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Abstract

Many-Body Quantum Dynamics and Non-Equilibrium Phases of Matter
by
Ionut Dragos Potirniche
Doctor of Philosophy in Physics
University of California, Berkeley
Professor Ehud Altman, Chair

Isolated, many-body quantum systems, evolving under their intrinsic dynamics, exhibit a
multitude of exotic phenomena and raise foundational questions about statistical mechanics.
A flurry of theoretical work has been devoted to understanding how these systems reach ther-
mal equilibrium in the absence of coupling to an external bath and, when thermalization does
not occur, investigating the emergent non-equilibrium phases of matter. With the advent
of synthetic quantum systems, such as ultra-cold atoms in optical lattices or trapped ions,
these questions are no longer academic and can be directly studied in the laboratory. This
dissertation explores the non-equilibrium phenomena that stem from the interplay between
interactions, disorder, symmetry, topology, and external driving.

First, we study how strong disorder, leading to many-body localization, can arrest the
heating of a Floquet system and stabilize symmetry-protected topological order that does
not have a static analogue. We analyze its dynamical and entanglement properties, highlight
its duality to a discrete time crystal, and propose an experimental implementation in a cold-
atom setting.

Quenched disorder and the many-body localized state are crucial ingredients in protecting
macroscopic quantum coherence. We explore the stability of many-body localization in two
and higher dimensions and analyze its robustness to rare regions of weak disorder.

We then study a second example of non-thermal behavior, namely integrability. We show
that a class of random spin models, realizable in systems of atoms coupled to an optical cavity,
gives rise to a rich dynamical phase diagram, which includes regions of integrability, classical
chaos, and of a novel integrable structure whose conservation laws are reminiscent of the
integrals of motion found in a many-body localized phase.

The third group of disordered, non-ergodic systems we consider, spin glasses, have fas-
cinating connections to complexity theory and the hardness of constraint satisfaction. We
define a statistical ensemble that interpolates between the classical and quantum limits of
such a problem and show that there exists a sharp boundary separating satisfiable and
unsatisfiable phases.
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Chapter 1

Introduction

One of the most fascinating themes in condensed matter physics, often invoked using
Anderson’s dictum [16] ‘More is different,” is the emergence of collective (macroscopic) phe-
nomena from the microscopic details of a complex, many-body system.

A fruitful approach to investigating this mechanism starts by assuming that the system is
in thermal equilibrium and relies on the powerful tools of equilibrium statistical mechanics.
In particular, the renormalization group (RG) program allows the systematic exploration of
the physics at different energy scales by generating and analyzing effective theories. Although
these theories ignore most of the underlying microscopic details of the system by considering
only a few relevant operators, they capture the correct behavior at macroscopically long
distances. Strikingly, the RG approach sheds light on the underlying structure of equilibrium
phases of matter and explains the universality of the transitions between them: many-body
systems that are very different at the microscopic level may exhibit the same thermodynamic
properties if they are governed by the same RG fixed points. In this sense, the RG philosophy
provides the theoretical underpinning for the phenomenological Ginzburg-Landau theory
of broken symmetry phases [6], as well as the Fermi Liquid theory of weakly interacting
electrons [212].

These venerable considerations can be extended to the more general problem of out of
equilibrium, many-body systems via the Martin—Siggia—Rose-Janssen—De Dominicis (MSRJD)
formalism [11]. The standard approach therein is to re-cast the Langevin stochastic differ-
ential equation governing the time evolution of the system into a functional path integral,
which, in turn, enables the use of RG to uncover universal properties of the dynamics. This
has lead to a plethora of work on problems varying from surface growth models, including
the famous Kardar-Parisi-Zhang (KPZ) theory [53], to exotic phenomena in active matter
systems, such as the flocking of birds [236].

However, all of these studies focus on many-body classical systems out-of-equilibrium. A
natural question to ask, then, is what happens in the case of many-body quantum systems
out-of-equilibrium? And, more specifically, how do isolated many-body quantum systems,
prepared in a non-equilibrium initial state, thermalize? These two intimately related ques-
tions are more complicated than their classical analogues for several reasons.
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First, one must explain how the microscopic dynamics leads to thermal equilibration. In
classical physics, this is a foundational problem in statistical mechanics: even though the
physical laws describing the microscopics are invariant under time reversal, there is an ‘arrow
of time’ governing the macroscopics, as indicated by the second law of thermodynamics.
This source of tension in classical statistical mechanics is often reconciled by invoking the
ergodic hypothesis, whereby, at long times, a trajectory in phase space uniformly explores
the manifold of accessible states and time averages become equal to ensemble averages. This
latter statement is then used to argue that microstates are accessed with equal probability,
which enables the use of the microcanonical ensemble. However, it is not a priori clear how
to generalize this reasoning to quantum statistical mechanics, as phase space trajectories are
ill-defined due to the uncertainty principle.

Second, the ergodic hypothesis itself is often justified by arguing that the coupled non-
linear differential equations governing the microscopic degrees of freedom lead to chaotic
dynamics, characterized by exponentially diverging trajectories in phase space, and, thus,
to a decay of correlations and ergodicity. But since in quantum mechanics the Schrodinger
equation is linear and the spectrum is discrete (for a finite-size system), defining quantum
chaos is also a non-trivial task.

This brings us to the third—and related—complication. While many materials may be
described as a many-body quantum system coupled to a thermal bath !, which reduces the
problem to effectively classical dynamics, that crutch does not exist in the case of isolated
quantum systems. The latter evolve under their intrinsic unitary dynamics and this time
evolution may be coherent for much longer time scales. In fact, this may actually inhibit the
system from reaching thermal equilibrium. Therefore, it is crucial to understand the roles
that entanglement and the scrambling of quantum information play in the thermalization of
isolated quantum systems.

Lastly, tackling any of these questions is computationally hard. In general, simulating
the dynamics of a closed quantum system comprised of N physical degrees of freedom re-
quires keeping track of exponentially many eigenstates, i.e. storing e°@) data on a classical
computer.

Nonetheless, over the past decade there has been an exciting flurry of experimental and
theoretical advances on engineering the dynamics directly on a quantum simulator, as en-
visioned by Feynman [83|. Two prominent examples of such synthetic quantum systems |2]
are ultra-cold atoms in optical lattices [42] and trapped ions [41]. Both of these platforms
are natural playgrounds for addressing all of the aforementioned questions: as opposed to
conventional solid state systems, they are truly isolated from the environment 2; they are
characterized by long coherence time scales 3; and there exists an impressive array of con-

'For instance, phonons characterizing the vibrations in the crystal lattice.

20n the flip side, this also makes the cooling of these systems much harder because there is nowhere else
to move the excess entropy [224].

3Typical frequencies are kHz, whereas the dynamics of solid state systems occurs in the GHz range (or
higher).
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trolling techniques and tunability, such as the preparation of highly non-equilibrium states,
the ability to perform time of flight experiments, and single-site resolution imaging.

The main goal of this dissertation is to explore the dynamics of closed, many-body
quantum systems and their thermalization, or lack thereof, with an eye towards possible ap-
plications to synthetic quantum matter. The rest of this chapter introduces the fundamental
ideas that shall be used throughout the thesis.

In Section 1.1 we will discuss the basics of quantum statistical mechanics: the Eigenstate
Thermalization Hypothesis (ETH), its relation to random matrix theory, and the connections
to quantum chaos.

In section 1.2 we will discuss the spin glass phase occurring in many-body systems with
quenched disorder. Since we are ultimately interested in ensembles of classical and quantum
optimization problems (Chapter 5) and their connections to glasses, we will focus solely
on the relevant case of models with infinite-range interactions. The added benefit of this
restriction is that these models are well described by solvable mean-field theories and have
an equilibrium, thermodynamic spin glass phase at low temperatures, exhibiting a special
type of non-ergodic dynamics.

We then introduce two classes of many-body quantum systems that do not thermalize and
violate ETH. In Section 1.3 we study the phenomenology of integrable systems, characterized
by the existence of an extensive number of conserved quantities. This property leads to very
constrained (regular) dynamics, the violation of ETH, ballistic transport, and the failure of
thermalization. We analyze such an integrable model in Chapter 4.

One may argue that the integrability of many-body quantum systems is a fine-tuned
phenomenon that is not robust to weak perturbations. Therefore, in Section 1.4 we discuss
a second form of non-ergodicity, which is robust to perturbations: the many-body localized
(MBL) state. We will present how the interplay between quenched disorder and interactions
is responsible for the failure of thermalization, violation of ETH, and coherent, non-ergodic
dynamics. We will overview two criteria for the stability of many-body localization, and
investigate one of them in Chapter 3. Lastly, we will explain how MBL can stabilize exotic
order in highly excited states of a many-body quantum system.

Building upon this description of localization-protected order, we will turn to driven
(Floquet) quantum systems. In the last section (1.5) of this chapter we will introduce the
building blocks of Floquet theory and, more specifically, of Floquet-MBL systems. We will
argue that MBL can arrest the heating of a driven quantum system and stabilize order in
the Floquet eigenstates. In particular, we will discuss the example of symmetry-protected
topological (SPT) order. Then we will investigate the properties of two types of Floquet
SPT’s in Chapter 2.
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1.1 Thermalization, random matrix theory, and
quantum chaos

Classical thermalization and the ergodic hypothesis

Let us briefly review the intuition behind the ergodic hypothesis, invoked in classical
statistical mechanics to justify using the microcanonical ensemble to predict the long-time
behavior of a many-body system. Consider such an isolated system consisting of N particles
that has been prepared in a non-generic initial state of total energy £ *. The state of the sys-
tem is fully determined by a 6N vector in phase space, i.e. (q,p) = (qi,-..,9n,P1,---,PN),
where q; and p; are the canonical variables of the i*® particle.

If we restrict ourselves to Hamiltonian dynamics, then the behavior at later times ¢
is described by trajectories (q(t), p(t)) in phase space, according to Hamilton’s equations.
Moreover, the total energy E and the number of particles N will be conserved. If we assume
that the equations of motion are non-linear, leading to dynamical chaos, then the system
will ultimately visit all the microstates (q, p)g n consistent with the conservation of E and
N®. An important consequence of this chaotic assumption is that the time spent in a given
region of phase space will be proportional to its volume. And, in turn, this determines the
long-time behavior of observables.

To make this more precise, we define the infinite-time average of an observable O(q, p)
as

O=1im > [ dt0(q)p). (1.1)
T—00 T 0
Secondly, let M designate the manifold of constant energy and particle number in phase
space, V), denote its volume, and p(q, p) represent the density of states is (which is constant
in time, according to Liouville’s theorem). Thus, if the amount of time the system spends
in a phase space region is proportional to the volume of that region, then the infinite-time
average must obey

_ 1
0= (O = 37— d*Ngd*p p(q, p)O(q, p), (1.2)
M JM

where (...)umc, defined by the latter part of the equation, denotes an average over the
microcanonical ensemble. The equality between infinite-time averages and microcanonical
averages is the definition of ergodicity and it represents the bridge between the microscopic
chaotic dynamics and the thermal description of the macroscopic system 6. This statement

“Imagine the following classical quench protocol: we place a balloon in a room and, at time ¢ = 0, we
pop it.

5In fact, by the Poincaré recurrence theorem, the trajectory will eventually get arbitrarily close to the
initial state (q,p). However, the time scale of this process is exponential in N so we ignore this “revival.”

6This type of ergodicity is also known as weak ergodicity because it is a statement about the long-time
averages of observables—in contradistinction, strong ergodicity refers to the wvalues of observables at late
times.
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is, for the most part, a hypothesis and it has been proved for a few specific systems, such as
the Sinai Billiards or the Bunimovich stadium [68].

Thus far, we have sketched how dynamical chaos leads to ergodicity . A second con-
sequence of the chaotic assumption is that, at late times, the state of the system is fully
captured by an O(1) number of conserved quantities, such as £ and N. This is the full
extent of the “memory” of initial conditions present in the system as ¢ — oo. In more precise
terms, the auto-correlation functions of observables decay as a function of time ¥, i.e. the
details of the initial state are scrambled.

Quantum thermalization and the Eigenstate Thermalization
Hypothesis

Generalizing the above arguments to explain the thermalization of many-body quantum
systems poses a few challenges. First, due to the uncertainty principle, trajectories in the
phase space of a quantum system are not well-defined. Second, since classical chaos is defined
in terms of the exponential divergence of trajectories in phase space, we also need a different
interpretation of quantum chaos (see the next section). Third, for similar reasons, it is not
clear what should take the place of the classical ergodic hypothesis in explaining how thermal
equilibrium emerges from the microscopic dynamics. As detailed below, that role is fulfilled
by the Eigenstate Thermalization Hypothesis (ETH).

ETH: Srednicki-Deutsch interpretation

Following Refs. |72, 222|, we now present one interpretation of ETH, which we call the
“Srednicki-Deutsch interpretation,” that is inspired by the classical picture. The goal is to
show how the expectation values of local observables behave at late times.

Consider an isolated, many-body quantum system described by a local Hamiltonian H,
whose eigenstates are H |n) = E,, |n), with energies F,,. We prepare this system in an initial

state
W(0)) = > euln)., (1.3)

n

such that the total energy is E = Y |c,|?E,. We assume that the c¢,’s are chosen as a
narrow distribution over energy eigenstates centered on F and of width 0F < E, where

0B =" leu? (B, — E)". (1.4)

7Although chaos implies ergodicity, there are systems that are ergodic, but not chaotic: for instance, the
simple harmonic oscillator. However, most generic many-body systems are both chaotic and ergodic so we
will use these two terms interchangeably.

8This property is known as mizing in the mathematical literature. It also admits a weak-strong di-
chotomy, characterizing the role of fluctuations: strong mixing entails that the auto-correlation function
goes to zero as t — 0o, whereas weak mixing means that the long-time average of the correlation function
decays to zero. Lastly, note that chaos implies mixing and mixing implies ergodicity.
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This assumption holds for most generic states, including those that can be prepared in an
ultra-cold atom setting, for instance. The state at later times acquires a phase factor ?,
namely |U(t)) = > c et n). Thus, the expectation value of a generic (local) operator
O at a time t is

(O) = cheme  Fm=ElQ,, (1.5)

n,m

where O,,,,, = (n| O |m). Then we can define the infinite-time average of the observable O as

— 1 T
O = lim — dt (O(t)). 1.6
tim = [ (O(0) (1.6)
If we assume that the spectrum of H is non-degenerate, we can write the above expression
as .
_ e—Z(Em—En)T

i(Ey — E)T

— . . 1

0= lcal* O + lim > emOnm (1.7)
n n#Em

If we further assume that there is dephasing in the dynamics, namely that there is no large-

scale interference between the above phase factors e *Fm=En)t then the second term will

vanish in the 7 — oo limit. Thus, the infinite-time average of a local observable can be
written as .
0 =>lea*Onn. (1.8)

If the system is thermalizing then, mirroring the discussion in the classical problem, this
value O should equal the one predicted by a microcanonical ensemble.

However, we can make the following important observation: the infinite-time average
appears to retain a lot of information about the initial state due to the |c,|* coefficients.
This large amount of information should be contrasted with the expectation that, in thermal
equilibrium, only an O(1) number of parameters, such as E or N, are set by the initial state.

The resolution to this apparent paradox is the Eigenstate Thermalization Hypothesis
which makes an assumption (justified in the next sections) about O,,. In particular, if we
take these diagonal matrix elements to be a smoothly varying function of the energy E, i.e.
Onn = (O)(E) for all eigenstates |n) in an energy window around E, then we immediately
find that

0= Z |en|*Onn = Z |cnl?Onn = (O)(E) Z lenl” = (O)(E). (1.9)

|E,—E|<6E |En—E|<6E

Note that we have used the fact that the distribution of |cn|? is centered on E, has a width
dF < E, and is normalized to Y |c,|*> = 1. If we re-write the ETH ansatz O,,, = (O) as

<0><E>wi S O (1.10)

|E,—E|<0E

9For the rest of this dissertation, we set i = 1.
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where N is the number of energy eigenstates in the window [E —0E,FE + 5E}, then we
find that the infinite-time average of the expectation value is equal to the microcanonical
average: O = (O).

We emphasize that the ETH ansatz has a very powerful implication: a single eigenstate is
sufficient to predict the value of the observable O in thermal equilibrium. In other words, each
eigenstate of energy E, such that |E, — E| < §F is thermal in the sense that O = (O)(E) =
(n] O |n). Secondly, quantum ergodicity is a property of the Hamiltonian eigenstates, and
not of the unitary time evolution per se. The dynamics does not construct the thermal state
(as it happens in a classical system), but it only reveals it via the dephasing the off-diagonal
terms e *(Em=En)t,

ETH: quantum interpretation

The above discussion, termed the “Srednicki-Deutsch interpretation,” is illuminating due
to its analogy with the classical problem and the ergodic hypothesis: it shows how long-time
averages of expectation values are equal to microcanonical averages over eigenstates. We
now present a more quantum interpretation of ETH that sheds light on the structure of
many-body quantum entanglement, decoherence, and the role of reservoirs [175].

Note that, thus far, we have used the ETH ansatz to explain how only an O(1) amount
of information about the initial (pure) state |¥(0)) of the system can be recovered from the
behavior of local observables at late times. However, one may immediately point out that the
full system will always be in a pure state |¥(¢)) and no quantum information may be erased.
In principle, this means that we can always recover e?®) information about the initial state.
The resolution to this paradox is that, while true, this process would entail measuring global
(i.e. N-local in the complexity theory sense) operators or N-point correlation functions,
which is unphysical. In other words, the quantum information is scrambled globally and the
entanglement is spread throughout the full system.

This intuition behind the decoherence process leads us to the following insight. Suppose
that we partition the full, isolated system of size N into two pieces, A and B, such that the
size of A is much smaller than the size of B, i.e. |A| < |B| and |A|+ |B| = N. Since A can
exchange energy and particles with B and the two can also get entangled, then B acts like
a bath for A, the much smaller sub-system. Therefore, at late times, A will be in a thermal,
Gibbs state.

Let us make this argument more precise. We define the initial reduced density matrix of
the full system as

p(0) = [¥(0)) (W (0), (1.11)

corresponding to an energy E = > |c,|*E, = Tr[pH]. If this system thermalizes, then we
assume that it equilibrates to a temperature 7" and thermal energy given by

e 1 —H/k
E q(T) = WTI' [H@ / bT} . (112)
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For notational simplicity, let Z(T) = Tr [e~#/®T]. Note that the energy fluctuations (6E)* =

((F — Eeq)2>, related to the specific heat by a fluctuation-dissipation theorem, must scale

as (5E)2 ~ N, ensuring that £ ~ N~'/2 vanishes in the thermodynamic limit.

Eea
The state of the full system at later times is given by the von Neumann equation '°
dp
— = [H, p|, L.13
2 1, (113

whose solution is p(t) = e #p(0)e’t. With this in hand, we can compute the state of the
sub-system A at late times by tracing out the degrees of freedom in B, namely

pa(t) = Tt [p(t)]. (1.14)

If the bath B manages to thermalize A, then we can write the equilibrium state of A at
temperature T as

1
eq — —H/ka
p(T) T% [—Z(T)e } : (1.15)
Thus, we say that the full system is thermal if
. T eq
Jim pa(t) = lim p3i(T), (1.16)
N—oo

for any sub-system A such that %l — 0 as N — oo. We take both limits to ensure that
diffusive transport covers the full system (infinite time) and to avoid issues such as Poincaré
recurrences (infinite size).

We are now ready to state the ETH in this second interpretation. If the initial state were
an energy eigenstate, i.e. p(0) = |n) (n|, then p(t) = p(0) and p’ = Trp[|n) (n|] so the above
condition becomes

) (1.17)
where T}, is the temperature corresponding to the energy FE,. This is just another way of
re-stating our previous observation that each eigenstate is thermal. However, our previous
analysis revealed that the prediction of an energy eigenstate agrees with the one of a mi-
crocanonical ensemble—Eq. 1.17 now shows how it can also be stated in terms of a Gibbs
ensemble, thus emphasizing the equivalence of ensembles in quantum statistical mechanics.

Moreover, this interpretation of ETH makes another powerful prediction. The entangle-
ment entropy in sub-system A can be written as S = —k;, Tr [p'; log p’4] and, by Eq. 1.17, it
equals

S = =k Tr [p3(T5,) log pi3' (T0)] (1.18)

the thermodynamic entropy at temperature 7;,. Since the latter obeys a volume law, then
we find that any energy eigenstate also obeys a volume law, i.e. S = s|A|, where s is a
non-zero entropy density.

10Note that this equation has a classical counterpart, the Liouville equation. Thus, strictly speaking, the
classical time evolution is as linear as the quantum evolution.



CHAPTER 1. INTRODUCTION 9

ETH and Random Matrix Theory

So far we have provided two phenomenological interpretations of ETH: the first allowed
us to connect the late-time behavior of local observables to the microcanonical ensemble; the
second allowed us to connect the properties of many-body energy eigenstates to the Gibbs
state (ensemble). We now introduce a few important results about random matrices and we
will use them to justify the ETH ansatz and to define quantum chaos [68].

While studying complex nuclei consisting of many electrons, E. Wigner [240| and, later,
F. Dyson |74] realized that computing the spectra of generic, complex, many-body quantum
systems is an almost intractable problem. However, one can make significant progress if the
question is restricted to the statistical properties of the spectrum. This paradigmatic shift
is similar in spirit to the one pioneered by Boltzmann in the many-body classical problem.

The fundamental insight originating from Wigner is that, in a narrow energy window
such as the one considered above, the eigenvalues of a generic and complex Hamiltonian H
are well described by a random matrix theory (RMT). In particular, the energies E,, of such
an RMT repel each other according to the Wigner-Dyson surmise and the eigenstates |n)
are random orthonormal vectors in the Hilbert space.

Level repulsion and Gaussian ensembles

Let us investigate the first property mentioned above, namely the Wigner-Dyson level
statistics. For simplicity, we focus on a 2 x 2 matrix H, whose entries are drawn from a

Gaussian distribution:
v
e —_—
H=|, 2|, (1.19)
vz ©
where e1, e,V ~ N(0,1). Note that we have assumed that H is a real matrix, i.e. it is
invariant under time-reversal symmetry. The eigenvalues of H are

€1+62

2

1,2 =

1
+ 5\/(61 — 62)2 + 212 (120)

and the separation between them is

s=1/(e1 —e2)? +2V2. (1.21)

Using the fact that all three numbers are drawn from the standard normal distribution, we
find that the probability density

1 e el +e3+ V2
p(S) = W /;OO d€1d€2dVeXp <_%) ) (S — \/(61 — 62)2 + 2V2) . (122)

After doing the integrals, we obtain the following simple expression:

1 2
P(s) = 536’7, (1.23)
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known as the Wigner-Dyson distribution. Note that the probability vanishes as a Gaussian
at large spacings s > 1 and, most importantly, it also vanishes as s — 0 for small spacings.
The fact that the probability of having an accidental degeneracy (s = 0) is exactly zero is
known as level repulsion.

While this result may seem trivial and an artifact of the small matrix size, it is remarkably
general! Let A be a real N x N matrix such that its elements A;; are i.i.d. from N(0, %) .
Then H = (A + AT)/y/2 is called a Gaussian Orthogonal Ensemble (GOE) matrix and we
can immediately show 2 that its density is given by

P(H) = # exp {—g Tr (HQ)] : (1.24)

The name stems from the fact that the matrix elements are Gaussian (or that Tr H? is a
Gaussian random variable by the Central Limit Theorem) and that the measure is invariant
under Orthogonal transformations, i.e. Tr [OHOTOHOT] = Tr[H? for any orthogonal
matrix O. While the distribution P(s) of level spacings for such GOE matrices does not
have a close-form expression, the Wigner-Dyson distribution (1.23) is not only qualitatively,
but also quantitatively accurate |73]. We note, in passing, that there exist other ensembles,
the Gaussian Unitary (GUE) and Gaussian Simplectic (GSE) ensembles, which correspond to
different symmetry classes for the Hamiltonian H, but their level spacings behave similarly:
P(s) = ZgsP exp (—cps?), where 8 = 1,2, 4 for GOE, GUE, and GSE, respectively.

Therefore, the current working assumption is that, for a generic and complex Hamiltonian
H with time-reversal symmetry, the eigenenergies E,, € [E — JFE, E + JE] behave like the
eigenvalues of a GOE random matrix.

Random eigenvectors and the ETH ansatz

Let us now explore what the RMT assumption entails in terms of the eigenstates |n)
of H. Intuitively, in a generic basis, the eigenvectors of a GOE matrix will look like ran-
dom unit vectors. Of course, these vectors are not strictly independent since they must be
orthogonal to each other. However, if we restrict ourselves to a sufficiently small energy
window, then we can ignore the correlations between the corresponding eigenstates since a
few uncorrelated random vectors in a very high-dimensional (for instance 2%V) Hilbert space
would be essentially orthogonal.

Thus, focusing on a narrow energy window centered on F, the components vi(n) = (i|n) of
an eigenvector |n) in a generic basis {|7) : i = 1,..., D} are uncorrelated Gaussian random

1

variables with mean 0 and variance z, where D is the dimension of the Hilbert space.

Averaging over eigenstates in the [F — 0E, F + 0E] window, we can write
1

iJ ,Z_) .

"The 4 scaling of the variance is needed for a suitable thermodynamic limit.

12\We write the joint density as a product of each individual Gaussian density and group the terms in the
exponent summation to obtain the stated result.

vl = g (1.25)
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If we take the states {|i)} to be the eigenstates of the observable O, i.e. O =), O; i) (i,
then we find that the average matrix element is

where O is the microcanonical average at energy E. Note that this is precisely the ETH
ansatz used in the Srednicki-Deutsch interpretation!
We can also study the fluctuations of the matrix element around this average value:

2
0w = [Oun|* = TaOTm) ([0 |n> - \<n| Om)| (1.27)
= ZOOJZ o™ (n) ZOO’U o™ -vj UJ(-m)

= ZOO“ j .jm m)+ZOOv ™ vf’”) (n)

j

v o
= 7 + 5nm3.
In the third line we expressed the four-point function in terms of Wick contractions (since
the components v; are normal random variables) and, in the fourth line, we used the or-
thonormality relation (1.25).
Putting everything together for the mean and variance of the matrix elements, we find
that
— 0?2
Onm = O(E)3um + | = m: (1.28)
where 7),,,, is a random variable of zero mean and unit variance for n # m and variance two
for n = m. Note that the off-diagonal matrix elements are much smaller (by a factor of
D~1/2) than the diagonal ones.

This equation represents a refinement of the ETH ansatz, in that it takes into account
the fluctuations of the matrix element via the second term. In particular, @(E,w), where
w = E, — E,,, is approximately equal to the average spectral function p(w) for states at
energy F. This quantity can be measured in tunneling or absorption experiments. Secondly,
p(w) is the Fourier transform of the (O(t)O(0))g correlation function at energy E:

p(w) = /dte“’%O(t)O(O))E, (1.29)

which can be related to the quantum generalization of the Fluctuation-Dissipation theo-
rem |68, 209).

Finally, using this observation, the ETH ansatz can be put into the following form, which
we will use in later chapters:

plw, E)
D nnmv

Onm = O(E)8pm + (1.30)
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for Hamiltonian eigenstates in the energy window [E — 0FE, E + 0E]. We emphasize that
this expression goes beyond RMT by incorporating the frequency dependence of the spectral
function. Within ETH, we expect the spectral function to be a constant and the behavior
to be captured by RMT only for w < Ery, where Ery is called the Thouless energy.

To recapitulate, we justified this ansatz by assuming that, in the above energy window, H
is well described by RMT. With this powerful result in hand, we showed that the expectation
value of observables at late times is dictated by the microcanonical ensemble, i.e. the first
term on the right-hand side. We also sketched how to quantify the thermal equilibration
process by using the second term in Eq. 1.30, which measures time auto-correlation functions
and captures decoherence (dephasing) phenomena. Third, since every eigenstate is thermal,
we argued that the reduced density matrix obtained by tracing out an extensive part of the
system is equal to the one obtained by starting from a Gibbs state—an immediate conse-
quence is that thermal eigenstates obey a volume law for the entanglement entropy. Fourth,
we showed that, if the RMT assumption holds, then the energy levels of a thermalizing
quantum systems will repel each other.

Quantum chaos

The level repulsion property of GOE random matrices is often used as an operational
definition of quantum chaos. Since the Wigner-Dyson RMT was numerically and experi-
mentally confirmed in the case of different complex nuclei, it was then thought that it may
be generally applicable to any “complex” many-body quantum systems. However, it was not
completely clear what are the requirements for this complexity. This was put on a more solid
footing by the work of Bohigas, Giannoni, and Schmit (BGS) [43] on the semiclassical version
of the Sinai billiards problem, whose classical limit has a strongly chaotic behavior. They
found that the level statistics of the quantum problem is in very good agreement with the
GOE predictions and they conjectured that any quantum system with a classically chaotic
counterpart will exhibit Wigner-Dyson level statistics. This BGS conjecture has been tested
and confirmed in many cases, although there exist non-generic counterexamples [68].

This is why the GOE prediction for the behavior of levels has become a definition of
quantum chaos in and of itself, regardless of whether there exists a classical limit. A subtle
point worth emphasizing is the connection between level repulsion and the sensitivity to
perturbations, similar to the butterfly effect in classical systems. Imagine a many-body
Hamiltonian H, that is quantum chaotic, according to the above definition. If we add a
weak perturbation AV (A < 1) such that the full Hamiltonian H = Hy+ AV is also chaotic,
then the energy levels E,, in a narrow window will have Wigner-Dyson statistics. Moreover,
the full eigenstates |n) will look like random vectors in the basis {|n(”)} of the unperturbed
Hamiltonian H,. This means that the perturbed Hamiltonian, written in the unperturbed
basis, will effectively look like a GOE random matrix.

We can actually provide a more straightforward definition of the butterfly effect in quan-
tum systems by starting from the classical definition. The divergence of (classical) trajecto-
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ries can be captured via the sensitivity d(¢) to initial conditions:
g (t) )2
d(t) = : 1.31
0= (340 3

i.e. we imagine applying a perturbation at site j and time ¢ = 0 and study its impact at
a different site i and later time ¢t > 0. The system is chaotic if d(t) o< e*', with a positive
Lyapunov exponent A > 0. Using the Poisson bracket structure of classical mechanics, we
can easily show that the sensitivity is equivalent to

d(t) = ({a:(t),p;})* (1.32)

Following a standard approach to quantizing classical systems whereby we replace Poisson

brackets {A, B} by commutators —% [fl, B} of Hermitian operators A and B , We can intro-

duce a generalization of the sensitivity, known as the out-of-time-order correlator (OTOC):

C(t) = —([&:(t), p;]*)r, (1.33)

where the brackets (...)r denote an average over the thermal ensemble at temperature 7.
The claim is that the system is quantum chaotic if C(t) < h2e?** with A > 0.

The OTOC characterizes the decoherence phenomena occurring in a thermal system,
measuring how fast the quantum information is scrambled. In fact, in the context of scram-
bling near the event horizon of a black hole, Maldacena et al. [162| argued that there exists

a universal bound on the rate \: —
A< th . (1.34)

In a related development, Kitaev proposed an example of a many-body quantum system
that saturates this bound on chaos [137, 163]. This model, known as the Sachdev-Ye-Kitaev
(SYK) model [200], was shown to be dual to a black hole in AdS, [200, 123, 225].

Having overviewed the properties and consequences of thermalization, we are now ready
to analyze different possibilities of non-ergodic behavior.

1.2 Spin glasses

As a warm-up, in this section we will discuss the spin glass phase occurring in many-
body systems with quenched disorder. Since we are ultimately interested in ensembles of
classical and quantum optimization problems (Chapter 5) and their connections to glasses,
we will focus solely on the relevant case of models with infinite-range interactions. The
added benefit of this restriction is that these models are well described by solvable mean-
field theories and have an equilibrium, thermodynamic spin glass phase at low temperatures,
exhibiting a special type of non-ergodic dynamics.

The fundamental ingredient of spin glasses is the presence of quenched disorder. An
example of a real physical system which is often discussed in the context of spin glasses [87] is
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a dilute solution of magnetic impurities in a noble metal host. An impurity magnetic moment
at a site r; will magnetize the nearby host conduction electrons, such that this polarization
is negative at some distances and positive at others. Then another impurity moment at
a site r; will feel this electronic magnetization and will try to lower the overall energy by
aligning along it. However, assuming that the impurities are randomly placed, these magnetic
interactions J;; will effectively have random signs, i.e. will be either ferromagnetic (J;; < 0)
or anti-ferromagnetic (J;; > 0) with some non-zero probability. If the time scale over which
the impurity moments (spins) fluctuate is much shorter than the time scale over which the
Ji;’s change (the time scale of the electronic magnetization), then the disorder is quenched
(frozen) from the spins’ perspective.

A classical and solvable [180] toy model for this is due to D. Sherrington and S. Kirk-
patrick [214]| and can be easily written as

N
H=-— Z JijUin7 (135)

ij=1

where 0; = +1 denote Ising variables '* and the couplings J;; are drawn from a Gaussian
distribution. We emphasize that, since we are interested in the connections to classical and
quantum optimization problems, we focus only on the case of infinite-range interactions, as
defined above.

Moreover, in these models the spin glass is an equilibrium thermodynamic phase that
occurs at low temperatures, and is also characterized by a sharp dynamical signature and
non-ergodicity (see the next sections for details). Crucially, the quenched disorder leads to
frustration: the spins will find it impossible to satisfy all of the ferromagnetic and anti-
ferromagnetic constraints and there will exist many configurations with a similar degree of
frustration (number of bonds where there is an energy penalty). From the point of view of the
system’s thermodynamic properties, this translates into a rugged free energy landscape with
many local minima separated by large barriers. Although it is believed that this “idealized”
spin glass phase does not exist in systems with short-range interactions [84, 86, 85|, such
systems nonetheless exhibit very slow dynamics whereby autocorrelation functions decay
logarithmically in time.

Consequently, there are three fruitful ways to think about the phenomenology of infinite-
range, ideal spin glasses: in terms of statics, dynamics, and complexity.

Statics

Ideal glasses form a distinct equilibrium thermodynamic phase. A mean field theory
has been developed to calculate the disorder-averaged free energy within the framework of

13The Sherrington-Kirkpatrick model can also be used to discuss quantum spin glasses, provided that
we promote the variables o to Pauli matrices (o0; — 67) and include another non-commuting term in the
Hamiltonian, such as a transverse field ) . I';67. The following discussion, focusing on phenomena driven
by thermal fluctuations at non-zero temperatures (I' > 0), will apply to both the classical and quantum
problems.
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equilibrium statistical mechanics.

If we define the local magnetization as m; = (o;), where (...) denotes an average over the
thermal ensemble or an energy eigenstate, then the average magnetization can be written as
m = le >, m;. Note that the quenched disorder may favor a state with non-zero m;, namely
a glassy state, even though m is zero at all temperatures due to the random spin directions
preferred at each site 7. This means that the onset of glassy physics can be captured from
the establishment of a non-zero value of

1
Goa = 3 D (1.36)

known as the Edwards-Anderson order parameter.

We can also define the local susceptibility x;; as the response function to an applied

magnetic field h; 4, v = %’}’Zj. From the fluctuation-dissipation theorem, we get that the

average local susceptibility xy = % > i Xii is equal to

1 —gpa
7
which is a quantity that can be measured in an experiment [87]. Thus, the Edwards-Anderson
order parameter quantifies the reduction of the local susceptibility from the Curie-Weiss ex-
pectation of free moments and the putative (static) glass transition, occurring at a temper-
ature Ty, can be identified as a cusp in x (7).

Secondly, the low-temperature (T < T}) phase is also characterized by non-ergodicity, in
that the system only explores a subset of the phase space: the microstates (configurations)
become clustered into many pure states and the Gibbs measure splits into sub-components.
And, most interestingly, there is a deep connection between the hierarchical (ultrametric)
structure of pure states, their overlaps, the Edwards-Anderson order parameter, and the
phenomenon known as replica symmetry-breaking 87, 54].

We emphasize that this only holds for mean-field, ideal spin glasses. In short-range Ising
spin glasses, Huse and Fisher [84, 86, 85| have argued that there exist only two pure states
(clusters) below Ty, which are related by a global spin flip. Moreover, an external magnetic
field would select one of these pure states and the spin glass phase is destroyed! This stands
in stark contrast to ideal spin glasses wherein the multitude of pure states are responsible
for a thermal phase transition even at finite magnetic fields, known as the Almeida-Thouless
line [10].

X = (1.37)

Dynamics

The second avenue to understanding glassiness is dynamics. From an experimental per-
spective, it turns out that the a.c. susceptibility depends also on the frequency of the applied

M Note that this is a reason why the spin glass problem is much more complicated than the “clean” (non-
disordered) Ising problem: in the latter case, we can select a particular low-temperature state since we can
apply a local magnetic field. However, in the disordered case, these directions are random and we do not
know them a priori.
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magnetic field: x(7') = x(7T,w) and both the real and imaginary parts of x(7T,w), related
by a Kramers-Kronig relation, can be measured independently. Moreover, the dependence
persists even at very low frequencies, corresponding to time scales much larger than those
characteristic of the experiments. This behavior should be contrasted with that of conven-
tional magnets where there is no such dependence on frequencies below some )y inherent to
the physical system.

The slow (glassy) dynamics suggests that there exist many metastable states with very
large lifetimes, or large energy barriers separating them. Not only that the system can be
non-ergodic in the sense that it does not fully explore all of the available phase space—
strictly speaking, it may also be ergodic, yet get trapped for very long times into unstable
saddle points of the rugged energy landscape.

In fact, it is possible that there exists a dynamical phase transition occurring at a tem-
perature T, that is different from the thermodynamic (static) phase transition occurring at
T,. This happens, for instance, in another infinite-range model, namely the p-spin spherical
model [54]. For such a system, at very large temperatures and deep in the paramagnetic
phase, the dynamics is ergodic and correlation functions decay very fast. Closer to T, (but
still above this temperature), the dynamics is still ergodic, but the system slowly explores a
small region of the phase space close to the initial state, by getting trapped into a successive
series of metastable states, which are saddles. Exactly at T}, at the dynamical transition,
the relaxation time diverges, the dynamics becomes non-ergodic, and the saddles turn into
trapping minima. Interestingly, the static (equilibrium) transition occurs at an even lower
temperature, Ty < Ty, and thermodynamics cannot detect the existence of the long-lived
metastable states. Lastly, below T}, the microscopic spin configurations cluster into many
different pure states and the lowest lying ones dominate the Gibbs measure, leading to replica
symmetry-breaking.

Therefore, not only that ideal glasses exhibit very exotic phenomena in a mean-field,
equilibrium description, but their dynamics is also very rich !5, which, ultimately, is due to
a complex hierarchical organization of length scales and metastable states.

Complexity

As alluded to above, the third way to think about glasses is in terms of complexity,
which is the predominant route we will take in Chapter 5. In this section, we introduce an
optimization problem studied in computer science, the 3-Satisfiability problem, and show
how the constraint satisfaction can be recast into finding a zero total energy ground-state
for a spin glass Hamiltonian. Moreover, the satisfiability problem is “hard” (to be defined
below) for both classical and quantum computers. We can understand this hardness as a
consequence of the thermodynamic and dynamical properties of an ideal glass, as discussed
in the previous two sections: quenched disorder, leading to frustration, creates a rugged

15We have not even mentioned fascinating phenomena such as hysteresis, aging, or other memory effects
in glasses.
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energy landscape of many sub-optimal states and any algorithm will take a very long time
to explore these local minima and to converge to a solution.

To make things more precise and narrow, we will focus strictly on complexity as it is
understood in the theory of computation. The goal therein is to classify problems based on
the asymptotic scaling of the resources—time or memory required by a computer to solve
the problem—with the input size N. Focusing on decision problems (i.e. problems whose
solution entails outputting ‘yes’ or ‘no’), an algorithm purported to solve them efficiently will
only need a polynomial in N amount of resources. Similarly, a problem is tractable if there
exists an efficient algorithm that can solve it. Roughly speaking, for a classical computer,
this defines the complexity class P.

A generalization of this class is NP, corresponding to the class of decision problems
whose ‘yes’ instances can be efficiently verified—mnote that it does not make any assumptions
about ‘no’ instances and, in fact, these need not have verifiable proofs. Intuitively, this
class includes problems where if there exists a solution, then it is easy to check whether an
adversary claiming to have a solution is lying. Conversely, it can be very hard (i.e. it cannot
be done in polynomial time) to verify that there is no solution. It is easy to see that P is
a subset of NP, but it is a fundamental and unsolved problem in computer science whether
P = NP.

Lastly, there exist problems that are NP-complete, namely they capture the hardness of
the entire class NP. More precisely, a problem A is NP-complete if A € NP and any other
problem B € NP can be mapped into A with at most a polynomial overhead. Thus, A is
at least as hard as hard as any other problem in NP. We are now ready to establish the
connection to spin glasses.

A famous example of an NP-complete problem is the 3-Satisfiability problem (3-SAT).

We are given a Boolean expression C consisting of M clauses on an N-bit string (o1, ...,0n)
of the form
M
= Cn, (1.38)
m=1
where C,,, = 0;,, V 7;,. V 0y, is a clause on exactly 3 bits and 4,,, jm, km € {1,..., N}. Note

that @ = 1 — o is the logical negation of a bit and we allow any number of such negations
in the clauses C,,. The 3-SAT problem is the following: given C, can we assign values to
(01,...,0n) such that C evaluates to 17 Clearly, 3-SAT is in NP since ‘yes’ instances (also
called SAT instances) are easily verifiable. However, note that proving that C is a ‘no’
instance (also called UNSAT) may require checking all 2V configurations! Lastly, showing
that 3-SAT is NP-complete is a non-trivial step and it is the object of the famous Cook-Levin
theorem.

Now suppose that we map the bits taking values in {0, 1} to Ising variables taking values
in {—1, 1} and the formula C to a Hamiltonian H(oy,...,0n) = 2%21 H,,, where the 3-body
terms are given by

H,=01%x0;,)1%0;,)1+x0y,). (1.39)
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Note that the + signs depend on the negations in C,,. Therefore, the question posed by the
3-SAT problem can be framed as: does H have a ground state of energy exactly zero?

At this point, the connection to spin glasses should be evident upon introducing an
appropriate measure on the instances of 3-SAT to generate a question in statistical physics.
We can then attempt to understand the structure of problems that are typical with respect
to the measure. For example, a SAT-UNSAT phase transition, arising as function of the
parameters controlling the measure, would signal the regimes where the most complicated
problems may be found [109]. Close to the critical point, where there is a very large degree of
frustration and a proliferation of states close to being solutions (i.e. metastable states), this
statistical problem becomes very glassy. We analyze a simplified example of this in Chapter
5, where we study an interpolation between the classical and quantum problems.

This third way of thinking about spin glasses (in terms of complexity) builds on the
seminal insight of Fu and Anderson [91] that the intractability of NP-complete problems
is a form, indeed an extreme one, of spin glassiness. More philosophically, one may argue
that physical processes occurring in nature are also a form of computation 6. Thus, the
glassy dynamics and all the exotic phenomena associated with it are manifestations of the
intractability of that computation.

1.3 Integrable systems

Although an ideal spin glass is characterized by special non-ergodic dynamics due to
the existence of many metastable states at low temperatures, it is an equilibrium phase of
matter. In contradistinction, we now discuss non-ergodicity in non-equilibrium quantum
systems, i.e. systems where ETH is violated and the canonical ensemble does not provide a
correct description. In this section we introduce integrability, and in the next section (1.4)
we present many-body localization.

We now overview the basic phenomenology of integrable systems and describe how the
existence of many conserved quantities places a strong constraint on ergodicity, leading to
very regular dynamics, to coherent transport properties of the system, and to the absence
of thermalization in the sense of Section 1.1. We will also briefly discuss how these systems,
in fact, manage to thermalize, albeit in a special way, to a Generalized Gibbs Ensemble
(GGE) [55]. These results will be used and further explored in Chapter 4, describing a
specific and novel type of quantum integrability.

Classical integrability

Let us begin by reviewing the precise definition of Liouville integrability used in classical
physics. A Hamiltonian H(q, p) with N physical degrees of freedom, i.e. q = (q1,...,qn)
and p = (p1,...,pn), is integrable if there exist N functionally independent integrals of

16Variants of this idea are sometimes called the Physical Church-Turing thesis.
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motion in involution, I = (Iy,..., Iy), such that

If H has N such integrals of motion, then the Liouville-Arnold theorem guarantees that
there exists a mapping between the variables (q,p) and the action-angle variables (I,80)
such that the canonical Hamiltonian H depends solely on I, H(q,p) — H(I), and the
Hamilton equations of motion become

dl
o _ oHT) _
a o1

for some frequencies w. We can integrate (thus the name integrability) these differential
equations to obtain

«9,(15) = wit+907z~.

The above equations show that the integrals of motion I are time-independent (i.e. conserved
I =1;) and the angles 0 vary linearly in time with fixed angular frequencies. Therefore, the
trajectories of this integrable system are confined to an N-dimensional torus, fully determined
by the initial conditions Iy, and the motion is quasiperiodic.

A fundamental result of classical integrability is the Kolmogorov-Arnold-Moser (KAM)
theorem which states, roughly speaking, that under some assumptions about regularity and
non-degeneracy, most of the invariant tori that foliate the phase space of an integrable system
will be deformed and survive under weak Hamiltonian perturbations. The motion on these
deformed tori will still be quasiperiodic orbits, yet the dynamics will smoothly cross over
into chaotic dynamics for strong enough perturbations. Thus, we can think of the KAM
theory as a result showing the robustness of the regular, non-ergodic dynamics of classically
integrable systems to weak perturbations.

However, the important caveat to KAM is the non-degeneracy assumption: as soon as
this condition is relaxed, there may occur an uncontrolled proliferation of resonances and
small denominators in the perturbative expansions, which will threaten the convergence
of the perturbation theory. For the same reason, KAM only applies to few-body classical
systems and there is no known generalization for many-body, N — oo, classical systems.
Finally, as detailed in the sections on localization, resonances will also play a key role in the
thermalization of many-body quantum systems.

Quantum integrability

Defining integrability for a quantum system is hard '7. First of all, there is no known
quantum analogue of the KAM theorem so even if there exists a proper definition for few-body

"For a review of all the problems associated with such a definition, see Ref. [55].
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quantum systems, let alone many-body quantum systems, then there are no guarantees that
this form of non-ergodicity is robust (i.e. not fine-tuned). Secondly, naively extending the
above requirement that there exist extensively many conserved quantities is somewhat trivial:
any Hamiltonian H can be diagonalized and the energy eigenstate projectors, {|n) (n|}, form
a fully commuting set. We can circumvent this issue by insisting that the conserved quantities
be local.

Let us restrict the discussion to a one-dimensional, local, many-body quantum Hamilto-
nian H = Zf\il h; on N sites, where the support of each operator h; is localized around site
i 8. We say that H is integrable if there exist N — 1 functionally independent and local

operators 1™, namely

N
1™ =3"g", (1.43)
i=1
such that
I 1™ =0 and [I™,H =0 VYn,m=1,...,N — 1. (1.44)
Note that we can define 19 to be the Hamiltonian, I(®) = H, such that the full set of local
and commuting quantities is /N-dimensional and indexed by n =0,..., N — 1.

We now argue that this definition significantly restricts the dynamics of the quantum
system, is responsible for a failure of thermalization, and it leads to non-diffusive (coherent)
transport.

Dynamics

We start by showing why the naive thermalization defined in Section 1.1 fails and the
ETH is violated. As before, suppose we initialize the system in a non-equilibrium state |¥(0))
which can be written as [¥(0)) = > ¢, |n) in terms of the energy eigenstates, and the |c,|?
are narrowly distributed around an energy E. Then the long-time average expectation value
of an operator O is

I Y )
O=1lim = [ dt(O@t)) = |eal*Onn- (1.45)
T—00 T 0 "
However, in general, this long-time average will not equal the canonical average if H is
integrable. This is because the canonical ensemble does not take into account the fact that
there are an additional N — 1 conserved quantities set by the initial state:

(T(0)| 1™ |¥(0)) forn=1,...,N—1, (1.46)

in addition to the energy FE.

8For a spin—% system, imagine that h; can be written as a tensor product over Pauli matrices on a few
(not a fraction of N as N — c0) sites and identity everywhere else.
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However, if we account for all of these conserved quantities, then the system thermalizes

to a Generalized Gibbs Ensemble (GGE) defined as [55]:

1 - m
(O)ace = — Tr [Oe‘ Zm=o Al )] (1.47)
Zaocg = Tr |:e_ >m=o ﬁml(m>i| . (148)

Note that [y corresponds to the standard inverse temperature 5y = 1/(kyT") and f,,, for
m = 1,...,N — 1, are the Lagrange multipliers enforcing the conservation of each I(™.
They are defined implicitly via

(W (0)[ 1" |w(0)) =

Tr [I(”)e_ Zco ﬂm“’”)] . (1.49)
GGE

Therefore, a quantum integrable system thermalizes to a special Gibbs ensemble with
an infinite number of “temperatures” as N — oo. However, it does not thermalize in the
sense of Section 1.1 and the ETH, as defined there, is violated. It has been argued [9] that
integrable systems satisfy a weak version of ETH, whereby it holds for typical eigenstates,
but not for all of them: there exist “rare” eigenstates which violate ETH.

Non-ergodic dynamics

The fact that a non-equilibrium initial state |W(0)) sets the values for N conserved
quantities, (¥(0)| I [¥(0)), means that there is a lot of memory, O(N), of the initial
conditions, leading to non-ergodic dynamics. We now make this quantum non-ergodicity
more precise by using Mazur’s inequality [166, 228, 55| for time auto-correlation functions
in a generic system characterized by a Hamiltonian H (not necessarily integrable) on N
physical degrees of freedom.

For simplicity, suppose that the canonical average of a generic local operator O is zero:

(0) = %Tr (O] = 0. (1.50)

Then this operator is ergodic if the average auto-correlation function (or the zero frequency
spectral function p(w = 0) defined in Eq. 1.29) vanishes:

im £ [ ar0()0(0)) = 0. (151)

T—00 T 0

If there exists a set of conserved quantities {Q;} such that they are orthonormal with respect
to the canonical average

(QiQj) = %TY [e_ﬂHQin} = dyj, (1.52)

then Mazur’s inequality states that

lim Tdt(O(t)O(O)) > Z HOQ)|* . (1.53)

T—=00 T J
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The above equation becomes an equality when the orthonormal set {Q;} is maximal, namely
when it contains N elements. This is precisely the case for an integrable system where that
set is {/ ™) :n=0,...,N— 1}—note, however, that the I (")’s are not necessarily orthonormal
with respect to the canonical ensemble (1.52) so we would have to Gram-Schmidt them.

Assuming that the conserved quantities are local, then the overlap between a generic
operator O and each (); scales as (9(%) Moreover, if the set {@;} is maximal, then there are
N such overlaps and the summation on the right-hand side of Eq. 1.53 will lead to an O(1)
lower bound for the long-time average of the autocorrelation function of O. Therefore, the
dynamics of generic local operators in many-body quantum integrable systems, exhibiting a
maximal set of conserved quantities, is non-ergodic.

Conversely, in a thermalizing system, the overlap between a generic local operator O and
the few [O(1)] conserved quantities will be O(+), which vanishes in the thermodynamic
limit.

Transport

Not only that the Mazur inequality shows how the dynamics is non-ergodic, but it also
has an interesting consequence in terms of the transport properties of the system. Let us
show how we can use it to prove that an integrable system exhibits ballistic, i.e. coherent,
transport.

Using Kubo’s formula for linear response, the real part of the optical conductivity at
temperature T" and frequency w can be written as

o' (w,T) = 2 Drd(w) + 08 (w), (1.54)

and the Drude weight is given by

Dy = lim lim
T—00 N—00 T’T

/ " At I(1)I(0)). (155)

—T

The current operator is a sum of local terms: J = Zf\il Ji- Using Mazur’s inequality defined
above, we find that [228|

11 )
> — — .
Dy > T A}l_f)I(l)o N E [(JQ:)|. (1.56)

First, let us see what this entails for a thermalizing system. If there is a single conserved
quantity (the energy) and the Hamiltonian H has time-reversal symmetry (TRS), then the
overlap between H and the energy current J is zero since the current is odd under TRS. Note
that this also holds for systems with particle-hole symmetry [215]. Moreover, if the overlap
between J and H is zero, then the current operator is ergodic (vanishing current-current
correlation function) and that leads to a zero Drude weight, Dy = 0 at all temperatures.
The delta function in the real part of the optical conductivity (1.54) is broadened (conven-
tionally into a Lorentzian), which means that the zero frequency (DC) conductivity is finite.
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Therefore, transport in a thermal system is diffusive since a finite opc # 0 implies a non-zero
diffusion constant by an Einstein relation.

On the other hand, in an integrable system, the current operator .J will generically have a
non-zero overlap with the N conserved quantities 1, i.e. (JQ;) # 0, which leads to a non-zero
Drude weight, Dy > 0, by Eq. 1.56. Therefore, the DC conductivity of an integrable system
is infinite (due to the delta function in Eq. 1.54), there exists a persistent (non-decaying)
current, and the transport is ballistic. This holds for spin transport in the XXZ chain or
for charge transport in the Hubbard model away from half-filling [251]. In other words, as
opposed to a thermal system, an integrable system will exhibit non-vanishing correlation
functions (coherence) and ballistic, rather than diffusive, transport.

Level statistics

In Section 1.1, we found that quantum chaos is intimately related to level repulsion and to
Wigner-Dyson level statistics. Moreover, the BGS conjecture states that quantum systems
that have a classically chaotic limit will exhibit such level statistics.

A similar set of results exists for integrable systems. In particular, the Berry-Tabor
conjecture [37] states that quantum systems with a classically integrable limit will exhibit
Poissonian level statistics. Analytical and numerical studies have confirmed this conjecture in
many cases, including for quantum integrable systems that do not have a classical limit {226,
182, 192, 178, 202].

Let us provide some intuition for the Poissonian statistics by analyzing a trivially inte-
grable quantum system, namely a set of uncoupled (non-interacting) simple harmonic oscil-
lators with incommensurate frequencies w;. The many-body energy levels can be written in
terms of the occupation numbers n; of each single-particle level i:

At high energies where the occupation numbers are also large, adjacent many-body levels
may come from very different sets of occupation numbers {n;}, provided that the frequencies
are incommensurate [37]. Intuitively, this means that nearby levels are uncorrelated (unlike
those of a thermalizing system, which exhibits level repulsion) and can be modelled as a
Poisson process. If the average density of states at high energies is roughly constant and
equal to p, then the average number of levels in an energy window [F — dFE, E + 0E] is
A = 20Ep. The probability of finding n levels in this window is, therefore,

Are=A
ol

9Tn fact, the current operator can itself be a conserved quantity. This is the case with the energy current
in the XXZ chain [38].

I

(1.58)
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Since the “time of arrival” for a Poisson point process is exponentially distributed, then the
probability distribution of adjacent level spacings s = Ej 1 — E} is given by

P(s) = \e™, (1.59)

which is very different from the Wigner-Dyson surmise (1.23)! Qualitatively, there is no level
repulsion, and there are many degeneracies.

Thus, level repulsion or the lack thereof and the Wigner-Dyson versus Poisson level
statistics provide a natural way to test whether an unknown many-body quantum system is
thermal or non-thermal, respectively. The latter holds for integrable systems and, as we will
discuss next, to localized systems as well.

1.4 Many-Body Localization

Although integrability represents a standard example of the failure of thermalization
(violation of ETH) and non-ergodic dynamics in many-body quantum systems, it is not
robust to naturally-occurring generic perturbations. In fact, it is generally believed that
weak integrability-breaking will ultimately lead to the thermalization of the system.

We introduce localized systems as another class of non-ergodic, many-body systems where
quenched disorder plays a crucial role in the failure of thermalization and, most importantly,
to its robustness to generic perturbations. In this section we focus on two aspects of many-
body localized systems that will be important for different parts of this dissertation.

First, we discuss criteria for the regimes of stability of the MBL phase. This analysis
will be essential to Chapter 3, where we will address a controversy wvis-a-vis the existence of
many-body localization d > 1 spatial dimensions. As a warm-up, we present the well-known
problem of single-particle Anderson localization, in the way Anderson first conceived it: to
wit, as the stability of localized single-particle states to the addition of hopping between
them. As detailed below, we find that resonances play an important role and we lever this
observation to derive a criterion for the stability of Anderson localization. This criterion will
depend on the number d of spatial dimensions and we will briefly comment on the role of
dimensionality.

We then ask about the stability of localization to the inclusion of interactions between
particles and whether there exists a many-body localized (MBL) state. We introduce and
contrast two criteria, both of which are based on the counting of many-body resonances. On
the one hand, following the work of Basko, Aleiner, and Altshuler [29] (BAA), we can think
about the interactions between particles as causing hops in the space of single-particle states.
Describing MBL as Anderson localization in Fock space allows us to derive a criterion for the
existence of many-body localization in any dimension d. On the other hand, following the
work of De Roeck and Huveneers 70|, we study the role of interactions directly in real space
and obtain a second criterion for the stability of MBL. We find that this De Roeck-Huveneers
criterion is in tension with the BAA one even in d = 1. A striking prediction of this second
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approach is that MBL is unstable in higher dimensions, d > 1, due to rare regions of weak
disorder—we carefully explore this implication in Chapter 3.

The second aspect of MBL, which we review in this section, is the role of localization
in stabilizing exotic order that would be forbidden in equilibrium systems. To this end,
we introduce a phenomenological description of a system deep in the MBL phase. This
enables us to explain how disorder localizes bulk excitations, circumventing the restrictions
of Landau-Peierls-type arguments, and protects order in highly excited states.

We deploy this second crucial property of MBL in Section 1.5 where we discuss driven
(Floquet) systems, and, more specifically, in Chapter 2 where we present how many-body
localization arrests the heating of a Floquet system and stabilizes symmetry-protected topo-
logical order in Floquet eigenstates.

Anderson localization

The simplest version of localization was first introduced by P.W. Anderson [15] in the
context of non-interacting quantum systems with quenched disorder. As the title of the orig-
inal paper suggests, the salient feature of single-particle localization (SPL) is the absence of
diffusive transport characteristic of thermal systems and, consequently, zero DC conductivity
(O’ DC — 0)

Let us present the main results of Anderson localization, with an emphasis on the role of
resonances. On the one hand, this allows us to obtain a very coarse criterion for the stability
of Anderson localization to hopping in real space. On the other hand, we will generalize this
approach to study the stability of many-body localization to interactions between particles
and rare regions of weak disorder.

The model used by Anderson describes a single electron hopping (¢ # 0) on an infinite
lattice with on-site quenched disorder via the Hamiltonian

H = tz <c}cj + c}ci) + Z uic;rcl-, (1.60)
(ig) i

where p; is a random variable drawn from some distribution of width W. In the ¢ = 0 limit,
the eigenstates of H are of the form |¢;) = cl-L |0) and are trivially localized on single sites
R..

Using a perturbative “locator” expansion in % < 1, Anderson [15] showed that ind = 1,2
and for arbitrarily weak disorder, all eigenstates |1),) are localized around sites R,, such that

Ir—Ra|

|a(r)]? oc e” & |, where £ is some localization length dependent on energy and W. And
in d = 3, there exists a critical value t. such that eigenstates are localized for t < t. and
there exist delocalized states for t > t. (i.e. |0,(r)|* oc V7!, where V is the volume). In the
latter case, not all eigenstates are extended: there are both localized and delocalized states
and these two groups are separated by a mobility edge, i.e. they do not co-exist at the same
energy.
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As advertised, instead of presenting Anderson’s tour de force in perturbation theory, we
introduce a simple criterion for a localization-delocalization transition based on the counting
on resonances.

The role of resonances

First, let us define the meaning of a hopping resonance and understand its role in the
stability of Anderson localization.

Suppose that we are in the weakly hopping limit ¢ < W and we want to express the
eigenstates |1),) of the Hamiltonian in terms of the single-site, unperturbed eigenstates |¢;) =
cj- |0). For illustrative purposes, consider the two-site problem. The Hamiltonian can be

written as
prot
H = , 1.61
() (161)

and we have encountered it while discussing the Wigner-Dyson surmise. The bare energy
separation is [y — 2| ~ W and, in the limit > < 1, the eigenstates can be written as [t 2) ~
|¢1,2) + 71 [2,1) and they are close to the unperturbed states |¢,) where fermion is localized
on one of the sites. In the opposite case, the resonant limit % > 1, the hopping t strongly
hybridizes the eigenstates such that |11 2) o< |¢1) £ |¢2) and the fermion is delocalized, i.e.
it is equally likely to be on either site.

The two-site toy problem suggests the following intuition for the Anderson localization: in
the insulating (localized) phase there are only a few resonances in the system and the eigen-
states |1,) are “close” to the on-site (unperturbed) eigenstates |¢,), whereas in the metallic
(delocalized) phase there exist a proliferation of resonances and the |¢,)’s are strongly hy-
bridized.

Counting resonances and criterion for the stability of Anderson localization

We now turn back to the full lattice problem and establish a criterion for the stability of
Anderson localization by counting resonances: the localization is destroyed once resonances
proliferate and single-site states are strongly mixed.

On a lattice in d spatial dimensions, each site has 2d neighbors and the energy for a
nearest-neighbor hop is 2dt. The energy mismatch between two neighboring sites is, as before,
|UR, — 1R;+e| ~ W. As shown above, the mixing between single-site states is controlled by

the hybridization ratio
_2dt

9= W
Note that, with nearest-neighbor hopping, a fermion can travel a distance r at the 7" order in
perturbation theory and the matrix element of this hop is approximately tg". In the locator
limit, t < W, we have that ¢ < 1, and the matrix element for a long-range hop decreases
exponentially with the distance r. Therefore, for a long-range incoherent transition to be

(1.62)
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possible, the energy spacing between the initial and final states has be exponentially small
as well: 0 S tg”.
Therefore, our naive criterion for the delocalization transition is

2dt.
= ~1

o~ L (1.63)

Ge
ensuring that single-site states are strongly hybridized and resonances proliferate. In fact,
a more careful analysis that takes into account the probability long-range resonances [15]
would refine the above criterion to

t. 1

o~
~

W~ 2dlogd’

(1.64)

This prediction is incorrect in d = 1 and d = 2 where there is no transition (f. — 00). In
d = 2, this is due to the fact that the localization is caused by quantum interference effects:
an electron will visit the same site infinitely many times %, leading to a loop. However, there
are two oriented loops, and these two interfere constructively in the path integral, leading
to an enhancement of the localization probability. This phenomenon is also known as weak
localization.

Nevertheless, our naive criterion (1.64) works increasingly well in higher dimensions for
d > 2. In fact, it is exact for the “infinite” dimensional case of the Cayley tree (Bethe lattice)
of coordination z: the transition occurs at t./W = 1/(zlog z), as shown in the pioneering
work of Abou-Chacra, Thouless, and Anderson [4].

Stability to interactions

The fundamental message of the previous sections is twofold. First, the stability of An-
derson localization to hopping in real space is controlled by resonances and their proliferation
leads to delocalization. Second, the spatial dimension d plays an important role 2!. These
two observations will have counterparts in our analysis of the stability of localization to
adding interactions between particles, which we now discuss.

Let us start by writing Anderson’s Hamiltonian (1.60) in second quantized form in the
basis of the single-particle localized states:

H= Zeafy}ya, (1.65)

where 4! creates a fermion with energy €, and state |a), localized around the site R,.
Framing the problem in this second quantized form allows us to naturally extend it to

20This discussion is very similar (and intimately related) to Polya’s recurrence theorem for random walks:
an unbiased random walk on Z% is recurrent for d = 1,2 and transient for d > 2.

21 An even richer picture emerges from the beautiful scaling theory of Abrahams, Anderson, Licciardello,
and Ramakrishnan [5], which we omit here for brevity.
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the many-particle, non-interacting case. The many-body eigenstates are just Fock states
(tensor products of single-particle states) labeled by the occupation numbers {n,}.

Based on this formulation, we can make a few last observations vis-a-vis the properties of
many-body Anderson localized systems. First, the level statistics is Poissonian, as discussed
above in the case of non-interacting simple harmonic oscillators (Section 1.3). Second, if we
start with a spatially non-uniform density of particles in the localized states over a large
length scale, this initial density survives at all times because each particle is localized. Thus,
the ETH is violated and the system does not thermalize. Third, since the system is non-
interacting, there is no spreading of entanglement, no dephasing, and no dissipation.

Therefore, if localization is stable to fermionic hops, then a natural question to ask is
whether it is also robust to adding generic fermion-fermion interactions: ) , Vabcd%t%j%%-
In other words, is many-body localization (MBL) possible?

The problem whether Anderson localization is stable to fermionic interactions was first
studied by Fleishman and Anderson [89], who found that the answer crucially depends
on the dimensionality d of the system and the range of the interactions. The first non-
perturbative approach was undertaken by Altshuler, Gefen, Kamenev, and Levitov [13] for
a quantum dot (i.e. a system without spatial structure) and it had two crucial insights: 1)
the problem of many-body localization (MBL) can be recast as Anderson localization in the
Fock space of single-particle states (a Cayley tree) and ii) the stability of the phase can be
investigated using a Fermi’s Golden Rule criterion. This second approach (of Altshuler et al.)
has culminated with the seminal perturbative analysis of Basko, Aleiner, and Altshuler [29]
(BAA): they have found that there exists a metal-insulator transition between an MBL state
and a delocalized state at a finite temperature 7, and in any spatial dimension d (see also
the contemporaneous work of Gornyi, Mirlin, and Polyakov [103]).

More recently, several works have attempted to go beyond the perturbative arguments of
BAA. In particular, Imbrie [120] has given a proof for the existence of MBL in spin chains
with short-range interactions ?2. Secondly, De Roeck and Huveneers |71, 70| have proposed
a non-perturbative mechanism, based on rare regions of weak disorder, that can destabilize
many-body localization by triggering a thermalization avalanche. We will present the De
Roeck-Huveneers criterion in the remaining part of this section, and we will contrast it to the
BAA prediction. Then, in Chapter 3, we will study its most striking consequence: contrary
to the BAA prediction, the MBL state is unstable in d > 1 or in d = 1 with sub-exponentially
decaying interactions.

BAA criterion for the stability of MBL

Let us now introduce the BAA criterion and explain how it maps the stability of MBL
into a question about Anderson localization in the Fock space of single-particle states.

22The caveat is that the proof relies on a reasonable assumption, namely that the energy levels do not
show level attraction.
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Following the BAA work [29], we start from the second quantized Hamiltonian

H = Z 6(172’% + Z Vabcdlylvglycf}/dy (166>
a abed

where the interaction V' is taken to be “weak,” as we will define shortly. Strictly speaking,
we have already seen that the non-interacting model (V' = 0), i.e. the Anderson insulator,
has a zero DC conductivity. For the interacting (V' # 0) model, BAA found that there
exists a many-body mobility edge ?*: there exists a finite energy density €, = EW such that
o(e) =0 for € < €, and o(€) > 0 for € > ¢.. This represents a critical point for an insulator-
metal transition, separating the insulating MBL phase wherein many-body eigenstates are
localized, from the metallic phase wherein the eigenstates are extended.

As advertised, the key phenomenological insight of BAA is that many-body localization
can be understood as Anderson localization in the Fock space of single-particle states. Since
the electron-electron interaction is assumed to be short-ranged and the unperturbed eigen-
states are exponentially localized around sites R,, R;, etc., then the interaction will only
couple a single-particle state |a) to other single-particle states |b) located inside a localiza-
tion volume &% around R,. For these states, the energy separation between two adjacent
levels is typically

o = we?, (1.67)

where v is the single-particle density of states.

Secondly, we assume that the matrix element takes the form V;.q = Ad¢ for states a, b, ¢, d
in the same ball £? centered on R, in real space. The fundamental question addressed by
BAA is the following: if we start with an electron localized in the single particle state |a),
can this electron decay incoherently to a continuum of many-body states?

If we apply the interaction V.4 to an initial state whereby a fermion is located on site a,
then this will lead to the decay of this excited state into a three-particle excitation, consisting
of a hole on nearby site b and two particles on nearby sites ¢ and d. The energy mismatch
between the single-particle excitation and the three-particle excitation is |e,+€,—€.—€4| ~ J¢.
Further applications of V' will lead to five-particle excitations, seven-particle excitations, etc.
Therefore, the question becomes whether a single-particle state can lead to a cascade process
and ultimately decay into all possible many-body eigenstates.

Inspired by the counting of resonances for Anderson localization, we want to compare the
hopping energy V' = AJ¢ to the energy mismatch J; and use their ratio as a criterion for the
transition: if the hopping energy is much larger than the mismatch, then a single-particle
excitation will lead to a proliferation of resonances (excitations). Recalling that the criterion

for Anderson localization [15] is
2dt.. 14
log— ~ 1 1.68
Wt T (1.68)
23More recently, the existence of a many-body mobility edge in a thermodynamic system has been dis-
puted [71], also based on a rare regions mechanism.
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we can identify the hopping term with ¢ — V' = A\d¢ and the mismatch with W — J,. The
temperature 7' sets the number of excited quasi-particles that can scatter with the electron
initiated on site a and, through this, it controls the effective connectivity in Fock space
2d — %

By identifying the stability of localization to electron-electron interactions with the sta-
bility of Anderson localization in Fock space, BAA obtained that a metal-insulator transition
occurs at a critical temperature T, 2* given by

O
Aog 5

(1.69)

This mobility edge at T, separates localized many-body eigenstates of the insulating phase,
characterized by opc = 0, from extended many-body eigenstates of the metallic phase,
characterized by diffusive transport opc > 0.

We emphasize that the above criterion is valid at sufficiently low temperatures. In the
limit of high temperatures, the number of available scattering process for |a) is given by %,

where w is the single-particle bandwidth. In d = 1 the bandwidth scales as

1
W —, 1.70

va ( )
where a is the lattice constant and v, as before, is the single-particle density of states. Then
the effective connectivity at high temperatures becomes 2d — ”5 5

Therefore, the BAA criterion for the stability of MBL in d = 1 and at high temperatures

is:

a

ch

. 1.71
Alog % ( )
The main prediction of this criterion, which we will contrast with the one due to De Roeck
and Huveneers, is that MBL is stable in d = 1 for arbitrarily large localization lengths &,
provided that the interaction A is sufficiently weak.

A phenomenological theory of MBL

In order to present the second criterion for the stability of MBL to rare regions of weak
disorder, we have to first introduce a phenomenological description of the system deep in the
MBL phase in terms of local integrals of motion (LIOM). Historically, this picture emerged
from an early dynamical renormalization group study [238, 12|, was expanded by a series of
phenomenological arguments [117, 211, 210, 56|, and culminated in a rigorous proof [120].
After explaining the origin and main features of this emergent integrability, we review the
De Roeck-Huveneers criterion and compare it to the BAA predictions. Subsequently, we
shift gears and use the phenomenological theory to explain localization-protected order.

24Gtrictly speaking, the temperature is ill-defined for a non-thermal system and we should use energy
densities instead.
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Since most of this dissertation is concerned with spin chains, let us focus on analyzing
MBL in spin systems. First, using a Jordan-Wigner transformation, we can re-cast the
Anderson Hamiltonian (1.60) for single-particle localization as a spin Hamiltonian:

H= Z J(ofol, +olol,) + Z hio?. (1.72)

The ¢™¥* are Pauli matrices and we have re-labelled the hopping ¢ — J and the random
local fields, drawn from a distribution of width W, u; — h;. Note that, in this spin picture,
1) corresponds to a fermion on site ¢, whereas ||;) corresponds to a hole on site i. Secondly,
the interactions take the form of an additional term, ), Vio7o7,,, leading to the Pal-Huse
model [179]:

H = Z hio} + Z Viojoi, + Z J(ofof, +0loly). (1.73)

A few remarks are in order. First, this model has a Z, symmetry generated by © = [[ o7.
Secondly, in the limit J = 0, all of the local spin operators ¢; commute with each other,
[0f,0%] = 0, and with the Hamiltonian, [07, H] = 0. In other words, each local o7 is conserved
and the system is trivially localized. To understand why, note that there are N conserved
quantities and each one has eigenvalues o7 = +1. Therefore, all 2V many-body eigenstates
of the Hamiltonian H can be labelled by a collection {07} of the quantum numbers, i.e. the
eigenstates are product states of the form |07) ® - -+ ® |o%).

Turning on a hopping term, 0 < J < W, we can imagine constructing the eigenstates
perturbatively a la BAA. The typical level splittings between nearest-neighboring sites |h; —
hiy1| ~ W are much larger than the strength J and the states on different sites are only
weakly hybridized. Thus, a conventional BAA analysis would reveal that there exists an
energy density €. such that many-body eigenstates corresponding to € > €. obey ETH,
whereas those below €, violate ETH. This is, indeed, the case for weak disorder.

However, extensive numerical evidence [159, 175, 12| and Imbrie’s proof [120] reveal an
even more complex phenomenology for strong disorder. There also exists a critical value for
the disorder strength W, such that, for W > W., all eigenstates are MBL and this occurs
even for strong interactions, well outside the perturbative regime 2°. This scenario where
there is no mobility edge and all many-body eigenstates are localized is known as full-MBL
or infinite-temperature MBL.

We are now ready to introduce the phenomenological description [175, 12| of the full-
MBL state in one spatial dimension, d = 1. For J # 0, it was argued [210, 211| that the bare
physical degrees of freedom o7, known as p-bits, acquire a quasi-local dressing and they can
be adiabatically connected to a new set of localized degrees of freedom 77, known as [-bits

25We emphasize that this transition between thermal (all eigenstates obey ETH) and MBL (all eigenstates
violate ETH) phases is an eigenstate phase transition, which is marked by sharp changes in the properties of
the many-body eigenstates and, thus, the dynamics of the system (i.e. also a dynamical phase transition).
Clearly, this is visible solely if one employs single-eigenstate ensembles. Otherwise, averaging over many
eigenstates as is customary in traditional statistical mechanics would wash away this physical phenomenon.
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or LIOMs. This is very similar to the phenomenology of the Fermi Liquid Theory and its
quasi-particle description, which we emphasize shortly. Therefore, we can write the p-bits
as

o = ...+ AT+ Ao + AT+ tall, (1.74)

where the tail contains higher-body terms such as 77777 77 etc. The A,’s describe the dressing

tail and the LIOMs are quasi-local because this dressing falls off exponentially with the
distance 7, namely A, o« e /¢, with a localization length £. Note that Ay, known as the
quasi-particle residue in Fermi Liquid Theory (FLT), controls the overlap between the re-
normalized, quasi-local, integrals of motion 77 and the bare (strictly local) o7.

Most importantly, the quasi-local unitary 2% that maps p-bits to 1-bits (LIOMs) also
diagonalizes the Hamiltonian into

H=FE,+ Z 77+ Z JiTiT] + Z Z KZ-(&)}J.TiZT]jl...T]fan. (1.75)
i J

n=14,{k}.j

Let us make a few important observations based on this result. First, J = 0 and K = 0
corresponds to the Anderson insulating limit.

Second, similar to FLT, note that this transformation diagonalizes the Hamiltonian in
the quasi-particle basis: the LIOMs 77 commute with each other, [77,77] = 0, and with the
Hamiltonian [r7, H] = 0; they are Hermitian and (77)* = 1, which means that they also have
eigenvalues 77 = +1. Therefore, the eigenstates of H are fully determined by specifying a
collection {77}, and they are product states of the form |77) ® --- @ |7%).

Third, the dressing tail of each LIOM leads to an effective LIOM-LIOM interaction of
the form

o705y = Je T (1.76)

where J is the bare interaction strength and £ is the localization length. Thus, the effective
interactions J;; in Eq. 1.75 fall off exponentially with distance, as do their probabilities of
being large.

Fourth, similar to the emergence of the phenomenological Fermi Liquid Theory as a
fixed point in an RG treatment of interacting electrons [212], the phenomenological 1-bit
Hamiltonian (1.75) emerges as a fixed point in a dynamical RG treatment [238, 12| of the
spin model (1.73). This is the reason why full-MBL in d = 1, characterized by N local
integrals of motion, is sometimes referred to as emergent integrability. Nonetheless, note that
the quasi-locality of the LIOMs is a crucial aspect since, otherwise, an integrable system per
se would exhibit ballistic transport (Section 1.3), as opposed to no transport (opc = 0).

Finally, the dynamics of a single I-bit is trivial: it precesses around the z-axis at a rate
given by the strength of the interactions with all the other l-bits. In contradistinction with
the Anderson insulating phase, this interaction between the localized degrees of freedom
produces both entanglement and dephasing! However, there is no dissipation since there are
no spin-flip operators in Eq. 1.75.

26LIOMs are usually constructed perturbatively and this unitary is generally not unique.
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De Roeck-Huveneers criterion for the stability of MBL

We now have the necessary background to introduce the De Roeck-Huveneers [70] cri-
terion for the stability of MBL. We will describe how a rare region of weak disorder, natu-
rally occurring in any disordered and thermodynamic system, may trigger a thermalization
avalanche that renders MBL unstable in d > 1. Secondly, the De Roeck-Huveneers cri-
terion also implies that there exists a true localization-delocalization transition in d = 1,
controlled by the localization length &, for systems with short-range interactions. This is
in stark contrast with the BAA analysis (1.71), which found that MBL is stable in d = 1
for arbitrarily large &, provided that the interaction is sufficiently weak. We will further
explore the thermalization avalanche in Chapter 3, where we will analyze the d = 1 prob-
lem with exponentially decaying interactions, as well as the cases of d > 1 and d = 1 with
sub-exponential interactions.

Consider a strongly disordered insulator, deep in the putative MBL phase, and let us
described it using the phenomenological Hamiltonian from Eq. 1.75, with a localization
length £. In a thermodynamic system in d spatial dimensions, there will always exist rare
regions of abnormally weak disorder. Furthermore, the disorder strength in such a “bubble”
may be so weak that this region, in isolation, is thermalizing. Note that thermal bubbles
of size ¢ are an extremely rare fluctuation, and they occur with a frequency that decays at
least as exp(—A¢?), where A is an O(1) number.

Let us focus on a single thermal region. If the linear size is ¢, then it has a many-body
level spacing 0, ~ exp(—Ag4f?). Secondly, the matrix elements of a local operator of acting
in the ergodic region are given by the ETH ansatz (1.30):

where |n) and |m) are eigenstates of the local Hamiltonian characterizing the thermal bubble
and correspond to energies F,, and F,,, respectively. The frequency is w = F,, — F,,,. And,
for simplicity, we have assumed that the diagonal matrix element (n|o? |n) is zero. Lastly,
the thermal region is also characterized by a spectral function p(w), as described in Section
1.1.

We assume that, except for this rare thermal bubble, the rest of the system is deep in
the MBL regime and it is characterized by LIOMs 72. Furthermore, we consider that the
LIOMs interact with the ergodic region through their exponentially-decaying dressing tails.
Taking the bubble to be located at the origin, the effective coupling between the bubble and
the insulator is given by

Hcoupling = Z Veira/ga';'rﬂf, (178)

where o?

7 is a local operator acting on the bubble, and 77 is a local operator acting on the
LIOM located at distance r, from the origin.
The first step in the thermalization avalanche argument [70] is to consider whether the

LIOM closest to the bubble, namely the localized site with the strongest coupling V,,, gets
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hybridized with the bubble. The criterion for this is given by the following condition for the
matrix element 7 :

T < V| {(n]of Im)| = V/Ipp(W) > b, (1.79)
where |E, — E,,| = W and W is the disorder strength. Crucially, this entails a non-zero
Fermi Golden Rule (FGR) decay rate ~ T2/¢, for the LIOM. If this is the case then the
site can be considered as part of the bubble and, once again, we assume the ETH ansatz for
the matrix elements. Since the LIOM is absorbed into the ergodic region then the Hilbert
space dimension of the combined system increases by a factor of 2, i.e. the level spacing gets
reduced to dp ~ 0,/2. However, in the process, the spectral function of the ergodic grain also
gets modified from p(w) to p(w). Based on certain assumptions about the eigenfunctions |n)
of the combined system as a linear superposition of product states {|n) ® |77)} of the initial
bubble and the LIOM, Ref. [70] argues that p(w) ~ p(w), i.e. that the spectral function
remains essentially the same after the LIOM becomes a bona fide member of the bubble.

If we iterate this argument multiple times such that the bubble grows to a total radius
R, then the level spacing becomes 65 (R) ~ dye~ 44’ where Ay ~ O(1). The matrix element
to absorb an additional LIOM at distance R is Tz ~ V+/0g(R)p(W)e #/¢ leading to the
following condition for the hybridization of the site into the bubble:

Tr PW) 4 rd/o
~ V| B LA 2RI s, 1.80
dp(R) O (1.80)

Evidently, the above condition can always be satisfied for R — oo in d > 1, rendering the
localized state unstable in any dimension higher than one! This is in stark contrast with the
BAA criterion, which found that MBL is stable in any dimension d at low temperatures—
in fact, the BAA prediction should work better in higher dimensions. We emphasize that
the De Roeck-Huveneers criterion is based on a non-perturbative effect, whereas the BAA
criterion is based on a perturbative analysis, albeit at all orders.

A second consequence of Eq. 1.80 is that the exponential has a minimum at

R* = [2/(dAq)) /Y (1.81)

when d > 1. For the avalanche to continue indefinitely, it must survive around R*. Thus,
a necessary and sufficient condition for the LIOM at an arbitrary distance R > R* to be
hybridized with the ergodic region is that Tg«/dg(R*) > 1. This immediately holds if the
initial bubble size N > N*, where

N* ~ (1/€)4=D (1.82)

In Chapter 3, we will further analyze this requirement for critical bubble sizes needed to
sustain an avalanche.

Lastly, we emphasize that the De Roeck-Huveneers criterion has a striking consequence
also in one spatial dimension. For d = 1, the function in Eq. 1.80 is monotonically increasing
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or decreasing if £ > £, or £ < &, respectively, where ¢, = ==. This means that the MBL state
is stable only below a critical localization length ! ThlS s in stark contrast with the BAA
prediction from Eq. 1.71 whereby MBL is stable in d = 1 at arbitrarily large localization
lengths &, provided that the interaction strength is sufficiently small. We will explore this
controversy in Chapter 3.

Localization-protected quantum order

We shift gears and present how many-body localization can stabilize quantum order that
would otherwise not exist in equilibrium systems. Specifically, we start by discussing the
notion of eigenstate order whereby certain correlation functions exhibit long-range order in
many-body eigenstates. This idea agrees with our conventional understanding of phases of
matter for equilibrium systems due to ETH: averaging over a single energy eigenstate is
equivalent to a canonical ensemble average. But, most importantly, eigenstate order allows
us to generalize the notion of long-range order to mon-equilibrium, many-body quantum
systems, where thermal ensemble averaging provides an incorrect description.

In this section, we will focus on the specific case of spontaneous-symmetry breaking
(SSB). From Landau-Peierls-type arguments, we know that such order does not exist at
finite temperatures in d = 1 for equilibrium quantum systems. Taking advantage of the
phenomenological theory of MBL introduced in the previous section, we will discuss how
strong disorder localizes thermal excitations, leading to SSB order at high energy densities
(since temperature is ill-defined) for non-equilibrium quantum systems.

In addition to SSB, this “localization-protected” order [118] has also been studied for
long-range topological order and for symmetry-protected topological order [175, 12, 118].
We will discuss the latter in the next section, in the context of driven quantum systems, as
well as in Chapter 2.

Spontaneous symmetry-breaking below the critical dimension

Let us explain the notion of eigenstate SSB order and how MBL protects it in d = 1 by
analyzing a transverse-field Ising model:

N-1
Z hiot =Y (Jiojoi,, + Viotol,,) , (1.83)
=1

where h;, J;, V; > 0 are random and drawn from log-normal distributions with means h, J,
and V. This model has a Z, symmetry generated by the global spin-flip operator © = I, 07
Consequently, eigenstates of H must also be eigenstates of ©.

The clean (h; = h and J; = J) and non-interacting (V; = 0) model has a zero-temperature
phase transition, occurring when h = J. Since this is a quantum (7" = 0) phase transition, it
is characterized by different Hamiltonian ground-state properties. To wit, when A > J, the
system is in a paramagnetic phase: the ground-state is a trivial product state of the form
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| >— -+ —), where |—;) is an eigenstate of of |—;) = |—;). When h < J, the system is
in a ferromagnetic, ordered phase: the ground-states are “cat states” |+) = W%) where

Ity = 17 ...1) and |t) = O |{}). These eigenstates are degenerate in the thermodynamic
limit and they exhibit long-range order:

lim lim ((£|oio: |£) — (£|of |E£) (£]| o7 |E£)) = ¢ > 0. (1.84)

r—00 N—oc0
Crucially, no such order exists at 7' > 0 in d = 1, based on Landau-Peierls-type arguments.
The intuition is that thermal fluctuations will lead to a proliferation of defects (in this case,
domain walls) which will destroy order. We emphasize that eigenstate order, as defined
above, reduces to the standard definition of phases of matter for a system in thermal equi-
librium: according to ETH, averages in energy eigenstates (1.84) are equivalent to a thermal
ensemble average.

Let us now consider the full (disordered and interacting) model from Eq. 1.83. If the
disorder is strong enough such that the system is fully-MBL, then we can take advantage of
the phenomenological picture from Eq. 1.75. As discussed before, all the eigenstates of the
Hamiltonian can be labelled by specifying the quantum numbers of each LIOM 77. However,
depending on the relative strength of the averages J and h, the dependence between LIOMs
and the physical degrees of freedom changes dramatically.

In the ordered phase, J > h, the LIOMs stem from the local operators o?: to wit,
77 = Z;o7 + ... and they are odd under the Z, symmetry generated by ©. Therefore, if we
consider a state |7{ ...7%) specified by the LIOM quantum numbers, then we can generate
pairs of Hamiltonian eigenstates:

UUE = Pt
|n,j:>:|T1 TN>\/§’Tl TN>, (1.85)

where |T_f . Th) = O | ...7%). Note that the states |n, £) are also eigenstates of ©, with
parity £1. The number n in |n,+) is an index that labels the collection of LIOM quantum
numbers {77}. We immediately see that (n,+|77 |n,£) = 0 since the LIOMs are odd under
the Z, symmetry. Secondly, these Hamiltonian eigenstates exhibit long-range order:

lim lim (n,%|0i0? |n,+) ~ lim lim ZyZ, (n, £| 7677 |n, &) ~ Z2 > 0, (1.86)
r—00 N—00 r—00 N—00
where Z3 represents the overlap between 1-bits and p-bits. Note that we have not made any
assumptions about the energies of these eigenstates (other than assuming that the system is
full-MBL). Thus, we see that MBL stabilizes SSB order in highly-excited eigenstates, i.e. at
arbitrarily-high energy densities, which is impossible in thermal equilibrium!

Lastly, to complete the story, note that in the paramagnetic phase (J < h) the LIOMs
stem from the local operators o%: 7¥ = Z;o% +. .. and they are even under the Z, symmetry
generated by ©. Thus, the eigenstates of the Hamiltonian H are trivial product states of
the form |7) ® --- ® |7%), and they are also eigenstates of © with parity £1. Since the
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eigenstates are product states, then it immediately follows that there is no long-range order
in the (ogo?) correlation function.

To summarize, we have found that strong disorder, leading to MBL, localizes the thermal
excitations (domain walls) which are responsible for the destruction of long-range, symmetry-
breaking order in equilibrium systems below the upper critical dimension.

1.5 Driven systems

Thus far, we have only considered isolated many-body systems described by static Hamil-
tonians. It is natural to wonder whether time-dependent systems, characterized by Hamil-
tonians H(t), can exhibit exotic and stable phases of matter that do not exist in static
systems. To investigate this question, we analyze driven (Floquet) quantum systems, where
the Hamiltonian obeys H(t) = H(t + 1) with a period 7. This basic time dependence can
be naturally engineered in cold-atom experiments via an external periodic drive field, as we
will discuss in Chapter 2.

The remainder of this chapter is organized as follows. We will overview the Floquet
formalism, with an emphasis on two fundamental behaviors. First, we will present Floquet-
thermalization and draw parallels to our discussion from Section 1.1: the quasi-energies
will exhibit level repulsion and the Floquet eigenstates will obey ETH. Such a system will
absorb energy indefinitely from the external drive field and eventually heat up to a featureless
“infinite-temperature” state. Second, we will introduce Floquet-MBL and explain how the
unitary time evolution over a period T can be effectively described using a static, local,
and many-body localized (in the sense of Section 1.4) Floquet Hamiltonian: the quasi-
energies will obey Poissonian statistics and the Floquet eigenstates will violate ETH. Most
importantly, this Floquet Hamiltonian can be diagonalized in terms of local integrals of
motion, which explains the absence of heating in a Floquet-MBL system. Finally, we will
describe how one can lever the arresting of heating to protect quantum order in Floquet
eigenstates. We will concentrate on the case of symmetry-protected topological (SPT) order
and briefly describe how to engineer intrinsically-Floquet SPT’s that do not have static
counterparts, which will be the focus of Chapter 2.

Let us now introduce the building blocks of Floquet theory. Suppose we initialize a
Floquet system, described by a periodic Hamiltonian H(t + T') = H(t), in a state |¥(0)).
The Floquet theorem ensures that Schrodinger’s equation

d|W(t))

ZT = H(t)|V(t)) (1.87)
has a solution of the form '

[W(t)) = e |n(t)) (1.88)

where the Floquet states |¢,) are also periodic, i.e. |¢p,(t)) = |¢,(t +T)). This result is
the equivalent of Bloch’s theorem for spatially-periodic crystals, and the counterparts of
the states |¢,) are the Bloch waves. Similarly, since in a periodic crystal the momentum is
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defined in a Brillouin zone, the Floquet quasi-energies €, are also defined modulo 27, namely
—7 < €, < %. Note that they are called quasi-energies since the energy, in its traditional
understanding, is no longer conserved.

Secondly, a fruitful way to think about these driven systems is to consider the time
evolution unitary U(T) over a period T. Solving the linear differential equation in the
standard way, we can write

U(T) = T exp (—i /0 ' dtH(t)) , (1.89)

where T is the time-ordering operator. Then it becomes evident that the Floquet states |¢,,)
are eigenstates of U(T):

U(T) |¢n) = 7" |¢n) - (1.90)
In certain cases and under some restrictions for U(T), it is possible to take its logarithm in
a controlled way, namely to write it as

U(T) = e T (1.91)

such that all the information about the driven system is encoded in a local Floquet Hamil-
tonian Hp. In particular,

Hp ’¢n> = €n |¢n> . (1'92)

Note that, since the quasi-energies ¢, are not uniquely defined (only modulo 27), this holds
for Hr as well and one needs to specify a branch for the log.

Floquet-thermalization

The existence of a local Floquet Hamiltonian is intimately related to the thermalization
and heating of the system [1, 184, 185]. In practice, as we will show in Chapter 2, we
can attempt to find a local Hr by moving into a rotating frame and then performing a
perturbative (Magnus) expansion in the driving frequency w: we construct Hp = > H}")
and the n' order term is O (w™"). This approach fails in thermalizing Floquet systems,
leading to either a series that does mot converge or to a Floquet Hamiltonian that is non-
local and, therefore, unphysical.

Nevertheless, the term Floquet-thermalizing is warranted since the quasi-energies €, will
exhibit level repulsion and the level statistics will be described by the Circular Orthogonal
Ensemble (COE) ?7. Secondly, the Floquet eigenstates |¢,) will obey a volume law for the
entanglement entropy and satisfy ETH. Finally, in this thermalizing case, the Floquet system
will absorb energy indefinitely from the external drive and, provided that the Hilbert space
is bounded, heat up to an “infinite-temperature” state whereby the reduced density matrix
of a sub-system is p o 1. We emphasize that, as argued in Ref. [185], the heating to an
infinite-temperature state guarantees that the Magnus expansion does not converge.

2TThis ensemble is the generalization of GOE for the case where the €,’s are defined on the circle (i.e.
modulo 27).
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Floquet-MBL

We now discuss the second possibility, namely that the Floquet unitary U(7') admits a
decomposition in terms of a local Floquet Hamiltonian. In particular, we will explain how,
for sufficiently strong disorder, it is possible to obtain a Floquet-MBL phase where Hp is
local and it can be diagonalized in terms of local integrals of motion a la Section 1.4.

In recent years, there has been a flurry of work [185, 131, 132, 77, 76, 133, 244, 186| on
driven systems with a binary protocol whereby one dynamically toggles between a localized
Hamiltonian H; and a delocalized Hamiltonian H,. For illustrative purposes, let us focus on
the following example [185]:

Hy =Y hio} + J.ojo},, if0<t<T

H(t) =
m:ZAWﬁwmﬁw T <t<Ti+T, ,

where h; is drawn from a distribution of width W 2%, Suppose that we fix the interaction
strengths J, and J,, the disorder strength W, and the first period 7). We then vary the
second period T3 and study the behavior of the Floquet unitary:

U(Ty) = exp (—iHyTy) exp (—iH,Th) . (1.93)

For large T» (i.e. small driving frequencies), the system is thermalizing: the eigenstates
of U(Ty) obey ETH and the quasi-energies are well-described by the COE [185]. For large
enough driving frequencies, namely for Ty < T3, where T3 does not scale with system size and
it is a true critical point, the system is localized: the Floquet eigenstates violate ETH and the
quasi-energies obey Poissonian statistics. Moreover, in the Floquet-MBL regime, the system
exhibits coherent dynamics at infinite times. For instance, if we prepare the system (1.93) in
a Néel initial state [¥(0)) = [t 1] ...) and let it evolve for infinitely-many Floquet periods,
then the infinite-time average of a local operator (o¢(o0)) will not decay [185]. Conversely, in
the Floquet-thermalizing phase at small driving frequencies, this time-averaged expectation
value will vanish.

All of the above features of the Floquet-MBL state can be understood by using the
phenomenological picture of many-body localization. In particular, the Floquet Hamiltonian
Hp is quasi-local and it can be diagonalized in terms of LIOMs:

HF:E()—FZTZ-Z—FZJUT;T;—F... (194)
i ij

In other words, the dynamical properties of the Floquet-MBL phase are described by an

effective static Hamiltonian Hp that is many-body localized in the sense of Section 1.4. If

localization can arrest the heating of the system, then an immediate question is whether it is

possible to obtain stable phases of matter in a driven system and, more ambitiously, whether

we can find novel phases that do not exist in static systems.

28The clean model, h; = h, heats up to infinite temperature and the Floquet Hamiltonian is non-local [67].
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Floquet-SPT order

We now briefly investigate order in Floquet systems. In Chapter 2, we will see that
the interplay between interactions, periodic driving, and disorder leads to exotic phases of
matter, such as discrete time-translation symmetry-breaking phases (i.e. the discrete time
crystals observed in Refs. [250, 61]) and symmetry-protected topological phases that do not
have analogues in static Hamiltonians. In this section, we will present the latter. First, we
will define SPT order in the context of equilibrium, static systems. Then we will introduce
the notion of driven SPT’s and describe how there exist intrinsically-Floquet SPT’s, which
will be the focus of Chapter 2.

Static SPT

Let us first define symmetry-protected topological order and illustrate its properties with
a prototypical example for an equilibrium d = 1 system.

A system described by a static Hamiltonian H with a symmetry group G is in a gapped
SPT phase if the ground-state of H obeys the following requirements: i) the symmetry is
not spontaneously broken and ii) the ground-state cannot be adiabatically connected to a
trivial product state without either undergoing a phase transition and closing the gap or
explicitly breaking the symmetry [207]. Intuitively, this emphasizes the protecting role of
the symmetry. To understand the role of topology, we note that an SPT phase is “trivial” in
the bulk, but exhibits non-trivial edge modes on the boundary.

To make things precise, consider the following Hamiltonian on a chain with N sites and
open boundary conditions:

N-1
H=X\Y of0f0;,,=\Y_ 0, (1.95)

1=2 %

P

||
N

which is known as a stabilizer code in the quantum information community. We can easily
see that the N — 2 stabilizers O; are Hermitian operators with the following properties

[H,0] = 0 (1.96)
[Oi,Oj] - 0 VZ,jZQ,,N—l
07 = 1

7
In other words, the stabilizers correspond to N — 2 conserved quantities of the Hamiltonian
H and each conserved quantity has eigenvalues +1. Consequently, there are 2V~2 different
collections of quantum numbers for the stabilizers. The missing factor of 4 is due to the
edge modes of the system. In particular, note that we can define two edges modes, located
around sites 1 and N, as follows:

Y] = ojo; (1.97)
¥ = odlo]

z z
Z1_0-17
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and similar expressions hold for the ¥y operators. Then we see that these modes obey the
standard Pauli algebra, namely [X, Zf ] = 2ie*#7Y]| where €*#7 is the Levi-Civita tensor.
Finally, both edge modes commute with the Hamiltonian H and behave like free S = % spins
located on the boundaries of the system, leading to a four-fold degeneracy for a system with
open boundary conditions. Thus, we can label all eigenstates of H by specifying the quantum
numbers for the N — 2 stabilizers and specifying the states of each edge mode. Conversely, in
a system with periodic boundary conditions, the ground-state is unique—intuitively, there
are no “‘edges” and, thus, no edge modes. This observation explains the role of topology in
symmetry-protected topological order.

The symmetry of H is Zy x Z, and it is generated by ©. = [[, 03, and ©, = [], 03, ;.
We immediately see that the edge operators, 3J; and Y, are both odd under this symmetry.
This means that the symmetry protects the gapless edge modes: to gap them out, we would
have to add an operator ¢ to the Hamiltonian, but this would break the Zy x Z; symmetry
of H! Moreover, this SPT and its edge modes are robust to generic and local perturbations
that do not break the protecting symmetry.

Protecting symmetries and projective representations

An immediate question is whether it is possible to obtain an SPT state with a simpler
symmetry group—for instance, a single Z,. We will briefly introduce the idea of projective
representations of symmetry groups to explain why this is not possible. This will allow us
to further appreciate the subtlety of intrinsically-Floquet SPT’s.

The main observation stemming from the Z, xZ, SPT we discussed above is that the edges
transform projectively under the symmetry group. In fact, there is a one-to-one mapping
between d = 1 bosonic SPT’s with a symmetry group GG and equivalence classes of projective
representations of G [183, 234, 58|.

Consider a unitary symmetry described by the group G, whose elements are g;. Then we
know that a set of matrices U(g;) form a linear representation of G if

U(g:)U(g;) = U(gig;)- (1.98)

More generally, a projective representation of G is a linear representation modulo a U(1)
phase factor:

U(g:)U(g;) = w(9i, 97)U(ig;), (1.99)
where w(g;,g;) € U(1) are known as the factor set. From group associativity (¢;g;)gx =
9i(9jgx), we immediately see that the following must hold:

w(gi» 95)w(9ig5, gr) = w(gj, gr)w (s> 9 G)- (1.100)
If we just re-define the matrices U(g;) = a(g;)U(g;) by a phase factor a(g;) € U(1) then this

will generate a new factor set:

a(Qigj)

w(glygj) = a(gi>a(9j>w(giagj>' (1101>
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Thus, two factor sets related by such a transformation lead to equivalent projective repre-
sentations U and U. Since the edges of an SPT transform projectively under the symmetry
group G, then we are interested in non-trivial projective representation classes under this
equivalence relation. It was proved by Schur that this is captured by the second cohomology
group H?*(G,U(1)).

We are now ready to explain why there is no SPT protected solely by a Zy symmetry.
The elements of the cyclic group are {1,g,4% ...,¢" '} and we immediately see that any
projective representation for U(g) is equivalent to the linear representation after re-scaling
by a phase factor ¢’*/Y. Consequently, there is no static Z, SPT. Finally, the dihedral group
Z, X Z5 has two projective representation classes, and the SPT we have previously discussed
realizes the non-trivial one.

Floquet SPT

In this section we briefly discuss how a Floquet system can realize an SPT phase with
a single Z, internal symmetry. The crucial point is that this Floquet-SPT is protected by
both the Z, symmetry and the discrete time-translation symmetry Z, which is why we use
the terminology intrinsically-Floquet. We will illustrate these points using a non-interacting
and exactly solvable model. In Chapter 2, we will explore these ideas in more detail in the
context of a Floquet-SPT phase that is stabilized by many-body localization in an interacting
system.

Consider the following binary drive of a transverse-field Ising model:

)

Hy =) Jojo,, i 0<t<T/2

H(t) = (1.102)

N
Hy =Y hio} if T/2<t<T.
=1

This model has only nearest-neighbor interactions and it can be mapped to free Majorana
fermions, but it helps illustrate the main properties of the FSPT [133, 131, 132]. We will
study its interacting and disordered counterpart in Chapter 2.

The Floquet operator over a period 1" can be written as

U(T) = exp(—iHyT/2) exp(—iH,T/2). (1.103)
Taking ‘IQ—T = 7 and using open boundary conditions, we find that
exp (—iH \T/2) = ojoy.

Note that under periodic boundary conditions this would be proportional to the identity 1.
We can also re-write the second piece of the Floquet unitary as

exp (—iH.T/2) = [—isin(fy)o] + cos(0y)] [—isin(On)oy + cos(On)] exp (—iHyu1'/2) ,
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where 0; = "L and Hyue = Y., ;. n hio? (see Appendix 2.6 for a detailed derivation).

Putting both pieces together, we find that

U(T) X 5‘%5‘12\[6Xp(—iHbu1kT/2),

where 67 y = [—sin(fy v)o{ y + cos(61,x)07 y] and note that (5f7N)2 = 1. Thus, the Flo-
quet operator U(T) = 6§6% exp (—iHpux1'/2) has two pieces: a “charge pump” term 6765%
corresponding to the product of two operators localized around the edges; and a unitary
time evolution over 7'/2 with a local bulk Hamiltonian Hyui = Y, ;5 hio?.

A few observations are in order. First, the operators 67 y localized around the edges
commute with each other, with the bulk operator Hyy, and, thus, with the Floquet unitary
U(T). Second, these edge operators are odd under the global Z, symmetry generated by

© =[]0}

= —0 iN-
Therefore, these are the protected edge modes of the FSPT.
Finally, note that U(2T) = U? = legges @ exp (—iHpuiT) and the edge operators that are
even under the Z, Ising symmetry, for instance 67 y, obey the following equation of motion:

U(nT)67 yU'(nT) = (—1)"67 v (1.104)

This means that, given any generic initial state of the system, the edge operators 77  will
oscillate with a period 27", as opposed to the period T' of the drive! We emphasize that this
does not hold for bulk operators, whose correlations are trivial in the FSPT phase. Therefore,
the Floquet system exhibits a form of discrete time-translation symmetry breaking (TTSB)
on the boundary of the system. In Chapter 2, we will further explore this observation for
interacting and Floquet-MBL systems, and explain how the FSPT is dual to a discrete-time
crystal phase that exhibits TTSB in the bulk.
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1.6 Organization

The rest of this dissertation is organized as follows.

Chapter 2 is based on [186]. We study how strong disorder, leading to many-body
localization, can arrest the heating of an interacting Floquet system and stabilize symmetry-
protected topological order. We analyze two conceptually different routes. By driving a
simple model, one can engineer complex interactions that enable the emulation of an equi-
librium phase. In a different approach, driving can simulate an intrinsically-Floquet phase
that does not have an equilibrium analogue. We discuss how these two phases can be distin-
guished via a special entanglement spectrum signature of the latter and emphasize its duality
to a discrete time crystal [250, 61]: although not included here, we present this phase in de-
tail in Ref. [244]. We then propose a unifying implementation in a one-dimensional chain
of cold atoms and show that protected edge modes are observable on realistic experimental
time scales.

Chapter 3 is based on [187]. Recent work by De Roeck et al. [70] has argued that many-
body localization is unstable in two and higher dimensions due to a thermalization avalanche
triggered by rare regions of weak disorder. To examine these arguments, we construct several
models of a finite ergodic bubble coupled to an Anderson insulator. In one case, our results
are in excellent agreement with a refined theory of the thermalization avalanche. In the
second model, where we can access much larger system sizes, we find a non-trivial back-
action effect due to the insulator onto the ergodic bubble. The main consequence of this
back-action is to renormalize the critical bubble size needed to sustain the avalanche. This
allows us highlight the unrealistically large time scales involved in this process.

Chapter 4 is based on [33]. We propose an experimentally accessible non-local spin system
as a paradigmatic platform to study integrability, chaos, and thermalization in closed many-
body quantum systems. It has a rich, highly tunable dynamical phase diagram, including
regions of Richardson-Gaudin quantum integrability, classical chaos, and of a novel form of
integrability that is distinct from (and possibly intermediate between) Bethe Ansatz and
Many-Body Localization. These phases are accessible in state-of-the-art cavity QED setups
by tuning the local atomic density and the direction of an applied magnetic field.

Lastly, Chapter 5 is based on [188]. We introduce a statistical ensemble that interpolates
between the classical k-Satisfiability (k-SAT) and the quantum k-Satisfiability (k-QSAT).
For k > 3, these two problems are complete for the complexity classes NP and QMA,
respectively, and are believed to be intractable for both classical and quantum computers.
Moreover, as discussed in Section 1.2, they have interesting connections to classical and
quantum spin glass problems, respectively. For the simplest 2-SAT-2-QSAT ensemble, we
find the exact boundary that separates SAT and UNSAT instances.
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Chapter 2

Floquet symmetry-protected topological
phases

The discovery of topological insulators—materials which are insulating in their interior
but can conduct on their surface—has led to a multitude of advances at the interface of
condensed matter physics and materials engineering [34, 59, 110, 191, 35|. At their core,
such insulators are characterized by the existence of non-trivial topology in their underly-
ing single-particle electronic band structure [128, 171]. Generalizing our understanding of
topological phases to the presence of strong many-body interactions represents one of the
central questions in modern physics. Some of the simplest generalizations that have emerged
along this direction are symmetry protected topological (SPT) phases [207, 233, 58|, which
represent the minimal extension of topological band insulators to include many-body corre-
lations. Featuring short-range entanglement, SPT phases do not exhibit anyonic excitations
in their bulk, but nevertheless possess protected edge modes on their surface; as a result,
they represent a particularly fertile ground for studying the interplay between symmetry,
topology, and interactions.

While indirect signatures of certain ground state SPT’s have been observed in the solid
state [51, 172, 242], directly probing the quantum coherence of their underlying edge modes
represents an outstanding experimental challenge. In principle, cold atomic quantum simu-
lations could offer a powerful additional tool set—including locally-resolved measurements
and interferometric protocols—for probing the robustness of edge modes and systematically
exploring their stability to specific perturbations [23, 21, 60, 108, 181]. Moreover, such
platforms could also enable the controlled storage and transmission of quantum informa-
tion [57, 22, 247]. Despite these advantages, and owing to the complexity of typical model
SPT Hamiltonians, it remains difficult to engineer and stabilize SPT phases in cold atomic
systems.

One approach to this challenge is to emulate the complex interactions giving rise to
static, equilibrium SPT (ESPT) phases by periodically driving a simpler Hamiltonian at
frequencies much larger than its intrinsic energy scales [119]|. In addition to this approach,
seminal results on classifying driven (Floquet) phases [133, 131, 132, 189, 77, 197] have also
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Figure 2.1: A 1D array of atoms is trapped in an optical lattice or tweezer array. Ising
interactions for pseudo-spin states |]) , |T) are generated by optically coupling [1) to Rydberg
state |R) (solid blue arrows). Random fields h; are generated by a spatially varying Raman
coupling (dotted purple arrows) between ||) and [f). While emulating the ESPT phase
requires a dimerized chain with Ising couplings Af(¢) of dynamically switchable sign, the
FSPT phase is simulated simply by alternating between two Hamiltonians consisting of
Ising interactions (H7) and a disordered transverse field (Hs).

shown that there exist Floquet-SPT’s (FSPT) which are inherently dynamical and have no
static analogue. Interestingly, such an FSPT can be realized at driving frequencies that are
comparable to the energy scales of the bare Hamiltonian.

The power of periodic driving for engineering topological phases has been extensively
explored in cold-atom [8, 127, 129], solid-state [177, 155, 239|, and photonic [193, 232]
systems. For cold atoms, where Floquet control has so far been applied only to single-
particle band structures [65, 8, 111, 127, 129, 88|, recent advances in optically controlling
interactions (63, 94, 122, 249, 101, 143, 248, 36| offer new opportunities for accessing strongly
correlated phases [246, 39, 97, 81|. Notably, coherent spin-spin interactions with a range of
several microns [122, 249, 248, 36| can be introduced via Rydberg dressing {125, 112, 190,
96, 122, 249, 101, 248, 36|. However, prospects for modulating such dressing light in order
to Floquet engineer many-body Hamiltonians has remained largely unexplored.

This owes, in part, to the difficulty of generating quantum coherent order in an interacting
Floquet system which will typically absorb energy from the driving field, eventually heating
to a featureless infinite temperature state [67, 148|. This difficulty is further exacerbated for
isolated atomic systems, where the lack of coupling to an external bath renders the system
incapable of releasing excess energy and entropy [224]. A fruitful strategy for combating such
heating is to harness many-body localization (MBL) [118, 175, 12, 185, 133|, which has been
predicted to stabilize quantum coherent behavior without the need for stringent cooling or
adiabatic preparation of low temperature many-body states [22, 57, 247, 26].

We propose to exploit periodically driven interactions to realize two distinct nonequi-
librium MBL SPT phases in a one-dimensional array of cold atoms (Fig. 2.1). Driving the
interaction term of a transverse-field Ising model (TFIM) enables the emulation of an ESPT
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whose edge modes are protected by an emergent Zy x Z; symmetry [119|. This phase re-
mains stable only within a parametric time scale controlled by the driving frequency, beyond
which its topological features break down. Alternatively, toggling between Hamiltonians with
solely Ising interactions or purely transverse fields yields an intrinsically dynamical FSPT
which has no equilibrium analogue. We explore the stability of both phases to long-range
interactions and provide a detailed experimental blueprint using Rydberg-dressed atoms.

2.1 Emulating a static, equilibrium SPT phase

Inspired by pioneering work on emulating static phases in driven systems [177, 138, 155,
124, 119, 199, 198, 150], we first consider the realization of a many-body localized version of
the Haldane phase [107]. This SPT phase can be protected by a discrete dihedral symmetry,
Z, X Zy, and exhibits boundary modes that are odd under the symmetry; these edge modes
behave as decoupled spin-1/2 degrees of freedom that are robust to any perturbation which
preserves the symmetry.

We begin by examining the robustness of the edge modes in a periodically driven and
dimerized spin chain (Fig. 2.1):

N N-1
Hy(t) = hio? + Y f(O)Niofoi, + Vel ol (2.1)
i=1 =1

where N represents an even number of spins, of* are the Pauli operators on site i, Agx11 = Ay,
Aok = Ay (with A1, Ay > 0) and f(f) = wcos(wt) is the driving function *. For V, = 0, the
model is non-interacting and exhibits edge dynamics which never decohere [119]. Here, we
first verify that the SPT phase remains stable under the addition of short-range interactions
Vi # 0 that preserve the dihedral symmetry (generated by products of o on the even and
odd sites). We then assess the effects of more generic, longer range, interactions.

In the limit of large driving frequencies w, the dynamics are described by an effective time-
independent Floquet Hamiltonian, Hr, which can be constructed perturbatively in orders of
1/w using a Magnus expansion [1, 142, 3]. At leading order, we obtain the time-averaged
Floquet Hamiltonian (see Appendix 2.5 for details)

N N-—1
ngo) = Zhia(Ah)Q)o-f - Z hib(A1, Xo)oi joiof,, (2.2)
i=1 i=2
N-2
+ Vado(2X2)(0705 + oy_1oy) + Ve Z [cir1)ofofey + d(Nipr)oi_yofoty0f ]
i=2

L Any driving function that changes sign every half-period will suffice. For instance, tweaking the binary
drive from [133] to have this property would also yield an ESPT.
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Figure 2.2: ESPT phase—(a) F“(t) for N = 10 spins with w = 100, V,, = 0.05, V,, = 0,
A1 = 1.54 and Xy = 0.69, yielding b(A1, Ag)/a(A1, A2) ~ 10. Almost overlapping dotted
lines represent the clean undisordered case (black and blue for F* and F7, respectively).
Solid lines correspond to strong on-site disorder, with thick black and blue lines for F”*
and F¥ in the dimerized case and thin solid yellow and red lines for F* and F?* in the
un-dimerized case. (inset) Ratio b(1, \2)/a(1, A2) in the dimerized (solid blue) and the un-
dimerized (dotted red) models. The SPT phase corresponds to b/a > 1 (delimited by the
dotted black line). (b) Ty as a function of frequency and system size. As w is increased for
V, = 0.05 (circles), Ty saturates consistent with being bounded by 75 ~ min(O(w), e®™).
Adding generic interactions, V,, >, o/c? | with V, = 0.2 (squares), leads to a breakdown of
the edge coherence for all parameters.

where Jy(z) is the Bessel function of the first kind,

_ % [Jo (2001 — A2)) + Jo(2(A1 + )], (2.3)
= Jo(2(\ — A2)) — a(Ar, A2),

)
)
o) = 5+,
ey

= 1—c()).

J(OA(Q’}\”) in the definitions of h; and hy 2

A few remarks are in order. First, the periodic driving, f(t), effectively generates multi-

We have absorbed a factor of

spin interactions [Eqn. (2.2)] [119]. Secondly, while HSJ) exhibits a Zy x Zy symmetry, the
parent Hamiltonian [Eqn. (2.1)] possesses only a smaller Z, symmetry group, indicating

that the “emergent” dihedral symmetry of ngo) must be broken at higher orders in the

2Note that for finite frequency drives, the n'® order perturbative correction to Héo) is of order 1/w™.
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Magnus expansion (see Appendix 2.5). Finally, the V, = 0 limit of Eqn. (2.2) describes
a pair of decoupled 1D p-wave superconductors [135] and harbors two simple limits: for
a(A1, Aa) > b(A1, A2), the ground state is a trivial insulator, while for a(A1, A2) < b(A1, Ag),
the ground state is a bosonic SPT insulator. The key signature of this latter ESPT phase
is the existence of protected modes localized around the boundary of the system. Crucially,
the A1, A\o-dimerization of the Ising interaction enables us to arbitrarily tune the correlation
length of the edge mode (inset of Fig. 2.2a), leading to coherent dynamics with significantly
higher fidelity than those of the un-dimerized TFIM [119].
To characterize the edge coherence, we introduce the trace fidelity

Fo(t) = %Tr [e PO S (1) 52(0)] (2.4)

as a function of time, where Z is the partition function, 8 = 1/kgT, and X* are the zero
correlation length edge operators X% = of 0}, XV = 0{03, and ¥* = ¢f. This auto-correlation
function at infinite temperature will serve as a proxy for the coherence time. Furthermore,
since we are interested in coherent MBL-protected dynamics at finite energy densities, from
hereon we add strong disorder to the system via random on-site fields h; 3.

As alluded to above, there are two mechanisms of edge spin decoherence introduced by
interactions: 1) scattering with thermal excitations and 2) breaking of the Z; X Zy symmetry.
While the first is ameliorated via MBL (Fig. 2.2a), the second is intrinsic to the stroboscopic
approach—the ESPT is stable only up to a finite parametric time scale, T3 ~ (h?Jw)™ 1,
beyond which the protecting symmetry is broken.

The first effect is reminiscent of similar discussions in the static context [22, 57, 247],
where disorder can localize thermal bulk excitations and suppress scattering. Since the
edge operators are odd under the Z, x Zy symmetry, their dressed MBL-counterparts will
not appear in the effective “l-bit” Hamiltonian [175, 12] and dephasing occurs solely via
coupling to the other edge mode [247] on a time scale that is exponential in system size,
T3 \pr ™~ e " as depicted in Fig. 2.2b. Thus, so long as the effective dynamics are described

Symm

by Héo), one finds that even in the interacting, periodically driven system, disorder * can
lead to a revival of the coherence time (Fig. 2.2a).

This MBL enhancement of edge coherence is cut off by the fact that the first order
Magnus correction, HS), breaks the Zy X Zy symmetry. For time scales ¢t > T35 .., even
though bulk excitations remain many-body localized, there is no symmetry protecting the
edge operators, which can then scatter locally. Thus, for a finite size system, decoherence in
the presence of interactions that preserve the dihedral symmetry occurs on a time scale:

* . * *
T2 ~ mln(TZ,MBL7 TQ,Symm

) ~ min(e®™, O(w/h?)), (2.5)

3The fields for the ESPT are sampled from uniform distributions with (Apuy) = 1.0 and width Shpu =
2.0 in the bulk (1 <@ < N); (hedge) = a(A1,A2)/Jo(2A1) = —0.11 and width 6hedge = 2(hedge) On the edges.

4For each disorder realization, we numerically obtain F'“(¢), fit an exponential e~ t/T3 through the peaks,
extract T3, and average over 30-1000 realizations.
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as illustrated in Fig. 2.2b.

The addition of a more generic symmetry-breaking interaction term, such as V, > . o/0?,
or a long-range power-law tail, breaks the Z, x Z, symmetry at lowest order in the Magnus
expansion. In this case, there is no parametric time scale where we expect ESPT dynamics

(ie. Ty ~ O(1)), and the edge modes rapidly decohere via local scattering (Fig. 2.2b).

2,symm

2.2 Engineering an intrinsically-Floquet SPT phase

To obtain edge modes with coherence that persists to arbitrary times and is robust to
long-range interactions, we now turn to the realization of an intrinsically Floquet SPT phase.
We engineer an FSPT protected by both Z, symmetry and periodic driving which cannot
exist in equilibrium [131, 132, 189, 77, 197|. Consider the stroboscopic Hamiltonian

J
H =) ———=—0io; if 0<t<T/2

H(t) = N (2.6)
Hy =Y hio} if T/2<t<T,

=1

where R; = i is the position of the i spin and h; € [0,W]. The protecting symmetries
are the product of o, on all sites (Z;) and discrete translations in time (Z). The unitary
evolution under H(t) is given by U(t) = T exp (—i fOT H (t)dt) and the Floquet operator by
U = U(T). Building upon previous studies [133, 124, 30, 231], we expect to observe the
FSPT phase at J—2T ~ 7 (see Appendix 2.6).

Since the disorder strength is limited to W < 1/T by the periodic structure of the binary
drive, the system cannot be localized for arbitrarily strong interactions. By computing the
level-statistics ratio (r) 5 as a function of the power-law exponent p (Fig. 2.3a), we observe
a clear MBL-delocalization phase transition at p. ~ 3.5 [245]. For the remainder of the text,
we set p = 4 as a computationally tractable model within the MBL phase.

To probe the nature of edge coherence in the FSPT phase, we again compute the trace
fidelity F* = ;5 Tr[0#(t)of(0)]. As depicted in the inset of Fig. 2.3a, and similar to the
ESPT phase, the edge spin exhibits a significantly longer coherence time than bulk spins.
However, a crucial difference emerges in the scaling with N. For long-range interactions,
the coherence time of the ESPT phase scales independently of the system size, Ty ~ O(1),
whereas the FSPT exhibits a quartic scaling Ty ~ O(N*) (owing to the 1/R* power-law
interactions between the two edge modes), as shown in the inset of Fig. 2.3a).

To further distinguish between the topological features of the ESPT and FPST phases, we
introduce a novel micro-motion-based entanglement spectrum signature of the latter [189].

°For each disorder realization, we diagonalize the Floquet Hamiltonian Hy defined via U = e *¢T

and obtain a set of quasi-energies €, modulo 2r. We define the energy gaps as 0, = €,4+1 — €, and the
ratio r = min(dy, 0y+1)/ max(d,, d,+1). Finally, we average over all the quasi-energies and over 2500-100000
disorder realizations.
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Figure 2.3: FSPT phase—(a) The (r) ratio as a function of the power law exponent p
for a chain with periodic boundary conditions. The h;’s are sampled from the uniform
distribution [0.1,0.9] and 7" = 7 (in units of J = 1). There is an MBL-delocalization phase
transition around p. &~ 3.5. (inset) Ty as a function of N, where the edge coherence is
fit to ~ N%. (b) The entanglement spectrum micro-motion for N = 12. The parameters
(p, T, J,W) are: (4,m,1,1) for the SPT; (1,7,1,1) for the thermal behavior; (4,7, 0.05,0.8)
for the paramagnet; p =4, T'=m, J = 0.5, h € [0.5,1] for the spin glass. (inset) Mutual
information Z (4, j) = S; + S; — S;; (where S is the von Neumann entropy) within the SPT
phase: Z(1, j) (red circles) and Z(6, j) (blue squares) (see Appendix 2.6). (c¢) F¥(t) and F*(t)
for the edge and the bulk in a system of N = 10 spins for the model in Eqn. 2.6. The bulk
curves are almost overlapping. (d) Same as in (c), but with an additional term, V, >, o¥o?

(V, = 0.3) added to H;.
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In particular, for an eigenstate |1)) of the Floquet operator U, we compute the entanglement
spectrum, {7;(t)}, associated with the half-chain cut of [¢)(t)) = U(t) |¢) for 0 <t < T. By
Schmidt decomposing

2N/2

Zm ) [Left;(t)) ® |Right,(t)) (2.7)

we obtain {n;(¢)} across the two sets, {|Left;(t))} and {|Right,(¢))}, which span the Hilbert
spaces of the left and right halves of the chain. Unlike in equilibrium, where a single snapshot
of the entanglement spectrum shows the existence of topological edge modes, we find that, at
any given time ¢, the spectrum is trivial and there is no signature of FSPT order (Fig. 2.3b).
However, by following the micro-motion evolution of the spectrum over a single Floquet
period, we can robustly identify the topological signature of the FSPT phase [189].

To see this, we note that the entanglement spectrum is gapped at ¢ = 0 and ¢ = T" which
allows us to associate an SPT invariant to each non-trivial band—mnamely, the Z, symmetry
charge of the corresponding Schmidt states, (Left;(t)| [[; o [Left;(t)) = 1. There exists
a band crossing during the micro-motion (Fig. 2.3b), pointing to the fact that the charges
of each band are flipping during a Floquet period. This difference between the initial and
final Zy charges cannot be altered without closing the entanglement gap, suggesting that the
band-crossing is, in fact, a robust feature of FSPT order. Indeed, this non-trivial behavior
is absent in the paramagnetic and spin glass phases (Fig. 2.3b).

Finally, an additional entanglement-based feature of the FSPT’s non-trivial protected
edge modes is captured by the spatial dependence of two-spin mutual information. We
observe a log2 entropy in each edge spin, 2log2 mutual information shared between the
two edges, and approximately zero mutual information shared between bulk spins (inset of
Fig. 2.3b). In combination, this points to the fact that the two edge modes are well localized
to a single site and behave like an EPR pair.

2.3 Experimental realization

Both the ESPT and FPST Hamiltonians can be implemented in a chain of Rydberg-
dressed alkali atoms [39, 97, 101, 249, 248| trapped in a 1D optical lattice or tweezer ar-
ray [153, 79] (Fig. 2.1). The spin degree of freedom is formed by two ground hyperfine states,
with a resonant Raman coupling of spatially varying Rabi frequency h; simulating the on-site
transverse fields. Random fields can be formed by optical speckle disorder or with a spatial
light modulator.

Strong spin-spin interactions are introduced by coupling state |1) to a Rydberg state |R)
with an off-resonant laser field of Rabi frequency €2 and detuning A > 2. The result is an
effective (dressed) Ising interaction |96, 249|

o 1

H, — — oio? 2.8
1= T8AST 4 |R; — Ryl RS0 (2:8)
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where the interaction range R, = (—Cj/ A)l/ % depends on the van der Waals coefficient Cg
of the Rydberg-Rydberg interaction and is typically on the few-micron scale. At fixed lattice
spacing aq, the ratio of nearest to next-nearest-neighbor couplings is set by R, (Fig. 2.1).

While the Rydberg dressing is subject to dissipation from the finite lifetime I'~! of the
Rydberg state [101, 249], the interaction-to-decay ratio can be large [97, 39] in a 1D system.
At fixed Rabi frequency €, the ratio of the Ising coupling J to the lifetime v = (22/4A%)T
of the Rydberg-dressed state is limited to J/v = % < % This limit is set by the condition
0?/A? < 1 that the Rydberg-state population within the radius R, ~ a; be small, so that
the perturbative result of Eq. 2.8 holds. At realistic laser power on the 65/, — nPs
transitions (with n 2 40) in cesium [149], parameters (€2, ') ~ 27 x (4,0.002) MHz allow for
large coupling-to-decay ratios J/vy < 103.

To observe the FSPT phase, we envision initializing the system in a product state with
high energy density and letting it undergo unitary time evolution. After each Floquet period
T, one measures the spin-spin autocorrelation function (¢®(n7")oc®(0)) for both an edge and
bulk spin. Numerics (Fig. 2.3c) for N = 10 atoms indicate that a time ¢ ~ 10%/J suffices
to observe a significant difference between the bulk- and edge-spin fidelities. The difference
can be observed over an even shorter time scale ¢t ~ 30/J (Fig. 2.3d) by adding a decohering
interaction term V; >, ofo7,, to Hy in Eqn. 2.6. Experimentally, V,, can be introduced by
simultaneously dressing both states ||) and |1) [97] to generate flip-flop processes o o; 07 ;.

To experimentally verify the distinct advantages of the intrinsically Floquet SPT phase,
our scheme can be modified to emulate the ESPT for comparison. Realizing the ESPT
Hamiltonian requires alternating stroboscopically between ferromagnetic and antiferromag-
netic Ising interactions by simultaneously changing the signs of the detuning A and of the
van der Waals coefficient Cls. While a conceptually simple approach is to switch between two
different laser fields detuned by Ay ~ —A; from two different Rydberg states |Rs),|R1),
a more practical approach may be to dynamically control the sign of Cy with an electric
field [237].

2.4 Conclusion

Our proposal raises the tantalizing possibility of observing coherent quantum dynamics at
high temperatures in strongly interacting disordered systems [22, 57, 247|. We have studied
two different routes towards SPT phases in driven, disordered spin chains: by engineering
effective three-spin interactions (ESPT) or by intrinsically dynamical quantized pumping of
spin (FSPT). In both cases, decoherence can be caused by breaking the protecting symmetry
group. However, as the ESPT relies on a symmetry that is only approximately realized in
the high frequency limit, it survives only up to a finite time scale for short-range interactions,
and is fragile to generic interactions. By contrast, the FSPT survives at arbitrary times and
is robust to long-range interactions.
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2.5 Appendix A: Details on the ESPT phase

Deriving the Floquet Hamiltonian

We begin by providing details about the Magnus expansion and deriving Eq. 2.2 from
the main text. First, we define a unitary transformation to a “rotating frame”, Ur(t) =
exp (z sin(wt) SN )\iafafH), which maps an arbitrary state |1 (t)) to [¢Yr(t)) = Ur(t) [1(t)).
At stroboscopic times t, = n2T = nT (n € Z), one finds that |¢r(t,)) = e ¥ [y (0)),
where Hp is the so-called Floquet Hamiltonian which we construct perturbatively in orders
of 1/w; the Schrodinger equation becomes i0; |¢gr(t)) = Hr(t) |¢r(t)), where the “rotated”
Hamiltonian is Hg(t) = Ur(t)H(t)U}(t) — iUg(t),U}L (t). Using the driven TFIM Hamilto-
nian from Eq. 2.1 in the main text, we obtain

N N-1
Hy(t) =Y hUrotUL + Vo Y Upof Ul Uro?, UL
=1 =1
From the explicit form for Ur(t) we immediately find
Ur(t)oUL() = of [COS(ZS\i_l(t)) - z'sm(zﬂi_l(t))af_laf} X (2.9)
x [cos(2(t)) — z‘sm<2xi(t))a;af+1}

Un(t)otol, UR(t) = ofat,y [cos(2hi (1) = isin(2A (1)o7 07| x

x - cos(2hiaa (1)) = isin(2Xis1 ()07, 051
where S\(t) = Asin(wt). For the operators acting at the boundary, we define \y = Ay = 0.

Lowest order term

The lowest order term in the Magnus expansion for the Floquet Hamiltonian is just the
time-averaged rotated Hamiltonian: ngo) =7 fOT Hy(t')dt', where T = 2 is the period of
driving. To avoid cluttering our formulae, we use = fOT dt(...) = (...).

Then we immediately obtain these identities: cos(25\(t))> = Jo(2\) and <sin(25\(t))> =

0. With these in hand, we also find

~ S~ ~—— s
|

<cos(25\1(t))sin(25\2(t)) ) (2.10)
<cos(25\1(t))cos(25\2(t)) — a0, )
<sin(2/~\1(t))sin(2/~\2(t)) — b\, N),
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where CL(/\17 /\2) = % [J0(2<)\1 - )\2)) + J0(2()\1 + /\2))] and b()\l, )\2) = J()(Q()\l—/\g))—a()\l, )\2)
The ratio b(A1, A2)/a(A1, A2) controls the correlation length of the edge mode and the Ay, Ay
-dimerization enables us to arbitrarily tune it (Fig. 2.4b).

Expanding the terms from Eqn. 2.9 and applying these identities, we get

i=1

N
<ZhiURan§{> = Jo(2\) (hio? + hyo¥) + (2.11)

N-1
+ Zhl )\1,)\2 CT _b<)\17)\2> 0,-10; O—H-l}

1=

N-1
<Z V;URUfafHUfT{> = VoJo(2)2) (afa%” + va_lafv) +

i=1
N-2

+ Z Ve [CO\HI)UZEU;PH + d()‘iﬂ)aila?agﬂaaz] )

=2

which corresponds to the expression for ngo) in the main text. Note that all terms commute
With Ocyen = [[; 03; and Ogaq = [ [, 03, which generate the Z; x Z, symmetry.
If we add another term, V, S 'oY0? || to the driven TFIM Hamiltonian, then its

contribution to Héo) would be identical to the one on the second line of Eqn. 2.11 with
[z — y]. In that case, we note that the Floquet Hamiltonian would have only a smaller, Z,,
symmetry group.

First order correction

The first order correction in the Magnus expansion is

—%/0 dt1/01dt2 [Hr(t1), Hr(t2)] - (2.12)

We want to show that HS) contains a term that breaks the Z, x Z; symmetry of HEEO).

More specifically, there exists a contribution of the form ), ;o707 |, where f; ~ O(%Q) For
simplicity, we will show that this holds even in the non-interacting case, V, =V, = 0.
Neglecting terms acting at the boundary, from Eqn. 2.9, we get

Hg(t) = Zhi[cos(25\1(t))cos(25\2(t))af — cos(2X\;_1(t ))5111(2)\ (t))olor, —

— cos(2X(1)) sin(2\;_1 (1)o7 0¥ | —

- Z hisin(2A, (1)) sin(2X(t))o7_0f 07, ;.
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Y
%

When calculating the commutator [Hg (1), Hgr(t2)], the only terms that give a o
YY) contribution are

041 (or

1 Z 2hi—1hi :COS(2:\1 (tl)) COS(?S\Q(tl)) COS<25\Z‘(t2)) Sin(2/~\i_1(t2)): 0'?_10'?

S IE :Cos(25\1(t2)) cos(2Xs (t2)) cos(2Xi(t1)) sin(25\i,1(t1)): oV o

1 Z 2hihi+l :COS(2/~\1(t1)) COS(25\2<Z€1)) COS(25\i_1(t2)) Sln(?:\l(tQ»- O'?O'g_i_l

0;0;11-

— 9 ZthhiH :008(25\1(752))Cos(25\2(t2)) cos(25\i,1(t1))sin(25\i(t1))

Combining all of these terms together, we obtain

P> Ak, [cos(le(tl)) cos(20a(t1)) cos(2N; (2)) sin (21 (£2)) — (11 <> tQ)] oV a?.

(2.13)
Plugging this expression into Eqn. 2.12, we finally see that HS) contains a term of the form
hi—1hi y oy
> == fio]_ o), where

1 27 U1
fi= —/ dul/ dug cos(2); sinuy ) cos(2A; sin ug) sin[2A;_1 (sin ug — sinuy ). (2.14)
T Jo 0

For the dimerized couplings used in the main text, A\ = 1.54 and Ay = 0.69, we obtain f; ~
—0.08 and f, ~ 0.08. Thus, the ESPT can only exist for a finite time scale Ty, ~ (7% /w) ™!
in the thermodynamic limit. At later times, the symmetry of the Floquet Hamiltonian is Z,
which cannot support SPT order.

Decoherence in the ESPT

Interactions Symmetry | In Majorana operators | 7%

XX (V, =0) Zy X Zy Quartic min(O(w), %)
YY (V, =0) Z, Quadratic 00

XY (V, =4V,) | Z, Quartic O(1)

We now consider a detailed analysis of the interplay between symmetry and decoherence
in the ESPT phase. We start from the non-interacting driven TFIM [Eqn.(2.1) from the

main text with V, = 0]. Coherent oscillations (whose contrast never decays) are observed
T b(A1,A2)
A,A2) \ a(A1,A2)
by recasting the Hamiltonian using a Jordan-Wigner transformation. Since the original

N/2-1
with a period 7 = 7 ) [inset of Fig. 2.4a] which can easily be understood
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Hamiltonian is quadratic in Majorana operators, and hence non-interacting [135, 247|, the
resulting Floquet Hamiltonian must also describe free fermions (at all orders in the Magnus
expansion). Thus, even though the first order correction, HS), explicitly breaks the protect-
ing Zy X Zy symmetry as seen in the previous section, it does not lead to decoherence owing
to the lack of scattering between the free fermions. The observed coherent oscillations are
simply due to finite-size interactions between the edge spins mediated by their bulk tails.
We now switch to the interacting case and consider interactions of the form Hj,, =
SN Veotar 4 Vyalol, . Interestingly, the role of the XX and YY interactions are quite

different, as summarized in Table 2.1. In the limit V, =0, V,, # 0 (YY interactions), ngo)
breaks the Zy x Z, symmetry. Despite this fact, since the YY interaction preserves the
non-interacting nature of the Hamiltonian, we still observe coherent oscillations. Conversely,
if V, =0, V, # 0 (XX interactions), then the stroboscopic Hamiltonian will include quartic
terms. In the clean case, this would lead to the immediate decoherence of the edge modes
(Fig. 2.4a). However, in the presence of strong disorder, since Héo) preserves the Zy x Zy
symmetry of the ESPT (Table 2.1), we observe an exponential enhancement of the edge
coherence time, T3, compared to the clean case (Fig. 2.4c). We note in passing that in the
undimerized case, A\; = Ay, it is difficult to balance both the localized and topological nature
of the phase. The strong disorder needed for MBL leads to large fluctuations of the effective
couplings in H éo) which introduces trivial puddles that fracture the original topological phase
(Fig. 2.4a). Finally, if both V, # 0 and V, # 0 (XY interactions) the protecting Z; x Z,
symmetry is already broken at lowest order in the Magnus expansion, namely HS)). In this
case, there is no parametric scale where one expects SPT dynamics (75 ., ~ O(1)) and
the Hamiltonian is also strongly interacting; thus, the edge modes decohere immediately via
local scattering and disorder cannot revive the coherence time compared to the clean case
(Fig 2.4c and Fig. 2.4d).
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Figure 2.4: (a)-(d): The ESPT described by the Hamiltonian in Eq.(2.1) from the main text.
(a) The overlapping dashed lines (black and blue for F* and F*, respectively) correspond
to the interacting and clean (uniform fields h;) ESPT. We see that interactions (V, # 0)
lead to decoherence. The solid black and blue lines (for F'* and F'*, respectively) correspond
to the interacting ESPT in the presence of strongly disordered on-site fields h;. We see
that disorder leading to MBL restores the coherence in the dimerized case (A = 1.54 and
A2 = 0.69). The thin solid yellow and red lines (for F'* and F*, respectively) correspond
to the interacting and strongly-disordered ESPT in the un-dimerized case (A\; = X3). In
this model, it is difficult to balance both the localized and topological nature of the phase.
The strong disorder needed for MBL leads to large fluctuations of the effective couplings in
Héo) which introduces trivial puddles that fracture the original topological phase. (inset)
The dashed blue and solid red curves corresponding to F* and F* in the non-interacting
(Vz =V, = 0) and clean ESPT. We observe coherent oscillations whose contrast never
decays (due to the lack of interactions) with a period ~ 10%. (b) Ratio b(1, X2)/a(1, \y)
in the dimerized (solid blue) and the un-dimerized (dashed red) models. The SPT phase
corresponds to b/a > 1 (dotted black). The dimerized model allows us to arbitrarily tune
the correlation length of the edge mode. (c¢) Ty as a function of N in both clean (squares)
and disordered (circles) systems for the ESPT. The interaction parameters are V, = 0.05,
V, = 0 for XX interactions (black) and V,, = 4V, = 0.2 for XY interactions (red). The
exponential enhancement of the coherence time is seen only in the disordered XX case in
which the Z; x Z, symmetry is unbroken in ngo). (d) Ty as a function of frequency and
system size. As w is increased for XX interactions (circles), Ty saturates consistent with
being bounded by T3 ~ min(O(w), e®™). Turning on XY interactions (squares), breaks the
Zy x Zy symmetry at the level of Héo) and leads to a breakdown of the edge coherence for
all parameters.
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2.6 Appendix B: Details on the FSPT phase

The location and properties of the phase

In the main text we have mentioned that we expect to observe the FSPT phase at % 7.
To see why this is the case, let us consider a simplified version of the Hamiltonian defined

in Eq. 2.6 in the main text:

Hy =) Jojoj,, i 0<t<T/2

H(t) = (2.15)

N
Hy =Y hio} if T/2<t<T.
=1

This model has only nearest-neighbor interactions, but it is exactly solvable and illustrative
of the main properties of the FSPT [133, 131, 132].

The Floquet operator over a period 1" can be written as U = exp(—iHyT'/2) exp(—iH,T/2).
Taking ‘]Q—T = 5 and using open boundary conditions, we find that

=

exp (—iH,T/2) = exp (—iganfH)

.. ™ s 2 ™
[—z sin <§) 07071+ cos (§> 1]

4 y4
0;0;11

Il
o

=z
L

®
I

Q
ot
Q =

z
N

Note that under periodic boundary conditions this would be proportional to the identity 1.
Secondly, we can also re-write the other piece of the Floquet operator as

| T hT C— AT
exp (—iHsT/2) = exp <—21701)exp (—z ]; O'N) exp (—z Z 5 ‘%’)

1<i<N

(TN, haT . (hNTY\ . hnT
= [—z sin (%) o] + cos (1T> 1} [—z sin (%) oy + cos (%) 1]
hiT
X exp (—i Z 5 af)
1<i<N
= [—isin(0y)o] + cos(61)] [—isin(On)ox + cos(On)] exp (—iHpux1/2) ,

where 0, = hiQT and Hyux = D 1 ;o n hiof.
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Putting both pieces together, we find

U o [—isin(6y)o] + cos(0y)] of [—isin(On)oy + cos(On)] ox exp (—iHpuk1'/2)
x [—sin(f1)o} + cos(by)o7] [ sin(On)o; + cos(On)ok] exp (—i HpuT'/2)

0.8 6’%(}?\7 exp <_iHbulkT/2) ,

where 57 y = [~ sin(6y,n)of y + cos(@LN)aiN] and note that (&fN)Z = 1. Thus, the Flo-
quet operator U = 6565 exp (—iHpuk1'/2) has two pieces: a “charge pump” term &56%
corresponding to the product of two operators localized around the edges; and a unitary
time evolution over 7'/2 with a local bulk Hamiltonian Hyyux = ), cien hio}.

A few observations are in order. First, the operators 7 y localized around the edges
commute with each other, with the bulk operator Hy,y, and, thus, with the Floquet unitary
U(T). Second, these edge operators are odd under the global Z, symmetry generated by

© =17

4
1,
[sin(@l,N)a%N — cos(@LN)aiN} (O’iN)2

~Z
— _Ul,N'

Third, we see that U(2T) = U? = legges ® exp (—iHpuT') and the edge operators that are
even under the Z, Ising symmetry, for instance o7 y, obey the following equation of motion:

U(nT)65 yU'(nT) = (—1)"67 y- (2.16)

This means that, given any generic initial state of the system, the edge operators o7  will
oscillate with a period 27", as opposed to the period T of the drive! We emphasize that this
does not hold for bulk operators, whose correlations are trivial in the FSPT phase. Therefore,
the Floquet system exhibits a form of discrete time-translation symmetry breaking (TTSB)
on the boundary of the system.

To summarize, for J—2T = T the exactly solvable model (2.15) with nearest-neighbor in-
teractions has two coherent modes localized around the edges, which are odd under the
protecting symmetry corresponding to a global spin flip [[of. And, moreover, the edge
observables which are even under this Z, symmetry exhibit TTSB, whereas bulk observables
do not.

Finally, as argued in Refs. [131, 132, 189, 77, 197| and as sketched in the section ‘The
role of disorder’ below, this phenomenology is not an artifact of the solvable model and it
also holds for the model with generic interactions, such as power laws [Eqn. 2.6 in the main

text|, provided that there exists strong disorder leading to MBL.

Duality to a discrete time crystal

Before discussing the details of the many-body localized problem, we emphasize one
last property of the FSPT phase, namely its duality to a discrete (Floquet) time crystal
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(DTC) [133, 76, 244, 250, 61] (for a review see |78] and the references therein). We saw
above that the FSPT exhibits time-translation symmetry breaking on the boundary of the
system, but not in the bulk. Secondly, this phenomenon is robust only to perturbations that
do not break the protecting Z, symmetry and the discrete time translation symmetry Z.
Let us show how the boundary TTSB occurring in the FSPT phase is related to the bulk
dynamics and order in the DTC phase. Again, for brevity, we focus on the exactly solvable
model (2.15). Under the well-known Ising duality of <> o707, ,, we see that the model H

from Eq. 2.15 is mapped onto H, where
H =) Jo} if 0<t<T/2

A(t) = N (2.17)
Hy =) hojo;, if T/2<t<T,
=1

and the FSPT phase - = 5 of H is mapped onto the DTC phase of H. To understand
why, note that in this hmlt, the Floquet unitary can be immediately written as

U(T) = exp (—z— Z hioio z+1) Ha = exp <—z— Z hioio z+1> (2.18)

where © = [[of is the Z, symmetry generator. Since the domain wall variables o707,

commute with each other and with ©, then they also commute with the unitary U(T). In
turn, this entails that the Floquet eigenstates are cat states |n, +) of the form

TR ) £ AT )
\/5 )
where 4 corresponds to the parity under © and n corresponds to a pattern of domain walls.

Therefore, we see that the bulk o7 operators exhibit long-range order (i.e. non-vanishing
connected correlation function (o70%) for |i — j| — 0o) and their equation of motion is

n, £) = (2.19)

U(nT)o?UT (nT) = (—1)"07. (2.20)
For a generic initial state that is experimentally accessible ¢ we have (07) # 0 and, by the
above equation of motion, we find that a local bulk observable will exhibit oscillations with
a period 27 (o7 (nT)) = (—1)"(0?).

The presence of spatial long-range order and the breaking of the discrete time-translation
invariance for local bulk observables are the hallmark signatures of a discrete time crystal.
Thus, it is in this sense that the Ising-duality maps the TTSB on the boundary in the FSPT

phase to the TTSB in the bulk for the DTC phase. The key difference is that, while the

For instance, any product state of the form [1J1{11...).
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FSPT edge dynamics is robust to perturbations that respect both the Z, and Z symmetries,
the order in the DTC phase is robust to all perturbations that respect the Z symmetry. In
the parlance of Ref. [130], the time crystallinity in the DTC phase is absolutely stable to
local deformations of the Floquet drive, including Ising-symmetry-breaking perturbations,
whereas the time crystallinity of the edge modes in the FSPT phase is not.

The role of disorder

We now turn to the Floquet-MBL problem.

In the FSPT, similar to ESPT phase, disordered on-site fields h; € [0, W] play an equally
crucial role in restoring the coherence of the edge modes (Fig. 2.5a and 2.5¢), stabilizing the
quantum order in the presence of interactions, and suppressing heating via the emergence of
local integrals of motion. Yet the role of disorder is even more nuanced.

First, the classification and stability of interacting Floquet-SPT phases of matter [131,
132, 189, 77, 197| hinge on the system exhibiting MBL because this ensures that the eigen-
states of the Floquet operator U and Hamiltonian Hy are short-range entangled.

Second, based on the classification of Floquet-MBL-SPT phases via the Kiinneth formula
for group cohomology [131, 132, 189, 77, 197|, each application of the Floquet unitary U
pumps a lower dimensional SPT through the boundary: the analysis for the exactly solvable
model in the previous sections generalizes to U = &16y exp(—if), where 6, y are unitary
operators localized around the edges which commute with each other and with the bulk
localized bits (“I-bits”); and f is a local Hamiltonian acting on the bulk 1-bits [131, 132].
As before, the 6,65 piece of U entails that a Z, charge (spin flip) is pumped across our
system (see Fig. 2.5b), which is the entanglement spectrum signature described in the main
text [189).

Third, from a more practical point of view, there is an upper bound on the disorder
bandwith, Wy,.«. Instead of driving the Ising interaction term as in the ESPT case, we are
toggling between two non-commuting parts, H; and Hs, of the Hamiltonian (Eqn. 2.6 in the
main text). Since the Floquet operator is given by U = exp(—iHyT'/2) exp(—iH,T'/2), then
h;T'/2 should be viewed modulo 7/2 [133] and, therefore, W.x = 1. Since the amount of
disorder present in the system is bounded by Wi,.y, there is an MBL-delocalization phase
transition as a function of the interaction strength quantified by the power law exponent p
(Fig. 2.6¢). Conversely, the MBL-delocalization transition can also be observed by tuning
the bandwidth W for a fixed power law exponent p, as shown in Fig. 2.6a and Fig. 2.6b.
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Figure 2.5: (a)-(c): The FSPT described by the Hamiltonian in Eq. 2.6 from the main
text. The on-site fields h; are sampled from the uniform distribution on [0, W]. (a) T3 as
a function of N for both the edge and bulk fidelities. The edge coherence is fit to ~ N*
due to the 1/N* power-law interactions between the two edge modes. The bulk coherence
does not show signs of enhancement. (b) The entanglement spectrum micro-motion. We see
that the FSPT exhibits a non-trivial entanglement band-crossing due to the pumping of a
Z, symmetry charge, whereas the other phases have a trivial set of bands. (c) The two-spin
mutual information Z(i,j) = S; +5; — S;; (where S is the von Neumann entropy) within
the FSPT phase: Z(1, 5) (red circles) and Z(6, j) (blue squares). We observe log 2 entropy in
each edge spin, 2log 2 mutual information shared between the two edges, and approximately
zero (up to finite size effects) mutual information shared between bulk spins. This points to
the fact that the two edge modes are well localized to a single site and behave like an EPR
pair.
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Figure 2.6: (a) The level statistics ratio (r) as a function of the disorder width W with the
interactions power law exponent p = 3. Maximal disorder width W = Wy, = 1 is not
strong enough to localize the system even though (r) is below the GOE value of 0.527. (b)
(r) as a function of W for p = 4. At strong disorder strengths, (r) is close to the Poisson
value of 0.386 signaling localization. At low disorder strengths, there is an anomalous scaling
with N, but this provides a bound on the location of the critical point. (c¢) The (r) ratio
as a function of the power law exponent p for the maximal disorder width. There is an
MBL-delocalization phase transition with a critical point p. ~ 3.5. For the remaining plots,
we set p = 4.
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Chapter 3

Exploration of the stability of
many-body localization in d > 1

Recent works on many-body localization [120, 71, 70] have started to re-examine the case
for the existence and stability of the MBL state, going beyond the perturbative arguments
of Basko et al [29] (see also Ref. [103]|). For instance, Imbrie has given a mathematical
proof for the existence of MBL in spin chains with short range interactions [120]. On the
other hand, other analyses have pointed to non-perturbative effects that can destabilize MBL
under certain conditions |71, 70]. In particular, De Roeck and Huveneers [70] have argued
that the MBL state is unstable in two or higher dimensions or in systems with interactions
that decay sub-exponentially with distance. Their instability mechanism hinges upon finite
ergodic “bubbles” of weak disorder that occur naturally inside an insulator (see Fig. 3.1).
According to this narrative, such rare regions may trigger a “thermalization avalanche’™—
the avalanche commences by thermalizing the immediate surroundings of the bubble, thus
creating a larger and more potent bubble which reinforces the process. Because this argument
has far reaching implications such as the absence of MBL in two dimensional systems, it is
important to test the crucial assumptions underlying this conclusion.

In this chapter, we scrutinize these assumptions using both an exact diagonalization
study (ED) of small systems and a tractable toy model. In the first part we describe the
thermal bubble using a GOE random matrix in the Hilbert space of 8 spins. To this core we
gradually couple up to 6 more spins that, in the absence of coupling to the ergodic region,
correspond to the local integrals of motion (LIOMs) of an Anderson insulator. The combined
system, consisting of up to 14 spins, is diagonalized exactly.

We study models with three different spatial structures of the coupling to represent
(Fig. 3.2): (i) a one dimensional Anderson insulator with an exponential decay of the localized
single particle wave-functions; (i) a one dimensional insulator with a stretched exponential
decay of the localized wave-functions !; (iii) a two dimensional Anderson insulator.

'Even though this toy model is unphysical, we study it as an additional proxy for higher dimensional
insulators since it allows us to analyze LIOMs farther away from the ergodic bubble than would be numerically
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Figure 3.1: Schematic illustration of an ergodic bubble inside an Anderson insulator. The
red dots represent sites in the bubble, while the blue dots are the positions of the localized
states of the insulator. The blue shaded region within a distance of a localization length &
from the bubble is strongly coupled to it.

In these systems we compute the eigenstate spectral function of a local operator acting
on the farthest LIOM coupled to the thermal core which allows us to directly check if the
LIOM is hybridized with the ergodic region 2. We then use direct probes of localization
to test whether the fully coupled system is thermalizing and if the avalanche persists. For
all three models, we find a quantitative agreement between the ED results and a refined
theory of the thermalization avalanche [70] that includes transient finite size effects. Thus,
the exact diagonalization study provides further support to the avalanche scenario. We
note that these results go beyond previous numerical analyses in two main ways. First,
we additionally investigate models in higher dimensions and in one dimension with longer
range coupling—models (ii) and (iii) above—in order to test for the existence of an inherent
instability at any disorder strength. Second, we compare the numerical results with the
predictions of a refined theory of the avalanche, which includes finite size effects, to explore
the physics of critical bubble sizes.

Though the numerical results for small systems are consistent with the avalanche scenario,
we cannot rule out a failure of the instability in a much larger system. In the second part of
the chapter we discuss such a possible mode of failure caused by the collective back-action

possible in the case of a 2D insulator. We note, in passing, that it can also serve as a crude toy model for
the eigenstate transition that separates the Ising-ordered and paramagnetic-MBL phases. Since the critical
point is an infinite randomness point, the typical (though not average) correlations decay as a stretched
exponential at the transition.

2LIOMs successfully hybridize with bath spins if and only if the Fermi Golden Rule decay rate of a local
operator acting on the LIOM is non-zero.
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of the insulator onto the bubble. We describe the ergodic region using a Hubbard model
of N fermion sites with random, all-to-all hopping and on-site interactions. As before, to
this core we couple non-interacting fermions that would otherwise realize a two dimensional
Anderson insulator (germane to the third model above). For large N, after averaging over
the disorder in the bubble and in the bubble-insulator coupling, we show that the problem
can be mapped to an Anderson impurity problem akin to the dynamical mean field theory
(DMFT) approximation [95]. We compute the spectral function of a local operator acting on
the thermal core using an approximate impurity solver and track the evolution of the spectral
function upon adding a growing number of Anderson sites localized at an increasing distance
from the bubble (Fig. 3.1). This allows us to assess the back-action of the localized region on
the bath spectral function and, thus, test a key assumption of Ref. [70]|. While the instability
arguments hinge on having a weak back-action, we find a dramatic back-action effect even
for reasonably weak bubble-insulator coupling. This cumulative—emergent—effect is caused
by the many-body interactions between a very large number of weakly-coupled LIOMs and
the ergodic bubble.

While the analyses of these solvable models point to a possible failure of the instability,
there are two important caveats in this approach. First, the strong back-action is the result
of quantum fluctuations induced by virtual hops of fermions from the Anderson insulator
onto the interacting bubble. Thus, the effect is greatly suppressed when the surrounding
insulator is strongly localized. Naively, this implies that the instability of the insulator is
more pronounced if the insulator is strongly, rather than weakly, localized. One possible res-
olution to this apparent paradox is that, although the solvable models allow us to compute
the thermal spectral function, the quantity suitable for tracking and sustaining the insta-
bility is the spectral function in a typical eigenstate [209]. Second, we emphasize that the
thermal spectral function of an interacting system at non-zero temperatures cannot detect
localization [174]. Thus, an open and interesting direction for future work would be the
development of a different approach for assessing the avalanche effect in the case of a strong
insulator.

The remainder of the chapter is organized as follows. In Sec. 3.1, we briefly review the
avalanche arguments of Ref. [70]. In Sec. 3.2, we present the exact diagonalization study of a
generic model for a random matrix bubble coupled to the Anderson insulator and we discuss
various thermalization diagnostics of the instability argument. In Sec. 3.3, we analyze a
tractable model wherein we describe the ergodic region using a Hubbard model—this allows
us to calculate thermal spectral functions for large system sizes that are inaccessible in ED
studies. Finally, we summarize the results and outline possible extensions in Sec. 3.4.

3.1 Review of the rare region instability argument

Before describing our numerical results and toy models, we briefly summarize the main
steps of the argument for the instability of MBL in the presence of a thermal bubble. The
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full system is described by the following Hamiltonian
H=Hy+ H;+ Hy, (3.1)

where H;, describing the bubble, is a 2V x 2V GOE random Hermitian matrix. For instance,
‘H;, could correspond to a system of spinless fermions (cj) oni¢=1,...,N sites. The bubble
has a typical many-body level spacing &, ~ W/2" where W is the many-body bandwidth,
taken to scale linearly with the system size N 3. According to the Eigenstate Thermalization
Hypothesis (ETH) [222, 223], the thermal region is characterized by a smooth function p(w)
of the energy difference w = E,, — E,, between energy eigenstates, |V,,), of H; such that the
matrix element is given by (\Ifn|cj|\lim> ~ \/Opp(W)Npm. Here Hy|V,) = E,|V,,) and 1, is a
random number with zero mean and unit variance. The function p(w) is called the bubble
spectral function (see Section 3.2 for more details).

The insulating region is described in terms of a set of local integrals of motion (LIOM)

{n.}, a=1,..., M, via the Hamiltonian

M=) €ana, (3.2)

[

corresponding to an Anderson insulator of non-interacting fermions. We define n, = 9 ,,
where 1], is the operator creating a fermion in the localized eigenfunction

Pa(r) = e Irrel2E jcdl2 (3.3)

centered at r, in d spatial dimensions. The LIOM energies obey |e,] < W and W is the
single-particle bandwidth of the insulator. Envisaging the bubble as a “quantum dot” located
at the origin, the bubble-insulator coupling is given by

Hy =Y (Viacltha +hoc.), (3.4)

[1e

with Vio ~ Ve /¢ decaying exponentially with the distance from the bubble. While a true
MBL system contains interactions of the form n,ng between LIOMs, following Ref. [70], we
neglect them for the following two reasons. First, since the avalanche arguments focus on a
potential instability of MBL, one normally considers “the best-case scenario” for localization,
namely a single finite ergodic region in an otherwise non-interacting Anderson insulator.
This follows from the expectation that interactions among LIOMs can only enhance the
instability. Second, since we couple each LIOM to the random matrix bubble which renders
the full system interacting, the sole effect of LIOM-LIOM coupling would be a higher order,
multi-spin, coupling between the LIOMs and the bubble.

The first step in the instability argument [70] is to consider whether the LIOM closest to
the quantum dot, namely the localized site with the strongest coupling V;,, gets hybridized

3In our numerics we take W = wN, where w ~ 2.6.
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with the bubble. The criterion for this is given by the following condition for the matrix
element:

T o V{0, el [ @) & V/Gop(W) > 6, (3.5)

where |E,, — E,,,| =& W. Crucially, this entails a non-zero Fermi Golden Rule (FGR) decay
rate ~ T?2/8, for the LIOM. If this is the case then the site can be considered as part of
the bubble and, once again, we assume the ETH ansatz for the matrix elements. Since the
LIOM is absorbed into the ergodic region then the Hilbert space dimension of the combined
system increases by a factor of 2, i.e. the level spacing gets reduced to g =~ 9,/2. However,
in the process, the spectral function of the ergodic grain also gets modified from p(w) to
p(w). Based on certain assumptions about the eigenfunctions |¥,) of the combined system
as a linear superposition of product states {|V,,) ® |n,)} of the initial bubble and the LIOM,
Ref. |70] argues that p(w) ~ p(w), i.e. that the spectral function remains essentially the
same after the LIOM becomes a bona fide member of the bubble.

If we iterate this argument multiple times such that the bubble grows to a radius R (see
Fig.3.1), then the level spacing becomes d5(R) ~ dye~ 448 where Ay ~ O(1). The matrix
element to absorb an additional LIOM at distance R is Tz ~ V/6x(R)p(W)e f/¢ leading
to the following condition for the hybridization of the site into the bubble:

Te_ oy [PV) aartpz-rye 1 (3:6)

dp(R) O

Evidently, the above condition can always be satisfied for R — oo in d > 1, rendering
the localized state unstable in any dimension higher than one. However, note that the
exponential has a minimum at

R* = [2/(dAq€)]/ Y (3.7)

when d > 1. For the avalanche to continue indefinitely, it must survive around R*. Thus,
a necessary and sufficient condition for the LIOM at an arbitrary distance R > R* to be
hybridized with the ergodic region is that Tg:/0g(R*) > 1. This immediately holds if the
initial bubble size N > N*, where

N* ~ (1/€) 70, (3:8)

For d = 1, the function in Eq. 3.6 is monotonically increasing or decreasing if & > &. or
& < &, respectively, where £, = Ald.

Lastly, we want to emphasize the two key assumptions embedded in the instability argu-
ment. First, the thermalization avalanche continues indefinitely if and only if the FGR decay
rate for all LIOMs is non-zero. Second, whenever a LIOM is hybridized with the bubble, the
ETH holds and the spectral function of a local operator acting on the ergodic region stays

qualitatively the same.



CHAPTER 3. EXPLORATION OF THE STABILITY OF MANY-BODY
LOCALIZATION IN d > 1 70

Figure 3.2: The two geometries under consideration. In both cases, the coupling between
the first LIOM and the bubble is set to be V; = 1.0, independent of the localization length
€. (a) One dimensional geometry: the other LIOMs, indexed by a > 2, are located at
distances r, = (@ — 1)a in units of a = 1 from the ergodic bubble. The coupling strengths

are V,, = Vie /¢ and V, = Vle_m for the 1D insulator and 1D insulator with sub-
exponentially decaying wavefunctions, respectively. (b) Two dimensional geometry: LIOMs
are arranged in concentric layers around the ergodic bubble such that the n'" layer (for
n > 2) is at a distance r,, = (n — 1)a from the bubble; this layer contains n LIOMs indexed
by a = @ +1,.. n(”H) and their coupling strength is taken to be V,, = Vie™™/¢.

3.2 Exact diagonalization of a generic model

We now test these two assumptions in an exact diagonalization study of a model akin
to the one considered in Ref. [70] and defined in Eq. 3.1. For computational simplicity, we
take H;, describing the ergodic bubble centered at the origin, to be a 2V x 2% GOE random
matrix on spin degrees of freedom a{ vz} (where ¢ = 1,...,N) such that the many-body
bandwidth scales linearly with N. We then fix the size of the er%odlc region to N = 8 spins.
We characterize the LIOMs also using Pauli spin variables 4T where o = 1,..., M, such
that H; = > €.7;. The random fields ¢, are sampled from the uniform dlstrlbution on
(0.5, 1.5].

The geometries we consider are shown in Fig. 3.2. The bubble-insulator coupling is taken
tobe Hy = >, Vaoi7Z, where V,, depends on the geometry under consideration (see Fig. 3.2)
and we set the coupling of the first LIOM to be V; = 1.0, independent of £. Since the bubble
is decribed by a random matrix without any notion of locality, coupling all LIOMs to the
same bubble operator of does not affect the subsequent discussion.

LIOM spectral functions

We obtain the full spectrum and many-body eigenstates H |V,,) = E,, |V,,) through the
exact diagonalization (ED) of the spin Hamiltonian described in the preceding paragraphs.
To check whether the LIOMs are successfully hybridized with the bubble spins, we define
the spectral function of a local operator 7}, acting on the LIOM farthest from the ergodic
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10—

Figure 3.3: The spectral function p(w) of a local operator acting on the M™ LIOM in a
fixed disorder realization {¢,} and averaged over N, eigenstates in the middle of the band.
p(w) is plotted as histogram with a bin width equal to twice the many-body level spacing,
20p. The spectral function exhibits two peaks located at +2¢,,. For a large localization
length &, the width v of these peaks is much larger than the level spacing, indicating that
the LIOM is hybridized with the ergodic bubble. For a small localization length, the LIOM
is not hybridized and the width of the peaks is limited by the level spacing.

region for a given eigenstate |U,,) as

pa(w) =21 Y (W] 73 W) * 6(w — winn), (3.9)

m#n

where wy,, = F,, — E,. We can also think of p,(w) as the dynamical structure factor:

pulie) =T [ 6 0, | 5 (6)75,0) [, . (310)
0
where @ = w +i0". Note that it obeys the following sum rule:

+0o0
/ pu(@)dew = 27(1 — (W, 72 [9,)%) ~ 2. (3.11)

In a fixed disorder realization for the LIOM fields {¢,}, the eigenstate spectral function
pn(w) exhibits two peaks located at +2¢);, where 1 < 2|eys| < 3, as shown in Fig. 3.3. This
is due to the fact that flipping the LIOM farthest from the bubble requires an energy of
approximately 2¢,,. We average over Ny = 2VtM /(N + M) eigenstates in the middle of the
band where the putative ergodicity is the most robust: p(w) = N;' > p,(w). Because the
LIOMs do not interact directly with each other, the position of the peak is not expected to
depend on the eigenstate, but only on the value of the field €j; on this LIOM.
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We can diagnose the extent to which the farthest LIOM is hybridized with the bath
by looking at the width + of the spectral peaks of p(w) compared to the many-body level
spacing—for each disorder realization we compute the ratio vv/0r between the spectral width
~ and the numerically computed many-body level spacing . We then study the evolution
of the disorder averaged v/dr * as a function of M, the number of LIOMs coupled to the
ergodic bubble, as shown in Fig. 3.4 for the three geometries under consideration.
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Figure 3.4: Exact diagonalization (ED) results for the spin model defined in Section 3.2
using an ergodic bubble of N = 8 spins coupled to M =1,...,6 LIOMs. We plot the ratio
v/0g between the width v of the spectral function peaks of a local operator acting on the
M™ LIOM (see Fig. 3.3) and the many-body level spacing dr as a function of the number
of LIOMs added. Different curves and colors (online) correspond to different localization
lengths in the bulk—the solid curves represent numerical ED results, whereas the dashed lines
represent the theoretical expectations from Eqs. 3.12 and 3.13 based on ETH assumptions.
(a) One dimensional geometry with exponentially decaying couplings between the bubble and
LIOMs. (b) One dimensional geometry with a stretched exponential decay of couplings. (c)
Two dimensional geometry with an exponential decay of couplings. In (b) and (c) the failure
of the avalanche is due to the sub-critical bubble size. In these cases, the avalanche can be
restored by increasing the bubble size N or by increasing the bare bath-LIOM coupling V7, as
verified in the inset of panel (b) for the one dimensional model with stretched exponentials.

First, we notice that for very small localization lengths £ the ratio 7/—55 ~ 2 which
means that v ~ e~ M) In particular, this entails that the FGR decay rate for the M*'™"
LIOM is approximately zero and the many-body eigenstates of the fully coupled system are
product states of the form |¥,) ® |Ty) and |¥,,) ® |y) with energies E, + €y, and E,, — €y,
respectively. Thus, p(w) consists of two delta functions located at +2¢,,. Since we compute
spectral functions as energy histograms wherein the bin size is taken to be 2dg, this means
that a “delta function” peak has a width v/ég = 2. We have confirmed that the farthest
LIOM does not get hybridized with the ergodic bubble by checking that the entanglement
entropy of this LIOM is zero (see the Appendix A for details).

4We take N = 8 and average over 5000, 4000, 3000, 2000, 1000, 1000, and 200 disorder realizations for
M =0,1,2,3,4,5, and 6 LIOMs, respectively.
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Second, for a large localization length & we find that the peaks centered around =+2¢,,
get broadened such that v/05 > 1 (see Fig. 3.4). This is due to the fact that now there are
many accessible multi-spin processes such as flipping the LIOM by flipping bubble spins and
absorbing energy from the ergodic bubble. In other words, the LIOMs are successfully hy-
bridized with the bubble, the full many-body eigenstates are superpositions of many product
states of the form |V,) ® |75,), and the FGR decay rate is non-zero.

We now compare these numerical results with the avalanche scenario [70]. First, by
the above arguments, we note that if the FGR is violated then v/dp = 2. Secor;d, if the

FGR decay rate for the M'™ LIOM is non-zero, then the width v = ~yu; ~ %, where
w=W/(N+ M —1) and V), is the coupling strength between the farthest LIOM and the
bubble: (i) for the d = 2 geometry Vy; = Vie ™/¢ where 1y = (n — 1) if the M*™® LIOM
is located on the n'® layer; (ii) for the d = 1 geometry with exponentially decaying LIOM
wave-functions Vy; = Vie ™/¢ where ry; = (M — 1); (iii) for the d = 1 geometry with
sub-exponentially decaying wave-functions Va; = Vie V™/¢ where ry; = (M — 1). Lastly,
the many-body level spacing is 6z = w(N + M — 1)/2N+M=1,
With these expressions in hand, we expect that

% = max |2, 2—2# exp ((M —1)log?2 — 2%4)} (3.12)
for the two models with exponentially decaying wave-functions: see the dashed curves in
Fig. 3.4(a) and Fig. 3.4(c) for d = 1 and d = 2, respectively. The maximum in Eq. 3.12
ensures that the ratio does not drop below 2 in the case where the FGR is violated. Note
that when the FGR holds, we have written the ratio vy /0g(M) as a function of 7/, to
ensure that both the numerical and theoretical curves have the same starting point, namely
the same ratio for the first LIOM that is coupled. The first term in the exponential in
Eq. 3.12 comes from the many-body level spacing, whereas the second one comes from the
exponential decay of the coupling strength V). The logarithmic correction (in M) comes
from the linear scaling of the many-body bandwith.

Note that for the 1D model with a stretched exponential decay of the localized wave-
functions [Fig. 3.4(b)] the expression becomes

v n_ N - _o M
5E—max 2, (5bN+M—1eXp ((M 1)log2 —2 f)} (3.13)

The comparison between the above expectations for v/dz and the numerically obtained
fy/—éE yields an excellent agreement for all three models, as shown in Fig. 3.4. We emphasize
the monotonic behavior of the curves in the case of the 1D model with an exponential decay
of the LIOM wave-functions: both the numerical results and the avalanche scenario predict
that «/dg is monotonically increasing when & > £, = @ and decreasing when & < &.—
this suggests that there is a localization-delocalization phase transition as a function of &
independent of the initial bubble size [70]. In contrast to this behavior, the curves for the

2D model and the 1D model with stretched exponentials behave non-monotonically with a
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minimum at M*. This suggests that for any given &, a sufficiently large initial bubble will
thermalize the whole system.

We now test this latter point, to wit, that the apparent “localizing behavior” at small &’s
in Fig. 3.4(b) and Fig. 3.4(c) is due to an insufficiently potent initial thermal bubble. While
it is numerically prohibitive to increase the bubble size N, we can increase Vi, the coupling
strength to the bubble. We set V) = 2 < w = 2.6 and keep N = 8 fixed for the 1D model
with a stretched exponential decay of the couplings. As shown in the inset of Fig. 3.4(c),
the results are still in excellent quantitative agreement with the avalanche scenario and the
predictions from Eq. 3.13: for a fixed localization length & = 0.6, the ergodic region is more
effective at thermalizing the LIOMs than in the case of V} = 1 since the v/dg(M) curve is
shifted upwards.

Thus, after accounting for transient finite-size effects and the bare coupling strengths,
the avalanche scenario is found to be in remarkably good quantitative agreement with our
numerics. As long as LIOMs are hybridized with the ergodic region, the fully coupled system
is thermal and the avalanche persists indefinitely. It only stops when the hybridization fails,
but a larger or more potent ergodic region can overcome this issue.
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Figure 3.5: Increase of the effective bath size due to adding the M LIOM as measured
by the change of the Thouless parameter (see Eq. 3.15). (a) One dimensional geometry
with exponentially decaying couplings. The different curves and colors (online) correspond
to different localization lengths: as described in the main text, a transition occurs at . =
2/log2 ~ 2.9. The inset shows how the distribution p(G) for £ = 0.6 evolves with the number
of added spins M. The distribution eventually collapses to the left and broadens, signaling
localization. (b) One dimensional geometry with stretched exponential decay of interactions.
(c) Two dimensional geometry with exponentially decaying couplings. Inset: evolution of the
distribution p(G) for & = 4.0 in the one dimensional geometry with exponentially decaying
interactions. The distribution moves to the right at a constant rate, signaling thermalization.

Bath spectral functions

Above, we have explored the conditions under which LIOMs added incrementally to a
finite bath successfully hybridize with it in the usual sense of Fermi’s Golden Rule: to wit, the
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local spectral function of a LIOM is broader than the many-body level spacing. An important
assumption in the arguments of Ref. [70] is that once a LIOM is hybridized with the bath in
this way, it is fully absorbed into it. In other words, the low frequency characteristics of the
bath after absorbing the LIOM should be the same as those of a random matrix with one
additional degree of freedom.

We test this assumption by analyzing the spectral function of an original bath spin.
Specifically, we consider the many-body “Thouless conductance” defined in Ref. [208] (it will
also be defined below for completeness). The typical value of this parameter in a thermalizing
system is expected to grow linearly with the size of the bath, with a slope equal to the entropy
density.

The computational scheme is as follows. After obtaining the full spectrum and eigen-
states, we apply a local perturbation O = 0% on a bubble spin different than the one to
which we have coupled the LIOMs (i.e. o) to mitigate the severity of finite size effects 5.
We rearrange the eigenstates based on the perturbed energies E/, = E, + (¥, | O |¥,) and
compute the matrix element between nearby eigenstates T, 41 = (V| O|V,41). Then we
define the Thouless parameter as in Ref. [208]

g . lOg ’7;1«7”-‘1-1‘

- / ’
En+l - En

(3.14)

We compute this parameter for Ny = 2¥+M /(N + M) eigenstates in the middle of the band
and for many disorder realizations ¢ to produce a distribution p(gG).

The results for different values of the localization length ¢ are shown in Fig. 3.5. For a
thermalizing quantum system whose eigenstates obey the ETH, we expect G ~ (N + M)
since the matrix element 7,41 is essentially an overlap between two random states in a
2N+M_dimensional Hilbert space and the level spacing is 6z ~ 2-N+M)  Conversely, if the
system is localized then two nearby eigenstates can be connected only via extensively many
rearrangements of (N + M) local integrals of motion and G ~ —(N + M), as shown in
Ref. [208].

Our numerical results support the assumption that when a LIOM is hybridized according
to the local golden rule criterion, then that LIOM is truly an extra bath degree of freedom.
To check this, we numerically compute

2

Jog 2 [(G(M + 1)) = (G(M))], (3.15)

Anabsorbcd =

where (G(M)) is the average value of the Thouless parameter when we have coupled M
LIOMs. If Angapsorbea = 1 then the Thouless parameter increases as it would in the case of
adding exactly one more strongly coupled degree of freedom to the bath. This is illustrated
in Fig. 3.5.

®We have checked that our results are consistent for a different local perturbation Oy = 0% 7§.
6We average over 5000, 4000, 3000, 2000, 1000, 1000, and 200 disorder realizations for M = 0,1, 2, 3,4, 5,
and 6 LIOMSs, respectively.
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On the other hand, in situations where ETH arguments predict the failure of the avalanche
(either due to a sub-critical bubble size or a sub-critical localization length), adding LIOMs
leads to a sublinear increase or even decrease of G. In this case, each additionally coupled
LIOM contributes as less than a full degree of freedom to the bath. In this situation, the
distribution p(G) of the Thouless parameter also becomes broader with each additional LIOM
(inset of Fig. 3.5).

We reiterate that even this eventual termination of the avalanche is predicted by the
avalanche scenario—it is due to the violation of the FGR and the failure of the added
LIOMs to hybridize with the bath. In the 1D model with exponentially localized LIOM
wave-functions, this signals a true localization transition [70] tuned by the localization length
&. However, in the 2D model and the 1D model with stretched exponential interactions the
termination of the avalanche is not a phase transition and it can be avoided by starting
with a larger or more potent initial thermal bubble. Finally, as discussed in the Appendix
A, the non-monotonic behavior of (G) at small localization lengths stems from a non-trivial
variation of the bath spectral function as M increases due to the breakdown of typicality.

3.3 A model for the back-action on the bubble

The exact diagonalization study described above provides evidence in support of the
avalanche scenario. But there is a key assumption in Ref. [70] that we have not yet explicitly
checked, namely that the spectral function p(w) of a local operator acting on the ergodic
bubble does not change qualitatively as an ever-increasing number of LIOMs are hybridized
with the bubble degrees of freedom. This can be particularly problematic if the number of
added LIOMs is very large. In particular, we ask if there is a collective effect due to the
coupling of many LIOMs which we cannot capture by adding a few LIOMs one by one. Such
an effect is inaccessible in the exact diagonalization approach taken in the previous sections.

To explore this regime, we introduce a model of an ergodic bubble coupled to an Anderson
insulator which admits a controlled treatment of the interaction effects in the bubble. Once
again, we consider a Hamiltonian that can be written as a sum of three parts: H,, H;, and
Hy as in Eq. 3.1. The ergodic bubble is described by a Hubbard model Hamiltonian of
interacting fermions hopping on N sites

1
Hb :\/_N Z t’l;j,O'cZTg'ch' + U Z UZZTR (316)

ijo i

*

where the single-particle hopping matrix elements ¢;; , = t}; , are sampled from a GOE ran-

dom matrix with |t;;,|? = ¢>. The normalization 1/v/N ensures the proper thermodynamic
limit at large-N.

The LIOMs sitting outside the bubble are described by Eq. 3.2 and their energies ¢, €
[—W, W] are sampled from a uniform random distribution. We consider a 2D geometry of
concentric circles, as shown in the inset in Fig. 3.6(a), such that the number of insulating
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sites residing on a layer of radius r is proportional to r. This ensures that the total number
of insulating sites M grows as r%. In particular, we take r, = 79(n — 1) for the LIOMs on
the n-th circle and ro = 1/(y/ 27mL) is a length scale related to the areal density nj of the
LIOMs.

Finally, the coupling of the LIOMs to the bubble degrees of freedom is given by

Hy = Z(Wa,ocj‘awa + h.C.). (3.17)

o

Note that this is different from the coupling considered earlier in Eq. 3.4 since every LIOM
couples to every degree of freedom in the bubble, not just to a single bath degree of freedom.
Also, unlike in Eq. 3.4, V;, are random complex numbers chosen from a Gaussian distribution
with zero mean and [Vi,|2 = V2/2v/N, where V2 = (V/£)2e /€. The factor of 1/¢ in V,
arises due to the scaling ¢,(r) o 1/¢ of the single-particle LIOM eigenfunctions in 2D.
Secondly, since the underlying microscopic coupling is local, the contribution of Hy to the
free energy must scale as the surface area of the bubble, namely as N@1/¢ The particular
scaling of |Vj,|? with N ensures that the contribution of the coupling term (3.17) in the
action (see the last term in Eq. 3.19 below) scales as v/ N in d = 2.

In what follows we average over the random hopping ¢;; and the bubble-LIOM coupling
Via.c using replicas in a fixed realization of the LIOM on-site energies {€,}. This averaging
procedure over the couplings associated with the bubble degrees of freedom assumes that
the self-averaging property holds for an ergodic bubble with a large number of sites N. The
replicated partition function after disorder averaging is:

7 = / D(Ca, Cay Yay o)~ SCascataral (3.18)

where the imaginary-time action is

B
S = /0 dr [Z (Z Cina(T)0rCiga(T) — Unita(T)0iya (T >+Z%a )(Dr + €a)VaalT)
_ /deT ZGabg (1,7 (t Grao (T',7) \/—NZVQQ@EM(TW)M(T')) ) (3.19)

abo

+

The {¢, c} are Grassmann variables and a,b = 1,...,n denote replica indices; we have also
introduced a large-N field:

Gapo (7,7') = (1/N) Z Cin(T)Cia(T). (3.20)

We promote G to a fluctuating field by introducing a Lagrange multiplier field ¥, (7, 7’)
and, after integrating out the fermionic fields, obtain Z" = [ D(G, ¥)e~ Vet lGE],
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Assuming a paramagnetic and replica-diagonal symmetric ansatz (i.e. Gue = G and
Gao = 0 for a # b), we get
1 _
Seff = /deT’ [tQG(T, ™G, 1) = 3(r, 7)G(T, T)} W ZTr In(—G;" —In Zimps
(3.21)
where
G (1, 7) = —(0r + €a)d(T — ) = VEVNG(r, 7). (3.22)

We can see that Ziy,, = f D(¢y, ca)e_simp is the partition function of an effective Anderson
impurity model described by

Simp = /deT’ZEU(T)é_I(T, Ve (7)) — /dTUnT(T)n¢(7'). (3.23)

o

Here g~_1(7', )= =0,0(r —7') = X(7,7).
We use a saddle point approximation to obtain the bubble fermions Green’s function
self-consistently. To this end, the self-consistency conditions are obtained by setting

08t [0G(T,T") = 88 /0% (T, T') = 0. (3.24)
If we assume time-translation invariance, i.e. G(7,7") = G(7 — 7'), then we find:

G(7) = (5(0)co (T))imp (3.25a)
S(7) = u(7) + Tv(7) = £G(7) + (1/VN) D V2Ga(7). (3.25b)

The averaging (... )imp is carried out using the effective Anderson impurity action from
Eq. 3.23 where, due to the time translation invariance at the saddle point, the Green’s
function G(w) satisfies

G () = = P0(w) — 2= V26, () (3.26)

for the real-frequency argument w + ¢0*. This closes the self-consistency loop as we obtain
Go(7) from Eq. 3.22, provided that the impurity Green’s function (¢,(0)c,(7))imp can be
calculated from the impurity action 3.23. G(w) and

Go(w) = [a} +€q — Vf\/NG(w)] B (3.27)

are the retarded Green’s functions for the bubble fermions and the LIOMs, respectively.
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The action in Eq. 3.23 is the usual one for the Anderson-Kondo impurity problem and it
is routinely encountered in the implementation of single-site DMFT. The impurity problem
can be exactly solved either via a Bethe ansatz [18] or by a numerical renormalization group
approach [241, 50]. In our case, for the self-consistent solution of Eq. 3.25, we use the iterated
perturbation theory (IPT) method which is expected to work very well at half-filling in both
the weak and strong coupling regimes [95].

Using the IPT approximation, we obtain the impurity Green’s function from the Dyson
equation:

G r 1) = 5&1(7, ) = Sy(r, ), (3.28)

where (jg Y(w) = GY(w) — U/2 is the Hartree-corrected Green’s function at half-filling. The
impurity self-energy is approximated by [95]

Yy (w) = U/2+ 23 (w). (3.29)

The first term on the right is the Hartree shift and the second term corresponds to the second
order self-energy

SO (r,7) = ~U*G (7, 7)Gu(r, 7). (3.30)

Using the IPT Green’s function we solve the saddle-point equations 3.25 iteratively.

In particular, we solve them numerically and track the evolution of the bubble and LIOM
spectral functions, p(w) = —(1/7)ImG(w) and p,(w) = —(1/7)ImG, (w), respectively, as we
increase M. The results for p(w) are shown in Fig. 3.6 for N = 30 and for a wide range
of values M ~ 3 — 10%, until the spectrum has converged at large M. We take U = 2t,
to wit, equal to the bandwidth of the non-interacting GOE random matrix. The LIOM
energies |e,] < W = 2t with ¢ = 1 have been sampled from a uniform random distribution.
We emphasize that, unless otherwise mentioned, the following results correspond to a single
realization of the €,s, without disorder averaging.

In Fig. 3.6(a) and (b) we show the evolution of p(w) for a localization length £ = 10 at a
temperature 7' = 2 and in the presence of a bubble-LIOM coupling strength V' = 0.5 with the
LIOM density ny = 1. For a small number of added LIOMs, the DOS has a semicircular form
as expected from the non-interacting part of the Hamiltonian. However, at higher energies
near the band edge there is an extended tail, due to the effect of the interaction U. As
we couple more LIOMs, the DOS eventually becomes rugged, inheriting the sharp spectral
peaks characterizing the insulator for a fixed disorder realization {¢,} of the LIOM energies.
We find that, even for a very large number of added LIOMs [Fig. 3.6(b)]|, the DOS retains its
qualitative features reminiscent of the original interacting bubble. For comparison, we also
show the corresponding non-interacting result for large M when the interaction strength in
the bubble is set to zero (U = 0). We see that the interacting and non-interacting DOSs
are very different. Hence, our results for the particular coupling strength V' = 0.5 ostensibly
agree with the assumption behind the instability argument, namely that the spectral function
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Figure 3.6: The evolution of the bubble spectral function p(w) for (a)-(b) V = 0.5 and
(c)—(d) V = 1.5 as a function of M, the number of LIOMs coupled to a Hubbard bubble of
N = 30 sites. Each curve (color) corresponds to a different M. The inset in (a) shows the 2D
geometry in which concentric layers of LIOMs are coupled to the bubble. Here t =1, U = 2,
W =2¢6=10,n;, =1, and T = 2. In (b), for the weak coupling V' = 0.5, p(w) does not
change much even at large M. For comparison, we also show p(w) for the non-interacting
case (U = 0). For the stronger coupling V' = 1.5, p(w) changes drastically in (c) and (d)
when large numbers of LIOMs are coupled to the bubble. In (d), p(w) for the interacting
case becomes identical to the non-interacting one over an interval —W < w < W for large
M.

of the interacting ergodic region remains qualitatively unchanged even when a large number
of LIOMs are hybridized with it.

Conversely, the results for the DOS at a larger coupling strength V' = 1.5 are shown in
Fig. 3.6(c) and (d). Note that the effective coupling of the bubble with the closest LIOM in
this case is still weak, V/¢ = 0.15 < t,U, and the coupling to LIOMs farther away decays
exponentially with distance. Hence, this regime is well within the purview of the instability
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argument |70|, which treats the coupling perturbatively through the FGR. We find that the
DOS of the bubble undergoes a striking change, albeit when a substantially large number
M of LIOMs are coupled, entirely destroying the spectrum of the original Hubbard model.
The DOS becomes almost entirely dominated by the discrete poles of the localized sites. In
fact, as shown in Fig. 3.6(d), for large M and over an energy interval —W < w < W the
DOS is identical to that of the system where U = 0 in the bubble. This implies that the
interaction effects become irrelevant due to the feedback of the insulator onto the bubble.
On the contrary, the smooth tails at |w| > 2 are not caused by the LIOMs, but by the
interaction effects in the Hubbard bubble: note that the tails at 2 < |w| < 4 are unaffected
by coupling to the insulator, i.e. the tails of the M = 0 spectral function in Fig. 3.6(a) are
the same as the tails of the large M spectral function in Fig. 3.6(d).

1.0 - 1.0

0.8 o 0.8

—~

0 500 1000 1500 O'00 1000 2000 3000 4000 5000

M M

Figure 3.7: (a)—(c) The imaginary part of the three different contributions, ¥; (due to the
hopping), Xy (due to the interactions in the bubble), and ¥y (due to the bubble-LIOM
coupling), in the self-energy of the bubble for V' = 1.5 at three different values of M. We
find that ¥y dominates the other two self-energies at large M 2 300. (d) and (e) compare
the typical values (see the main text for the definition) of the three contributions for V' = 1.5
and V' = 0.5, respectively. For V' = 1.5 in (d), Xy crosses ¥; and Yy as a function of M,
signaling the onset of the strong back-action in the spectral function, as shown in Fig. 3.6(d).

The above “strong” back-action of the insulator onto the bubble can be understood as a
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consequence of the cumulative, emergent, self-energy effect of a large number of LIOMs, as
captured by 3y (the last term of Eq. 3.25b). The contribution of an individual LIOM to the
self-energy is

Sy ~ (Va/€)?/(WVN) (3.31)

for W 2 t,U. For M > m&%, namely when the LIOMs over a radius much larger than ¢ are
added, the typical ¥y is expected to saturate to ~ V2/(W+/N), becoming independent of &
and varying as ~ 1/ V/N. As shown in Fig. 3.7, the strong back-action appears for sufficiently
strong V', when a large number of LIOMs is coupled to the bubble and Xy 2 X, Xy;
the latter two are the self-energies in the DMFT formalism due to the hopping and the
interactions in the bubble, respectively.

Figures 3.7(a)—(c) show how the imaginary part of ¥, dominates those of the other two
contributions to the self-energy as we increase M for V' = 1.5. We emphasize that the mech-
anisms giving rise to the competition between self-energies are fundamentally dynamical, as
shown by the strong energy (w) dependence of ¥;(w), Yy (w), and 3y (w). Moreover, one self-
energy leads to a strong feedback onto the other self-energies via the DMFT self-consistency.

To better understand the effect of the coupling strength V', we compare the typical self-
energies, defined as the geometric mean over the interval — W < w < W and over several
disorder realizations. Figs. 3.7(d) and (e) correspond to V' = 1.5 and V' = 0.5, respectively.
In the former case, ¥y, becomes comparable to ¥; and ¥y for M = 300, consistent with the
onset of the strong back-action in the spectral function shown in Fig. 3.6(d). Conversely, for
V' = 0.5 shown in Fig. 3.7(e), ¥y < 3, Xy and the effect of the LIOMs on the bubble is
very weak [Figs. 3.6(a)—(b)].

This brings us to our main observation. Even though the coupling V' = 1.5 is “strong”
because it induces a strong back-action, it is “weak” in the sense of the ETH theory [70]
since the effective coupling of the closest LIOM is (V/£) = 0.15 < ¢ = 1. In this regime, the
avalanche theory based on ETH would assess the back-action by considering the change of
the spectral function upon adding LIOMs one at a time. Within this sequential approach, if
the change of spectral function after coupling the closest LIOM is small, then it is expected
to remain so after adding farther LIOMs (whose couplings decay exponentially with the
distance).

Indeed, in the strong back-action regime shown in Fig. 3.6(c), we find that there is no
substantial change after coupling a significant number of LIOMs. However, after coupling an
even larger number, as shown in Fig. 3.6(d), the strong back-action on the bubble spectral
function becomes apparent. We stress that this emergent effect cannot be captured within
the ETH framework [70]. Ref. [70] alludes to certain cumulative strong back-action effects
such as an MBL proximity effect a la Ref. [173]. However, the effect we described is different
from an MBL proximity one since it is caused by quantum fluctuations induced by virtual
hops of fermions from the Anderson insulator onto the interacting bubble.

Nonetheless, our study of p(w) in this model cannot indicate whether the system is
localized or not—generically, the thermal spectral function of an interacting system at a
finite temperature does not contain direct information about localization [174]. Moreover,
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capturing localization effects in this model might require the inclusion of non-perturbative
effects in 1/N, whereas we have only kept the leading term up to O(1/v/N). Nevertheless, the
saddle-point results in the effective Anderson impurity model capture the thermal spectral
function of the bubble quite accurately for large system sizes. The drastic change of the
thermal spectral function p(w), which we can compute, implies that the spectral functions
of typical eigenstates py,,(w) must also change substantially as a function of M, even in the
regime of weak bubble-LIOM coupling. This might have important consequences for the
critical bubble size, estimated naively from the ETH arguments presented in Section II, as
we discuss in the concluding section below.

3.4 Conclusion

We have assessed the stability of the MBL phase in two and higher dimensions and in
the presence of long range interactions, in light of recent arguments that have called this
stability into question [70]. Specifically, it was argued that an instability to rare regions
of weak disorder occurring naturally in an insulator can trigger an avalanche that would
eventually thermalize the entire system.

As a first test of the assumptions underlying the arguments from Ref. [70], we have used
an exact diagonalization study of small systems. The numerical calculations modeled an
ergodic bubble coupled to a localized system in both one and two dimensional geometries.
We found that the numerical results are in excellent agreement with a refined theory of the
avalanche based on ETH that also includes corrections due to small system sizes. Thus, our
numerical calculations provide further evidence for the validity of the avalanche scenario.
The only failure of thermalization in the two dimensional geometry, as well as in the one
dimensional geometry with stretched exponential interactions, occurred when the ergodic
bubble was below a critical size also predicted by the ETH arguments.

As a second test of the avalanche scenario, we have analyzed an effective model of an
ergodic bubble coupled to an Anderson insulator. The goal in this analysis has been to check
the assumption, central to the avalanche scenario, that the bubble spectral function does
not suffer a significant back-action from coupling to the LIOMs. From the numerical solu-
tion of the effective model, we found that even for reasonably weak bubble-LIOM coupling
there could be substantial back-action of the insulator onto the bubble, leading to a strong
modification of the bubble spectral function.

The back-action of the surrounding insulator on the bubble presents a possible mode of
failure of the avalanche for a given bubble size. However, we have seen that the effective
coupling that generates the back-action is suppressed by 1/ V/N as we increase the bubble
size N. Thus, the avalanche can always recover from the back-action effect if the bubble
is sufficiently large. We conclude that the main effect of the back-action is to renormalize
the critical bubble size needed to sustain the avalanche. Hence, the system may well be
delocalized as predicted by the avalanche arguments [70], but seeing that it is so will require
much larger system sizes than predicted by naive arguments based on ETH.
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While our analysis generally lends support to the avalanche scenario, it also highlights
the unrealistically large thermalization time scales required to observe the instability, even
without the back-action effect. Consider a strongly disordered system, deep in the putative
insulating phase, such that its localization length is almost vanishing (i.e. much smaller
than a lattice constant). The analysis in section 3.2 implies that the minimal bubble size
required to sustain an avalanche is ~ 1/£ > 1. Bubbles of this size represent extremely rare
fluctuations occurring with a frequency that decays at least as exp(—2A/£?) with decreasing
¢. In other words, the distance between such bubbles is at least [, ~ exp(A/&?). This quickly
becomes much larger than any reasonable system size; even if the system is large enough,
the time for the thermalization avalanche to reach LIOMs that are not close to any of the
bubbles is

T~ e/ = exp [5_16A/52] . (3.32)

In other words, the local thermalization time quickly becomes very large (note, however,
that £ is related to the logarithm of the disorder strength: £ ~ 1/logW). Thus, on practical
time scales, systems deep in the MBL state remain localized and do not suffer from this
instability. On the other hand, the avalanche instability can have a significant effect in the
vicinity of the many-body localization transition, eliminating the sharp phase transition.
In future work, it would be interesting to explore how the instability, if it indeed occurs,
interrupts the critical scaling and broadens the transition into a crossover.

3.5 Appendix A: Details on the exact diagonalization
study

The model we are studying is defined as
H - Hb + 7’[[ + Hbl- (333)

As mentioned in the main text, H; is a 2V x 2 Hermitian matrix sampled from the Gaussian
Orthogonal Ensemble such that the many-body bandwidth W = Ep ax — Enin (Where Fiax
and E., are the largest and smallest eigenvalues, respectively) scales linearly with the
system size, i.e. W = wN and w =~ 2.6. For the remainder of the chapter, we place the
ergodic quantum dot at the origin and we fix its size to N = 8 bath spins defined by the
Pauli operators o{*¥#}. The insulating region consists of M LIOMs defined by the Pauli
operators 71#¥2} and the Hamiltonian is given by H; = Ziil €aT., where the local fields ¢,
are sampled from the uniform distribution on [0.5,1.5]. Lastly, Hy = >, Voo 772 describes
the bubble-insulator coupling and the V,’s depend on the geometry under consideration, as
described below.

First, in a d = 2 geometry with exponentially decaying couplings, we arrange the LIOMs
in concentric layers around the ergodic bubble: the n'® layer has a radius r, = (n — 1)a (in
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units of the inter-layer distance a = 1) and it contains n LIOMs such that the insulator-
bubble coupling strength is V,, = Vie /¢ for
-1 1
ootnzb ,  nletl
2 2

We set V; = 1 for the first LIOM and ¢ is the localization length. The total number
of LIOMs, M, is related to the total number of layers n via M = @ Second, in a
d = 1 geometry with exponentially decaying couplings we also take V, = Vie "e/¢, but
re = (a—1) for « = 1,..., M. Third, in a d = 1 geometry with stretched exponentials we
take V, = Vle*\/m, where r, = (a — 1) and o = 1,..., M.

In all three scenarios, we couple up to M = 6 LIOMs to the N = 8 bubble spins

and obtain the many-body eigenstates |¥,) and eigenvalues E, of the full Hamiltonian:

(3.34)

Spectral functions

In the main text we have defined the spectral function of a local operator O in an
eigenstate |¥,,) via

pr(w) =21 Y [(L,] O T,) P6(w — winn), (3.35)
m#n
where wy,, = E,, — E,. Note that p,(w) obeys a sum rule whereby f_+°o pn(w)dw =

27 (1 - (¥, | O|¥,)%) =~ 27.

For a local operator O = o{ acting in the ergodic region, one expects p,(w) to be a smooth
function for a thermal eigenstate and a set of narrow peaks for an MBL eigenstate [126].
Moreover, in the MBL case, the narrow peaks occur at different frequencies for different
eigenstates even within a given disorder realization. Thus, another diagnostic of localization
can be obtained from the “breakdown of typicality” of the eigenstate spectral function. To
this end, we define the typical spectral function via the geometric mean:

Pryp(w) = exp <NLA > log pn(w)> 7 (3.36)

where, as before, the overline corresponds to disorder averaging and we also average over
Ny = 2VTM /(N + M) eigenstates in the middle of the band. For the above equation to be
well-defined, we have to consider the limiting cases in which the eigenstate spectral function
in a given disorder realization is either zero or a delta function at a frequency w. First, if we
have p,(w) = 0 then we implicitly take piy,(w) to be defined as the limit of the right hand
side, namely pgyp(w) = 0. Second, since we are interested in a finite-size system that has
a discrete spectrum, we always work with a finite energy binning and we take the bin size
to be 20g: thus, a delta function peak in a thermodynamic system becomes a narrow peak
of width 20z and height (26g)~! in a finite-size system. Note that a similar prescription is
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to introduce an even wider “energy smearing” by replacing delta functions with finite-width
Lorentzians whose tails give non-zero contributions everywhere. While the two approaches
are equally valid, we choose the former since it is computationally faster: see the “Numerical
implementation” section below for details.

Thus, if the system is thermal then py,(w) should be non-zero and a smooth function.
However, in contrast to the eigenstate spectral function, pyy,(w) does not have an exact sum
rule for 7 = f_oooo pryp(w)dw, but rather an upper bound for 7, as detailed in the section
below. On the other hand, for an MBL system py,(w) vanishes since p,(w) consists of
discrete peaks and the peaks occur at different frequencies for different eigenstates even for
a single disorder realization.

Bounds on the typical spectral function

Since p,(w) > 0 for all frequencies and n’s, we can apply the inequality of arithmetic and
geometric means to find that

0 < pyp(w S N Z pn(w) = pun(w), (3.37)
where py, (w) is the thermal spectral function at infinite temperature:

pen(w an (3.38)

Defining 7 = f Pryp(w)dw we see that

+o0 T oo
0<ZT< . 3.39
<z< [ o= 30 [ o (3.39)

o0

Thus, the upper bound for the typical spectral function’s sum rule is 27. Since the geometric
and arithmetic means are equal solely when all numbers being averaged are equal, then Z
saturates the 27 bound if and only if p,(f)(w) = p%)(w) for any n,m,1,j, where pg)(w) is
the spectral function in an eigenstate |¥,) in the i*" disorder realization. Conversely, T
saturates the 27 upper bound when the typical and thermal spectral functions coincide,
Pryp(w) = pn(w).

Thus, we expect that in the MBL phase Z =~ 0 due to the breakdown of typicality and
in the thermal phase Z ~ 27.

Numerical implementation

The definition in Eq. 3.36 is reasonable for a thermodynamic system. However, for a
finite system and for a finite number of disorder realizations, piy,(w) will be dominated by
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Figure 3.8: (a)-(d) correspond to the spectral functions of a bath spin, whereas (e)-(h)
correspond to the spectral functions of a LIOM in a 2D geometry with exponentially decaying
couplings. The curves in (a)-(f) have been averaged over N, eigenstates in the middle of the
spectrum and over many disorder realizations. The curves in (g)-(h) correspond to a given
disorder realization.

the rare instances in which pgf) (w) = 0. To be more precise, suppose we are interested in
the value of pyyp(w) at a given frequency w = wp and we are taking the geometric average
over N eigenstate spectral functions (A is the product of Ny and the number of disorder
realizations). Under the definition in Eq. 3.36, if a single number out of these N values is
zero and the remaining N'—1 > 1 are non-zero then pyyp,(wy) = 0 which runs counter to our
intuition behind “typicality”.

As mentioned before, a solution would be to replace delta functions by finite-width
Lorentzians whose tails contribute non-zero values everywhere. Since we found this to be
computationally slow, we chose the following alternative: we shift all values by 1072°, namely
ph(w) = pp(w) + 1072 If p of these values are zero, (1 — p)N are non-zero, and the geo-
metric average of the non-zero ones is pg, then shifting everything by 1072° gives, to leading
order, p,(wo) ~ 1072% 7" If p = 0.01 then Piyp(wo) & 0.6pg, i.e. if 1% of the values are
zero then our numerically obtained typical spectral function is of the same order of magni-
tude as po; if p = 0.1 then pi,, (wo) ~ 0.01p0?, i.e. if 10% of the values are zero then our
numerically obtained typical spectral function is two orders of magnitudes smaller than py.
Thus, roughly speaking, “typical” means that ~ 99% of the eigenstate spectral functions
share a given feature of interest.

Bath spectral functions

For illustrative purposes, in Fig. 3.8(a)-(d) we plot examples of both piy,(w) and py,(w)
for local bath operator O = o7 in a d = 2 geometry with exponentially decaying coupling
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Figure 3.9: The integral over all frequencies for the typical (geometrically averaged over
eigenstates and disorder realizations) spectral function of a local operator acting on a bath
spin: 7 = ffooo pryp(w)dw. We plot 7 as a function of the LIOMs added and each curve
(color) corresponds to a different localization length. (a) Corresponds to a d = 1 geometry
with exponentially decaying couplings. (b) Corresponds to a d = 1 geometry with stretched
exponentials. (c) Corresponds to a d = 2 geometry with exponentially decaying couplings.

strengths for both small and large localization lengths é&—we note that qualitatively similar
behaviors occur for the d = 1 models with exponentials and stretched exponentials.

In Fig. 3.8(a) we can see the collapse of the typical spectral function for a small local-
ization length, & = 0.4. In Fig. 3.8(c) we plot the thermal spectral function for the same
parameters and we observe that py,(w) is insensitive to the breakdown of typicality. This
is due to the fact that py,(w) “washes out” the differences between the collections of peaks
characterizing different eigenstates, leading to a smooth function that remains more or less
unchanged with the addition of LIOMs. As emphasized in the main text, this behavior is
consistent with the fact that the thermal spectral function cannot detect localization.

We also plot pyyp(w) and pg,(w) for a large localization length, £ = 4.0 (Fig. 3.8(b) and
(d), respectively). First, in both panels we observe the emergence of a plateau at small
frequencies for the largest system sizes. This can be understood as an emergent Thouless
energy scale [209]—even though the original ergodic bubble was a zero dimensional quantum
dot, adding spatial structure via the LIOMs gives rise to signatures of locality in the bath.
Second, we see that the area under the typical spectral function increases monotonically with
the addition of LIOMs.

As argued in Sec. 3.5, for a thermalizing system, this process will continue until piy,(w) =
pin(w) and Z = 27. In Fig. 3.9 we further analyze this phenomenon by studying the evolution
of Z as a function of the number M of coupled LIOMs for different localization lengths £. For
a large localization length the integral Z increases monotonically with the successive addition
of LIOMs, approaching the upper bound allowed by the spectral sum rule. However, in the
regime of small localization lengths, the addition of the first few LIOMs strengthens the
bubble by increasing Z, but coupling more insulating sites eventually collapses the typical
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Figure 3.10: The entanglement entropy S of the farthest LIOM coupled to the ergodic bubble
as a function of M. Each curve (color) corresponds to a different localization length and we
have averaged over N, eigenstates in the middle of the spectrum and over many disorder
realizations. (a) Corresponds to a d = 1 geometry with exponentially decaying couplings.
(b) Corresponds to a d = 1 geometry with stretched exponentials. (c) Corresponds to a
d = 2 geometry with exponentially decaying couplings.

spectral function, i.e. Z — 0. As mentioned in the main text, this breakdown of typicality
is a consequence of the fact that the Fermi Golden Rule (FGR) decay rate for the farthest
LIOMs is approximately zero.

LIOM spectral functions

In the main text we have discussed the width v of the spectral function peaks for a local
operator acting on a LIOM, O = 77,. We now plot in Fig. 3.8(e)-(f) a few examples of these
LIOM spectral functions. In particular, in Fig. 3.8(e) and (f) we plot the typical spectral
function pyyp(w) corresponding the farthest LIOM that was coupled to the ergodic region
for £ = 0.4 and & = 4.0, respectively. For a small localization length, we also observe the
collapse of the typical spectral function [Fig. 3.8(e)|, whereas for a large localization length
we observe two broad peaks [Fig. 3.8(f)] of equal width.

The structure becomes more transparent when we look at the thermal spectral function
of the LIOM farthest from the ergodic region in a fized disorder realization for the local
fields {e,}. As shown in Fig. 3.8(g) and (h), the thermal spectral function corresponds to
two sharp peaks located at 4+2¢y,, where 1 < 2|ep/| < 3. From these we extract the widths
~ and compute the numerical ratio v/dg, as described in the main text, which allows us to
check whether the FGR decay rate is non-zero.
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Figure 3.11: The entanglement entropy S of the farthest LIOM coupled to the ergodic region
as a function of the localization length £. Each curve (color) corresponds to a different total
number M of LIOMs (i.e. a different system size). (a) Corresponds to a d = 1 geometry with
exponentially decaying couplings. (Inset) is a zoom-in around the crossing point & ~ 2.9
between the different curves and this value of &, is in very good agreement with the one
obtained in Refs. [158, 70]. (b) Corresponds to a d = 1 geometry with stretched exponentials.
(Inset) is a zoom-in around £ ~ 0.7 between the curves, showing that there is no crossing
(i.e. it is not a transition). (c¢) Corresponds to a d = 2 geometry with exponentially decaying
couplings.

Entanglement entropy of the LIOM farthest from the ergodic region

As a final diagnostic, we track the entanglement entropy S of the farthest LIOM coupled
to the ergodic bubble. For a many-body eigenstate |¥) of the full system we compute the
reduced density matrix of the farthest, M™, LIOM: p = Tt’ |¥) (¥|, where Tt corresponds
to tracing out the other (N + M — 1) degrees of freedom. Then, the entanglement entropy is
defined as S = — Tr (plog p) and takes a value between 0 (no entanglement) and log 2 (fully
entangled). In passing, we have explicitly checked that the entanglement entropy of a bath
spin is always the maximal log2 for all £’s and M’s—this suggests that |Uyuy) is a fully
thermal state for the N = 8 spins in the ergodic region regardless of how many LIOMs we
couple to it.

As shown in Fig. 3.10, for small enough localization lengths £ the entanglement entropy
eventually collapses, S — 0 as M increases, indicating that LIOMs far away from the bubble
will be disentangled. In the case of a 1D insulator, this is due to the fact that an ergodic
bubble, regardless of its initial size, cannot sustain the thermalization avalanche indefinitely
for localization lengths & below the critical value, £ < & = 2/log2. In the case of a 2D
insulator or a 1D insulator with sub-exponentially decaying wavefunctions, this is due to the
fact that the initial bubble size is not large enough to sustain the avalanche: recall that, in
the former case, there exists a critical bubble size N* ~ £72 below which the avalanche is

eventually arrested. Since we fix N = &, for small localization lengths, & < \/LN’ we expect

that S — 0 for large enough M. Conversely, for large localization lengths, £ = \/LN’ we see
that S — log2 for large enough M (see Fig. 3.10).
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Secondly, we note that the behavior of S exhibits signatures of the 2D geometry, as shown
in Fig. 3.10(a): the entropy slightly increases for LIOMs within a given layer, but it sharply
drops as we move on to the next layer.

Similarly, in Fig. 3.11 we plot S(§) for different Ms (system sizes). For the 2D geometry
or the 1D geometry with stretched exponentials, we observe a crossover between no entangle-
ment (S = 0) and maximally entangled (S = log 2) as a function of the localization length, as
shown in Fig. 3.11. For the d = 1 model with exponentially decaying couplings [Fig. 3.11(b)]
we find that there is a crossing between the S(&) curves corresponding to different system
sizes (Ms) that occurs at & ~ 2.9. Ref. [158], which has shown extensive numerical data for
this geometry, found that there exists a transition at &. = é ~ 2.88 which is in very good
agreement with our results.

Lastly, we have also analyzed the average ratio

mln{AEk, AEk:-i—l}

re) = max{AFEy, AE,1}’ (3.40)

where AFEy, = Ejy1 — Ej, and found a behavior very similar to that of S(£). Naturally,
we find that there is no such crossing and transition for the d = 1 model with stretched
exponentials or the d = 2 model.
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Chapter 4

Integrable and chaotic dynamics of spins
coupled to an optical cavity

As mentioned in Chapter 1, significant progress has been made in describing the scram-
bling of information through quantum chaos, which allows effectively irreversible dynamics
to emerge from unitary quantum time evolution. Notably, Maldacena et al., inspired by the
chaotic properties of black holes, established that quantum mechanics places an upper bound
on the Lyapunov exponent that characterizes the growth of chaos [162]. In a related develop-
ment, Kitaev constructed a class of quantum many-body models whose dynamics saturates
this bound on chaos [137, 163] and can be related to black holes through the AdS/CFT
correspondence [200, 123, 225|. The fact that these models admit controlled solutions, de-
spite being chaotic, has further conferred on them a paradigmatic status within the field of
quantum dynamics.

Finding accessible systems which realize such models is therefore highly desirable, but
also, a priori, very challenging: a common feature shared by all of these maximally chaotic,
holographic models is that they lack spatial locality, since they couple together an extensive
number of degrees of freedom. For instance, the Sachdev-Ye (SY) model [201] was originally
proposed as a quantum spin model with random all-to-all couplings:

N
1
H = E Ui'Si'S‘> 4.1
/—NM J J ( )

where S; are SU(M) spin operators. A fermionic variant, the Sachdev-Ye-Kitaev (SYK)
model, was subsequently introduced by Kitaev.

While infinite-range spin interactions do not occur in magnetic materials, they can be
realized rather naturally in cold atomic ensembles coupled to an optical cavity mode [40, 161,
152, 156, 27, 113, 140, 151, 176, 141, 144, 139, 105, 69, 47]. In this setup, the delocalized
cavity mode mediates infinite-range interactions between the internal states of atoms through
the local coupling at each site, regardless of the distance between atoms [17, 221, 203,
102, 116, 165, 170, 64, 169]. However, there is a crucial difference, already pointed out in

ij=1
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Ref. [164], between the interactions in the SY model and the ones mediated by the cavity.
The second-order process that couples the atomic degrees of freedom via the cavity mode
gives a separable (rank-1) matrix U;; = J;J;, rather than the full-rank matrix assumed in the
different variants of the SY model. Although non-separable interactions are, in principle,
accessible in multi-mode cavities [102, 227, 230, 140, 151, 164, 105], separable all-to-all
couplings are realized in numerous existing experiments [152, 113, 141, 144, 176, 69, 47, 139]
and arise generically for interactions mediated by a single bosonic mode.
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Figure 4.1: (top) The dynamical phase diagram of the model (4.2) in the plane of the spin size
S and anisotropy A. The main features are: the integrable lines at A =0 and A =1 (solid
blue); the novel integrable line at S = 1/2 (dotted blue and marked by an asterisk); and
the onset of chaos at large S, indicated schematically by the dashed red curves. (bottom)
Schematic of the atomic sub-ensembles (red) trapped inside a single-mode optical cavity
(blue). A drive field (green) at a detuning § from the cavity resonance generates effective
spin-spin interactions between the atoms (bottom right). The tunable angle § between the
spin quantization axis (along the applied magnetic field B) and the cavity’s longitudinal
axis leads to an anisotropy A = 2cot? §. By changing the local atomic density in a region of
constant coupling to the cavity mode, the effective spin size S can also be varied, allowing
for the systematic exploration of the full phase diagram.

Moreover, this ostensible limitation of the cavity-QED scheme turns out to be a boon:
the separability of the interaction is responsible for an even richer dynamical phase diagram
(see Fig. 4.1), which includes regions of chaos, Gaudin-type integrability characterized by
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spin-bilinear conserved quantities, and of a novel form of integrability—labeled Integrable*
in Fig. 4.1—with quasi-bilinear integrals of motion.

The class of models we consider in this chapter is described by the following quantum
spin Hamiltonian:

N
1 Tr QT zZ Qz
H= S Z JiJ; (SPST 4+ SYSY + AS;S7) (4.2)

ij=1

where S; are SU(2) spin-S operators encoded in the magnetic sub-levels of individual atoms
or atomic sub-ensembles located at sites i = 1,..., N. The site-dependent coefficients J; are
determined by the local coupling of the atoms at site i to the spatially-varying cavity mode,
or by the local Rabi frequency €2; of an inhomogeneous drive field. The non-uniformity of the
couplings J; is a crucial element of the models under consideration. For perfectly uniform
couplings (J; = J), the model is integrable and exactly solvable in terms of the macroscopic
spin F = ), J;S;. The S*S* and S¥SY terms in (4.2) describe spin-exchange interactions
between pairs of atoms, mediated by virtual cavity photons, while the S*S* terms describe
state-dependent ac Stark shifts. The normalization of H, which is not important for the
dynamical properties, ensures that the high-temperature specific heat and free energy have
a proper thermodynamic limit (see Appendix Section 4.10).

The dynamical phases generated by this non-local spin model, shown in Fig. 4.1, are
accessible via two experimentally tunable parameters. The spin-anisotropy parameter A,
controlling the relative strength of the spin-exchange and S*S* interactions, can be tuned by
changing the angle of an applied magnetic field B (see Fig. 4.1). In addition, it is possible
to control the strength of quantum effects by changing the spin size S on each site. While
the choice of internal atomic states provides some flexibility in varying S, a larger range of
spin sizes can be achieved by varying the number of atoms trapped at each site and letting
S¢ represent the collective spin of the sub-ensemble at site 7. This enables the tuning of
quantum effects from semi-classical dynamics at large S all the way down to a spin-1/2
system that is dominated by quantum fluctuations. In combination with the possibility of
varying the anisotropy A, this tunability allows for a thorough exploration of the dynamical
phase diagram.

The chapter and the presentation of the various regimes shown in Fig. 4.1 are organized
as follows. We provide a brief overview of these dynamical phases in Section 4.1 and we em-
phasize the novel features, which constitute our main results. In Section 4.2 we describe in
detail the proposed experimental scheme to realize and control the couplings of the Hamil-
tonian (4.2). We also describe ways of inducing perturbations that go beyond separable
interactions. In Section 4.3 we begin the derivation of the main results. We analytically
construct the integrals of motion that demonstrate the integrability of the dynamics at the
special points A = 0 and A = 1. In Section 4.4 we present a computational method for
finding integrals of motion using numerical or experimental data. In Section 4.5 we de-
ploy this technique and provide numerical evidence for the existence of a novel quantum
integrable regime away from the special points A = 0,1. Specifically, we present an exact
diagonalization study of the spin-1/2 model, showing that the integrable structure persists
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for anisotropy values A # 0,1 away from the integrable points, with quasi-bilinear integrals
of motion. In Section 4.6 we simulate the classical model (S — oo) and show that it becomes
chaotic, albeit in the presence of slowly decaying modes, away from the special points. In
Section 4.7 we discuss experimental limitations and assess the extent to which the various
features of the model are accessible in the presence of dissipation. Finally, in Section 4.8 we
comment on the implications of these results before concluding.

4.1 Overview of the phase diagram

The best understood part of the dynamical phase diagram in Fig. 4.1 is the line at A =1,
for all spin sizes S, on which the Hamiltonian from Eq. 4.2 is equivalent to a rational Gaudin
model [93]|. This model is quantum integrable in the mathematical sense of possessing an
underlying quantum group structure [216]. In the context of Gaudin-type models, quantum
integrability is characterized by the existence of an extensive family of commuting, bilinear
conserved quantities and there exist analytical expressions for each one. Even though there is
no notion of spatial locality, the conserved quantities are “2-local” in the complexity theory
sense [136, 7|. By interchanging commutators with Poisson brackets, it follows that the
integrable structure persists in the classical limit.

We find that the model is integrable at A = 0 as well. We obtain analytical expressions
for an extensive family of conserved quantities that are also bilinear in spin. As in the case
of A = 1, this integrability holds for any value of S, including the classical limit S — oo.
The integrability of the model at A = 0 is connected to the existence of a non-standard class
of Gaudin models [24, 217, 205, 220, 218, 219, 160, 62].

However, the most surprising part of the phase diagram occurs away from these integrable
points, i.e. in the regions {A < 0}, {0 < A < 1}, and {A > 1}. There, we find a novel
integrable structure that is markedly different from the type of integrability found at the
two integrable points, A = 0 and A = 1. First, unlike the latter, integrability for A # 0, 1
appears to depend crucially on the spin size S. We show strong evidence that the model
is integrable for a spin-1/2 system, while it is chaotic with a finite Lyapunov exponent Aj,
in the classical limit (S — o00). Nevertheless, in this latter limit, we also find that there
exist modes that relax only on time scales much larger than A;'. We conjecture that this
is a consequence of the “quasi-integrable” nature [99] of the classical model. The putative
transition from quantum integrable to (semiclassical) chaotic dynamics, schematically shown
in Fig. 4.1, can be probed experimentally.

Second, the integrals of motion (IOM) of the S = 1/2 model at A # 0, 1 are not bilinear
(or 2-local), but may instead be termed quasi-bilinear. We present compelling numerical
evidence that each IOM has appreciable support in the space of bilinear spin operators
that does not depend on the system size N. The fact that the integrals of motion persist
while developing tails of multi-spin terms on top of the dominant two-spin contribution is
reminiscent of the quasi-local integrals of motion that characterize Many-Body Localized
phases [238, 211, 117, 56, 196|.
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4.2 Proposed experimental scheme

As advertised, the full phase diagram of Fig. 4.1a can be accessed in experiments with
atomic ensembles in single-mode optical cavities. In such experiments, each spin is encoded in
internal states of an individual atom. The cavity generically couples to a weighted collective
spin

F = Zfisi, (4.3)

where each weight &; is set by the amplitudes of the cavity mode and drive field at the position
of the i*® atom. Experiments to date have realized either Ising interactions [152, 113, 47,
144, 141] H « F? or spin-exchange interactions [176, 69] H oc F.F_ , in the latter case
directly imaging the spatial dependence of the weights & and the resulting spin dynamics
[69]. We now show how to extend the approach of Ref. [69] to realize generic XXZ models
of the form

where the anisotropy A is tuned by the angle of a magnetic field. An alternative approach
to engineering Heisenberg models has been proposed in Ref. [169].

The experimental setup proposed here is shown in Fig. 4.1b. We consider spins encoded
in Zeeman states of atoms whose positions in the cavity are fixed by a deep optical lattice.
A magnetic field B = Bz, which defines the quantization axis for the spins, is oriented at
an angle # to the longitudinal axis ¢ of the optical cavity. Driving the atoms with a control
field, incident either through the cavity or from the side, allows pairs of atoms to interact
by scattering photons via the cavity. The interaction strengths are governed by the spatially
dependent Rabi frequency €2; of the control field and vacuum Rabi frequency 2g; of the
cavity, where 7 denotes the value for the i*" atom.

For large detuning between the atomic and cavity resonances, the atom-cavity interac-
tion takes the form of a Faraday effect in which each atom couples to the Stokes vector
I;, representing the local polarization and intensity of light. This effect is described by a

Hamiltonian
Hy=2x» (L;-¢)(S;i-¢), (4.5)

where y is the vector ac Stark shift of a maximally coupled atom and the component of the
Stokes vector along the cavity is I, - ¢ = (ALZ-AH — AT_JAA_,Z-)/Q. The field operators

Q. efiét

A= ——=+ga 4.6
ci= (B v Jo (46)
include the quantum field a4 of the cavity for oi-polarized modes, weighted by the local
amplitude g; of the cavity mode, and displaced by a classical drive field with local Rabi
frequency €2;. The normalization is set by the vacuum Rabi frequency 2g of a maximally-
coupled atom. We assume that the drive field has horizontal polarization £ = Z x ¢ and is

detuned by ¢ from the cavity resonance.
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In the limit where the drive field is weak and far detuned, we can obtain an effective
Hamiltonian for the spin dynamics by adiabatically eliminating the photon modes. To this
end, we first expand H; to lowest order in the operators a+ to obtain

H; ~ %X (ﬁvem — @vTe_m) (Si-¢), (4.7)
where v = (ay —a_) /v/2 represents the vertically polarized cavity mode, and we have
introduced the weights

Qig;
6= 2 (48)
g2

These weights determine the collective spin F defined in Eq. 4.3, which couples to the cavity
mode. Then, for (vfv) < 1 and for large detuning § > k,wy compared to the cavity
linewidth x and Zeeman splitting w;, we find that the effective spin Hamiltonian is
X 1

H= oY cos” szfz—i-gsinZQ(}'w}"m—l—f"y]:y) , (4.9)
as detailed in the Appendix 4.9. We see that Eq. 4.9 matches the Hamiltonian (4.2) with
couplings J; = x&SYV2NV4sin6/2v/26 and anisotropy A = 2cot?#. Note that arbitrary
control over the set of weights &; can be obtained by designing the spatial dependence of the
control field.

In addition to the coherent dynamics generated by H from Eq. 4.9, the cavity-mediated
interactions are subject to dissipation due to photon loss from the cavity mirrors and atomic
free-space scattering. Formally, these processes can be described by a family of Lindblad
operators acting within a quantum master equation (see Appendix 4.9). The key parameter
governing the interaction-to-decay ratio is the single-atom cooperativity n = 4¢*/xI", where
I' is the atomic excited-state linewidth. Moreover, we find that the interaction-to-decay ratio
is collectively enhanced, scaling as Sy/N7 for a system of N sub-ensembles consisting of S
atoms each.

After we discuss the various properties and measurable signatures of chaotic and inte-
grable dynamics in (4.2), we shall return to quantifying the effects of dissipation in Sec-
tion 4.7. In particular, we will estimate the atom number and cooperativity 7 requisite for
observing these signatures in the experimental setup.

4.3 Integrability at A=0and A =1

In this section, we demonstrate the quantum integrability of the Hamiltonian (4.2) along
the two lines at A = 0 and A = 1 in the dynamical phase diagram (Fig. 4.1). To place our
discussion in context for the non-specialist reader, we begin by recalling some key features
of integrable many-body systems. Broadly speaking !, such systems are characterized by an

IFor a comprehensive discussion of the subtleties involved in achieving a generally valid definition of
quantum integrability, see Ref. [55].
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extensive number of local conservation laws that give rise to exotic transport and thermaliza-
tion properties. Important examples of quantum integrable systems include the Lieb-Liniger
Bose gas and the spin-1/2 Heisenberg chain.

To illustrate the main ideas, consider a one-dimensional, local, quantum Hamiltonian
H = ZnNzl h,, on N lattice sites. For this type of model, integrability means the existence
of N — 1 independent, local charges,

N
QW =>"¢", n=2..N, (4.10)
i=1

that commute with each other and with the Hamiltonian, namely
Q™. Q™) =0, [Q"™, H]=0. (4.11)

The existence of extensively many local conservation laws can be regarded as a strong con-
straint on the dynamics of such systems, and leads to unusual physical effects such as non-
dissipative heat transport[251] and equilibration to non-thermal steady-states|[195, 28|.

In contrast with more standard integrable systems, the Gaudin-type models that arise
in the present chapter are somewhat unusual, since they exhibit non-local couplings and are
therefore essentially zero-dimensional. To construct these models, one starts from a set of

N operators,
3

N
GO =" "wsesy, i=1,2... N, (4.12)
j=1 a=1
that are linear combinations of spin bilinears, with real coefficients wy; € R, and satisfy the
defining commutation relations:

G, GW] = 0. (4.13)

The physical Hamiltonian and the independent conserved charges are then given by linear
combinations of the G®, of the form

N
H=>"a"G" QM =>"a"G" n=2..N, (4.14)
=1

=1

where the coefficients agn) € R are elements of a non-singular N-by-N matrix. Note that

by the commutation relations (4.13), the Hamiltonian H and its associated charges QM
automatically satisfy the commutation relations (4.11) required for integrability. Although
these operators are not local, they are sums of spin bilinears and can therefore be regarded
as ‘2-local” in the complexity theory sense.

We now show that the Hamiltonian Eq. (4.2) defines a Gaudin-type integrable model
for A = 0 and A = 1 and all values of spin S. Specifically, we will demonstrate that
along these lines in the dynamical phase diagram Fig. 4.1, there exist N — 1 independent,
conserved and mutually commuting spin bilinears. The Hamiltonian at A = 1 is related
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to the rational Gaudin model [93], which is well-known to be quantum integrable in the
mathematically rigorous sense of possessing an underlying quantum group structure [216].
Meanwhile, the Hamiltonian at A = 0 lies in a less well-known class of “non-skew” Gaudin
models, which arise from Gaudin’s equations upon relaxing the constraint of antisymmetry
under interchange of site indices [24, 217, 205, 220, 218, 219, 160, 62|.

It will be helpful to review the problem first studied by Gaudin [93]: under what circum-
stances do a set of spin bilinears, as in Eq. (4.12), define a mutually commuting set, with
(GO, GU)] = 0?7 If the couplings wi; € R are taken to be antisymmetric under interchange
of indices, with w{; + w§; = 0, then the G® mutually commute if and only if the Gaudin
equations

wiiwy, + wjZ 0 w?kwfk =0, (4.15)

hold for all pairwise distinct {i, j, k} and {«, 8,7}. The isotropic solution wg; = J;.J;/(Ji—J;)
defines the rational Gaudin Hamiltonians

GO(T) =

S; - S;. (4.16)

The all-to-all spin model from Eq. 4.2 at A = 1 is simply a linear combination of rational
Gaudin Hamiltonians and Casimirs, to wit

H= ZJJS S; _ZQJG J2S; - S,. (4.17)

i,5=1

By rotational symmetry, H conserves the total spin Sio, = ), S;, and the linear span of the
G(i)(j ) includes the squared spin Sy - Sior = D _; ; S; - S;. The mathematical structure of
traditional Gaudin models has been studied in depth [216, 82].

Let us now consider relaxing the constraint of antisymmetric couplings. Then Gaudin’s
equations (4.15) must be augmented by two equations constraining “on-site” couplings, which
read

B, B, v « 0% o
(wijw B wﬂwl]> + 2wji(wii ) =0,
[e% B .
(wijw - w]zwzj) + 2wji(wzi ) = 0. (4.18)

The model from Eq 4.2 at A = 0 arises from an “non-skew XXZ” solution wj; = wy; =
Jidi/(JF = J3), wi; = J7/(J} — J7) to the usual Gaudin equation (4.15), augmented by
onsite terms wl = w = 1/2, w} = 0, which solve Eq. 4.18. The corresponding Gaudin

Hamiltonians read

o JiJ; J?
GONT)=> 773 (SIS + 8Y8)) + 7 JQSij (sgcsgc +8YSY).  (4.19)
i J
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By the Gaudin equations Eq. 4.15 and Eq. 4.18, these mutually commute and the Hamilto-
nian (4.2) at A = 0 can be expressed as

N N
H =" JiJ;(SISy +875Y) = 273G(J). (4.20)
i=1

3,j=1

At spin-1/2, this coincides with the Hamiltonian obtained in Ref. [160] or the “Wishart-
SYK” model [121], and can consequently be derived as a special case of the integrable
spin-1/2 Hamiltonians considered in the recent work Ref. [62]. The integrability of (4.20) for
arbitrary spin S was first discussed in Refs. [220, 218, 219] (see also the references therein).
We conclude that there is an integrable line in the phase diagram of the model (4.2) at
A = 0. By rotational symmetry about the z-axis, this Hamiltonian conserves S¢, = > . S7?
and (S7,)? lies in the linear span of the G@(J ). Finally, we note that upon replacing
commutators with Poisson brackets in the derivation of the Gaudin equations, the integrable
structure identified for A = 0 and A = 1 remains unaltered in the classical limit (S — 00)
of the Hamiltonian.

4.4 Extracting integrals of motion from numerical or
experimental data

Having characterized the integrable structure for A = 0 and A = 1, it is natural to ask
whether the integrability of (4.2) extends to other, more generic, values of the anisotropy:
can we find similar extensive sets of commuting bilinear conserved charges for A # 0, 17 To
tackle this question in the absence of analytical tools, such as those used in the previous
section, we develop a numerical method that enables the systematic search for bilinear (2-
local) integrals of motion (IOM). We emphasize that this novel technique can be applied to
either numerical or experimental data.

Let us first define a set of 2-local operators {O,}:

A 3 Ja Qo
0O, = S(S——Fl)sl Sj ,

(4.21)

where i > j and the index a is a shorthand notation for (7, j, a). We note that this family of
3N (N —1)/2 operators defines an orthonormal set with respect to the infinite-temperature
inner product:
1 AT AN

—Tr[O! O] = dap, (4.22)
D
where D = Tr[1] = (25 + 1)V is the dimension of the Hilbert space.

Now suppose that we can measure, experimentally or numerically, the time evolution of
the expectation value (O,(t)) = (®| O,(t) |P), where |®) is a random initial state (i.e. far
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from any energy eigenstate). A bilinear integral of motion I is a special linear combination
of the O, that remains constant in time, to wit

(1) = (1)) = Y ua{Oa(t)) = Y ta(Ou)- (4.23)

Here and below, the overline denotes a time average, such as (O,) = OT %(Oa(t» over a

time interval [0, 7. It is useful to recast the above equation in terms of the following time

series matrix:
Mo = /3 ((0u(0) - 100)) (420

Note that M, is a rectangular matrix with 3/N(/N — 1)/2 rows and a continuum of columns
indexed by t € [0, 7], where T'J? > 1. In practice, the time axis is discretized such that the
number of columns in M is much larger than the number of rows. We immediately see that,
by Eq. 4.23, a 2-local IOM corresponds to a left zero mode of M, i.e. > u,M,, = 0 for any
t.

Thus, to find bilinear IOMs, we want to search for zero modes of M. More generally, we
can consider the singular value decomposition (SVD) of M, or equivalently, the spectrum of
the real Hermitian matrix

T g 3N(N-1)/2

Lop=MM'= [ =My Myr = ) ofuapin. (4.25)
0 =1

In the second line, 0; > 0 are the corresponding singular values of M and ¢} are the eigen-

values <()f L);/ u; are the left singular vectors of M and eigenvectors of L. KEquivalently,
N(N—-1)/2
( al)3

Ua )y i=1 is a real orthogonal matrix, defining a family of operators
3N(N—1)/2
Q= > 0, 1=1,...3N(N—-1)/2, (4.26)
a=1
which are also orthonormal: )

As mentioned above, @); is an integral of motion if and only if 0; = 0. Furthermore, for
small o; > 0, we consider (); to be approximately conserved and call it a “slow mode.” The
rationale for this terminology comes from the identity

—2

(@) = (Qu(t)) = ot (4.28)

which means that the singular value o; is the standard deviation of the expectation value of
@, over the time interval [0,7]. A small o; entails that (Q;(t)) exhibits small fluctuations
around its time-average value.



CHAPTER 4. INTEGRABLE AND CHAOTIC DYNAMICS OF SPINS COUPLED TO

AN OPTICAL CAVITY 102

el

.A = ]. ..='==

1.2Fe A = 0.9 __=::='°' N

goc’
=g
:l

50'8_ D -

0.4F ° .
O'O_T..=;....T 1 1 1 !

I 5 10 1l5 20 25 30

Figure 4.2: Scatter plot of the smallest 30 of the 3N (N — 1)/2 singular values 0, at N =9
for A =1 (blue squares) and A = 0.9 (red circles) in a fixed disorder realization of {.J;}. At
A =1, we see N + 1 zeros corresponding to the N + 1 conserved charges that can be written
as a sum over bilinear operators; these zeros are separated from the rest of the singular values
by a “spectral” gap. At A = 0.9, we see two zeros corresponding to the conservation of H
and (Sfot)Q. We also see the lift-off of N — 2 singular values corresponding to the previously
conserved bilinear charges at A = 1. Note that they, too, are separated from the rest by a
“spectral” gap.

To summarize, we propose the following procedure: compute the time series matrix M,
perform an SVD decomposition on M, analyze its singular values, and identify the possible
IOMs and slow modes. In the next two sections, we use this method to characterize the
behavior of the model along the S = 1/2 and S — oo lines in the phase diagram of Fig. 4.1,
for anisotropies A # 0, 1. In Section 4.5, we numerically simulate the time evolution for the
quantum spin-1/2 model and we further characterize the resulting slow modes by measuring
their temporal auto-correlation functions. In Section 4.6, we simulate the dynamics of the
model (4.2) describing classical spin degrees of freedom and, upon slightly modifying the
above method, we extract the behavior of the auto-correlation functions directly from the
singular values.
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4.5 Integrability* for S = %

Identifying integrals of motion

We now focus on the spin-1/2 system with up to N = 14 sites and implement the
technique proposed above. We initialize the system in a random product state ? |®) and
numerically compute the time evolution of the wavefunction with the Hamiltonian (4.2)
via exact diagonalization. The random fields J; are sampled from the normal distribution
N(0,J%) and we set J> = 1. We have checked that we obtain similar results for other
distributions with zero mean and unit variance. We then record the expectation values of
all the operators Oa defined in Eq. 4.21 and construct the time series matrix M, , (defined
in Eq. 4.24) at each discrete time t,, = ndt with 6t = 1 J~2, integer n, and up to a maximal
time T = 103.J 2.

Fig. 4.2 presents results for the singular values of M obtained for two values of A in a
fixed disorder realization. As expected, at A = 1 we find N 4 1 vanishing singular values, in
agreement with the analysis of Section 4.3. All other singular values lie above a gap of about
0.01, indicating that there are no other 2-local integrals of motion beyond those identified in
Section 4.3.

The results at A = 0.9, slightly away from the integrable point, are markedly different.
We find only two exactly vanishing singular values corresponding to the space spanned by
the two obvious integrals of motion, H and (S{fot)z. This behavior persists on the entire open
segment A € (0, 1), showing unambiguously that there are no other purely bilinear integrals
of motion in this range. Nonetheless, we see that the remaining set of N — 2 nontrivial
IOMs at A = 1 are transformed, upon moving to the point A = 0.9, into left singular
vectors with non-zero yet small singular values. It stands to reason that these small singular
values correspond to operators that exhibit a slow decay because the system is close to the
A = 1 integrable point. We now test this hypothesis by directly examining the decay of
these putative “slow modes.”

Characterizing the slow operators

We have seen that the nontrivial [OMs at the points A = 0 and A = 1 transform into a
set of N —2 “slow operators,” indicated by small singular values, away from those two points.
Let us examine the dynamics of these presumed slow modes. Their decay can be studied by
numerically computing the auto-correlation functions

Gi(t) = %Tr [Ql (t)Ql(O)} ; (4.29)

2We initialize each spin i in a randomly chosen (with equal probability p = 1/6) eigenstate of either Sf,

&y Gz
S; or S7.
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Figure 4.3: Plot of the auto-correlation function Gy(t) in a given disorder realization for
N = 13 spins at A = 0.75. The solid curves represent the numerically computed G(t): the
black curve corresponds to either of the two exactly conserved bilinear quantities; the red,
blue, green, and magenta curves correspond to the next four modes (arranged by increasing
singular value); the yellow curve corresponds to a mode in the middle of the singular value
“spectrum.” The dashed curves represent fits of the form G,(t) = ¢ exp (—t/7) + ¢ through
the data.

where the normalization D = (25 + 1)" ensures that G;(0) = 1. For conserved modes, we
expect the auto-correlation function to remain fixed at G;(t) = 1 for all time. For generic non-
conserved operators, we expect G;(t) to decay to values near zero as these modes thermalize.

An example of the results for a system with N = 13 sites and A = 0.75 is shown in
Fig. 4.3. We see that the correlation functions related to the two zero singular values, G ()
and Go(t), are perfectly non-decaying, as they must be. Also as expected, the correlation
functions G,(t) associated with the small non-vanishing singular values (3 < [ < N) show
a slow initial decay. However, the surprise is that, at very long times, these correlation
functions saturate to a non-vanishing and rather appreciable value ¢g;. Fig. 4.4 shows that
this phenomenon persists when varying A on the segment [—0.5, 1.5]. Moreover, we find no
significant size dependence of the saturation value g;, as shown in Fig. 4.5a. We have also
checked that the large plateau values are not due to the overlap between the slow modes
Q, with higher powers of the known conservation laws H and S2,, such as H2 H?, ..., nor
with projectors to energy eigenstates (for details, see Appendix 4.10). In contradlstmctlon,
the operators corresponding to higher singular values (I > N) decay to a vanishing, or very
small, saturation value (see Appendix 4.10).

Altogether, in addition to the obvious bilinear IOMs, H and (SZ,)?, we find N — 2
operators whose correlation functions saturate to an appreciable non-vanishing value. This
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Figure 4.4: Plot of the plateau values (g;) ; = (G (t = 00)); as a function of the anisotropy
A for N = 11 spins (S = 1/2). The brackets (...), denote an average over 2000 disorder
realizations for the {J;}. Different colors correspond to different modes: black corresponds
to the two lowest and exactly conserved modes; red, blue, green, and magenta correspond
to the next four modes; yellow corresponds to a mode in the middle of the singular value
“spectrum”. We find no strong dependence on the system size N: see Fig. 4.5 for a plot
of the plateau value (g;); as a function of the system size N for the [ = 3 (red) mode at
A =0.5.

result suggests that the model remains integrable even away from the Gaudin-like points
A =0 and A = 1: the bilinear integrals of motion are transformed into quasi-bilinear ones,
which retain appreciable support in the space of 2-local operators. Based on the results
shown in Fig. 4.4, we argue that this holds everywhere away from the integrable points,
namely in the regions {A < 0}, {0 < A < 1}, and {A > 1}. In general, we can write the
new integrals of motion as bilinear operators dressed by a sum over higher, 2n-local terms:

jl:ZlQl+Z Z Z

n>141,.. 920 Q1,...,02n

Kg1-~~a2n

L SRS LS, (4.30)

where Z; is the weight of the integral of motion I; on 2-local operators. The saturation value
of the auto-correlation function of Q; that we plot in Fig. 4.4 is, essentially, g; ~ |Z;>. Tt
would be interesting to further characterize how the coefficients Kj'";**", which encode the

overlap of the IOMs with the different 2n-body spin operators, decay with increasing n. We
leave this for future work.
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The structure of the integrals of motion (4.30) is, in some ways, reminiscent of the Local
Integrals of Motion (LIOM) in the Many-Body Localized (MBL) state [238, 211, 173|. The
latter is characterized by quasi-local integrals of motion 77 that are adiabatically connected
to the microscopic degrees of freedom o7. As in our case, the LIOMs are dressed versions of
the microscopic bits with weight on higher n-body operators decaying exponentially with n.
There are, however, crucial differences from MBL. The integrals of motion in our case are
not local, but rather extensive sums of bi-local operators. Hence, the IOMs of the all-to-all
spin model do not facilitate a direct-product partition of the Hilbert space into single qubit
spaces. Additionally, the integrability we observe does not depend on strong disorder—
in fact, we found that its signatures are more pronounced as the couplings becomes more
uniform, namely as std(J;) < J;.

Lastly, we also find signatures of integrability in the spectrum of H: the level statistics
are almost perfectly Poissonian at A = 0,1 and close to Poisson (although not exactly) at
intermediate A (see Appendix 4.10). Nonetheless, for 0 < A < 1 we find many level crossings
and the violation of the Wigner-von Neumann non-crossing rule represents further evidence
of integrability despite the fact that there seems to be some degree of correlation between
the energy levels [204, 178, 202|.

Perturbing away from integrability*

After establishing the existence of a novel integrable structure for the spin-1/2 model,
characterized by quasi-2-local IOMs, it is natural to investigate its robustness to perturba-
tions away from the class of models (4.2) with separable disorder. This question is relevant
from a theoretical point of view, but also from a practical, experimental perspective.

A natural perturbation to test in this context is one that adds a non-separable, SY-like,
contribution to the interaction. Specifically, we add the term

N
O — zsf/ﬁ D Vi [SST 4 SYSY 4+ ASESE (4.31)

ij=1

where the elements V;; are also sampled from a normal distribution A(0, 1).

We explicitly check that at € > 0 and A =1 for H + HY there are only 4 zero singular
values corresponding to exactly conserved and linearly-independent 2-local quantities: the
Hamiltonian, S2,, (S%,)°, and (S¥,)°. At intermediate 0 < A < 1, there are only two
vanishing singular values corresponding to H + aY and (Sfot)Q. Second, we verify that the
lowest bilinear modes that are not exactly conserved (i.e. either the l =3 one at 0 < A <1
or the [ = 5 one at A = 1) decay to smaller plateau values which decrease as we increase
the system size N, as shown in Fig. 4.5a. This suggests that a perturbation He(l), even at
€ < 1, can spoil the integrability for a large system N > 1.
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Figure 4.5: Plot of the disorder-averaged plateau values (g;) ; = (G; (t = 00)) ; as a function
of the system size N for [ = 3 mode, i.e. the lowest mode that is not exactly conserved
(corresponding to the red markers in Fig. 4.4) at A = 0.5. The different markers correspond
to various strengths e of the perturbations H." (left panel) and H? (right panel) from
Eq. 4.31 and Eq. 4.32, respectively: the round markers correspond to the unperturbed
Hamiltonian H (4.2); the triangular and square markers correspond to € = 0.01 and € = 0.1,
respectively. The error bars related to disorder averaging (...); are included, but they are
smaller than the size of the markers. We see that the plateau value for the unperturbed H is
independent of the system size. Converserly, upon adding even a small perturbation ¢ < 1,
the plateau value decreases with N, suggesting that the autocorrelation function G; (t — o)
vanishes for a thermodynamic system (N — 00).

Another type of perturbation that arises naturally in the experimental set-up, due to the
driving field, is represented by random stray magnetic fields along the z-axis:

N
H® =Y hiS;, (4.32)
=1

where the fields h; are also sampled from N (0, 1). Note that H+H, @ has a single zero singular
value corresponding to (Sfot)2 for all A; this is due to the fact that the full Hamiltonian is

no longer purely bilinear and that H® breaks the SU(2) symmetry at A = 1. Aside from

this effect, the behavior upon perturbing with H6(2)
with He(l), as shown in Fig. 4.5b.
Last, we consider the effect of adding the perturbation

1
3) E 2 Qz

is similar to that obtained by perturbing
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This term appears in the model

1
H=— JiJ; (S8 + AS?S?) | 4.34
S\/N; J( 7 J + 7 j) ( )

which is similar to Eq. 4.2, but differs from it by the term H® arising due to the commutator
[S;7,5;7]. As noted in Ref. [164], the model Eq. (4.34) is also experimentally accessible in a
system of cold atoms interacting with cavity photons. It is clear that the perturbation H),
having a 1/ v/N normalization, is sub-extensive and will not matter in the thermodynamic
limit. Moreover, we find that it does not qualitatively affect the integrability of our quantum
model even for the small systems considered in ED (see Appendix 4.10 for the numerical
results).

In sum, our numerical analysis of the response to perturbations indicates that the novel
integrability of the spin-1/2 model (4.2) is not particularly robust to non-separable interac-
tions or stray magnetic fields. Nevertheless, in a finite-size system and at finite times (see
Section 4.7 for more details), there are signatures of proximate integrability, as shown by the
finite saturation values in Fig. 4.5.

To recapitulate our study of the dynamical phase diagram Fig. 4.1 thus far, we have
found that the system is integrable along three lines: at A = 0,1 for any value of the spin
size S (characterized by bilinear IOMs), and at S = 1/2 for any A # 0,1 (characterized by
quasi-bilinear IOMs). The remaining line in the phase boundary of Fig. 4.1 corresponds to
the classical, S — oo, limit of the model (4.2), which we now discuss.

4.6 Chaos for S —

Since Gaudin-type integrability at A = 0, 1 persists for all values of the spin size S, it
is natural to ask whether the integrability™ structure at S = %, presented in the previous
section, also survives for larger values of S. Although it is numerically challenging to extend
the exact diagonalization study of the previous section to intermediate .S, the limit S — oo
leads to classical equations of motion that are amenable to numerical simulation.

These simulations allow us to analyze another boundary in the phase diagram, namely the
S — oo line, where we find chaotic dynamics with a finite Lyapunov exponent, as explained
in Section 4.6. The presence of chaos in the infinite-S limit clearly implies that the S = %
integrability* does not extend to all S, unlike the Gaudin-type integrability at A = 0 and 1.
Remnants of an integrability* structure can nevertheless be revealed by applying the SVD
analysis of Section 4.4 to the classical dynamics, which we do in Section 4.6. This technique
reveals the presence of a large number of slow modes, which are known to occur classically
in “quasi-integrable” systems, i.e. chaotic systems in the vicinity of integrable points. We
characterize these slow modes in Section 4.6.
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Figure 4.6: a) The sensitivity d(t) from Eq. 4.40 geometrically averaged over 10* disorder
realizations {J;} and initial states {S(0)} as a function of time for a system of N = 128
classical spins. After non-universal dynamics at early times, we find an exponential growth
at later times for A = —0.5 (red curve), A = 0.5 (blue curve), and A = 1.5 (green curve).

(inset) The square root of the same quantity, namely \/ exp ((log d(t)) J,S>’ at the two in-

tegrable points, A = 0.0 (cyan curve) and A = 1.0 (magenta curve): we obtain an almost
perfect straight line, which indicates that d(t) ~ t?, as expected for an integrable system.
b) Lyapunov exponent ()4 averaged over 10° disorder realizations and initial states as a
function of the anisotropy A for different systems consisting of N = 16 (red circles), N = 128
(blue circles), and N = 1024 (green circles) classical spins. (inset) Disorder-averaged Lya-
punov exponent () ;g as a function of the system size N for A = 0.1 (red squares), A = 0.3
(blue squares), and A = 0.5 (green squares).

Classical chaos

In the infinite-S limit, the model (4.2) behaves as a classical system of coupled spin
degrees of freedom S on the unit sphere, whose Hamiltonian dynamics can be written in
terms of Poisson brackets:

dsS®
L[S [ 4.
o Se HY, (4.35)
where s
H = s S (ST 4 5187 + AS75]). (4:30)

For our numerical investigation, we sample the random fields J; from the uniform dis-
tribution [—J, J] and set J = 1 (we choose a bounded distribution to avoid large J;’s that
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could cause numerical instabilities). The classical spin variables S obey

{Se, 87} = %%gaﬁvsg. (4.37)
We shall probe the infinite-temperature dynamics of this classical system by direct numerical
simulation.

In order to study chaos, we use the standard tangent space method [32] to study the
divergence of classical trajectories and measure the leading Lyapunov exponent. Let S(t) =
(S1(t),...,Sn(t)) denote the 3N-dimensional vector describing the directions of all the spins
at time ¢. We initialize the system in a random infinite-temperature state S(0), within which
each spin points in a random direction, uniformly distributed on the unit sphere S;. We also
keep track of the trajectory of the deviation vector dS(t), which lives in the tangent space
of S5 x -+ x Sy at the point S(t); we further set §S(0) such that 6S;(0) L S;(0) for all spins
and ||5S(0) > = X, (550)° = 1.

If we define the local effective field F; = (FF, FY, F?) = & < on - _om ~_ on ), we see

s \~asp o570 o
that the Hamilton equations of motion (4.35) can be written as
ds;
L =8, x F,. 4.38
o (4.38)
For our model (4.36) we have F,"¥ = \}]N > JiS;Y and Ff = A\}’iﬁ > JiS5.

We immediately see that the variational equations of motion for the deviation vector 6S
can be written as

d(6S;
where §F" = & 37 J;08]" and 6F7 = A 35, ;055

We numerically integrate the coupled differential equations (4.38) and (4.39) to find the
trajectory (S(t),dS(¢)) in the tangent bundle up until a time 7' = 500J% in increments
6t =1 J2. We then compute the sensitivity, defined as d(t) = ||0S(¢)||*, or in full,

d(t) = Z > S (4.40)

Note that d(0) = 1, since we have normalized the initial deviation vector. For an integrable
system we expect d(t) to exhibit a power-law dependence on time; the flow on invariant tori
specified by the N conservation laws is linear in time and, since we have defined the sensitivity
as [|6S(t)|, we expect d(t) ~ t2. In a chaotic system d(t) should increase exponentially with
t. In Fig. 4.6a, we average over disorder realizations {.J;} and initial states {S(0)} to find

exp ((log d(t)) J,S>' We find that the classical system exhibits chaotic dynamics and an

exponential divergence of trajectories in the regions {A < 0}, {0 < A < 1}, and {A > 1}.
We also find integrable dynamics and a power law divergence of trajectories at the special
points A =0, 1.
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Moreover, using the multiplicative ergodic theorem, we can define the maximal Lyapunov
exponent [32] as

.2, [0S
A= lim —log ———. 4.41
N RTEO]] (4.41)
Using the normalization ||§S(0)|| = 1 and our definition of the sensitivity from Eq. 4.40, we

see that .
A = lim —logd(t). (4.42)
t—oo t

In practice, we compute the Lyapunov exponent by fitting a line A\t + b through the
late time behavior of log d(t), as discussed in Ref. [100]. In Fig. 4.6b we plot the Lyapunov
exponent (\) g, averaged over disorder realizations {J;} and initial states {S(0)}, as a
function of the anisotropy A and find that the system exhibits the most chaotic behavior
(largest Lyapunov exponent) at A = 1.5. Second, we find that (A) ;5 tends to a finite value
for large system sizes N, as shown in the inset of Fig. 4.6b.

SVD analysis

Although the presence of chaos in the classical dynamics excludes proper integrability in
the infinite-S limit, it does not rule out the possibility of “quasi-integrability,” whereby some
operators have very slow decay. We investigate this possibility by applying the SVD analysis
of Section 4.4 to the classical dynamics. This allows us to determine the number of exactly
conserved quantities, corresponding to zero singular values, but also to look for slow modes,
corresponding to small but finite singular values.

As expected, we find an extensive number of conserved quantities at A = 0,1 and only 2
exactly conserved quantities, corresponding to the Hamiltonian A and (Stzot)Q, for all other
values of the anisotropy A. This intermediate regime, however, exhibits a large number of
slow modes, which will be discussed in the next section.

Since we are now working with a classical system, a few important distinctions ought to
be made from our earlier, quantum analysis. First, we consider a slightly enlarged collection
of bilinear operators:

35755 a=(i,7,a),1<j
Of = {1 (SFSF — SYSY) a=(i,i,1), (4.43)
¢ (35757 —1),  a=(ii,2),

where ¢; = v/15/2 and ¢, = v/5/2. As before, a = (i,7, ) is a composite index. In the
classical case, we also include bilinears with ¢ = j (which would be trivial in the spin-1/2
case). Note that there are only two independent such bilinears for each i, and the spherical
harmonics (with spin 1) provide an orthonormal basis. Indeed, it can be checked that the
bilinears O, defined in Eq. 4.43 satisfy the orthonormality relation

DS;
<Oa0b>s = /H A OaOb = 5ab7 (444)
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Figure 4.7: Scatter plot of the smallest 30 squared singular values o7 and the plateau value
g from Eq. 4.50 for a classical model (4.36) of N = 16 spins at different values of the
anisotropy A. We average o7 over N' = 10% random initial conditions {Sp} and 10 disorder
realizations for the fields {J;} and we set T = 8192772 At the integrable points A = 0
(cyan triangles) and A = 1 (magenta squares) we see N and N + 1 zero singular values,
respectively, corresponding to the conserved quantities that can be written as a sum over
bilinear operators (4.43). These are separated from the rest of the singular values by a
“spectral” gap. At A = —0.1 (red circles), A = 0.1 (blue circles), and A = 1.1 (green circles)
we see two precisely zero singular values corresponding to the conservation of H and (Sfot)Q,
along with the lift-off of the other NV — 2 singular values. For A = 1.1, the first /N singular
values are also separated by a spectral gap from the rest. And, although for A = —0.1 and
A = 0.1 the spectral gap is not visible, one can still see a rounded “cusp” occurring around
[ = N—this suggests that there still exist slow modes @); for [ =3,... N.

where ([...])g denotes an average over the infinite temperature ensemble, while the integral
| DS, is over the unit sphere.

Second, while a single initial state is sufficient in the quantum SVD analysis, we have to
consider an ensemble of initial states in the classical setting. This is because a single classical
trajectory cannot visit the whole phase space due to energy conservation (a linear superpo-
sition of configurations does not exist classically). Here, we take the infinite-temperature
ensemble, namely we sample Sy = {S1(0),...,Sy(0)} as independent random points on the
unit sphere. We then time evolve with (4.35) for a total time 7', and measure the expectation
value of the bilinears O,(t,, S) at discrete intervals t,, = ndt € [0,7]. Repeating this for a
large number A of initial conditions {Sp} in the infinite-temperature ensemble, we construct
the following matrix, analogous to the one in Eq. 4.24:

Ma,(t,So) = (Oa(t7 SO) - O_a(SO)) ) (445)
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where O,(S)) = f T dtO (t,Sp) represents the time average over one trajectory. The number
of rows indexed by a is, accordlng to Eq. 4.43, 3N(N —1)/2+2N. The columns are indexed
by time ¢ € [0, 7] and initial condition So—in practice, we discretize the time axis (with the
time-step 6t = 1.J72) and draw a large number (10%) of samples for Sy.

Then the singular value decomposition of M is equivalent to diagonalizing the real Her-
mitian matrix L = MM, which can be obtained by averaging over the initial conditions
SQI

Tdt
La,b — < M (tn,SO)M (tn750)> . (446)
0 T S

Note that the average (...)g is with respect to Sy in the infinite-temperature thermal en-
semble and should not be confused with the quantum expectation values (...) (i.e. without
a subscript) used in Sections 4.4 and 4.5. Diagonalizing L allows us to obtain the slow mode
operators @, together with their corresponding eigenvalues 7. Similarly to (4.28), we have

o = <Ql(t, So0)? — Qi(t, 5'0)2>S - (4.47)

In other words, o} is equal to the variance, averaged over initial conditions Sy, of the fluctu-
ations of (); along a given trajectory.

The behavior of the singular values o; (shown in Fig. 4.7) is similar, in several ways, to
that obtained in Section 4.5 for the quantum spin-1/2 model 3. At the first integrable point
A = 0, we obtain N zero singular values corresponding to the family of N spin-bilinear
conserved quantities G from Eq. 4.19. At the second integrable point A = 1, we find
N + 1 zero singular values corresponding to the conserved quantities lying in the linear span
of the G%Ws from Eq. 4.17. Lastly, as shown in Fig. 4.7, away from these integrable points,
ie. for {A < 0},{0 < A < 1}, and {A > 1}, we find two precisely zero singular values,
corresponding to the two exactly conserved spin-bilinear quantities, H and (Sfot)Q. The
small magnitude of the following singular values, for [ = 3,4, ..., signals the presence of
slow modes, which will be studied in the next section.

Decay of slow operators

The SVD analysis of the previous section revealed a large number of operators with small
singular values. In principle, we could characterize the thermalization (or lack thereof) of
these operators (); using, in analogy to the quantum case, a two-point correlation function

Gi(t) = (Qu(t)Qu(0))g (4.48)

where (...)g, as before, designates an average over the N initial conditions Sp. As in the
quantum case, the operators @; are orthonormal such that G;(0) = 1 (as N — 00). Yet, the

3The main difference between the classical and quantum SVD results is that the classical singular values
are considerably larger than the quantum ones (compare Fig. 4.2 and Fig. 4.7). This is because the ex-
pectation value of O, is evaluated on a single classical configuration in the former case, while the quantum
expectation value is a result of a coherent average.
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accurate computation of GG;(t) at long times is typically very demanding because it requires
averaging an increasingly complex function in phase space.

Fortunately, in classical systems, the singular value o; already informs us about the long
time plateau value of G;(t). This can be seen from Eq. 4.47, which implies that

i S, (L[ )
S [ ana),

2(T — u)du
of =l —gur, gr :/0 Gi(u )% (4.49)

In the second line, we used the normalization (Q;(t)*)g = 1; in the third line, we performed
a change of variables u = |t — s| (recall that G;(u) = (Q;(¢)Qi(t £ u))g by the invariance of
the infinite-temperature ensemble under time evolution). Now, it is not hard to show that
gi,r and G; have the same infinite-time limit if that exists for G;:

lim Gi(v) =g = lim gr=g.
T—o0

U— 00

Thus, ¢, r is a finite-time proxy for g;. In the infinite-time limit, the relation (4.49) becomes
g=1- 012|T—>oo~ (4.50)

Using Eq. 4.49 or 4.50, this allows us to infer the plateau values of slow modes from the data
of Fig. 4.7. Unsurprisingly, the exactly conserved quantities have g; = 1. Away from the
integrable points at A = 0,1, we find that the slowest non-conserved modes, corresponding
tol=3,4,..., (the distinction between the slow modes and the rest is less sharp here than
in the quantum case, and it is suggested by the rounded cusp around [ = N in Fig. 4.7 ),
have a remarkably slow decay: the plateau values g, at a finite but large time 7' = 10*.J 2
are close unity 4, comparable to their spin-1/2 counterparts.

In a future companion paper, we will demonstrate that any conserved operator in the
S = 1/2 quantum case is approximately conserved in the S — oo classical model as well, up
to 1/N corrections in large systems. Therefore, the classical model is expected to display
some signatures of integrability. In this section, we saw that such signatures cannot be found
from the Lyapunov exponent, but only from the relaxation of slow modes. This is intriguing,
but a similar phenomenon has previously been observed. Ref. [99] showed that for certain
systems near integrability (called “quasi-integrable” by the authors), the relaxation time of
certain operators can be significantly longer than the finite Lyapunov time 1/A;. Given that
our classical system is surrounded by integrable lines A = 0, 1 and (arguably) S = 1/2 in the

4We have checked that this persists up to 7" = 10°J~2. Nonetheless, we find that these plateaus eventually
decay for a finite-size system, albeit after a very long time. We leave the quantitative analysis for future
work.
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(A, S) parameter plane (see Fig. 4.1), we conjecture that it is also quasi-integrable. From
this perspective, the existence of slow modes is compatible with the finite classical Lyapunov
exponent found in Section 4.6.

4.7 Experimental realities

We have provided analytical and numerical evidence for the rich dynamical phase diagram
depicted in Fig. 4.1, including clear signatures of chaotic dynamics at large S and A # 0,1,
along with signatures of integrability at the special points A = 0,1 for any S. Further, we
demonstrated signatures of a novel integrability* phase at S = 1/2 for A # 0,1. We now
discuss prospects for observing these signatures in the laboratory. First, what should one
measure to identify the chaotic and integrable regimes of the phase diagram? Second, given
the inevitable presence of dissipation in realistic experiments, what are the requirements on
cavity cooperativity to access the relevant time-scales experimentally?

To identify integrals of motion, the SVD method of Section 4.4 can equivalently be imple-
mented with experimental data. Using state-sensitive imaging of the atomic ensemble [69],
one may immediately extract the bilinear spin correlation functions (O,(t)) oc (Sf*(¢)S%(¢))
defined in Eq. 4.21. As each image is obtained from a destructive measurement, one must
repeat the experiment many times to obtain statistics of the spin bilinears at a fixed time t,
and then repeat this procedure for many time-points ¢ to obtain the full matrix M, ,. With
this matrix in hand, one can then directly apply the singular-value decomposition performed
above in Section 4.4.

A caveat is that measurements of the spin bilinears can be affected by dissipation due
to photon loss and atomic free-space scattering. Photon loss from the cavity mode causes a
random walk in the orientation of the weighted collective spin F defined in Eq. 4.3. This
effect is described by Lindblad operators

L:t =\ *7/2 ./—":t, (451&)
L.=+\/Ay F., (4.51b)

where the decay rate (derived in Sec. 4.9) is given by

__ Lk
T SUNG

The collective dissipation can be suppressed by increasing the detuning 6 and compensating
with increased drive strength, until limited by free-space scattering.

The effect of free-space scattering is to project or flip individual spins, as described by a
set of Lindblad operators

(4.52)

Ln,(m,m’) = C’m,m/FSC ‘m) <m'|n N (453)
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where m or m' indicates the spin state of an individual atom indexed by n, and C,, ,,, is an
order-unity branching ratio. At large detuning, the scattering rate scales as
N J? 4

nSVN k-
Comparing Eqs. 4.52 and 4.54 shows that the cooperativity n will dictate an optimal detuning
for minimizing the net effect of the two forms of dissipation, with higher cooperativity
enabling increasingly coherent dynamics.

To determine the cooperativity required to observe the signatures of integrability, we
first write down explicit equations of motion for the spin bilinears (Sf*(¢)S§(t)) evolving
under the influence of pure collective dissipation or pure single-atom decay, respectively (see
Appendix 4.9). We find that the spin bilinears decay exponentially at a rate I'y. due to free-
space scattering and at a rate 7 due to photon loss from the cavity. Notably, the rate of spin
relaxation due to photon loss is not superradiantly enhanced, thanks to the counterbalanced
effects of the L. Lindblad operators. Thus, at weak to moderate cooperativity n < 1 and
large detuning 6 > &, free-space scattering dominates and the bilinears decay on a time-scale
7J? ~ VN nSk/§. For strong coupling n > 1, where free-space scattering is suppressed
relative to cavity decay, the total dissipation can be minimized at a detuning 6 ~ /nk,
leading the spin bilinears to decay on a time-scale 7J% ~ \/NnS.

To compare the decay time 7 with the characteristic time-scales for observing the sig-
natures of integrability, we refer to the time dependence of the autocorrelation functions
Gi(t) shown in Fig. 4.3. To observe the slow modes, a minimum requirement is to evolve
the system for a time ¢ > t* ~ 10 J~2, which governs the rapid decay of all non-integrable
autocorrelation functions. This time can be reached even at S = 1/2 in a strong-coupling
cavity n ~ 10 with a system of N = 10° sites, or with weaker single-atom cooperativity at
larger S. To observe the plateaus themselves, we must evolve the system for a significantly
longer time, at least ¢t ~ 10° J~2 according to Fig. 4.3, which places a more stringent re-
quirement v/ NnS > 10%5/k. This regime is challenging to access for S = 1/2 but readily
accessible with large-S subensembles, e.g., at n > 1 with N = 10? sites each consisting of
S = 103 spin-1 atoms.

Thus, current experiments are well positioned to explore the regime of mesoscopic spin .S,
in between the quantum (S = 1/2) and classical (S — oo) limits. This will allow for testing
the prediction that the plateaus in G;(t) calculated for spin S = 1/2, indicating integrability
across the full range {A < 0},{0 < A < 1}, and {A > 1}, persist for larger spin S up to
1/N corrections (see Sec. 4.6). Experiments with scalable spin size S may furthermore shed
light on the transition from quantum integrability to chaos in the classical limit, as signified
by the positive Lyapunov exponent in Fig. 4.6.

The chaotic dynamics observed in the classical limit S — oo can be studied experimen-
tally via the hallmark of sensitivity to perturbations. Recent theoretical and experimental
work has shown that such sensitivity is accessible in quantum systems by measuring out-of-
time-order correlators (OTOCs) [145, 213, 162, 114, 230, 92, 235, 154|, which quantify the
spread of operators in time via the commutator C'(¢) = ([V/(¢), W(0)]?). The connection to

Te (4.54)
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classical chaos is made clear in the semi-classical limit: for operators V' = 57, W = 5%, one
can show that, to lowest order in a 1/.S expansion, C(t) o (057 (t)/0¢;)?* for a small rotation
¢; at site j about the z-axis [66]. Thus, semi-classically the OTOC C(t) measures the sen-
sitivity of the coordinate S7(t) to changes in initial conditions S%(0), and may therefore be
regarded as a quantum generalization of the classical sensitivity d(t) defined in Section 4.6.

One way to access out-of-time-order correlators experimentally is to “reverse the flow
of time” by dynamically changing the sign of the Hamiltonian {230, 92|. In the cavity-
QED system considered here [69], this sign reversal is achieved by switching the sign of the
laser detuning ¢ in Eq. 4.9. The resilience of such time-reversal protocols to experimental
imperfections, including dissipation, has been analyzed theoretically in Ref. [229].

To allow for probing chaos in the cavity-QED system proposed here, the rates of collective
dephasing and of decoherence via single-atom decay must be small compared with the Lya-
punov exponent. We thus require A7 > 1, where 7 is the characteristic decay time defined
above. More specifically, given the Lyapunov exponents A < 0.08.J2 shown in Fig. 4.6, and
the requirement of observing the system for several Lyapunov “decades” to clearly identify
exponential growth (Fig. 4.6a), we would like to evolve the system for times ¢ 2> 100 J~2,
which are readily accessible in the large-S regime that is of interest for approaching the
classical limit.

Even in this regime, the light leaking from the cavity produces a continuous weak mea-
surement of the collective spin F whose quantum back-action may have consequences for the
dynamics. The interplay of measurement back-action with chaos in open quantum systems,
while beyond the scope of the present chapter, is a subject of active inquiry [75, 243| and
of fundamental importance for elucidating the quantum-to-classical transition [106]. The
proposed experimental scheme, including the possibility of tuning the strength and form of
coupling to the environment, opens new prospects for exploring this interplay.

4.8 Conclusion

We have studied a class of spin models with separable, all-to-all, random interactions
and found a complex dynamical phase structure that depends on the spin size S and the
anisotropy A along the z-axis. We showed that our model at A = 1 is equivalent to the
well-studied rational Gaudin model, and exhibits special integrable dynamics for all values
of S. We also proved and confirmed numerically that there exists another special point
at A = 0 where the model is also integrable (in the same sense), regardless of the spin
size. Surprisingly, we found compelling numerical evidence that the system at S = 1/2 is
integrable for any anisotropy A ¢ {0,1}. In contrast to the special points A = 0,1, the
integrals of motion at other values of A are not purely spin bilinears and develop tails on
2n-body terms. We leave the detailed characterization of these dressing tails to future work.
Lastly, we found that integrability away from A = 0,1 is a purely quantum phenomenon: by
numerically solving the Hamilton equations of motion for the classical model (S — 00), we
showed that its dynamics is chaotic with a non-zero Lyapunov exponent and that there exist
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only two exactly conserved quantities, as opposed to the extensive family of conservation
laws characterizing a classically integrable system. However, even in the classical regime we
find an extensive number of quasi-conserved charges, whose decay time appears to diverge
in the large-N limit. A more thorough study of this regime will be given in future work.

Our analysis opens up several further lines of inquiry. First, since the Hamiltonian (4.2) at
the special point A = 1 (and, presumably, at A = 0 as well [24, 217, 220, 218, 219|) possesses
a quantum group structure, does the integrable® phase exhibit any algebraic structure? Is
it possible to construct explicitly the dressed conserved quantities in terms of the model
couplings?

Second, we have seen that even though the level statistics of the spin-1/2 system deviates
from Wigner-Dyson statistics, exhibiting many level crossings (this holds also for spin-1, as
shown in Appendix 4.10), its classical counterpart is chaotic with a finite Lyapunov exponent.
We note that this does not contradict the Berry-Tabor conjecture |37, 43], which applies to
the semiclassical, large-S, regime. In fact, the same phenomenon is known to occur in
integrable quantum spin chains, such as the anisotropic Heisenberg model (or XXZ chain):
its Hamiltonian ) [S2S%,, +5YSY,, + AS2S2, ] is quantum integrable only for spin-1/2,
and it is classically chaotic; its integrable higher-spin extensions have different Hamiltonians
and are nontrivial to obtain [52]. We wonder whether our integrable* phase admits any such
extensions, which might shed light on the quasi-integrability of our classical model.

Third, we have only characterized the boundaries of the phase diagram in Fig. 4.1.
A straightforward and interesting next step would be to study the quantum-to-classical
crossover by better understanding how classical chaos (and perhaps quasi-integrability) at
S — oo emerges from the integrable* regime at S = 1/2.

In fact, this putative transition between (quantum) integrability and (semiclassical) chaos
may also be probed experimentally. The model (4.2) can be implemented in a near-term
experiment using atomic ensembles confined in a single-mode optical cavity. This would
allow for a systematic exploration of the rich physics contained in the dynamical phase
diagram (Fig. 4.1). By changing the local atom density to increase the number of atoms in
a given region of constant coupling to the cavity mode, the spin size S can be varied from
S = 1/2 all the way to a semiclassical regime S > 1: this would enable the experiment to
tune between quantum and classical dynamics. Meanwhile, changing the angle between the
magnetic field defining the spins’ z-axis and the axis of the optical cavity allows for tuning
of the anisotropy A, so that both the special points A = 0,1 and the regions {A < 0},
{0 < A <1}, and {A > 1} can be investigated.

Last, we emphasize that the SVD technique described in Section 4.4 can be applied
directly to the experimental data, revealing the conserved quantities and slow modes. More
broadly, we envision using this approach in studying a wider class of physical systems wherein
the integrals of motion or their number are not a prior: known.

In summary, the model (4.2) and its associated experimental setup represent a novel
paradigmatic platform for studying integrability, chaos, and thermalization under closed
many-body quantum dynamics.
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4.9 Appendix A: Details on the experimental realization

Derivation of the effective Hamiltonian

Here we elaborate on the derivation of the effective spin Hamiltonian (4.8) from the
atom-light interaction Hamiltonian (4.7), which we now repeat for completeness:

H; ~ %X (&ve — gule @) (S; - ¢). (4.55)

To simplify the following derivation, we will assume that the weights &; are real numbers
(although it is interesting to speculate whether one can access an even richer set of dynamics
if the weights are allowed to have both non-uniform phases and amplitudes). In this case,
we may write the full Hamiltonian as:

H = X [vei‘;t — UTe_i(;t} F.cosf + % sin§ (Fye™?' + Foe ™74 | | (4.56)
where we have passed into a rotating frame with respect to the atomic Zeeman splitting w.

Provided the occupation of the v mode remains small, we can adiabatically eliminate it
from the dynamics following the approach of Reiter and Sgrenson [194]. This procedure is
essentially a perturbation theory calculation that considers 2-photon scattering processes in
which a virtual photon is scattered into the v mode and reabsorbed by the atomic ensemble.
Inspecting the Hamiltonian (4.56), we find three distinct processes that add one photon to
the v mode:

7 )
— gXcos 6 vf Fe

: T —idt+iwzt
— X sinf v'F e ,

— iX sin @ of F_e=0tmiwzt,

In addition, the Hermitian conjugates of these terms remove a photon from the mode v.
We must consider all pairs of processes that add a photon to the mode and subsequently
reabsorb it. However, only the two-photon processes that are resonant will dominate the
slow, effective, ground-state dynamics. For instance, the two-photon process proportional
to vl F_F_ is an off-resonant process and is, therefore, accompanied by a rapidly rotating
phase factor e 2zt. As a result, this term quickly averages to zero on timescales t > 1/wy,
and we are justified in ignoring it. In fact, the only resonant 2-photon processes that survive
are the terms proportional to F,F,, F_F,, and F,.F_, since all other terms have rapidly
oscillating phase factors. The result of this elimination scheme is an effective Hamiltonian
for the spins:

2

1 |
Heg = XZ FoF. ((0) cos® 0+ 1 Fy o ((0-)sin® 0 + 1 F_Fy ((0:)sin®0|,  (457)
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where §; = dFwy are the detunings from the two-photon resonance, « is the cavity linewidth,
and ((0) = 6/[6* + (k/2)?]. At large detuning 0 > k,wyz, Eq. 4.57 simplifies to Eq. 4.9, and
we obtain the desired model with an anisotropy parameter A controlled by the angle 6 of
the magnetic field.

The effective Hamiltonian (4.9), however, is obtained only if the 7, F_ and F_F, terms
in Eq. 4.57 are balanced, which occurs perfectly only in the limit 6 — co. More generally,
at finite 0, the cross-terms F,F, do not cancel and we obtain an effective Hamiltonian

2

Ha = 5 |FF @) o0+ R4 FF) (€00 +0)site] + (459
2
D EST () — ().

which is of the same form as Eq. 4.9, but with additional non-uniform longitudinal magnetic
field terms. Such on-site terms, however, are sub-extensive relative to the spin-spin interac-
tion terms. Moreover, we show numerically in Section 4.10 that these additional terms do
not affect the integrability of the model at S = 1/2 and finite N.

Effects of dissipation

In addition to the coherent dynamics, the driven cavity system suffers from dissipation
due to photon loss from the v mode and atomic free-space scattering from the excited states.
These processes can be described formally in a quantum master equation by the relaxation
operators

L,= kv (4.59)

and
Lo mm’y = v/ Congme Tse.n (Im) (m]),,., (4.60)

respectively. Here, (m,m’) label internal states of the individual atoms indexed by n =
1,...,2SN. Cy,n are branching ratios that sum to unity. Ty, = (©,/D)?T is the free-
space scattering rate for the nth atom, where D is the detuning from atomic resonance and I"
is the natural excited-state linewidth. In comparison to the scheme presented in Section 4.2,
note that the Rabi frequency €2, and detuning D enter likewise into the interaction strength
in the Hamiltonian (4.9), where (x&,)? ~ (€2,/D)?g2. Thus, the scattering rate scales as
Loen ~ (X6)?/ ().

The cavity dissipation described by L, generates collective dephasing of the atomic ensem-
ble. Upon adiabatically eliminating the cavity mode using the Reiter-Sgrenson procedure,
we find that cavity dissipation leads to an effective relaxation operator

cos sinf . sin 6
F. wzt p Fo_—
Stin2 Tt vint % tin

Loot = /R % 7 gmiwzt| (4.61)
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tiwgt

Due to the rapidly oscillating phase factors e
three effective relaxation operators

, this relaxation operator may be split into

Ly =+/v/2 Fx, (4.62a)
L.= /Ay F., (4.62b)

where we have introduced the collective decay rate

kX2 sin? 6

= 5 T T2 (4.63)

By contrast, the free-space scattering operators Ly, (/) act directly on the spins so there is
no need to apply the adiabatic elimination procedure.

To what extent do these dissipative processes spoil the signatures of the integrability
studied in Section 4.57 In the strongly quantum regime at small S, for instance, one might
be interested in being able to evolve the system long enough to see the plateaus in the
autocorrelation function Gy(t), as observed in Fig. 4.5. To do so, we must ensure that
the dissipation timescale is short compared to the timescale 7; required for the plateaus to
appear. While the full dynamics including both coherent and dissipative processes is difficult
to access numerically, we can estimate the dissipative timescales by solving for the dynamics
in the presence of dissipation alone. In the absence of coherent dynamics (i.e. H = 0),
one can compute the equations of motion for the expectation values of operators using the
Lindblad equation:

d 1 1

—(0) = LIOL, — LIL,O - -OL!L, 4.64
7= (Hor g0 jorir,), (4.64)
where r runs over the set of relaxation operators. Plugging in the free-space scattering
operators L, = Ly, (mm/), and assuming an approximately uniform scattering rate I'y.,, = I,

one can show that bilinears of spin-S operators S obey the following equations of motion

for j # k:

d
% jk = —2(1 + C)Fschk:a (465&)
d

where we have introduced the notation

Xy = (S5% + SUSY),
Zik = (S75%) -

Thus, the bilinear operators decay on a timescale 7 ~ 1/, due to free-space scattering.
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We can perform a similar calculation for the collective relaxation operators (4.62) gener-
ated by photon loss from the cavity mode. For large detuning 6+ ~ 0 > k,w,, one can show
that the spin bilinears obey the following equations of motion for j # k:

d 1 1

%Xjk =73 cos® 6 (& — &)+ - sm 20 (52 + fk) Xjp + 2ysin® 06;&,. 7, (4.66a)
d .

=i = _% sin? 0 [2 (62 + €2) Zyn — &6 X] - (4.66D)

Assuming that the weights &; are numbers of order one, the bilinear operators therefore decay
on a timescale 7 ~ 1/7. A key result of this analysis is that the collective dissipation rate is,
somewhat surprisingly, independent of the atom number ~ NS, exhibiting no superradiant
enhancement. The reason for this is that the average effects of the Ly Lindblad operators
cancel in the large-detuning limit, where 0, =~ 0_. In practice, at finite detuning, any
imbalance in these terms can be corrected by adding a weak auxiliary drive field, with no
other significant effect on the dynamics.

The relative strengths of decay via the cavity () and via spontaneous emission (I'y.) are
controlled by the detuning §. The total decay rate v+1Iy, at fixed interaction strength J?, is
minimized by choosing a detuning § = /1 + nk. For weak to moderate cooperativity n < 1,
we may instead choose a larger detuning satisfying the conditions § > k,wy assumed above.

4.10 Appendix B: Details on the integrability* phase

Many-body bandwidth

We now present analytical and numerical evidence that the choice of normalization for
the Hamiltonian in Eq. 4.2 leads to a sensible thermodynamic limit. On the one hand, we
show that the many-body bandwidth W scales superlinearly, to wit: W ~ O(N??). An
important caveat is that W per se does not mean much unless it is weighed by the many-
body density of states p(F). On the other hand, the energy fluctuations AE (at least at
high temperatures) scale as AE ~ O(v/N) which leads to an extensive specific heat, as one
would normally expect.

Let us start by rewriting the Hamiltonian as

H= J-“2+f2+A]~"2 4.67
where F = 3. J;S;. Each operator F2 has non-negative eigenvalues and we denote the
largest one by f2. Note that it is the same for all a € {z,y, 2z} by isotropy. Thus, the largest
eigenenergy F),; of H is bounded by

s
SvVN

By < 2+ A). (4.68)
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Figure 4.8: Numerically obtained and disorder-averaged many-body bandwidth (W), N —1/2
as a function of the system size N for different values of the anisotropy A (different colors).

The dashed lines correspond to a linear fit. This is consistent with the prediction that
(W), ~ O(N3/?), as detailed below.

We can also bound E); below by using any properly normalized variational state [¢) since

Ey= @ H W) =3, E|(¢n)]* < Ex Y, [(¢n)[* = Ey. Let us choose

N
) = Q) 157 = sgn (i) S) (4.69)
i=1
as a variational state. Then (| H |¢) = ﬁ (| F2|y) and
N 2
(| F2 ) = 5° (Z |Ji|) : (4.70)
i=1

Moreover, this variational state is an eigenstate of F, and has the largest eigenvalue f

S >, |Ji|- Thus, we find that
2
AS (24 A)S i
VN VN )
Since the fields J; are sampled from A(0,1), the random variable |J;| has a half-normal

distribution with mean p = 1/2/7 and variance 0® = (1 — 2). Then Z =}, |J;| has mean
Ny and variance No? so (Z2); = N2 + No?. Thus, at large N, ((32,[%:])%), =~ 2N?/r.

N

>

i=1

N

D

=1

2
|Ji|> < Ey < (4.71)
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After disorder averaging Eq. 4.71 we get

2Ak9]\73/2§<EM>J5 22+ A)S

™ ™

N3/2, (4.72)

which shows that the disorder averaged (Ey), ~ O(N3/2).
We now put bounds on the ground state energy E,,. Clearly, E,, > 0. More importantly,

we note that
) = Q)57 = 5) (4.73)

is an exact eigenstate of H with energy £y = % (32, J;)%. Since (>, Ji)2>J = N, we find
that

0 < (En),; < (Es),=ASN'?, (4.74)

which shows that (E,,), ~ O(NY2). Since (Ey); ~ O(N%?), this concludes our proof
that the disorder-averaged bandwidth scales as (W), ~ N*/2. We have also computed (W),
numerically and we find an excellent agreement with the above analysis, as shown in Fig. 4.8.

Finally, we note that although W scales superlinearly, it is quite possible that the bulk of
the many-body states are located around a typical energy Eiy, ~ O(N) and that the density
of states has a long and thin tail extending all the way to O(N?%/2).

Energy fluctuations

We now show that the disorder-averaged thermal energy fluctuations (AE)? at high
temperatures scale as ((AE)?), = ¢N for some constant c¢. Note that, by the fluctuation-

dissipation theorem, this means that the specific heat per particle behaves as % R 75 ab
high temperatures 7.
The energy fluctuations are defined as
(AE)* = (H*)r — (H)7, (4.75)

where (...)p = (Tre## )_1 Tr [e™## . ..] denotes thermal averaging. For simplicity, we will
focus on the S = 1/2 and A =1 case. At lowest order in  we can approximate

1 3
2N SN

(e

%

(H)r

Q

> Jid; Tr [SS] (4.76)
]
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Figure 4.9: Numerically obtained scaling collapse of C,7?/N (where C, is the specific heat)
as a function of the temperature T'. We see that at high temperatures the specific heat

approaches -5 N with ¢ & 1.4. This is in very good agreement with the result from Eq. 4.78
wherein the constant is 3/2.

where Z ~ x?(N). Similarly, the first term becomes

(H)7 =~ Q%V o Z T Iy QZB Tr [Sasasﬂsﬁ] (4.77)
- 2N S T i, {Z Tr [SPSeSES] + 3 ) Tr [SeSe] Tr [SBSB] }
ikl o Bra
_ L % Jidi D {9 [T (57)°) 6500 + 6 [T (57)°)” 8500 }
i
2
- w(2)
_ %22

Putting the two results together we find that (AE)* ~ 5272, Since Z is chi-squared dis-
tributed x*(N), we know that E [Z%] = N? 4+ 2N. Thus, after averaging over disorder, we

get

((AE)%), ~ §N. (4.78)

This ensures that the specific heat C, = =2; N is extensive. We can also compute this

— 272
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Figure 4.10: Effects due to the overlap between the slow modes Q, and higher powers of
the exactly conserved quantities, H and SZ,. These results correspond to a fixed disorder
realization for the {J;} in a system of N = 9 spins (S = 1/2) with A = 0.9. a) The
correlation function él(t) for the slow modes @, with [ > 4 in a space orthogonal to the one
spanned by the operators defined in Eq. 4.79. We use a color gradient between [ = 5 (blue
curve) and [ = 14 (red curve). b) The plateau values after we substract the contributions
from H? as a function of the power p (see the definition in Eq. 4.80). We use a color gradient
for the solid curves in which [ = 3 corresponds to the blue curve and [ = 9 corresponds to
the red curve; the red, blue, green dashed curves correspond to [ = 10,11, 12, respectively.

. 2
(n|Qs|n)

energy eigenvalue F,. This example provides further evidence that the slow modes Q, are
far away from being projectors on many-body energy eigenstates.

10¢

for the mode | = 3 as a function of the

(inset) The diagonal matrix elements

quantity numerically using the exact spectrum of H and we find an excellent agreement, as
shown in Fig. 4.9.

Overlaps with higher powers of the conserved quantities H and S7,

We now address the possibility that the large plateau values (Fig. 4.4) observed in the
quantum model at intermediate A € (0,1) are caused by a significant overlap between the
slow operators Ql and higher powers of the conserved quantities, H and Sfot We use a
twofold approach, as detailed below.

Let us first summarize why this is a legitimate concern. Recall that at A € (0,1), the SVD
analysis finds two exactly conserved spin bilinears, H and (S2,)?, along with another N — 2
slow modes Q;, where [ = 3,..., N. The auto-correlation function of the latter operators
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exhibits a large long-time plateau, which we interpreted as a consequence of the existence of
further conservation laws (4.30) and of quantum integrability. However, it is possible the the
Qs overlap non-trivially with exactly conserved operators such as HP(SZ,)?": these higher
powers of the exactly conserved quantities consist of k-body terms, including k£ = 2, so they
have non-zero support in the space of spin bilinears and, thus, can conceivably overlap with
Q-

Furthermore, the support in the space of 2-local operators can be non-zero even in the
thermodynamic limit N — oo due to the all-to-all nature of the interaction. For instance,

consider @, = \/—%Ifl . By the previous section, we know that %[1] Tr [@ﬂ is of order one

~ ~ 2 o
even in the thermodynamic limit. Similarly, let Oy = + <S§0t such that ﬁ Tr [Og] is
also of order one as N — oco. It is not hard to check that the only 2-body terms emerging
from higher powers of the conserved quantities, namely operators of the form OYOY | that

do not vanish in the thermodynamic limit are:

H, (4.79)

N
. 1
Os = — Y JiJ;S8;,
ij
A 1 z Q2
O, = NZJiSZSj.

Above, Oy can be generated by O;0; as long as A € (0,1), and O, by 0,0, (in fact, one
gets a prefactor % > x Ji; it scales as 1/ V'N typically if J, has zero mean and as O(1) if
Ji # 0; by precaution, we still include it in the following analysis). We perform a Gram-

Schmidt orthonormalization of these four operators to obtain a basis set {61, 62, 63, (54}

wherein #[1] Tr [(i(i] = 0;;. We then define a matrix R whose columns vectors are the
(Zs. This allows us to perform the SVD analysis in the operator space orthogonal to the
one spanned by the O;s: using the time series matrix M from Eq. 4.24, we perform the
SVD decomposition of (1 — RRT) M instead. Trivially, we find that the first four singular
values are exactly zero so we focus on the modes corresponding to I > 4. Following the

prescription from Section 4.5, we define the slow operators (); for [ > 5 and compute their
auto-correlation function G(t) = %[I]Tr [Ql(t)Ql(O)}, as shown in Fig. 4.10a. Thus, we

see that the overlap with higher powers of H and Sfot has a negligible effect on the plateau
values of the slow modes Q.

In the second approach, we numerically study the effect of HP on the plateau values by
analyzing the matrix elements Q. ., = (n| Q; |n), where |n) is an energy eigenstate, H |n) =
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E, |n). Let us define the vector ¢ whose elements are ql(n) = \/’Il‘r_[l] |Qinn|. It is known

that the norm of this vector is just the plateau value of the (J; mode, whenever the latter is
well-defined: g, = ||g||>. Another way of studying the effect of H? on the plateau value is to
analyze the overlap between ¢ and the set of vectors {E(p) B = (E,)",0<p< P}, ie.
the powers of the energy eigenvalues.

Once again, we perform a Gram-Schmidt orthonormalization of the above vectors to
obtain a set {77; : 0 < i < P} wherein (7;|7;) = 7] - 7]; = 6;;. We then define

p

2 — 12 —5 —
1Qupll* = lGil* = |’ - 7

i=1

2

: (4.80)

which is a measure of the residual plateau value for the mode Ql after removing the contri-
butions of H°, H', ..., HP. Naturally, for any fixed mode index /, ||Ql7p||2 decreases from the
plateau value ||Ql,0||2 = HcﬁH2 = g, as p increases. Numerically, in Fig. 4.10b (main plot), we
observe that for the slow modes, 2 < [ < N, the decrease is small compared to g; for powers
up to p ~ N/2, at which point HP becomes an N-body operator. In fact, ”Ql,pH2 depends
roughly linearly on p and decays approximately to zero only when p ~ 2V > N. We have
also checked that the result is not altered upon including low powers of gfot (i.e. removing
contributions from H? (S”fot)r, for p,r < N). Therefore, the plateaus of the slow modes are
not caused by simple functions of the exactly conserved quantities, H and Sz, at A € (0, 1).
Finally, the inset of Fig. 4.10b shows that slow modes Q, are not a linear combination of a
few projectors onto energy eigenstates.

To summarize, these analyses render highly unlikely the possibility that the slow mode
plateaus at intermediate A are solely due to the overlap with the known conserved quantities.
This reinforces the thesis of the existence of further nontrivial conserved quantities (4.30),
as put forth in the main text.

The middle of the SVD spectrum

We now check that, at A = 1.0, we do not find more than N + 1 bilinear conserved
quantities, as suggested by the analytic results of Section 4.3. More precisely, we numerically
compute the plateau values corresponding to the [ = N + 2, [ = 3N, and [ = N? modes
obtained from the quantum SVD analysis. As shown in Fig. 4.11, we see that the latter two
plateau values decrease with the system size N. However, this is not entirely clear for the
N + 2 mode as its flow with system size is inconclusive—we conjecture that this is a finite
size effect rather than a sign of an additional conserved quantity.

Level statistics

We also analyze the level statistics of the quantum Hamiltonian (4.2) by studying the
ratio of adjacent energy levels E,, defined by r, = min{AFE,, AFE, 1}/ max{AFE,, AE, 1},
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Figure 4.11: Semilog plot of of the disorder-averaged plateau values (g;), = (G; (t = 00)),
as a function of N for three modes in the middle of the SVD spectrum at A = 1.0: the
N + 2 mode which is expected to be the first decaying mode, the 3N mode, and the 3N?
mode. We see that the latter two decay as NN increases, but this is not completely clear for
the NV + 2 mode.

where AE,, = E,.1 — E,. We now provide details vis-a-vis the various symmetries and
subsequent degeneracies we have to take into account.

At A = 1 the Hamiltonian has the full SU(2) symmetry and the eigenstates of H are
grouped in blocks corresponding to irreducible representations (irreps). Each state is simul-
taneously an eigenstate of Sgot with an eigenvalue Siot (Sior+1) and of Stzot with an eingenvalue
S € {—Stot, - -+, Stot }- Thus, each block contains 2S;, + 1 eigenstates of H. We keep the
states in a fixed sector of both S2, and SZ, by selecting the block Sy that has the largest
multiplicity in the irreps. decomposition (i.e. the most frequent block to obtain the largest
number of viable states).

At A # 1 the symmetry is U(1) x 7: U(1) is generated by U, = exp (—i¢Sg,) and it
corresponds to the conservation of S, whereas T represents the anti-unitary time reversal
symmetry. Moreover, there is a mirror symmetry corresponding to S, — —S,. For the cases
wherein 72 = —1, we have Kramers doublets and we keep the states solely in the SZ, = 1/2
sector because it is the most populous. For the cases where 72 = +1, we keep states solely
in the SZ, = 1 sector in order to account for the mirror symmetry as well (the states in the
S¢ = 0 sector are degenerate under the mirror symmetry).

Having selected the eigenstates of H to account for the degeneracies due to symmetries,

we compute the ratio r, for the adjacent levels. We then average over all r,, and over disorder
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Figure 4.12: a) Plot of the disorder-averaged (r); as a function of the system size N for
S = 1/2. Different colors correspond to different values of the anisotropy: red for A = 1,
blue for A = 0.75, green for A = 0.5, and yellow for A = 0. We see that, for the Hamiltonian
H from Eq. 4.2, the level statistics is close to Poisson (the round markers) as it would be
for an integrable model. Adding the perturbation H, e(i)O.l from Eq. 4.31 renders the level
statistics of H + H™Y close to GOE (the square markers), signaling level repulsion and a
chaotic behavior. (inset) We obtain qualitatively similar results for a Hamiltonian (4.2)
consisting of S = 1 degrees of freedom. b) Energy levels of H within a fixed S, = 1/2
sector as a function of A in a single disorder realization {J;} for a system of N = 11 spins
(S =1/2). We see many “real” (i.e. not avoided) level crossings, as shown in the inset which
is a zoom on two such events. This violation of the Wigner-von Neumann non-crossing rule
provides further evidence of quantum integrability at intermediate 0 < A < 1.

realizations to obtain (r) ;. We know that a chaotic system exhibits level repulsion and has
GOE level statistics characterized by a value (r)gor ~ 0.53. An integrable system does not
have level repulsion (its energy levels are uncorrelated) and generically has Poissonian level
statistics characterized by a value (r)poisson & 0.387.

In Fig. 4.12a we plot (r), (V) for different values of the anisotropy A. We find that
both A = 0 and A = 1 exhibit almost perfectly Poissonian level statistics. However, for
intermediate 0 < A < 1, the system of S = 1/2 spins (or S = 1 for the inset) is not as
close to Poisson, although it is even farther away from GOE. Moreover, we cannot extract
a meaningful flow with the system size N towards either GOE or Poisson. We note, in
passing, that there are exceptions from the equivalence between integrability and Poissonian
level statistics: as detailed in Ref. [55] (see also the references therein), there are well-known
counterexamples |25, 37, 204, 202| of integrable systems whose level statistics are neither
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Figure 4.13: Plot of the disorder-averaged plateau values (g;) ; = (G (t — 0)) ; as a function
of the system size N at A = 1.0. The overlapping circular markers correspond to the lowest
four modes of the unperturbed model (4.2), which has N + 1 bilinear conserved quantities.
The square markers correspond to adding a perturbation #ﬁ >, J2S7 and the different
colors correspond to the lowest four modes (that are not exactly conserved) in increasing
order of their singular values: red, blue, green, and magenta. While the perturbation de-

creases the plateau value, we note that there is no flow with system size: the perturbation
is sub-extensive (suppressed by 1/vN).

Poisson nor GOE.

Nonetheless, if we add the perturbation HY from Eq. 4.31 to H we immediately see that
the system obeys almost perfectly GOE statistics even for rather small system sizes (see the
curves with square markers in Fig. 4.12a).

In Fig. 4.12b we work in a fixed disorder realization for the fields {J;} and we adiabatically
change the anisotropy A. Then we plot the exact energy levels within a fixed symmetry
sector, as detailed above, and explicitly check whether there exist level crossings or if they
are avoided (level repulsion). We find that there are numerous real crossings at intermediate
A, which provides further qualitative evidence that H is integrable for S = 1/2.

Stability to the commutator perturbation

We conclude by studying the effect of the perturbation (4.33) that arises upon recasting
the Hamiltonian into the “flip-flop” form of Eq. 4.34. The term JiJijS; from (4.34) in the
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main text can be written as

SHST = (SF+iSY) (ST —iSY) (4.81)
= SEST 4 SYSY4iSY,S?)

SiS§ + SYSY + Sidi,

which leads an overall term #ﬁ >, J2S7 in addition to the Hamiltonian H defined in Eq. 4.2.
We have argued that this is an irrelevant perturbation in a thermodynamic system with
N > 1 degrees of freedom.

We now explicitly study its impact on the plateau values of the auto-correlation function
Gi(t). As shown in Fig. 4.13, we find that the effect of this perturbation is only quantitative:
the modes reach plateau values that are lower than those occurring in the unperturbed
model, but they do not decay as the system size N increases. We note that the quantitative
shift is also due to the fact that the slow modes we compute are bilinear operators even
though the perturbation s\;ﬁ >, J2S7 is a linear combination of 1-body terms.
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Chapter 5

Spin glasses and quantum Satisfiability

The potential power of quantum computers drives the immense effort to build and un-
derstand them. There are two primary theoretical approaches to characterizing the precise
extent of this potential. Complexity theory [19] proceeds by identifying so-called ‘complete’
problems which are the hardest problems in a given class, such as NP. Classically, under the
widely believed conjecture that P # NP, all algorithmic approaches to NP-complete prob-
lems such as satisfiability (SAT) must fail on at least some subset of worst-case instances.
Over the last decade, these venerable considerations have been extended to the quantum
case, where QMA-complete problems are now believed to be intractable and to capture the
intrinsic differences between quantum and classical computing [136]. The natural quantum
generalization of SAT, so-called quantum satisfiability (QSAT) [48, 104], is conveniently such
a QMA -complete problem !.

In the second approach, the introduction of an appropriate measure on the instances
of a problem generates a question in statistical Physics. Instead of worrying about worst
case complexity, we attempt to understand the structure of problems which are typical with
respect to the measure. For example, phase transitions which arise as functions of parameters
controlling the measure often signal the regimes where the most complicated problems may
be found [109]. This approach builds on the seminal insight of Fu and Anderson [91] that the
intractability of NP-complete problems is a form, indeed an extreme one, of (spin) glassiness.
Ensembles of both classical SAT [167, 134] and, more recently, QSAT [146, 147, 115] have
been studied in this fashion.

In this chapter we build on the second approach and introduce new ensembles that
interpolate between the SAT and QSAT ones. The mixture provides a convenient framework
for characterizing the crossover from classical to quantum search complexity. For example,
the classical PCP theorem [20] shows that it is computationally hard to approximately
determine the ground state of the SAT problem, while it is still an open question whether
an analogous hardness result applies in the quantum case. The interpolation allows the
study of the crossover in entanglement properties of low energy states, which may bear

'While both NP and QMA complete problems are believed to be hard for both classical and quantum
computers to solve, the latter are such that a classical computer cannot even verify the solution efficiently.
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on this question. Similarly, in statistical physics, the mixed ensemble can shed light on
entanglement phase transitions in spin-glass models with quenched disorder: the classical
problem has no entangled solutions, whereas the mixed one exhibits entangled states in the
UNSAT regime.

—

SAT UNSAT

Density of quantum edges 3
o
o

o
(=
—
(24

U'5Density of edgesla

Figure 5.1: The phase boundary in the o — 3 plane that separates the SAT and the UNSAT
regimes for the mixed classical-quantum problem. The dashed line indicates the emergence

of a giant component in the ER graph (the percolation phase transition). 5 = 0 corresponds
to the 2-SAT problem and 8 = 1 corresponds to the 2-QSAT problem.

Specifically for the 2-SAT /2-QSAT interpolation, we show that there is a sharp phase
boundary (Fig. 5.1) which we determine rigorously by deriving coincident lower and upper
bounds on the extent of the UNSAT and SAT regions, respectively. The interest in this
interpolation flows considerably from a “geometrization” theorem that applies to the QSAT
limit [146]. As this result is not widely known, we begin with a quick review of the relevant
background which will also enable a proper definition of the problem studied herein. We then
present our central technical results on the phase boundary and close with some remarks on
the lessons learned and future directions.

5.1 Classical-Quantum mixing in the random
2-Satisfiability problem

An instance of k-QSAT is defined by a positive semi-definite Hamiltonian on N qubits
given by the sum of M k-body interactions, H = Z%zl IT,,. Here, each interaction II,, =
|®) (¢],, projects onto a particular state in the local Hilbert space of the k qubits associated
with interaction m. The computational problem is to decide whether H has a ground state
of energy zero. If so, the problem is SAT and if not, it is UNSAT 2. If the states |¢),
are computational basis states, we recover classical k-SAT as a special case. We can now
summarize the statistical ensembles used in previous work. These involve the uniform Erdds-
Rényi measure [206, 80, 44|, parametrized by the ‘clause density’ o = M/N, over the set

2The ground state energy is at least a promised gap A above zero if it is not precisely zero.
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of k-hypergraphs representing the interactions in H. The interaction associated to each
hyperedge is likewise uniformly chosen from the 2¥ projectors in classical SAT or from the
Haar measure over the rays in the 2¥ dimensional Hilbert space for QSAT. We observe that
the latter makes classical SAT instances highly non-generic within the QSAT ensemble and
so these two can be expected to behave very differently, and indeed they do [167, 134].

The classical ensemble has been studied intensively. The broad picture that has emerged
is that for all & > 2 there is a sharp SAT-UNSAT transition in the N — oo limit as a
function of . For k£ > 3, there are additional transitions in the SAT regime wherein the
structure of the solution space changes. For the quantum ensemble, it is known that there
is a SAT-UNSAT transition for k£ > 2 [146, 147, 49, 31| and that there is at least one sharp
transition involving the growth of entanglement in the satisfying states for k > 12 [147,
14]. A remarkable result to come out of the quantum generalization is a “geometrization
theorem” [146] wherein uniformly chosen quantum projectors on any graph exhibit the same
dimension of the satisfying manifold with probability 1. This reduces the generic QSAT
decision problem to a purely graph theoretic question! The identification of this implicit
graph theoretic property for £ > 3 and understanding its computational difficulty is an
outstanding problem.

As advertised above, we initiate a new approach by introducing ensembles that interpolate
between the fully classical and quantum regimes. We do this by constraining each realization
to include a fraction § of uniformly chosen quantum projectors and 1 — 3 uniformly chosen
classical ones. As [ varies between 0 and 1, we pass from the classical ensemble to the
quantum one. As the classical ensemble does not exhibit geometrization and typically has
larger satisfying manifolds, the interpolation has the potential to shed light on the emergence
of geometrization in the quantum limit and thence on precisely where in the ensemble one
might look for genuinely difficult quantum cases.

As a first step in this program, we study the case of 2-SAT/QSAT. We generate the
underlying 2-graphs by drawing edges between any two sites with probability aN/ (];f ) In
the thermodynamic limit N — oo this generates an Erdés-Rényi (ER) random graph with
M = aN expected edges. For each edge m = 1...M we label it ‘quantum’ with probability
[ and ‘classical’ with probability 1 — 5: we write e, € {Q,C} if the edge between sites
(m,m + 1) is quantum or classical. The purely classical and quantum limits are very well
understood. At 8 = 0 [98, 90, 46] there is a sharp SAT-UNSAT transition at a, = 1 while
for 5 = 1, there is a SAT-UNSAT transition at a, = 1/2 [146]. The quantum transition
coincides with the emergence of a giant component in the underlying random graph [80].

5.2 The snip-core

The primary tool in our analysis is snipping qubits out of an interaction graph G. Clas-
sically, a node i such that G = G" U {i} is snippable if all of the bonds connected to it agree
about the bit arrangement they locally disfavor. All clauses attached to such a snippable
node ¢ can then be trivially satisfied by assigning the appropriate value to qubit ¢ without
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reference to the state on GG'. Thus, these bonds can be snipped from the graph G to produce
a smaller graph G’ which is SAT if and only if the original G is.

This definition extends naturally to the mixed classical-quantum problem (5 # 0): a
degree-one site ¢ with a quantum projector attaching it to site j of G’ is snippable. From
Bravyi’s construction [48], we know that the satisfying state for G’ can be written as a
product state [1);) ® |Wen ;1 ). If the quantum edge attaching site i disfavors the state |¢;;),
then we can use the transfer matrix 7T}, = egbjz (€ is the 2 x 2 Levi-Civita symbol) to find
&) = Ty 1) such that (¢;,] [¢;) ®|&) = 0. Therefore, |&;) ® |1h;) @ [Pangyy) is a satisfying
state for G = G’ U{i} which shows that a degree-one site with a quantum projector attached
is snippable.

However, if a generic quantum edge attaches to a site ¢ of degree greater than 1, it
cannot be locally satisfied by the state on ¢ without reference to the rest of the graph
(with probability 1). Thus, any site of degree at least 2 with a quantum edge attached is
unsnippable.

For a random instance GG of the mixed problem, we can iteratively remove snippable sites
and the incident edges in a similar fashion to the “Leaf Removal” Algorithm [168]. When
there are no snippable qubits left, this algorithm stops and we end up with a unique maximal
snip-core. Clearly, GG is SAT iff its snip-core is SAT. Moreover, if the snip-core is empty then
G is SAT. Behind our considerations lies the result that when G is SAT we can always
find a satisfying product state [48]. We will now analyze the structure and probability of
non-empty snip-cores in order to determine the SAT-UNSAT boundary.

5.3 Upper bound on SAT region

The basic idea in this part is to identify an UNSAT motif that must be present on all
snip-cores for a > a.(f) thus establishing an upper bound on the extent of the SAT region.
To this end, we first note that the simplest motif that is unsnippable is the unsnippable
loop. A loop with classical and quantum edges is said to be unsnippable if all of its sites are
unsnippable (see Fig. 5.2a). We can find a simple example in the fully classical problem:
a loop that dislikes 01 on each edge. While this loop is unsnippable, it is SAT: it has
exactly two satisfying states comprised of all sites 0 or all sites 1. The same is true of the
other 2% such classical unsnippable loops of length L which are equivalent under “gauge”
transformations. It can be shown that the fully quantum loop also has two SAT states [146,
48]. Moreover, based on the Geometrization Theorem we can conclude that the dimension of
the kernel of the fully quantum problem is a lower bound for the mixed problem, whereas the
fully classical one is an upper bound: we start from the classical unsnippable loop and slowly
turn classical projectors into generic quantum ones; this can only decrease the degeneracy
of satisfying states. But since both kernels have dimension two, we conclude that the mixed
classical-quantum unsnippable loop always has exactly two linearly independent SAT states.
Finally, an unsnippable but UNSAT motif can be constructed by decorating the unsnippable



CHAPTER 5. SPIN GLASSES AND QUANTUM SATISFIABILITY 137

0o 17

Figure 5.2: a) An unsnippable loop that contains both classical and quantum edges. b) A
loop with two cross-links. If all the strings are unsnippable and the cross-links penalize the
loop’s two linearly independent satisfying states, this motif becomes UNSAT. ¢) The “lasso”
motif. We start from a random site 1 and move along an unsnippable path until we pass
through the same site ¢ twice. The loop can either be unsnippable (z = 1) or snippable at
site ¢ (x = 0). d) The loop with a single cross-link. We encounter this motif if we traverse the
dangling branch of the lasso and end up at a site located on the initial loop. e) The “figure
eight”. We encounter this motif if we traverse the dangling branch of the lasso and end up
at the same starting point ¢. f) The “dumbbell”. We encounter this motif if we traverse the
dangling branch of the lasso and pass through the same point twice (located outside of the
initial loop).

loop with two unsnippable cross-links—strings joining two different points on the loop whose
interior sites are unsnippable (Fig. 5.2b) that penalize the two SAT states.

We now turn to the probability of finding UNSAT unsnippable loops with cross-links.
Quite generally, the expected number of subgraphs A in the ER ensemble on /N nodes is

(N — [ADAwA)

E(# of A) = (5.1)
where |A| and e(A) represent the number of vertices and edges of A, respectively; Aut(A) is
the number of automorphisms of A and p = aN/ (]2V ). For a loop of length L we have |L| =
e(L) = L and Aut(L) = 2L. Introducing the probability that a given loop is unsnippable,
we find the expected number of unsnippable loops #uus(L) is

L
Huns(L) = (JZ\;T) % (N2f 1) p(L is unsnippable). (5.2)
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For any fixed length L and as N — 00, #us(L) scales as O(N°). More generally, the
number of subgraphs with m = e(A) — |A| cross-links vanishes in the thermodynamic limit
as O(N~™). This result holds irrespective of the form of p(A is unsnippable) since this
probability has no explicit dependence on N. It follows that in order to get a non-vanishing
number of UNSAT motifs we must consider giant loops whose size scales with N as L = [N
(0<i<1).

To calculate the number of unsnippable giant loops we need the last factor in Eq. (5.2).
For a collection {e;} of M edges, the probability that site 7 is unsnippable is 1 -0, ¢de,,,,c/2.
In words, if it is connected to a quantum edge then it is unsnippable with probability 1;
otherwise it is unsnippable with probability 1/2. Also, from the definition of the random
ensemble we have p(e; = Q) = 8 and p(e; = C') = 1 — 3. Hence, for a loop of length L

L
6@- C(se' C
L . . 1 — . 1 _ ) i+1» ) .
p(L is unsnippable) {é} Ep(GZ) ( — 5 ) (5.3)

Using a standard transfer matrix technique and focusing solely on the dominant eigenvalue
A; which controls the result for large loops, we find that

(5.4)

1+5+\/—7ﬁ2+10/@+1>L
] .

p(L is unsnippable) = (

With this in hand, we return to Eq. (5.2) and use Stirling’s approximation to find the
extensive part of the entropy,

Suns(1) = N [I (log(2ar,) — 1) — (1 — ) log(1 — 1)]. (5.5)

Giant unsnippable loops proliferate exponentially in N if the entropy function is positive for
some 1 > 1> 0. Since Syns(0) = 0 and S, (1) = N [log(2a),) +log(1 — )] < Nlog(2a\,),
we see that Syps(1) is a negative and decreasing function on 0 < [ < 1 for 2aA; < 1. However,
for 2a\; > 1, the entropy goes positive for small [ and large numbers of giant unsnippable
loops emerge. As we find e®@) loops on just N sites, the loops must intersect and overlap
repeatedly. It follows that any given giant loop is covered by a finite density of cross-links and
therefore the probability of finding an UNSAT unsnippable loop with cross-links approaches

1 as N — oo for a greater than

2

olf) = 1+ B8++/—782+ 106 +1

(5.6)

Hence, we conclude that that «.(3) is an upper bound on the extent of the SAT region at
any fixed (.
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5.4 Lower bound on UNSAT region

We will now show that for o« < «.(f) the snip-core is always SAT so that «a.(5) is also a
lower bound on the extent of the UNSAT region. We do this by showing that the snip-core
must contain one of a finite list of motifs 3 and that all of these except SAT unsnippable
loops are not present as N — oo for a < ().

To show that there is a finite list of necessary motifs, we start from an arbitrary site
in the snip-core which we label 1 and walk along any edge which we label e; that connects
it to a site 2 (see Fig. 5.2¢). At step 2, we walk along an edge e, to site 3 such that 2 is
unsnippable with respect to edges e; and e;. Thus, ey can either be quantum or, if it is
classical, it has to disagree with e; on site 2. From this point onward, we take further steps
as follows:

o At step k: we move along an edge e that connects it to k + 1 such that site k is
unsnippable.

e [terate until we pass through a site i twice.

Since the size of the snip-core is finite at any given N, then each such path must be self-
intersecting. Therefore, the algorithm stops in either of the following scenarios:

1. The path returns to the starting point (¢ = 1) and we end up with a loop. There are
two subcases:

a) If all sites on the loop have degree 2 then the loop must be unsnippable (Fig. 5.2a).

b) If there exists a site on the loop that has a degree of at least 3 then we walk one
step away from the loop starting at that site as before and get a “lasso motif”
(Fig. 5.2c).

2. The path crosses itself at a site ¢ # 1 and we encounter the same lasso motif.

At this point, we continue from the open end of the lasso and generate unsnippable sites as
before. Again, our path necessarily returns and touches the lasso. When this happens, we
end up with one of three motifs: an unsnippable loop with one cross-link (Fig. 5.2d), a “figure
eight” (Fig. 5.2e) or a “dumbbell” (Fig. 5.2f). Together with the unsnippable loop (Fig. 5.2a),
these constitute the set of structures of which at least one must be present on each non-empty
disconnected component of a snip-core. Strictly speaking, we should classify somewhat more
finely by specifying the unsnippability of each loop passing through the degree 3 and 4 sites
in these motifs. But that only changes our estimates below by constant factors as N — oo
so we refrain from exhibiting these details here.

3We use motif to mean a fixed subgraph up to isomorphisms, irrespective of its frequency of occurrence.
This is midway between the everyday meaning of the term and the more technical graph theoretic usage
which makes reference to its frequency.
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Now for the frequency of occurrence of these motifs. In the limit N — oo for any fixed
number of sites L, the expected number of loops is O(N?), while the expected numbers of the
other three are O(1/N) and hence vanish. As before, we are led to examine giant versions
of these graphs. The most optimistic case assumes that all the individual legs of the motifs
are large and diverge with N. In this case, the expected numbers take the form

E(# motifs) = C(LA_[ 1) (L - Y (NQf‘ 1)L AL (5.7)

where a is the number of automorphisms (a = 4 for the figure eight and the dumbbell and
a = 2 for the loop with a single cross-link) and ¢ is an O(1) number (dependent on )
associated with the precise unsnippability of vertices that have degree at least 3 alluded to
above.

For a < a.(f3) these expected numbers vanish also for large motifs of size L = IN7 as
N — oo for any [ and 0 < v < 1. Using Stirling’s approximation, the O(N7) part of the
entropy S(1) = log(E(# motifs)) is approximately

S(l) = IN"log(2aA;) — INY — N(1 —IN" 1) log(1 — IN""1). (5.8)
Once again, S(0) = 0 and the derivative
S'(1) = N7 [log(2aA;) +log(1 — IN"™)] < N7log(2a\) (5.9)

for any . We see that for o < a.(8), S(I) is a negative and decreasing function so the
expected number of motifs vanishes in the thermodynamic limit as e @),

Hence, the loop with cross-link, figure eight, and dumbbell are entirely absent for o <
a.(f) and the snip-core is either empty or composed entirely of unsnippable loops. Such
snip-cores are SAT so we can conclude that our starting graphs are SAT for o < a.(f) with
probability 1 and thus a.(f) is a lower bound on the extent of the UNSAT region at fixed
[. Putting together the upper and the lower bounds, we conclude that a.(3) from Eq. (5.6)
represents the exact location of the phase boundary between SAT and UNSAT in the oo — 3

plane as shown in Fig. 5.1.

5.5 Conclusion

In the preceding we have introduced a new family of mixed classical-quantum ensembles
for the k-SAT/QSAT problems and established the exact phase diagram for the simplest
member of this family with & = 2. We note that the shape of the phase boundary is
consistent with what is known about the limits. The quantum limit is insensitive to the
choice of projectors and we find that the restriction of a dilute concentration of projectors
to classical values barely shifts the phase boundary. The classical limit is sensitive to the
choice of projectors and the phase boundary near it is maximally sensitive to the inclusion
of a dilute set of quantum projectors. A problem that we leave open is the nature of scaling
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near the phase boundary. One basic question concerns the scaling of the probability Psar
that a random instance is SAT. Work on the classical problem by Bollobas et al. [46] showed
that this has the scaling form Psar(N, o) = f((a —a.)/N'/?). Work on the ER ensemble by
Bollobéas [45] and Luczak [157] implies that the same scaling holds for the purely quantum
problem. Qualitatively, our work makes sense of this apparent coincidence and implies that
this scaling will hold everywhere along the phase boundary—that everywhere there exists a
single transition involving the proliferation of unsnippable loops with the mix of projectors
along such loops changing continuously with 5. However, more work is required to show this
rigorously and to try and extract more detailed information on the scaling functions near
the transition. Finally, we intend to examine similar ensembles for £ = 3. The current work
suggests that perturbing about the classical limit by introducing a dilute set of quantum
projectors into the Hamiltonian could be informative in quantum mechanical perturbation
theory.
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