIC and ÂPIC

from PIC simulations with different gap sizes D̂ are shown on Figure (6).

11



(a) (b)

FIG. 4. Electron number density together with electric and magnetic field components from the

PIC simulations with (a) x-polarized and (b) y-polarized laser pulse

Finally, we present the scaling of maximum electron energy with a0 and D̂ parameters.

The maximum Lorentz factor γPIC
max from simulations with different a0 is shown on the Fig-

ure (7). Likewise, γPIC
max from simulations with different D̂ is shown on the Figure (8). The

scaling we obtained from the PIC simulations is γPIC
max ∝ a0.980 D̂0.51, where we assumed C ≈ 1

for all simulations. We note that increasing L̂ in simulations with larger D̂ increased the

value of γPIC
max, which can be explained by truncation error of PIC simulations with moderate

L, as discussed in Section IV.

VI. CONCLUSION

We have examined the physics of laser driven acceleration during the interaction of a

high-intensity laser with periodic nanorod array target. Specifically, we developed a quasi-

analytical model of the electric and magnetic field in the gaps of the target. We showed that

the structure of electric and magnetic fields inside the gap could be explained with a simple

lossless waveguide theory and a single particle model of the electron extraction. We showed

that if the target has dimensions L >
√
2D/a, then irradiating this target by a y−polarized

can create a homogeneous electron gas inside the gaps of the target. We also showed that

the number density n̄ of this homogeneous electron gas is related to the amplitude of the

a0 of the incident laser and to the gap size D̂ by Equation (8). We explained the difference

in the magnitude of static electric and magnetic fields created by the electron gas. We then
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FIG. 5. Electron number density inside the gap for D̂ = 4π (top) and D̂ = 8π (bottom), showing

the process of the electron extraction and mixing of the counterpropagating extracted electron

bunches. Red lines show the maximum angle θ of extraction predicted by the single electron model

in Equation (7)

described the acceleration of the electron with a laser in the presence of the aforementioned

quasistatic fields using the 3/2 Hamiltonian formalism. From the 3/2-Hamiltonian model,

we found the maximum energy Emax that the electron can achieve by stochastic acceleration.

We also derived how Emax scales with a0 and D. Finally, we identified the important role that

the residual between quasistatic electric and magnetic field plays in stochastic acceleration.

We have conducted a series of PIC simulations to verify our analysis results and found a

good agreement between our semi-analytic model and numerical simulation results.

Our findings can be useful to interpret the results of the laser-target interaction studies.
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FIG. 6. Profiles of the electrostatic potential UPIC (red) and vector potential APICez (blue),

describing the fields Es and Bs from the PIC simulations for different values of D̂. The values

of D̂ are 0.5π (solid curves), π (dashed curves), 4π (dash-dotted curves) and 8π (dotted curves).

Shaded regions correspond to the relative difference between the electric and magnetic potentials
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