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ABSTRACT OF THE DISSERTATION 
 

Investigating human microbiomes in health and disease 
 

by 
 

Andrew Oliver 
Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2021 
Dr. Katrine Whiteson, Chair 

 
 
 

The lifespan of people living in westernized countries is increasing, suggesting we are 

getting healthier; however, we are now struggling with a new health problem: the increasing 

incidence of chronic disease. We have only recently begun to appreciate the association of 

microbial colonization with health, and how changes in our lifestyles (i.e. diet, urbanization, 

sanitation) are affecting this association. Changes in microbial community composition have been 

linked with numerous acute and chronic disease states. Despite the microbiome’s strong 

correlation with health, there is still much work to be done in understanding the ideal structure and 

function of these human associated microbial communities. 

Humans first experience with microorganisms occurs during gestation, when we are 

exposed to the metabolites of the maternal microbiome. Maternal microbes and their metabolic 

by-products critically influence the structuring and functioning of the early infant microbiome and 

immune system; however, global assessments of maternal microbes and metabolites are lacking. 

In Chapter 1, my co-authors and I address this knowledge gap by sequencing cervicovaginal fluid 

from 18 healthy mothers longitudinally throughout their pregnancy. Parallel to microbiome 

sequencing, we examined the vaginal metabolomes using GF-TOF and LC-MS/MS to broadly 

capture metabolites within this system. Additionally, we analyzed the metabolomes of offspring 

through their first year of life.  We report strong metabolic biomarkers of microbiome composition 
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within the cervicovaginal tract, which may ultimately be useful in future diagnostic and therapeutic 

endeavors for vaginal diseases like bacterial vaginosis (BV). We show a strong correlation 

between mannitol and the presence of Lactobacillus crispatus and speculate as to why a 

homofermentative vaginal lactobacillus may be generating mannitol via fructose reduction for 

redox purposes. In chapter 1, I focus on describing the early microbes and metabolites infants are 

exposed to during pregnancy and birth.  

 Throughout our lives, our microbiomes are under constant selection by intrinsic (e.g., 

phage predation) and extrinsic (e.g., antibiotic use) factors. One strong architect of gut microbial 

composition is diet. Dietary fiber is a favored substrate of microbes deep within the colon, which 

is able to resist digestion by endogenous enzymes in order to feed the dense bacterial communities 

throughout the gut. In chapter 2, we conducted a two-week diet intervention study, asking whether 

an increase in dietary fiber intake through whole foods was capable of changing the gut microbial 

communities and associated metabolome. We show on a short time scale, increasing dietary fiber 

in the gut alters the microbial composition significantly, but does not change the abundance of 

metabolic by-products of fiber fermentation (short-chain fatty acids). While more work needs to 

be done to disentangle the relationship between how diet influences bacterial metabolites, our work 

illustrates how malleable gut microbial communities are to a change in diet.  

 Finally, in chapter 3, I contributed context to a growing body of microbiome research that 

is woefully lacking microbiome characterizations from non-industrialized populations. We teamed 

up with anthropologists to study the microbiome of a remote community of people deep within the 

Ecuadorian Amazon. Our findings show that the microbiomes from these Conambo people are 

distinct from the microbiomes of industrialized individuals, containing a high abundance of 

VANISH taxa (volatile and/or associated negatively with industrialized societies of humans). 
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Notably, nearly 40% of the average fecal metagenome consisted of reads mapping to 

Prevotellaceae. The Conambo people have unique diets, with a significant portion of their caloric 

intake coming from a cultural variant of cassava beer (“chicha”). Chicha is made by mastication 

and re-mastication of yuca root by women within each household. We show that while the initial 

inoculums of chicha are household specific, over the course of fermentation the communities 

converge on a more similar microbiome irrespective of household origin. These data contribute 

vitally towards the open question: how has industrialization shaped the microbiome?  
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INTRODUCTION 
 

Communities of microbes have established themselves in every environment around and 

within us. Humans are host to billions of microbes, collectively called the microbiome, and these 

cells are estimated to be at least as numerous as the eukaryotic cells that make up the human 

body itself (1). From a functional perspective it is estimated that more than half of the ~500,000 

metabolites within the human body are made or modified by microorganisms (2). Although 

initially overwhelming in its complexity, it has been suggested that studying the microbiome can 

be boiled down to the basic tenets of community ecology, specifically: dispersal, diversification, 

selection, and drift (3). Indeed, perhaps the most visible study in this field, The Human 

Microbiome Project (HMP) (4), suggests that these ecological principles can be used to answer 

fundamental questions about our relationship with microbes, such as (1) what is the stability and 

resilience of the microbiome, (2) what factors drive microbiomes to look more similar or 

different from each other, and (3) how do people develop and transmit their microbiomes? The 

following chapters aim to contribute to these still open questions.  

Understanding how individuals acquire and develop their microbiomes in early life is 

critical, as this developmental trajectory may play a large role in the overall health of the child 

and young adult. Infants begin physiologically responding to microbes in utero and during birth, 

when they are exposed to maternal microbes and metabolic products (5).  In a study of 169 

women from a Norwegian birth cohort (NoMIC), Stanislawski et al. found associations between 

the gut microbiota of some mothers and the microbes that initially colonized their children (6). 

Another cohort study showed regular prenatal and post-natal farm exposure, i.e., contact with a 

diversity of microbes, in infants reduced the incidence of chronic health diseases such as asthma 

and atopy (7). Recent research has supported the idea of fetal programming, where maternal 
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antibodies prepare the infant gut for the onslaught of colonizing microbes (8). However, it is 

unclear to what extent the infant metabolome is molded by the microbiome and metabolome of 

its mother. 

 Even after the microbiome is acquired in early life, it undergoes constant selection by 

various lifestyle factors ranging from cohabitation (9) and host genetics (10), to the immune 

system (2). Changes in an individual’s diet can also have a significant effect on the gut 

microbiota, by potentially altering pH and the availability of various carbon substrates (11). Diet 

induced changes to the microbiome may have profound impacts on health. One study showed 

that the high fiber diets of rural South Africans significantly suppressed the risk factors 

associated with colon cancer, perhaps due in part to increased butyrogenesis (12). Butyrate, and 

its sister short chain fatty acids (SCFA) acetate and propionate, are produced by the gut 

microbiota via the degradation of dietary fiber in the colon (13). Colonocytes use the high levels 

of butyrate in the colon as their primary energy source (reviewed in Clemente et al., 2012). 

SCFAs have been shown to have beneficial effects ranging from increased intestinal mucus, 

upregulated production of tight junctions, both of which play roles in immune homeostasis 

(reviewed in  (15)). Butyrate (5 g/kg tributyrin) specifically has been experimentally shown to 

bind to the PPAR-g receptor in the colon epithelia of mice, which downregulates nitrate 

production and helps maintain a hypoxic environment in the gut, suppressing the growth of 

facultative anaerobes from the family Enterobacteriaceae that would otherwise lead to dysbiosis 

(16). Elegant work has been done to show the beneficial effects of SCFAs on health; however, 

their benefits may be contextual (i.e. if they are present in the gut vs blood serum). Recent work 

has shown that fecal SCFAs may be associated with obesity and hypertension (17). Propionate 

has also specifically been shown to increase glucagon and fatty acid–binding protein 4 in the 
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plasma of mice, and in humans, higher plasma levels were indicative of poor insulin sensitivity 

(18). Since these SCFAs result from the bacterial metabolism of dietary fiber, and are potent 

mediators of health, studying how diet can affect the microbiome will help us better understand 

the therapeutic value of nutrition and prebiotics.  

Despite a growing body of research that has unmasked many factors that shape the 

composition and function of the human microbiome, far less has been done to put that in the 

context of evolution of the human lifestyle (e.g., the advent of industrialization and modern 

medicine). Moreover, due to the increasing expansion of western diet and culture, it is becoming 

challenging to study non-industrialized microbiomes, which will give insight into how 

urbanization has altered the human microbiome. A few cohorts exist that illustrate the profound 

differences between industrialized and non-industrialized microbiomes (19–24). Many of these 

studies show that rural microbiomes are different in their composition from western microbiomes 

and are enriched for bacteria such as Prevotellaceae and Succinivibrionaceae (23).  One 

hypothesis for the contributions to the increasing incidence of chronic disease may arise from 

differences between microbiomes associated with industrialization compared to non-

industrialized microbiomes (25). The following research investigates the non-industrialized 

microbiome using a new cohort of individuals living in the Conambo River Valley, deep within 

Amazonian Ecuador (26–28). Interestingly, the main source of calories for the people of 

Conambo comes from chicha, a fermented beverage made, in part, by inoculating saliva into a 

root pulp. In this community, chicha is made only by that maternal line within a household. This 

work attempts to contribute to the characterization of pre-modern microbiomes by sequencing 

the bacteria, fungi, and other understudied microbes of the Conambo people, which will further 

highlight the effects of industrialization on the microbiome. 
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 Ultimately it remains a challenge to uncover what factors shape the microbiome. In a 

large cross-sectional study of 4,000 individuals, researchers tracked 69 covariates and found they 

explained about 8% of the variation in the human associated microbial communities (29). Putting 

the individualistic nature of the microbiome another way, Ed Yong for The New York Times 

writes “The microbiome is the sum of our experiences throughout our lives: the genes we 

inherited, the drugs we took, the food we ate, the hands we shook.” The more variables we 

measure, the better we might grasp whether the microbiome behaves in predictable ways, or if 

there is a certain stochasticity to it. For example, the Anna Karenina principle suggests that “All 

healthy microbiomes are similar; each dysbiotic microbiome is dysbiotic in its own way” (30). 

How much of that stochasticity is a reflection of our struggle to find meaningful and measurable 

covariates for the microbiome remains a forefront problem in the field. To that end, studies 

designed to measure which factors contribute to the composition of the microbiome and how it is 

transmitted will be continually useful.  

Goals and scope of this dissertation 
 

Because the microbiome is so personalized, and vast in terms of diversity and genetic 

information, it remains a current challenge to identify measurable covariates that give us insight 

into the structure of the microbial communities present. Just as our human genomes make us 

unique, it is likely that no single (or several) covariate will be generalizable to the system. The 

goal of this work is to characterize the microbiome in health, and put the microbiome in context 

of covariates, such as metabolites, diet, and lifestyle. 

Aim 1: Examine the vaginal microbiome and metabolome through pregnancy (Chapter 1) 

 We used metagenomic and amplicon sequence for comprehensive characterization of the 

vaginal microbial communities during pregnancy. This allowed us to better understand what 
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strains are present during pregnancy and what is the functional potential of these communities. 

Gas chromatography – mass spectrometry and liquid chromatography – mass spectrometry was 

used to characterize the metabolomes that are present during pregnancy and the early life of the 

infant. We originally hypothesized that there are metabolic biomarkers that are highly correlated 

with bacterial community composition in the vagina during pregnancy.  Furthermore, as 

pregnancy has previously been shown to stabilize the vaginal microbiome (31), we examined 

whether that holds true with our longitudinal data, and if the pregnancy metabolome is also 

stable during this period. This work has revealed highly specific biomarkers for the vaginal 

microbiome, and suggests that the abundance and types of vaginal host sugars contribute 

importantly to the structure and maintenance of the vaginal communities 

Aim 2: Study the effect of a high fiber diet intervention on the gut microbiome of healthy 

individuals (Chapter 2) 

 One major outcome of the westernization of diet is a decrease in dietary fiber. Most 

Americans get only ~15 grams/day of fiber, well under the suggested 30 grams/day (32). Since 

diet is known to alter the microbiome (11), we sought to determine how an increase in dietary 

fiber changes the composition of the microbiome. Dietary fiber is particularly important, because 

it is a carbohydrate that persists through the small intestine and into the colon, where it feeds the 

dense microbial population residing there. Using students enrolled in a course-based 

undergraduate research experience (CURE) undergraduate microbiology course as subjects, we 

assessed how a two-week diet intervention consisting of 40+ grams/day of fiber alters the 

microbiome. Moreover, because microbes use dietary fiber to produce short chain fatty acids 

(SCFAs), molecules generally implicated in health benefits, we measured the SCFA profile of 

these individuals. We showed that increasing dietary fiber, a nutrient present in high abundance 
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in the diets of traditional societies, is a tractable method for altering microbiome composition, 

but not necessarily the abundance or composition of fecal SCFAs. 

Aim 3: Characterize the microbiome composition within the Conambo tribe of Ecuador 

(Chapter 3) 

 The extent to which environmental factors and host genetics shape the microbiome 

remains a critical question in understanding host associated microbial communities. Cohabiting 

family members have been shown to share significant portions of their microbiomes with one 

another (9), and even unrelated roommates share more of their viruses with each other than they 

do with members of different households (33). We sought to examine this question in the context 

of the Conambo tribe from the Ecuadorian Amazon. Specifically, we wish to address three 

questions: 1) What is the microbiome composition of people of the Amazonian Ecuador, who 

have little to no contact with urban civilization, 2) how does the microbiomes of rural Amazon 

differ from westernized microbiomes, and 3) does the Conambo people’s main source of 

calories, chicha, help mediate the passing of strains between mothers and infants and between 

relatives.  
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CHAPTER 1: 

Cervicovaginal microbiome composition is associated with metabolic profiles in healthy 

pregnancy 

Authors: Andrew Oliver, Brandon LaMere, Claudia Weihe, Stephen Wandro, Karen L. Lindsay, 
Pathik D. Wadhwa, David A. Mills, David Pride, Oliver Fiehn, Trent Northen, Markus de Raad, 
Huiying Li, Jennifer B.H. Martiny, Susan Lynch, Katrine Whiteson 
 
 
*All supplemental tables contain datasets which can be found at:  
DOI: 10.1128/mBio.01851-20 
 

Abstract  

Microbes and their metabolic products influence early-life immune and microbiome 

development, yet remain understudied during pregnancy. Vaginal microbial communities are 

typically dominated by one or a few well adapted microbes, which are able to survive in a 

narrow pH range and are adapted to live on host-derived carbon sources, likely sourced from 

glycogen and mucin present in the vaginal environment. We characterized the cervicovaginal 

microbiomes of 16 healthy women throughout the three trimesters of pregnancy. Additionally, 

we analyzed saliva and urine metabolomes using GC-TOF and LC-MS/MS lipidomics 

approaches for samples from mothers and their infants through the first year of life. Amplicon 

sequencing revealed most women had either a simple community with one highly abundant 

species of Lactobacillus or a more diverse community characterized by a high abundance of 

Gardnerella, as has also been previously described in several independent cohorts. Integrating 

GC-TOF and lipidomics data with amplicon sequencing, we found metabolites that distinctly 

associate with particular communities. For example, cervicovaginal microbial communities 

dominated by Lactobacillus crispatus also have high mannitol levels, which is unexpected given 

the characterization of L. crispatus as a homofermentative Lactobacillus species. It may be that 
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fluctuations in which Lactobacillus dominate a particular vaginal microbiome are dictated by the 

availability of host sugars, such as fructose, which is the most likely substrate being converted to 

mannitol. Overall, using a multi-‘omic approach, we begin to address the genetic and molecular 

means by which a particular vaginal microbiome becomes vulnerable to large changes in 

composition. 

Importance  

Humans have a unique vaginal microbiome compared to other mammals, characterized by low 

diversity and often dominated by Lactobacillus spp.. Dramatic shifts in vaginal microbial 

communities sometimes contribute to the presence of a polymicrobial overgrowth condition 

called bacterial vaginosis (BV). However, many healthy women lacking BV symptoms have 

vaginal microbiomes dominated by microbes associated with BV, resulting in debate about the 

definition of a healthy vaginal microbiome. Despite substantial evidence that the reproductive 

health of a woman depends on the vaginal microbiota, future therapies which may improve 

reproductive health outcomes are stalled due to limited understanding surrounding the ecology of 

the vaginal microbiome. Here, we use sequencing and metabolomic techniques to show novel 

associations between vaginal microbes and metabolites during healthy pregnancy. We speculate 

these associations underlie microbiome dynamics, and may contribute to a better understanding 

of transitions between alternative vaginal microbiome compositions.  

Introduction 

Vaginal microbes sustain important physiologies and produce metabolites that can 

directly or indirectly affect maternal health and infant development during pregnancy. 

Perturbations to early-life microbiomes and associated metabolic dysfunction have been linked 

with allergy and auto-immune diseases such as asthma (34–37). For example, regular pre-natal 
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and post-natal farm exposure, i.e., contact with a diversity of microbes during pregnancy and 

infancy, have been shown to reduce the incidence of chronic health diseases such as asthma and 

atopy (7). Moreover, recent research has supported the idea of fetal programming, a term 

describing the process by which the maternal microbiota, as well as maternal antibodies, prepare 

the infant immune system for the post-natal onslaught of colonizing microbes (8). Others have 

shown in mice that vaginal dysbiosis, induced by maternal stress, has the potential to negatively 

affect offspring metabolic profiles (38). Thus maternal microbes, particularly those of the vaginal 

tract, are some of the first microbes the offspring will encounter and may be central to the study 

of early-life microbiome and immune development (39–43). Indeed, a recent large-scale study of 

2,582 women, over 600 of whom were pregnant (a subset of whom were longitudinally 

sampled), provided evidence for vaginal microbiome restructuring during pregnancy toward a 

Lactobacillus-dominated community (44). This occurred early in gestation and was associated 

with a reduced vaginal microbiome metabolic capacity.  Post-partum, irrespective of the mode of 

delivery, the vaginal microbiota resembled that of a gastrointestinal microbiome, likely due to 

microbial mixing during the birthing process (40), suggesting that both vaginal and 

gastrointestinal microbial seeding of the neonate occurs.    

The human vaginal microbiome maintains low diversity in low pH conditions, and 

depends on host sugars as carbon sources, with less access to dietary and exogenous nutrients 

compared to the gut or the skin or the oral cavity. Historically, vaginal microbial communities 

have been stratified based on hierarchical clustering of the taxa composition (43). Keystone 

species include Lactobacillus crispatus and L. gasseri which have been associated with 

maintenance of a simple vaginal microbiome by their production of bacteriostatic and 

bactericidal compounds (e.g. lactic acid and hydrogen peroxide) and maintenance of a low pH 
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(45–47), numerically and functionally dominating their respective vaginal communities. A 

closely related species, L. iners, has been associated with health promoting benefits; however, its 

genome also encodes the capacity to promote microbiome perturbation by increasing vaginal pH 

and producing species specific virulence factors (45, 48–50). Bacterial vaginosis (BV), the most 

common gynecological condition in reproductive aged women (51), is characterized by the 

presence of a more diverse vaginal microbiome and associated with adverse pregnancy outcomes 

including preterm birth (52), endometritis (53, 54) and spontaneous abortion (55–58). Recently, 

vaginal microbial transplants have been successfully implemented as a treatment for intractable 

BV (59). Despite L. crispatus generally being regarded as a highly beneficial and dominant 

microbe throughout pregnancy, healthy women from different ethnic groups have markedly 

different species dominating the vaginal microbiome (46). In fact, many healthy women that lack 

BV symptoms have vaginal microbiomes dominated by microbes that are associated with BV 

(60), suggesting that taxonomy alone is insufficient to predict health outcomes and that microbial 

activities, including metabolic productivity may offer a more contemporary view of microbiome 

function. 

An untargeted, more global assessment of microbiomes and associated metabolites 

during pregnancy and early-life is lacking. To address this gap in knowledge, we collected 

saliva, urine, and cervical vaginal fluid (CVF) from 18 mothers during each trimester of 

pregnancy and saliva and urine from offspring through their first year of life. Specifically, we 

were interested in how maternal CVF microbiome profiles are associated with metabolomic 

assessments of the same samples. Furthermore, we had the opportunity to examine whether 

maternal saliva and urine metabolome profiles relate to those of the infant in the first year of life. 

Here we present DNA sequencing (amplicon and shotgun) and untargeted metabolomics to 
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characterize microbial and metabolic features of the CVF microbiome throughout pregnancy to 

determine the composition of the vaginal microbiome from a cohort of healthy Caucasian and 

Hispanic women, longitudinally sampled throughout a healthy pregnancy.  

Methods 

Subject Information. Eighteen women were selected from a larger cohort recruited to address 

how maternal stress affects child development (61, 62) (Table 1.1.1). Inclusion criteria for the 

larger cohort included >18 years of age, singleton, intrauterine pregnancy, and non-diabetic. 

Additional inclusion criteria for this study were: normal pre-pregnancy body mass index, vaginal 

delivery, full-term pregnancy, breastfeeding, and no antibiotics for mother or baby. Generally, 

these eighteen women and their children represented healthy subjects with the most complete 

sample sets.  

Sample collection. Samples were collected at each trimester of pregnancy for women and 

through the first year of life for infants. At each timepoint, maternal saliva, urine and cervical 

vaginal fluid were collected. For infants, urine was collected at birth, six months, and twelve 

months whereas saliva was sampled at six months and twelve months of age. Maternal saliva 

was collected using a salivette collection kit, including a small cotton roll contained in a plastic 

container (Salimetrics, Carlsbad, CA). Mothers were instructed to place the cotton rolls in their 

mouth until saturated with saliva (approximately 1-3 minutes), and then reseal the swabs in 

plastic salivette tubes. Infant saliva was collected using Weck-Cel spears and a swab extraction 

tube system. Infants were allowed to suck on the spear for two minutes, ensuring saturation. 

Maternal urine was collected using a sterile collection cup. Infant urine was collected using an 

adhesive u-bag attached to the genital region of the infant. A minimum of 2 ml of urine was 

collected. Cervical vaginal fluid (CVF) was collected by placing three Dacron swabs into the 
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cervix for ten seconds to achieve saturation. Each swab was then placed in a plastic vial with 500 

µl of sterile PBS. All samples were initially stored at -20°C and then saliva, CVF, and infant 

urine were subsequently moved to -80°C storage.  

Metabolomics. Prior to processing, samples were thawed from -80°C storage. Fifty microliters 

of each sample were subjected to gas chromatography time-of-flight mass spectrometry (GC- 

TOF) (63) and liquid chromatography accurate mass mass-spectrometry (LC-MS/MS, 

lipidomics). Urine, saliva, and CVF from each time point were sent to the West Coast 

Metabolomics Center (WCMC) for untargeted metabolomics. GC-TOF metabolites were 

extracted with a mixture of 3:3:2 acetonitrile:isopropyl alcohol:water according to standard 

operating procedures from the Fiehn Lab at the WCMC (64). LC-MS/MS samples were 

extracted using a variant of the Matyash method (65). Data were acquired for complex lipids in 

positive and negative electrospray mode on a Waters CSH column and an Agilent 6530 QTOF 

mass spectrometer (65). Metabolites were identified by retention time MS/MS matching using 

MassBank of North America (http://massbank.us) and NIST17 libraries. 

High-throughput metabolomics. All urine, saliva and CVF were analyzed using Matrix 

Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (MSI) for high-

throughput untargeted metabolomics. Extracted samples in 3:3:2 acetonitrile:isopropyl 

alcohol:water were diluted 1:2 in water in 384 well plates. Next, an equal volume of MALDI 

matrix (20 mg/mL of 1:1 2,5-Dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid in 

1:3 (v/v) H2O:MeOH+0.2% formic acid) was added. Samples were printed onto a stainless steel 

blank MALDI plate using an ATS-100 acoustic transfer system (BioSera) with a sample 

deposition volume of 10nl. Samples were printed in clusters of four replicates, with the 

microarray spot pitch (center-to-center distance) set at 900 um). MS-based imaging was 
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performed using an ABI/Sciex 5800 MALDI TOF/TOF mass spectrometer with laser intensity of 

3,500 over a mass range of 50–3,000 Da. Each position accumulated 20 laser shots. The 

instrument was controlled using the MALDI-MSI 4800 Imaging Tool. Surface rasterization was 

oversampled using a 75 um step size. Average ion intensity for all reported ions was determined 

using the OpenMSI Arrayed Analysis Toolkit (OMAAT) software package (66). 

DNA extraction. Cervical brushes were resuspended in PBS. Two negative extraction controls 

using sterile PBS were prepared alongside the samples. Aliquots of 100-200 µl were added to 

lysing matrix E tubes pre-aliquoted with 500 of hexadecyltrimethylammonium bromide (CTAB) 

DNA extraction buffer and incubated at 65°C for 15 minutes.  An equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) was added to each tube and samples were 

homogenized in a Fast Prep-24 homogenizer at 5.5 m/s for 30 seconds. Tubes were centrifuged 

for 5 minutes at 16,000 x g and the aqueous phase was transferred to individual wells of a 2 ml 

96-well plate. An additional 500 µl of CTAB buffer was added to the lysing matrix E tubes, the 

previous steps were repeated, and the aqueous phases from paired extractions were combined. 

An equal volume of chloroform was mixed with each sample, followed by centrifugation at 3000 

x g for 10 minutes. The aqueous phase (600 µl) was transferred to a clean 2 ml 96-well plate, 

combined with 2 volume-equivalents of polyethylene glycol (PEG) and stored overnight at 4°C 

to precipitate DNA. Plates were centrifuged for 60 min at 3000 x g. DNA pellets were washed 

twice with 300 µl of 70% ethanol, air-dried for 10 minutes and re-suspended in 100 µl of sterile 

water. DNA was quantified using the Qubit dsDNA HS Assay Kit and diluted to 10 ng/µl, when 

possible. Although DNA was extracted from CVF, attempts to extract DNA from saliva were 

unsuccessful, potentially due to the storage swabs trapping the biomaterial.  
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Amplicon gene sequencing. To amplify the V4 region of the bacterial 16S rRNA gene, 10 ng of 

DNA template was combined with PCR master mix (0.2 mM dNTP mix, 0.56 mg/ml BSA, 0.4 

uM Illumina adapter sequence-tagged forward primer (515F) (67), 0.025 U/µl Taq DNA 

polymerase) and 0.4 uM barcode-tagged reverse primers (806R) then amplified in triplicate 25 µl 

reactions, along with a no-template control, for 30 cycles (98°C for 2 min; 98°C for 20 sec, 50°C 

for 30 sec, 72°C for 45 sec; repeat steps 2-4 29 times; 72°C for 10 min). PCR conditions were 

identical for ITS2 amplification (primer pair fITS7 (5′-GTGARTCATCGAATCTTTG-3′) and 

ITS4 (5′-TCCTCCGCTTATTGATATGC-3′)) except for the annealing temperature, which was 

52°C. Triplicate reactions were combined and purified using the SequalPrep Normalization Plate 

Kit (Invitrogen) according to manufacturer’s specifications. Purified amplicons were quantified 

using the Qubit dsDNA HS Assay Kit and pooled at equimolar concentrations. The amplicon 

library was concentrated using the Agencourt AMPure XP system (Beckman-Coulter), 

quantified using the KAPA Library Quantification Kit (KAPA Biosystems) and diluted to 2nM. 

Equimolar PhiX was added at 40% final volume to the amplicon library; the 16S rRNA amplicon 

pool was sequenced on the Illumina NextSeq 500 Platform on a 153bp x 153bp sequencing run, 

and the ITS2 amplicon pool was sequenced on the Illumina MiSeq platform on a 290bp x 290bp 

run. 

Shotgun metagenomics sequencing. Sequencing libraries were prepared using the Illumina 

Nextera kit and methods described in Baym et al. (68). Briefly, DNA from each sample was 

diluted to 0.5ng/µl and tagmented with the Nextera enzyme (Illumina) for 10 min at 55°C. 

Following tagmentation, each sample received 1 µl forward and 1 µl reverse barcodes, which 

were added via PCR using Phusion DNA polymerase (New England BioLabs). After PCR, the 

libraries were cleaned of smaller DNA fragments, using AMPure XP magnetic beads (Beckman-
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Coulter), and pooled by concentration. Libraries were quantified using the Quanti-iT PicoGreen 

dsDNA kit (Thermo Fischer Scientific), and DNA was run on a gel to check fragment size. 

These libraries were loaded onto the Illumina Next-Seq 500 at 1.8 picomolar concentrations and 

Illumina’s mid-output kit for 75 bp paired-end sequencing. 

OTU Table Generation. Raw sequence data were converted from bcl to fastq format using 

bcl2fastq v2.16.0.10. Paired sequencing reads with a minimum overlap of 25bp were merged 

using FLASH v1.2.11. Index sequences were extracted from successfully merged reads and 

demultiplexed in the absence of quality filtering in QIIME (Quantitative Insights Into Microbial 

Ecology, v1.9.1), and reads with more than two expected errors were removed using 

USEARCH’s fastq filter (v7.0.1001). Remaining reads were de-replicated, clustered into 

operational taxonomic units (OTUs) at 97% sequence identity, filtered to remove chimeric 

sequences, and mapped back to OTUs using USEARCH v8.0.1623. Taxonomy was assigned 

with the most current Greengenes database for bacteria (67) (May 2013), and UNITE vers. 6 for 

fungi (69). OTUs detected in Negative Extraction Controls (NECs) were considered potential 

contaminants and filtered by subtracting the maximum NEC read count from all samples; any 

remaining OTU with a total read count less than 0.001% of the total read count across all 

samples was removed. Sequencing reads were rarefied to an even depth (28,972 reads for 16S; 

91,232 reads for ITS2). To maximize similarity between the raw and rarefied OTU tables, 

random subsampling was performed at predefined depths 100 times, and the most representative 

subsampled community was selected based on the minimum Euclidean distance to the other 

OTU vectors generated for each sample. 

16S rRNA Gene Analysis. Alpha-diversity indices and Bray-Curtis dissimilarity matrices were 

generated in QIIME (70). Linear outcomes were assessed by linear mixed-effects (LME) 
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modeling to adjust for repeated measures using the nlme package (71) in the R environment (72). 

Variables of p<0.05 were considered statistically significant. Data was visualized using Tableau 

and Adobe Illustrator unless otherwise noted. 

Metagenomic Analysis. Raw sequences (mean 2,977,881 paired-end reads per sample from 

35/38 successfully sequenced samples) were filtered using Prinseq v0.20.4 (73) to filter out 

sequences that had a mean quality score of 30 or less. Human DNA was next filtered out by 

aligning the filtered reads to the human genome (hg38) using Bowtie2 v2.2.7 (74), and keeping 

the reads that failed to align (mean 220,355 paired-end + 33,744 singleton reads per sample or 

10.9% of quality filtered reads per sample). To analyze functional potential, the reads were run 

through HUMAnN2 v0.1.9 (75) using default parameters and differences in pathway abundances 

were analyzed using LEfSe (76). These reads were also cross assembled using SPAdes v3.8.2 

(77). Each sample was then mapped to this cross-assembly using Bowtie2, and samples from the 

same subject were merged together using Samtools v1.9 and the resulting bam files and the 

cross-assembly were imported into Anvio4 (78). Taxonomy was assigned to each gene call using 

Kaiju (79) which subsequently informed a more accurate metagenomics binning of the most 

abundant microbes present. 

Statistical Analysis. Unless otherwise noted, statistics were done using the ecological statistics 

program Primer-e v7 (80). Metabolic data were normalized in Primer-e by dividing by sum total 

for each sample. The specific programs used in Primer-e were permutational multivariate 

analysis of variance (PERMANOVA) and distance-based linear models (DistLM), the former of 

which calculates the significance and variance explained by a given factor and the latter 

determining which environmental variables correlate with the biological (microbiome) data. 

RFPermute (81), an R package for permutated random forests, was also performed to determine 
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which annotated GC metabolites were indicative of microbial composition.  PERMANOVA also 

partitions variance based on each factor, which is done in Primer-e by dividing the factor 

estimate by the sum total estimates of components of variation (ECoV). Traditional R2 values 

were also calculated by dividing the sum of squares by total sum of squares. LMEs were carried 

out as described above; R2 values for linear mixed models was calculated using the MuMIn 

package in R (82). Relate tests (analogous to Mantel tests), were used to compare GCMS and 

LCMS data. Bray Curtis distances were used for all distance-based analyses. To consider 

repeated measures, linear mixed effects modeling (nlme package in R) was used to analyze 

stability of the microbiome and metabolome through time.  

Results 

Description of cohort and data obtained from samples 

Saliva, urine, and cervical vaginal fluid (CVF) were collected from eighteen women, at 

early, middle and late pregnancy with the gestational age range of the included women at each 

timepoint (Fig. 1.1). At the time of enrollment into the cohort, the average woman’s age was 

27.8 years old and average pre-pregnancy BMI was 24.8 (Table 1.1). The cohort was 39% white 

Hispanic and 61% non-Hispanic white; there were no significant differences in BMI (T-test, 

P=0.28) or age (T-test, P=0.89) between ethnic groups. Saliva and urine were collected at 

indicated intervals from each infant up until one year of age (Fig. 1.1). Saliva, urine, and CVF 

samples were subjected to metabolomics analysis whereas only CVF was used for sequence 

analysis. Sequence analysis included amplicon-based sequencing of the 16S rRNA gene (bacteria 

& archaea) and ITS2 (fungi) loci, and shotgun metagenomic sequencing of the entire microbial 

community. 
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Vaginal microbiota support high abundances of Lactobacillus and Bifidobacteriaceae 

throughout pregnancy 

Sixteen individuals (42 total samples) produced sufficient sequence reads for taxonomic 

assignment using the 16S rRNA gene. Amplicon sequencing stratified cervical samples into 

those where the most abundant taxon was Lactobacillus spp. (34/42, 81%) or Gardnerella spp. 

(8/42, 19%) (Fig. 1.2A, Fig. S1.1A). The bacterial taxa in samples with abundant Lactobacillus 

spp. were significantly less evenly distributed (LME, P=0.001, Fig. 2C), with Gardnerella 

vaginalis being the most abundant in seven of eight samples (88% relative abundance) and a 

Shuttleworthia taxon being most abundant in one sample (at 23% relative abundance). In 

samples where Lactobacillus spp. had the highest abundance, a single taxon comprised 50% or 

more of the sequencing reads (27/34, 79%). L. iners was the most abundant taxon detected in 14 

samples from 7 subjects, with a median relative-abundance of 79%. In twelve samples from 7 

subjects, a Lactobacillus taxon, putatively identified as L. crispatus through metagenomic 

sequencing (Fig. S1.1B,C), had a median relative abundance of 96%, and persisted at a relative 

abundance greater than 90% in subjects 1088, 1120, and 1191. Altogether, the most abundant 3 

taxa (L. iners (OTU_1), L. crispatus (OTU_2), and G. vaginalis (OTU_3) comprised 66% of the 

total bacterial sequencing reads.  

Whole genome shotgun sequencing produced, on average, 2.9 million paired-end reads 

per sample, which decreased to an average of 220,355 paired-end reads per sample following 

removal of reads that aligned to the human genome. Thirteen individuals (35 total samples) 

produced sufficient sequence reads for taxonomic assignment, which was concordant with 16S 

rRNA gene sequence results (Fig. S1.1B,C). Most of the reads classified as L. crispatus or L. 
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iners mapped to a single metagenomic assembled genome, with completeness of 95.7% and 

97.1% and redundancy of 0% and 1.4% respectively.  

Twelve samples from seven subjects produced ITS2 sequences (Fig. 1.2A); we do not 

have quantitative data characterizing the abundance of bacterial or fungal biomass. Eleven 

samples from six subjects contained species of Candida, classified as C. albicans (Fig. S1.2A), 

the most abundant fungal taxon in these data. Shotgun metagenomics confirmed these results, 

and allowed for additional identification of reads mapping to taxa such as Malassezia spp. (Fig. 

S1.2C).  Subject 1088 was the only participant to deviate from this trend, with a high relative 

abundance of Aspergillus during the first trimester of pregnancy (Fig. S1.2A). 

 Alpha diversity indices based on 16S rRNA, and ITS2 data when available were 

compared across trimesters. While some subjects exhibited qualitative evidence of compositional 

shifts in vaginal microbiota with advancing gestation (Fig. 1.2A), we did not observe a 

significant difference in bacterial richness (number of observed OTUs) (LME, p = 0.17), 

evenness (Pielou’s evenness index) (83) (LME, p = 0.46) or phylogenetic diversity (LME, 

P=0.21)] across trimesters (Fig. 1.2D-F).   

Highly abundant bacterial taxa were significantly associated with community composition 

An nMDS plot of Bray-Curtis dissimilarities showed that vaginal communities clustered 

by their most abundant bacterium (Fig. 1.3A). This association between the most abundant 

bacterial taxa and microbial composition of the sample was significant and explained more than 

half of the variance using PERMANOVA (R2= 56%, p= 0.0001). To account for repeated 

measures from longitudinal samples from the same individual we also performed an LME, which 

required dimensional reduction (LME, R2=69%, p < 0.0001). Communities with abundant L. 

crispatus were more similar to each other, sharing more than 90% similarity, in comparison to 
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communities where a different bacterial species was most abundant. While some individuals 

exhibited a relatively stable microbial community over time, others (6/16) experienced shifts in 

composition, resulting in a statistically significant change in Bray-Curtis dissimilarity on PC 

axis-1 between trimesters (Fig. 1.3B).  

The five subjects with Candida detected in at least one of two longitudinally-paired 

samples displayed a significant increase in inter-sample Bray-Curtis dissimilarity in their 

bacterial profiles over that interval (e.g. the intervals between trimester 1-2, 2-3, or 1-3), 

suggesting the presence of Candida may be associated with greater shifts in bacterial 

composition than those who had no Candida detected (Fig. S1.2B).  

Metabolites have strong associations with vaginal microbial community structures 

Using GC-TOF MS, we detected 330 metabolites from urine, saliva, and CVF with 133 

identified compounds. In the same samples, 1946 metabolites were also detected by LC-QTOF 

MS/MS (lipidomics, Table S1.1), with an additional 353 identified compounds. The CVF 

metabolome as assessed by both mass spectrometry methods did not significantly differ across 

trimesters (LME, GC-TOF MS: p = 0.6378, LC-MS/MS: p = 0.3942).  This stability was even 

true for the subset of individuals who exhibited shifts in microbiota composition over trimesters 

(LME, GC-TOF MS: p = 0.6594, LC-MS/MS: p = 0.2482). CVF samples dominated by distinct 

bacteria exhibited significant differences in metabolic profiles (PERMANOVA, R2= 12%, p= 

0.0195). A constrained, distance-based ordination plot recapitulated 67% of the community 

variation observed in the vaginal microbiota (Fig. 1.4). Superimposed on the ordination plot are 

GC-TOF predictor metabolites, calculated using the DistLM program in Primer-e. Indole-3-

lactate (ILA) accounted for 27% of variation observed in the vaginal microbiota data, and was 

found to be more abundant in vaginal microbiota with abundant L. crispatus (Fig. 1.4B). 
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Mannitol was also more abundant in samples dominated L. crispatus (Fig. 1.4C). In parallel we 

found that a pathway for mannitol-1-phosphate production is also more abundant in shotgun 

metagenomic datasets of CVF samples dominated by L. crispatus (Fig. S1.3). This linear model 

identified the top ten annotated GC-TOF metabolites that were associated with variation in the 

microbial community composition are shown in Figure 1.4a; these ten metabolites together 

might explain almost 57% of the total variation in the microbial community composition.  A 

permutated random forest recapitulated what we found in the DistLM, identifying mannitol and 

indole-3-lactate as two of the top variables of importance, specifically for distinguishing 

microbiomes with high abundances of L. crispatus (Fig. S1.4A). To explore the ability to analyze 

the metabolome in high-throughput, the same sample sets were analyzed using Matrix Assisted 

Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (MSI) (Table S1.1). Detected 

ions by MALDI were compared to those identified by GC-MS and LC-MS, and found that ~55% 

of the metabolites identified had corresponding ions in the MALDI analysis (Table S1.1). 

Metagenomics and functional potential of communities 

Distinct functions were associated with each of the vaginal microbial community clusters 

(PERMANOVA, R2= 70%, p= 0.0001, Fig. 1.5). LEfSe identified several pathways that differed 

between L. crispatus and G. vaginalis, in particular, an enrichment of ammonia assimilation 

genes in G. vaginalis (Fig. S1.4B). Genes involved in mannitol metabolism were enriched in 

communities where L. crispatus was highly abundant (Fig. S1.3C,4B). Searching the PATRIC 

database of all sequenced L. crispatus (64 genomes), L. iners (22 genomes), and G. vaginalis 

(127 genomes) strains revealed annotated genes for mannitol usage and transport for L. 

crispatus, but not for L. iners or G. vaginalis.   

Mothers and infants have significantly different saliva and urine metabolomes 
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Maternal and infant saliva and urine metabolomes were assessed with both GC-TOF and 

LC-MS/MS (lipidomics) in order to study the relationship between maternal and infant 

metabolomic compositions during early life (see Fig. 1). PERMANOVA analysis of lipidomics 

data from saliva samples showed the largest difference between mothers and offspring 

(PERMANOVA, R2= 69%, p = 0.001, Fig. S1.5A). A subset of 50 lipidomics metabolites with 

high mean abundance, 70% of which were unannotated, showed distinct profiles between mother 

and offspring salivary metabolomes (Fig. S1.6A). Likewise, GC-TOF salivary metabolomes 

were also significantly different between mother and offspring, but far less variation was 

explained (PERMANOVA, R2= 12%, p = 0.0001, Fig. S1.5B). Some metabolites, such as 

lactulose, were much more abundant in infants and largely absent in mothers (Fig. S1.6B).  

Maternal metabolomics profiles (both GC-TOF and LC-MS/MS lipidomics) have a strong 

individual signature, while infants do not (see PERMANOVAs, Supp, Table 1.2).  The infant 

metabolome for saliva and urine had little variance attributed to which subject donated the 

sample, but GC-TOF was able to detect a significant change between the infant urine 

metabolome at birth versus 6 and 12 months of age (PERMANOVA, R2= 34%, p = 0.0007, 

Table S1.2). Moreover, from lipidomics data, the infant metabolome profile seemed to converge 

on mothers’ metabolomes as they aged, though more samples would be needed to confirm this 

finding (Fig. S1.5C).  For both saliva and urine, GC-TOF and lipidomics detected metabolites 

were more similar for mother-child pairs than for unrelated individuals (Fig. S1.7). Mantel tests 

to determine if inter-sample relationships were similar between chromatography methods 

(including both GC-TOF vs lipidomics) showed a strong correlation between saliva samples, and 

weaker correlations between urine and CVF (Table S1.3). 

Discussion 
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Exposure to the microbiome in early life is critical for immune and physiological 

development (34–37), yet the factors that set this trajectory remain poorly understood. In this 

study, we followed the vaginal microbiome through the trimesters of pregnancy for 18 women, 

tracking changes in the bacterial communities with longitudinal samples, and capturing their 

functional potential with metagenomic sequencing and multiple platforms to assess metabolomic 

profiles. The resolution provided by shotgun metagenomic sequencing allowed us to identify 

species and characterize functional gene content of CVF microbiomes. An additional strength of 

this work is the strict inclusion criteria defining healthy pregnancy (see Subject Information, in 

Methods). Moreover, as part of an existing sample cohort, we had the opportunity to measure 

saliva and urine metabolomes from mothers and children. We aim to establish how the 

metabolome develops in the first year of life, and how maternal-infant saliva and urine 

metabolomes relate. In our study, most healthy pregnant women exhibited a relatively stable 

vaginal microbiota throughout the trimesters of pregnancy, dominated by Lactobacillus or, in 

some cases, more diverse, Bifidobacterium-dominated microbiota. However, a subset of women 

exhibited compositional shifts in their CVF microbiota as pregnancy progressed, as has also been 

seen in other larger cohorts (44) . We found several strong correlations between particular 

vaginal communities and metabolites, which may help us understand the physiology underlying 

distinct vaginal microbiota structures that were evident in our study.  Lastly, vaginal microbiota 

composition predicted which metabolites were present in the CVF samples, but not urine or 

saliva samples from the mothers or infants, suggesting that local microbial metabolism may 

represent the dominant contributor to the metabolic milieu of the vaginal tract during pregnancy. 

Our study supports the results from several other studies that have indicated that the 

vaginal microbiome is stable during pregnancy (39, 84). Specifically, in a longitudinal study 
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including 90 women, most retain a microbial community with the same dominant member (in L. 

crispatus communities, 75% remain stable, in communities with high L. iners abundance, 71% 

remain stable, and in more diverse communities like those sometimes associated with BV, 58% 

do not shift) (44). Using metagenomic sequencing to probe microbial community variation, our 

findings indicate that few bacteria, particularly Lactobacillus species, are highly abundant in the 

vaginal environment. Indeed, for individuals with vaginal microbiomes numerically dominated 

by L. crispatus or L. iners, the vast majority of reads mapped to contigs from one strain of L. 

crispatus or L. iners (Fig. S1.1b). Of note, the microbiome of some individuals did differ 

considerably with advancing pregnancy. For instance, the vaginal microbiota of subjects 1180 

and 1222 had higher abundances of L. crispatus during the first trimester, but L. iners was more 

abundant in the remaining trimesters. Brooks et al. (85) demonstrated that shifts in vaginal 

microbiota structures can be described probabilistically, where shifts from L. crispatus to L. iners 

are the most likely to occur. This is consistent with the observations made in two individuals 

from our study, however, due to the small number of samples exhibiting this phenomenon 

qualitative assessments were more appropriate than statistical analysis. Of note, vaginal 

microbiota instability throughout pregnancy was associated with the presence of Candida, a 

known opportunistic pathogen of the vaginal tract. Since inclusion criteria for this study 

stipulated no antibiotic treatment, it is unlikely that Candida detection was a result of antibiotic 

administration. The prevalence of Candida in our cohort is more likely to be reflective of the fact 

that pregnancy is a known risk factor for candidiasis (86) and to related differences in the vaginal 

environment, including microbiological colonization. Indeed L. crispatus has been shown to 

have anti-Candida activity (87), and 90% (10/11) of samples that were Candida positive came 
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from individuals whose vaginal microbiota were dominated by an organism other than L. 

crispatus.  

A few metabolites were highly indicative of the bacterial community present in each 

subject and may be useful biomarkers for the type of vaginal microbiota present. The most 

indicative metabolite was indole-3-lactate (ILA), a tryptophan metabolite whose abundance was 

correlated with communities having abundant L. crispatus (Fig. 1.4B and Fig. S1.4A). One 

potential explanation is that L. crispatus produces ILA to competitively exclude the growth of 

other species (Fig. 1.6). At physiologically relevant concentrations, ILA has been shown to have 

anti-microbial properties against both Gram-positive and Gram-negative organisms (88, 89). 

Although the production of lactic acid is generally thought of as a strategy Lactobacillus spp. use 

to prevent other species from colonizing the vagina, perhaps these organisms also use ILA in a 

similar or supplementary capacity. Additionally, bacterial derived ILA (also referred to as 

indole-lactic acid) has been recently shown to directly move from maternal to infant tissue (8). It 

has been suggested that indoles may play an important role as a ligand for the human aryl 

hydrocarbon receptor (AhR), which have diverse functions from immune regulation to 

metabolism (reviewed in (90)). Zelante et. al further showed that some lactobacilli produce the 

related tryptophan catabolite, indole-3-aldehyde (IAld), which provides protection against 

candidiasis by increasing IL-22 production via AhR receptor binding (91). The study also 

demonstrated that vaginal specific bacteria, such as L. acidophilus, produce IAld in the vaginal 

environment, which protected against vaginal but not intestinal candidiasis. We measured indole-

3-acetate (IAA), the direct precursor to IAld, in our study, but found no difference in its 

abundance between women dominated by different species of Lactobacillus (data not shown). 

Because indole-3-lactate can act as a ligand for AhR, we speculate that L. crispatus may regulate 
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the IL-22-AhR response in the vagina, reducing the risk of vaginal candidiasis in the same way 

IAld does, and potentially activating the AhR response in newborns to prevent early life 

candidiasis. Additionally, indole itself may play a role in structuring community composition by 

selecting for organisms that have adapted to a high abundance of this metabolite, repelling more 

transient microbes that have not been exposed to higher indole concentrations previously (92). 

Whole genome shotgun metagenomics allowed us to begin to address the functional 

capacities of these microbiomes. The largest differences between functional capacity appeared to 

be between communities where L. crispatus or G. vaginalis were the most abundant bacterial 

taxon. One pathway particularly enriched in Gardnerella communities was the ammonia 

assimilation cycle (Fig. S1.4B). Studies have pointed out Gardnerella’s preference for ammonia 

as a nitrogen source (93); moreover, this ability to assimilate ammonia and produce amino acids 

has been implicated in mutualistic interactions between species of Prevotella, in the context of 

BV (94). Together, these BV-associated organisms contribute to genital inflammation, which 

may play a role in the susceptibility of certain diseases, such as HIV (95). 

Increased abundance of mannitol when L. crispatus was present is an important and 

unexpected finding (Fig. 1.4). Most likely, mannitol contributes to optimizing the tonicity of the 

vaginal environment, and has recently been considered for this use in developing effective 

therapeutics for altering the vaginal microbiota (96, 97). Even more, mannitol may assist L. 

crispatus in adhering to the epithelial layer, a strategy the organism may use to competitively 

inhibit other microbes from colonizing, potentially by drawing out excess water in the mucin 

layer and altering the mucin structure (98). Irrespective of the biochemistry, these genes, and 

mannitol in general, represent very specific markers of a community where L. crispatus was 

most abundant.  
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Although it is known that homofermentative lactic acid bacteria (LAB) such as L. 

crispatus (99) convert glucose primarily to lactic acid, it is unclear why mannitol accumulates in 

this niche.  Interestingly, there was no difference in the glucose abundance between the four 

distinct vaginal communities. Further, metabolomic analysis of our CVF samples failed to 

capture significant levels of the mannitol precursor fructose; however, previous studies have 

indicated an appreciable amount of fructose within the cervical mucus of humans (100) and the 

capability of L. crispatus to utilize fructose as a carbon source (101, 102). We speculate that this 

high extracellular mannitol abundance phenotype may underlie the cell’s need to regenerate 

NAD+ for use in glycolysis. When faced with a limiting amount of pyruvate (or perhaps an 

upstream glycolytic metabolite) to convert to lactate, homofermentative LAB may be unable to 

produce sufficient NAD+ to allow glycolysis to continue. To this end, reducing fructose-6-

phosphate to mannitol-1-phosphate may be an alternative and vital way L. crispatus regenerates 

NAD+ for glycolysis (103, 104). We did find the gene mannitol-1-phosphate dehydrogenase, 

responsible for converting fructose-6-phosphate to mannitol-1-phosphate, was highly correlated 

(R2 = 0.9) with the relative abundance of L. crispatus. The genes for the conversion of mannitol-

1-phosephate to mannitol (presumably a M1P phosphatase), and its subsequent export are 

currently unknown (104). This may imply that mannitol accumulation is a marker of a cellular 

switch to NAD+ regeneration by fructose reduction rather than converting pyruvate to lactic 

acid. Consequently, the decrease in lactic acid production may contribute to community 

dysbiosis due to a rise in pH (Fig. 1.6). Future experiments using culturing to elucidate whether 

these in vivo community data are recapitulated with axenic cultures in vitro are needed. 

Furthermore, this study enabled comparison of two metabolomic methods (GC-TOF and 

LC-MS/MS lipidomics) for analysis of the pregnancy and early life metabolomes. Our data 
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showed that metabolite intensities obtained by GC-TOF were more tightly correlated with 

microbial community composition than those obtained by lipidomics, perhaps indicating that 

GC-TOF is more effective at detecting microbial metabolites than lipidomics, especially during 

pregnancy. We also show that both the saliva and urine metabolomes of children are more 

similar to their own mother than to unrelated individuals (Fig. 1.6). Strikingly, the ability of 

lipidomics to differentiate mothers from children via saliva was the strongest signal in our 

metabolomics data (Table S1.1). The oral microbiome may play a role in this, as there is a well-

established community succession in children during early life (reviewed in (105)), where 

children begin life with oral microbes that differ from those in adults. Lactulose, detected by GC-

TOF, was a specific metabolite with increased abundance in infant saliva, which may reflect its 

use as a treatment for constipation (106) or perhaps even its presence in heated milk (107). 

Finally, urine metabolomes had a distinct age profile, especially with the lipidomics data. Our 

data suggests that, over the first year of life, the urine metabolome rapidly converges on the adult 

metabolome. This is likely a result of the development of renal system in children (108), along 

with the development of the gut microbiome and the related metabolites which are processed 

through the liver and kidneys. Other reasons for this age-related shift include a change in diet 

and a weaning off of breastmilk or formula (108). Expectedly, we did not see a strong influence 

of the vaginal microbiome during pregnancy on the infant saliva and urine metabolome. We 

suspect that if differences in the vaginal microbiome were to affect the early life saliva and urine 

metabolome, those effects would be subtle. The lack of stool samples from the mothers and 

infants is a limitation of this study, as they may contain a stronger signal of shared metabolomes 

across mother-infant dyads. Additionally, this study explored an approach to characterize the 

metabolomes in high-throughput. By using acoustic deposition, in combination with MALDI-
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MSI, a throughput of ~1 seconds per sample was reached using only 2 microliter of sample. Of 

the metabolites identified by GC-MS and LC-MS, ~55% had corresponding ions in the MALDI-

MSI analysis (Table S1.1). Future work will focus on confirming these metabolite 

identifications, but the initial results are promising and indicate that rapid analysis of microbial 

metabolites using MALDI, an analysis platform routinely used in clinical microbiology 

laboratories, is feasible (109). 

Overall, we provide a broad look at the metabolome during pregnancy and early life, 

detailing the utility of GC-TOF, lipidomics and MALDI-MSI for saliva, urine, and CVF. 

Conclusion 

Here we share a high-resolution characterization of the vaginal microbiome, 

longitudinally sampled throughout healthy pregnancy. We show that, despite the generally 

accepted view that lactobacilli are indicative of healthy vaginal communities, many women in 

our healthy pregnancy cohort had non-Lactobacillus dominated communities. The vaginal 

communities were characterized by a high abundance of one or a few acid-tolerant species, 

which dictated the physiologic potential and the metabolic profiles of the vaginal microbiome. 

Many of the metabolites that were specific to these different organisms warrant further 

investigation, especially considering the recent development of VMT as a treatment for BV (59). 

The metabolites we found to be associated with L. crispatus may be useful as microbiome 

cultivation approaches are developed to intentionally direct the composition of the vaginal 

microbiome. For example, indole-3-lactate may support L. crispatus colonization, while 

mannitol may indicate a shift in metabolism away from fermentation and the production of acid, 

relaxing the low-pH selection pressure which normally gives L. crispatus an advantage.  
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Table 1.1: Demographics of the eighteen mothers who participated in the study.  

 

Maternal ID Race-Ethnicity Age BMI (pre-
pregnancy) 

1018 White Hispanic 35 27.4 

1062 White Hispanic 23 25.3 

1088 White non-Hispanic 26 25.8 

1089 White non-Hispanic 22 21.8 

1103 White non-Hispanic 27 24.5 

1111 White Hispanic 38 27.9 

1120 White non-Hispanic 34 26.9 

1126 White Hispanic 19 27.8 

1137 White Hispanic 31 23.5 

1146 White non-Hispanic 29 23.5 

1151 White non-Hispanic 30 22.4 

1157 White non-Hispanic 28 18.9 

1180 White non-Hispanic 29 24.9 

1191 White Hispanic 31 22.7 

1198 White non-Hispanic 26 24.8 

1201 White non-Hispanic 30 29.9 

1202 White Hispanic 20 24.7 

1222 White non-Hispanic 24 24.0 
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Figure 1.1: Study outline. Eighteen women were sampled throughout pregnancy and their 

offspring were sampled at birth, six, and 12 months of age. Samples collected were urine, saliva, 

and cervical vaginal fluid (CVF) for the mothers, and urine and saliva for the children. CVF was 

sequenced using shotgun metagenomics and amplicon sequencing. All samples were analyzed 

using GC-TOF and lipidomics. 
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Figure 1.2: Taxonomy and alpha diversity of vaginal microbiomes during pregnancy. A) 

Relative abundance plot of operational taxonomic units, from 16S amplicon data, grouped 

together by individual. Each individual is clustered into a larger category defined by the 

dominating microbe. B) Presence or absence of fungi, at the genus-level, per sample. Linear 

mixed-effects models (LME) were done on the alpha diversity metrics to account for repeated 

measures in the data C) Evenness between samples dominated by Lactobacillus (n = 34 samples)  

is significantly lower than samples dominated by Bifidobacteriaceae (n = 7 samples). D) No 

significant change in the observed OTUs between the trimesters (n = 15, 13, 14 samples 

respectively) of pregnancy and likewise E) there was not change in evenness or F) phylogenetic 

diversity throughout pregnancy. 
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Figure 1.3: Ordination of vaginal microbiomes during pregnancy. A) Non-metric 

multidimensional scaling (nMDS) of Bray Curtis dissimilarity between vaginal microbiomes (n 

= 42 samples) of mothers. Color indicates the most abundant microbe within the microbial 

community. The most abundant microbe in the community plays a statistically significant role in 

the composition of the community (LME, R2=69%, p < 0.0001) B) Some participants (6/16 

individuals) experienced large, significant (LME: P = 0.0219) shifts in their microbiomes 

throughout the trimesters of pregnancy. 
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Figure 1.4: Relationship between vaginal microbes and metabolites. A) Distance-based linear 

model recapitulates the relationship between the vaginal microbiomes of these subjects (n = 42 

samples). Superimposed are vectors showing which annotated GC-TOF molecules are best 

correlated with these microbial communities. Length and direction of vectors correspond to the 

strength of the association between the metabolite and the microbial communities. Boxplots 

show the raw abundance (n = 45 samples) of B) indole-3-lactate and C) mannitol. 
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Figure 1.5: Ordination of functional pathways within the vaginal microbiome. An nMDS of 

HUMAnN2 analysis, examining the abundance of pathways in each microbiome (n = 35 

samples). Vaginal microbiomes have functions that are indicative of the most abundant microbe 

present in the samples.  
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Figure 1.6: Proposed vaginal microbial community model. Current hypothesized model of 

vaginal microbial community physiology, with gaps in understanding (denoted by question 

marks) where future work is needed. Our study indicates that mannitol production is associated 

with a high relative abundance of L. crispatus. 
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Fig. S1.1: A) Stacked bar plots of 16S rRNA gene taxonomy, collapsed down to the family level. 

”Other” category contains taxa at a mean relative abundance of 1% or less. B) Anvi’o plot 

illustrating the abundance of contigs (>= 2,000bp) for each subject (trimesters combined). The 

participants are colored according to the most abundant microbe present (L. iners (blue), L. 

crispatus (green), G. vaginalis (yellow)). Short read taxonomic assigner Kaiju was used to assign 

taxonomy to the contigs. C) Species level taxonomy of 35 shotgun metagenomic samples, using 

the MiDAS taxonomic classifier. 

 

A) B)

C)

Taxonomy



 40 

Fig. S1.2: A) Bar plot showing the relative abundance of fungal OTUs within subjects. The most 

abundant OTUs by far were all classified as Candida albicans (pink). All other OTUs made up 

very little of the fungal presence in these samples, save for subject 1088, who had a species of 

Aspergillus as its most abundant fungal taxon. B) Sample where Candida was detected had 

greater shifts in bacterial composition than samples without. C) Shotgun metagenomics was able 

to pick up reads aligning to database containing human-associated fungal species and confirmed 

ITS results and classified additional taxa. 
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Fig. S1.3: A) Schematic of mannitol production. B) Coverage the mannitol operon from the 

metagenomes of individuals that had high abundances of L. crispatus in their samples. The 

operon was assembled using taxonomically assigned contigs in Anvio v5 and annotated using 

Patric. C) Analysis of the HUMAnN2 output, specifically the mannitol degradation pathway. 

Pairwise T-tests of L. crispatus against other dominant microbes. D) A Relationship between 

mean coverage of that operon with relative abundance of L. crispatus. 
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Fig. S1.4: A) Permutated random forest recapitulates the metabolites that drive differences 

between the vaginal communities. The heatmap shows the mean decrease in accuracy associated 

with the specific microbiomes. Bold boxes around the heatmap cell indicates statistical 

significance of that feature at p < 0.05. B) Lefse analysis of annotated HUMAnN2 output 

comparing the enrichment of functional pathways between vaginal microbiomes with abundant 

Bifidobacteriaceae (G. vaginalis), L. crispatus, L. iners, or other. This analysis was done using 

the -no_stratify flag for humann2, which analyzes the data without the taxa specific information.  
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Fig. S1.5: A) Principle coordinates ordination of saliva LC-MS/MS lipidomics, colored by 

whether the sample originated from mother or child. B) Principle coordinates ordination of saliva 

metabolomes by GC-TOF, colored by whether the sample originated from mother or child. C) 

Principle coordinates ordination of urine lipidomes, colored by age. All timepoints for mothers 

(n=15 samples) were used (i.e. Trimesters 1-3).  
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Fig. S1.6: A) Analysis of the top 50 lipidomic metabolites and B) 20 top GC-TOF metabolites 

from saliva that had the highest mean abundance across all samples using Primer-e software. 

Metabolites were initially standardized within each sample, and then across metabolites. Color 

indicates this normalized abundance of the metabolite. When present, annotations were used for 

data.  
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Fig. S1.7: Similarity of urine and saliva metabolomes between related and unrelated individuals. 

Related mothers and children have significantly more similar saliva and urine metabolomes than 

unrelated individuals. Graph shows average bray Curtis similarity between related and unrelated 

individuals for GC-TOF and lipidome metabolites. Paired T-tests were done to calculate 

significance. 53 mother samples and 36 infant saliva samples and 15 samples from both mother 

and infant urine samples were used in this analysis.  
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ABSTRACT  

Dietary shifts can have a direct impact on the gut microbiome by preferentially selecting for 

microbes capable of utilizing the various dietary nutrients. Intake of dietary fiber has decreased 

precipitously in the last century, while consumption of processed foods has increased. Fiber, or 

microbiota-accessible carbohydrates (MACs), persist in the digestive tract and can be 

metabolized by specific bacteria encoding fiber degrading enzymes. Digestion of MACs results 

in the accumulation of short-chain fatty acids (SCFAs) and other metabolic byproducts that are 

critical to human health. Here, we implemented a two-week dietary fiber intervention aiming for 

40-50 grams of fiber per day within the context of a course-based undergraduate research 

experience (CURE) (n = 20). By coupling shotgun metagenomic sequencing and targeted gas-

chromatography mass spectrometry (GC/MS), we found that the dietary intervention 

significantly altered the composition of individual gut microbiomes, accounting for 8.3% of the 

longitudinal variability within subjects. Notably, microbial taxa that increased in relative 

abundance as a result of the diet change included known MAC degraders (i.e., Bifidobacterium 

and Lactobacillus). We further assessed the genetic diversity within Bifidobacterium, assayed by 

amplification of the groEL gene. Concomitant with microbial composition changes, we show an 
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increase in the abundance of genes involved in inositol degradation. Despite these changes in gut 

microbiome composition, we did not detect a consistent shift in SCFA abundance. Collectively, 

our results demonstrate that on a short-term timescale of two weeks, increased fiber intake can 

induce compositional changes of the gut microbiome, including an increase in MAC degrading 

bacteria. 

IMPORTANCE  

A profound decrease in the consumption of dietary fiber in many parts of the world in the last 

century may be associated with the increasing prevalence of Type II diabetes, colon cancer, and 

other health problems. A typical U.S. diet includes about ~15 grams of fiber per day, far less 

fiber than daily recommended allowance. Changes in dietary fiber intake affect human health not 

only through the uptake of nutrients directly, but also indirectly through changes in the microbial 

community and their associated metabolism. Here we conducted a two-week diet intervention in 

healthy young adults to investigate the impact of fiber consumption on the gut microbiome. 

Participants increased their average fiber consumption by 25 grams/day on average for two 

weeks. The high fiber diet intervention altered the gut microbiome of the study participants, 

including increases in known fiber degrading microbes such as Bifidobacterium and 

Lactobacillus.  

INTRODUCTION 

Consumption of dietary fiber has declined dramatically in the last century as processed 

foods have become a larger part of diets in the industrialized world. Pre-industrial and modern-

day rural societies consume between 60-120 grams (g)/day of fiber, while individuals in the 

United States consume about half of the daily recommended allowance of 38 g/day for men and 

25 g/day for women (110, 111). Declines in fiber intake over the past century have contributed to 
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complications for human health. For example, chronic low fiber intake has been associated with 

Type 2 diabetes mellitus, heart disease, and colon cancer (112–114). Indeed, a reciprocal diet 

intervention exchanging African Americans low-fiber western diet with rural Africans high-fiber 

diet (increasing on average 40g per day) led to significant decreases in pre-cancerous 

biomarkers, further providing a link between fiber and human health (115). Furthermore, dietary 

fiber has been shown to protect against influenza infection (116), and may influence vaccine 

efficacy (117). 

Dietary fiber is a mixture of polysaccharides that resist rapid digestion in the small 

intestine by endogenous enzymes and persists through the digestive tract into the colon. Once in 

the colon, fiber can be digested by the resident microbes (110, 118). This is due, in part, to the 

human genome encoding only 17 enzymes (i.e., glycoside hydrolases) that are capable of 

digesting carbohydrates (119). Conversely, the resident gut microbial communities collectively 

encode thousands of diverse enzymes from 152 gene families that can break down dietary fiber 

(120). In the colon, specialized microbes metabolize recalcitrant carbohydrates and produce 

fermented byproducts, including short chain fatty acids (SCFAs) such as acetate, propionate, and 

butyrate (11). SCFAs are capable of being absorbed across the human intestinal epithelial cells, 

and have direct impacts on human health (reviewed in (121)) such as stimulating and 

maintaining the mucus layer for the gut epithelium (15) and providing an energy source for 

butyrate-consuming colonocytes (122). SCFAs have also been shown to have 

immunomodulatory effects, including increased viral protection through altered T-cell 

metabolism (116), and inhibitory effects on pathogenic bacteria (e.g. Clostridioides difficile) 

(123).  
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Understanding the role of dietary fiber in structuring the gut microbiota could provide 

insights into managing chronic diseases associated with the gut microbiome. Typical diet 

intervention studies assessing the impact of fiber on gut microbial communities and the 

production of SCFAs have relied on single fiber supplements (124–126). Fiber supplements such 

as psyllium husks, inulin, wheat bran, resistant potato starch, and resistant corn starch vary in 

their efficacy for each individual (124, 127). Individuals might be more or less susceptible to the 

intervention depending on their initial resident microbial community and its ability to digest a 

particular fiber supplement. For example, one group investigating the impact of three 

fermentable fibers on gut microbiome composition and SCFA abundance found no significant 

effect when study participants consumed 20-24g resistant maize starch per day for two weeks 

(124). However, in addition to the quantity, the variety of dietary fibers may be important. 

Studies that have increased dietary fiber have previously observed changes in microbiome 

composition (112, 124, 125), yet results remain mixed on SCFA production (17, 115, 128). 

Further, the American Gut Project found that individuals who eat more than 30 types of plants in 

a week have a more diverse gut microbiome (129). Thus, the consumption of a diversity of fiber 

sources through whole foods may provide more opportunities for an individual’s gut microbiome 

to respond to the dietary changes and result in more dramatic changes in fiber degrader 

abundance and activity in the gut microbiome. The increase of fiber from a diverse set of dietary 

foods, rather than single fiber supplements, may also contribute to increased consumption of 

other micronutrients and vitamins that affect the microbiome as well (130).  

 In this study, we sought to answer three questions: 1) does a diet rich in fiber from whole 

foods alter the overall microbiome? 2) does the intervention alter the abundance and diversity of 

known fiber-degraders (e.g., Bifidobacterium)? and 3) if we observe compositional shifts in the 
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microbiome, do these correspond with metabolic changes in the production of short-chain fatty 

acids? To address these questions, we developed and employed a course-based undergraduate 

research experience (CURE) at UC Irvine to assess individual responses to a high-fiber diet 

(131). Integrating authentic research experiences within lab courses in order to facilitate a deeper 

understanding of academic and industrial research continues to be a priority for both national 

education reform and the American Society for Microbiology (131–134).  During the 

intervention, participants were given ten meals each week from a food service that specializes in 

providing high fiber, unprocessed meals. Individuals tracked dietary information of 

macronutrients for every meal for three weeks, with the goal of increasing dietary fiber intake to 

50 grams/day during a two-week intervention period. We then compared overall bacterial 

composition using metagenomic sequencing and assessed the production of volatile SCFAs 

using mass spectrometry. In addition to the shotgun metagenomic sequencing, we targeted a 

known-fiber degrader, Bifidobacterium, by analyzing its diversity using amplicon sequencing of 

the groEL marker gene, enabling a unique high-resolution view of the impact of a dietary fiber 

intervention on a key taxon.  

METHODS 

Study Design 

Twenty-six UC Irvine students and instructors volunteered for a three-week high fiber diet 

intervention study (Figure 2.1A); only 22 individuals elected to provide stool samples for 

microbiome analyses (20 of whom we recovered enough sequence data for analysis, see 

Supplemental Table 1). The dietary intervention was approved by UC Irvine IRB # 2018-4297. 

For the first week of the study, all participants consumed their normal diets, tracking all 

nutritional information using the smartphone application MyFitnessPal (MyFitnessPal, Inc.). 
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Prior to the end of week one, each subject provided three fecal samples from three days within 

the first week. The intervention commenced in week two, when participants were instructed to 

raise their dietary fiber intake to approximately 40 grams per day. To assist with the dietary 

shifts, we provided 10 meals per week with ~15 grams of fiber ~5.8 unique fruits or vegetables 

per meal from the food delivery service Thistle (https://www.thistle.co/ San Francisco, 

California, USA). During week three, subjects were encouraged to further increase fiber intake to 

~50 grams of fiber per day. Subjects provided three fecal samples from three days during week 

three, concluding the intervention period. As part of the CURE course, students were educated 

on human health, dietary information on high-fiber meals, the human gut microbiome, and the 

quantitative methods for microbiome analyses (from DNA extraction and library preparation to 

metagenome and statistical analyses), as previously described (131).  

Sample collection 

Subjects were given materials to collect fecal samples at home. Each stool sample was split into 

three 2ml tubes by the individual and immediately stored in the freezer. When convenient, 

students transported their anonymized and coded samples using cold packs and insulated boxes 

to a common lab freezer. Upon the conclusion of the intervention period (week 1 or 3), all 

samples were transported to a -20 °C freezer.  

DNA extraction and metagenomic library preparation 

To characterize the bacterial community composition of the samples, DNA was extracted with 

the ZymoBIOMICS 96 DNA Kit (Product D4309) from Zymo Research using the 

manufacturer’s suggested protocol. Sequencing libraries were prepared using the Illumina 

Nextera kit and methods described in Baym et al. (68). Briefly, DNA was diluted to 0.5ng/µl and 

added to 0.25µl of Nextera enzyme and 1.25 µl of Tagmentation Buffer. This mixture was 
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incubated at 55 °C for 10 minutes and then placed on ice for the remainder of the protocol. 

Barcodes were added using the Phusion polymerase (New England Biolabs) and excess adaptors 

were cleaned using AMPure XP (Beckman Coulter Life Sciences) magnetic beads. Quality and 

concentration were assessed using a Picogreen assay (ThermoFisher) and the distribution of 

fragment sizes was determined using a Bioanalyzer. These libraries were loaded onto the 

Illumina Next-Seq 500 at 1.8 picomolar concentrations and sequenced using Illumina’s mid-

output kit for 75 bp paired-end sequencing, resulting in a total of 144,023,583 reads and an 

average of 1,425,976 reads / sample (max: 5,902,966; min: 7) (Supplemental Table 1). 

Amplicon library preparation 

To characterize the genetic diversity of Bifidobacterium at a finer-genetic scale than could be 

assayed by metagenomics, we used genus-specific primers to target this group for sequencing 

(135). Sequencing libraries were prepared by setting up an initial 25 µl PCR reactions with 

AccuStart II PCR ToughMix (2x), the groEL forward primer (5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCGATTACGAYCGYGAGAAGCT-

3', 20 µM), and the groEL reverse primer (5'- 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCSGCYTCGGTSGTCAGGAACAG-

3', 20 µM). The initial PCR ran for 28 cycles 95°C for 30 sec, 60 °C 30 sec, 72 °C 50 sec 

followed by the addition of 0.5 µl of dual Nextera XT index (Illumina) to each sample 

proceeding with an additional 8 cycles 95 °C 30 sec, 60 °C 30 sec and 72 °C 50 sec. Amplicons 

were pooled based on visual quantification of the bands on an agarose gel and purified using 

magnetic Speed Beads The pool was run on a MiSeq PE 300 at University of California Irvine's 

Genetic High Throughput Facility resulting in a total of 20,052,935 reads and an average of 

185,675 reads/sample (max: 6,815,601; min: 155). 
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SCFA extraction and measurements 

SCFA extractions were done following the methods by Zhao et al. (2005) (136). One-hundred 

mg of fecal material was added to 1ml of HPLC grade water and vortexed for two minutes. Ten 

microliters of 6N HCl was added to the fecal slurry and vortexed briefly. This mixture was 

incubated at room temperature for 10 minutes with occasional shaking. Afterwards the mixture 

was centrifuged at 14,000g for 1 minute, and 400 µl of the supernatant was transferred to a new 

tube, which was then filtered through a 0.22 µm filter. An aliquot (200 µl) of this suspension was 

then transferred to a glass vial with a 0.2 ml vial insert and stored at -20 °C. When running the 

sample, 10 µl of an internal standard of 10mM ethyl butyrate was added to the extraction prior to 

the run. Before running each sample, the instrument was calibrated using a standard comprising 

100 mg/l of acetate, propionate, isobutyrate, butyrate, isovalerate, valerate, and ethyl butyrate. 

Six samples were run on an Agilent 7890A gas chromatograph with dual column FID detectors. 

Two microliters per extracted sample were hand-injected on a stainless-steel column (2 meters x 

3.2 mm) containing 10% SP-1000 and 1% H3PO4 on 100/120 Chromosorb W AW (Supelco, 

Inc., Bellefonte, PA, USA). The flow rate of the N2 carrier gas was 26.14 ml/min. Between sets 

of six samples the instrument was washed using water and phosphoric acid. Peaks were auto 

integrated using ChemStation v1.0 on a PC running Windows 2000 (Microsoft). A subset of 

samples (n = 44 from 8 individuals) were run in duplicate to examine technical variation (see 

coefficient of variation (CV) in Table 2.1), and the average CV was 55%. 

Metagenomic sequence analysis 

Raw shotgun metagenome sequences were filtered using Prinseq v0.20.4 (73) to remove 

sequences that had a mean quality score of 30 or less. Reads from human DNA were also 

removed by aligning the filtered reads to the human genome (hg38), using Bowtie2 v2.2.7 (74), 
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and keeping the reads that failed to align. A total of 130,755,383 paired-end reads (average 

1,294,607 non-human reads/sample) were retained and passed through MIDAS, which assigns 

taxonomy to short read data using a marker gene approach (137). Species counts per sample 

represent the average of 100 subsamples, rarefied to 900 sequences per sample using the 

EcolUtils (v0.1) package in R. Taxonomy was also assessed using IGGsearch (138). To analyze 

functional differences related to SCFA metabolism between high and low fiber treatment groups, 

HUMAnN3 (75) was used with default parameters. All pathways within the MetaCyc pathway 

class “Fermentation to Short-Chain Fatty Acids” were searched for within the HUMANnN 

pathway output, which resulted in nine pathways used for analysis (139). For genes related to 

carbohydrate breakdown, we translated reads using Prodigal (140) to predict open reading 

frames (ORFs) and searched all ORFs against the Pfam database (141) with hmmer/3.1b2 (142). 

Resulting PFAM annotations were then screened against the CAZyDB.07202017 (143) with 

Blast/2.8.1 (144) using alignments >70% amino acid identity and 30% coverage. Alpha diversity 

and PERMANOVA analyses were performed using the Vegan v2.5-6 (145) package in R (146). 

Non-metric multidimensional analysis was done using the metaMDS function in Vegan on Bray-

Curtis distances. StrainPhlAn (147), under default parameters, was used to analyze strain-level 

variation within the metagenomes. To root the phylogenetic tree, Prosthecochloris aestuarii 

(accession: GCA_000020625) was used, and two reference genomes of Eubacterium rectale 

(accession: GCA_000209935 and GCA_001404855).  

GroEL amplicon analysis 

We downloaded 780 genomes from the genus Bifidobacterium on the PATRIC database (148). 

All genomes were screened for completeness by searching for 21 single-copy ribosomal marker 

genes using Prodigal (140) and HMMer v3.1b2 (142) with an E value of 1 × 10−10. The 
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remaining 578 genomes were used to create a multi-locus, concatenated phylogeny of the 

ribosomal marker genes with ClustalO v1.2.0 (149) to produce a 4272 amino acid alignment for 

phylogenetic analysis using RAxML v8.0.0 (150) under the PROTGAMMABLOSUM62 model 

for 100 replicates. Next, we parsed the filtered genomes for the groEL gene sequences by using 

260 non-redundant gene sequences to build a groEL phylogeny under identical parameters to the 

whole-genome analysis. The groEL amino acid sequences, alignment, and phylogeny were used 

to construct BLASTp, HMMer, and pplacer reference databases for metagenomic analyses.  

For each groEL amplicon library, sequences were quality trimmed and adapters were removed 

with BBDuk (151) (qtrim=rl trimq=10 ktrim=r k=25). Paired end sequences were merged 

together with BBMerge (151) and, if paired reads did not overlap, only the forward read was 

retained. The reads were then searched against the groEL reference databases using BLAT (152) 

and hmmsearch, respectively. Passed reads were aligned with ClustalO to the pplacer reference 

package and placed onto the groEL reference phylogeny using pplacer v1.1.alpha17 (153). 

Relative abundance was calculated from the single branch assignments and aggregated at the 

species level to be normalized by the total number of extracted groEL gene sequences. We show 

that the phylogenetic relationship between species of Bifidobacterium based on the groEL gene 

closely reflects a phylogeny based on 21 single copy marker genes from 578 Bifidobacterium 

genomes (Figure S4).  

Statistical analysis 

Permutational analysis of variance (PERMANOVA) was conducted on Bray-Curtis 

dissimilarities at the genus level with 999 permutations using the Adonis test in the Vegan 

package in R (see Data availability and GitHub). We tested the effect of the intervention (pre- 

versus post-fiber increase), the effect of the individual, and the interaction between these two 
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factors. Genus contributions to significant results from the PERMANOVA model were 

determined by passing the resulting PERMANOVA object through the coefficients function 

found in the base Stats package R. A similar procedure was used to analyze compositional 

differences between CAZy enzymes and HUMAnN gene predictions in the metagenomes, with 

permutations on Euclidean distances. Linear mixed effects models, using the nLME package (44) 

in R, were also conducted for comparison because they take repeated measures into account. 

Specifically, to support the PERMANOVA analysis of beta diversity, an LME was performed on 

the rank-transformed first principal coordinate of a principal coordinates analysis on the Bray 

Curtis community dissimilarity matrix. Individual was used as the random effect and the model 

used the default autoregressive (Lag 1) structure (AR1) for regression across a time-series. For 

the functional analyses, reads analyzed using HUMAnN3 were normalized by copies per million; 

CAZy were normalized to the total number of reads per metagenome and compared using 

Wilcoxon rank sum test. Gene features for HUMAnN were reduced by analyzing only 

unstratified data, for which 70% of samples had non-zero reads mapping to each feature. 

HUMAnN pathway abundances were analyzed in their entirety with stratification and without 

feature reduction. Lefse (76) was used to determine pathways which may differentiate pre- vs 

post-intervention samples. Wilcoxon rank sum tests were also used to compare nutritional and 

gene differences between intervention periods when residuals were not normally distributed and 

reads or macronutrients were averaged out within individuals (by treatment) to account for 

repeated measures. When normality assumptions of residuals were met (tested using the Shapiro-

Wilk test) ANOVAs were used. To assess which taxa were correlated with changing amounts of 

fiber, all species within each sample (the rarefied species abundance matrix) and fiber were 

correlated using the Corrr package v0.4.2 (154) in R. To analyze which genera co-correlate with 



 58 

the genus Bifidobacterium, Spearman correlations were used and, where appropriate, p-values 

were corrected (q-value) for multiple comparisons using a false discovery rate cutoff of 0.05. To 

assess significance of strains between individuals, cophenetic distances were calculated on the 

RAxML tree output from StrainPhlAn and passed into the above PERMANOVA model.  

Data availability 

All scripts are stored on GitHub (https://github.com/aoliver44/Fiber-Analysis). All metagenomic 

and amplicon sequences are available on NCBI under the Bioproject PRJNA647720. Metadata 

linking the shotgun metagenomes and groEL sequences with the appropriate sample ID and 

intervention can be found in Supplementary Table 1.  

RESULTS 

Dietary intervention within the CURE course  

Twenty-six individuals participated in a CURE course at UC Irvine, designed to tandemly 

investigate pedagogical methods (131) and the role of fiber on the microbiome. We collected 

nutritional data from all 26 individuals who initially began the intervention, over three weeks 

(one week prior to, and two during, the dietary intervention) (Figure 2.1A). We collated the total 

amount of macronutrients consumed per day, including fiber, protein, carbohydrates, fats, as well 

as overall calories (Figure 2.1B-F). Additionally, we informally surveyed food items the study 

participants frequently used to supplement their meal plans, beyond the meals supplied from 

Thistle, and found that items such as fiber fortified cereals, lentils or beans, and berries were 

common (131). For the intervention, subjects increased their average fiber consumption from 

21.0 g/day (± 14.2 g/day) before the intervention to 46.4 g/day (± 12.5 g/day) during the 

intervention (Figure 2.1B; Wilcoxon rank sum test, p < 0.0001). While these dietary shifts 

increased carbohydrate intake by an average of 84% (36 g) during the intervention (p = 0.013), 
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other macronutrients measured, such as calories, fat, and proteins, did not significantly change (p 

> 0.05) (Figure 2.1C-F).  

Diet intervention altered gut microbial community composition within individuals 

To evaluate whether increased fiber consumption contributed to shifts in the gut 

microbiome, we characterized the microbial communities from 20 individuals using 86 shotgun 

metagenomic libraries collected before and after the fiber intervention (Figure 2.2A). Alpha-

diversity of microbial taxa decreased during the high fiber diet intervention as measured by the 

Shannon diversity index (Figure 2.2B)(Wilcoxon rank sum test, p < 0.05). Using alternative 

approaches to assess taxonomy and diversity (see methods) showed either no change or 

supported the decreasing trend of diversity during the intervention period (Figure S2.1).    

Despite little difference in alpha-diversity, beta-diversity changed significantly in 

response to a high fiber diet. Multivariate analysis of marker gene abundances showed that most 

of the variation in microbiome composition could be explained by the individual 

(PERMANOVA: main individual effect: R2 = 0.78, p < 0.001, Supplemental Table 2). The diet 

intervention shifted the microbial composition of the entire study cohort significantly (main 

intervention effect: R2 = 0.014, p < 0.001). Within samples from each individual, the pre- and 

post- diet intervention samples explain significant variation in the community composition 

(intervention-by-individual effect: R2 = 0.083, p <  0.001). A linear mixed-effects (LME) model 

confirmed these results, which identified diet as a significant determinant of an individual’s 

microbiome composition (LME, p < 0.01). Individual gut microbiome samples grouped together 

in nonmetric multidimensional space (nMDS; Figure 2.2C), further providing support that each 

individual is associated with a unique microbiome. Some individuals (i.e., Individual 13) gut 

microbiomes were more distinct from others (Figure 2.2C inset). Additionally, we used 
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Eubacterium rectale (due to its high coverage in our data) to ask whether the diet intervention 

had an impact at the strain level. Strains were highly individual specific (PERMANOVA: main 

individual effect: R2 = 0.99, p < 0.001) and did not change in response to increased fiber intake 

(p > 0.05; Figure 2D).  

We next parsed the taxonomic data to assess which microbial taxa increased or decreased 

in response to the diet intervention. One species in the family Lachnospiraceae was significantly 

negatively associated with increasing fiber intake (Spearman, r = -0.43, q = 0.01) (Figure S2.2A, 

B). Coprococcus sp. and Anaerostipes hadrus were both positively associated with increasing 

fiber intake, but this association was not significant when p-values were FDR-corrected for 

multiple comparisons (r = 0.32, q = 0.33 both species) (Figure 2.2A). Furthermore, positive 

linear coefficients of a PERMANOVA model, which detect differences between community 

composition due to the diet intervention, included genera such as Bifidobacterium, Bacteroides, 

and Prevotella (Figure 2.3A). Conversely, Blautia and Ruminococcus contributed negative 

linear coefficients to the PERMANOVA model (Figure 2.3A).   

Bifidobacterium species were enriched by the diet intervention 

Of the 105 microbial genera detected in this study, Bifidobacterium was the strongest 

predictor genus for the post-intervention microbiomes (Figure 2.3A). Indeed, taxonomic 

analysis of the metagenomic samples identified Bifidobacterium abundances increasing, on 

average, 1.4-fold between the pre- and post-intervention periods (Figure 2.3A). Further, we 

identified several species of Bifidobacterium present within and across individuals, with B. 

adolescentis being the most abundant species on average (Figure 2.3B). When we investigated 

the taxonomic profiles at the species level, we found that B. adolescentis, B. biavatii, B. breve, B. 
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longum, and B. ruminantium all increased in mean abundance on a high fiber diet whereas the 

other, lesser abundant species exhibited no change or decreased in abundance (Figure S2.3B).  

Given that Bifidobacterium was the strongest predictor genus in the post-fiber gut 

microbiomes, we employed a targeted analysis into the diversity within Bifidobacterium to 

examine species-level patterns. Specifically, we applied targeted amplicon approaches to amplify 

the groEL gene, a conserved phylogenetic marker gene to track Bifidobacterium diversity 

(Figure S2.4). Using phylogenetic inference of the groEL gene, we compared the observed 

Bifidobacterium diversity observed at the community level to our targeted analysis of the groEL 

gene. Similar to the metagenomic analysis, we found that individuals were largely comprised of 

B. adolescentis and B. longum, with six other abundant species of Bifidobacterium (Figure 

2.3C). This analysis also revealed extensive Bifidobacterium diversity within the human gut, 

detecting 22 species across all individuals.  

Since Bifidobacterium species are known to participate in cross-feeding with other gut 

microbes (reviewed in (155)), we next assessed the co-occurrence of Bifidobacterium with other 

genera. Bifidobacterium was positively correlated (r = 0.43, q = 0.001) with an increasing 

abundance of Lactobacillus and negatively correlated with Roseburia (r = -0.49, q = 0.0002) and 

Ruminococcus (r = -0.38, q = 0.007) (Figure S2.5) suggesting possible species interactions 

between these taxa.  

Genes involved in inositol degradation increase on high fiber diet 

Our results demonstrate that a shift in dietary fiber consumption influenced 

compositional changes in the gut microbial community. As such, we sought to correlate the 

observed taxonomic shifts to functional shifts, particularly the enrichment of genes related to 

carbohydrate degradation. Despite taxonomic shifts at the individual level, we observed no 
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changes in in the overall abundance (average number of normalized reads) mapping to gene 

families for glycoside hydrolases (GH) (Wilcoxon, p = 0.42), carbohydrate esterases (p = 0.58), 

glycoside transferases (p = 0.73), and polysaccharide lyases (p = 0.77) as a result of the 

intervention (Figure S2.6A). No individual families GH and polysaccharide lyase CAZy classes 

changed in abundance during the intervention when corrected for multiple comparisons 

(Wilcoxon, p  > 0.05, Figure S2.6B). Further, the diversity (Figure 2.4A, n = 106 families, 

ANOVA, p > 0.05) and composition (PERMANOVA, p > 0.05) of GHs detected were 

indistinguishable between the pre- and post-intervention samples. Compositional analysis all 

genes identified by HUMAnN revealed no individual signature (PERMANOVA: main individual 

effect: R2 = 0.017, p > 0.05, Figure 2.4B), and no shifts in response to a high fiber diet 

(intervention-by-individual effect: R2 = 0.015, p > 0.05). We performed a linear discriminant 

analysis to determine if there were pathways that were differentially abundant due to the diet 

intervention, and found inositol degradation (in addition to several unintegrated pathways) to be 

increased in abundance on a high fiber diet (Figure 4C, Figure S2.7). For the pathways involved 

in SCFA metabolism, we found no significant (Wilcoxon,  p > 0.05)  changes as a result of the 

high fiber diet (Figure 2.4D).  

Fecal short-chain fatty acid concentrations were unaltered by the diet intervention  

While the presence of genes related to SCFA production provide insights into the functional 

changes of the microbiome, these genes only reflect the genomic potential to process these 

pathways. Therefore, we applied a targeted GC/MS analysis on 149 samples from 18 individuals 

for the presence of SCFA molecules. Across the intervention period, the average abundance of 

acetate, propionate, butyrate, and valerate increased (Table 2.1); however, these increases were 

not statistically significant (LME, p > 0.05) (Figure 2.5). For the eight individuals with samples 
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run in duplicate, three had biological differences that were greater than the technical variation 

seen in the duplicates (Figure S2.8). Acetate had the least technical variation (mean CV = 45%), 

followed by propionate (mean CV = 51%) (Table 2.1, Figure S2.8).  

DISCUSSION 

We examined the impact of dietary foods, rich in their diversity of fiber, on the human 

gut microbiome. We expected that an increase in fiber consumption through whole foods 

consumed would lead to a more generalizable shift of the microbiome in contrast to previous 

studies that utilize a single fiber supplement. For instance, a recent meta-analysis (156) found 

mixed results in how fiber may impact the gut microbiome richness and composition. Among 

papers published prior to October 2017, only 18% (12 out of 64) studies (157, 158, 167, 168, 

159–166) contained food-based fiber interventions, and most of these studies only modified one 

aspect of diet (e.g., addition of whole grain breakfast cereal). One study in particular increased 

dietary fiber by 40g from a diverse set of foods during a five day period (158). The authors 

similarly found microbiome composition changes within individuals when they accounted for 

differences in the subjects’ starting microbiomes.  Despite the variation in implementing a fiber 

intervention, it is becoming increasingly clear that fiber alters the composition of the gut 

microbiome (124) and the associated microbial changes affect human health (i.e., type 2 diabetes 

mellitus (112)). A common observation in fiber intervention studies (156) is the specific 

involvement of the genus Bifidobacterium in response to fiber interventions. However, to our 

knowledge, no study has documented how fiber impacts the genus at the strain-level in the 

human gut.  

Does a diet intervention rich in fiber alter the microbiome? 
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Past studies have shown that an increase in the diversity of dietary foods could lead to an 

increase in microbial diversity (130). Moreover, individuals living in rural societies often harbor 

far greater gut microbial diversity than individuals from western societies (20, 169, 170), which 

may in part be linked to a greater proportion of plant-based polysaccharide intake. However, we 

did not measure an increase in species diversity (alpha diversity) after subjects consumed >40g 

of fiber from a diverse set of foods (Figure 2.2B). These results could be attributed to the brevity 

of the intervention as the rapid change in dietary composition may result in the loss of microbes 

poorly adapted to recalcitrant carbohydrates. Similarly, other studies have reported finding no 

increases in alpha diversity as a result of a fiber intake (158, 171–174), which may indicate a 

trade-off where fiber-degraders increased while other taxa decreased. Although alpha diversity 

was unaffected, we did observe a significant impact of the high-fiber diet on microbial 

community composition (beta diversity) (Figure 2.2). The composition of microbial 

communities within individuals shifted ~8% during the intervention period. We found changes in 

communities to be at broader taxonomic levels than strain-level. We were able to examine strains 

of E. rectale due to its high coverage in our data, and showed these strains stayed constant and 

individual specific during the intervention (Figure 2.2D). Future work should determine if this 

pattern holds up for other species. While we suspect the high fiber diet treatment played an 

instrumental role in shifting the microbial composition, we cannot rule out other factors such as 

host genetics or non-dietary behaviors. As discussed, many food-based fiber interventions have 

shown mixed results on changing the microbial communities (115, 175). The drastic increase in 

fiber from a variety of foods may lead to rapid shifts in community composition over the two-

week period. Changes in community composition pre- and post- intervention were largely driven 
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by shifts in known-fiber degraders, such as Bifidobacterium, Bacteroides, and Prevotella (Figure 

2.3A).  

We expected the taxonomic shifts in the microbiota would be associated with changes in 

the functional potential of the microbial communities (Figure 2.4). While we initially 

hypothesized that a high fiber diet would increase the abundance or diversity of carbohydrate 

active enzymes, we did not detect changes associated with the intervention (Figure S2.6). Our 

findings support a similar result showing no difference in CAZy abundance due to increased 

fiber intake (174). We acknowledge that sequencing depth is an important consideration in the 

detection of genes; increasing reads beyond our ~1.3 million paired-end reads (avg per sample, 

Supplemental table 1) may allow for greater detection. However, we did find a notable increase 

in the abundance of genes mapping to the inositol pathway (Figure 2.4C). We suspect that the 

increased consumption of fiber-fortified cereals and legumes, which contain higher levels of 

inositol, during the diet intervention allowed for an expansion in organisms capable of breaking 

down this sugar. There is substantial interest in the role of inositol (specifically phytic acid) in its 

protective role against colon cancer and other metabolic disorders (176, 177). Next, we assessed 

whether genes involved in SCFA metabolism changed in abundance during the intervention. 

Although appreciable cross-feeding between lactate-producing Bifidobacterium spp. and 

butyrogenic bacteria has been shown (178) we did not find significant increases in genes 

involved in various SCFA metabolic pathways (Figure 2.4D). This further supports our results 

showing no clear correlations between Bifidobacterium spp. and butyrate-producers within our 

diet intervention (Figure S2.5). Indeed, we would not be the first to suggest that perhaps these 

complex trophic interactions require more time to establish (124). Rather, our results suggest that 
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while broad taxonomic shifts occur, these do not correspond to changes in functional potential 

and fine-scale (intraspecies) shifts are less susceptible to dietary shifts on short-term timescales.    

Does the intervention alter the abundance and diversity of Bifidobacterium, a known fiber-

degrader? 

 Many studies have indicated that bifidobacteria (often identified as the genus 

Bifidobacterium by FISH probes, PCR, or DNA-sequencing) are highly abundant in the gut 

following increased fiber intake (meta-analysis of 51 studies (156)). Increased abundance of 

Bifidobacterium is somewhat unsurprising, as they harbor numerous genetic components, such as 

carbohydrate active enzymes, that make them especially adapted to a fiber-rich diet (179). In one 

study, both resistant potato starch and inulin increased the relative abundance of Bifidobacterium 

spp.; however, the 16S amplicon sequencing in this study did not have the resolving power to 

identify which species of Bifidobacterium were increasing (124). Using a targeted amplicon 

approach, the groEL gene, has been shown to delineate species of Bifidobacterium that otherwise 

share >99% sequence identity in the 16S rRNA gene, making it a robust marker gene for 

analyzing within-genus species diversity (180). In our study, the most abundant species of 

Bifidobacterium were B. adolescentis and B. longum, both of which are efficient degraders of 

plant-based fructo-oligosaccharides (FOS) and produce acetate and lactate in the process (181). 

Mirroring our results, other studies have found selective increases in certain species of 

Bifidobacterium as a result of carbohydrate intake; for example, in one study, intake of inulin 

resulted in a greater increase of B. adolescentis (182). We speculate that on a high fiber diet, 

bifidobacteria are the initial members of the community accessing fiber substrates, easily adapted 

to utilize various FOS, and pivotal to the creation of the initial metabolic cross-feeding networks. 
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Future studies should extend the intervention period to examine the dynamics of longer-term 

trophic interactions in response to increased dietary fiber intake.  

Can we detect diet-induced changes in the abundance of fecal short-chain fatty acids? 

While SCFAs did generally increase during the diet intervention, trending toward their 

naturally occurring gut ratio of 3:1:1 (acetate:propionate:butyrate) (11, 183, 184), we did not 

observe a statistically significant increase in SCFAs post-intervention. Static fecal concentrations 

of SCFAs may not reflect the total pool of molecules fluxing through a given individual, as the 

molecules are preferred substrates of the cells lining the gut epithelia (122).  It is also possible 

that the intervention period was too short to observe increases in SCFA abundances. 

It should be noted that accurate SCFA measurements are notoriously difficult. Our 

examination of technical variability within 44 samples from eight individuals showed that 

technical variation between pre-intervention replicates or post-intervention replicates was greater 

than the average difference between pre- and post-intervention for any given SCFA. One study 

reported high intra-fecal variability of butyrate quantification (coefficient of variation = 38%), 

prior to optimizing a freeze-drying method (185). Numerous studies have indicated the benefit of 

SCFAs to human health (114, 186); yet the heterogeneity in reported acetate, propionate, and 

butyrate abundances remains high. In one meta-analysis of fiber studies, only butyrate was 

generally found to increase with fiber intake, yet the heterogeneity of reported results was 70% 

(I2), similar to other SCFAs analyzed (156). Outside of technical limitations, shifts in microbial 

community structure are not predictive of changes in static measurements of fecal SCFA 

abundances (187). The difficulty of finding meaningful correlations between microbiome 

composition and SCFA abundances likely reflects a failure to measure both circulating and fecal 

SCFAs across time in conjunction with microbial abundances. Indeed, it has been observed that 
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fecal levels of acetate are inversely related to the rate of its absorption (188). Future studies are 

needed to confirm whether correlation analysis between fecal SCFAs and microbiome 

composition is a useful tool to understand the interplay between microbiome, SCFAs, and health.  

 In sum, our results indicate that gut microbial communities are malleable to an influx in 

recalcitrant carbohydrates, contributing to significant community and functional shifts in certain 

metabolic pathways. However, these compositional changes did not correspond to broad 

functional changes, at least over the short-term timescales for this intervention. Further studies 

exploring the impact of timing and composition of dietary fiber interventions, particularly while 

taking into account the starting composition of the gut microbiomes of study participants, are 

critical for understanding the generalizability of fiber interventions for engineering microbiomes. 

Increasing fiber intake could have the most impact in contexts where low gut microbial diversity 

increases risk of C. difficile infection, such as for nursing home residents, cancer patients or after 

antibiotic treatment.  
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Table 2.1: Abundances of four SCFAs in samples pre- and post- intervention 

 

 PRE 
(MEAN) 

PRE 
(SD) 

PRE CV POST 
(MEAN) 

POST (SD) POST 
CV 

ACETATE 480 mg/L 208 mg/L 43 % 525 mg/L 244 mg/L 47 % 
PROPIONATE 277 mg/L 112 mg/L 41 % 288 mg/L 175 mg/L 61 % 
BUTYRATE 244 mg/L 107 mg/L 44 % 257 mg/L 176 mg/L 68 % 
VALERATE 49 mg/L 31 mg/L 65 % 43 mg/L 31 mg/L 72 % 
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Figure 2.1: Intervention timeline and sample collection. The study subjects began eating their 

normal diet for one week, tracking all their food intake using the MyFitnessPal app. At the end 

of the week, each individual provided a daily fecal sample on three different days. At the start of 

week two, subjects started a wholesome high fiber diet, getting at least 40 grams of fiber per day. 

During week three, subjects were encouraged to get 50 or more grams of fiber per day. At the 

end of week three, each subject provided a fecal sample on three different days. B-F) Self-

reported macronutrients from individuals using the MyFitnessPal app. Change in macronutrients 

across the 3-week diet intervention for B) fiber, C) carbohydrates, D) protein, E) fat, and F) 

calories. Fiber changed the most in magnitude between pre-intervention intake and during the 

diet intervention (linear mixed-effects model, p < 0.001). There were modest, but significant, 

changes in carbohydrate, protein, and caloric intake, but not fat intake, across the same time 

interval.   
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Figure 2.2: Microbiome community composition through a dietary fiber intervention. A) 

Relative abundances of genera detected in microbiomes from individuals throughout the diet 

intervention study.  B) Alpha diversity, measured using the Shannon index, changed significantly 

during the intervention period (Wilcoxon, p < 0.05). C) NMDS ordination showed that samples 

from individuals mostly group together. Dotted lines connect the same individual and point 

towards the final post-fiber intervention sample. Samples in this study were highly personalized: 

the individual explained 78% of the variation in the data. The inset shows an extended version of 

the NMDS plot that includes Individual 13. D) A phylogeny of Eubacterium rectale strains 

found in  individuals (denoted by color) during the intervention. 
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Figure 2.3: GroEL amplicon analysis of Bifidobacterium during the fiber intervention. A) 

Model coefficients of the PERMANOVA analysis (model: species ~ Individual*Intervention). 

Species with high coefficients (positive or negative) were best able to distinguish the pre vs post 

diet intervention groups. Only the top 20 genera are shown. The genus Bifidobacterium had the 

largest positive coefficient, indicating that it was important to the model for disguising 
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microbiomes before and after the diet intervention. Relative abundances of 12 detected species of 

Bifidobacterium from B) shotgun metagenomics and C) groEL amplicon sequencing. 
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Figure 2.4: Genes involved in carbohydrate degradation and SCFA metabolism within 

metagenomes. A) Number of distinct glycoside hydrolase families within individual 

metagenomes (different colored circles), separated by pre-intervention (mean = 83) (grey) and 

post intervention (mean = 84) (red). B) NMDS ordination of Euclidean distance matrix based on 

19680 gene features, shape denotes intervention (triangle = pre-, circles = post-) and individuals 

are separated based on color. C) Lefse analysis of pathways that differentiate samples by 

intervention. D) Log abundance (copies per million) of pathways involved in SCFA production. 
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Figure 2.5: GC-FID measurements of fecal volatile SCFAs during intervention. Fecal SCFA 

abundances, averaged across replicates where applicable, before and after the intervention.  
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Figure S2.1: Comparisons of A) richness and B) evenness obtained using different databases for 

taxonomic assignments. IGG_rich and MIDAS were run using default parameters. IGG-Lenient 

was run at 25% species quality and 15% marker genes. 
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 Figure S2.2: A) Correlations above a r > 0.2 cutoff of microbial abundance and fiber intake. 

Only Lachnospiraceae bacterium 51870 was significantly negatively correlated at an FDR cutoff 

of 0.05. B) Raw spearman correlation of a species of Lachnospiraceae with fiber intake. 
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Figure S2.3: A) Mean abundance (MIDAS read counts) of the genus Bifidobacterium during the 

diet intervention. Points are colored by individual. B) Changes in mean abundance of each 

species of Bifidobacterium, detected by MIDAS, during the diet intervention period. 
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Figure S2.4: Bifidobacterium phylogenetic analyses. A) Multi-locus phylogenetic analysis of 

conserved ribosomal marker genes. B) Phylogenetic analysis of the groEL gene sequences used 

for amplicon analyses. The top 8 species observed are shown. 
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Figure S2.5: Significant (FDR = 0.05) correlations from comparing abundances of 99 different 

genera with Bifidobacterium. 
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Enzyme_Class read_count distinct_enzymes distinct_Families

Auxiliary activities 48 5 5

Carbohydrate esterase 91406 46 46

Glycoside hydrolase 670165 185 109

Glycoside transferase 187298 39 39

Polysaccharide lyase 11335 28 15
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Figure S2.6: A) Average abundances (normalized reads) of carbohydrate active enzymes within 

individuals during the diet intervention period. Each different color point represents an 

individual, and lines connect the same individual. B) Log2 transformed GH and polysaccharide 

lyase gene abundances during the intervention. 
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Figure S2.7: Inositol degradation abundance (normalized copies per million), for metagenomes 

before and after the intervention.  

 

 

 

 

 

 

 

 

 



 86 

Figure S2.8: Technical variation of SCFAs seen in a subset of samples run in duplicate. A) 

Amount of SCFAs by individual, with color denoting if it was measured during replicate 1 or 2. 

B) Normalized (by mean) difference between absolute difference between treatment, subtracted 

by absolute difference between technical replicates. Larger negative values suggest differences 

between technical replicates were larger than the differences detected between pre- and post- 

intervention arms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 87 

A

B

1 4 7 8 9 11 12 13

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

no
rm

_a
ce

ta
te

no
rm

_p
ro

pio
na

te

no
rm

_b
ut

yra
te

−0.5

0.0

variable

color
Biological signal higher than technical noise

Technical noise higher than biological signal

 

 
 

  



 88 

CHAPTER 3: 

Comparisons of gut, saliva, and chicha microbiomes in a remote Amazonian people 

Authors: Andrew Oliver, Eric Adams, Alexandria Gille, Nadia Alaniz, Carolina Jamie, Brenda 

Bowser, John Patton, Katrine Whiteson 

*All supplemental tables can be found with the forthcoming publication 
 
SUMMARY 

 The Conambo people live in a remote village along the Conambo River, isolated from 

modern industrialized society. They lack access to modern medicine and sanitation infrastructure 

and consume diets entirely devoid of processed foods. We sought to characterize the gut and 

saliva microbiomes of the women and children of the Conambo village, and found high 

abundances of microbes, such as Prevotellaecae, which are anti-correlated with industrialized 

societies. We also examined the microbiome of “chicha”, a cultural variant of cassava beer made 

by mastication of boiled yuca root and show the community succession of microbes during the 

fermentation process. We found cohabitation to drive significantly greater similarity within 

microbiomes for fecal, saliva, and chicha samples. Finally, we contextualized microbiomes from 

the people of Conambo by comparing fecal microbial composition and functional potential with 

other industrialized and non-industrialized cohorts, showing that urban samples from multiple 

sources strongly cluster together.  

INTRODUCTION 

 Human-associated microbiome changes have occurred in tandem with modernization and 

industrialization of society, which has brought clean water, antibiotics, and processed foods (189). 

While much work has been performed investigating the role of the microbiome in diseases of 

industrialized communities, significantly less focus has been put on the microbiomes of non-
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industrialized communities. These non-industrialized communities provide critical context to the 

changes that industrialization have imprinted on the modern human gut microbiome (190). 

Moreover, as society continues to globalize, habitat loss and the dissolution of rural–urban 

boundaries may contribute to the loss of societies that contain microbes selected against by 

industrialization. In the present study we sought to characterize the microbiomes of a remote 

community of humans, existing far from the influences of modern industrialized society. 

The village of Conambo is one of several small, isolated villages along the Conambo River, 

deep within the Ecuadorian Amazon (Fig. 3.1A). Besides the anthropologists who have 

extensively studied the Conambo people (26, 28, 191) and the occasional missionaries, the village 

has little outside contact. The small community of just under 200 people is centered around a 

community building, school, and small dirt airstrip that the people maintain. There are no roads to 

the village and access by boat is nearly impossible most of the year. As such, a small single 

propeller plane is the only way to travel to and from Conambo.  

The normal diet of the Conambo people includes a stew of available wild game (mostly 

monkey, tapir, peccary and large rodents), fish and various birds, which is served alongside boiled 

yuca or plantains (Fig. 3.1B). The people of Conambo practice horticultural foraging, where the 

men hunt, and the women maintain household gardens. No stores exist to purchase processed 

foods. Distinctive of the Conambo diet is a beverage made from fermented yuca root, known as 

chicha, which serves as a major source of calories for these people (192). The chicha is made by 

the maternal head of the household, with the assistance of her daughters, by repeated mastication 

of the boiled yuca root in a large wooden trough (Fig. 3.1C). This unique production process 

inoculates it with fermentative bacteria from saliva (193). After the mash is prepared, it is covered 

in banana leaves and allowed to ferment for four days before it is mixed with water and served in 
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a traditional ceramic bowl (Fig. 3.1D). Interestingly, the people almost exclusively drink chicha 

as opposed to water or other liquids. 

This study aimed to characterize the gut and oral microbiomes of women and children 

living in Conambo, and the role of microorganisms in chicha. Our research asked three questions:  

1) What microbial taxa are present in the saliva, fecal and chicha samples collected from 

the Conambo people? To what degree are fecal and saliva microbiomes shared with 

chicha microbiomes? 

2) Because of the limited contact between households and the household-specific chicha 

making process, how does cohabitation influence the microbiome? 

3) How does the Conambo microbiome compare to human-associated microbiomes in 

other non-industrial and industrialized societies?   

We hypothesized that we would find a high degree of sharing between chicha and oral 

microbiomes due to the unique pre-mastication process of making this beverage. We did not expect 

to see a similar degree of sharing between chicha and fecal microbiomes. Further, we anticipated 

seeing variation in microbiomes to be significantly influenced by cohabitation, due in part to close 

living quarters and the household-specific chicha production. Finally, we hypothesized that the 

absence of factors that separate industrialized from non-industrialized societies (e.g., processed 

foods and access to modern medicine) will structure the microbiome more similarly to other non-

industrialized cohorts. 

MATERIALS AND METHODS 

Sample collection and genomic DNA extraction 

 The sets of saliva, chicha, and fecal samples were collected in the field by anthropologists 

as a part of a longer, ongoing ethnographic study. Saliva samples were collected at two intervals, 
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coinciding with collection of the first and last chicha samples. Chicha samples were collected 

daily across the four days of the fermentation process. Fecal samples were collected on two 

different days with collection being performed by the subject after verbal explanation of 

sampling method. A total of 113 saliva, 108 chicha, and 103 fecal samples were collected in June 

2018 and stored using DNA/RNA Shield swab collection tubes (Zymo Research, Cat# R1107). 

The samples were gathered from a total of 71 individuals in 28 households, encompassing every 

adult female living in the community as well as their offspring, up to age seven, residing with 

them. Samples were not collected from adult males in the community. The sample collection 

tubes were transported to CSU Fullerton and kept in a freezer at -20°C until transfer to UC Irvine 

for extraction and processing. 

 Microbial genomic DNA was extracted from each of the samples using the 

ZymoBIOMICS 96 DNA Kit (Zymo Research, Cat# D4309) according to the manufacturer’s 

instructions. This included 5 x 1-minute bed-beating steps using a FastPrep-24 (MP Biomedicals, 

Cat# SKU 116004500) at maximum speed. The quantity of DNA in each sample was 

fluorescently measured with the Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher, Cat# 

P11496) using a Synergy H1 Microplate reader (BioTek, Cat # BTH1M). 

Library preparation and sequencing 

 Sequence libraries were prepared from the extracted DNA samples using the Nextera 

DNA Flex Library Prep Kit (Illumina, Cat. # 20018705) following a low volume variation of the 

standard protocol. Samples were prepared for PCR with Kapa HiFi HotStart ReadyMix (Roche, 

Cat # 07958935001). All the PCR steps were performed in an Eppendorf Mastercycler Nexus 

Gradient (Eppendorf, Cat # 2231000665) using the standard thermal cycles as described in the 

Nextera Flex protocol. The resulting sequence fragments were analyzed on an Agilent 
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Bioanalyzer to determine fragment length distribution (Agilent, Cat # G2939BA). Sequence 

libraries were pooled based on DNA concentration as determined by the Bioanalyzer. After 

pooling, the libraries were sent to Novogene Co., Ltd. for sequencing on an Illumina HiSeq4000. 

Metagenomic sequence analysis 

 Sequence reads were first quality filtered (Q > 30) using Prinseq v0.20.4 (73). Quality 

filtered sequences were then mapped to references of the human genome (HG28) with Bowtie2 

v2.2.7 (74) and matching sequences were removed from further analysis. The remaining 

sequences were mapped against marker genes for taxonomic assignment using MetaPhlAn 

v3.0.7 (194). Read counts were extrapolated by multiplying the relative abundance by the 

number of input reads. Species counts per sample represent the average of 150 subsamples, 

rarefied to 23,000 sequences per sample using the EcolUtils (v0.1) package in R (195). The 

rarefaction limit was increased to 100,000 for analysis comparing industrialized to non-

industrialized cohorts. Alpha diversity was assessed using the Shannon diversity index in the 

vegan (145) package in R. Sequence diversity was also assessed using k-mers of size 21 on all 

metagenomes, subsampled to an even depth (62,597,500 bases/samples). 21-mers have been 

shown to be highly correlated to sequence diversity (196), and were detected in our data using 

the kmercountexact.sh script from BBMap. Taxonomy was also assessed using an assembly 

approach. Briefly, a cross assembly was created using Megahit v1.2.9 (197). Reads were then 

mapped back to the resulting contigs using Bowtie2 (74) and counted using idxstats from 

Samtools v1.3 (198). Taxonomy for each contig was assessed using CAT-BAT (199), and a taxa 

was assigned to the contig if the contig had at least three taxonomically identifiable proteins and 

60% of the taxonomy calls per contig were in agreement. Counts per contig for each sample 

were normalized to the length of the contig (contig coverage) and rarefied to 23,000 counts as 
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described above.   The presence of carbohydrate active enzymes (CAZy) was determined by first 

subsampling all microbiomes to an even depth (62,597,500 bases/samples) using the reformat.sh 

script from BBMap (151). Reads that could be merged were concatenated with unmerged reads 

using bbmerge.sh from BBMap (151). These reads were passed to HMMER (v3.3.2) (200) 

against CAZyDB (CAZyDB.07312019.fa.nr, (143)), and filtered for hits using the cutoff values 

coverage = 0.35 , E-value = 1e-15 using the hmmscan_parser.py script from run_dbcan (201). 

Strain level analysis was done using StrainPhlAn v3.0 using default parameters (194). 

Statistical analysis 

 Comparing alpha diversity between sample types was performed using the Kruskal-

Wallis test in R and post-hoc Dunn’s test. Bray Curtis comparisons of fecal and salivary 

microbiomes to the chicha microbiome were done using a Kruskal-Wallis test, and a linear 

mixed-effects model (LME) (using household as a random effect) was used to test chicha 

centroid comparisons. Additionally, LMEs were used to test the effect of cohabitation on average 

bray distances. Permutated multivariate analysis of variance (PERMANOVA), from the adonis 

function in the Vegan package (145), was used to analyze the significance of group membership 

by detecting differences in group centroid location. We utilized this approach for both 

community and strain-level analysis.  Ordination of microbiome communities was done using 

the metaMDS function in Vegan. Taxa that explained differences between industrial and non-

industrial microbiomes were identified using a permutated random forest (81), and vectorized to 

NMDS space using the envfit() function in Vegan. Phylogenetic trees from StrainPhlAn analysis 

was visualized using the ggtree package in R (202).  

Data availability 
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 All DNA sequences from the Conambo cohort will be found under a BioProject # at the 

time of publication. Code used in the analysis can be found on GitHub. Cohorts used to compare 

the against the Conambo were obtained from previously published work (19, 22, 203–206), and 

accession IDs of utilized samples can be found in Supplemental Table 3.1.  

RESULTS 

Cohort and study design 

The Conambo cohort consisted of 43 children and 28 mothers from 28 different households. 

Sequencing of the prepared libraries yielded 436,402,509 raw paired end reads. After quality 

filtering and removing reads that mapped to the human genome, 287 samples were retained and 

each sample contained an average of 1,354,451 ± 600,423 paired end reads (Supplemental 

Table 3.2).  

Streptococcus was shared between saliva and chicha microbiomes, while Prevotella 

dominated Conambo gut microbiomes  

To examine the microbiomes of the Conambo people, we analyzed 287 metagenomes 

from 71 individuals, from samples of feces (n = 101), saliva (n = 85) and chicha (n = 101). 

Pairwise comparisons using Dunn’s test showed alpha diversity, measured using the Shannon 

diversity index, was significantly lower in chicha when compared to saliva (p < 0.01) or fecal 

samples (p < 0.001) (Figure 3.2A). Because samples from the Conambo people may contain 

organisms that are underrepresented in current databases and difficult to classify using reads 

alone, we also assessed diversity using an assembly-based method. We also measured alpha 

diversity using assemblies and were able to detect more distinct species compared to the marker 

gene approach (Supplemental Figure 3.1). 
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To test the hypothesis that the microbiomes of chicha would overlap more with saliva 

than gut samples, we measured the average Bray Curtis dissimilarities between these sample 

types. The average Bray Curtis dissimilarity was significantly smaller between chicha and saliva 

(0.916) when compared to chicha and gut samples (0.981) (Kruskal-Wallis test, p < 0.001) 

(Figure 3.2B). This was true even when using the first day of chicha production for the 

comparison, since chicha production at this time has the greatest opportunity to be inoculated 

with human microbes from the production process (data not shown).  

We next examined the taxa identified within the Conambo samples (Figure 3.2C-D, 

Supplemental Figure 3.2). We assessed taxonomy separately using assemblies (Supplemental 

Figure 3) and short reads; the assemblies were more sensitive to rarer taxa due in part to a lower 

threshold for taxonomic assignment (a minimum of 3 proteins per contig; Supplemental Figure 

3.4). Nearly 96% of our taxonomically assigned reads from gut samples were bacterial in origin. 

The remaining reads mapped mostly to viruses and, to a lesser extent, archaea and eukaryotes. 

The gut microbiomes of the Conambo people were dominated by the family Prevotellaceae 

(Figure 3.2C), which accounted for 36% (± 19) of the taxonomically assigned reads in the 

average fecal metagenome.  The most abundant species detected in this family was Prevotella 

copri (mean relative abundance = 22 ± 15%). P. copri was ubiquitous as well, having the second 

lowest coefficient of variation among species found in fecal samples (70.2%), behind 

Faecalibacterium prausnitzii (54.8%). Taxa from the families Ruminococcaceae, 

Lachnospiraceae, and Bifidobacteriaceae were also highly abundant in the gut microbiomes of 

the Conambo people, together making up ~34% of the identifiable taxa in the gut. Non-bacterial, 

less abundant members of the gut microbiome included Saccharomyces cerevisiae and 

Blastocystis subtype 1. Methanogens such as Methanobrevibacter smithii and Methanosphaera 
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stadtmanae were found in the archaeal fraction of the microbiome. Of the classified viral fraction 

in the gut, most reads were assigned to the phage families Siphoviridae (0.02%) and Myoviridae 

(0.004%).    

The oral microbiomes of the Conambo people had abundant Streptococcaceae, with the 

average saliva sample having 25% (± 21) of taxonomically assigned reads mapping to this family 

(Figure 3.2D). Of the reads mapping to Streptococcaceae, 75% were assigned to either S. mitis 

or S. salivarius. Notably, the presence of S. mitis or S. salivarius dominated over the other 

Streptococcus sp., and rarely coexisted at similar abundance levels (Supplemental Figure 

3.5A). We found that the ratio between S. salivarius to S. mitis was inverted between mother and 

children (Supplemental Figure 3.5B); moreover, S. mitis had significantly higher abundances in 

children than mothers (Wilcoxon, p < 0.01).  Other abundant species found in saliva included 

Neisseria flavescens (mean abundance 7.5%) and Rothia mucilaginosa (mean abundance 7.4%). 

Like the gut microbiome, we also detected P. copri within the top five most abundant species in 

saliva. Viruses made up a large part of the detected taxa (8.9%), with the most abundant being an 

endogenous retrovirus and various herpes viruses.  

The microbiomes of chicha fluctuated in a time-dependent manner during fermentation 

(Figure 3.2E). Early in fermentation, the typical chicha microbiome had a high abundance of 

Streptococcus and, to a lesser extent, Lactobacillus. Specifically, S. salivarius and L. fermentum 

were the majority members of the chicha microbiome, making up 20% (± 17) and 38% (± 22) 

relative abundance, respectively. Sometime between the first and second day of fermentation, L. 

fermentum increased in abundance and remained the majority member of the chicha microbiome 

for the remainder of fermentation. S. cerevisiae appeared to increase in abundance during the 

third day of fermentation. During the first three days of fermentation, the chicha microbiomes 
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significantly converged (LME, p < 0.001), adopting a similar microbiome irrespective of 

household origin (Figure 3.2F).   

Cohabitation drives similarity between the Conambo microbiomes 

The microbiomes from gut, saliva, and chicha samples all reflected significant effects of 

cohabitation on microbial community composition (Figure 3.3A). Furthermore, within each 

household, saliva and gut microbiomes appeared to be significantly personalized 

(PERMANOVA, nested effect of individual, p < 0.001).  Cohabitation appeared to have the 

greatest effect on structuring the chicha microbiome, which was reflected in significant 

differences between average Bray Curtis distances between microbiomes from cohabiting and 

not cohabiting individuals (Figure 3.3B).  

In addition to microbiome community differences, we also investigated whether there 

was significant strain-level variation between different households. One species of interest, S. 

salivarius, was an abundant member of the saliva and chicha microbiomes (Figure 3.2) and had 

enough coverage to examine strain dynamics between eight households in the community. We 

showed that S. salivarius strains differed between households but not between saliva and chicha 

samples (after accounting for household strain differences) (Figure 3.3C). This suggests that 

chicha may support the transmission of S. salivarius within households in the context of 

cohabitation in Conambo. 

Similarly, we analyzed strain similarities at the household and individual levels for P. 

copri, which was abundant in the fecal and oral microbiomes. We found strains of P. copri were 

highly individual specific (PERMANOVA, nested effect of individual, R2: 0.57, p < 0.001; 

Figure 3.3D). Moreover, cohabitating explained a large portion of the variation of the single 

nucleotide polymorphism profiles between P. copri strains (PERMANOVA, Household, R2: 
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0.35, p < 0.001). These data suggest cohabitation structured not only the gut microbial 

community at large, but also a significant portion of the variability found at the strain level. 

The human microbiomes from the Conambo cohort are compositionally similar to other 

non-industrial cohorts and comparatively reflect a high degree of diversity in carbohydrate 

break down genes 

To put the Conambo gut microbiome in the context of other industrialized and non-

industrialized communities, we compared microbial taxonomic composition and function 

between the Conambo cohort and seven other studies (19, 22, 203–206). Except when compared 

to the Hadza, the Conambo gut microbiomes contained the highest fraction of unknown reads 

among these eight cohorts (Supplemental Figure 3.6). The Conambo cohort clustered with the 

microbiomes from other non-industrialized cohorts, and together these microbiomes were 

distinct from more urbanized microbiomes (PERMANOVA, R2 = 0.15, p < 0.01) (Figure 3.4A). 

A random forest analysis identified taxa that helped differentiate non-industrial samples from 

industrialized samples; these taxa included the genera Prevotella, Catenibacterium and 

Treponema. More industrial-associated taxa included Anaerostipes, Alistipes, and Bacteroides. 

Although the Conambo and Tanzania cohorts (22) were compositionally indistinguishable from 

one another (pairwise PERMANOVA R2 = 0.034, p = 0.18), we found significant differences 

between the microbiome compositions of the Conombo and the Peruvian Lewis (19) cohorts 

(pairwise PERMANOVA R2 = 0.067, p.adj (Bonferroni) < 0.05). Similarly, pairwise 

comparisons between the Conambo microbiomes and the industrial cohorts revealed significant 

differences, with the explained variation between industrialized cohorts and the Conambo 

microbiome ranging from 7 – 22% (pairwise PERMANOVA, p.adj (Bonferroni) < 0.05).  
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The number of distinct species identified within the cohorts varied considerably, with 

Conambo having the lowest richness on average. Because this might reflect poor mapping to the 

MetaPhlAn3 database, we also analyzed richness of k-mers (k=21bp) (Figure 3.4B). We 

observed the largest amount of k-mer diversity within the Conambo, suggesting these 

microbiomes contain a significant amount of diversity which goes undetected using database-

dependent methods. We next asked whether microbiome diversity extended to differences in 

functional potential between the industrialized and non-industrialized cohorts. We focused on 

enzymes involved in the breakdown of carbohydrates (CAZymes), specifically glycoside 

hydrolases and polysaccharide lyases, since the diversity of these enzymes may be influenced by 

diet. After controlling for sequencing depth, we found extensive CAZyme richness within the 

Conambo cohort that was significantly higher than all other cohorts examined (Dunn test, p < 

0.05, Figure 3.4B). The cohorts were also compositionally different in their carbohydrate 

breakdown genes (PERMANOVA, Lifestyle/cohort nested effect, R2 = 0.71, p < 0.01, 

Supplemental Figure 3.7). Pairwise analysis of CAZyme composition between the cohorts 

showed that the Conambo cohort was significantly different from all other cohorts analyzed 

(pairwise PERMANOVA, p.adj (Bonferroni) < 0.05).  

We also sought to contextualize strain-level variability within the Conambo cohort. 

Specifically, P. copri diversity is distributed amongst four clades, each of which are found 

worldwide (206). Analysis of single nucleotide polymorphisms (SNPs) between strains of P. 

copri found Conambo microbiomes with strains from the four proposed clades showed spatial 

clustering of Conambo with Clade C in ordination (Figure 3.4C).  PERMANOVA analysis 

showed that clade membership accounted for most of the variation in SNP profiles between these 
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strains (PERMANOVA, R2 = 0.76, p < 0.01). Notably, P. copri strains from Conambo showed 

very little dispersion in ordination space compared to strains from known clades.  

Finally, we conducted a similar strain level analysis on strains of S. salivarius and 

compared these strains to those found in samples of chicha produced by anthropologists (samples 

were not included in previous analyses involving chicha) living among the Conambo (Figure 

3.4D). Ordination of SNP profiles showed that the anthropologist-produced chicha harbored 

different strains of S. salivarius compared to all strains identified in the Conambo people. This is 

consistent with the ideas that S. salivarius found in chicha is oral-derived and these strains are 

distinct to the Conambo people.   

DISCUSSION 

In the present work, we sought to characterize the microbiomes from a remote 

community of individuals living in the Ecuadorian Amazon. The Conambo people have little to 

no contact with urban centers or individuals from industrialized locales. Moreover, substantial 

distance and dense jungle separate households from one another, such that contact between 

different households is not commonplace.  These people have no regular access to modern 

medicine or clean water infrastructure. Their diets are structured by local game, gardening, and 

chicha. These factors likely drive unique microbiome compositions within Conambo. We 

investigated the structure and function of their microbiomes and contextualized these 

communities using microbiomes from previous characterized individuals from industrialized and 

non-industrialized cohorts. Finally, we characterized the microbiomes of chicha, a drink that is 

both culturally and calorically central to the people of Conambo. 

 The gut microbiomes of the Conambo were diverse (Figure 3.2A, Supplemental Figure 

3.1) and dense with microbial DNA whose sequences were not homologous to sequences in 
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current databases (Figure 3.2C, Supplemental Figure 3.6). We were able to detect far more 

organisms using assembly-based taxonomic assignment compared to short-read based methods, 

which were similar to species richness found in another rural Ecuadorian cohort (207). Many of 

the taxa identified within the gut microbiomes of these people belonged to a group of organisms 

commonly referred to as VANISH taxa (Volatile and/or Associated Negatively with 

Industrialized Societies of Humans) (208). Known VANISH taxa detected in the Conambo 

cohort included Treponema and Succinivibrionaceae. Elusimicrobia sp., an enigmatic organism 

previously associated with insect guts and the guts of non-industrialized humans (209, 210),  was 

also detected in the assemblies. While relatively little is known about this genus, we speculate 

that its presence might be explained by the Conambo people’s high level of insect consumption.  

Notably, we detected an abundance of reads mapping to the family Prevotellaceae 

(Figure 3.2C). Across many cohorts, taxa within the family  Prevotellaceae have been shown to 

associate with the gut microbiomes of individuals living non-industrialized lifestyles (19, 23, 

211–214). Prevotellaceae are particularly specialized at breaking down fiber to short-chain fatty 

acids (215), and the Conambo people’s diet rich in chicha and garden vegetables provide highly 

desirable substrates for gut-living Prevotella. Specifically, P. copri made up a substantial portion 

(~26%) of the taxonomically assigned reads. A variety of beneficial and detrimental health 

outcomes have been linked to the abundance of P. copri; for example, improved glucose 

tolerance (216) and association to inflammatory disorders (217). While there is no clear 

consensus as to the role of P. copri in health, the species appears to be widespread and 

phylogenetically diverse, associating more strongly with the gut microbiomes of non-

industrialized communities (206). Four distinct clades have been found to make up the 

Prevotella copri Complex, each with distinct functional profiles (206). Strains from the 
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Conambo cohort appeared to form a tight group that loosely clustered with Clade C in ordination 

(Figure 3.4C). The tight grouping of these strains from Conambo suggests that perhaps a factor 

specific to the Conambo (e.g., diet or environment) or geographical isolation causes them to 

cluster away from previously sequenced strains. Within Conambo, these strains are highly 

household and individual specific (Figure 3.3C). This is concordant with other research in a 

closed cohort (little to no outside contact) showing greater similarities of strains within 

households (24).  

Analogous to Prevotella in the gut, we examined the microbiome composition of saliva 

in Conambo and found a high abundance of Streptococcus spp. present (Figure 3.2D). When we 

analyzed the species that contributed to this signal, an interesting pattern emerged: the two 

predominant species, S. salivarius and S. mitis, rarely co-occurred. Because members of the S. 

mitis group appeared to associate more with the oral microbiomes of infants (218), we 

investigated whether this signal could be attributed to mother–child origin. Our results indicated 

that the abundance of S. mitis is significantly higher in the oral microbiomes of Conambo 

children compared to mothers (Supplemental Figure 3.5). We suspect intra-household sharing 

of chicha, which has a high abundance of S. salivarius (Figure 3.2E), reduced large differences 

between mother and child. Indeed, Conambo mothers begin feeding pre-fermented chicha pulp 

during infancy, which may promote transmission of S. salivarius from mother to offspring; a 

similar route of transmission has been speculated before in a study of an indigenous chicha-

consuming Bolivian cohort (219). This is further supported by a significant clustering of S. 

salivarius at the household level, but no differences were observed in strains between chicha and 

saliva within households (Figure 3.3C). This may suggest that dispersal of S. salivarius occurs 

largely within households. While our study was not designed to detect transmission of strains 
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between household, we suspect chicha may contribute to the sharing of oral Streptococcus 

between mothers and children.  

 A major source of calories and hydration for the Conambo people comes from chicha. 

Indeed, the Conambo will preferentially drink chicha over water, and the men of the community 

can drink up to four gallons of chicha per day (Dr. John Patton, personal correspondence). Much 

work has been done describing the microbial and physiochemical properties of chicha from 

indigenous populations (193, 219–223). A study investigating chewed cassava beer from 

Ecuador was able to culture S. salivarius and L. fermentum (193), concordant with our data 

showing a high amount of reads mapping to these organisms. Our results indicated compositional 

succession over time, whereby oral streptococci began the early fermentation and were quickly 

followed by L. fermentum and S. cerevisiae, which was likely environmentally sourced (193) 

(Figure 3.2E). The strengths of our study were threefold, specifically: 1) we obtained samples 

from four timepoints during the chicha fermentation process, 2) these chicha samples came from 

27 households, along with paired saliva samples from the women who prepared the chicha, and 

3) we utilized shotgun sequencing for a broader look at taxonomy present compared to amplicon 

based approaches.  

 Overall, the Conambo microbiome distinctly reflects a non-industrial lifestyle. The 

presence of the genus Prevotella was highly indicative of the Conambo and other non-

industrialized cohorts measured (Figure 3.4A). A high abundance Prevotella has regularly been 

detected in non-industrial cohorts, especially those with hunter–gatherer and horticultural 

lifestyles (224). It remains difficult to accurately access alpha-diversity of non-industrial 

microbiomes due to poor representation of these microbiomes in taxonomic databases  

(Supplemental Figure 3.6). We show that a database-dependent method (specifically 
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MetaPhlAn3) was able to resolve beta-diversity sample relationships sensibly (see Figure 3.3A, 

Figure 3.4A), but suggested greater species richness for many of the industrialized cohorts when 

compared to the Conambo (Figure 3.4B). To overcome this, k-mers can be used to describe the 

diversity of the entire sequence space, taking into account reads that would not currently map to 

databases (196, 225). Analysis of 21 bp  k-mers across all eight cohorts revealed a high degree of 

sequence diversity in the Conambo not reflected in the database-dependent approach (Figure 

3.4B). These k-mer results mirrored the diversity of CAZymes we measured within the cohorts 

analyzed. A high diversity of carbohydrate active enzymes have been observed in both ancient 

and non-industrialized samples (226), which might reflect diets high in fiber-rich foods. This is 

further supported by the observation that microbiomes of rural agriculturists contain a high 

abundance of genes involved in short-chain fatty acid production (227), which are created as 

byproducts of dietary fiber fermentation.  

Recent attention has been given to the archiving of microbial strains missing or 

underrepresented in current databases and repositories (228, 229). One of the largest efforts to 

catalog gut microbial biodiversity has been the Global Microbiome Conservancy (228), which 

has isolated and sequenced nearly 6,000 bacterial strains to date. A strong focus of their work 

and others has been the characterization of microbiomes associated with non-industrial living. 

These efforts are critical; in a 2018 report from the United Nations it was projected that the 

percent of the world’s population living in urban areas would increase 13% (to 68%) by 2050 

(230). With the impending expansion of industrial living, microbial biodiversity and human 

culture associated with non-industrial living will be lost. It has been suggested that efforts to 

archive should be secondary to efforts to preserve (228), and we agree. While an effort of 
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cataloging microbiome diversity should continue, to the extent that is possible, scientists should 

contribute to the preservation of societies still untouched by globalization.   
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Figure 3.1: Description of the Conambo. (A) Location of Conambo (yellow triangle) within 
the borders of Ecuador (map generated using simplemappr.net). (B) A meal set out for visiting 
guests consisting of stewed meat and boiled plantains that is representative of the normal dietary 
intake. (C) Traditional preparation method for the yucca mash which is fermented to produce 
chicha. (D) A serving of chicha in a traditional clay bowl made in the village. 
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Figure 3.2: The microbiomes of the Conambo people. (A) The alpha diversity, measured 
using the Shannon diversity index, was significantly lower in chicha samples compared to oral 
and gut samples (Kruskal-Wallis, p < 0.01). (B) The average Bray Curtis distance to the chicha 
microbiome showed higher community similarity between oral and chicha microbiomes 
compared to gut and chicha microbiomes (Kruskal-Wallis, p < 0.01). (C & D) Average 
taxonomic composition found in gut (C) and oral (D) samples. (E) The chicha microbiome 
underwent a succession of community composition, where Streptococcus was initially the 
majority member of the community then decreased in abundance over time as Lactobacillus 
increased through timepoint four (standard error of the mean represented around the lines). (F) 
Over the course of fermentation, the chicha microbiomes significantly converged.   
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Figure 3.3: The influence of cohabitation on the Conambo microbiome. (A) Ordination of 
fecal, chicha, and saliva samples from the Conambo, with taxa distinguishing these samples 
plotted in the margins. (B) We found a significant difference in the Bray Curtis pairwise 
distances between samples of chicha (LME, p < 0.05) made in the same household compared to 
chicha from other households. (C) Strains of Streptococcus salivarius reflected a significant 
household signature; however, we detected no difference between strains derived from chicha or 
saliva within the households. (D) An unrooted phylogenetic tree of gut Prevotella copri strains 
revealed these strains were highly individual specific and reflected a significant household 
signature.   
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Figure 3.4: Composition and function of Conambo microbiomes in the context of 
industrialized and non-industrialized microbiomes. (A) The Conambo microbiomes clustered 
with other non-industrialized cohorts, and taxa contributing to these differences (indicated by 
vectors) included Prevotella and Treponema. (B) Richness (number of distinct species), k-mer 
(k=21) and CAZyme diversity of the Conambo gut microbiomes compared to other cohorts 
analyzed. (C) Strain level analysis of P. copri showed a loose clustering with Clade C of the 
Prevotella copri-Complex and very little spread in ordination space. (D) Similarly, strains of S. 
salivarius grouped together based on household (as previously shown) but were distinct from 
strains recovered from anthropologists living with the Conambo.   
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SUMMARY AND FUTURE DIRECTIONS 
 

 In the above work I have shown 1) the maternal microbiome and metabolome during 

pregnancy, and the implications of microbiome dysbiosis on female health and infant immune 

development (Chapter 1), 2) experimental evidence of microbiome modification through diets 

that more closely resemble pre-industrialized macronutrient consumption (Chapter 2), 3) and the 

microbiome of non-industrialized people, contextualizing the effects of industrialization on the 

microbiome (Chapter 3). I am certainly not the first to suggest that the advent of antibiotics, 

processed foods, and modern hygiene have put unique pressures on the ancient coevolution 

between human and microbe (231). Throughout this work I have highlighted how integral the 

microbiome is to acute and chronic disease, as well as the promotion of health. For example, 

increased consumption of processed foods have led to a precipitous drop in dietary fiber intake 

throughout many industrialized countries. Dietary fiber is a favored substrate for gut microbial 

metabolism, where bacteria ferment fiber to metabolites (short-chain fatty acids, SCFAs) critical 

to human health. It has been suggested that dietary changes may be a tractable therapeutic to 

promote a gut microbiome that functions to benefit human health (231). Therefore, 

understanding the factors that contribute to microbial assembly in humans will remain a critical 

area of research as we strive to understand how to engineer the microbiome to benefit health. 

 In Chapter 1, I discussed the vaginal microbiome during pregnancy. One fascinating 

result was the strong association between mannitol and vaginal microbiomes dominated by 

Lactobacillus crispatus. L. crispatus is thought to be a homofermentative lactic-acid bacteria, 

converting nearly all available glucose to lactic acid. An accumulation of mannitol in 

microbiomes dominated by L. crispatus, and not in microbiomes dominated by other organisms, 

suggests L. crispatus could be a source of mannitol production in the vagina. The most 
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parsimonious route for mannitol production is through fructose reduction. I hypothesize that in 

the absence of glucose, L. crispatus may switch to a previously underappreciated physiology of 

fructose reduction, which would allow for the regeneration of NAD+ in order to continue 

fermentation. This would allow the continued conversion of glyceraldehyde to pyruvate, which 

would continue ATP generation in the absence of glucose. The outcome of this metabolic shift 

would be a decrease in the production of lactic-acid, a molecule critical to vaginal health. Future 

work should determine if our in vivo observation of a mannitol–L. crispatus association is 

recapitulated in vitro. Feeding 13C labeled fructose and measuring metabolic by-products would 

be an effective way to interrogate L. crispatus metabolism.  

 In Chapter 2, I investigated how the effect of a high-fiber diet intervention alters the gut 

microbial composition. While we illustrated that the microbiome is malleable to an influx of 

fiber, on the scale of two weeks, we failed to measure concomitant changes in fecal short-chain 

fatty acids. Others have speculated that circulating SCFAs may correlate more strongly with 

health benefits compared to fecal SCFAs (17, 187). In order to better understand the molecular 

mechanisms through which high fiber diets promote health, more work is needed measuring the 

flux between fecal and circulating SCFAs. Other promising ideas include synbiotics, or the 

formulation of a prebiotic (essentially food for microorganisms) together with probiotics. 

Synbiotics address one potential pitfall of a general dietary fiber increase; that is, increasing 

substrate availability (fiber) for health-beneficial microbes in the gut would only work if these 

microbes are present in the first place. To that end, finding optimum combinations of diet and 

probiotic may ultimately lead to therapeutics with broad effect. 

 Finally, in Chapter 3 I characterized the microbiomes of the Conambo village, deep in the 

Ecuadorian Amazon. These people live a distinctly non-industrialized lifestyle, extremely 
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isolated from urbanized environments. Populations such as these provide critical context to the 

role that industrialization has had in shaping the microbiome. Many of the organisms found are 

unique, rare, or highly divergent genetically compared to species found in microbiomes from 

industrialized countries. Future work should continue to catalog this sizable human-associated 

microbial diversity while endeavoring to be attentive to the impact this research has on isolated 

human populations.  
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