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Abstract

Essays in Asset Pricing

by

Luc Kien Hang

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Nicolae Gârleanu, Chair

What explains the cross-sectional variation of expected returns? This dissertation contains
two essays that study this question both theoretically and empirically for two popular puzzles
in the asset pricing literature.

In the first chapter of the dissertation, I study the asset pricing implications of learning-
by-doing in a partial equilibrium model where firms optimally choose to adopt the newest
technology. Firms are heterogeneous in the sense that they have different learning curves.
Adopting the newest technology is costly, however, because the firms forgo the experience
they accumulated in the past. The model implies that firms with (1) obsolete technology,
(2) little accumulated experience, (3) low forgetting rate, or (4) high learning rate are more
likely to adopt earlier, which I label as ‘early innovators’. I show that these firms load more
on growth options as opposed to assets-in-place, are more exposed to technological shocks,
and earn a lower risk premium. The model can match the magnitude of the value premium
as well as the size premium.

In the second chapter of the dissertation, I document that idiosyncratic volatility and future
returns are not simply negatively related. Past performance of the market predicts whether
high or low idiosyncratic volatility stocks generate positive returns. A signed idiosyncratic
volatility (SIV) factor, which is long high idiosyncratic volatility and short low idiosyncratic
volatility following bull markets and vice versa following bear markets, produces significant
positive risk-adjusted returns. A model with extrapolative agents and market segmentation
can capture these facts.
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Chapter 1

Learning-by-Doing, Technological
Adoption, and the Cross-Section of
Expected Returns

1.1 Introduction

The term learning-by-doing refers to the concept where productivity growth is gained through
repeated practice.1 Learning-by-doing can take many different forms. For example, Chan,
Li, and Pierce (2014) analyze learning-by-doing by looking at individual learning versus
learning from peers. They show that learning from peers is effective in improving sales force
productivity growth. Stein (1997) splits learning-by-doing into firm-specific and product-
specific learning-by-doing. Product-specific learning-by-doing entails spillover effect, where
one firm’s specific innovation is passed on to other firms in the industry. Firm-specific
learning-by-doing does not spill over. For example, it could be characterized as a firm-
specific production cost function that is decreasing in its output. Learning-by-doing can also
be interpreted as passive learning, which is an unintended byproduct of the firm’s production
activities. A specific example is the experience curve, which captures the productivity gain
of firms through the accumulation of experience.

Learning-by-doing is a popular concept in different fields. In engineering, learning-by-
doing quantifies the relationship between unit costs and experience. A classical example
is Wright (1936), who studies the aircraft manufacturing industry. As manufacturers gain
experience, aircraft are produced more cheaply, thereby reducing the production cost per
unit. In economics, learning-by-doing is used to explain endogenous growth (Arrow (1962)),
technology and innovation (Stein (1997)), cyclicality of investment (Klenow (1998)), or in-
dustry dynamics (Besanko, Doraszelski, Kryukov, and Satterthwaite (2010)). In empirical

1See Thompson (2010) for an extensive literature review on learning-by-doing.
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studies, several measures are proposed to measure learning-by-doing, including the age of
the firm, the accumulated previous output of the firm, the average tenure of employees, or
proxies of work experience (see Thompson (2010)). Despite its relevance in economics, its
appearance in traditional asset pricing models is limited.

This paper attempts to tighten this gap by linking the experience curve to the cross-
section of expected returns. I develop a simple partial equilibrium model to restrict attention
to the mechanism of learning-by-doing. I model learning-by-doing by assuming that firms
gain experience while using their technology, which increases their productivity over time.
The firm’s experience curve is modeled as a function of the age of technology. This function
is non-decreasing, concave, and bounded above. Thus, as the firm’s technology matures, the
firm becomes more efficient in producing the consumption good and reaches full production
capacity eventually. Firms have the option to adopt the frontier technology. Technological
adoption is costly, however, as the firms forgo the experience they accumulated with the
previous technology (which is commonly known in the industrial organization literature as
‘organizational forgetting’). In other words, the firm’s experience curve ‘resets’ to an initial
level. The problem the paper addresses is thus an optimal stopping problem, in which firms
choose the optimal time T to adopt the newest technology.

I assume that all firms produce a common consumption good, which generates a perpetual
stream of cash flows which follows a geometric Brownian motion. Thus, all firms have the
same exposure to cash flow risk. I introduce firm heterogeneity by assuming that each
firm has distinct productivity, which is characterized by its learning-by-doing mechanism.
Specifically, the productivity of a firm is characterized by four features: (i) the obsolescence
level of the technology, (ii) the age of the technology, (iii) the forgetting rate, and (iv) the
learning rate. Heterogeneity in productivity implies that each firm has a different valuation
and that each firm has its own adoption policy.

I find that firms that are characterized by (i) regressive or obsolete technology, (ii) little
experience, (iii) low organizational forgetting, or (iv) high learning rate are more likely to
adopt the newest technology. Interpreting these results is straightforward. First, firms with
relatively less advanced or obsolete technology are more likely to adopt technology than firms
with advanced technology since the benefit of adoption is greater. Second, young firms or
firms with little accumulated experience have less experience to lose, thus making adoption
less costly. Third, firms with low organizational forgetting forgo less accumulated experience,
thus lowering the barrier to adopt. Finally, fast-learning firms can progress and reach full
capacity of the adopted technology faster, making the transition from old technology to new
technology easier.

My findings suggest that these ‘early-adopting’ firms are more exposed to shocks to
frontier technology. Assuming that the market price of risk is negative for shocks to frontier
technology (see Section 1.2 for the discussion), I find that early-adopting firms earn a lower
risk premium. Thus, variation in the expected stock return is tightly linked to the firm’s
productivity in the model. Moreover, the asset composition of these firms loads more on
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growth options as opposed to asset-in-place, thus giving them an interpretation that is similar
to ‘growth firms’ in the asset pricing literature. In the Monte Carlo simulation exercise, I
show that these growth firms indeed adopt more frequently.

In essence, my model is an extension of the Gordon dividend growth model with two
additional features: (i) firms have the option to adopt the frontier technology, and (ii) firms
gain experience with their technology through learning-by-doing. The model studies how
creative destruction, through which old technology is replaced by new technology, affects
the pricing of assets through the lens of the experience curve. The model is closely related
to earlier work by Gomes, Kogan, and Zhang (2003) and Carlson, Fisher, and Giammarino
(2004), who study how growth affects firm decisions and therefore firm valuations. In these
models, growth is exogenous and firms adopt newer technology by investing in newer projects.
However, these models do no account for the optimality condition of when to exercise the
growth options. In this regard, this paper is closely related to Gârleanu, Panageas, and
Yu (2012) and Eisfeldt and Papanikolaou (2013). Two major differences are that (i) these
models require an exogenous cost function to ensure that firms adopt infrequently, and
(ii) the firms in these models do not consider the benefits of learning. In my model, the
loss of experience ensures that firms adopt technology infrequently. As a result, the model
can generate investment cycles, where firms adopt technology close to one another, similar
to findings in Klenow (1998) and Gârleanu, Panageas, and Yu (2012). The model is also
similar to Gârleanu, Kogan, and Panageas (2012) in the sense that both papers attempt
to link growth theory to asset pricing. However, whereas Gârleanu, Kogan, and Panageas
(2012) is a complicated overlapping generations model in the flavor of the Romer (1990)
endogenous growth theory, my model assumes a simple (exogenous) learning curve, which is
motivated by the mechanism and intuition from the Arrow (1962) model.

My paper fits into the growing body of theoretical literature that attempts to explain
the value premium puzzle, where firms with high book-to-market ratio (‘value’ firms) earn
on average a higher return than firms with low book-to-market ratio (‘growth’ firms) (see
Fama and French (1992), Fama and French (1993)). Berk, Green, and Naik (1999) first
establish the link between the value premium and asset composition. However, they argue
that growth firms have relatively more safe assets-in-place that generate cash flow today, and
value firms have ‘risky’ growth options that make positive net present value in the future
(see also Carlson, Fisher, and Giammarino (2004), Gomes, Kogan, and Zhang (2003)). More
recent literature assumes that growth firms have growth options that are relatively less risky,
thus demanding a smaller risk premium (see, for example, Zhang (2005), Ai and Kiku (2013),
Arnold, Wagner, and Westermann (2013), Ai and Kiku (2016)). In my model, early-adopting
firms have relatively more growth options, are more exposed to frontier technology shocks,
but earn lower risk premium, because the price of frontier technology shocks is assumed to
be negative.

More broadly, this paper is related to the investment-based asset pricing literature that
links firm heterogeneity to variation in expected stock returns. A selected number of firm
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characteristics that are analyzed in this literature includes (i) financial distress (Garlappi
and Yan (2011)), where value premium is increasing in default probability conditional on
no shareholder recovery, (ii) price stickiness (Weber (2018)), where firms that adjust prices
infrequently earn a higher risk premium, (iii) financing constraints (Livdan, Sapriza, and
Zhang (2009)), where financially constrained firms earn higher expected returns, (iv) leverage
(Gomes and Schmid (2010)), who find a concave relationship between financial leverage and
expected stock return. This paper adds a new flavor to this literature by looking at a
potential channel of firm productivity, namely through learning-by-doing.

The remainder of the paper is as follows. In Section 1.2, I present a partial equilibrium
model with learning-by-doing and technological adoption. I solve the model and discuss the
underlying intuition and main mechanism. Section 1.3 presents a calibration exercise of the
model and presents testable implications. Section 1.4 concludes. Appendix A.1 contains all
proofs.

1.2 Model

In this section, I develop a partial equilibrium model in continuous time to describe the
mechanism and intuition behind the learning-by-doing channel. To isolate the learning-by-
doing channel, firms can adopt technology only once. Once the intuitions are established, I
develop a stationary model with repeated adoptions.

Firms and Cash flows

There exists a continuum of firms, indexed by i, in the economy that produce a common
output good, say a consumption good, which generates a perpetual stream of cash flow Xt.

2

The cash flow process follows a geometric Brownian motion

dXt = gXtdt+ σXXtdW
X
t , X0 = x > 0, (1.1)

where g > 0 and σX are, respectively, the mean and volatility of the growth rate of cash
flow, and WX

t is a standard Brownian motion under the physical measure.
Firm heterogeneity is introduced by assuming that firms have different productivity level

and growth.3 In particular, let Qit denote the productivity of firm i at time t. The produc-
tivity level of firm i is the product of the technology of firm i (Aτi) and the experience that

2Thus, I assume that Xt and consumption are positively correlated.
3This assumption is similar to the assumptions used in Gârleanu, Panageas, and Yu (2012) and Eisfeldt

and Papanikolaou (2013). However, unlike Gârleanu, Panageas, and Yu (2012), the productivity level de-
pends implicitly on the frontier technology, similar to Eisfeldt and Papanikolaou (2013). My model has an
additional feature, namely that the productivity level is time-dependent.
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the firm has accumulated for using this technology (Ei,t−τi), i.e.,

Qi,t = AτiEi,t−τi , (1.2)

where τi ≤ t is the time when firm i adopted its current technology. I assume that the
experience process satisfies the following ordinary differential equation

dEi,t−τi = (λi − λiEi,t−τi)dt, with Ei,0 = 1− ρi, (1.3)

where λi > 0 is the learning rate, and 0 < ρi < 1 is the internal cost of adoption due to
organizational forgetting. The learning curve Ei,t−τi is thus given by

Ei,t−τi = 1− ρie−λi(t−τi). (1.4)

The experience curve is increasing in the state variable t− τi, interpreted as the age of the
technology, is concave and bounded above. In particular, it satisfies the condition 1 − ρ <
E ≤ 1 and converges to 1 as t → ∞ (i.e., there is nothing left to learn). The experience
curve thus captures the idea that learning during early stages improves productivity the
most, while the marginal benefit of learning decreases as more experience is accumulated.
It is a reduced form of modeling how much experience firm i has accumulated since the
adoption of technology Aτi at adoption time τi. In what follows, I make the notational
simplification of dropping the index i.

Given the cash flow and productivity processes, the flow of output is given by

Yt = QtXt = AτEt−τXt = AτXt(1− ρe−λ(t−τ)). (1.5)

Technology

I follow in the spirit of Gârleanu, Kogan, and Panageas (2012), Gârleanu, Panageas, and Yu
(2012), and Eisfeldt and Papanikolaou (2013) by assuming that there is technological progress
in the economy. In these models, the newest technology is only embodied in the newest
capital vintages. A firm with technology Aτ has the option to adopt the newest technology
At, where t > τ . Unlike other investment-based asset pricing models, I do not assume
exogenous adjustment costs.4 However, adopting technology is still costly, since firms will
forgo the accumulated experience. Thus, each time the firm adopts the newest technology,
the learning curve ‘resets’ to E0 = 1− ρ. The parameter ρ thus captures what is known as
organizational forgetting in the industrial organization literature. The drop in experience
could also be interpreted as a displacement risk for current employees, as new technology
requires new skills, thus making the accumulated experience for the labor suppliers from the
old generation redundant. Alternatively, we can interpret it as an investment cost for the

4This assumption is easily relaxed, as I will show later when I introduce adjustment costs in the model.
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firm (due to the reallocation of resources to the newer technology), which is associated with
a positive investment shock. Figure 1.1 illustrates the experience curve for twenty different
firms with different learning parameters and fixed forgetting rate of ρ = 0.75. In this case, all
firms start from E0 = 1−ρ = 0.25, and firms with higher learning rates (dark) approach full
capacity earlier than firms with low learning rates (light). In addition, fast-learning firms
(high λ) adopt technology earlier than slow-learning firms (low λ), and the technological
adoption is illustrated by the drop in experience E0 = 1− ρ.

Figure 1.1. Experience Curve
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Notes: This figure displays experience curves for twenty firms of different learning rates. All firms
have a forgetting rate of ρ = 0.75 and have a single adoption option. A darker (lighter) color
indicates a fast- (slow-) learning firm.

The level of the frontier technology At follows a geometric Brownian motion,

dAt = µAAtdt+ σAAtdW
A
t , A0 = a > 0, (1.6)

where µA > 0 and σA are the mean and volatility of technological growth, and dWA
t is a

standard Brownian motion under the physical measure and independent from dWX
t . The

fact that Et is bounded above (there is only so much to learn) and that µA > 0 implies that
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the firm will adopt the newest technology sooner or later. However, there is benefit from
waiting through accumulating experience with the current technology Aτ . As a result, the
firms have to make an optimal trade-off between accumulating experience and adopting the
frontier technology. The problem the firms are facing is thus an optimal stopping problem.

Stochastic Discount Factor

Since I have a partial equilibrium model, I simply assume that the market is complete and
specify an exogenous stochastic discount factor of the form

dπt
πt

= −rfdt− γXdWX
t − γAdWA

t , π0 = 1, (1.7)

where rf is the risk-free rate, and γX and γA are the prices of risk for a shock to cash flow
Xt and the level of frontier technology At, respectively. In a general equilibrium model,
the stochastic discount factor can be endogenized through the introduction of a household
sector, for example.

Firm valuation

The firm’s objective is to maximize shareholder value by choosing the optimal time T to
adopt frontier technology. At time t, the current firm technology is Aτ , adopted at τ ≤ t.
The firm productivity is the product of its technology and the experience curve Et−τ . In
addition, the firm can generate cash flow proportional to the frontier technology if the firm
decides to adopt the frontier technology. Once the frontier technology is adopted, the firm
will operate at this level forever. This option to adopt is summarized by V̄ . Mathematically,
the optimization problem that the firm faces is given by

sup
T

Et
[∫ T

t

πs
πt
AτEs−τXsds+

πT
πt
V̄ (XT , AT )1{T<∞}

]
. (1.8)

I now introduce a function that will be recurring throughout the paper. Let ϕ(t − τ) be
given by

ϕ(t− τ) =

(
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

)
, (1.9)

where r ≡ rf + σXγX is the cost of capital. We can interpret ϕ(t− τ) as the discount factor
due to cost of capital adjusted for growth and the accumulated experience. Note in addition
that ϕ(0) is a constant. Lemma 1.1 derives an expression for the value of the adoption option
as a function of equation (1.9).
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Lemma 1.1. For a given time t, where Xt = x and At = a, the value of the adoption option
is given by

V̄ (x, a) = Et
[∫ ∞

t

πs
πt
aEs−tXsds

]
= axϕ(0), (1.10)

where ϕ(t− τ) is given by (1.9).

Let the optimal stopping time of problem (1.8) be denoted by T ∗. Then, the value
function of the optimization problem (1.8) can be written as

V (x, a, Aτ , t− τ) = J(x, a, Aτ , t− τ, T ∗), (1.11)

where J(x, a, Aτ , t−τ, T ) = Et
[∫ T

t
πs
πt
AτEs−τXsds+ πT

πt
XTAtϕ(0)1{T<∞}

]
. In the rest of the

paper, it is implicitly assumed that the current stochastic state is given by (Xt = x,At = a).
The following two lemmas state properties of the function J .

Lemma 1.2. J is homogeneous of degree 1 in (Aτ , At).

Lemma 1.3. J is linear in Xt.

The following lemma is a result of Lemma 1.2 and Lemma 1.3.

Lemma 1.4. Assume that V is twice differentiable in a. Then there exists a function v ∈ C1,2

such that
V (x, a, Aτ , t− τ) = x · Aτ · v(t− τ, z), (1.12)

where z ≡ a
Aτ

.

Because of Lemma 1.4, I can reduce the number of state variables and obtain

V (Xt, Aτ , At, t− τ) = AτXtv (t− τ, Zt) , (1.13)

where I define Zt ≡ At
Aτ

, which is a stochastic process with the following dynamics:

dZt = µAZtdt+ σAZtdW
A
t , Z0 = z. (1.14)

Zt is the ratio between the frontier technology and current technology and captures the
distance between these technologies. Because frontier technology increases on expectation
(µA > 0), the variable Zt captures how obsolete the firm’s technology has become, as the
outside option becomes more attractive as Zt increases.
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Characterization of the Inaction Region D

Lemma 1.4 implies that the optimal stopping time T ∗ does not depend on Aτ nor on Xt. To
see this, note that we have

V (x, a, Aτ , t− τ) = sup
T
J(x, a, Aτ , t− τ, T ) = x · Aτ · sup

T
J(1, z, 1, t− τ, T ). (1.15)

For notation, let us therefore explicitly write T ∗ = T ∗(t− τ, z). Note that the stopping time
T ∗ ⊂ S is defined in terms of the current state (t − τ, z), and S is the set of all adapted
stopping times. In addition, let D be the inaction region where it is optimal for the firm
to continue with the current technology Aτ . Specifically, D is a subset of [−τ,∞)× R such
that T ∗(t − τ, z) = inf{s ≥ t : (s − τ, Zz(s)) /∈ D} is the optimal stopping time given that
the current state for Z(t) is z, i.e., V (x, a, Aτ , t − τ) = J(x, a, Aτ , t − τ, T ∗). The following
lemma characterizes D.

Lemma 1.5. Let D ⊂ [−τ,∞)× R such that T ∗(t− τ, z) = inf{t ≥ τ : (t− τ, Zz(t)) /∈ D}
is the optimal stopping time given that Z(t) = z. In addition, let DC be the complement of
D. Then, it follows that

D = {(t− τ, z) ∈ [−τ,∞)× R : v(t− τ, z) > zϕ(0)}, (1.16)

and
DC = {(t− τ, z) ∈ [−τ,∞)× R : v(t− τ, z) = zϕ(0)}. (1.17)

From Lemma 1.5, we can characterize the inaction region D as a function of (t − τ, z).
Specifically, it is optimal to continue if v(t − τ, z) > zϕ(0), that is, when the value derived
from the current technology and experience curve is larger than the value from adopting
the newest technology and resetting the experience curve. Similarly, we can identify the
stopping region as DC = {(t − τ, z) : v(t − τ, z) = zϕ(0)}. In particular, these two regions
suggest that there exists some z such that v(t − τ, z) > zϕ(0), while for some other z we
have that v(t− τ, z) = zϕ(0). It is reasonable to conjecture that the higher the value for z,
the higher the benefits are for adopting the newest technology. For this reason, I conjecture
that D = {z ∈ R : z < z̄(t−τ)}, for some threshold function z̄(t−τ). The threshold z̄(t−τ)
is a function t − τ , such that when z < z̄(t − τ), it is optimal to continue with the current
technology, and when z ≥ z̄(t− τ), it is optimal to adopt the frontier technology.

Lemma 1.6 derives a condition for v that must be satisfied in the inaction region D.

Lemma 1.6. For (t− τ, z) ∈ D, v(t− τ, z) satisfies the following equation

vt + (µA − γAσA)zvz +
1

2
σ2
Az

2vzz − (r − g)v + Et−τ = 0. (1.18)
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Lemma 1.6 states the dynamics of v in the inaction region D and is commonly known as
the Hamilton-Bellman-Jacobi (HJB) equation. We have thus characterized v and therefore
V in the inaction region. In addition, from Lemma 1.5, we know that v(t− τ, z) = zϕ(0) in
the stopping region.

Finding a Candidate Solution

I now construct a candidate solution for the value function V . Since V = xAτv(t − τ, z), I
solve directly for v(t − τ, z) instead. Recall that v(t − τ, z) must satisfy the HJB equation
in (1.18) for (t− τ, z) ∈ D. Lemma 1.7 states the general solution of the HJB equation.

Lemma 1.7. Let (t− τ, z) ∈ D. The general solution to (1.18) is given by

v(t− τ, z) = φ(z) + C0e
(r−g)(t−τ) + ϕ(t− τ), (1.19)

where φ(z) = C1z
α+ + C2z

α−, and α+ and α− are defined as

α± =
−(µA − σAγA − 1

2
σ2
A)±

√
(µA − σAγA − 1

2
σ2
A)2 + 2(r − g)σ2

A

σ2
A

(1.20)

for some arbitrary constants C0, C1 and C2.

Given Lemma 1.7, we have a solution with some arbitrary constants C0, C1 and C2. I
now make the regularity assumption that r − g > µA − σAγA > 0. This assumption implies
that r + σAγA > µA + g, where the total risk compensation rf + σXγX + σAγA must be
larger than the sum of the growth rates of Xt and At. This assumption arises when agents
in the model are risk averse for example. Lemma 1.8 states properties of α+ and α− as a
consequence of this assumption.

Lemma 1.8. Suppose that r − g > µA − σAγA > 0. Then, α+ > 1 and α− < 0.

Consider now the case where z → 0. If C2 > 0, then v(t− τ, z)→∞. This result cannot
be true because this suggests that the value function is a decreasing function of z even though
the growth option depends positively on frontier technology. On the other hand, if C2 < 0,
then v(t− τ, z)→ −∞. The firm can decide not to adopt the frontier technology, in which
case the value function is bounded from below. Since both cases cannot be true, it must be
the case that C2 = 0. In fact, we can argue that when z → 0 (or equivalently a → 0), the
boundary condition is

lim
a→0

V (x, a, Aτ , t− τ) = Et
[∫ ∞

t

πs
πt
AτXsEs−τds

]
= Aτxϕ(t− τ), (1.21)
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because the firm value is solely determined by the perpetual stream of cash flow generated
by its current assets-in-place. This suggests that limz→0 v(t− τ, z) = ϕ(t− τ), and C0 must
also be zero. In summary, by inspecting the case for z → 0, we conclude that C0 = C2 = 0.
Since the solution does not involve α−, let’s redefine α ≡ α+ for convenience.

Consider now the stopping region Dc, that is, for z ≥ z̄(t − τ) (or equivalently, a ≥
Aτ z̄(t− τ)). We have

V (x, a, Aτ , t− τ) = xaϕ(0), (1.22)

or v(z, t−τ) = zϕ(0). In addition, we require that V (x, a, Aτ , t−τ) is continuous in a. Then
the firm must be indifferent between adopting the frontier technology and continuing with
the current technology at a = ā(t− τ) (value-matching condition):

V (x, ā(t− τ), Aτ , t− τ) = xā(t− τ)ϕ(0). (1.23)

Finally, we want ā(t − τ) to be the optimal threshold that separates the inaction region
D from the stopping region DC . For this reason, we also require that V (x, a, Aτ , t − τ) is
continuously differentiable in a, where the value function must be sufficiently smooth when
evaluated at a = ā(t− τ) (smooth-pasting condition):

∂

∂a
V (x, a, Aτ , t− τ)

∣∣∣∣
a=ā(t−τ)

= xϕ(0). (1.24)

Theorem 1.1 finds a candidate value function V that satisfies these conditions.

Theorem 1.1. Suppose that r− g > µA− σAγA > 0. In addition, suppose that the function
V satisfies (1.18), (1.23) and (1.24). It then follows that

V (x, a, Aτ , t− τ) =

{
Aτxϕ(t− τ)

(
1 + 1

α−1

(
a

ā(t−τ)

)α)
, a < ā(t− τ),

axϕ(0), a ≥ ā(t− τ),
(1.25)

is a solution where the threshold function ā(t− τ) is defined as

ā(t− τ) ≡ Aτ z̄(t− τ) ≡ Aτ
α

α− 1

ϕ(t− τ)

ϕ(0)
. (1.26)

Verification of the Candidate Value Function

In what follows, I will show that the candidate value function V in (1.25) satisfies certain
properties summarized by Lemma 1.9. I then use a verification argument to show that V is
the optimal value function.

Lemma 1.9. Let V (x, a, Aτ , t− τ) be given by (1.25). Then,
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1. V (x, a, Aτ , t− τ) is continuously differentiable in a.

2. V (x, a, Aτ , t− τ) ≥ axϕ(0).

3. LV (x, a, Aτ , t− τ)− (r − g)V + xAτEt−τ ≤ 0.

4. πtV (x, a, Aτ , t− τ) is integrable and satisfies the technical condition

E

[(∫ t

0

dπsV (Xs, As, Aτ , s− τ)

)2
]
<∞.

I now proceed with a verification argument to show that V is the optimal value function.
First, property 1 guarantees that V is continuously differentiable in a so that we can apply
Ito’s formula on πTV (XT , AT , Aτ , T −τ), where T ∈ S is an arbitrary stopping time. Apply-
ing Ito’s lemma on πTV (XT , AT , Aτ , T − τ) and integrating (by the technical/integrability
condition 4), I obtain

Et
[
πT
πt
V (XT , AT , Aτ , T − τ)

]
= V (x, a, Aτ , t− τ)

+ Et
[∫ T

t

πs
πt
AτXs (Lv(s− τ, Zs)− (r − g)v(s− τ, Zs)) ds

]
≤ V (x, a, Aτ , t− τ)− Et

[∫ T

t

πs
πt
AτXsEs−τds

]
, (1.27)

where the inequality follows by property 3. Rearranging this, we get

V (x, a, Aτ , t− τ) ≥ Et
[∫ T

t

πs
πt
AτXsEs−τds+

πT
πt
V (XT , AT , Aτ , T − τ)

]
≥ Et

[∫ T

t

πs
πt
AτXsEs−τds+

πT
πt
ATXTϕ(0)

]
, (1.28)

where the second inequality holds because of property 2. V thus provides an upper bound
for the problem that we are solving for an arbitrary stopping time T ,

V (x, a, Aτ , t− τ) = sup
T

Et
[∫ T

t

πs
πt
AτXsEs−τds+

πT
πt
ATXTϕ(0)

]
. (1.29)

Thus, we can attain equality in (1.28) for T = T ∗ where T ∗ is the optimal stopping policy.
Finally, note that T ∗ is the infimum of all adopted stopping times (i.e., the first hitting
time). To see this, suppose that we exit D. From Lemma 1.5, we know that this means
that v(t − τ, z) = zϕ(0), and it follows that LV (x, a, Aτ , t − τ) − (r − g)V + xAτEt−τ < 0.
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Plugging this inequality into (1.27), we thus have a strict inequality in (1.28). This implies
that it is suboptimal to continue with the current technology and not exercise the adoption
option once we exit region D, which is a contradiction that T ∗ is optimal. Thus, for T ∗ to
be optimal, we must exercise immediately once we exit D, i.e., T ∗ must be the first hitting
time.

Implications

Having provided the verification argument, I can now discuss the implications of Theorem
1.1. I make four observations from Theorem 1.1. First, the model is an extension of the
Gordon dividend growth model with two additional features: (i) learning-by-doing, and
(ii) the ability to adopt frontier technology. To see this, suppose that the model does not
feature learning-by-doing. In this case, firms do not learn (λ = 0) and firms always operate
at full capacity (ρ = 0). The firm value is then given by

V (x, a, Aτ , t− τ) =

{
Aτx

1
r−g

(
1 + 1

α−1

(
a
ā

)α)
, a < ā,

ax 1
r−g , a ≥ ā,

(1.30)

where ā = Aτ
α
α−1

. The value of the firm is now time-independent, and the value of the
growth option only depends on the distance between the firm’s technology and the frontier
technology, which is similar to Eisfeldt and Papanikolaou (2013).5 If the firm also cannot
adopt the frontier technology (such that At = Aτ for all t), then the firm value (multiplied
by a constant) is simply given by

V (x) =
x

r − g , (1.31)

which is the famous Gordon dividend growth model.
Second, we can decompose the total firm value in terms of assets-in-place and growth

options. Corollary 1.1 summarizes this decomposition.

Corollary 1.1. For a < ā(t− τ), the firm value is given by

V (x, a, Aτ , t− τ) = xAτϕ(t− τ)

[
1 +

(
1

α− 1

)(
a

ā(t− τ)

)α]
(1.32)

= V A(x,Aτ , t− τ) + V G(x, a, Aτ , t− τ), (1.33)

where V A is the value of assets-in-place, and V G is the value of the growth option, given by

V A(x,Aτ , t− τ) = xAτϕ(t− τ),

V G(x, a, Aτ , t− τ) =
x

α− 1
Aτϕ(t− τ)

(
a

ā(t− τ)

)α
.

5Specifically, the only difference between this model and Eisfeldt and Papanikolaou (2013) is that Eisfeldt
and Papanikolaou (2013) set µA = 0.
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Corollary 1.1 shows that the value of assets-in-place depends only on the firm’s current
technology and not on the outside frontier technology. On the other hand, we see that the
frontier technology determines the value of the growth option. Third, the model implies a
relation between firm productivity and asset composition. Specifically, let wA be the weight
of the firm that loads on assets-in-place and let wG = 1 − wA be the weight on growth
options. It follows that

1 = wA + wG =
V A(x,Aτ , t− τ)

V (x, a, Aτ , t− τ)
+
V G(x, a, Aτ , t− τ)

V (x, a, Aτ , t− τ)
. (1.34)

Corollary 1.2. For a < ā(t− τ), let wG denote the weight on the growth options given by

wG =
V G(x, a, Aτ , t− τ)

V (x, a, Aτ , t− τ)
=

1
α−1

(
a

ā(t−τ)

)α
1 + 1

α−1

(
a

ā(t−τ)

)α , (1.35)

and let wA = 1−wG be the weight on the assets-in-place. Then, wG is decreasing in ā(t− τ),
while wA is increasing in ā(t− τ).

Corollary 1.2 discusses properties of wG. We see that wG is increasing in a
ā(t−τ)

and

is bounded between 0 and 1
α

. Moreover, firms with large weights on growth options are
firms with low ā(t − τ), implying that these firms are early adopters. Firms with mainly
assets-in-place on the other hand are late adopters (high ā(t− τ)).

Finally, the model is able to replicate a feature in Gârleanu, Panageas, and Yu (2012):
firms follow each other in close proximity when they adopt technology, thus creating an
investment cycle. Corollary 1.3 shows that the technology threshold is tightly linked to firm
characteristics.

Corollary 1.3. Let ā(t−τ) denote the technology threshold for which it is optimal to exercise
the adoption option given by

ā(t− τ) =
α

α− 1

ϕ(t− τ)

ϕ(0)
Aτ =

α

α− 1

(
1
r−g −

ρ
r−g+λe

−λ(t−τ)

1
r−g −

ρ
r−g+λ

)
Aτ . (1.36)

Fixing t− τ > 0 to be sufficiently small, it follows that

1. ∂ā(t−τ)
∂ρ

> 0.

2. ∂ā(t−τ)
∂λ

< 0.

3. ∂ā(t−τ)
∂Aτ

> 0.
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4. ∂ā(t−τ)
∂(t−τ)

> 0.

Corollary 1.3 shows that we can order firms by their adoption rate based on (i) forgetting
rate ρ, (ii) learning rate λ, (iii) current technology level Aτ , and (iv) age of the firm or
amount of experience t − τ . Specifically, firms with obsolete technology (low Aτ,i), young
firms or firms with little experience (low t− τi), firms with low adoption costs (low ρ), and
firms that can build experience or progress quickly (high λ) adopt technology faster. From
Corollary 1.2, we also know that these firms load relatively more on growth options. On the
other spectrum of these parameters, we have the late adopters, which are firms with mainly
assets-in-place.

Asset Pricing Model

My model specifies two stochastic processes, Xt and At. From Corollary 1.1, Xt affects the
level of the firm value, whereas At affects the value of the growth option. The growth option
in turn depends on the firm’s learning curve. The following theorem describes the expected
return of the firm in relation to these shocks.

Theorem 1.2. Let a < ā(t − τ). The process of the excess return on the firm value, i.e.,
dRe = dV+Ddt

V
− rfdt, is given by

dRe(a, t− τ) = Et [dRe(a, t− τ)] + σXdW
X
t + σA

 α
α−1

(
a

ā(t−τ)

)α
1 + 1

α−1

(
a

ā(t−τ)

)α
 dWA

t . (1.37)

The expected excess return on the firm value is therefore given by

Et [dRe(a, t− τ)] =

σXγX + σAγA

 α
α−1

(
a

ā(t−τ)

)α
1 + 1

α−1

(
a

ā(t−τ)

)α
 dt. (1.38)

Equation (1.37) shows that the value of the firm is exposed to two shocks: cash flow
shocks dWX

t and frontier technology shocks dWA
t . Since all firms produce the same final

good, the shock in X affects all firms equally. Thus, heterogeneity in the excess return is
directly linked to the firm’s exposure to the frontier technology shock, which is captured
by the second term. In particular, the exposure to frontier technology risk is decreasing in
ā(t− τ), suggesting that early adopters have higher exposure.

In equilibrium, the expected return is determined by the (negative) covariance of the
stochastic discount factor and the actual return. Equation (1.38) provides the relationship
between the asset risk premia and the cash flow risk premia and risk premia for frontier
technology. Focusing on the first term, note that σXγX is the premium on cash flow risk, as
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determined by the quantity of risk σX and the price of risk γX . I assume that the shock to
cash flow is positively correlated with consumption shock, and thus I argue that the price
of cash flow risk is positive (γX > 0), as cash flow improves in states characterized by low
marginal utility (‘good states’), and worsens in high marginal utility states (‘bad states’).
Moreover, a rich general equilibrium model would be able to rationalize a positive price of
risk (see, for example, Papanikolaou (2011)).

The second component explains all the variations in the expected return in the model.
Notice that σAγA is the risk compensation for a portfolio that is fully exposed to the frontier
technological shock. I assume that the frontier technological shock is negatively correlated
with consumption shock and positively correlated with investment shock. Papanikolaou
(2011) finds that under certain assumptions on the household’s utility function, specifically
when agents have preferences for late resolution of uncertainty, that positive investment
shocks have a negative price of risk. He argues that a positive investment shock reduces
current consumption since resources shift from the consumption to the investment sector.
Moreover, Eisfeldt and Papanikolaou (2013) find that frontier technology shock carries a
negative risk premium. They argue that a positive frontier technology shock leads to re-
structuring and reallocation of resources, which leads to temporary high adjustment costs
and thus a lower consumption, which is a state of high marginal utility. In their GMM
estimation, they also find that the price of risk associated with frontier technology is nega-
tive. Finally, the innovation shocks in Gârleanu, Kogan, and Panageas (2012) also demand
a negative price of risk. In their model, a positive innovation shock causes displacement of
the old generation and is therefore associated with states of high marginal utility. My model
has a similar interpretation. When firms adopt the frontier technology, the accumulated
experience falls to the initial level of experience E0 = 1 − ρ. This is unpleasant from the
perspective of labor suppliers, as their experience becomes obsolete and the experience curve
resets to E0. For these reasons, I assume that γA < 0.

Equation (1.38) implies an asset pricing model of the form

E[Ri − rf ] = βi,X E[RX − rf ] + βi,A E[RA − rf ], (1.39)

where βi,X = 1 for all firms, and βi,A differs across firms and is given by6

βi,A =

 α
α−1

(
a

ā(t−τ)

)α
1 + 1

α−1

(
a

ā(t−τ)

)α
 . (1.40)

Thus, firm i’s exposure to frontier technological shock dWA
t is decreasing in the threshold

function ā(t− τ) and increasing in the frontier technology a.

6Alternatively, I can directly calculate β by evaluating the elasticity of the firm value with respect to
any variable X, that is βi,X = ∂V

∂X
X
V , see, for example, Carlson, Fisher, and Giammarino (2004).
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Equation (1.40) shows that βi,A differs across firms. Moreover, 0 < βi,A < 1. First,
firms have higher βA (closer to one) if the frontier technology is close to the threshold,
and a low βA (near zero) if the distance between the frontier technology and the threshold
technology is large. We can interpret this result as follows. Firms that have a relatively
high technology threshold, i.e., late adopters, are less sensitive to movements in the frontier
technology. In this case, it is as if the late adopters have a deep out-of-the-money option.
Early adopters, on the other hand, need to monitor movements in the frontier technology
closely, as their thresholds are lower and they are more likely to adopt the technology if the
technological frontier crosses the threshold. From Corollary 1.2, we know that early adopters
load relatively more on growth options as opposed to late adopters, and as a result, βA is
higher for firms that are closer to technological adoption.

Second, (1.40) allows us to tightly link asset pricing to the learning-by-doing channel.
Specifically, fast-learning firms have larger exposure to innovation shocks than slow-learning
firms. Fast-learning firms reach full capacity earlier, and for these firms, the marginal benefit
of gaining additional experience is less than adopting the frontier technology and regaining
experience at the higher technology level. Firms with low organizational forgetting also
have high exposure to technological shock. The cost of technological adoption is lower for
these firms, and as a result, they load relatively more on growth options. In addition, we
notice that firms with less experience (i.e., lower t− τ) are also more sensitive to investment
shock. These firms have gained relatively little experience with their current technology and
are more willing to give up their current technology in exchange for the newer technology.
Finally, firms with obsolete technology (i.e., low Aτ ) are also more sensitive to frontier
technology, as these firms are looking to replace their technology for the more advanced
frontier technology.

Third, we can also see that βi,A changes over time for each firm. Notice that βi,A is
dependent on At, which changes over time, and ā(t − τ), which is increasing over time. As
a result, we expect βi,A to move in the same direction as the sign of the investment shock,
provided that the change in ā(t − τ) is small. Moreover, the variation of βi,A over time is
higher for early adopters than for late adopters.

Overall, the model suggests that four features explain the variation in the asset risk
premia: (i) the age of the firm’s technology t− τi, (ii) the learning rate λi, (iii) the amount
of experience lost due to technological adoption ρi, and (iv) the current level of the firm
technology Aτi . The model predicts that firms with obsolete technology (low Aτ,i), young
firms or firms with little experience (low t− τi), firms with low adoption costs (low ρ), and
firms that gain experience quickly (high λ) are more exposed to frontier technological shock.
Given the assumption that the shocks to frontier technology have a negative price of risk,
these firms are characterized by a lower risk premium.
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Adjustment Cost

So far, there is no external adjustment cost to adopting the newest technology. Instead,
the adoption cost is the loss in the accumulated experience (i.e., loss in human capital). In
reality, firms invest in physical capital as well as in human capital. To model the physical
cost, I assume that the firm incurs an adjustment cost that is proportional to XtAτ . That
is, the physical costs are higher for larger firms (either through outputting more products
(i.e., high Xt) or for having more advanced technologies (i.e., high Aτ )):

C(a;x,Aτ ) = xAτc(a), (1.41)

where c(a) is the adjustment cost function. I assume that c(a) is a constant function such
that it does not depend on the frontier technology At, i.e.,

c(a) = κ. (1.42)

Theorem 1.3 restates the model solution with adjustment cost.

Theorem 1.3. Let the function v(t−τ, z) satisfy the partial differential equation (1.18), with
the boundary condition in (1.43), the value-matching condition in (1.44) and the smooth-
pasting condition in (1.45):

lim
z→0

= ϕ(t− τ), (1.43)

v(t− τ, z̄(t− τ ;κ)) = z̄(t− τ ;κ)ϕ(0)− κ, (1.44)

∂

∂z
v(t− τ, z)

∣∣∣∣
z=z̄(t−τ ;κ)

= ϕ(0). (1.45)

In addition, assume that r − g > µA − σAγA > 0. Then the solution v(t− τ, z) is given by

v(t− τ, z) = ϕ(t− τ)

[
1 +

1

α− 1

(
z

z̄(t− τ ;κ)

)α]
+

κ

α− 1

(
z

z̄(t− τ ;κ)

)α
, (1.46)

where α is defined as before, and z̄(κ)(t− τ ;κ) is the threshold function given by

z̄(t− τ ;κ) =
α

α− 1

ϕ(t− τ) + κ

ϕ(0)
. (1.47)

The indifference condition (1.44) states that the firm is indifferent between continuing
with the current technology (LHS) and paying the adjustment cost κ per output unit to
produce at the higher technology level z = z̄(t− τ ;κ) (RHS). The smooth-pasting condition
(1.45) ensures that the threshold z̄(t− τ ;κ) is optimally chosen.

Note that the value function looks similar to before, with two major differences. First, the
threshold z̄(t−τ ;κ) is an explicit function of the per-unit adjustment cost κ. Naturally, when
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κ = 0, the threshold function coincides with (1.26). Second, the value function includes a
term that is linear in the adjustment cost. With κ = 0, we retrieve the original value function
in (1.25).

Finally, it is interesting to note that all else equal, firms with high ρ and low λ (which can
be identified as ‘value’ firms) are more sensitive to adjustment cost. Introducing adjustment
cost in the model delays the technological adoption for value firms even more, as the adoption
threshold (1.47) is larger when κ > 0. Corollary 1.4 summarizes this result.

Corollary 1.4. Let z̄κ = ∂z̄(t−τ ;κ)
∂κ

. Then,

1. ∂z̄κ
∂λ

< 0.

2. ∂z̄κ
∂ρ

> 0.

Repeated Exercises

This section relaxes the assumption that firms can adopt the technological frontier once. Let
AT0 be the original technology of a firm, adopted at time T0. The firm is then interested
in finding the optimal stopping time T1 > T0 such that the firm can now operate at AT1 >
AT0 . Instead of receiving perpetual stream of cash flow at AT1 , the firm is revisiting the
original problem, where the firm technology is now AT1 and the firm is interested in finding
the optimal stopping time T2. This problem repeats itself ad infinitum, and thus we can
summarize the adoption policy by a collection of optimal stopping times {Ti : i ≥ 1}.
Note that there is no link between Ti and Ti+2 once we know Ti+1. In other words, the
technological adoptions are independent of each other given the firm’s current technology.
Finally, when a firm adopts the technology, say at Ti, the firm resets the experience curve
with t − τ = Ti − Ti = 0. In addition, note that Aτ = At = ATi such that z = z̄ = 1.
Theorem 1.4 summarizes the results when firms can adopt repeatedly.

Theorem 1.4. Let the function v(t−τ, z) satisfy the partial differential equation (1.18), with
the boundary condition in (1.48), the value-matching condition in (1.49) and the smooth-
pasting condition in (1.50):

lim
Z→0

v(t− τ, z) = ϕ(t− τ), (1.48)

v(t− τ, z̄repeated) = z̄repeatedv(0, 1)− κ, (1.49)

∂

∂z
v(t− τ, z)

∣∣∣∣
z=z̄repeated

= v(0, 1). (1.50)
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In addition, assume that r− g > µA−σAγA > 0. Then the solution v(t− τ, z) is given by

v(t− τ, z) = ϕ(t− τ)

[
1 +

1

α− 1

(
z

z̄repeated

)α]
+

κ

α− 1

(
z

z̄repeated

)α
, (1.51)

where z̄repeated is the solution of

0 =
z̄1−α
repeated

α
+

z̄repeated
z̄(t− τ ;κ)

− 1 (1.52)

and z̄(t− τ ;κ) is given by (1.47).

1.3 Results

Methodology

In this section, I provide a simple calibration exercise in order to evaluate the model quan-
titatively. Panel A of Table 1.1 presents the model parameters for the economy. I choose
the model parameters based on empirical moments and evidence from existing literature. Ai
and Kiku (2016) choose g to be 0.12 in ‘good states’ and −0.11 in ‘bad states’. In my model,
I do not make distinction between good and bad states, and thus setting g = 0.02 is a good
approximation of the average growth rate of the economy. Their volatility is much higher,
ranging from 0.35 to 0.45 in ‘good’ and ‘bad’ states, respectively. I am more conservative in
this regard and pick σ = 0.20, which corresponds to the market volatility. My parameters
are also closer to Campbell and Cochrane (1999), who find that in their sample g = 0.025
and σ = 0.118, and Chen (2010), who chooses g = 0.018 and σ = 0.141. My choice of
frontier technology parameters is motivated by Eisfeldt and Papanikolaou (2013). Eisfeldt
and Papanikolaou (2013) choose σA = 0.11 but set µA = 0.00. I set µA = 0.02, which is a
widely accepted number for the average growth rate for total factor productivity (TFP), and
σA = 0.15. Regarding the stochastic discount factor parameters, I set risk-free rate equal
to 3%, which is approximately the historical average. I follow Eisfeldt and Papanikolaou
(2013) who choose γX = 0.40 and a negative γA = −0.40 but I choose a larger γX = 0.5
in order to match the equity risk premium. In the model, the equity risk premium equals
σγX +σAγA = 5.5%, which is around the historical average of 6%. Moreover, the parameters
satisfy rf + σγX − g > µA− σAγA > 0, which is the stationary condition in order to find the
closed form solution. In particular, the chosen parameters imply α ≈ 1.138 > 1.

I am agnostic about the choice of ρ, λ, τ , and Aτ , and consequently, I will let these
parameters vary in order to generate heterogeneity across firms. I generate heterogeneity
firms by setting three of the four parameters in the set {λi, τi, Aτi , ρi} to the baseline values7,

7Notice that technically, Aτi and τi are dependent on each other. For comparative statics, however, I
treat them as independent variables to isolate the effect. For example, I will fix τi but let Aτi vary and vice
versa.
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while allowing the remaining parameter to take N equal-spaced values between a minimum
and a maximum level, where N is the number of firms. κ is set to 0. Panel B of Table 1.1
displays the parameter values that I use in generating firm heterogeneity.

Table 1.1. Model Parameters

Panel A: Economy

Parameter Value Note

Minimum Maximum Baseline

g − − 0.02 Growth rate of Xt

σX − − 0.2 Volatility of Xt

µA − − 0.04 Frontier technology growth rate
σA − − 0.15 Frontier technology volatility
rf − − 0.03 risk-free rate
γX − − 0.4 price of risk for Xt

γA − − −0.25 price of risk for frontier technology

Panel B: Firm Heterogeneity

λi 0.05 1 0.25 forgetting rate
ρi 0.025 0.975 0.75 learning rate
Aτ,i 0.1 2 1 current technology
τi −10 0 0 previous adoption time
κ − − 0 adjustment cost
T − − unknown optimal stopping time

Notes: This table summarizes the parameter values of the model. Panel A reports the
parameters belonging to the economy and stochastic discount factor. Panel B reports the
parameters that capture firm heterogeneity in the simulation exercise. The baseline value is
used when I fix that parameter across firms. Minimum and Maximum indicate the range of
the firm parameters.

I use the following procedure to evaluate the model. I assume that the firms in the model
can adopt technology repeatedly and thus I am looking for the stationary equilibrium defined
in Theorem 1.4. First, I perform a Monte Carlo simulation consisting of 1000 iterations. To
generate the paths for the stochastic processes Xt, At, I assume that X0 = A0 = 1. For each
iteration, I simulate the model consisting of T = 1000 years with dt = 1

12
. Each time-step in

the simulation corresponds to a single month. I evaluate the model only based on the last
500 years, treating the first 500 years as the ‘burn-in’ sample. The implicit assumption here
is that a period of 500 years is sufficient to obtain a stationary equilibrium. Each iteration
contains N firms that are heterogeneous in their productivity Qit. I calculate the optimal
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stopping time as follows. Since firms can adopt technology repeatedly, the optimal boundary
for each instance is solved numerically according to (1.52). If the threshold is hit, I update
the technology of the firm and reset its experience curve. The firm then solves the same
problem with its updated technology.

Technological Adoptions

Figure 1.2. Technology Threshold for Four Different Firms
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Notes: This figure displays the path of the frontier technology along with the optimal threshold
policies for four different firms in a single simulation after a burn-in period of 500 years. The left
(right) panel shows the policies for firms with a low (high) forgetting rate.

Figure 1.2 shows a possible sample path for four different firms after discarding the burn-
in period. The two firms in the left panel of the figure have rather low forgetting rates
(ρ = 0.25), and we see in this case that both the slow-learning (λ = 0.05) and fast-learning
(λ = 0.95) firms adopt almost at the same time. One may interpret the low forgetting rate
as low adoption cost, which reduces friction to adopt earlier. The firm with a high learning
rate λ also has a lower threshold and therefore adopts technology earlier. Over this period of
500 years, the fast-learning firm adopted 39 times, whereas the slow-learning firm adopted
29 times. Though not obvious from the figure, the slow-learning firm adopted 4 times in
year 132, and 5 times in year 314.

The right panel shows two firms with high forgetting rates (ρ = 0.75), and in this case,
the adoption policies for the two firms differ more from each other. First, we notice that
both firms adopt less. In total, the fast-learning firm adopted 18 times, whereas the slow-
learning firm only adopted 5 times. The increase in organizational forgetting affects the
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slow-learning firm more than the fast-learning firm. Even though technological adoption
reduces experience to 25% of full capacity, a learning rate of λ = 0.95 for a firm implies that
it will be able to reach 71% within a year. To reach 75% (which is equivalent to a forgetting
rate ρ = 0.25 and t− τ = 0) from 25%, only a year and 2 months is needed (t− τ = 1.15).
Thus, despite the high forgetting rate, the fast-learning firm was able to ‘catch up’ relatively
fast. Second, the slow-learning firm with a high forgetting rate is more reluctant to adopt.
For slow-learning firms, the time needed to reach full capacity is much longer and thus the
benefit of adopting the frontier technology is much smaller when the experience curve is reset
at 25% of the full capacity. As a result, it takes much longer for the slow-learning firm to
adopt when the forgetting rate is high.

Figure 1.3 displays the corresponding number of technological adoptions of all twenty
firms that are heterogeneous in the learning rate for the sample path in Figure 1.2. The left
panel displays the number of adoptions when all firms a have low forgetting rate. We see
that many firms adopt in the same month, where large increases in the frontier technology
push many firms into exercising. Furthermore, technological adoptions tend to be clustered.
The right panel shows the results when all firms a have high forgetting rate. We see again the
clustering of technological adoption. Compared to the left panel, however, less technological
thresholds are activated at a given time.

To quantify the degree of clustering, I repeat the Monte Carlo simulation exercises 1000
times for twenty firms which are heterogeneous in the learning rates for three different forget-
ting rates (ρ = 0.25, 0.5, 0.75). For each forgetting rate, I use the same 1000 sample paths.
Figure 1.4 displays the results.

Panel A displays the distribution of the number of technological adoptions across a sim-
ulation period of 500 years after a burn-in period of 500 years. When ρ is low, we see that
there are on average 1283 adoptions for the twenty firms over the period. As the forgetting
rate increases, we see that the average total number of adoptions decreases, dropping to 735
for ρ = 0.5 and 529 for ρ = 0.75. Hence, fixing all other parameters, ρ governs the adoption
frequency.

Panel B displays the distribution of the number of firms that adopt at the same time
(i.e., in the same month) when there is technological adoption in the economy. For ρ = 0.25,
the average number of adoptions is 5.2, while the average numbers are much smaller when ρ
is high (3.0 for ρ = 0.5 and 2.2 for ρ = 0.25). I measure the degree of clustering by looking at
the number of firms adopting simultaneously when there is clustering. Clustering is defined
when at least 2 firms adopt simultaneously. Focusing on ρ = 0.25, we see that 6.8 firms
adopt when there is clustering. This is equivalent to 34% of all firms adopting. The number
of clusters decreases as ρ increases, though the average is always larger than 3.

Finally, Panel C of Figure 1.4 reports the number of adoption dates. An adoption date is
defined as a month where at least one firm exercises. First, we see that the average number
of adoption dates is more or less the same at around 244 across all forgetting rates. This
suggests that ρ does not affect the number of adoption dates and that on average 4% of 500
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Figure 1.3. Number of Technological Adoptions
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Notes: This figure displays the number of technological adoptions after a burn-in period of 500
years for the sample path displayed in Figure 1.2. In both panels, I generate twenty firms with the
baseline values where heterogeneity is in the learning rate. Firms in the left (right) panel have a
low (high) forgetting rate. The dotted line indicates a single adoption for each period.

years were adoption dates. Second, the number of adoptions dates for clusters decreases as ρ
increases. This is not surprising, as a higher ρ implies that firms adopt less often (especially
for firms with low λ), leading to a lower number of firms adopting at the same time.

Comparative Statics

Figure 1.5 studies the comparative statics of the model. For each of the four panels, I study
the optimal stopping time as a function of λ, ρ, τ, Aτ . I calculate the 95% confidence interval
of the average optimal stopping time using 1000 Monte Carlo simulations.

In the top left panel, the optimal stopping time is decreasing in the speed of learning.
For the firms with the lowest learning rates, it takes on average 40 years to adopt. For
fast-learning firms, the adoption cycle is roughly 12.9 years. Overall, fast-learning firms
tolerate the drop in experience more easily, as they can build up experience faster and adopt
technology earlier and more frequently compared to firms with low learning rates.

The top right panel shows that optimal stopping time is increasing in forgetting rate,
holding the other parameters constant. The adoption cycle ranges from 2.2 years for ρ =
0.025 to 30.7 years for ρ = 0.975. Recall that a high ρ indicates a large loss in experience after
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Figure 1.4. Clustering of Adoptions
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Notes: This figure displays the distribution of the total number of adoptions (panel A), the average
number of adoptions per adoption date (Panel B), and the number of adoption dates (panel C)
for 1000 Monte Carlo simulations. For each simulation, I generate 20 firms heterogeneous in λ for
a simulation period of 500 years after a burn-in period of 500 years. ‘Clustered’ indicates that at
least two firms exercise simultaneously. Adoption date is defined as a month where at least one
firm exercises.
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Figure 1.5. Optimal Stopping Time
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Notes: This figure plots the optimal stopping time as a function of learning rate λ,
forgetting rate ρ, current technology Aτ (fixing At = 1), and current experience t − τ .
For each panel, I let one parameter vary according to Panel B in Table 1.1 while fixing
the remaining three parameters according to the baseline values. I generate twenty firms
varying across this parameter and simulate the model until all firms have adopted the
technology once. I repeat this exercise a 1000 times and plot the estimated optimal
stopping time along with its 95% confidence interval.
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adopting the frontier technology. In other words, the accumulated experience associated with
the firm’s previous technology becomes more obsolete the higher ρ is. Thus, firms with high
ρ tend to postpone technological adoption, compared to firms that have low organizational
forgetting.

The bottom left panel in Figure 1.5 shows that optimal stopping time is non-decreasing
in the level of the firm’s technology. Note that the baseline technology level is 1 and the
frontier technology At is set at 1. For this exercise, the technology level varies from 0.1 to
2 with an increment of 0.1. The results show that firms with obsolete technology (i.e., low
Aτ ) find it optimal to adopt the frontier technology immediately and that the benefits from
immediate adoption outweigh the benefits from gaining productivity through the experience
curve with the current technology. Specifically, for Aτ < 0.75 it is never optimal to build
experience.

Finally, the bottom right panel shows that the optimal stopping time is increasing in the
age of the firm’s current technology. A firm that has 10 more years of experience on average
delays technological adoption by 2.9 years. Note that after 2 years of experience the optimal
stopping time T is almost flat in the current experience.

Asset Pricing Implications

In the model, the excess return of a firm varies if dWX
t or dWA

t changes. Since all firms
load equally on dWX

t , only changes in dWA
t explain the variation of returns across firms. To

study how well the model can explain the size and value premium, I look at the cross-section
of firms sorted on their market value (which captures the size effect) or the price-to-earnings
ratio (P/E ratio) (which captures the value effect). In the model, the market value is simply
captured by the value function V . On the other hand, the P/E ratio is the ratio of the
market value of the firm to the generated cash flow:

PE =
V (Xt, Aτ , At, t− τ)

Yt
=
v(t− τ, At

Aτ
)

Et−τ
. (1.53)

The price-to-earnings-ratio is thus determined by the ratio of the price (v) and the experience
curve (E). In the model, earnings (or output flows) are larger the higher the experience is.
This captures the empirical observation that mature firms have higher earnings than startups
or firms in a growth stage. On the other hand, mature firms grow slower as the experience
is almost at full capacity. Firms that grow faster have higher adoption rates because their
adoption thresholds are lower.

Intuitively, as λ increases or ρ decreases, I observe that both price and experience increase,
and thus the relationship between the learning parameters and the P/E ratio is unclear at



CHAPTER 1. LEARNING-BY-DOING, TECHNOLOGICAL ADOPTION, AND THE
CROSS-SECTION OF EXPECTED RETURNS 28

first sight. However, further simplifying the expression for the P/E ratio gives

PE (a, t− τ, Aτ ) =

1
r−g −

ρ
r−g+λe

−λ(t−τ)

1− ρe−λ(t−τ)

[
1 +

(
1

α− 1

)(
a

ārepeated

)α]
, (1.54)

where ārepeated = Aτ z̄repeated, and z̄repeated is defined in (1.52).
It can be shown numerically that the P/E ratio is hump-shaped in λ. That is, the P/E

ratio is increasing for low λ but decreasing for high λ. The degree of humpedness depends
on ρ. In particular, it is more humped for ρ→ 1 and less humped for ρ→ 0. Furthermore,
the P/E ratio is increasing in ρ fixing λ.

Figure 1.6. Portfolio Sorts
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Notes: I generate 100 firms of different (λi, ρi) and simulate the model 1000 times. For
each simulation, I generate 1000 years where firms can adopt the frontier technology
repeatedly. The first 500 years are dropped. I then form 10 value-weighted portfolios
sorted by either the price-to-earnings ratio (left panel) or the market capitalization of the
firms (right panel). 95% confidence interval is shown for the mean of the (annualized)
portfolio returns over the risk-free rate.

To study how the model relates to the size and value premium, I generate 10× 10 firms
heterogeneous in (λi, ρi). These firms are then sorted on either size or price to earnings
ratio to form 10 value-weighted portfolios. Figure 1.6 displays the annualized returns of
the portfolios. The left panel shows that firms with a high price-to-earnings ratio generate
lower returns (7.24%) compared to firms with a low price-to-earnings ratio (8.29%). The
return difference between the bottom and top decile portfolios is 1.05% and significantly
different from 0. This result resonates with the empirical observation that growth firms
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earn lower returns than value firms. The right panel displays portfolio returns sorted by
the market value. The top decile, which represents the largest firms, earns 7.25% while the
bottom decile, which represents the smallest firms, earns 7.87%. The size premium is 0.65%
and is statistically significant at the 5% confidence interval. In the model, large firms have
higher technology and thus coincide with growth firms. Overall, we see that the model can
reproduce both the value premium and the size premium.

Finally, to contrast the model with the traditional CAPM model, I discuss what these
results imply for the market beta. Recall that

E[Ri − rf ] = βi,X E[RX − rf ] + βi,A E[RA − rf ],
where βi,X = 1 for all firms. If we let wi = Vi∑N

i Vi
denote the market weight of firm i, where

Vi is the value function of firm i, then the market risk premium is given by

E[RM − rf ] = E[RX − rf ] +
∑
i

wiβi,A E[RA − rf ].

Define βA =
∑

iwiβi,A as the value-weighted technology beta. Combining both equations
yields

E[Ri − rf ] = E[RM − rf ] + (βi,A − βA)E[RA − rf ]. (1.55)

Since E[RA − rf ] < 0, an asset i with βi,A less than the value-weighted βA earns on average
a higher risk premium. Furthermore, (1.55) implies that the market beta is one for all
firms, and thus the market beta cannot explain the cross-section of expected returns. The
variations in Figure 1.6 are therefore due to variations in βA and βi,A, which in itself depend
on the realization of the technology shocks.

1.4 Conclusion

I introduce a partial equilibrium in which firms can adopt the frontier technology. Firms
are heterogeneous in their productivity. I find that firms with obsolete technology, little
experience, low forgetting rates, or high learning rates are more exposed to shocks to frontier
technology. Moreover, its asset composition loads relatively more on growth options. If
shocks to frontier technology bear a negative price of risk, then these firms have relatively
low expected returns. In the simulation exercise, I verify that these firms are early-adopters,
and are best described as ‘growth’ firms. Moreover, I find that the model can match both
the size and value premium.

A future direction would be to endogenize the stochastic discount factor by introducing
households, who supply labor to the firms, and an investment sector where the capital
market clears. The model also makes several empirical predictions. One potential question
is whether we can measure both the organizational forgetting rates and learning rates at the
firm level and link them to asset returns. I leave these questions for future research.
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Chapter 2

The Conditional Idiosyncratic
Volatility Premium

2.1 Introduction

I revisit the puzzle that idiosyncratic volatility and future returns are negatively related, first
documented in a series of influential papers by Ang, Hodrick, Xing, and Zhang (2006, 2009),
henceforth abbreviated as AHXZ. This result has both been disputed (e.g., Bali and Cakici
(2008)) and supported by subsequent studies (e.g., Chen and Petkova (2012)). By contrast,
I show that there is a clear relation between idiosyncratic volatility and future returns once
we account for the sign of the market return.

Specifically, idiosyncratic volatility and future returns are positively related if the current
market return is positive and negatively related if the current market return is negative. This
relation holds when idiosyncratic volatility is measured at the daily or monthly frequency
and various horizons, for portfolios constructed using both the value- and equal-weighting
schemes, and for various breakpoint specifications. Moreover, the relation holds after con-
trolling for size, book-to-market ratio, short-term reversals, lottery-like properties, liquidity,
and factor loadings, for individual stocks and test portfolios, including the 25 size and book-
to-market portfolios and the 10 industry portfolios classified by Fama and French.

Figure 2.1 summarizes the main findings. I estimate the idiosyncratic volatility for all
stocks relative to the Fama-French three-factor (FF-3) model using the past 12 months of
daily returns from 1927 to 2018. I sort stocks into one of twenty idiosyncratic-volatility-
ventile value- and equal-weighted portfolios. I then estimate the full-sample idiosyncratic
volatility (relative to FF-3) and plot the average excess returns for each portfolio, separately
for periods following positive market returns (blue circles), periods following negative market
returns (red crosses), and unconditional on the market sign (grey squares).

Figure 2.1 shows that idiosyncratic volatility and average returns are positively related
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Figure 2.1. Post-Formation Idiosyncratic Volatility
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Notes: This figure plots the average monthly excess returns for value- and equal-weighted ventile
portfolios. For each month, I sort stocks into ventiles based on the idiosyncratic volatility, estimated
using the past 12 months of daily return data relative to the FF-3 model. Returns are calculated
across the sample (unconditional), across the sub-samples following months with positive and
negative market excess returns (conditional on a positive and negative sign, respectively). The
sample period is from July 1927 to December 2018.

conditional on positive market returns. This result holds both for the value- and equal-
weighted constructed portfolios. The differential returns between the extreme value- and
equal-weighted portfolios are 0.89% and 3.01%, respectively. By contrast, the relation be-
tween idiosyncratic volatility and average returns is strongly negative conditional on nega-
tive market returns. The differential returns between the extreme value- and equal-weighted
portfolios are -2.90% and -1.31%, respectively. I contrast these results with the uncon-
ditional results, which suggest a negative (value-weighted portfolios) or positive relation
(equal-weighted portfolios) between idiosyncratic volatility and average returns.

To quantify the differences in conditional returns, I follow Savor and Wilson (2014) and
Hendershott, Livdan, and Rösch (2019) closely and estimate the price of risk directly using
both the Fama and MacBeth (1973) regressions and panel regressions. I show that the price
of idiosyncratic risk is significantly positive following months with positive market returns,
and significantly negative following months with negative market returns. An increase of 1%
in monthly idiosyncratic volatility leads to an increase of 0.10% and a decrease of 0.08% in
future monthly returns for individual stocks conditional on an up-market and down-market,
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respectively. This result is after controlling for firm characteristics, factor loadings, and past
returns.

To test whether the conditional relation between idiosyncratic volatility and expected
returns is captured by existing factors, I sort stocks on the product of the market sign
and the idiosyncratic volatility stocks, which I label as the Signed Idiosyncratic Volatility
(SIV). Using SIV as a ranker, high idiosyncratic volatility stocks are ranked high when the
market return is positive but low when the market return is negative. My results show that
the relationship is not captured by existing pricing factors. Taking a long position in the
top decile and a short position in the bottom decile of stocks sorted by the SIV produces
a significant risk-adjusted return of 1.36% and 1.82% for the value- and equal-weighted
portfolios, respectively.

I employ a series of robustness checks to verify these results. I show that the results are
robust to the exact specification and horizon used to estimate idiosyncratic volatility. More-
over, the effect holds during NBER recessions and expansions, during different subsamples,
and during periods with different levels of market volatility. I also limit the construction of
the SIV portfolios to a subset of the largest firms and show the results continue to hold. The
market sign also predicts the relation at the daily frequency and the relation between the
ratio of idiosyncratic volatility to total volatility and future returns.

To capture these facts, I present a model featuring two types of agents: extrapolators
and market-segmented but rational agents. The extrapolators’ expectation of the future
market return is aligned with its past realization, rendering these agents’ demands for sys-
tematic risk positive following positive market returns, and negative otherwise. Importantly,
idiosyncratic volatility weakens the effect of market expectations on the demands for individ-
ual securities. As a consequence, the demand functions of the extrapolators are decreasing
in idiosyncratic volatility when they are optimistic and increasing in idiosyncratic volatility
when they are pessimistic. Due to the under-diversification of the market-segmented agents,
high idiosyncratic volatility earns a high (low) return when extrapolators are optimistic
(pessimistic). I calibrate the model quantitatively and show that it matches the size of the
realized alphas in the data.

My results shed new light on the relation between idiosyncratic risk and expected re-
turns. Understanding this relation is a central issue in asset pricing. Classical finance theory
predicts that idiosyncratic risk should not be priced because it can be fully diversified away.
Models with incomplete risk sharing predict a positive relation, as these models imply that
agents hold under-diversified portfolios and therefore require additional compensation for
bearing idiosyncratic risk (Merton (1987)). On the other hand, Miller (1977) argues that
sentiments affect mispricing and that stock prices reflect optimistic agents’ valuation. More
precisely, assets with high idiosyncratic risk are more sensitive to the effect of divergence of
opinion. As a result, risky assets tend to be overpriced and earn lower future returns.

So far, the empirical results on the relation have been mixed. Supportive of the arguments
in Merton (1987), Malkiel and Xu (2002) find a positive relation between idiosyncratic risk
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and expected returns. Similarly, Goyal and Santa-Clara (2003) document that the average
volatility risk, which is mostly driven by idiosyncratic risk, positively predicts future monthly
returns. Bali, Cakici, Yan, and Zhang (2005) dispute their results, however, and show that
the relationship does not hold for the extended sample (when the years 2000 and 2001 are
included), nor for a subset of firms (e.g., NYSE stocks only). Others have tried to replicate
AHXZ’s results. Bali and Cakici (2008) find that (i) measuring idiosyncratic risk at the
monthly frequency, (ii) constructing idiosyncratic volatility portfolios using equal weights,
and (iii) using alternative breakpoints to sort stocks into portfolios can lead to different
conclusions. Fu (2009) and Huang, Liu, Rhee, and Zhang (2010) provide evidence that their
results are driven by short-term reversals. They show that high idiosyncratic volatilities
are contemporaneously high realized returns that reverse in the following month. Once
the short-term reversals are accounted for, they find that idiosyncratic volatilities and future
returns are positively related. Others suggest that the negative relation between idiosyncratic
volatility and future returns diminishes after controlling for earning shocks (Jiang, Xu, and
Yao (2009)) and illiquidity bias (Han and Lesmond (2011)).

Further evidence supporting AHXZ’s claim that idiosyncratic risk and expected returns
are negatively related has also been provided. For example, Cao and Han (2013) document
that the relation exists for options. Chen and Petkova (2012) show that high idiosyncratic
volatility stocks have high exposure to innovations in average stock variance. They argue
that because average stock variance carries a negative risk premium, idiosyncratic risk and
expected returns should be negatively related. Herskovic, Kelly, Lustig, and Van Nieuwer-
burgh (2016) document that a negative relationship exists at the firm level and connect it
to income risk.

Existing studies also suggest that idiosyncratic volatility stocks have lottery-like return
properties. For example, Bali, Cakici, and Whitelaw (2011) show that high idiosyncratic
volatility stocks exhibit extreme positive returns. They suggest that investors are willing
to pay more for these stocks, which in turn leads to lower future returns. Boyer, Mitton,
and Vorkink (2010) document that expected skewness can explain the negative relation
between idiosyncratic volatility and expected returns. Han and Kumar (2013) document that
idiosyncratic volatility stocks attract speculative retail investors and that high idiosyncratic
volatility stocks have high retail trading proportions.

In a recent paper, Hou and Loh (2016) compare many of the candidate explanations for
the negative relation between idiosyncratic volatility and expected returns. They show that
a majority of the explanations account for less than 10% of the relation. While they show
that the explanations based on lottery preference show some promise, they conclude that ‘a
significant portion of the puzzle remains unexplained.’

In contrast to the aforementioned papers, I document a conditional relation between
idiosyncratic volatility and expected returns. My paper is not the first to document a
conditional relation between idiosyncratic volatility and expected returns. For example,
Boehme, Danielsen, Kumar, and Sorescu (2009) show that the relation between idiosyncratic
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volatility and expected returns is positive for stocks with low visibility (i.e., stocks with
low institutional ownership), while Duan, Hu, and McLean (2010) provide evidence that
idiosyncratic volatility and expected returns are negatively related for stocks with high short
interest. Moreover, Stambaugh, Yu, and Yuan (2015) and Cao and Han (2016) document
that average returns increase in idiosyncratic volatility for undervalued stocks but decrease
in idiosyncratic volatility for overvalued stocks.

The results of this paper rely on making a key distinction between idiosyncratic volatility
during positive market returns and idiosyncratic volatility during negative market returns.
The paper most related to mine in this regard is Segal, Shaliastovich, and Yaron (2015).
They decompose macroeconomic uncertainty into ‘good’ and ‘bad’ volatility components
and show that the sign of the market price of risk for good (bad) uncertainty is positive
(negative). The price of idiosyncratic volatility risk, documented in this paper, has a similar
property and depends on whether we are in a ‘good’ or ‘bad’ state, characterized by the
sign of the market excess return. Specifically, high idiosyncratic volatility stocks earn higher
returns following ‘good’ states and lower returns following ‘bad’ states.

Finally, this paper is also related to investor sentiments and expected returns. Supportive
of the arguments in Miller (1977), Baker and Wurgler (2006) document that sentiments
predict the relation between risk and returns. High volatility stocks earn relatively low
(high) subsequent returns when sentiment is high (low). Similarly, Shen, Yu, and Zhao
(2017) show that high macro risk firms earn high returns conditional on low-sentiments and
low returns conditional on high-sentiments. Hong and Sraer (2016) show that high beta
stocks are more prone to mispricing. If I take the sign of the market return as a proxy of
investor sentiment, then my finding suggests the opposite results.

The rest of the paper is organized as follows. Section 2.2 describes the data. Section
2.3 presents the main results. Section 2.4 presents a series of robustness checks. Section
2.5 introduces a model to capture the empirical facts. Section 2.6 concludes. Appendix
B.1 contains additional figures, Appendix B.2 provides additional tables, and Appendix B.3
contains all proofs.

2.2 Data

The stock return data are from the Center for Research in Security Prices (CRSP) at the
daily frequency. The sample ranges from 1926 April to December 2018. The CRSP universe
includes NYSE stocks, Amex stocks starting in January 1963, and Nasdaq stocks starting in
January 1973. Only shares identified as common stocks traded on these three exchanges are
included in the final dataset. Prices and the number of outstanding shares are adjusted for
mergers, stock splits, and dividends. Because each firm (PERMCO) may have multiple types
of securities (PERMNO), I only include the security with the largest market capitalization.
Market equity of a stock is calculated as the total market capitalization at the firm level.
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Only stocks with strictly positive market equity are included. I also apply the following filter
to exclude (potential) outliers and penny stocks. A stock has to appear at least 17 times per
month, 51 times per quarter, and 200 times per year to be included in the final table.1 The
final table has 69, 410, 426 rows, and the number of stocks per month varies from roughly
1000 stocks before the inclusion of Amex in 1963 to over 7000 stocks before the dot-com
bubble in 2000.

Balance sheets data at the firm level are available from the Standard and Poor’s Com-
pustat database. The sample ranges from August 1950 to December 2018 and is populated
at the monthly frequency. The most recent quarterly or annual data item is used, whichever
is first available at a given month. All balance sheets data are lagged by 2 months to avoid
any look-ahead bias before merging with the stock return data. Following Fama and French
(1993), I define book equity as the value of shareholder’s equity, plus balance-sheet deferred
taxes and investment credit (if available), minus the book value of preferred stock. I esti-
mate the value of preferred stock by the redemption, liquidation, or par value (in that order)
depending on availability. Only firms with strictly positive book equity are included. The
book-to-market ratio is calculated as the ratio between the (2-month lagged) book equity
and market equity. The final table has 2, 688, 416 rows.

Pricing factors both at the daily and monthly frequency are obtained from the Ken
French’s data library and the AQR’s webpage.2 The list of factors obtained from Ken
French’s data library includes the Fama French 3 (FF-3) factors, the Fama French 5 (FF-5)
factors, momentum (MOM), short-term reversal (STR), long-term reversal (LTR), and the
one-month Treasury-bill rate. Most of these factors are available starting in the year of
1926, except for MOM and FF-5, which are available starting in March 1930 and July 1963,
respectively. Betting against beta factor (BAB), obtained from the AQR’s webpage, starts
in December 1930. Recession data points are obtained from the NBER.

I estimate idiosyncratic volatility as the standard deviation of the residuals relative the
FF-3 model using the past H = 12 months of daily returns. Specifically, I run the following
regression at the end of each month for each asset:

ri,t − rf,t = αi + βiMKTt + siSMBt + hiHMLt + εi,t, (2.1)

where rf,t is the daily Treasury bill rate, MKTt is the daily market excess return, SMBt is
the daily small-minus-big factor, and HMLt is the daily high-minus-low factor, and βi, si and
hi are the corresponding loadings. I define the square root of the variance of the residuals
εi,t in equation (2.1) as the idiosyncratic volatility (IV ) of asset i for that particular month.
When I refer to IV , I mean idiosyncratic volatility relative to the FF-3 model estimated

1An adjustment is made for the year of 2001, when the stock exchanges were closed for 4 days from
September 11 to September 15 following the 9/11 attack.

2Ken French’s data library: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.
html and the AQR’s webpage: https://www.aqr.com/Insights/Datasets.
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with the past H = 12 months of daily return data, unless mentioned otherwise. I consider
alternative ways to construct idiosyncratic volatilities in Section 2.4.

The sign of the market at a given month is defined as:

1t =

{
1, if rM,t − rf,t ≥ 0,

−1, otherwise.
(2.2)

I estimate reM,t = rM,t − rf,t in two different ways. First, I use daily market excess return
(the daily MKT factor) and calculate the average for the given month. Second, I use the
monthly market excess return (the monthly MKT factor). Both lead to the same results. I
report the results using the daily market excess return in the main text.3

I now revisit the negative relation between idiosyncratic volatility and future returns
documented in AHXZ, which I refer to as the unconditional idiosyncratic volatility (UIV)
puzzle. AHXZ document this relation when portfolios are formed with the value-weighting
scheme. However, Bali and Cakici (2008) show that AHXZ’s results are not robust: (i) the
weighting scheme adopted for generating average portfolio returns, (ii) the breakpoints used
to sort stocks in the portfolios and (iii) the data frequency (daily or monthly) used to
calculate idiosyncratic volatility all affect the cross-sectional relation between idiosyncratic
volatility and expected returns. In particular, the relation between idiosyncratic volatility
and expected returns is flat or even positive when portfolios are formed using equal weights.
For this reason, I report all subsequent results related to the idiosyncratic volatility portfolios
using both weighting schemes.

I form the UIV portfolios as follows. At the end of each month, I rank stocks according to
its estimated (i.e., pre-formation) idiosyncratic volatilities to form the next-month buy-and-
hold portfolios using both the value- and equal-weighting schemes. Following AHXZ, I use
the CRSP universe to determine the breakpoints for each portfolio. Alternative breakpoint
schemes are considered in Section 2.4. I then decompose the UIV portfolios by conditioning
on the market sign from the previous month. In total, I report (i) the sample average
returns and the average returns in the two samples that are conditioned on the (ii) positive
and (iii) negative lagged market sign.

2.3 Empirical Results

I first decompose the returns of idiosyncratic volatility stocks and document that the returns
following months with up-market differ from the returns following months with down-market.
Next, I show that the price of idiosyncratic volatility conditional on the lagged market returns
is priced. Using these insights, I form a new idiosyncratic volatility strategy by conditioning
on the lagged market sign and show that it delivers consistent returns over the full sample.

3Alternatively, I used total daily market returns and total monthly market returns to obtain the sign of
the market. My results are robust to these alternative specifications.
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Decomposition of Idiosyncratic Volatility Returns

Portfolio characteristics

Table 2.1 presents characteristics of idiosyncratic-volatility-sorted portfolios. Panel A shows
the results for the value-weighted portfolios. The first two columns report the mean and
standard deviation of the monthly total portfolio returns. The next three columns report
the firm characteristics of the assets in each portfolio. The last four columns report estimates
from the FF-3 regressions. The pre-formation results are the average estimates from equation
(2.1) over the whole sample, where each regression for each month is estimated using the last
12 months of daily data. The post-formation estimates are obtained from a single regression
over the time-series of the constructed portfolio returns. Because the portfolios are sorted
on the pre-ranked idiosyncratic volatility, it is unsurprising to see a monotonic increase in
the pre-formation idiosyncratic volatility (1.11% to 5.07% for the unconditional case). The
idiosyncratic volatilities are reported in daily frequency (monthly idiosyncratic volatility is
this number multiplied by the average number of trading days per month).

The main findings are reported in the first two sets of results in Panel A of Table 2.1.
These results present the summary statistics following a positive and negative market sign
(from the previous month). Following months with a positive market sign, average returns
increase monotonically from 1.11% per month (for quintile 1, which are low idiosyncratic
volatility stocks) to 1.81% per month (for quintile 5, which are high idiosyncratic volatility
stocks). This return difference is positive at 0.70% per month. Following months with a
negative market sign, the average returns decrease monotonically from 0.62% per month for
quintile 1 to −1.42% per month for quintile 5, resulting in a return difference of −2.04% per
month between high and low idiosyncratic volatility portfolios.

The third set of results reports the portfolios sorted on idiosyncratic volatility, without
conditioning on any variable. The pattern in the average returns is similar to the pattern
observed by AHXZ. The average returns start at 0.92% for portfolio 1, then increase to 1.02%
for portfolio 2 before falling sharply to 0.55% for portfolio 5. This hump-shaped relationship
between idiosyncratic volatility and average returns is also documented in AHXZ. Moreover,
the return difference between quintile portfolios 5 and 1 is −0.37%, which is negative, thus
confirming the UIV puzzle. The return difference is smaller than the number reported by
AHXZ (−1.06%). This is primarily due to two reasons. First, their sample period is from
July 1963 to December 2000. Second, they estimate idiosyncratic volatility using only the
past month of daily data. In the next section, I replicate their exercise and show that their
results are completely driven by the returns conditional on negative market returns.

Table 2.1 shows that the pattern found by AHXZ is part of a bigger conditional idiosyn-
cratic volatility puzzle. We can calculate the average unconditional returns as the weighted
average of the two conditional returns. For example, the average return of the uncondi-
tional portfolio 5, 0.55%, is calculated as the weighted average of the conditional returns,
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Table 2.1. Portfolios Sorted by Idiosyncratic Volatility, Unconditional and Conditional

Panel A: Value-Weighted Portfolios

Returns in % Firm Characteristics Regression Estimates

Std. % Mkt. Pre-Formation Post-Formation
Rank Mean Dev. Share size B/M Beta IV Beta IV

Conditional on Positive Lagged Market Sign (p̂ = 0.61)
1 1.11 4.62 66.65 8.11 0.55 0.94 1.09 0.93 0.72
2 1.41 6.39 20.22 6.64 0.66 1.10 1.73 1.19 1.31
3 1.62 7.49 8.53 5.79 0.60 1.26 2.32 1.31 1.99
4 1.68 8.22 3.50 5.01 0.66 1.34 3.13 1.30 2.69
5 1.81 9.64 1.10 4.14 0.96 1.30 4.99 1.20 4.39

Conditional on Negative Lagged Market Sign (p̂ = 0.39)
1 0.62 5.37 65.84 7.94 0.57 0.93 1.14 0.93 0.82
2 0.40 7.00 20.54 6.46 0.59 1.10 1.81 1.14 1.26
3 0.02 8.39 8.87 5.60 0.61 1.25 2.42 1.26 1.97
4 −0.56 9.37 3.61 4.82 0.66 1.32 3.25 1.24 3.03
5 −1.42 10.37 1.14 4.01 0.88 1.27 5.20 1.19 4.90

Unconditional
1 0.92 4.92 66.38 8.04 0.56 0.94 1.11 0.93 0.76
2 1.02 6.65 20.33 6.57 0.63 1.10 1.76 1.16 1.30
3 1.00 7.89 8.64 5.72 0.60 1.25 2.36 1.28 1.99
4 0.81 8.75 3.54 4.94 0.66 1.33 3.17 1.27 2.84
5 0.55 10.05 1.11 4.09 0.92 1.28 5.07 1.19 4.62

(continued)

i.e., 0.61 × 1.81% + 0.39 × −1.42%. The fact that high idiosyncratic volatility stocks earn
low returns is entirely driven by the average returns conditional on the negative market sign.
The hump-shaped relationship in the unconditional returns is no longer surprising. Since
the average returns are increasing in idiosyncratic volatility following positive months and
decreasing vice versa, it is possible that the maximum of the average unconditional return
is meeting halfway there, thus generating the hump-shaped relation between idiosyncratic
volatility and expected returns.

Panel B of Table 2.1 reports the results for the equal-weighted portfolios. The first two
sets of results document the average returns conditional on the lagged market sign. The
results tell the same story. Following positive months, the average returns increase mono-
tonically from 1.42% for portfolio 1 to 3.26% for portfolio 5, generating a return difference
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Table 2.1.–Continued

Panel B: Equal-Weighted Portfolios

Returns in % Firm Characteristics Regression Estimates

Std. % Mkt. Pre-Formation Post-Formation
Rank Mean Dev. Share Size B/M Beta IV Beta IV

Conditional on Positive Lagged Market Sign (p̂ = 0.61)
1 1.42 4.42 66.65 5.62 0.78 0.70 1.19 0.77 1.23
2 1.75 5.83 20.22 4.71 1.08 0.88 1.78 0.95 1.24
3 2.05 7.21 8.53 4.02 0.80 1.00 2.37 1.11 1.40
4 2.30 8.69 3.50 3.34 0.88 1.07 3.20 1.19 2.03
5 3.26 11.28 1.10 2.32 1.12 1.01 5.60 1.18 4.73

Conditional on Negative Lagged Market Sign (p̂ = 0.39)
1 0.49 5.07 65.84 5.36 0.83 0.68 1.23 0.81 1.42
2 0.31 6.62 20.54 4.50 0.82 0.88 1.85 1.00 1.48
3 −0.07 7.66 8.87 3.80 0.83 1.01 2.47 1.09 1.34
4 −0.58 8.69 3.61 3.12 0.88 1.07 3.32 1.14 1.90
5 −0.99 10.53 1.14 2.14 1.03 1.02 5.70 1.08 4.00

Unconditional
1 1.06 4.70 66.38 5.52 0.80 0.69 1.21 0.79 1.32
2 1.19 6.18 20.33 4.63 0.98 0.88 1.81 0.98 1.35
3 1.23 7.46 8.64 3.93 0.81 1.00 2.41 1.11 1.39
4 1.18 8.80 3.54 3.26 0.88 1.07 3.25 1.17 2.03
5 1.61 11.18 1.11 2.25 1.09 1.01 5.64 1.13 4.52

Notes: This table reports summary statistics related to value- (Panel A) and equal-weighted
(Panel B) quintile portfolios. For each month, I sort stocks into quintiles based on the idiosyn-
cratic volatility (IV), estimated using the past 12 months of daily data relative to the FF-3
model. Rank 1 (5) refers to the portfolio containing the 20% smallest (largest) IV stocks. The
statistics labeled Mean and Std. Dev. refer to the average and standard deviation of the total,
not excess, monthly returns in percentage. % Mkt. Share is the simple average market share of
the firms within the portfolio. Size and B/M refer to the weighted-average log market capital-
ization and book-to-market of the firms within the portfolio, respectively. Pre-formation Beta
and IV refer to the average market beta and IV estimated in the FF-3 regression at the end of
each month. The Post-Formation Beta and IV refer to the full (sub-) sample beta and IV of
the portfolios, by running a time-series regression on the FF-3 model. The IVs are reported in
daily percentage terms. p̂ is the fraction of months with positive (or negative) market returns
in the full sample. The sample period is from July 1927 to December 2018. The statistics for
B/M is calculated for the period from August 1950 to December 2018.
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of 1.84% per month. Following negative months, we see the exact opposite. Average re-
turns start at 0.49% for the low idiosyncratic volatility stocks and fall to −0.99% for high
idiosyncratic volatility stocks. This difference is −1.48%. The next set of results documents
the average unconditional returns. The average returns start at 1.06% for portfolio 1, then
increase to 1.23% for portfolio 3, then fall to 1.18% before increasing to 1.61% for portfolio
5. More interestingly, the relation is fully explained by the conditional returns. The re-
turn difference between portfolio 5 and 1 for the equal-weighted portfolios (1.84%) is also
much larger than the return difference for the value-weighted portfolios (0.70%) conditional
on positive market sign. Conditional on a negative market sign, the return differences for
the value- (−2.04%) and equal-weighted portfolios (−1.48%) are closer to each other. This
explains why the results in Bali and Cakici (2008) are different from AHXZ.

The next three columns in Table 2.1 document the firm characteristics. Portfolio 1
contains as much as two-thirds of all market capitalization in the CRSP universe, whereas
portfolio 5 contains slightly more than 1%. This suggests that small stocks tend to be high id-
iosyncratic volatility stocks. Unsurprisingly, the level in size across the equal-weighted port-
folios is much smaller than across the value-weighted portfolios because the equal-weighted
portfolios overweight the smaller stocks. High idiosyncratic volatility stocks tend to be value
stocks (i.e., high B/M stock), though the relation between idiosyncratic volatility and book
to market is not monotonously increasing. The next two columns under regression estimates
show the pre-formation estimates. High idiosyncratic volatility is associated with high mar-
ket beta. To demonstrate that idiosyncratic volatility can explain the cross-sectional of
(conditional) expected returns, the post-formation idiosyncratic volatility needs to show a
sufficient spread across the portfolios. The last two columns show the post-formation es-
timates for the βs and IVs. These estimates are constructed over the entire sample (or
subsample for the conditional returns) at the monthly frequency by estimating the post-
formation regression using equation (2.1) for each time-series of the constructed portfolio
excess returns. The ex-post idiosyncratic volatility is monotonically increasing in all cases.
Moreover, the post-formation betas exhibit similar patterns as the pre-formation betas.

Comparison with AHXZ and Bali and Cakici (2008)

To compare my results with AHXZ and Bali and Cakici (2008) directly, I replicate their
results exactly by following their methodology. First, I use the same sample period in AHXZ,
which overlaps 91% with the sample period used in Bali and Cakici (2008) (July 1963 to
December 2004). The number of months with positive market returns over this period is 260,
which represents 55.3% of the whole sample. Second, I estimate the idiosyncratic volatility
using the past month of daily data. Table 2.2 reports the average returns.

The return difference between portfolios 5 and 1 for the unconditional returns for the
value-weighted portfolio is (−1.11%), which is very close to the one reported in AHXZ
(−1.06%). In addition, the unconditional return difference is −0.08% compared to 0.02% in
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Table 2.2. Average Portfolio Monthly Returns for July 1963 to December 2000 (AHXZ sample)

Equal-Weighted Portfolio Value-Weighted Portfolio

Cond. on Cond. on Uncond. Cond. on Cond. on Uncond.
Rank Positive Sign Negative Sign Positive Sign Negative Sign

1 1.91 0.11 1.15 1.27 0.75 1.05
2 2.23 0.19 1.37 1.41 0.73 1.13
3 2.44 −0.09 1.38 1.65 0.44 1.14
4 2.55 −0.62 1.21 1.57 −0.24 0.81
5 2.92 −1.45 1.07 1.13 −1.68 −0.05

5− 1 1.01 −1.56 −0.07 −0.14 −2.44 −1.11
(0.39) (0.48) (0.31) (0.37) (0.49) (0.30)

Freq. 260 190 470 260 190 470

Notes: This table reports the average monthly returns for value- and equal-weighted quintile portfo-
lios. For each month, I sort stocks into quintiles based on the idiosyncratic volatility (IV), estimated
using the past 1 month of daily return data relative to the FF-3 model (following AHXZ). Rank 1
(5) refers to the portfolio containing the 20% lowest (highest) IV stocks. 5− 1 is the portfolio that
goes long portfolio 5 and short portfolio 1. White standard errors are in parentheses. Frequency
refers to the number of months in the sample. The sample period is from July 1963 to December
2000.

Bali and Cakici (2008) for the equal-weighted portfolio. The decomposition of the uncon-
ditional returns into the two conditional returns explains why there is a discrepancy in the
IV -return relation between the equal- and value-weighted portfolios. For the equal-weighted
portfolios, the positive relation between IV and returns following positive months is canceled
out by the negative relation following negative months. For the value-weighted portfolios,
the relation between idiosyncratic volatility and average returns is monotonically decreasing
following negative markets but hump-shaped following positive markets. Surprisingly, port-
folio 5 conditioning on positive market returns has a return of 1.13%, which is the lowest
among them. However, using one month of daily data is not sufficient to estimate the true
idiosyncratic volatility because the idiosyncratic risk is time-varying and not very persistent
at a short horizon (Fu (2009)). High idiosyncratic volatilities (portfolio 5) are contempora-
neous with high returns, which tend to reverse in the following month. Failing to control
for the returns in the past month can also cause a negative relationship between idiosyn-
cratic volatility and expected returns (Huang, Liu, Rhee, and Zhang (2010)). Using a longer
horizon to estimate idiosyncratic volatility reduces the effect of short-term reversal. Indeed,
when I use 12 months of daily data to construct idiosyncratic volatility over this sample pe-
riod, the returns conditional on positive market returns increase in idiosyncratic volatilities,
consistent with Table 2.1. Specifically, the top quintile (portfolio 5) value-weighted portfolio
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conditional on the positive lagged market returns is 1.81%, which is 0.61% higher than the
bottom quintile (portfolio 1) value-weighted portfolio (1.20%).

Price of Idiosyncratic Risk

The previous section shows that high idiosyncratic volatilities during a bull market have
high future returns but low future returns during a bear market. It is natural to ask whether
idiosyncratic volatility conditioned on the market sign is priced in the cross-section of ex-
pected returns and whether the risk premia conditional on the positive and negative market
sign differ significantly from each other.

Following Savor and Wilson (2014) and Hendershott, Livdan, and Rösch (2019), I use
two methodologies to measure the price of idiosyncratic volatility risk following positive and
negative months. First, I adopt the Fama and MacBeth (1973) procedure and compute the
coefficients separately for returns following positive and negative months:

rmi,t+1 − rf,t+1 = γmIVIVi,t + γm>Xi,t+1 + εmi,t+1, (2.3)

wherem ∈ {+,−} indicates that the market excess return in the previous period is positive or
negative, respectively, IVi,t is the pre-formation idiosyncratic volatility of asset i, estimated
using the past 12 months of daily returns relative to FF-3 for each asset. I also include
a vector of control variables Xt+1, which includes pre-formation factor loadings and firm
characteristics. I estimate equation (2.3) for each month cross-sectionally, and then obtain
two time-series averages, γ̂+

IV and γ̂−IV, from the cross-sectional estimates. I test whether
γ̂+
IV is significantly different from γ̂−IV by applying a simple t-test for a difference in means.

Second, I use a single panel regression to estimate the price of idiosyncratic risk:

ri,t+1 − rf,t+1 = γ0 + ft+1 + γ1IVi,t + γ2 (IVi,t ×Dt) + γ>Xi,t+1 + εi,t+1, (2.4)

where Dt is a dummy variable that equals one if the market excess return is non-negative
and zero otherwise, and ft+1 is the time fixed effect to control for aggregate time-series
trends. Standard errors are clustered by time to adjust for the cross-sectional correlation
of the residuals. I run both regressions using test portfolios and individual stocks. Because
Bali and Cakici (2008) argue that the frequency used to estimate IV might bias the relation
between IV and expected returns, I estimate idiosyncratic volatility both at the daily and
monthly frequency. I report the results where the idiosyncratic volatilities are estimated
from the daily return data. The monthly results are delegated in Appendix B.2. The results
are robust to the data frequency. In order to compare the results, I multiply the idiosyncratic
volatilities estimated from the daily return data by the square root of the average number
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of trading days4 per month over the estimated horizon to obtain monthly idiosyncratic
volatilities.

Test Portfolios

As Table 2.1 showed earlier, stocks with high idiosyncratic volatility tend to have high
market betas. To ensure that the spread in the average returns is not due to the spread
in the market betas, I create the test portfolios as follows. For each month, I run an FF-3
regression using 12 months of daily data in order to obtain market betas and idiosyncratic
volatilities. I first sort stocks by the estimated betas into five quintiles. Within each quintile,
I sort stocks into five IV -sorted quintiles. This generates 5× 5 double sorted portfolios on β
and IV . I assign value or equal weights to each stock, obtain the portfolios both at the daily
and monthly frequency, and rebalance each portfolio at the end of each month. I then test
whether differences in returns are explained by the dispersion in the idiosyncratic volatilities
of the constructed portfolios.

Table 2.3 reports the results from the Fama and MacBeth (1973) regressions using the
5 × 5 daily test portfolios.5 To estimate βi, si, hi and IV , I run the FF-3 regression using
12 months of daily test portfolio returns. Panel A reports the results where the market
return in the previous month was positive. The coefficients on the idiosyncratic volatility
are significant and positive both for the value-weighted and equal-weighted test portfolios.
The coefficients remain significantly positive (0.18% for value-weighted and 0.60% for equal-
weighted portfolios) after controlling for the SMB and HML betas. Unsurprisingly, the
coefficient on the SMB is statistically significant for the equal-weighted portfolios, due to
the size bias nature of equal-weighting each asset in the portfolio.

Panel B reports the results where the market return in the previous month was negative.
The estimated coefficients on the idiosyncratic volatilities are now negative. Moreover, the
coefficient on the idiosyncratic volatility for the value-weighted portfolios is larger in absolute
values (−0.44%) compared to the coefficient following a positive market return (0.24%),
suggesting that the returns behave asymmetrically following positive and negative months.
Even after controlling for the factor loadings, the coefficients remain significantly negative.
Interestingly, the coefficient of the SMB is significantly negative, suggesting that large firms
earn higher risk premium following negative market excess returns.

In Panel C, I run the Fama-MacBeth regressions without conditioning on the sign of
the market return from the previous month. This exercise corresponds to AHXZ for value-
weighted portfolios and Bali and Cakici (2008) for equal-weighted portfolios. Contrary to
AHXZ, the risk premium for the idiosyncratic volatility is not significant, implying that

4Interestingly, the annual number of trading days before 1952 was between 280 and 300, before NYSE
permanently discontinued its two-hour trading session on Saturday. In 1968, the market was also closed on
Wednesday for a period of time, resulting in only 226 trading days in that year.

5The corresponding results for the monthly test portfolios are in Table B.1.



CHAPTER 2. THE CONDITIONAL IDIOSYNCRATIC VOLATILITY PREMIUM 44

Table 2.3. Fama-MacBeth Regressions on Daily Test Portfolios

Value-Weighted Portfolio Equal-Weighted Portfolio

β s h IV R2 β s h IV R2

Panel A: Conditional on reM,t−1 ≥ 0

(1) 0.33 0.24 24.3% 0.03 0.74 39.6%
(0.21) (0.05) (0.19) (0.09)

(2) 0.38 0.20 0.39 0.18 40.5% −0.01 0.36 0.42 0.60 56.1%
(0.19) (0.18) (0.17) (0.04) (0.19) (0.17) (0.23) (0.08)

Panel B: Conditional on reM,t−1 < 0

(1) 0.12 −0.44 27.8% 0.23 −0.67 43.4%
(0.29) (0.06) (0.28) (0.11)

(2) 0.30 −0.79 −0.13 −0.31 44.3% 0.69 −0.90 0.06 −0.46 59.3%
(0.27) (0.20) (0.22) (0.06) (0.29) (0.23) (0.30) (0.09)

Panel C: Unconditional

(1) 0.25 −0.02 25.6% 0.11 0.19 41.1%
(0.17) (0.04) (0.16) (0.07)

(2) 0.35 −0.18 0.19 −0.01 42.0% 0.26 −0.13 0.28 0.19 57.3%
(0.16) (0.14) (0.13) (0.04) (0.16) (0.14) (0.18) (0.06)

Panel D: Difference Test

(1) 0.21 0.68 −0.21 1.41
(0.34) (0.08) (0.33) (0.14)

(2) 0.08 0.99 0.52 0.49 −0.71 1.26 0.36 1.06
(0.32) (0.28) (0.27) (0.07) (0.34) (0.28) (0.37) (0.12)

Notes: This table reports Fama-MacBeth regression results on value- and equal-weighted test
portfolios. The test portfolios are daily 5 × 5 double sorted portfolios on β and idiosyncratic
volatility IV . For each month, I estimate IV of the test portfolios using 12 months of daily portfolio
returns relative to the FF-3 model. IV is multiplied by the square root of the average number of
trading days in a month over the last 12 months to obtain monthly idiosyncratic volatility. β, s
and h are loadings on MKT , SMB and HML, respectively. Panel A and B report the estimated
premia conditional on the lagged market excess return. Panel C reports the unconditional risk
premia. Panel D reports the difference in the risk premia in Panel A and Panel B. Standard errors
are in parentheses. The sample period is from July 1927 to December 2018.
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there is no relation between future returns and idiosyncratic volatility. The relation between
idiosyncratic volatility and average returns is positive, however, for the equal-weighted port-
folios. Model (2) shows that the relationship is robust after controlling for the factor loadings.

Panel D reports the results from the difference test in coefficients conditional on positive
(Panel A) and negative market returns (Panel B). The difference in the idiosyncratic volatility
risk premium following positive and negative market returns is statistically significant. This
difference is 0.68% (t-statistic of 8.49) for the value-weighted portfolio and 1.41% (t-statistic
of 9.91) for the equal-weighted portfolio, and remains statistically significant after controlling
for the factor betas. In conclusion, the idiosyncratic volatility risk premium is significantly
different following positive and negative market signs.

Industry, Size, and Book-to-Market Portfolios

For robustness checks, I repeat the exercise above by including size- and book-to-market-
sorted portfolios as well as ten industry portfolios. I use daily frequency for my main text
and report the results for the monthly frequency in Table B.2 in Appendix B.2. Both results
lead to similar conclusions.

Table 2.4 reports the results. Panel A reports the estimated coefficients (i.e., risk pre-
mium) following positive market returns. Model (1) shows that the idiosyncratic risk pre-
mium is now 0.11% for the value-weighted portfolio, which is lower than the estimated risk
premium in Table 2.3 without the additional size/book and industry portfolios. For the
equal-weighted portfolios, the idiosyncratic risk premium is 0.36% and also slightly lower
compared to Table 2.3. Both coefficients are statistically significant. When I also account
for the factor loadings, however, the idiosyncratic risk premium for the value-weighted portfo-
lio is no longer significant, though it is still highly significant for the equal-weighted portfolio.
Panel B shows the idiosyncratic volatility risk premium conditional on the negative lagged
market excess return. The idiosyncratic risk premium is now negative and statistically sig-
nificant. For the value-weighted portfolios, the magnitude of the risk premium is three times
larger compared to the risk premium conditional on the positive market sign. For the equal-
weighted portfolios, this ratio is about 1 to 1. The risk premia for the idiosyncratic volatility
remain significant after controlling for the factors.

Panel C shows the conflicting result between AHXZ and Bali and Cakici (2008). The
estimated idiosyncratic volatility risk premium is negative (−0.07%) for the value-weighted
portfolio, but positive (0.08%) for the equal-weighted portfolio. These numbers are both
significant. After controlling for the FF-3 factor loadings, the idiosyncratic volatility risk
premium remains negative and highly significant (t-statistic of −4.01), thus suggesting a
negative relation between idiosyncratic volatility and expected returns. This result is con-
sistent with AHXZ. On the other hand, the relation between idiosyncratic volatility and
average returns is positive but insignificant when the idiosyncratic volatility portfolios are
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Table 2.4. Fama-MacBeth Regressions on Daily Test Portfolios and FF-3 and Industry Portfolios

Value-Weighted Portfolio Equal-Weighted Portfolio

β s h IV R2 β s h IV R2

Panel A: Conditional on reM,t−1 ≥ 0

(1) 0.77 0.11 14.5% 0.58 0.36 17.2%
(0.20) (0.04) (0.20) (0.05)

(2) 0.62 0.50 0.39 0.03 34.8% 0.23 0.81 0.43 0.26 42.7%
(0.19) (0.13) (0.13) (0.03) (0.19) (0.15) (0.14) (0.04)

Panel B: Conditional on reM,t−1 < 0

(1) 0.06 −0.36 17.0% −0.03 −0.35 18.3%
(0.28) (0.05) (0.29) (0.06)

(2) 0.22 −0.72 0.27 −0.28 38.3% 0.32 −0.76 0.28 −0.33 45.9%
(0.28) (0.16) (0.16) (0.03) (0.27) (0.18) (0.18) (0.05)

Panel C: Unconditional

(1) 0.49 −0.07 15.5% 0.34 0.08 17.6%
(0.17) (0.03) (0.17) (0.04)

(2) 0.47 0.03 0.34 −0.09 36.2% 0.26 0.20 0.37 0.03 44.0%
(0.16) (0.10) (0.10) (0.02) (0.15) (0.12) (0.11) (0.03)

Panel D: Difference Test

(1) 0.71 0.47 0.61 0.71
(0.34) (0.06) (0.35) (0.08)

(2) 0.40 1.22 0.12 0.31 −0.09 1.57 0.15 0.59
(0.32) (0.21) (0.20) (0.04) (0.32) (0.24) (0.23) (0.07)

Notes: This table reports Fama-MacBeth regression results on value- and equal-weighted test
portfolios with additional portfolios. The test portfolios are daily 5× 5 double sorted portfolios on
β and idiosyncratic volatility IV . The additional portfolios are daily 5×5 size- and book-to-market
sorted portfolios and 10 industry portfolios. For each month, I estimate IV of all portfolios using
12 months of daily portfolio returns relative to the FF-3 model. IV is multiplied by the square
root of the average number of trading days in a month over the last 12 months to obtain monthly
idiosyncratic volatility. β, s and h are loadings on MKT , SMB and HML, respectively. Panel A
and B report the estimated premia conditional on the lagged market excess return. Panel C reports
the unconditional risk premia. Panel D reports the difference in the risk premia in Panel A and
Panel B. Standard errors are in parentheses. The sample period is from July 1927 to December
2018.
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constructed with equal weights after controlling for the factor loadings. This latter result
resonates with the findings in Bali and Cakici (2008).

Panel D reports the difference test between the conditional risk premia following positive
and negative market returns. The conditional risk premia differ significantly from each
other for both the value-weighted and equal-weighted portfolios and after controlling for the
additional test portfolios and factor loadings. The difference in risk premia is 0.47% (0.31%
after controlling for factor loadings) for the value-weighted portfolios and 0.71% (0.59% after
controlling for factor loadings) for the equal-weighted portfolios.

Table 2.4 also provides insights why we see the puzzling result in Panel C. For the
value-weighted portfolio, the risk premium conditional on the negative market return is
larger in magnitude than the risk premium conditional on the positive market return. The
unconditional (i.e., the weighted average of the two conditional risk premia) risk premium
is therefore biased downwards. For the equal-weighted portfolio, the (weighted) magnitudes
of the two conditional risk premia differ less from each other, and thus we don’t see any (or
a weaker, but positive) relationship between IV and average returns.

Individual Stocks

So far the returns conditional on a positive lagged market sign are positively correlated
with idiosyncratic volatility, while returns conditional on a negative lagged market sign are
negatively correlated with idiosyncratic volatility for the test portfolios using the Fama and
MacBeth (1973) regression. Moreover, this return differential is significantly positive. This
section evaluates whether this result also holds for individual stocks. Table 2.5 reports the
results, where the factor loadings β, s and h and the idiosyncratic volatility are first estimated
using 12 months of daily return data.6 Panel A and B report the results conditional on the
lagged market excess return, while Panel C reports the differences. I report the results for
5 different models. Model (1) is the baseline model, and models (2) to (5) control for factor
loadings, size, book-to-market ratio, and realized return from the previous month.

Panel A shows that an increase of 1 percent in the monthly idiosyncratic volatility leads to
an increase in future return of 0.12% (t-statistic of 9.88) when the current market conditions
are positive. This coefficient remains the same when I control for lagged returns (model
(2)) and for loadings on SMB and HML (model (3)). Interestingly, the coefficient on the
lagged return is negative, consistent with the observation that returns exhibit short-term
reversal. When I control for size and book-to-market ratio (model (4)), the coefficient remains
significant at 0.09%. Finally, model (5) controls for all these variables simultaneously, and
the coefficient is 0.10% and remains highly significant (t-statistic of 7.19).

6The results where the factor loadings and idiosyncratic volatility are estimated using 12 months of
monthly data are reported in Table B.3 in Appendix B.2. To compare the results, the idiosyncratic volatilities
estimated from the daily data are multiplied with the square root of the average number of trading days per
month.
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Table 2.5. Fama-MacBeth Regressions For Daily Individual Stocks

Panel A: Conditional on reM,t−1 ≥ 0

β s h Size B/M rt−1 IV R2

(1) 0.15 0.12 3.1%
(0.15) (0.01)

(2) 0.13 −0.05 0.12 3.0%
(0.14) (0.00) (0.01)

(3) 0.15 −0.06 0.11 0.12 4.8%
(0.16) (0.06) (0.09) (0.01)

(4) −0.07 −0.02 0.61 0.09 3.6%
(0.13) (0.02) (0.07) (0.01)

(5) 0.00 −0.03 0.08 0.00 0.60 −0.05 0.10 5.3%
(0.14) (0.06) (0.08) (0.02) (0.06) (0.00) (0.01)

Panel B: Conditional on reM,t−1 < 0

(1) 0.15 −0.06 3.1%
(0.21) (0.02)

(2) 0.03 −0.05 −0.09 3.1%
(0.21) (0.01) (0.02)

(3) 0.15 −0.10 0.13 −0.05 5.1%
(0.22) (0.09) (0.11) (0.01)

(4) 0.07 0.03 0.16 −0.08 4.2%
(0.18) (0.04) (0.09) (0.02)

(5) −0.17 −0.04 0.22 0.04 0.10 −0.06 −0.08 6.0%
(0.18) (0.09) (0.10) (0.03) (0.07) (0.01) (0.02)

(continued)

Panel B reports the results conditional on the lagged negative market return. In contrast
to the results in Panel A, the estimated idiosyncratic risk premium is negative (−0.06%) and
statistically significant (t-statistic of −3.51) for the baseline model. When I control for past
returns (model 2), the coefficient is −0.09% and larger in absolute values. The coefficients
remain negative and statistically significant when we control for factor loadings (model 3),
firm characteristics (model 4), and all of the aforementioned control variables (model 5).

Panel C calculates the difference in the estimated coefficients between Panel A and B.
The results resonate with the earlier findings in Table 2.3 and Table 2.4, namely that the
idiosyncratic risk premia conditional on a positive and negative market sign differ from each
other. This difference is 0.17% for the baseline model and varies between 0.17% to 0.21%
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Table 2.5.–Continued

Panel C: Difference Test

β s h Size B/M rt−1 IV R2

(1) 0.00 0.17
(0.25) (0.02)

(2) 0.10 0.00 0.21
(0.24) (0.01) (0.02)

(3) 0.00 0.04 −0.02 0.17
(0.27) (0.10) (0.14) (0.02)

(4) −0.14 −0.05 0.46 0.17
(0.21) (0.04) (0.11) (0.02)

(5) 0.17 0.01 −0.14 −0.03 0.51 0.01 0.18
(0.22) (0.11) (0.12) (0.04) (0.09) (0.01) (0.02)

Notes: This table reports Fama-MacBeth regression results on individual stocks. For each
month, I estimate IV using 12 months of daily return data relative to the FF-3 model. IV
is multiplied by the square root of the average number of trading days in a month over
the last 12 months to obtain monthly idiosyncratic volatility. β, s and h are loadings on
MKT , SMB and HML, respectively. Size and B/M are the log market capitalization
and the book-to-market ratio of the stock at the firm level. rt−1 is the realized return
from the previous month. Panel A and B report the estimated premia conditional on the
lagged market excess return. Panel C reports the difference in the risk premia in Panel A
and Panel B. Standard errors are in parentheses. The sample period is from July 1927 to
December 2018.

when various control variables are included (models (2) to (5)). The difference in the risk
premia is highly significant for all 5 models with p-values less than 0.01.

Evidence From Panel Regressions

This section provides additional evidence that the conditional risk premium is priced differ-
ently following positive and negative market excess returns. Table 2.6 reports the results
from a single panel regression on the 5× 5 test portfolios double-sorted on β and IV , which
are estimated over the last 12 months with the daily test portfolio returns relative to the
FF-3 model. All panel regressions include time fixed effect to control for aggregate time-
series trends. Standard errors, clustered at the time-level, are reported in parentheses. I
also include 5 × 5 size- and book-to-market-sorted portfolios and 10 industry portfolios as
additional portfolios for robustness checks. The corresponding results for the monthly test
portfolios are reported in Table B.4.
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Table 2.6. Panel Regressions for Daily Test Portfolios

Panel A: Value-Weighted Portfolio

(1) (2) (3) (4) (5) (6)

IV −0.06 −0.06 −0.05 −0.09 −0.08 −0.08
(0.05) (0.05) (0.05) (0.04) (0.04) (0.04)

IV × Pos 0.19 0.19 0.18 0.21 0.21 0.21
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

β −0.15 0.01 −0.12 −0.10
(0.18) (0.16) (0.19) (0.17)

s −0.39 −0.08
(0.18) (0.12)

h 0.75 0.50
(0.26) (0.15)

Panel B: Equal Weighted Portfolio

IV −0.27 −0.27 −0.23 −0.12 −0.12 −0.13
(0.14) (0.14) (0.14) (0.05) (0.05) (0.05)

IV × Pos 0.97 0.97 0.97 0.37 0.37 0.37
(0.22) (0.22) (0.22) (0.12) (0.12) (0.12)

β −0.24 −0.10 −0.20 −0.27
(0.17) (0.17) (0.16) (0.15)

s −0.46 0.12
(0.23) (0.12)

h 0.72 0.42
(0.35) (0.14)

Effect Time Time Time Time Time Time
Additional No No No Yes Yes Yes

Notes: This table reports panel regression results on value- (Panel A) and equal-weighted test
portfolios (Panel B) and additional portfolios. The test portfolios are daily 5 × 5 double sorted
portfolios on β and idiosyncratic volatility IV . The additional portfolios are daily 5× 5 size- and
book-to-market sorted portfolios and 10 industry portfolios. For each month, I estimate IV of all
portfolios using 12 months of daily portfolio returns relative to the FF-3 model. IV is multiplied
by the square root of the average number of trading days in a month over the last 12 months
to obtain monthly idiosyncratic volatility. β, s and h are loadings on MKT , SMB and HML,
respectively. Pos is a dummy variable that equals one if the previous market excess return is
nonnegative. Standard errors, clustered at the time level, are reported in parentheses. The sample
period is from July 1927 to December 2018.
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Panel A reports the results for the value-weighted test portfolios. Model (1) is the base-
line model. Pos is a dummy variable that equals 1 if the previous market excess return is
non-negative and 0 otherwise. The risk premium conditional on the negative market excess
return is negative (−0.06%), though not statistically significant, even after controlling for
market beta (model (2)), and factor loadings (model (3)). This is perhaps surprising be-
cause the results are statistically significant when betas and idiosyncratic volatilities are es-
timated at the monthly frequency (see Table B.4 in Appendix B.2) or when test assets are 10
value-weighted portfolios sorted on the idiosyncratic volatilities instead of the double-sorted
portfolios (not reported but available upon request). However, when I include size/book
and industry portfolios as additional test assets, as evident in models (4), (5) and (6), the
coefficients on IV are now all significant at the 5% level with an estimated coefficient of
−0.09% for model (4) and −0.08% for models (5) and (6). Moreover, the net risk premium
is equal to 0.19% for the baseline model, 0.19% after controlling for market beta (model 2),
and 0.18% after controlling for factor loadings (model 3). When I also include the additional
portfolios in the regressions, the net risk premium is equal to 0.21%.

Panel B reports the results for equal-weighted test portfolios. The risk premium condi-
tional on the negative market excess return is much larger in absolute terms, at −0.27%,
and statistically significant at the 10% level (t-statistic of −1.94). The estimated risk pre-
mium remains significant after controlling for market betas at the 10% level but not when
factor loadings are controlled for (t-statistic of −1.62). However, similar to before, the risk
premium is highly significant (with p-value < 0.01) for models (1), (2), and (3) when I use
monthly data to estimate the idiosyncratic volatilities and the factor loadings (see Table B.4
in Appendix B.2) or when I use 10 univariate sorted idiosyncratic volatility daily portfolios
(not reported but available upon request). If I include the FF-3 and industry portfolios,
the estimated risk premia are all in the neighborhood of −0.12% and −0.13% and are sta-
tistically significant at the 5% level. The net risk premium is also larger at 0.97% before
including the additional portfolios and at 0.37% after including the additional portfolios.

Finally, Table 2.7 reports the panel regression results for individual stocks. Corresponding
results at the monthly frequency are reported in Table B.5. Model (1) serves as the baseline
model and doesn’t include any control variables. The idiosyncratic risk premium is −0.05%
following negative market returns and is 0.07% following positive market returns. The net
risk premium is significant at the 1% level. The results remain the same when I control for
the market beta (model (2)) and the factor loadings (model (4)). Model (3) controls for
the lagged realized return, and the risk premium is negative for high past realized return,
suggesting that short-term reversal is present. The return differential for the idiosyncratic
volatility is now slightly higher at 0.13%. Model (5) includes firm characteristics as control
variables. The idiosyncratic volatility risk premium is now−0.07% following negative months
and 0.05% following positive months. Finally, model (6) includes factor loadings, size and
book-to-market ratio, and past returns as control variables. The idiosyncratic risk premium
is negative following bear markets (−0.07%) and positive following bull markets (0.06%).
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Table 2.7. Panel Regressions for Daily Individual Stocks

(1) (2) (3) (4) (5) (6)

IV −0.05 −0.05 −0.05 −0.05 −0.07 −0.07
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

IV × Pos 0.12 0.12 0.13 0.12 0.12 0.13
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

β −0.21 −0.20 −0.22 −0.09 −0.05
(0.09) (0.10) (0.09) (0.10) (0.10)

rt−1 −0.05 −0.04
(0.01) (0.01)

s −0.07 −0.16
(0.05) (0.07)

h 0.11 0.09
(0.05) (0.06)

Size −0.17 −0.14
(0.04) (0.04)

B/M 0.00 0.00
(0.00) (0.00)

Effects Time Time Time Time Time Time

Notes: This table reports results from the panel regression results on indi-
vidual stocks. For each month, I estimate IV using 12 months of daily return
data relative to the FF-3 model. IV is multiplied by the square root of the
average number of trading days in a month over the last 12 months to obtain
monthly idiosyncratic volatility. β, s and h are loadings on MKT , SMB
and HML, respectively. Size and B/M are the log market capitalization and
book-to-market ratio of the stock at the firm level. rt−1 is the realized return
from the previous month. Pos is a dummy variable that equals one if the
previous market excess return is nonnegative. Standard errors, clustered at
the time level, are reported in parentheses. The sample period is from July
1927 to December 2018.

The difference is 0.13% and is significant at the 1% level.

Conditional Idiosyncratic Volatility Premium

Having documented a conditional relation between idiosyncratic risk and future returns,
I study whether this relation is captured by existing factors. I form signed idiosyncratic
volatility (SIV) portfolios, which are idiosyncratic volatility portfolios conditioned on the
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sign of the market returns. Specifically, at the end of each month, I sort stocks according to
the product of the market sign and the idiosyncratic volatility:

1t × IVi,t. (2.5)

I label the variable in (2.5) as the Signed Idiosyncratic Volatility (SIV). Using SIV as a
ranker, high idiosyncratic volatility stocks are ranked high when the market sign is positive
but low when the market sign is negative. Following AHXZ, I use the CRSP universe to
create the breakpoints for each portfolio so that each portfolio has an equal number of stocks.
Alternative cutoff schemes are considered in Section 2.4. I form both value-weighted and
equal-weighted portfolios at the end of each month, which I hold for the next month.

SIV Portfolio Sort

Figure 2.2 shows the monthly expected excess returns of ten value- and equal-weighted
portfolios, where stocks are sorted by (2.5). The vertical bars represent the 95% confidence
interval around the mean. The average returns are monotonously increasing in the SIV
factor, starting from −0.33% for the value-weighted portfolio ( 0.13% for the equal-weighted
portfolio) to 1.22% for the top decile portfolio (2.24% for the equal-weighted portfolio).
Equal-weighted portfolios also have higher average returns, which suggests that the relation
is stronger among small stocks.

Table 2.8 reports the alphas of ten portfolios sorted on the Signed Idiosyncratic Volatil-
ity. The alphas are calculated as the intercept of the time-series regression of the monthly
portfolio excess returns on the market factor (MKT), the FF-3 factors, FF-4 factors (FF-3
augmented with the momentum factor), and finally, the FF-5 factors. Newey and West
(1987) standard errors with 12-month lags, to adjust for autocorrelation and heteroskedas-
ticity in the error terms, are reported in the time-series. The table also reports the Gibbons,
Ross, and Shanken (1989) test results. To conserve space, loadings on the factors are re-
ported in Appendix B.2 in Tables B.6, B.7, B.8, B.9 for CAPM, FF-3, FF-4, and FF-5,
respectively.

Table 2.8 shows that the alphas are monotonously increasing in the conditional idiosyn-
cratic volatility. For the value-weighted portfolios, the alphas are around −1% for the bottom
decile portfolios and around 0.5% for the top decile portfolios. The 10−1 strategy generates
a monthly alpha of 1.47% relative to CAPM, 1.36% relative to FF-3, 1.63% relative to FF-4,
and 1.78% relative to FF-5. All these numbers are significant at the 1% level. Moreover, the
Gibbons, Ross, and Shanken (1989) test rejects the null that the alphas are jointly zero at
the 5% confidence level for CAPM and at the 1% for the FF-3, FF-4, and FF-5 models. The
results for the equal-weighted portfolios are even stronger. The bottom decile portfolios earn
an alpha between −0.54% and −0.74%, and the top decile portfolios earn an alpha between
1.11% to 1.50%, all highly significant. The finding that the top decile portfolios generate
a positive alpha above 1% suggests that this is not due to short-sale constraint: long-only
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Figure 2.2. Average Excess Returns of 10 SIV portfolios
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Notes: This figure plots the average monthly excess returns for value- and equal-
weighted decile portfolios. For each month, I sort stocks into deciles based on
the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated
using the past 12 months of daily return data relative to the FF-3 model. 95%
confidence intervals are displayed relative to the average. The sample period is
from July 1927 to December 2018.
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Table 2.8. Alphas of 10 Portfolios sorted on SIV

Panel A: Value-Weighted SIV Portfolios

1 2 3 4 5 6 7 8 9 10 10− 1 GRS

αCAPM −1.05 −0.77 −0.63 −0.37 −0.30 −0.06 −0.01 0.09 0.20 0.42 1.47 1.90
(0.18) (0.13) (0.10) (0.10) (0.09) (0.11) (0.10) (0.12) (0.14) (0.21) (0.29) [0.04]

αFF−3 −1.10 −0.80 −0.68 −0.41 −0.35 −0.12 −0.08 0.02 0.13 0.26 1.36 8.32
(0.16) (0.12) (0.10) (0.08) (0.08) (0.08) (0.08) (0.10) (0.11) (0.17) (0.25) [0.00]

αFF−4 −1.14 −0.80 −0.61 −0.35 −0.25 −0.04 0.01 0.08 0.20 0.49 1.63 7.44
(0.17) (0.12) (0.09) (0.07) (0.07) (0.07) (0.08) (0.10) (0.14) (0.21) (0.31) [0.00]

αFF−5 −1.29 −0.91 −0.52 −0.20 −0.12 0.20 0.04 0.15 0.33 0.50 1.78 7.63
(0.19) (0.14) (0.12) (0.09) (0.08) (0.10) (0.11) (0.14) (0.17) (0.23) (0.34) [0.00]

Panel B: Equal-Weighted SIV Portfolios

αCAPM −0.54 −0.47 −0.31 −0.11 0.03 0.21 0.33 0.49 0.74 1.42 1.95 8.55
(0.15) (0.10) (0.09) (0.09) (0.10) (0.10) (0.12) (0.15) (0.18) (0.24) (0.28) [0.00]

αFF−3 −0.68 −0.57 −0.42 −0.23 −0.10 0.07 0.17 0.30 0.54 1.14 1.82 10.00
(0.12) (0.08) (0.06) (0.05) (0.04) (0.05) (0.06) (0.09) (0.11) (0.18) (0.24) [0.00]

αFF−4 −0.60 −0.51 −0.35 −0.15 0.00 0.19 0.30 0.48 0.75 1.41 2.00 5.51
(0.14) (0.09) (0.07) (0.05) (0.05) (0.05) (0.07) (0.11) (0.15) (0.22) (0.31) [0.00]

αFF−5 −0.74 −0.66 −0.44 −0.25 −0.10 0.11 0.23 0.45 0.77 1.50 2.24 5.90
(0.15) (0.10) (0.08) (0.06) (0.06) (0.07) (0.10) (0.13) (0.18) (0.27) (0.33) [0.00]

Notes: This table reports alphas for value- (Panel A) and equal-weighted (Panel B) portfolios. For each month, I sort
stocks into deciles based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated using the past
12 months of daily return data relative to the FF-3 model. Rank 1 (10) refers to the portfolio containing the 10% lowest
(highest) IV stocks. 10 − 1 is the portfolio that goes long portfolio 10 and short portfolio 1. Alphas, reported at the
monthly frequency and in percentages, are calculated as the intercept of the time-series regression of the monthly portfolio
excess returns on the market factor (CAPM), the FF-3 factors, the FF-4 factors (FF-3 augmented with the momentum
factor), and the FF-5 factors. Newey and West (1987) standard errors with 12-month lags are reported in parentheses.
The last column reports the Gibbons, Ross, and Shanken (1989) test statistics along with the p-values in brackets. The
sample period is from July 1927 to December 2018, except for FF − 5 alphas, which start in July 1963.
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funds can generate positive alpha by going long in the top SIV portfolio. Finally, the long-
short strategies alphas are all higher than the alphas for the value-weighted strategies, with
the FF-5 alpha being 2.24% per month. Table B.6 in Appendix B.2 shows that SMB and
HML can explain some of the variations in returns for the value-weighted portfolios at the
10% significance level, though it is not significant for the equal-weighted portfolios, nor after
controlling for momentum or the FF-5 factors.

Performance over Time

To understand how well the conditional idiosyncratic volatility performs over time, I create a
zero-cost portfolio where I take a long position in the top quintile and a short position in the
bottom quintile SIV-sorted portfolios. I repeat this for both the value- and equal-weighted
portfolios. Figure 2.3 shows the performance of the conditional idiosyncratic volatility strat-
egy over the full sample (solid and dashed lines represent the value- and equal-weighted
portfolios, respectively). At the end of each month, I calculate the annualized Sharpe ratio
over the last 60 months. I compare the SIV strategy to the market strategy (MKT), size
strategy (SMB), and value strategy (HML) in panel A, B, and C, respectively. The dotted
line represents the performance of these alternative strategies.

Figure 2.3 shows that the level of the trailing five-year Sharpe ratios is fairly consistent
over the full sample. There are a few cases where the Sharpe ratio for the value-weighted
strategy falls below 0, such as during World War II, the 1950s and early 1960s, and the
dotcom bubble. The performance of the equal-weighted strategy is even more impressive,
having fallen below 0 only once during the World War II, during which the market strategy
also fell, as shown in Panel A. The Sharpe ratio of the SIV strategy also doesn’t follow the
Sharpe ratio of the market portfolio closely, suggesting that this strategy is not spanned
by the market factor. More interestingly, while the market performs poorly during most
recessions, the Sharpe ratio of the SIV strategy performs considerably well on these occasions.
During the 1970s recession following the oil crisis, for example, the Sharpe ratio of the market
fell to almost −0.5, while the Sharpe ratio for the SIV strategy was close to 1. In fact, the
SIV performance dominates the market performance from the 1970s to the mid-1990s and
again from early 2000 to late 2000s with a small interruption before the 2007 recession.

Panel B compares the SIV strategy with the size strategy, which is a strategy that goes
long small firms and short big firms. Both strategies seem to co-move together. This is not
surprising because high idiosyncratic volatility stocks tend to be small stocks. However, un-
like the SMB strategy that always buys small stocks, the SIV strategy times the market and
switches from going long in high idiosyncratic volatility to going long in low idiosyncratic
volatility stocks following months with negative market returns. This is the primary differ-
ence between the size and SIV strategy. Moreover, the size strategy is prone to drawdowns,
especially around recessions, during which the Sharpe ratio can fall to almost −1. The SIV
strategy is resilient during these periods. Finally, the Sharpe ratio for the SIV strategy is
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Figure 2.3. Trailing Five-Year Sharpe Ratios (annualized)
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Notes: This figure plots the trailing five-year Sharpe ratios of the value- and equal-weighted SIV
strategies (solid and dash lines, respectively), as well as the FF-3 factor strategies (dotted lines).
The SIV strategies are long top quintile and short bottom quintile SIV-sorted portfolios. The FF-3
Factor strategies in Panel A, B, and C are investing in the zero-cost MKT, SMB, and HML factors,
respectively. Sharpe ratios are annualized. Grey bars indicate NBER recessions. The sample
period is from July 1927 to December 2018.
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almost always equal or larger than the Sharpe ratio of the size strategy, which raises the
question of whether the size strategy can be spanned by the SIV factor and whether the size
factor remains relevant after including the SIV factor. Finally, panel C compares the SIV
strategy with the value strategy. The Sharpe ratio for the SIV strategy tends to be higher,
except for the 1950s and the early 1960s. After the 1960s (when AMEX and NASDAQ
stocks were included in the sample), the SIV performance was relatively stable, whereas the
value premium had several drops which all occurred around the recessions (for example, the
recessions in 1970s, 1980s, 1990s, and the dotcom bubble in 2000). More interestingly, the
Sharpe ratio for the value strategy has been mostly negative for the last 10 years, while the
Sharpe ratio for the SIV strategy has remained positive.

Figure 2.4 provides another perspective of the SIV investment strategies. The figure
shows the performance of one dollar invested in June 1927 for the top, middle, and bottom
quintile SIV strategy, as indicated by the dotted, dashed, and solid lines, respectively. Panels
A and B show the results for the value- and equal-weighted portfolios, respectively. In both
panels, the market performance, represented by the dash-dot line, is shown as a benchmark.

The results show that the higher the SIV rank is, the higher the cumulative performance
is over time. Moreover, both the performance of the top and the middle quintile has been
trending upwards. The value-weighted median portfolio closely tracks the market portfo-
lio, though it has been underperforming since the mid-80s. An investment of 1 dollar in
the value-weighted median portfolio results in 2, 088 dollar at the end of 2018, which is
43% of what would have been gained with following the market strategy (4, 811 dollar).
The equal-weighted median SIV portfolio outperforms the market portfolio over time and
generates a return that is 7.49 times larger than the market by December 2018. However,
the equal-weighted portfolio overweights small stocks, and the size bias could explain this
outperformance.

If SIV explains the cross-sectional expected returns, we should see a divergence in the
cumulative performance over time between the top and bottom quintiles. The figure shows
that this is the case. Panel A (for value-weighted portfolios) shows that the top quintile
outperforms the market over time. One dollar invested in June 1927 leads to a return of
73, 343 dollar in June 2018, which is more than 15 times the market portfolio. On the
other hand, the bottom quintile returns a mere sixteen cents, which is worse than putting
one dollar under the mattress. Finally, perhaps the most striking result in this figure is
the performance of the top quintile of the equal-weighted portfolio (Panel B): the 1 dollar
investment in June 1927 leads to a return of more than 330 million dollars by the end of
2018, which is almost 69, 000 times higher than the market gains over the same period.

Characterizing the Behavior of SIV

Table 2.9 documents summary statistics of the signed idiosyncratic volatility factor, which
is a portfolio that goes long top quintile and short bottom quintile of SIV -sorted stocks,
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Figure 2.4. SIV Performance of 1$ invested in 1927 July (log scale)
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Notes: This figure plots the performance of one dollar invested in July 1927 in value- (Panel
A) and equal-weighted SIV portfolios. For each month, I sort stocks into quintiles based on the
idiosyncratic volatility (IV), estimated using the past 1 month of daily return data relative to the
FF-3 model (following AHXZ). Strategy 5, 3, and 1 refer to the top, middle, and bottom quintile
SIV portfolios, while MKT refers to the total, not the excess, market portfolio. Grey bars indicate
NBER recessions. The sample period is from July 1927 to December 2018.

constructed using either the value-weighting or equal-weighting scheme. For comparison, I
report the summary statistics of other well-known asset pricing factors. All reported factors
are zero-cost investment strategies.

The (annualized) Sharpe ratios of the value- and equal-weighted SIV are among the
highest at 0.56 and 0.71, respectively. Only the betting-against-beta factor (Frazzini and
Pedersen (2014)) and the short-term reversal factor have slightly higher Sharpe ratios. The
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Table 2.9. Comparison of SIV and Pricing Factors

Correlation
Summary Statistics (Annualized in %) with SIV

Sharpe Std.
Ratio Mean Dev. Q2 Q1 Q3 Value-W. Equal-W.

SIV − VW 0.56 14.7 26.3 8.1 −32.1 55.7 - 0.83∗∗∗
SIV − EW 0.71 20.5 28.9 12.7 −23.5 55.6 0.83∗∗∗ -
UIV − VW −0.16 −4.4 26.6 −9.6 −17.7 18.2 0.18∗∗∗ 0.26∗∗∗
UIV − EW 0.23 6.6 29.4 −4.5 −7.2 26.9 0.24∗∗∗ 0.34∗∗∗
MKT 0.42 7.8 18.5 12.2 −51.2 32.4 0.04 0.12∗∗∗
SMB 0.22 2.4 11.1 0.8 −43.7 34.5 0.15∗∗∗ 0.19∗∗∗
HML 0.37 4.4 12.1 1.7 −23.6 43.3 0.10∗∗∗ 0.15∗∗∗
MOM 0.49 7.9 16.3 9.8 −18.8 20.6 −0.14∗∗∗ −0.16∗∗∗
RMW 0.41 3.1 7.5 2.7 −15.8 20.8 −0.05 −0.07∗∗∗
CMA 0.49 3.4 6.9 1.7 −10.4 35.1 0.06 0.04
STR 0.72 8.5 11.8 6.1 −10.3 15.6 −0.26∗∗∗ −0.26∗∗∗
LTR 0.30 3.6 12.0 0.1 −11.6 18.2 0.18∗∗∗ 0.24∗∗∗
BAB 0.74 8.3 11.2 9.0 −11.6 23.2 −0.02 0.00

Notes: The table reports summary statistics and monthly correlations of the SIV factor, which
is long top quintile and short bottom quintile of SIV portfolios, with various pricing factors.
For each month, I sort stocks into quintile based on the signed idiosyncratic volatility (SIV).
Idiosyncratic volatility is estimated using the past 12 months of daily return data relative to
the FF-3 model. Summary statistics are annualized in % and calculated using the monthly
data. SIV − VW and SIV −EW are factors constructed using the value-weighted and equal-
weighted quintile SIV portfolios, respectively. UIV − VW and UIV − EW are long top and
short bottom quintile value-weighted and equal-weighted portfolios, respectively, which I form
by sorting stocks on the idiosyncratic volatility estimated using the past 12 months of daily
data relative to the FF-3 model. The factors MKT,SMB,HML are the Fama and French
(1992, 1993) factors, MOM is the momentum (2 − 12) factor, and RMW and CMA are the
fourth and fifth factors in the Fama and French (2015) model. STR and LTR are short-term
reversal (1 − 1) and long-term reversal (13 − 60) factors, respectively. BAB is the betting-
against-beta factor (Frazzini and Pedersen (2014)). The p-values for the Pearson correlation
coefficient are calculated using the exact distribution. The sample period for the SIV factors
is from July 1927 to December 2018. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and
1%, respectively.



CHAPTER 2. THE CONDITIONAL IDIOSYNCRATIC VOLATILITY PREMIUM 61

second column explains that the SIV Sharpe ratios are high primarily due to the high average
returns (at 14.7% and 20.5% for value- and equal-weighted portfolios, respectively). These
numbers are more than twice the averages for most other factors. The third column shows
that the standard deviations are also larger. However, the standard deviations are in the
neighborhood of the traditional idiosyncratic volatility factors (e.g., AHXZ and Bali and
Cakici (2008)), which are long top quintile and short bottom quintile of (unconditional)
idiosyncratic volatilities, suggesting that high standard deviation is a characteristic of the
idiosyncratic volatility factors. The fourth column also reports the median of the returns,
which are less affected by the outliers and skewed data. The median returns of the SIV
factors are among the highest. The SIV − EW factor, for example, has similar median
returns as the MKT factor. The next two columns also show that the distribution of the
SIV returns tends to be positively-skewed (while the distribution of the MKT returns is
negatively skewed). The bottom quartile of the SIV factors (−32.1% and −23.5% for the
value- and equal-weighted SIVs) is only half the size of the market bottom quartile return
(−51.2%). On the other hand, the SIV top quartiles (55.7%, 55.6%) are almost twice as
large as the top quartile of the market factor (32.4%).

The last two columns of Table 2.9 also report correlations of the SIV factors with various
pricing factors, calculated using monthly data. As results in Table 2.1 suggested, the SIV
factor is positively correlated with small stocks and value stocks. There is also a strong nega-
tive correlation with the short-term reversal (STR) (low minus high prior return portfolios),
which is in line with the results found by Huang, Liu, Rhee, and Zhang (2010). The corre-
lations with the UIV factors are relatively low (0.18 for value-weighting and 0.34 for equal-
weighting), and the correlation with the market factor is insignificant after accounting for
weights (0.04). Overall, the correlations of the SIV factors with existing (non-idiosyncratic
volatility) factors are low, with the strongest correlation being −0.26 in absolute terms,
indicating that the SIV factor is mostly unspanned by existing factors. Table B.10 in the
Appendix shows the correlation conditional on the lagged market sign. The results show
that the SIV factor is highly correlated with almost all factors conditional on the lagged
market sign. In addition, the sign of the correlation flips when the lagged market sign flips.
The sign of the market excess return thus predicts the sign of the correlation between SIV
and the asset pricing factors.

2.4 Robustness Checks

This section provides robustness checks for the main results. In particular, I (i) consider
alternative ways of constructing the SIV factor, (ii) study the performance of the SIV port-
folios across sub-periods, (iii) limit the sample of firms to construct SIV portfolios, (iv) use
alternative breakpoints to construct SIV portfolios, and (v) control directly for size, book–
to-market ratio, short-term reversal, lottery-like properties, and liquidity measures. In addi-
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tion, I provide an intuition of how transaction costs may affect the results. Finally, I provide
additional evidence that the lag of market sign plays an important role in studying idiosyn-
cratic volatility. In particular, I document that (i) the market sign is predictable, (ii) the
lagged market sign predicts return differentials for idiosyncratic volatility stocks at the daily
frequency, (iii) the market sign additionally predicts return differentials stocks with relative
idiosyncratic volatility to total volatility (as opposed to absolute idiosyncratic volatility), and
(iv) only the 1-month lag of the market sign has predictive power at the monthly frequency.

Alternative Constructions of SIV

In the main results, I construct idiosyncratic volatility portfolios by value- and equal-
weighting the stocks sorted on idiosyncratic volatility, which I estimate by running a FF-3
regression using H = 12 month horizon of daily returns. In this section, I calculate idiosyn-
cratic volatility as the standard deviation from residuals from CAPM, FF-3, FF-4, and FF-5,
where I use a regression horizon of H = 1, 3, 6, 12, 18, 24 and 36 months.7 I form quintile SIV
portfolios by sorting on the product of the estimated idiosyncratic volatility and sign of the
market excess return. Tables B.11, B.12, B.13, B.14 in the Appendix report the alphas for
all quintile portfolios created using CAPM, FF-3, FF-4, and FF-5, respectively, while Tables
B.15, B.16, B.17, and B.18 in the Appendix report its corresponding average monthly excess
returns. Table 2.10 reports the FF-3 alphas and average returns for the zero-investment 5−1
portfolios, which are long top quintile and short bottom quintile SIV portfolios. Newey-West
standard errors with 12-month lags are in parentheses.

Panel A reports the FF-3 alphas for various constructions of the idiosyncratic volatility.
When I use only the past month of daily return data to construct the SIV portfolio, the
αFF−3 ranges from 0.66% to 0.97% for the value-weighted portfolios and 0.98% to 1.28%
for the equal-weighted portfolios. These alphas are all statistically significant at the 1%
level. The results for FF-5 seem higher than the rest, though we cannot directly compare
the results because the sample period starts from July 1963 rather than July 1927 for the
other models. The alphas increase monotonously when I use a longer horizon to estimate
the idiosyncratic volatility up to H = 12 month. Moreover, the alphas are robust across
the models used to estimate idiosyncratic volatility. For example, the alphas for the value-
weighted portfolios where the idiosyncratic volatilities are estimated using CAPM, FF-3, and
FF-4 are all between 1.10% and 1.12% for H = 12, 1.13% for H = 18, and between 1.11%
and 1.14% for H = 24. In conclusion, none of the existing models captures the dispersion in
returns due to the signed idiosyncratic volatility.

Panel B reports the average returns of the zero-cost portfolios. The dispersion in the
returns is primarily in the regression horizon rather than across the models used to construct
the idiosyncratic volatilities. Moreover, the average returns are all positive and significantly

7To conserve space, I report the results for H = 36 in the Appendix, but not in the main text.
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Table 2.10. Alternative Constructions of the 5− 1 SIV Portfolio

Panel A: Alpha αFF−3

Value-Weighted Portfolio Equal-Weighted Portfolio

H CAPM FF-3 FF-4 FF-5 CAPM FF-3 FF-4 FF-5

1 0.66 0.71 0.72 0.97 0.98 1.02 1.03 1.28
(0.19) (0.18) (0.18) (0.21) (0.18) (0.17) (0.17) (0.21)

3 0.89 0.90 0.88 1.14 1.26 1.28 1.28 1.58
(0.20) (0.20) (0.20) (0.25) (0.19) (0.19) (0.19) (0.23)

6 1.02 1.04 1.05 1.39 1.38 1.39 1.40 1.72
(0.20) (0.20) (0.20) (0.25) (0.20) (0.20) (0.20) (0.24)

12 1.10 1.10 1.12 1.52 1.47 1.47 1.49 1.85
(0.20) (0.20) (0.20) (0.26) (0.20) (0.20) (0.20) (0.25)

18 1.13 1.13 1.13 1.46 1.51 1.52 1.50 1.89
(0.20) (0.20) (0.20) (0.27) (0.20) (0.20) (0.20) (0.26)

24 1.14 1.11 1.13 1.38 1.50 1.51 1.52 1.84
(0.20) (0.19) (0.20) (0.27) (0.20) (0.20) (0.20) (0.26)

Panel B: Average Returns

1 0.80 0.85 0.87 0.87 1.20 1.24 1.25 1.24
(0.23) (0.22) (0.22) (0.22) (0.27) (0.27) (0.26) (0.22)

3 1.03 1.04 1.01 1.08 1.50 1.52 1.52 1.55
(0.24) (0.24) (0.23) (0.27) (0.28) (0.28) (0.28) (0.25)

6 1.20 1.21 1.22 1.35 1.63 1.63 1.64 1.70
(0.25) (0.25) (0.25) (0.27) (0.29) (0.29) (0.29) (0.26)

12 1.22 1.22 1.24 1.48 1.71 1.71 1.73 1.83
(0.23) (0.23) (0.23) (0.28) (0.28) (0.28) (0.28) (0.27)

18 1.25 1.24 1.24 1.41 1.75 1.76 1.74 1.85
(0.23) (0.23) (0.24) (0.29) (0.29) (0.28) (0.29) (0.27)

24 1.24 1.22 1.23 1.30 1.74 1.75 1.75 1.78
(0.23) (0.23) (0.23) (0.29) (0.28) (0.28) (0.28) (0.27)

Notes: This table reports the monthly FF-3 alphas (Panel A) and average returns
(Panel B) for value- and equal-weighted 5 − 1 signed idiosyncratic volatility (SIV)
portfolio. For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic
volatility (IV) is estimated using the past H months of daily return data relative to
either the CAPM, FF-3, FF-4 or FF-5 models. Numbers in bold are the results for the
baseline construction. Newey and West (1987) standard errors with 12-month lags are
reported in parentheses. The sample period is from July 1927 to December 2018 for
all models except for FF-5, which starts in July 1963.
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different from 0. Average returns are similar to the alphas in magnitude, implying that
most of the variations in returns are not explained by existing factors. Finally, the average
returns constructed using alternative methods are very similar to the returns obtained from
the baseline construction (in bold). Overall, the construction of the SIV portfolios is robust
to different model specifications and regression horizons.

Sub-periods Analysis

The sample period for the main analysis is from July 1927 to December 2018. This section
studies if the positive relationship between the SIV factor and average returns continues
to hold in sub-periods. I study this relationship during (i) the four (equal-length) quarters
of the full sample period, (ii) recessions and expansions, and (iii) periods with different
market volatility levels. Within each sub-period, I also study the average return following
months with positive and negative market excess return and the weighted average of the
two. Finally, I report the FF-3 alphas. The results are shown in Table 2.11 for the 10 − 1
value- and equal-weighted SIV portfolios.

The first four rows of Table 2.11 show the results for four equal-length sub-samples. For
the first quarter, the value- and equal-weighted returns following months with positive market
excess returns are positive and statistically significant at 2.69% and 4.56%, respectively. The
returns following months with negative market excess returns are positive, but insignificant,
however. The third column shows the unconditional average return, which is positive and
significant. The monthly alpha relative to the Fama-French 3 factor model is 1.78% for the
value-weighted portfolio and 2.35% for the equal-weighted portfolio, both highly significant.
The average returns and the alphas remain statistically significant for the second and third
quarters of the full sample period. For the last quarter, March 1996 to December 2018, the
results are mixed for the value-weighted portfolio. All results for the equal-weighted portfolio
remain significant, however.

The next two rows show the relation between SIV and average returns during recessions
and expansions, as identified by the NBER. The alphas and the average returns are posi-
tive and highly significant for both the value- and equal-weighted portfolios. Moreover, the
returns and the alphas during expansions are twice as large for the value-weighted portfo-
lios, suggesting that this relationship is stronger during expansions than during recessions.
Overall, the results are robust across recessions and expansions.

Finally, the last four rows of Table 2.11 show the results for four different periods, which
are sorted by the market volatility. The market volatility of a month is defined as the
standard deviation of the daily market returns in that month. First, for periods with low
market volatility, the alpha is negative for both the value- and equal-weighted portfolios
and statistically significant for the value-weighted portfolio. Second, alpha increases as the
market volatility increases. For example, the alphas during periods with high volatility are
2.53% and 3.42% for the value- and equal-weighted portfolios, respectively. Third, average
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Table 2.11. 10− 1 SIV Portfolio across sub-periods

Value-Weighted Portfolio Equal-Weighted Portfolio

Average Returns Average Returns

Pos. Neg. All αFF−3 Pos. Neg. All αFF−3

Jul 1927−May 1950 2.69 1.56 2.24 1.78 4.56 0.50 2.97 2.35
(0.95) (1.07) (0.71) (0.58) (1.21) (1.36) (0.92) (0.64)

Jun 1950−Apr 1973 0.50 2.32 1.18 1.15 1.22 1.82 1.44 1.33
(0.42) (0.57) (0.35) (0.36) (0.44) (0.56) (0.35) (0.35)

May 1973−Feb 1996 0.55 3.53 1.85 2.09 2.44 1.81 2.17 2.45
(0.57) (0.66) (0.44) (0.43) (0.63) (0.64) (0.45) (0.40)

Mar 1996−Dec 2018 0.15 2.35 0.93 0.90 1.78 2.00 1.86 1.82
(0.87) (1.22) (0.71) (0.71) (0.79) (0.97) (0.61) (0.62)

NBER Recession 0.85 2.25 1.35 1.15 2.50 1.42 2.12 1.76
(0.38) (0.49) (0.30) (0.29) (0.42) (0.54) (0.33) (0.29)

NBER Expansion 1.72 3.17 2.50 2.46 2.33 1.83 2.06 2.03
(1.30) (1.09) (0.84) (0.80) (1.45) (0.91) (0.83) (0.77)

Low Volatility (Q1) 1.17 −0.27 0.82 −0.69 2.53 −0.80 1.73 −0.08
(0.44) (0.60) (0.36) (0.32) (0.51) (0.60) (0.42) (0.40)

Volatility Q2 0.92 2.30 1.43 1.04 1.68 1.31 1.54 1.10
(0.54) (0.51) (0.39) (0.39) (0.57) (0.56) (0.41) (0.40)

Volatility Q3 0.34 3.07 1.33 1.42 1.88 1.83 1.87 1.84
(0.60) (0.82) (0.49) (0.48) (0.62) (0.94) (0.52) (0.43)

High Volatility (Q4) 1.61 3.31 2.59 2.53 4.47 2.40 3.27 3.42
(1.59) (1.00) (0.89) (0.90) (1.79) (1.00) (0.95) (0.94)

Notes: This table reports the monthly average returns and FF-3 alphas for both the value- and
equal-weighted 10−1 signed idiosyncratic volatility (SIV) portfolios. For each month, I sort stocks
into deciles based on the SIV. Idiosyncratic volatility (IV) is estimated using the past 12 months
of daily return data relative to the FF-3 model. Pos. and Neg. refers to the average returns
following months with positive and negative market excess returns, respectively. All refers to the
(unconditional) average returns. Volatility Q1 (Q4) refers to the months with the bottom (top)
quartile months sorted by the standard deviation of the daily market returns in that month. White
standard errors are in parentheses. The sample period is from July 1927 to December 2018.

returns increase as the level of market volatility increases. A further look shows that the
average returns following months with negative returns increase the higher the volatility is,
though no obvious relation exists between volatility and conditional returns following positive
market returns. Though outside the scope of this paper, it’s important to study how the
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market or aggregate volatility influences the conditional relationship between idiosyncratic
volatility and average returns.

Using sub-samples

The sample in my main analysis includes all stocks from the CRSP universe. One possibility
is that the results are driven by small or large stocks in the sample. To study this possibility,
I look at different subsets of firms instead. First, I limit my analysis to the largest 3000
firms in my sample to exclude potential effects from micro stocks. Since there are only
3000 or more firms in the CRSP universe since the inclusion of NASDAQ in July 1973, my
sample ranges from July 1973 to December 2018 for this exercise. Second, I further split
the sample containing 3000 firms into sub-samples to control for the remaining size effect.
Table 2.12 reports the FF-3 alphas for the quintile portfolios sorted by the SIV variable, with
Newey-West standard errors with 12-month lags in parentheses. Average excess returns are
reported in Table B.19 in Appendix B.2.

Table 2.12 shows that the alphas are monotonously increasing in conditional idiosyncratic
volatility when I construct the portfolios using S&P 500 stocks only. The alphas for the 5−1
value- and equal-weighted portfolios are 0.63% and 0.71%, respectively. Besides, when I limit
myself to using only the largest 1000 stocks, the 5− 1 alphas remain statistically significant.
The 5−1 alpha increases as I include more stocks in my sample. These additional stocks are
decreasing in size. Focusing on Panel A, for example, using the largest 1000 stocks generates
an alpha of 0.55% for the zero-cost portfolio, whereas including an additional 1000 and 2000
(smaller) stocks generates an alpha of 0.67% and 0.88%, respectively. I also study the alphas
for the portfolios constructed using the 1001-2000th and 2001-3000th largest stocks, where
I limit the number of stocks to a thousand in each case. We see that alpha increases as I
use smaller stocks to construct the 5− 1 portfolio. This increase seems primarily driven by
the short-leg of the 5 − 1 portfolio, as the bottom quintile portfolios generate the largest
returns in absolute values. For example, the bottom quintile value-weighted (equal-weighted)
portfolio generates a return of −0.88% (−0.85%) using the largest 2001 - 3000 stocks. While
the alpha spread is larger among smaller stocks, the overall conclusion is that the dispersion
in returns is present and significant among both small and large firms.

Alternative Breakpoints

I follow AHXZ and create the SIV portfolios using breakpoints from the CRSP universe. One
potential problem with this approach is that the CRSP breakpoints might lead to a more
unbalanced market share among the portfolios. To study the sensitivity of the portfolio
construction concerning the breakpoints, I use two alternative methodologies to construct
the SIV portfolios. First, I follow Fama and French (1992) and use the stocks in NYSE
to determine the breakpoints. Second, following Bali and Cakici (2008), I form portfolios
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Table 2.12. αFF−3 by Size

Panel A: Value-Weighted Portfolios

1 2 3 4 5 5− 1

S&P500 stocks −0.35 −0.20 0.06 0.06 0.28 0.63
(0.10) (0.06) (0.06) (0.08) (0.10) (0.18)

Largest 1000 stocks −0.39 −0.16 −0.04 0.12 0.16 0.55
(0.14) (0.07) (0.05) (0.08) (0.11) (0.21)

Largest 2000 stocks −0.62 −0.20 −0.08 0.15 0.05 0.67
(0.16) (0.08) (0.06) (0.08) (0.12) (0.25)

Largest 3000 stocks −0.84 −0.37 −0.06 0.06 0.04 0.88
(0.17) (0.10) (0.07) (0.08) (0.14) (0.27)

Largest 1001− 2000 stocks −0.65 −0.17 −0.05 −0.01 −0.02 0.62
(0.14) (0.08) (0.08) (0.11) (0.13) (0.25)

Largest 2001− 3000 stocks −0.88 −0.40 −0.14 0.04 −0.01 0.87
(0.14) (0.07) (0.09) (0.12) (0.20) (0.29)

Panel B: Equal-Weighted Portfolios

S&P500 Stocks −0.40 −0.13 0.09 0.18 0.31 0.71
(0.11) (0.07) (0.08) (0.09) (0.13) (0.20)

Largest 1000 stocks −0.36 −0.12 0.02 0.12 0.09 0.46
(0.14) (0.06) (0.06) (0.09) (0.11) (0.24)

Largest 2000 stocks −0.58 −0.16 −0.01 0.14 0.07 0.65
(0.14) (0.06) (0.07) (0.09) (0.13) (0.25)

Largest 3000 Stocks −0.82 −0.26 0.01 0.15 0.15 0.97
(0.13) (0.06) (0.06) (0.10) (0.15) (0.26)

Largest 1001− 2000 stocks −0.65 −0.15 −0.04 0.01 0.00 0.65
(0.13) (0.07) (0.08) (0.11) (0.13) (0.25)

Largest 2001− 3000 stocks −0.85 −0.37 −0.12 0.08 0.04 0.89
(0.13) (0.08) (0.09) (0.12) (0.20) (0.29)

Notes: This table reports the monthly FF-3 alphas for value- (Panel A) and equal-weighted
(Panel) portfolios. For each month, I sort stocks into quintiles based on the signed idiosyncratic
volatility (SIV). Idiosyncratic volatility (IV) is estimated using the past 12 months of daily
return data relative to the FF-3 model. I limit the universe to include either S&P 500 stocks
or a subset of the largest N stocks (by its market capitalization). Rank 1 (5) refers to the
portfolio containing the 20% lowest (highest) SIV stocks. 5 − 1 is the portfolio that is long in
portfolio 5 and short in portfolio 1. Newey and West (1987) standard errors with 12-month lags
are reported in parentheses. The sample period is from July 1973 to December 2018.
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with equal market share, where the breakpoints are determined by the market share of the
included stocks in each portfolio. Table 2.13 shows the results for quintile portfolios. Results
for decile portfolios are in Table B.20 in Appendix B.2.

Table 2.13. Alternative Breakpoints

Panel A: NYSE Breakpoints Panel B: Equal Market Share

Value-W. Equal-W. Mkt. Value-W. Equal-W. Mkt.

Rank αFF−3 Mean αFF−3 Mean Share αFF−3 Mean αFF−3 Mean Share

1 0.00 0.14 0.21 0.35 44.3% −0.02 0.10 0.20 0.32 19.6%
(0.14) (0.17) (0.13) (0.16) (0.13) (0.15) (0.11) (0.13)

2 0.11 0.32 0.37 0.56 24.5% 0.03 0.14 0.22 0.32 20.1%
(0.18) (0.23) (0.17) (0.21) (0.15) (0.16) (0.13) (0.14)

3 0.35 0.58 0.58 0.83 14.6% 0.06 0.20 0.31 0.43 20.1%
(0.20) (0.26) (0.19) (0.26) (0.16) (0.18) (0.14) (0.16)

4 0.58 0.82 0.78 1.09 9.4% 0.19 0.34 0.46 0.61 20.1%
(0.21) (0.27) (0.21) (0.30) (0.18) (0.21) (0.17) (0.19)

5 0.84 1.08 1.44 1.81 7.2% 0.52 0.73 1.11 1.39 20.2%
(0.25) (0.31) (0.26) (0.38) (0.22) (0.26) (0.23) (0.30)

5− 1 0.84 0.94 1.23 1.46 0.54 0.64 0.91 1.08
(0.17) (0.20) (0.17) (0.26) (0.13) (0.15) (0.15) (0.21)

Notes: This table reports the FF-3 alphas and average excess returns (‘Mean’) for value- and equal-
weighted portfolios. For each month, I sort stocks into quintiles based on the signed idiosyncratic
volatility (SIV), where the breakpoints are determined either by NYSE stocks (Panel B) or by
the market share of the stocks in the quintiles (Panel B). Idiosyncratic volatility (IV) is estimated
using the past 12 months of daily return data relative to the FF-3 model. Rank 1 (5) refers to
the portfolio containing the 20% lowest (highest) SIV stocks. 5− 1 is the portfolio that is long in
portfolio 5 and short in portfolio 1. Mkt. Share is the simple average market share of the firms
within the portfolio. Newey and West (1987) standard errors with 12-month lags are reported in
parentheses. The sample period is from July 1927 to December 2018.

Panel A shows the results where I use NYSE breakpoints instead of CRSP breakpoints.
The average market share of quintile 1 is 44.3% whereas the average market share of quintile
5 is 7.2%. This is in contrast to 66.7% for quintile 1 and 1.1% for quintile 5 using the CRSP
breakpoints. The main result still holds when I use NYSE breakpoints: both the alphas and
average excess returns are monotonously increasing in conditional idiosyncratic volatility for
both the value- and equal-weighted portfolios. The alphas among the quintile portfolios are
surprisingly positive, suggesting that the results are not driven by short-sale constraints.
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Moreover, the alphas and average returns for the 5− 1 portfolio are statistically significant
and positive.

Because using CRSP breakpoints does not fully diminish the size-bias effect among the
portfolios, I form quintiles with equal market share. With this approach, I include stocks
sorted on idiosyncratic volatilities in each quintile portfolio until each quintile contains 20%
of the market share. Panel B shows the results. Again, we see the same monotonicity between
alphas (and average returns) and the rank of the portfolios. Results for the 5 − 1 portfolio
are also significant at the 1% level. Interestingly, the level of both alphas and average is
lower in panel B, suggesting that the mispricing effect of SIV is stronger among smaller
firms. Overall, the construction of SIV portfolios is robust to alternative breakpoints.

Controlling for Size, B/M, Short-Term Reversal, and Lottery-Like
Properties

In this section I control directly for size, book-to-market ratio, past 1-month return, and
lottery-like properties (proxied by the maximum daily return of the previous month (Bali,
Cakici, and Whitelaw (2011))) by creating double sorted portfolios. I first rank each stock
based on each of the control variables and keep the bottom and top 30 percentile bins. The
bottom (top) 30 percentile bins for size, book-to-market, past month returns, and maximum
daily returns are, respectively, small (large), growth (value), low (high) realized return, and
(not-) lottery-like stocks. In the second step, I sort stocks within each bin into quintiles
based on the signed idiosyncratic volatility. Table 2.14 shows the FF-3 alphas for these
double sorted portfolios. Table B.21 in Appendix B.2 reports the same results for average
excess returns.

Panel A shows the results for the value-weighted portfolios. First, we see a monotonous
relation between signed idiosyncratic volatility and FF-3 alphas across small, large, growth,
value stocks, stocks with high past returns, and stocks that had a low or high maximum
daily return in the previous month. The relation across stocks with low realized returns is
almost monotonous, with the exception of Portfolio 2. Second, the 5− 1 portfolios generate
significantly positive alphas for all cases. Interestingly, but perhaps not surprising, the alphas
are much higher for small stocks than for large stocks. The 5−1 αFF−3 for lottery-like stocks
is also larger, though the alphas for the individual portfolios are all negative compared to
the non-lottery-like stocks. Panel B displays the results for the equal-weighted portfolios.
The results show similar patterns as in Panel A. Finally, except for the large stocks, the
5−1 alphas are larger for the equal-weighted portfolios, indicating that the relation between
SIV and αFF−3 is stronger among smaller stocks, which are overweighted in equal-weighted
portfolios.
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Table 2.14. FF-3 Alphas Controlling for Size, Value, Reversal and Lottery

Panel A: Value-Weighted Portfolios

Size B/M ST-R Lottery-like

Rank Small Large Growth Value Low rt−1 High rt−1 Low MAX High MAX

1 −0.65 −0.41 −1.31 −1.12 −0.33 −1.44 −0.23 −1.49
(0.11) (0.09) (0.18) (0.16) (0.20) (0.16) (0.08) (0.16)

2 −0.37 −0.15 −0.65 −0.72 −0.41 −0.77 −0.03 −1.14
(0.09) (0.05) (0.14) (0.14) (0.14) (0.12) (0.06) (0.16)

3 −0.15 −0.06 −0.13 −0.25 −0.04 −0.55 0.12 −0.95
(0.09) (0.04) (0.13) (0.13) (0.12) (0.12) (0.05) (0.16)

4 0.17 0.04 0.13 0.03 0.20 −0.28 0.36 −0.70
(0.12) (0.05) (0.12) (0.13) (0.15) (0.11) (0.05) (0.13)

5 0.44 0.07 0.14 0.39 0.92 −0.27 0.56 −0.27
(0.17) (0.08) (0.18) (0.21) (0.20) (0.17) (0.08) (0.20)

5− 1 1.10 0.48 1.44 1.51 1.25 1.18 0.80 1.22
(0.21) (0.15) (0.27) (0.29) (0.25) (0.24) (0.12) (0.23)

Panel B: Equal-Weighted Portfolios

1 −0.18 −0.30 −1.00 −0.41 0.18 −1.54 −0.03 −0.92
(0.12) (0.09) (0.12) (0.12) (0.15) (0.14) (0.08) (0.12)

2 −0.12 −0.07 −0.56 −0.15 0.06 −0.83 0.10 −0.81
(0.09) (0.05) (0.09) (0.10) (0.10) (0.11) (0.07) (0.09)

3 0.14 0.04 −0.13 0.26 0.33 −0.39 0.29 −0.67
(0.10) (0.05) (0.09) (0.09) (0.11) (0.08) (0.06) (0.09)

4 0.49 0.09 0.08 0.66 0.76 −0.26 0.52 −0.14
(0.12) (0.06) (0.10) (0.11) (0.14) (0.09) (0.06) (0.11)

5 1.25 0.07 0.58 1.52 1.97 −0.12 0.90 0.71
(0.20) (0.08) (0.20) (0.21) (0.21) (0.15) (0.08) (0.19)

5− 1 1.43 0.37 1.58 1.92 1.79 1.43 0.94 1.64
(0.22) (0.16) (0.26) (0.25) (0.24) (0.21) (0.12) (0.21)

Notes: This table reports monthly FF-3 alphas of double sorted portfolios, where I first sort the
stocks by size, book-to-market-ratio, past realized returns, and maximum daily return to generate
bottom and top 30 percentile bins. For each bin, I then sort the stocks into SIV quintile portfolios.
Rank 1 (5) refers to the portfolio containing the 20% lowest (highest) SIV stocks. Newey and West
(1987) standard errors with 12-month lags are reported in parentheses. The sample period is from
July 1927 to December 2018, except for the value and growth stocks, which starts in August 1950.
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Controlling for Liquidity

Pástor and Stambaugh (2003) document that liquidity shocks explain the cross-section of ex-
pected returns. AHXZ show that after controlling liquidity, the idiosyncratic volatility puzzle
still exists. On the other hand, Han and Lesmond (2011) document that the idiosyncratic
volatility no longer predicts future returns after controlling for liquidity measures. However,
these papers look at the predictability of unconditional idiosyncratic volatility rather than
the conditional idiosyncratic volatility.

I study whether the signed idiosyncratic volatility can predict future returns after con-
trolling for various liquidity measures. I use three popular measures for liquidity (Goyenko,
Holden, and Trzcinka (2009)), which are based on daily data from CRSP. Specifically, I use
(i) the Amihud (2002) illiquidity measure, defined as the average of the absolute daily return
over the volume within a month, (ii) the Amivest liquidity measure, defined as the average
volume over the absolute daily return, and (iii) the proportion of days with zero returns
within a month. Note that the Amihud illiquidity measure is undefined for zero-volume
assets, whereas the Amivest liquidity measure is undefined for zero-return assets. Table 2.15
reports the 5 × 5 double sorted portfolios, where stocks are first sorted on SIV and con-
sequently sorted on the Amihud measures. Tables B.22 and B.23 in Appendix B.2 report
the results where Amivest and zero return proportion, respectively, are used as liquidity
measures.

Panel A of Table 2.15 reports the FF-3 alphas monthly for the 5 × 5 value-weighted
portfolios. We see a monotonic increase from low SIV portfolios to high SIV portfolios for all
varying degrees of liquidity. For the most liquid portfolios, the alpha difference is 0.87% and
statistically significant. For the illiquid portfolios, this number is 1.35%. In addition, we also
see an increase in the abnormal returns from liquid portfolios to illiquid portfolios. The 5−1
alphas are positive across the liquidity dimension, though not all statistically significant.
Panel B of Table 2.15 reports the results for the equal-weighted portfolios. Again, we see a
similar pattern. All 5− 1 portfolios along the SIV dimensions have positive and statistically
significant alphas. In addition, the alphas for 5− 1 portfolios along the liquidity dimensions
are all statistically significant at the 5% confidence level.

The results in Table B.22 show similar results. We see that the 5 − 1 SIV portfolios
have statistically significant alphas, after controlling for the Amivest liquidity measure. Fur-
thermore, the alphas are the highest for the most illiquid assets. In addition, the liquidity
premium continues to exist, as the illiquid assets earn a higher return than the liquid assets
after controlling for SIV. This result holds both for value- and equal-weighted portfolios. We
obtain similar results in Table B.23. Since both the SIV premium and the liquidity premium
continue to exist simultaneously, it is unlikely that the SIV factor is spanned by a liquidity
factor.
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Table 2.15. Double Sort with Amihud Illiquidity Measure

Panel A: Value-Weighted Portfolios
1 (Liquid) 2 3 4 5 (Illiquid) 5− 1

1 (Low SIV) −0.88 −0.96 −1.02 −0.96 −0.65 0.22
(0.14) (0.14) (0.12) (0.13) (0.12) (0.16)

2 −0.51 −0.62 −0.48 −0.54 −0.39 0.12
(0.10) (0.09) (0.07) (0.08) (0.09) (0.15)

3 −0.27 −0.19 −0.28 −0.01 −0.06 0.21
(0.09) (0.07) (0.07) (0.06) (0.09) (0.14)

4 −0.14 0.06 0.01 0.22 0.25 0.39
(0.10) (0.08) (0.09) (0.08) (0.12) (0.16)

5 (High SIV) 0.00 0.33 0.48 0.58 0.69 0.70
(0.15) (0.14) (0.15) (0.15) (0.17) (0.18)

5− 1 0.87 1.29 1.50 1.53 1.35
(0.23) (0.22) (0.21) (0.21) (0.22)

Panel B: Equal-Weighted Portfolios
1 (Liquid) 2 3 4 5 (Illiquid) 5− 1

1 (Low SIV) −0.81 −0.90 −0.82 −0.62 −0.19 0.62
(0.12) (0.11) (0.10) (0.11) (0.13) (0.15)

2 −0.41 −0.44 −0.38 −0.36 −0.12 0.29
(0.08) (0.07) (0.07) (0.07) (0.08) (0.12)

3 −0.17 −0.03 −0.13 0.07 0.11 0.28
(0.07) (0.06) (0.06) (0.06) (0.08) (0.11)

4 −0.07 0.15 0.19 0.33 0.49 0.56
(0.09) (0.08) (0.10) (0.08) (0.10) (0.13)

5 (High SIV) 0.22 0.51 0.65 1.08 1.70 1.48
(0.14) (0.16) (0.14) (0.16) (0.20) (0.19)

5− 1 1.03 1.41 1.47 1.69 1.89
(0.22) (0.23) (0.21) (0.22) (0.25)

Notes: The table reports alphas relative to the FF-3 model of double sorted
portfolios, where I double sort the stocks by Signed Idiosyncratic Volatility and
the average daily Amihud illiquidity measure within a month. Panel A (B) reports
value- (equal-) weighted portfolios. Newey-West standard errors with the 12-
month lags are reported in the parentheses. The sample period is July 1927 to
December 2018.
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Turnover

One possibility for the existence of the documented anomaly is that market friction such
as trading costs prevents investors from exploiting the mispriced assets. While a complete
analysis of trading is outside of the scope of this paper, I provide a simple analysis of what
determines the turnover of a portfolio. Because I form portfolios by sorting stocks on the
signed idiosyncratic volatility, there are two questions that need to be addressed. First, what
is the likelihood that high (low) idiosyncratic volatility stocks continue to exhibit high (low)
idiosyncratic volatilities in the next month? Second, how does a change in the market sign
affects the sorting? To answer these questions, I construct quintile portfolios and calculate
the fraction of stocks I continue to hold in the next month if I have a long position in the
top quintile portfolio, which I rebalance every month from August 1927 to December 2018
(N = 1097).

Figure 2.5. Fraction of Shares Held Across Months

0.00 0.05 0.10 0.15

Fraction Held

0

200

400

F
re

q
u

en
cy

Panel A: Different Sign

0.8 0.9 1.0

Fraction Held

0

20

40

60

80

F
re

q
u

en
cy

Panel B: Same Sign

Notes: This figure plots the distribution of the fraction of distinct shares held in the following
month for a rebalancing investor that is long the top quintile SIV portfolio. For each month, I sort
stocks into quintiles based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility (IV)
is estimated using the past 12 months of daily return data relative to the FF-3 model. Panel A
(B) shows the fraction of stocks that will be held if the market sign switches (remains the same)
in the next month. The sample period is from July 1927 to December 2018.

Figure 2.5 shows the results. Over this sample, the market sign switches in the next month
for a total of 486 months, which corresponds to a likelihood of 44.3%. For a rebalancing
investor, the average fraction of the existing portfolio held is 0.05%, as shown in Panel A.
On the other hand, when the market keeps the same sign in the consecutive month, 93.91%
of the stocks are held on average. Over the full sample, 52.33% of the stocks are held
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( 611
1097
×93.91% + 486

1097
×0.05%) on a given month. These results suggest that (i) idiosyncratic

volatility is persistent when estimated over a long horizon, such that stocks with high (low)
idiosyncratic volatility continue to have high (low) idiosyncratic volatility (Panel B), and
(ii) turnover of the SIV portfolio is primarily determined by the persistence of the market
sign (Panel A).

Placebo Test

The difference between AHXZ and my analysis is that my result relies on conditioning on the
lagged market sign. To study whether the lagged market sign has predictive power, I design
a placebo test where I create the signed idiosyncratic volatility using lagged and leading
signs of the market excess return. I use lags and leads up to 12 months. Figure 2.6 shows
the alphas relative to the FF-3 model for the 5 − 1 portfolio sorted on these alternatively
constructed signed idiosyncratic volatility, with 95% confidence interval relative to the mean.
Figure B.1 in Appendix B.1 shows the results for 10− 1 portfolios.

Figure 2.6. Alphas For zero-cost 5− 1 SIV Portfolio

Panel A: Value-Weighted Portfolio
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Panel B: Equal-Weighted Portfolio
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Notes: This figure displays FF-3 alpha for the 5-1 value- (Panel A) and equal-weighted (Panel B)
portfolios. For each month, I sort stocks into quintiles based on the signed idiosyncratic volatility
(SIV). I use lagged and leading signs of the market excess return for up to 12 months. Idiosyncratic
volatility (IV) is estimated using the past 12 months of daily return data relative to the FF-3 model.
95% Confidence interval, calculated using Newey and West (1987) standard errors with 12-month
lags, are relative to the mean. The sample period is from July 1927 to December 2018.



CHAPTER 2. THE CONDITIONAL IDIOSYNCRATIC VOLATILITY PREMIUM 75

Panel A shows the results for the value-weighted portfolio. The figure shows that if we
had the actual sign of the market return (i.e., lead = 0) the 5 − 1 SIV portfolio would
generate an alpha of 2.34%. If I use the lagged market sign to proxy for the real market
sign instead, the alpha is instead 1.10%, though still highly significant. Using lags or leads
of any other market sign would generate an insignificant alpha, as the figure shows. Panel
B shows similar results for the equal-weighted portfolio. The alpha of the portfolio using
the actual market sign equals 2.42%. Using the 1-month lag of the market sign generates
an alpha of 1.47% while using the 2-month and 3-month lag of the market sign generates an
alpha of 0.49% and 0.46%, respectively. For the equal-weighted portfolio, the market sign
up to 3-month lags seems to have predictive power in whether high idiosyncratic volatility
or low idiosyncratic volatility stocks will generate positive returns. All other lags and leads
(except for lead 11) generate insignificant alphas.

Predictability of Market Sign

Knowing the true market sign allows us to generate the highest abnormal returns. This
section studies whether the market sign is predictable to some degree. Table 2.16 shows
the transition matrix of the market sign estimated from July 1926 to December 2018 (N =
1110).8 First, over 60% of all months are positive. Moreover, the market sign is more likely
to be positive following a positive sign (64.08% vs. 57.14%), and more likely to be negative
following a negative sign (42.86% vs. 35.92%). I calculate P (1t > 0|1t−1 > 0) − P (1t >
0|1t−1 < 0) and use the Z-test for independent proportions to test whether the difference in
the proportions is significantly different from 0. The difference is 6.83% when using daily
data to construct the market sign and significant at the 5% level. I also use the monthly
market excess return to calculate the transition matrix. The results are similar and the
difference in the proportion is 7.15% and significantly different from 0. In conclusion, the
market sign is positively autocorrelated: the market is more likely to be positive following
positive months, and similarly, the market is more likely to be negative following negative
months.

For robustness, I estimate various specifications of the logistic regression to predict the
market sign:

log

(
pt

1− pt

)
= β0 + β11t−1 + γ>Xt + εt, (2.6)

where pt = P (1t = 1), and test whether the market sign is positively autocorrelated by
testing whether β1 is significantly positive. I control for X, which include lagged market
signs and lagged market excess returns. Table 2.17 report the results from the logistic
regressions.

8The average daily market excess return over this sample is 2.85 basis point.
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Table 2.16. Transition Matrix and Difference Test

Transition matrix P̂ Difference Test

reM,t−1 < 0 reM,t−1 ≥ 0

reM,t < 0
42.86% 35.92% Daily Data difference 6.93%∗∗
(183) (245) (0.03)

reM,t ≥ 0
57.14% 64.08% Monthly Data difference 7.25%∗∗
(244) (437) (0.03)

Total
38.52% 61.48%
(427) (682)

Notes: This table reports the estimated transition matrix P̂ on the left panel
and the difference test on the right panel. The transition matrix is estimated
using the average daily market excess return in a given month over the full sample
(N = 1110). The number of observations is in parentheses. The difference test
reports the difference in the proportions conditional on lagged positive and negative
market excess returns, where the market sign is calculated using daily or monthly
market return data. Standard errors are in parentheses. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1%, respectively. The sample period is from July
1926 to December 2018.

Column (1) in Table 2.17 is the same test as the test reported in Table 2.16. Column
(1) implies namely that P (1t = 1|1t−1 = 1) = 64.1% and that P (1t = 1|1t−1 = 0) = 57.2%.
A positive sign thus implies increased odds that the market sign will be positive in the
following month. Indeed, the probability of a positive sign has increased by P (1t = 1|1t−1 =
1)−P (1t = 1|1t−1 = 0) = 6.9%. The coefficient β1 hasn’t changed when I include up to the
second and third lags (columns (2) and (3), respectively). However, the constant is no longer
significant after including the third lag of the market sign. We can interpret the results in (3)
as follows. The market sign is positive or negative with equal probability when the lagged
month has a negative sign, i.e., 1t−1 = 0. However, if the lagged market sign is positive, the
probability that the market sign is positive is now exp(0.27·1)

1+exp(0.27·1)
≈ 56.7%, which is 6.7% higher

than when the lagged market sign is negative.
I also control for up to 6 and 12 lagged market signs in columns (4) and (5), and the

coefficient on the lagged market sign β1 is still significant and unchanged. The constant,
however, is no longer significant and even negative. Column (6) tests whether the level of
the lagged market excess return can predict the market sign. The coefficient is positive
(0.42), but not significant. This result is perhaps surprising, as one may expect that a
large positive (negative) market return predicts future positive (negative) return. However,
the result seems to resonate with the idea that the level of the market return is hard to
predict, and that the level of the market return has low predictive power. Finally, column
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Table 2.17. Logistic Regressions on the Market Sign

(1) (2) (3) (4) (5) (6) (7)

constant 0.29∗∗∗ 0.21∗ 0.17 −0.12 −0.26 0.45∗∗∗ 0.28∗∗
(0.10) (0.12) (0.14) (0.18) (0.23) (0.06) (0.12)

1t−1 0.29∗∗ 0.28∗∗ 0.27∗∗ 0.26∗∗ 0.26∗∗ 0.31∗
(0.13) (0.13) (0.13) (0.13) (0.13) (0.19)

1t−2 0.14 0.14 0.13 0.11
(0.13) (0.13) (0.13) (0.13)

1t−3 0.07 0.04 0.04
(0.13) (0.13) (0.13)

rM,t−1 0.42 −0.06
(0.27) (0.39)

Control N = 6 Yes
Control N = 12 Yes
Observations 1109 1108 1107 1104 1098 1109 1109

Notes: This table reports the results of the logistic regressions, where the dependent variable
is the market sign estimated using market return data. ‘Control N = k’ means controlling
for up to k lagged market signs. Standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗
indicate significance at the 10%, 5%, and 1%, respectively. The sample is from July 1926 to
December 2018 (N = 1110).

(7) estimates β1 while controlling for the lagged market return. This result shows estimates
of the β0 and β1 that are very similar to the ones estimated in column (1). Moreover, β1

remains significant, despite the fact that It−1 and rM,t−1 are highly correlated. Note that
the coefficient on rM,t−1 is now negative. This result shows that while market return may be
hard to predict, the sign of the future market return is in fact predictable, thus supporting
the idea that market timing may not be futile after all.

Daily Market Sign

So far, my analysis uses the monthly market sign to predict the sign of the relation between
idiosyncratic volatility and future monthly returns. In this section, I use the market sign
from the previous trading day to predict the sign of this relation for the next trading day. To
carry out this experiment, I estimate the idiosyncratic volatility of each stock at the end of
the month using the past 12 months of daily data. I then form daily decile portfolios sorted
on the estimated idiosyncratic volatility using either value- or equal-weighting. Figure 2.7
shows the average daily excess returns conditioned on the sign of the previous trading day.
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Figure 2.7. Idiosyncratic Volatility Portfolio Conditional on Daily Market Sign
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Notes: This figure plots the daily average excess return for value- (Panel A) and equal-weighted
(Panel B) portfolios. For each month, I sort stocks into deciles based on the idiosyncratic volatility
(IV), estimated using the past 12 months of daily return data relative to the FF-3 model. Within
each month, I then calculate the average excess return conditional on the market sign from the
previous trading day. The sample period is from July 1927 to December 2018.

The figure shows that high idiosyncratic volatility stocks outperform low idiosyncratic
volatility stocks when the market sign from the previous day was positive. We obtain the
opposite result when the market sign from the previous day was negative. The conditional
relation holds both for value- and equal-weighted portfolios. This result thus provides addi-
tional support to the idea that market sign predicts mispricing among idiosyncratic volatility
stocks at various frequencies. In Appendix B.1, I show that the result is robust during the
first third, second third, and the final third of the month (Figure B.2) as well as across each
week of the month (Figure B.3).

Relative Idiosyncratic Volatility

This section documents evidence that the market sign also predicts the relationship between
relative idiosyncratic volatility and average returns. I calculate relative idiosyncratic volatil-
ity as the ratio between the idiosyncratic volatility and the total volatility of an asset, where
the idiosyncratic volatility is calculated as before, and the total volatility is the standard de-
viation of the daily returns in the past 12 months. I then form quintile portfolios by sorting
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the stocks on the product of the relative idiosyncratic volatility and the lagged market sign,
which I label as the signed relative idiosyncratic volatility. Table 2.18 shows the FF-3 alphas
and the average excess returns of these portfolios.

Table 2.18. Quintile Portfolios Sorted by the Signed Relative Idiosyncratic Volatility

Value-Weighted Portfolio Equal-Weighted Portfolio

Rank αFF−3 Mean αFF−3 Mean

1 −0.32 0.31 −0.38 0.50
(0.07) (0.18) (0.07) (0.22)

2 −0.19 0.46 −0.30 0.63
(0.06) (0.18) (0.05) (0.24)

3 −0.03 0.62 −0.07 0.89
(0.06) (0.19) (0.05) (0.26)

4 0.12 0.77 0.24 1.24
(0.06) (0.19) (0.07) (0.28)

5 0.33 0.95 0.60 1.59
(0.07) (0.19) (0.09) (0.29)

5− 1 0.65 0.64 0.98 1.09
(0.12) (0.12) (0.14) (0.17)

Notes: This table reports the FF-3 alphas and average excess returns of the
value- and equal-weighted portfolios. For each month, I sort stocks into quintiles
based on the signed relative idiosyncratic volatility. I calculate the signed relative
idiosyncratic volatility as the product of the lagged market sign and the ratio
between the idiosyncratic volatility and the total volatility of an asset. Idiosyn-
cratic volatility is the standard deviation of the residual from an FF-3 regression
using 12 months of daily data, whereas the total volatility is the standard devia-
tion of the daily return in the last 12 months. Newey and West (1987) standard
errors with 12-month lags are reported in parentheses. The sample period is from
July 1927 to December 2018.

Table 2.18 shows that a monotonous relation exists between the signed relative idiosyn-
cratic volatility and the FF-3 alphas as well as the average excess returns, suggesting that as-
sets with high relative idiosyncratic volatility perform well following bull markets but poorly
following bear markets. For example, the alpha for portfolio 1 is −0.32% (−0.38%) and
0.33% (0.60%) for portfolio 5 using value-weighting (equal-weighting). Moreover, the alphas
are 0.65% and 0.98% for the value-weighted and equal-weighted zero-investment portfolios,
respectively, and statistically significant. Thus, the market sign predicts both the conditional
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relationship between the absolute idiosyncratic volatility and future returns as well as the
conditional relationship between the relative idiosyncratic volatility and future returns.

2.5 Model

Motivated by the empirical fact that the market sign predicts the relationship between
idiosyncratic volatility and future returns, this section develops a simple model in which the
extrapolative behavior of market-timing agents leads to mispricing of assets.

Setup

I consider a model with three dates, t = −1, 0, 1. There are N risky assets, indexed by i,
and each asset is available in fixed supply x∗i = 1

N
. Each security i delivers a payoff d̃i at

date 1 according to the following dividend process:

d̃i = ai + biz̃ + ẽi, (2.7)

where ai is the security i’s expected payoff, bi is the cash flow beta, and ẽi is the idiosyncratic
cash flow risk, with E[ẽi] = 0, Var[ẽi] = σ2

i , and Cov[ẽi, ẽj] = 0, for all i 6= j. I assume that all
assets have expected payoff of ai = 1 with strictly positive cash flow beta bi > 0. The common
factor in the dividend process (2.7) is z̃, with E[z̃] = 0 and Var[z̃] = σ2

z . Both the common
shock z̃ and the idiosyncratic shock ẽi are normally distributed. I define d̃m ≡

∑
i x
∗
i d̃i to be

the market dividend, which follows the process

d̃m = am + bmz̃ + ẽm, (2.8)

where am = 1 is the expected market dividend, bm = 1
N

∑
i bi is normalized to 1, and

ẽm = 1
N

∑
i ei has mean E[ẽm] = 0 and variance Var[ẽm] = 1

N2

∑
i σ

2
i . Finally, there exists a

risk-free asset with net return rf .
The economy is populated with a continuum of investors normalized to size 1. There are

two types of investors, A and B. The investors differ in their belief formation. A fraction
0 < θ < 1 of the investors are type A. Alternatively, one may interpret θ as the fraction
of capital invested by agents A, while the remaining fraction of capital (1 − θ) is invested
by (N) agents of type B. I assume that agents of type A form expectations based on the
recent realization of the market returns. In other words, agents A are extrapolators and face
time-varying returns.9 The remaining fraction of agents forms expectations according to the
data generating process. Their portfolio holdings are independent of the market movements.
Agents in group B are divided into N groups of equal mass and are indexed by (B, i). I

9This assumption is motivated by the findings in Greenwood and Shleifer (2014), who document that
many investors (both individual and institutional) hold extrapolative expectations.
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Figure 2.8. Timing of the Model

� The returns to the market
portfolio of the previous
period is realized.

� All agents observe the
realization of the market
portfolio return.

� All agents make their
investment decisions subject
to their information set.

� Portfolio returns are
realized.

� All agents receive their
payoffs and exit the model.

t = −1 t = 0 t = 1

assume that agents in group B are segmented: an agent indexed by (B, i) is allowed to
invest in asset i due to portfolio constraint, such as asset specialization. For concreteness,
one might interpret agents of type A as institutional investors or mutual funds and agents
of type B as retail investors.

The timing of the model is as follows. At date t = −1, the return on the market
portfolio over the risk-free asset is realized, and all agents observe this. They then form
their expectations relative to their information set and choose a portfolio at time t = 0 to
maximize their utility over their final wealth at date t = 1. Because agents in group A are
extrapolators, their expectations depend on the realized returns. I assume that they set their
expectations on z̃ as follows:

EA[z̃] = EA[z̃|rM−1 − rf ] =

{
λ, if rM−1 − rf ≥ 0,

−λ, if rM−1 − rf < 0,
(2.9)

where λ captures their expectations. For notation, I let λA denote the conditional expectation
of z̃: λA = EA[z̃]. Agents in group B hold homogeneous and correct beliefs, i.e., EB[z̃] = 0.
Figure 2.8 summarizes the timing of the model.

Each agent is endowed with initial wealth W0. At date t = 0, agent j chooses a portfolio
xj ∈ RN , subject to their information set and portfolio constraint, in order to maximize the
expected utility over their final wealth

max
xj

E[uj(W
j
1 ;xj)|Ij], (2.10)

where Ij is the information set of agent j, and j ∈ {A, (B, 1), ..., (B,N)}.
All agents have (CARA) exponential utility, that is, uj(w) = − exp(−γw), where γ is the

risk-aversion parameter. Together with the normality assumption for the dividend process,
the objective function reduces to the standard mean-variance framework

max
xj

E[W̃ j
1 |Ij]−

γ

2
Var[W̃ j

1 |Ij]. (2.11)
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The wealth process evolves as follows. All agents have (limited) access to risky assets, subject
to the market segmentation constraint, and any of the wealth not invested in the risky assets
will be invested at the risk-free rate. The date-1 wealth for agent j is given by

W̃ j = (W0 − xjP )(1 + r) + xj d̃, (2.12)

where P is the equilibrium price vector, d̃ is the dividend vector process defined in (2.7),
and xj is the optimal holding vector of agent j.

Equilibrium

Market clearing

We are interested in studying the properties of the competitive equilibrium. To this end,
Lemma 2.1 states the market clearing condition.

Lemma 2.1. The market clearing condition of the model is given by

x∗ = θxA +
1− θ
N

xB, (2.13)

where xA solves the objective function for agent A, and xB = (xB,1, ..., xB,N) is an N-
dimensional vector where xB,k solves the objective function for agent (B, k) for all (B, k).

Lemma 2.1 states that the total demand function of each asset k is determined by the
demand functions of the extrapolative agents A and the market-segmented agent Bk, which
must be equal to the fixed supply x∗k = 1

N
. Specifically, the equilibrium implies that agents

in group A determine the largest fraction of the total demand θN
θN+1−θ , making them (ap-

proximately) effectively the marginal investor in the model as N →∞.

Equilibrium prices

An asset-market equilibrium is an asset price vector P such that the market clearing con-
dition (2.13) holds. Substituting the demand functions into (2.13) and rewriting gives the
equilibrium price vector, stated in Lemma 2.2.

Lemma 2.2. Let ωi = θΣii
θΣii+

1−θ
N
σ2
i

, κ = 1 +
∑N

i=1

(
biσz
σi

)2

(1−ωi), and ζ∗ =
∑N

i=1 biωix
∗
i . The

equilibrium price for asset i conditional on λA is then given by

Pi =
ai + biωi

κ
λA − γωi

θ

(
biσ

2
z

κ

∑
j
ωjbj
N

+
σ2
i

N

)
1 + rf

. (2.14)
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Lemma 2.2 makes the standard prediction that asset prices are higher if expected payoff
(ai) is higher or if risk-free rate (rf ) is lower. In addition, the negative component in the
equilibrium price,

γωi
θ

 biσ
2
z

1 +
∑

i
b2i σ

2
z

σ2
i

(1− ωi)
∑
j

ωjbj
N

+
σ2
i

N

 , (2.15)

is the compensation for bearing co-movement risk with the common factor, adjusted for

limited risk-sharing in this case, as indicated by the term ωi. I label ωi =
θσ−2
i

θσ−2
i + 1−θ

N
Σ−1
ii

as the

proportional risk of asset i that is borne by agent A. The components of ωi have an intuitive
interpretation. Σii is the risk that agent (B, i) shares with agent A, while σ2

i is the risk that
agent A shares with agent (B, i). Since all agents of type B are segmented, they cannot fully
diversify idiosyncratic risk, which causes idiosyncratic risk to be priced in equilibrium.10 The
risk proportion satisfies several properties, including (i) 0 ≤ ωi ≤ 1, (ii) ωi = 0 when θ = 0,
(iii) ωi = 1 when θ = 1 or N → ∞, (iv) ∂ωi

∂bi
> 0, and (v) ∂ωi

∂σ2
i
< 0. The last two properties

deserve a discussion. The net effect of the risk-sharing between agent A and agents B is
that, for a given asset i, the proportional risk that agent A has to bear increases in bi (and
therefore systematic risk) but decreases in idiosyncratic risk. The proportional risk for agent
(B, i), on the other hand, is increasing in σ2

i , which is unsurprising, since agent (B, i) is
under-diversified. Finally, the positive component in the price given by

biωi

1 +
∑

i
b2i σ

2
z

σ2
i

(1− ωi)
λA (2.16)

arises due to the extrapolative behavior of agents A. By the properties of ωi, assets with
higher cash flow betas bi’s have a higher price ceteris paribus when agents A believe the
market excess return will be positive (EA[z̃] = λ > 0). Similarly, assets with low idiosyncratic
variance are more expensive than those with high idiosyncratic variance when agents A
are optimistic, assuming else equal. On the other hand, when agents A are pessimistic
(EA[z̃] = −λ < 0), we see that the opposite holds, i.e., assets with high idiosyncratic
variance and low cash flow beta will be relatively overpriced.

Demand Function

To understand why low idiosyncratic volatility σ and high cash flow beta b stocks are over-
priced when λA > 0 but underpriced when λA < 0, consider the demand function of agents
A:

xA =
1

γ
Σ−1(a− P (1 + rf )) +

1

γ
Σ−1bλA. (2.17)

10This idea is very similar to Merton (1987).
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Lemma 2.3 shows that when agents A are optimistic (λA > 0), agents A will have an excess
demand for assets with high bi and low σ2

i . When the sign flips, the opposite happens.
Fixing bi, low idiosyncratic volatility stocks are more sensitive to the ‘sign-flipping’ than
high idiosyncratic volatility stocks, suggesting that these stocks must be more overpriced
when λA > 0 and underpriced when λA < 0. High idiosyncratic volatility stocks, on the
other hand, are less sensitive to changes in demand behavior of extrapolative agents, as the
demand curve suggests. The reason is that the extrapolators prefer to go long and short
low idiosyncratic volatility stocks than to go long and short high idiosyncratic volatilities,
holding everything else constant. To illustrate this point more precisely, consider two assets
with b1 = b2 > 0, and σ2

1 < σ2
2. When agent A is optimistic, λA > 0, agent A holds

more assets of type 1 than of type 2. As a result, agent A inflates the price more for low
idiosyncratic volatility stocks. As a result, the expected return for the low idiosyncratic
volatility stock is relatively lower. Similarly, when agent A is pessimistic, agent A wants to
short sell more assets of type 1 than of type 2. In this case, agent A deflates the price more
for low idiosyncratic volatility stocks. As a result, the expected return for asset 1 is higher
than for asset 2. These price impacts cannot be fully absorbed by the demand functions of
agents B, since they are segmented, causing idiosyncratic risk to be priced.

Lemma 2.3. Let E[rei ] denote the expected excess return of asset i, i.e., E[rei ] = ai−Pi(1+rf ).
The demand function of agent A for asset i is proportional to

xAi ∝
bi
σ2
i

λA +
1

σ2
i

(
E[rei ] +

∑
j

bjσ
2
z

σ2
j

(bj E[rei ]− bi E[rej ])

)
. (2.18)

Risk-Return Relationship

I am now ready to restate the equilibrium in terms of expected excess returns. Let E[ri−rf ] =
ai − Pi(1 + rf ) be the expected excess return of asset i, and similarly, let E[rM − rf ] =
aM − PM(1 + rf ) denote the market risk premium, where PM =

∑
i
Pi
N

is the total value
of the market portfolio. Theorem 2.1 expresses the equilibrium in terms of the returns,
conditional on the belief λA of agents A.

Theorem 2.1. Let κ and ζ∗ be defined as before, and let the average market-timing condi-
tional risk premium ρM(λA) be given by

ρM(λA) =
1

N

∑
i

ρi(λA), (2.19)

where ρi(λA) is the asset-specific market-timing risk premium conditional on λA given by

ρi(λA) =
λA
κ

(biωi). (2.20)
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The expected excess return of asset i conditional on λA is then given by

E[r̃i − rf |λA] = β̂i E[r̃M − rf |λA] + β̂iρM(λA)− ρi(λA), (2.21)

where β̂i is the beta on the market factor

β̂i =
e>i Ωx∗

x∗>Ωx∗
= ωi ·

biσ
2
zζ
∗ + κ

σ2
i

N

σ2
zζ
∗2 + κ

∑
j

ωjσ2
j

N2

= ωi ·
biσ

2
zζ
∗ +

σ2
i

N
(1 +

∑
j

b2jσ
2
z

σ2
j

(1− ωj))

σ2
zζ
∗2 + (

∑
j

ωjσ2
j

N2 )(1 +
∑

j

b2jσ
2
z

σ2
j

(1− ωj))
. (2.22)

The model differs from the standard capital asset pricing model (CAPM) in the following
ways. First, the model is stated in terms of conditional returns rather than unconditional
returns, giving a role to the expectations of agents A. Second, the level of the returns are
scaled by the proportional risk borne by agent A, ωi. To see how ωi affects the level, define

β̄i = β̂i
ωi

=
biσ

2
zζ
∗+

σ2i
N
κ

σ2
zζ
∗2+

∑
j

ωjσ
2
j

N2 κ

and write equation (2.21) as

E[r̃i − rf |λA] = ωi

(
β̄i E[r̃M − rf |λA] + β̄iρM(λA)− λA

κ
bi

)
. (2.23)

Since ωi is increasing in bi but decreasing in σ2
i , asset characteristics affect the returns through

this channel, which exists due to (limited) risk sharing. Third, the market beta in this model
β̂i differs from the CAPM beta βi. The CAPM beta, defined as the time series regression
coefficient of the asset excess return on the market excess return, is expressed in the model
parameters as

βi =
e>i Σx∗

x∗>Σx∗
=

biσ
2
z +

σ2
i

N

σ2
z +

∑
j

σ2
j

N2

. (2.24)

This difference in betas arises due to market segmentation. The covariance matrix in the
economy that prices the assets is jointly determined by the risk-minimizing agents A and B.
Because each agent in group B has access to just one asset and has mean-variance preference,
a representative agent for agents B exists with risk matrix S, which is a diagonal matrix
with total variance on the diagonal. The covariance (risk) matrix in the economy is then
the weighted covariance of both agents A and B, i.e., Ω = (θΣ−1 + 1−θ

N
S−1)−1. This also

shows that if there is no market segmentation among agents B, that is, S = Σ, the model
beta collapses to the CAPM beta. Finally, the model contains an abnormal return, which is
absent in the standard CAPM model, due to the extrapolative behavior of agents A.

Let δi = β̂iρM − ρi denote mispricing of asset i relative to the market returns. Corollary
2.1 discusses mispricing in terms of the asset characteristics relative to the market factor.

Corollary 2.1. Let δi = β̂iρM−ρi denote mispricing of asset i relative to the market returns.
It follows that,
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1. ∂δi
∂σ2
i
> 0 if λA > 0. Assets with low idiosyncratic volatility are overpriced (earn lower

expected return) relative to high idiosyncratic volatility assets following positive periods.

2. ∂δi
∂σ2
i
< 0 if λA < 0. Assets with high idiosyncratic volatility are underpriced (earn

higher expected return) relative to low idiosyncratic volatility assets following negative
periods.

3. ∂δi
∂bi
≶ 0. No monotonous relationship exists between mispricing and asset betas.

Mispricing of asset i is entirely driven by the expectations formed by agents A, λA.
Consider decomposing δi as follows:

δi = λAωi

 ∑
j
ωjbj
N

σ2
i

N
− bi

∑
j

ωjσ
2
j

N2

σ2
z

(∑
j
ωjbj
N

)2

+
∑

j

ωjσ2
j

N2

 , (2.25)

where I substitute for ζ∗. In the absence of market-segmented agents (i.e., 1 − θ = 0 such
that ωj = 1 for all j), assets are still mispriced relative to the market because (2.25) becomes

δi = λA(βi − bi) = λA

 σ2
i

N
− bi

∑
j

σ2
j

N2

σ2
z +

∑
j

σ2
j

N2

 , (2.26)

where βi is the CAPM beta. Assets for which idiosyncratic volatility is high and cash flow
beta is low are precisely the assets that have low demand when agent A has a positive outlook
(λA = λ > 0). This is due to the nature of their mean-variance preference, which leads to a
demand function that is proportional to bi

σ2
i
λA. Equation (2.26) captures this effect: assuming

a positive outlook (λA = λ > 0), assets with high bi are overpriced but underpriced when
these assets have low σ2

i . The effect is reversed when λA = −λ < 0. In this case, the demand
function of agents A is proportional to xA ∝ − bi

σ2
i
. In an economy with market-segmented

agents, however, these effects are dampened because ∂ωi
∂σ2
i
< 0 and ∂ωi

∂bi
> 0. More importantly,

no monotonous relationship between mispricing and bi exists because the dampening effect
through ωi cancels the negative effect of bi on mispricing. In this case, only idiosyncratic
volatility continues to affect mispricing, as summarized by Corollary 2.1.

Discussion

My model relies on two important assumptions: (i) agents A form extrapolative expectations
and (ii) agents B are market-segmented. Without agents B, the model reduces to a 2-factor
CAPM, where both bi and σ2

i can explain the cross-section of the conditional expected
returns, as in (2.26). Without the extrapolative behavior of agents A, the implications
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would be that assets with high idiosyncratic volatilities become more ‘uninsurable’, which
requires a higher risk premium at all times (see Merton (1987)). Only when both features are
simultaneously present do we see that the risk premium varies with idiosyncratic volatility
but not with beta.

The model also makes the simplifying assumption that each agent in group B is a fraction
of 1−θ

N
of all agents and that each agent has access to a unique asset. Corollary 2.2 states

the implications when the number of unique assets goes to infinity.

Corollary 2.2. Let N →∞. Then,

lim
N→∞

β̂i = βi (2.27)

and
lim
N→∞

β̂iρM − ρi = 0. (2.28)

In particular, the model reduces to the standard CAPM:

E[r̃i − r] = βi E[r̃M − r]. (2.29)

In the limiting case where N → ∞, the role of agents B disappears. Moreover, there is
now an infinite number of assets. The equilibrium is determined solely by the agents in group
A. Since all these agents are homogeneous and they solely determine the equilibrium, and the
fraction of each asset in the market portfolio is 1

N
(infinitesimal), these agents are essentially

holding the market portfolio. In this case, idiosyncratic volatilities are fully eliminated and
βi → bi.

Two additional edge cases are worth exploring. Suppose that bi = 1 for all assets. In this

case, ωi =
θ(σ2

z+σ2
i )

θσ2
z+(θ+ 1−θ

N
)σ2
i

and ∂ωi
∂σ2
i
< 0 still holds. Moreover, assets with high idiosyncratic

volatility stocks remain to be underpriced conditional on positive outlook and overpriced
conditional on negative outlook. Suppose next that the idiosyncratic volatilities are ho-
moskedastic such that σ2

i = σ2. Mispricing δi becomes

δi = λAωi
σ2

N

 ∑
j
ωjbj
N
− bi

∑
j
ωj
N

σ2
z

(∑
j
ωj
bj

)2

+ σ2

N

∑
j
ωj
N

 , (2.30)

which predicts that a higher idiosyncratic volatility relative to the systematic volatility leads
to larger mispricing errors.

Finally, one may consider extending the model with a third group of agents, those that
invest according to the traditional capital asset pricing model. To be more concrete, let θA
be the fraction of wealth invested by the representative extrapolator, θB be the fraction of
wealth invested by the representative mean-variance (CAPM) agent, now labeled as agent
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B, and θC = 1 − (θA + θB) be the remaining fraction invested by the N segmented agents,
now labeled as type C. It follows that agents A and B share the same risk matrix, since they
invest in all stocks, while the segmented agents C bear the idiosyncratic risk. As a result,

one should now interpret ωi =
θσ−2
i

θσ−2
i + 1−θ

N
Σ−1
ii

as the proportional risk of asset that is borne by

agent A and B, with θ = θA + θB. With this reformulation of the model, the rest of the
model follows. Corollary 2.3 summarizes this result.

Corollary 2.3. Let θA be the fraction of wealth invested by extrapolative agent A, θB be
the fraction of wealth invested by the mean-variance agent B, and θC be the fraction wealth
invested by the N market segmented agents C. In addition, define θ = θA + θB. Then, the
following risk-return relationship holds:

E[rei |λA] = β̂i E[reM |λA] + β̂iρM − ρi, (2.31)

where β̂i is the beta on the market factor

β̂i =
e>i Ωx∗

x∗>Ωx∗
= ωi ·

biσ
2
zζ
∗ + κ

σ2
i

N

σ2
zζ
∗2 + κ

∑
j

ωjσ2
j

N2

, (2.32)

where ωi =
θσ−2
i

θσ−2
i + 1−θ

N
Σ−1
ii

, κ = 1 +
∑

i

(
biσ

2
z

σi

)2

(1 − ωi) and ζ∗ =
∑

i bi
ωi
N

. In addition, ρM =
1
N

∑
i ρi, where ρi is defined as

ρi(λA) =
θA
θ

λA
κ
biωi. (2.33)

Thus, the introduction of CAPM investors does not change the model qualitatively. The
only difference is that the market-timing risk premium is now modified by θA

θA+θB
. This

fraction is the ratio of the capital invested by the extrapolators to the capital invested by
both the extrapolators and CAPM investors. Introducing CAPM investors reduces the size
of the risk premium due to extrapolation. The risk premium is nonzero because a fraction
θA

θA+θB
of the unconstrained investors are extrapolators, which introduces the risk premium

in the first place. Because CAPM investors do not affect the model in any meaningful way,
I left CAPM investors out of the model.

Quantitative Analysis

This section presents a quantitative exercise using the model to match empirical moments,
including the magnitude of the abnormal returns due to extrapolation that I present in
Section 2.3. The exercise is set at monthly frequency. In order to study the asset pricing
effects due to idiosyncratic volatilities, I make the following simplifying assumptions. First,
following Campbell, Grossman, and Wang (1993), I assume that all assets have the same
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price by setting Pi = 1 so that returns (ai) are calibrated directly. This assumption is
equivalent11 to assuming that all assets have the same expected payoff ai. Second, each
asset is in fixed supply with equal weights x∗i = 1

N
, where N is the number of assets. Asset

heterogeneity comes from two sources, cash flow beta bi or idiosyncratic volatility σ2
i . I

assume that there are N = Nb · Ns assets, where Nb is the number of distinct asset betas
and Ns is the number of distinct idiosyncratic volatilities. Assets are then grouped by the
level of idiosyncratic volatilities to form idiosyncratic volatility portfolios.

I generate the assets as follows. First, I assume that the average cash flow betas are
uniformly distributed with mean 1 and width 1, thus setting bj = 2(j−1)

Nb−1
, for j = 1, ..., Nb.

The lower and upper bound of the cash flow betas match the bottom and top 5 percentile of all
U.S. stock betas, respectively. Second, I assume a uniform distribution for the idiosyncratic
volatilities, where the lower bound is set at 1% (to match the bottom 5% daily idiosyncratic
volatility level, at 1.06%) and the upper bound is set at 6% (to match the top 5% daily

idiosyncratic volatility level, at 6.16%) with σ2
k = 0.01 + 0.05(k−1)

Ns−1
for k = 1, ..., Ns. These

numbers are then multiplied by
√

252
12

to obtain monthly volatility levels. The assets are

then generated from the Cartesian product of {b1, ..., bNb} and {σ2
1, ..., σ

2
Ns
}.

Table 2.19. Model Parameters

Parameter Value(s) Note

Asset-Specific
bi [0, 2] Cash Flow Betas
σe,i [4.58%, 27.50%] (Monthly) Idiosyncratic Volatility
x∗i

1
N

Asset Supply

Agent-Specific
λ 2.69% or -2.69% (Monthly) Market Timing Bias
θ 0.4 Size of group A
γ 2.693 Risk Aversion

Economy
σz 3.99% (Monthly) Market Volatility
N 100 Number of Assets
rf 0.2% (Monthly) Risk-free Rate

Notes: This table summarizes the parameter values of the model. Idiosyncratic volatility,
market timing bias, market volatility and risk-free are all at monthly frequency. See the
main text for the discussion of these parameters.

At the end of 2018, 62.4% of all U.S. equities were held by financial institutions with the
remaining 37.6% being held by the households sector (Security Industry Fact Book, 2019).

11Since E[rei ] = ai − Pi(1 + rf ), fixing Pi = 1 gives E[rei ] = ai − (1 + rf ), while fixing ai = a gives
E[rei ] = a− Pi(1 + rf ). In both cases, there is a free parameter to normalize the expected excess return.
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Moreover, mutual funds, government retirement funds, private pension funds, and exchange-
traded funds together make up 63.94% of all the financial institutions. I assume that agents
A represent these firms, and thus set θA = 0.4 (i.e., 0.6394 × 0.624). Moreover, Griffin and
Xu (2009) show that the average number of stocks held by mutual funds is between 43 and
119, with an average of around 100 since 2000. I assume that N = 100 to proxy the number
of stocks held by these funds. Retail investors, on the other hand, hold on average 4 (and
median 3) number of stocks in their portfolios and more than 25% of the retail investors
invest in a single stock (Goetzmann and Kumar (2008)). Thus, the assumption of market
segmentation, where each agent in group B holds 1 stock in the model, is not entirely
unreasonable. Since studying idiosyncratic volatility stocks is the goal of this exercise, I
allow for more variations in the idiosyncratic volatilities by setting Ns = 25 and Nb = 4.

I calibrate the remaining economy parameters as follows. First, σz is set to the daily
volatility of the MKT factor from 1926 to 2018, which is 0.87%. I multiply this number

with
√

252
12

to obtain monthly market volatility. Similarly, the average annualized market

risk premium, proxied by the average daily MKT factor multiplied by 252, is 7.10%. The
fraction of months with positive market excess returns in this sample is pλ = 0.61. I then
choose λ such that pλλ + (1 − pλ)(−λ) = 7.10%

12
, giving λ = 2.69%. Thus, when agents are

optimistic, they expect the market in excess of the risk-free asset to generate 2.69% per
month and −2.69% when they are pessimistic. The unconditional market risk premium in
the model is given by E[r̃M − rf ] = E[r̃M − rf |λ]pλ + E[r̃M − rf | − λ](1− pλ) and calibrated
by γ. Setting the risk aversion as γ = 2.693 gives an unconditional market risk premium of
7.1%. Finally, the risk-free asset is assumed to generate 0.2% per month, i.e., rf = 0.002.
Table 2.19 summarizes the parameters.

Figure 2.9. Jensen’s Alpha Analysis
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Figure 2.9 shows the model implications concerning Jensen’s Alpha. Jensen’s Alpha is
by definition

αi = E[ri − rf ]− βi E[rM − rf ] = (β̂i − βi)E[rM − rf ] + δi. (2.34)

The left panel shows the alpha due to differences in β. The difference between low and high
idiosyncratic volatility in α is 0.06% during positive months and -0.18% during negative
months. The middle panel displays the return relative to the market factor in our model.
The third panel displays the Jensen’s alpha due to market timing. Here the difference
is 1.01% for positive months between high and low idiosyncratic volatility and -1.01% for
negative months. These numbers are in the same magnitude as the empirical data. Overall,
this section shows that a model with market timing and market segmentation can explain
the conditional relationship between idiosyncratic volatility and expected returns.

2.6 Conclusion

This paper revisits the idiosyncratic volatility puzzle that is first documented by AHXZ. I first
show that their results are part of a bigger puzzle. I decompose the returns of idiosyncratic
volatility stocks into returns conditional on past market returns and show that the relation-
ship between idiosyncratic volatility and future returns is positive when the market return
is positive, and negative otherwise. I then show that the price of idiosyncratic volatility is
significantly positive (negative) following months with positive (negative) market returns.
This result survives the inclusion of risk factors, firm characteristics, short-term reversals,
industry portfolios, and double sorted portfolios on size and book-to-market. Using these
insights, I construct a new pricing factor, which I label as the signed idiosyncratic volatility
(SIV) factor. The SIV factor goes long in high idiosyncratic volatilities and short in low
idiosyncratic volatilities following months with positive returns, and vice versa otherwise. I
show that the value- and equal-weighted SIV-sorted zero-investment portfolios generate a
significant monthly alpha of 1.36% and 1.82%, respectively. I present a model that features
extrapolative agents and market segmentation in order to capture these facts.

Overall, my work shows that there is a clear relationship between idiosyncratic volatilities
and future returns once we account for the sign of the realized market return. Consequently,
one valuable direction for future study is to examine whether this relationship holds in-
ternationally and across other asset classes. A second direction is to study what subset
of investors best represents the extrapolative investors and whether the characteristics of
these investors can explain the documented relationship empirically. For example, a ques-
tion worth exploring is whether institutional investors that engage actively in market timing
hold low idiosyncratic volatilities during good times and high idiosyncratic volatilities during
bad times. A third direction is to study theoretically how aggregate volatility affects the
relationship between idiosyncratic volatilities and future returns.
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Appendix A

Learning-by-Doing, Technological
Adoption, and the Cross-Section of
Expected Returns

A.1 Proofs

Proof of Lemma 1.1

Fix t with Xt = x and At = a. Then,

V̄ (x, a) = Et
[
a

∫ ∞
t

πs
πt
xsEs−tds

]
= a

∫ ∞
t

Et
[
πs
πt
xs

] (
1− ρe−λ(s−t)) ds.

To find Et
[
πs
πt
xs

]
, apply Ito’s lemma on πtxt to obtain

d(πtXt) = πtdXt +Xtdπt + dXtdπt

= πt(gXtdt+ σXtdW
X
t ) +Xtπt(−rfdt− γAdWA

t − γXdWX
t ) + πtXt(−γXσX)dt

= πtXt

(
(g − rf − σXγX) dt+ (σX − γX)dWX

t − γAdWA
t

)
. (A.1)

It then follows that

d ln(πtXt) =
d(πtXt)

πtXt

− 1

2

(
d(πtXt)

πtXt

)2

= (g − rf − σγX)dt+ (σX − γX)dWX
t − γAdWA

t −
1

2
(σ − γX)2dt− 1

2
γ2
Adt.
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Integrating both sides gives

πsXs = πtXt exp

((
g − rf − σXγX −

1

2
(σX − γX)2 − 1

2
γ2
A

)
(s− t)

+ (σX − γX)(WX
s −W x

t )− γA(WA
s −WA

t )

)
,

where s > t. From this, it follows that

V̄ (x, a) = a

∫ ∞
t

Et x exp((g − rf − σγX)(s− t)
(
1− ρe−λ(s−t)) ds

= axϕ(0),

where ϕ(0) = 1
r−g −

ρ
r−g+λ , and r ≡ rf + σXγX .

Proof of Lemma 1.2

Notice that At = As exp
(
(µA − 1

2
σ2
A)(t− s) + σA(WA

t −WA
s )
)
, for t > s. Then, it follows

that, for all stopping times T ,

J(x, κa, κAτ , t− τ, T ) = Et
[∫ T

t

κAτ
πs
πt
Es−τXsds+

πT
πt
XTATϕ(0)1{T<∞}

∣∣∣Xt = x,At = κa

]
= Et

[ ∫ T

t

κAτ
πs
πt
Es−τXsds

+
πT
πt
XTκae

(µA− 1
2
σ2
A)(T−t)+σA(WA

T −W
A
t )ϕ(0)1{T<∞}

]
= κEt

[ ∫ T

t

Aτ
πs
πt
Es−τXsds

+
πT
πt
XTae

(µA− 1
2
σ2
A)(T−t)+σA(WA

T −W
A
t )ϕ(0)1{T<∞}

]
= κEt

[∫ T

t

Aτ
πs
πt
Es−τXsds+

πT
πt
XTATϕ(0)1{T<∞}

∣∣∣Xt = x,At = a

]
= κJ(x, a, Aτ , t− τ, T ).
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Proof of Lemma 1.3

Notice that Xt = Xs exp
(
(g − 1

2
σ2)(t− s) + σ(WX

t −WX
s )
)
. Consider starting at Xt = x.

Then,

J(x, a, Aτ , t− τ, T ) = Et
[∫ T

t

Aτ
πs
πt
Es−τXsds+

πT
πt
XTATϕ(0)1{T<∞}

∣∣∣Xt = x,At = a

]
= Et

[ ∫ T

t

Aτ
πs
πt
Et−τxe

(g− 1
2
σ2
X)(s−t)+σX(WX

s −WX
t )ds

+
πT
πt
xe(g− 1

2
σ2
X)(T−t)+σX(WX

T −W
X
t )ATϕ(0)1{T<∞}

]
= xJ(1, a, Aτ , t− τ, T ).

Proof of Lemma 1.4

We have

V (x, a, Aτ , t− τ) = J(x, a, Aτ , t− τ, T ∗)
= Aτ · J(x,

a

Aτ
, 1, t− τ, T ∗)

= x · Aτ · J(1, z, 1, t− τ, T ∗),

where I use Lemma 1.2 in the second equality and Lemma 1.3 in the third equality. Then,
define v(t− τ, z) ≡ J(1, z, 1, t− τ, T ∗).

Proof of Lemma 1.5

It is optimal to stop if
V (x, a, Aτ , t− τ) = xaϕ(0). (A.2)

Equivalently, this is xAτv(t− τ, z) = xaϕ(0), or v(t− τ, z) = a
Aτ
ϕ(0) = zϕ(0). Similarly, it

is optimal to continue if v(t− τ, z) 6= zϕ(0). Finally, note that

V (x, a, Aτ , t− τ) = sup
T
J(x, a, Aτ , t− τ, T )

≥ J(x, a, Aτ , t− τ, t)
= xaϕ(0).

That is, the firm can exercise the option immediately and receive xaϕ(0) but it may not be
optimal. This condition is equivalent to v(t− τ, z) ≥ zϕ(0), for all (t− τ, z). Combining this
result with the optimality condition proves the result.
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Proof of Lemma 1.6

Let T ≤ T ∗ = T ∗(t − τ, z), where T ∈ S is some arbitrary stopping time. It then follows
that

V (x, a, Aτ , t− τ) = sup
T∈S

J(x, a, Aτ , t− τ, T )

= J(x, a, Aτ , t− τ, T ∗)

= Et
[∫ T ∗

t

πs
πt
AτXsEs−τds+

πT ∗

πt
XT ∗AT ∗ϕ(0)1{T ∗<∞}

]
= Et

[ ∫ T

t

πs
πt
AτXsEs−τds

+

∫ T ∗

T

πs
πt
AτXsEs−τds+

πT ∗

πt
XT ∗AT ∗ϕ(0)1{T ∗<∞}

]
= Et

[ ∫ T

t

πs
πt
AτXsEs−τds

+
πT
πt

(∫ T ∗

T

πs
πT
AτXsEs−τds+

πT ∗

πT
XT ∗AT ∗ϕ(0)1{T ∗<∞}

)]
= Et

[ ∫ T

t

πs
πt
AτXsEs−τds

+
πT
πt

ET
[∫ T ∗

T

πs
πT
AτXsEs−τds+

πT ∗

πT
XT ∗AT ∗ϕ(0)1{T ∗<∞}

] ]
= Et

[∫ T

t

πs
πt
AτXsEs−τds+

πT
πt
J(XT , AT , Aτ , T − τ, T ∗(T − τ, Z(T )))

]
= Et

[∫ T

t

πs
πt
AτXsEs−τds+

πT
πt
V (XT , AT , Aτ , T − τ)

]
, (A.3)

where the second to last equality holds because T ∗ = T ∗(t − τ, z) = T ∗(T − τ, Z(T )). To
see this, note that T ≤ T ∗, such that (T − τ, Z(T )) ∈ D. Since at T > t we still haven’t
exited D and T ∗ is the first hitting time starting from t, T ∗ must also be the first hitting
time starting from T .

Now let V = V (x, a, Aτ , t− τ), and v = v(t− τ, z). In addition, let vt = ∂v
∂t

, vz = ∂v
∂z

, and
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vzz = ∂2v
∂z2

. Then, applying Ito’s lemma on πtV gives

d(πtV ) = d(πtAτXtv(t− τ, Zt))
= Aτv · d(πtXt) + Aτ (πtXt)dv + Aτd(πtXt)dv

= AτvπtXt

(
(g − rf − σXγX) dt+ (σX − γX)dWX

t − γAdWA
t

)
+ AτπtXt(vtdt+ vzZ(µAdt+ σAdW

A
t ) +

1

2
σ2
AvzzZ

2dt)

+ AτπtXt(−γAσA)vzZdt

= πAτx
{

(Lv − (r − g)v)dt+ (σAvzz − γA)dWA
t + (σX − γX)dWX

t

}
, (A.4)

where

Lv(t− τ, z) = vt + (µA − γAσA)zvz +
1

2
σ2
Az

2vzz (A.5)

is the drift of the v(t − τ, z) process. Assuming that the process (A.4) satisfies certain
technical conditions1, we have

Et
[
πT
πt
V (XT , AT , Aτ , T − τ)

]
= V (x, a, Aτ , t− τ)

+ Et
[∫ T

t

πs
πt
AτXs (Lv(s− τ, Zs)− (r − g)v(s− τ, Zs)) ds

]
.

(A.6)

Using (A.3) and (A.6), I obtain

0 = Et
[∫ T

t

πs
πt
AτXs(Es−τ + Lv(s− τ, Zs)− (r − g)v(s− τ, Zs))ds

]
. (A.7)

Dividing (A.7) by T − t and letting T → t yields

Lv(t− τ, z)− (r − g)v(t− τ, z) + Et−τ = 0, (t− τ, z) ∈ D. (A.8)

Substituting (A.5) into (A.8) gives the result.

1Specifically, the drift must be predictable and integrable, whereas the diffusion must be predictable and
W -integrable, where W = (WX ,WA). In addition, the integral in (A.6) must satisfy a certain technical
condition. A sufficient condition for these conditions is

E
[∫ t

0

(
|πsAτXs(Lv − (r − g)v)|+ (πsAτXs)

2
[
(σAvzZs − γA)2 + (σX − γX)2

])
ds

]
<∞.

In the proof of Lemma 1.9 for the verification argument, I will formally show that the solution satisfies these
conditions.
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Proof of Lemma 1.7

I start with the observation2 that if w(x, t) satisfies the partial differential equation

∂w

∂t
= f(x)

∂2w

∂x2
+ g(x)

(
∂w

∂x

)2

+ h(x)

(
∂w

∂x

)
+ aw + p(x) + q(t), (A.9)

then w(x, t) is an additive separable solution given by

w(x, t) = φ(x) + Ceat + eat
∫
e−atq(t)dt,

where the function φ(x) is determined by the ordinary differential equation

f(x)φ′′xx + g(x)(φ′x)
2 + h(x)φ′x + aφ+ p(x) = 0.

The PDE (1.18) is a special case of (A.9), with (i) f(x) = −1
2
σ2
Ax

2, (ii) g(x) = 0, (iii) h(x) =
−(µA − σAγA)x, (iv) a = (r − g), (v) p(x) = 0, and (vi) q(t) = −Et−τ = −(1 − ρe−λ(t−τ)).
Given this, the solution is simply

w(x, t) = φ(x) + C0e
(r−g)(t−τ) − e(r−g)t

∫
e−(r−g)t(1− ρe−λ(t−τ))dt

= φ(x) + C0e
(r−g)(t−τ) +

[
1

r − g −
1

r − g + λ
e−λ(t−τ)

]
, (A.10)

where C0 is an arbitrary constant, and φ(x) satisfies the ordinary differential equation

−1

2
σ2
Ax

2φ′′(x)− (µA − σAγA)xφ′(x) + (r − g)φ(x) = 0. (A.11)

To solve for φ(x), guess that a potential solution is of the form φ1(x) = xα, which gives

1

2
σ2
Aα

2 + (µA − σAγA −
1

2
σ2
A)α− (r − g) = 0. (A.12)

Solving for α gives

α± =
−(µA − σAγA − 1

2
σ2
A)±

√
(µA − σAγA − 1

2
σ2
A)2 + 2(r − g)σ2

A

σ2
A

, (A.13)

which implies that φ(x) = C1x
α+ + C2x

α− for some arbitrary constants C1, C2.

2See page 108 in Polyanin and Zaitsev (2004).
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Proof of Lemma 1.8

Since r − g > 0, it follows that α− < 0. To show α+ > 1, consider rewriting the quadratic
equation (A.12) as

1

2
σ2
A(α2 − α) + (µA − σAγA)α− (r − g) = 0. (A.14)

Evaluating the quadratic equation at α = 1 gives

µA − σAγA − (r − g) < 0. (A.15)

Since 1
2
σ2
A > 0, it follows that α > 1 is a solution to the quadratic equation.

Proof of Theorem 1.1

From Lemma 1.8, we have α+ > 0 and α− < 0 such that C0 = C2 = 0. Then, combining
Lemma 1.7 with C0 = C2 = 0 and (1.22) gives the candidate value function for v:

v(t− τ, z) =

{
C1z

α + ϕ(t− τ) 0 < z < z̄(t− τ)

zϕ(0), z ≥ z̄(t− τ).
(A.16)

By continuity of v(t− τ, z), we must have

C1z̄(t− τ)α + ϕ(t− τ) = z̄(t− τ)ϕ(0), (A.17)

where v(t − τ, z) is evaluated at z = z̄(t − τ). In addition, the assumption of continuously
differentiability implies that we have, when evaluated at z = z̄(t− τ),

αC1z̄(t− τ)α−1 = ϕ(0). (A.18)

Solving for C1 and z̄(t− τ) using (A.17) and (A.18) yields

C1 =
1

α− 1
z̄(t− τ)−αϕ(t− τ), (A.19)

z̄(t− τ) =
α

α− 1

ϕ(t− τ)

ϕ(0)
. (A.20)

Substituting these expressions back in (A.16) gives:

v(t− τ, z) =

{
ϕ(t− τ)

(
1 + 1

α−1

(
z

z̄(t−τ)

)α)
, z < z̄(t− τ),

zϕ(0), z ≥ z̄(t− τ).
(A.21)

Using Lemma 1.4, I can conclude that the candidate value function V is given by (1.25),
where ā(t− τ) = Aτ z̄(t− τ).
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Proof of Lemma 1.9

To show property 1, consider first the case that a < ā(t− τ). Differentiating (1.25) w.r.t. a
gives

∂V

∂a
= Aτx

(
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

)
α

a

1

α− 1

(
a

ā(t− τ)

)α
, (A.22)

which is continuous in a for a < ā(t− τ). Furthermore, when a→ ā(t− τ), I obtain

lim
a→ā

∂V

∂a
= Aτx

(
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

)
α

ā(t− τ)

1

α− 1
. (A.23)

Now, consider the case where a ≥ ā(t− τ). Then,

∂V

∂a
= xϕ(0), (A.24)

which is an continuous function in a for a ≥ ā(t−τ). To emphasize, I note that this condition
is true for a = ā(t− τ). I now wish to show that the left derivative (A.23) coincide with the
right derivative (A.24) when evaluated at a = ā(t−τ). To this end, substitute the expression
for ā in (A.23),

lim
a→ā

∂V

∂a
= Aτx

(
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

)
α

Aτ
α
α−1

1
ϕ(0)

(
1
r−g −

ρ
r−g+λe

−λ(t−τ)
) 1

α− 1

= xϕ(0),

and I conclude that ∂V
∂a

is continuous when a = ā(t− τ).
To show property 2, note that I only have to show that V (x, a, Aτ , t− τ) for a < ā, since

the property holds for a ≥ ā. Start by noticing that for all a < ā, it must be true that

xaϕ < xāϕ

= xAτ
α

α− 1

1

ϕ(0)

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

]
ϕ(0)

= xAτ

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

](
1 +

1

α− 1

)
= xAτ

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

](
1 +

1

α− 1

(a
a

)α)
≤ max

ā
xAτ

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

](
1 +

1

α− 1

(a
ā

)α)
= V (x, a, Aτ , t− τ), (A.25)
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where I substitute for ā in the first equality, and the last equality holds because V is defined
for the optimal threshold ā.

Next, to show property 3, first rewrite the property as

Lv(t− τ, z)− (r − g)v(t− τ, z) + Et−τ ≤ 0, (A.26)

since Aτxv(t− τ, z) = V (x, a, Aτ , t− τ). Substituting Lv(t− τ, z) in (A.26) gives

vt + (µA − γAσA)zvz +
1

2
σ2
Az

2vzz − (r − g)v + Et−τ ≤ 0. (A.27)

We know that this condition holds with equality in the inaction region, that is, when z <
z̄(t − τ) (see equation (1.18)). For z ≥ z̄(t − τ), we then have v(t − τ, z) = zϕ(0). This
implies that vt = 0, vz = ϕ(0), and vzz = 0. Substituting these terms in (A.27) yields

(µA − γAσA)zϕ(0)− (r − g)zϕ(0) + (1− ρe−λ(t−τ)) ≤ 0. (A.28)

Thus, the property is equivalent to

1− ρe−λ(t−τ) ≤ (r − g − (µA − γAσA))zϕ(0). (A.29)

By assumption, r−g > µA−γAσA, and so the right hand side is increasing in z. Since z ≥ z̄
in the stopping region, it is sufficient to show that

1− ρe−λ(t−τ) ≤ (r − g − (µA − γAσA))z̄(t− τ)ϕ(0). (A.30)

Now substitute the expression for z̄(t− τ) in (A.20) into (A.30) in order to obtain

1− ρe−λ(t−τ) ≤ (r − g − (µA − γAσA))
α+

α+ − 1

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

]
, (A.31)

where I reintroduce the subscript for α (in order to distinct α+ from α−). Rewriting (A.31)
gives

(α+ − 1)
(
1− ρe−λ(t−τ)

)
≤ (r − g − (µA − γAσA))α+

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

]
. (A.32)

Expanding both sides gives:

α+(1− ρe−λ(t−τ))− (1− ρe−λ(t−τ)) ≤ α+

[
1− (r − g)ρ

r − g + λ
e−λ(t−τ)

]
− α+(µA − γAσA)

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

]
.

(A.33)
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Canceling terms and rearranging gives

α+(µA− γAσA)

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

]
−α+

ρλ

r − g + λ
e−λ(t−τ) ≤ 1− ρe−λ(t−τ). (A.34)

Now, let α− be defined as in (1.20). Direct algebra gives

α+ + α− = −2
µA − σAγA

σ2
A

+ 1, (A.35)

α+ · α− = −2
r − g
σ2
A

. (A.36)

It then follows that

α+(µA − γAσA) = −α+
σ2
A

2
(α+ + α− − 1)

= −σ
2
A

2

(
α2

+ + α+ · α− − α+

)
< −σ

2
A

2
(α+ · α−)

= r − g, (A.37)

where the inequality holds because α2
+−α+ > 0, and the last equality holds after substituting

(A.36). Using (A.37), I can now show that

α+(µA − γAσA)

[
1

r − g −
ρ

r − g + λ
e−λ(t−τ)

]
− α+

ρλ

r − g + λ
e−λ(t−τ)

< 1− ρ(r − g)

r − g + λ
e−λ(t−τ) − α+

ρλ

r − g + λ
e−λ(t−τ)

< 1− ρ(r − g)

r − g + λ
e−λ(t−τ) − ρλ

r − g + λ
e−λ(t−τ)

= 1− ρ

r − g + λ
e−λ(t−τ),

which is the desired result.
To prove property 4, first note that the integrability condition is equivalent to∫ t

0

(
|πsAτXs(Lv − (r − g)v)|+ (πsAτXs)

2
[
(σAvzZs − γA)2 + (σX − γX)2

])
ds <∞.

(A.38)
This statement is true if I can show that the expectation of the integral is finite, which can
only exist if the integral is finite a.s. Second, the technical condition is equivalent to

E
[∫ t

0

(πsAτXs)
2
[
(σAvzZs − γA)2 + (σX − γX)2

]
ds

]
<∞. (A.39)
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To show property 4, it is therefore sufficient to prove

E
[∫ t

0

(
|πsAτXs(Lv − (r − g)v)|+ (πsAτXs)

2
[
(σAvzZs − γA)2 + (σX − γX)2

])
ds

]
<∞.
(A.40)

I will break the proof of (A.40) in several steps. First, I will show that

E
[∫ t

0

|πsAτXs(Lv − (r − g)v)| ds
]
<∞. (A.41)

Start with the observation that πtAτXt > 0 for all t. In addition, by property 3, we have
Lv(t−τ, z)−(r−g)v(t−τ, z) ≤ −Et−τ < 0. It follows that |Lv(t− τ, z)− (r − g)v(t− τ, z)| =
(r − g)v(t − τ, z) − Lv(t − τ, z) ≥ Et−τ > 0. For z < z̄(t − τ), we know that (r −
g)v(t − τ, z) − Lv(t − τ, z) = Et−τ . For z ≥ z̄(t − τ), v(t − τ, z) = zϕ(0) and I ob-
tain (r − g)v(t − τ, z) − Lv(t − τ, z) = (r − g − (µA − γAσA))zϕ(0). By assumption,
r − g − (µA − γAσA) > 0. Using these facts, I can simplify

|πtAτXt(Lv − (r − g)v)| = |πsAτXs| |(Lv − (r − g)v)|
= πtAτXt ((r − g)v − Lv)

= πtAτXt

(
Et−τ 1{Zt<z̄(t−τ)}

+ (r − g − (µA − γAσA))Ztϕ(0)1{Zt≥z̄(t−τ)}

)
< πtAτXt (Et−τ + (r − g − (µA − γAσA))Ztϕ(0))

< πtAτXt(1 + (r − g)Ztϕ(0)) (A.42)

for all (t−τ, Zt), where the last inequality follows because Et−τ ≤ 1 and r−g > µA−γAσA > 0.
Using (A.42) in (A.41) yields

E
[∫ t

0

|πsAτXs(Lv − (r − g)v)| ds
]
< Aτ E

[∫ t

0

πsXsds

]
+ (r − g)ϕ(0)Aτ E

[∫ t

0

πsXsZsds

]
,

(A.43)

where E
[∫ t

0
πsXsds

]
= X0

r−g

(
1− e−(r−g)t), and applying Ito’s lemma on d log(πtXtZt), it is

easy to show that E
[∫ t

0
πsXsZsds

]
= X0Z0

r+σAγA−(g+µA)

(
1− e−(r+σAγA−(g+µA))

)
(recall π0 = 1).

Since the two expectations in (A.43) exist, condition (A.41) must be true. Second, I will
show that

E
[∫ t

0

(πsAτXs)
2 (σAvzZs − γA)2 ds

]
<∞. (A.44)
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Condition (A.44) is true if

E
[∫ t

0

(πsAτXs)
2(σAvzZs)

2ds

]
− 2γAσA E

[∫ t

0

(πsAτXs)
2vzZsds

]
+ γ2

A E
[∫ t

0

(πsAτXs)
2ds

]
(A.45)

is finite, that is, if the three expectations in (A.45) exist. Now notice that

vzz = ϕ(t− τ)
α

α− 1

(
z

z̄(t− τ)

)α
1{z<z̄(t−τ)}+ϕ(0)z 1{z≥z̄(t−τ)}

< ϕ(t− τ)
α

α− 1
+ ϕ(0)z

<
1

r − g
α

α− 1
+ ϕ(0)z.

for all (t − τ, z) such that (vzz)2 <
(

1
r−g

α
α−1

)2

+ 2
r−g

α
α−1

ϕ(0)z + ϕ(0)z2. To show that the

three expectations in (A.45) exist, it is sufficient to show that E
[∫ t

0
(πsXs)

2Zk
s ds
]

is finite

for k = 0, 1, 2. The dynamics of πtXt is given by (A.1), and applying Ito’s lemma on (πtXt)
2

yields

d(πtXt)
2 = (πtXt)

2
[
−
(
2(r − g)− (σX − γX)2 − γ2

A

)
dt+ 2(σX − γX)dWX

t − 2γAdW
A
t

]
,

(A.46)
while applying Ito’s lemma on Zk

t gives

dZk
t = Zk

t

[(
kµA +

k(k − 1)

2
σ2
A

)
dt+ kσAdW

A
t

]
. (A.47)

It follows that

d
[
(πtXt)

2Zk
t

]
(πtXt)2Zk

t

= −
{

2

(
r + 2σAγA − g −

kµA
2

)
− (σX − γX)2 − γ2

A −
k(k − 1)

2
σ2
A

}
dt

+ (kσ2
A − 2γA)dWA

t + 2(σX − γX)dWX
t . (A.48)

Hence, I obtain that

E
[
(πtXt)

2Zk
t

]
= X2

0Z
k
0 exp

(
−
{

2

(
r + 2σAγA − g −

kµA
2

)
− (σX − γX)2 − γ2

A

− k(k − 1)

2
σ2
A

}
t

)
. (A.49)

And I can conclude that

E
[∫ t

0

(πsXs)
2Zk

s ds

]
<∞. (A.50)

The last term in (A.40) also exists since (σX − γX)2 <∞, and thus I can conclude that πV
is integrable and satisfies the technical condition in property 4.
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Proof of Corollary 1.2

From the expressions of V G and V A, it follows that

wA =
1

1 + 1
α−1

(
a

ā(t−τ)

)α , (A.51)

and thus
∂wA

∂ā(t− τ)
= −wA · wA

α

α− 1

(a
ā

)α
· −1 · ā−1. (A.52)

Since α > 1, it follows that the partial derivative is positive, and so wA is increasing in the
threshold function ā(t−τ). Because wG = 1−wA, it follows that wG is decreasing in ā(t−τ).

Proof of Corollary 1.3

I first make the observation that 1 + λ
r−g > ρ, and therefore the constant is strictly positive.

The first statement holds because

∂ā(t− τ)

∂ρ
∝ 1

(r − g)(r − g + λ)
(1− e−λ(t−τ)) > 0. (A.53)

To show the second statement, I apply the quotient rule and obtain

∂ā(t− τ)

∂λ
∝ ρ(r − g + λ)−2

(
(r − g)−1 − ρ(r − g + λ)−1e−λ(t−τ)

)
− ρ(r − g + λ)−2

(
e−λ(t−τ) + (t− τ)(r − g + λ)

) (
(r − g)−1 − ρ(r − g + λ)−1

)
∝
(

(r − g)−1(1− e−λ(t−τ)) + (t− τ)

(
ρ− r − g + λ

r − g

))
∝ 1− e−λ(t−τ) − ((1− ρ)(r − g) + λ) (t− τ).

Linearizing the exponential function under the assumption that t− τ is sufficiently small, I
get that

∂ā(t− τ)

∂λ
∝ −(1− ρ)(r − g)(t− τ) < 0. (A.54)

Statement 3 follows from the definition. Statement 4 follows because:

∂ā

∂(t− τ)
∝ −ρ
r − g + λ

(−λ)e−λ(t−τ) > 0.
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Proof of Theorem 1.2

Recall that V (x, a, Aτ , t− τ) = Aτxv(t− τ, z). Thus, Ito’s lemma gives

dV = (AτXt)dv + vd(AτXt) + d(AτXt)dv, (A.55)

where
d(AτXt) = AτXt(gdt+ σdWX

t ). (A.56)

To find dv(t − τ, z), let us introduce the notation that v(t − τ, z) ≡ M(t − τ)N(t − τ, z),
where

M(t− τ) =
1

r − g −
ρ

r − g + λ
e−λ(t−τ), (A.57)

N(t− τ, z) = 1 +
1

α− 1

(
z

z̄(t− τ)

)α
. (A.58)

It is easy to show that:

dM = M

[
λρ

r−g+λe
−λ(t−τ)

1
r−g −

ρ
r−g+λe

−λ(t−τ)

]
dt, (A.59)

and

dN =
∂N

∂t
dt+

∂N

∂Z
dZt +

1

2

∂2N

∂Z2
(dZt)

2

= − α

α− 1

(
Zt

z̄(t− τ)

)α ∂z̄(t−τ)
∂t

z̄(t− τ)
dt+

α

α− 1

(
Zt

z̄(t− τ)

)α
6
dZt
Zt

+
α

2

(
Zt

z̄(t− τ)

)α
(dZt)

2

Z2
t

= Et[dN ] +N

 α
α−1

[
Zt

z̄(t−τ)

]α
1 + 1

α−1
[ Zt
Z̄(t−τ)

]α

σAdWA
t , (A.60)

from which it follows that

dv = MdN +NdM + dNdM

= M Et[dN ] +MN

 α
α−1

[
Zt

z̄(t−τ)

]α
1 + 1

α−1
[ Zt
z̄(t−τ)

]α

σAdWA
t +NdM

= Et[dv] + v

 α
α−1

[
Zt

z̄(t−τ)

]α
1 + 1

α−1
[ Zt
z̄(t−τ)

]α

σAdWA
t . (A.61)
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Substituting (A.61) into (A.55) and simplifying gives

dV = E[dV ] + σV dWX
t + σAV

 α
α−1

[
Zt

z̄(t−τ)

]α
1 + 1

α−1
[ Zt
z̄(t−τ)

]α

 dWA
t , (A.62)

which proves (1.37) after rearranging terms. To prove (1.38), it is sufficient to evaluate the
covariance term between the (negative of) the stochastic discount factor −dπt

πt
and the actual

return on the market value, dV+Ddt
V

, that is,

Et
[
dV +Ddt

V
− rfdt

]
= −Covt

[
dπt
πt
,
dV

V

]
. (A.63)

Proof of Theorem 1.3

Since v(t− τ, z) satisfies the PDE in (1.18), by Lemma 1.7 we have the general solution for
v(t− τ, z) given by (1.19). From the boundary condition (1.43), we have C0 = C2 = 0. Now
substitute (1.19) with C0 = C2 = 0 into (1.44) and (1.45) to obtain

C1[z̄(t− τ ;κ)]α + ϕ(t− τ) = z̄(t− τ ;κ)ϕ(0)− κ, (A.64)

αC1[z̄(t− τ ;κ)]α−1 = ϕ(0). (A.65)

Solving for C1 and z̄(t− τ ;κ) gives

z̄(t− τ ;κ) =
α

α− 1

(
ϕ(t− τ) + κ

ϕ(0)

)
, (A.66)

C1 =
1

α− 1

ϕ(t− τ) + κ(
α
α−1

ϕ(t−τ)+κ
ϕ(0)

)α . (A.67)

We complete the proof by substituting (A.66) and (A.67) into (1.19) in order to obtain

v(t− τ, z) = (ϕ(t− τ) + κ)

[
1 +

1

α− 1

(
z

z̄(t− τ ;κ)

)α]
− κ

= ϕ(t− τ)

[
1 +

1

α− 1

(
z

z̄(t− τ ;κ)

)α]
+

κ

α− 1

(
Z

z̄(t− τ ;κ)

)α
. (A.68)

Proof of Corollary 1.4

Start with the observation that z̄κ = α
α−1

1
ϕ(0)

= α
α−1

1
1
r−g−

ρ
r−g+λ

. It then follows that

∂z̄κ
∂λ

= − α

α− 1

1

ϕ(0)2

(
ρ

r − g + λ

)2

< 0, (A.69)
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and
∂z̄κ
∂ρ

=
α

α− 1

1

ϕ(0)2

1

r − g + λ
> 0. (A.70)

Proof of Theorem 1.4

Since v(t− τ, z) satisfies the PDE in (1.18), by Lemma 1.7 we have the general solution for
v(t− τ, z) given by (1.19). From the boundary condition (1.43), we have C0 = C2 = 0. Now
substitute (1.19) with C0 = C2 = 0 into (1.49) and (1.50) to obtain

C1z̄
α
repeated + ϕ(t− τ) = z̄repeated(C1 + ϕ(0))− κ, (A.71)

αC1z̄
α−1
repeated = C1 + ϕ(0). (A.72)

Solving for C1 gives

C1 =
1

α− 1
z̄−αrepeated (ϕ(t− τ) + κ) . (A.73)

Now substitute (1.47) into this expression to obtain

C1 =
ϕ(0)

α
z̄−αrepeatedz̄(t− τ ;κ). (A.74)

Substituting this expression into the smooth-pasting condition (A.72) and rearranging gives
(1.52).
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Appendix B

The Conditional Idiosyncratic
Volatility Premium

B.1 Additional Figures
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Figure B.1. Alphas for zero-cost 10− 1 SIV Portfolio
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Panel B: Equal-Weighted Portfolio
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Notes: This figure displays the FF-3 alphas for the 10 − 1 value- (Panel A) and equal-
weighted (Panel B) portfolios. For each month, I sort stocks into deciles based on the
signed idiosyncratic volatility (SIV). I use lagged and lead signs of the market excess
return up to 12 months. Idiosyncratic volatility (IV) is estimated using the past 12 months
of daily return data relative to the FF-3 model. 95% confidence interval, calculated using
Newey and West (1987) standard errors with 12-month lags, is relative to the mean. The
sample period is from July 1927 to December 2018.



APPENDIX B. THE CONDITIONAL IDIOSYNCRATIC VOLATILITY PREMIUM 114

Figure B.2. Idiosyncratic Volatility Return for each Third of the Month
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Notes:This figure plots the daily average excess return for value- (Panel A) and
equal-weighted (Panel B) portfolios. For each month, I sort stocks into deciles
based on the idiosyncratic volatility (IV), estimated using the past 12 months
of daily return data relative to the FF-3 model. Within each month, I then
calculate the average excess return conditional on the market sign from the
previous trading day for each third of the month. The sample period is from
July 1927 to December 2018.



A
P
P
E
N
D
IX

B
.
T
H
E
C
O
N
D
IT

IO
N
A
L
ID

IO
S
Y
N
C
R
A
T
IC

V
O
L
A
T
IL
IT

Y
P
R
E
M
IU

M
115

Figure B.3. Idiosyncratic Volatility Return across Week of the Month

Panel A: Value-Weighted Portfolio
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Panel B: Equal-Weighted Portfolio
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Notes: This figure plots the daily average excess return for value- (Panel A) and equal-weighted (Panel B) portfolios. For
each month, I sort stocks into deciles based on the idiosyncratic volatility (IV), estimated using the past 12 months of
daily return data relative to the FF-3 model. Within each month, I then calculate the average excess return conditional
on the market sign from the previous trading day for each week of the month. The sample period is from July 1927 to
December 2018.
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B.2 Additional Tables

Table B.1. Fama-MacBeth Regressions on Monthly Test Portfolios

Value-Weighted Equal-Weighted

β s h IV R2 β s h IV R2

Panel A: Conditional on reM,t−1 ≥ 0

(1) 0.67 0.27 17.1% 0.69 0.61 31.2%
(0.17) (0.06) (0.18) (0.08)

(2) 0.77 0.20 0.24 0.16 35.9% 0.75 0.35 0.33 0.34 53.1%
(0.19) (0.11) (0.12) (0.04) (0.19) (0.11) (0.15) (0.06)

Panel B: Conditional on reM,t−1 < 0

(1) 0.29 −0.43 19.1% 0.12 −0.42 35.1%
(0.26) (0.08) (0.30) (0.10)

(2) 0.20 −0.61 0.08 −0.18 40.4% 0.28 −0.55 0.09 −0.19 57.1%
(0.27) (0.14) (0.14) (0.06) (0.30) (0.15) (0.16) (0.07)

Panel C: Unconditional

(1) 0.52 0.00 17.9% 0.47 0.21 32.7%
(0.15) (0.05) (0.16) (0.07)

(2) 0.55 −0.11 0.18 0.03 37.6% 0.57 0.00 0.24 0.14 54.7%
(0.16) (0.09) (0.09) (0.03) (0.16) (0.09) (0.11) (0.04)

Panel D: Difference Test

(1) 0.38 0.69 0.57 1.03
(0.30) (0.09) (0.33) (0.13)

(2) 0.57 0.81 0.16 0.34 0.47 0.89 0.24 0.53
(0.32) (0.18) (0.18) (0.07) (0.34) (0.19) (0.23) (0.09)

Notes: This table reports Fama-MacBeth regression results on value- and equal-weighted test
portfolios. The test portfolios are monthly 5 × 5 double sorted portfolios on β and idiosyncratic
volatility IV . For each month, I estimate IV of the test portfolios using 12 months of monthly
portfolio returns relative to the FF-3 model. β, s and h are loadings on MKT , SMB and HML,
respectively. Panel A and B report the estimated premia conditional on the lagged market excess
return. Panel C reports the unconditional risk premia. Panel D reports the difference in the risk
premia in Panel A and Panel B. Standard errors are in parentheses. The sample period is from
July 1927 to December 2018.
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Table B.2. Fama-MacBeth Regressions on Monthly Test Portfolios and FF-3 and Industry
Portfolios

Value-Weighted Equal-Weighted

β s h IV R2 β s h IV R2

Panel A: Conditional on reM,t−1 ≥ 0

(1) 0.98 0.16 7.9% 0.92 0.35 12.6%
(0.18) (0.04) (0.19) (0.05)

(2) 0.95 0.38 0.33 0.04 30.4% 0.83 0.57 0.31 0.15 39.7%
(0.19) (0.10) (0.10) (0.03) (0.19) (0.10) (0.11) (0.03)

Panel B: Conditional on reM,t−1 < 0

(1) 0.18 −0.29 7.8% 0.07 −0.23 11.3%
(0.27) (0.06) (0.29) (0.07)

(2) 0.19 −0.53 0.34 −0.17 34.2% 0.18 −0.50 0.34 −0.15 43.1%
(0.27) (0.13) (0.14) (0.04) (0.28) (0.14) (0.15) (0.04)

Panel C: Unconditional

(1) 0.67 −0.02 7.9% 0.59 0.13 12.1%
(0.15) (0.03) (0.16) (0.04)

(2) 0.66 0.02 0.33 −0.04 31.9% 0.58 0.15 0.32 0.04 41.0%
(0.15) (0.08) (0.08) (0.02) (0.16) (0.08) (0.09) (0.03)

Panel D: Difference Test

(1) 0.80 0.44 0.85 0.59
(0.31) (0.07) (0.33) (0.09)

(2) 0.76 0.90 −0.01 0.21 0.65 1.06 −0.03 0.30
(0.32) (0.16) (0.17) (0.05) (0.33) (0.17) (0.18) (0.05)

Notes: This table reports Fama-MacBeth regression results on value- and equal-weighted test
portfolios and control portfolios. The test portfolios are monthly 5× 5 double sorted portfolios on
β and idiosyncratic volatility IV . The control portfolios are monthly 5×5 size- and book-to-market
sorted portfolios and 10 industry portfolios. For each month, I estimate IV of the test and control
portfolios using 12 months of monthly portfolio returns relative to the FF-3 model. β, s and h are
loadings on MKT , SMB and HML, respectively. Panel A and B report the estimated premia
conditional on the lagged market excess return. Panel C reports the unconditional risk premia.
Panel D reports the difference in the risk premia in Panel A and Panel B. Standard errors are in
parentheses. The sample period is from July 1927 to December 2018.
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Table B.3. Fama-MacBeth Regressions for Monthly Individual Stocks

Panel A: Conditional on reM,t−1 ≥ 0

β s h Size B/M rt−1 IV R2

(1) 0.15 0.17 −0.4%
(0.08) (0.02)

(2) 0.22 C −0.05 0.15 0.7%
(0.06) (0.01) (0.02)

(3) 0.22 0.06 0.12 0.15 1.9%
(0.12) (0.04) (0.06) (0.02)

(4) 0.04 −0.01 0.86 0.09 2.2%
(0.04) (0.02) (0.08) (0.02)

(5) 0.29 0.09 0.04 −0.01 0.82 −0.06 0.09 3.8%
(0.08) (0.04) (0.03) (0.02) (0.07) (0.01) (0.01)

Panel B: Conditional on reM,t−1 < 0

(1) 0.15 −0.07 −1.7%
(0.10) (0.03)

(2) 0.04 −0.05 −0.11 −0.5%
(0.06) (0.01) (0.03)

(3) 0.21 −0.01 0.10 −0.08 1.2%
(0.15) (0.06) (0.06) (0.02)

(4) 0.12 0.01 0.03 −0.10 2.3%
(0.05) (0.04) (0.09) (0.03)

(5) −0.02 −0.05 0.12 0.01 0.00 −0.05 −0.10 4.1%
(0.07) (0.05) (0.04) (0.04) (0.09) (0.01) (0.02)

(continued)
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Table B.3.–Continued

Panel C: Difference Test

β s h Size B/M rt−1 IV R2

(1) 0.00 0.23
(0.13) (0.04)

(2) 0.17 −0.01 0.26
(0.09) (0.01) (0.03)

(3) 0.02 0.07 0.02 0.23
(0.19) (0.07) (0.09) (0.03)

(4) −0.08 −0.02 0.83 0.19
(0.06) (0.05) (0.12) (0.03)

(5) 0.31 0.14 −0.08 −0.01 0.81 0.00 0.19
(0.11) (0.07) (0.05) (0.04) (0.12) (0.01) (0.02)

Notes: This table reports Fama-MacBeth regression results on individual stocks.
For each month, I estimate IV using 12 months of monthly return data relative to
the FF-3 model. β, s and h are loadings on MKT , SMB and HML, respectively.
Size and B/M are the log market capitalization and the book-to-market ratio of
the stock at the firm level. rt−1 is the realized return from the previous month.
Panel A and B report the estimated premia conditional on the lagged market
excess return. Panel C reports the difference in the risk premia in Panel A and
Panel B. Standard errors are in parentheses. The sample period is from July
1927 to December 2018.
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Table B.4. Panel Regressions for Monthly Test Portfolios

Panel A: Value-Weighted Portfolios

(1) (2) (3) (4) (5) (6)

IV −0.25 −0.25 −0.21 −0.25 −0.25 −0.25
(0.09) (0.09) (0.09) (0.07) (0.07) (0.07)

IV × Pos 0.42 0.42 0.42 0.39 0.39 0.39
(0.13) (0.13) (0.13) (0.11) (0.11) (0.11)

β −0.10 −0.09 −0.13 −0.13
(0.18) (0.18) (0.15) (0.15)

s −0.20 −0.01
(0.09) (0.08)

h 0.13 0.22
(0.11) (0.09)

Panel B: Equal-Weighted Portfolios

(7) (8) (9) (10) (11) (12)

IV −0.39 −0.39 −0.42 −0.30 −0.29 −0.33
(0.13) (0.13) (0.13) (0.08) (0.08) (0.07)

IV × Pos 0.97 0.98 0.97 0.68 0.68 0.68
(0.18) (0.18) (0.18) (0.13) (0.13) (0.13)

β −0.22 −0.21 −0.19 −0.17
(0.19) (0.19) (0.15) (0.15)

s 0.12 0.18
(0.12) (0.09)

h 0.09 0.16
(0.17) (0.11)

Effect Time Time Time Time Time Time
Control No No No Yes Yes Yes

Notes: This table reports panel regression results on value- (Panel A) and equal-weighted test
portfolios (Panel B) and control portfolios. The test portfolios are monthly 5 × 5 double sorted
portfolios on β and idiosyncratic volatility IV . The control portfolios are monthly 5× 5 size- and
book-to-market sorted portfolios and 10 industry portfolios. For each month, I estimate IV of the
test and control portfolios using 12 months of daily portfolio returns relative to the FF-3 model.
β, s and h are loadings on MKT , SMB and HML, respectively. Pos is a dummy variable that
equals one if the previous market excess return is nonnegative. Standard errors, clustered at the
time level, are reported in parentheses. The sample period is from July 1927 to December 2018.
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Table B.5. Panel Regressions for Monthly Individual Stocks

(1) (2) (3) (4) (5) (6)

IV −0.06 −0.06 −0.06 −0.06 −0.08 −0.07
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

IV × Pos 0.10 0.10 0.12 0.10 0.10 0.11
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

β −0.02 −0.02 −0.02 0.00 −0.01
(0.02) (0.02) (0.02) (0.02) (0.02)

rt−1 −0.05 −0.04
(0.01) (0.01)

s 0.00 0.00
(0.01) (0.01)

h 0.01 0.00
(0.01) (0.01)

Size −0.21 −0.17
(0.04) (0.04)

B/M 0.00 0.00
(0.00) (0.00)

Effects Time Time Time Time Time Time

Notes: This table reports results from the panel regressions on individual
stocks. For each month, I estimate IV using 12 months of monthly return
data relative to the FF-3 model. β, s and h are loadings on MKT , SMB and
HML, respectively. Size and B/M are the log market capitalization and the
book-to-market ratio of the stock at the firm level. rt−1 is the realized return
from the previous month. Pos is a dummy variable that equals one if the
previous market excess return is nonnegative. Standard errors, clustered at
the time level, are reported in parentheses. The sample period is from July
1927 to December 2018.
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Table B.6. CAPM Loadings of 10 SIV Portfolios

Panel A: Value-Weighted SIV Portfolios

1 2 3 4 5 6 7 8 9 10 10− 1

MKT 1.12 1.24 1.32 1.36 1.40 1.39 1.38 1.30 1.24 1.24 0.12
(0.07) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.03) (0.05) (0.07) (0.12)

Panel B: Equal-Weighted SIV Portfolios

MKT 1.04 1.16 1.21 1.23 1.29 1.29 1.31 1.32 1.30 1.29 0.24
(0.07) (0.04) (0.03) (0.03) (0.06) (0.05) (0.06) (0.08) (0.09) (0.13) (0.18)

Notes: This table reports estimated CAPM loadings of value- (Panel A) and equal-weighted (Panel B) portfolios. This
table reports alphas for value- (Panel A) and equal-weighted (Panel B) portfolios. For each month, I sort stocks into
deciles based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated using the past 12 months
of daily return data relative to the FF-3 model. Rank 1 (10) refers to the portfolio containing the 10% lowest (highest)
IV stocks. 10− 1 is the portfolio that is long portfolio 10 and short portfolio 1. Newey and West (1987) standard errors
with 12-month lags are reported in parentheses. The sample period is from July 1927 to December 2018.
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Table B.7. FF-3 Loadings of 10 SIV Portfolios

Panel A: Value-Weighted SIV Portfolios

1 2 3 4 5 6 7 8 9 10 10− 1

MKT 1.02 1.16 1.22 1.27 1.29 1.27 1.25 1.17 1.09 1.02 −0.01
(0.06) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.04) (0.04) (0.06) (0.08)

SMB 0.47 0.48 0.55 0.52 0.54 0.60 0.61 0.64 0.77 0.89 0.42
(0.12) (0.09) (0.06) (0.05) (0.04) (0.03) (0.06) (0.10) (0.09) (0.14) (0.24)

HML 0.03 −0.06 0.01 −0.04 0.02 0.04 0.06 0.06 0.02 0.32 0.29
(0.09) (0.07) (0.07) (0.08) (0.08) (0.07) (0.06) (0.07) (0.10) (0.12) (0.16)

Panel B: Equal-Weighted SIV Portfolios

MKT 0.85 1.00 1.05 1.06 1.11 1.10 1.10 1.08 1.04 0.95 0.10
(0.05) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03) (0.03) (0.05) (0.09)

SMB 0.81 0.69 0.68 0.70 0.71 0.75 0.84 0.94 1.05 1.28 0.47
(0.18) (0.11) (0.06) (0.05) (0.05) (0.05) (0.07) (0.12) (0.13) (0.19) (0.36)

HML 0.28 0.18 0.20 0.19 0.28 0.30 0.32 0.38 0.42 0.62 0.34
(0.15) (0.07) (0.05) (0.03) (0.04) (0.05) (0.05) (0.08) (0.08) (0.14) (0.28)

Notes: This table reports the estimated FF-3 loadings of value- (Panel A) and equal-weighted (Panel B) portfolios. This
table reports alphas for value- (Panel A) and equal-weighted (Panel B) portfolios. For each month, I sort stocks into
deciles based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated using the past 12 months of
daily return data relative to the FF-3 model. Rank 1 (10) refers to the portfolio containing the 10% lowest (highest) IV
stocks. 10− 1 is the portfolio that goes long portfolio 10 and short portfolio 1. Newey and West (1987) standard errors
with 12-month lags are reported in parentheses. The sample period is from July 1927 to December 2018.
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Table B.8. FF-4 Loadings of 10 SIV Portfolios

Panel A: Value-Weighted SIV Portfolios

1 2 3 4 5 6 7 8 9 10 10− 1

MKT 1.03 1.16 1.20 1.26 1.27 1.25 1.23 1.16 1.07 0.97 −0.07
(0.06) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03) (0.05) (0.07)

SMB 0.47 0.48 0.54 0.52 0.54 0.60 0.61 0.64 0.76 0.88 0.41
(0.12) (0.09) (0.06) (0.05) (0.05) (0.03) (0.06) (0.10) (0.09) (0.15) (0.25)

HML 0.05 −0.06 −0.03 −0.07 −0.03 −0.01 0.02 0.03 −0.01 0.20 0.16
(0.09) (0.07) (0.07) (0.07) (0.07) (0.06) (0.06) (0.07) (0.10) (0.12) (0.16)

MOM 0.04 0.00 −0.08 −0.06 −0.11 −0.09 −0.09 −0.06 −0.07 −0.24 −0.28
(0.07) (0.05) (0.06) (0.05) (0.04) (0.04) (0.04) (0.06) (0.09) (0.11) (0.16)

Panel B: Equal-Weighted SIV Portfolios

MKT 0.83 0.98 1.03 1.05 1.09 1.07 1.07 1.04 0.99 0.89 0.06
(0.05) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03) (0.03) (0.04) (0.08)

SMB 0.80 0.68 0.67 0.70 0.71 0.75 0.83 0.93 1.04 1.27 0.47
(0.18) (0.10) (0.06) (0.04) (0.04) (0.04) (0.07) (0.12) (0.13) (0.19) (0.36)

HML 0.24 0.15 0.17 0.16 0.23 0.24 0.25 0.30 0.32 0.49 0.25
(0.13) (0.06) (0.04) (0.03) (0.03) (0.04) (0.06) (0.08) (0.09) (0.15) (0.25)

MOM −0.09 −0.07 −0.08 −0.07 −0.11 −0.13 −0.14 −0.18 −0.22 −0.27 −0.19
(0.09) (0.05) (0.03) (0.02) (0.02) (0.03) (0.04) (0.06) (0.09) (0.12) (0.20)

Notes: This table reports the estimated FF-4 loadings of value- (Panel A) and equal-weighted (Panel B) portfolios. This
table reports alphas for value- (Panel A) and equal-weighted (Panel B) portfolios. For each month, I sort stocks into
deciles based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated using the past 12 months of
daily return data relative to the FF-3 model. Rank 1 (10) refers to the portfolio containing the 10% lowest (highest) IV
stocks. 10− 1 is the portfolio that goes long portfolio 10 and short portfolio 1. Newey and West (1987) standard errors
with 12-month lags are reported in parentheses. The sample period is from July 1927 to December 2018.
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Table B.9. FF-5 Loadings of 10 SIV Portfolios

Panel A: Value-Weighted SIV Portfolios

1 2 3 4 5 6 7 8 9 10 10− 1

MKT 1.12 1.18 1.20 1.24 1.21 1.20 1.20 1.11 1.08 0.95 −0.17
(0.05) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.06) (0.07) (0.10)

SMB 0.48 0.48 0.50 0.48 0.52 0.53 0.50 0.52 0.57 0.57 0.08
(0.08) (0.07) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07) (0.08) (0.10) (0.14)

HML 0.15 0.06 −0.03 −0.14 −0.14 −0.13 −0.11 −0.16 −0.08 0.08 −0.07
(0.12) (0.09) (0.06) (0.05) (0.05) (0.07) (0.10) (0.10) (0.12) (0.18) (0.25)

RMW −0.39 −0.49 −0.41 −0.48 −0.39 −0.41 −0.32 −0.45 −0.57 −0.79 −0.40
(0.14) (0.13) (0.12) (0.09) (0.06) (0.06) (0.11) (0.14) (0.19) (0.18) (0.28)

CMA −0.35 −0.40 −0.33 −0.23 −0.31 −0.33 −0.19 −0.22 −0.13 −0.23 0.12
(0.15) (0.12) (0.13) (0.08) (0.07) (0.08) (0.13) (0.17) (0.21) (0.27) (0.37)

Panel B: Equal-Weighted SIV Portfolios

MKT 0.91 0.97 1.00 1.03 1.04 1.02 1.00 0.96 0.92 0.80 −0.11
(0.05) (0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.05) (0.07) (0.10)

SMB 0.77 0.79 0.81 0.84 0.86 0.88 0.88 0.89 0.91 0.93 0.15
(0.09) (0.06) (0.05) (0.04) (0.04) (0.04) (0.05) (0.07) (0.08) (0.13) (0.17)

HML 0.29 0.23 0.23 0.21 0.16 0.14 0.13 0.11 0.12 0.09 −0.20
(0.12) (0.08) (0.07) (0.05) (0.06) (0.06) (0.08) (0.10) (0.13) (0.19) (0.26)

RMW −0.28 −0.19 −0.08 −0.02 0.04 0.05 0.01 −0.13 −0.30 −0.56 −0.29
(0.14) (0.10) (0.10) (0.07) (0.07) (0.09) (0.10) (0.13) (0.17) (0.20) (0.30)

CMA −0.20 −0.19 −0.17 −0.13 −0.05 −0.04 −0.03 −0.05 −0.01 0.07 0.28
(0.14) (0.11) (0.10) (0.07) (0.07) (0.07) (0.10) (0.14) (0.22) (0.29) (0.35)

Notes: This table reports the estimated FF-5 loadings of value- (Panel A) and equal-weighted (Panel B) portfolios. This
table reports alphas for value- (Panel A) and equal-weighted (Panel B) portfolios. For each month, I sort stocks into
deciles based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated using the past 12 months of
daily return data relative to the FF-3 model. Rank 1 (10) refers to the portfolio containing the 10% lowest (highest) IV
stocks. 10− 1 is the portfolio that goes long portfolio 10 and short portfolio 1. Newey and West (1987) standard errors
with 12-month lags are reported in parentheses. The sample period is from July 1963 to December 2018.
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Table B.10. Correlation Matrix Conditional on the Lagged Market Sign

Value-Weighted SIV Equal-Weighted SIV

Conditional on reM,t−1 ≥ 0 reM,t−1 < 0 reM,t−1 ≥ 0 reM,t−1 < 0

UIV − VW 1.00∗∗∗ −1.00∗∗∗ 0.87∗∗∗ −0.79∗∗∗
UIV − EW 0.87∗∗∗ −0.79∗∗∗ 1.00∗∗∗ −1.00∗∗∗
MKT 0.39∗∗∗ −0.39∗∗∗ 0.49∗∗∗ −0.42∗∗∗
SMB 0.75∗∗∗ −0.69∗∗∗ 0.73∗∗∗ −0.74∗∗∗
HML 0.16∗∗∗ 0.02 0.33∗∗∗ −0.18∗∗∗
MOM −0.28∗∗∗ 0.08∗ −0.38∗∗∗ 0.26∗∗∗
RMW −0.63∗∗∗ 0.63∗∗∗ −0.54∗∗∗ 0.58∗∗∗
CMA −0.22∗∗∗ 0.42∗∗∗ −0.18∗∗∗ 0.38∗∗∗
STR −0.09∗∗ −0.44∗∗∗ −0.07∗∗ −0.51∗∗∗
LTR 0.39∗∗∗ −0.20∗∗∗ 0.53∗∗∗ −0.38∗∗∗
BAB −0.27∗∗∗ 0.39∗∗∗ −0.25∗∗∗ 0.44∗∗∗

Notes: This table reports monthly correlations of the SIV factor, which is long top quintile
and short bottom quintile of SIV portfolios, with various pricing factors, conditional on the
sign of the market excess return from the previous month. For each month, I sort stocks into
quintile based on the signed idiosyncratic volatility (SIV). Idiosyncratic volatility is estimated
using the past 12 months of daily return data relative to the FF-3 model. SIV − VW and
SIV − EW are factors constructed using the value-weighted and equal-weighted quintile SIV
portfolios, respectively. UIV − VW and UIV − EW are long top and short bottom quintile
value-weighted and equal-weighted portfolios, respectively, which I form by sorting stocks on
the idiosyncratic volatility estimated using the past 12 months of daily data relative to the FF-3
model. The factors MKT,SMB,HML are the Fama and French (1992, 1993) factors, MOM
is the momentum (2− 12) factor, and RMW and CMA are the fourth and fifth factors in the
Fama and French (2015) model. STR and LTR are short-term reversal (1 − 1) and long-term
reversal (13 − 60) factors, respectively. BAB is the betting-against-beta factor (Frazzini and
Pedersen (2014)). The p-values for the Pearson correlation coefficient are calculated using the
exact distribution. The sample period for the SIV factors is from July 1927 to December 2018.
∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1%, respectively.
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Table B.11. Alphas from IV Portfolios Constructed wrt. CAPM Model

Value-Weighted Portfolios αFF3 Equal-Weighted Portfolios αFF3

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.81 −0.44 −0.15 −0.07 −0.14 0.66 −0.51 −0.19 0.07 0.23 0.47 0.98
(0.11) (0.07) (0.05) (0.07) (0.11) (0.19) (0.09) (0.05) (0.04) (0.07) (0.12) (0.18)

3 −0.85 −0.54 −0.17 −0.12 0.04 0.89 −0.60 −0.27 0.06 0.24 0.66 1.26
(0.12) (0.08) (0.06) (0.07) (0.13) (0.20) (0.09) (0.05) (0.04) (0.07) (0.13) (0.19)

6 −0.93 −0.54 −0.21 −0.09 0.09 1.02 −0.63 −0.28 0.01 0.24 0.75 1.38
(0.13) (0.08) (0.07) (0.07) (0.13) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

12 −0.91 −0.54 −0.24 −0.02 0.19 1.10 −0.63 −0.32 −0.02 0.24 0.84 1.47
(0.13) (0.08) (0.07) (0.07) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

18 −0.90 −0.52 −0.24 −0.02 0.22 1.13 −0.64 −0.34 −0.03 0.24 0.87 1.51
(0.12) (0.08) (0.07) (0.07) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

24 −0.91 −0.53 −0.22 −0.02 0.23 1.14 −0.64 −0.33 −0.04 0.25 0.86 1.50
(0.12) (0.09) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

36 −0.90 −0.48 −0.21 −0.01 0.25 1.15 −0.65 −0.34 −0.06 0.27 0.85 1.49
(0.12) (0.09) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

Notes: This table reports the monthly FF-3 alphas for the value- (Panel A) and equal-weighted (Panel B) portfolios.
For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated using the
past H months of daily return data relative to the CAPM model. Rank 1 (5) refers to the portfolio containing the
20% lowest (highest) SIV stocks. 5 − 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and
West (1987) standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to
December 2018.
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Table B.12. Alphas from IV Portfolios Constructed wrt. FF-3 Model

Value-Weighted Portfolios αFF3 Equal-Weighted Portfolios αFF3

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.80 −0.45 −0.16 −0.09 −0.08 0.71 −0.52 −0.19 0.07 0.23 0.50 1.02
(0.11) (0.07) (0.05) (0.07) (0.11) (0.18) (0.08) (0.05) (0.04) (0.07) (0.12) (0.17)

3 −0.83 −0.54 −0.16 −0.11 0.07 0.90 −0.61 −0.27 0.06 0.24 0.67 1.28
(0.12) (0.07) (0.06) (0.07) (0.13) (0.20) (0.09) (0.05) (0.04) (0.07) (0.13) (0.19)

6 −0.92 −0.55 −0.20 −0.09 0.12 1.04 −0.63 −0.28 0.00 0.25 0.76 1.39
(0.12) (0.08) (0.07) (0.08) (0.13) (0.20) (0.09) (0.05) (0.05) (0.07) (0.14) (0.20)

12 −0.91 −0.52 −0.23 −0.02 0.19 1.10 −0.63 −0.32 −0.02 0.24 0.84 1.47
(0.13) (0.08) (0.07) (0.07) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

18 −0.91 −0.51 −0.21 0.02 0.22 1.13 −0.64 −0.34 −0.04 0.25 0.88 1.52
(0.12) (0.08) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

24 −0.90 −0.51 −0.21 0.02 0.21 1.11 −0.65 −0.33 −0.05 0.25 0.87 1.51
(0.12) (0.09) (0.07) (0.08) (0.12) (0.19) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

36 −0.91 −0.46 −0.20 −0.01 0.25 1.16 −0.65 −0.33 −0.05 0.26 0.85 1.51
(0.12) (0.09) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

Notes: This table reports the monthly FF-3 alphas for the value- (Panel A) and equal-weighted (Panel B) portfolios.
For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated using the past
H months of daily return data relative to the FF-3 model. Rank 1 (5) refers to the portfolio containing the 20% lowest
(highest) SIV stocks. 5 − 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and West (1987)
standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to December
2018.
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Table B.13. Alphas from IV Portfolios Constructed wrt. FF-4 Model

Value-Weighted Portfolios αFF3 Equal-Weighted Portfolios αFF3

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.79 −0.42 −0.16 −0.09 −0.08 0.72 −0.53 −0.19 0.07 0.24 0.50 1.03
(0.10) (0.07) (0.05) (0.07) (0.11) (0.18) (0.08) (0.05) (0.04) (0.07) (0.12) (0.17)

3 −0.82 −0.54 −0.16 −0.11 0.07 0.88 −0.61 −0.28 0.06 0.26 0.67 1.28
(0.12) (0.07) (0.06) (0.07) (0.13) (0.20) (0.09) (0.05) (0.04) (0.07) (0.13) (0.19)

6 −0.91 −0.56 −0.19 −0.07 0.14 1.05 −0.63 −0.28 0.00 0.26 0.77 1.40
(0.12) (0.08) (0.07) (0.08) (0.13) (0.20) (0.09) (0.05) (0.05) (0.07) (0.14) (0.20)

12 −0.91 −0.53 −0.21 −0.02 0.22 1.12 −0.64 −0.33 −0.02 0.24 0.85 1.49
(0.12) (0.08) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

18 −0.91 −0.51 −0.20 0.03 0.22 1.13 −0.64 −0.34 −0.04 0.26 0.86 1.50
(0.12) (0.08) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

24 −0.91 −0.52 −0.19 0.01 0.22 1.13 −0.65 −0.33 −0.05 0.25 0.87 1.52
(0.12) (0.09) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

36 −0.90 −0.47 −0.20 −0.02 0.26 1.16 −0.65 −0.34 −0.06 0.25 0.85 1.50
(0.12) (0.09) (0.07) (0.08) (0.12) (0.20) (0.09) (0.05) (0.04) (0.07) (0.14) (0.20)

Notes: This table reports the monthly FF-3 alphas for the value- (Panel A) and equal-weighted (Panel B) portfolios.
For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated using the past
H months of daily return data relative to the FF-4 model. Rank 1 (5) refers to the portfolio containing the 20% lowest
(highest) SIV stocks. 5 − 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and West (1987)
standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to December
2018.
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Table B.14. Alphas from IV Portfolios Constructed wrt. FF-5 Model

Value-Weighted Portfolios αFF3 Equal-Weighted Portfolios αFF3

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −1.04 −0.50 −0.05 0.02 −0.06 0.97 −0.69 −0.27 0.09 0.32 0.59 1.28
(0.13) (0.09) (0.07) (0.09) (0.11) (0.21) (0.10) (0.05) (0.05) (0.09) (0.16) (0.21)

3 −1.17 −0.60 −0.09 −0.03 −0.03 1.14 −0.80 −0.36 0.10 0.34 0.77 1.58
(0.15) (0.11) (0.08) (0.10) (0.15) (0.25) (0.11) (0.06) (0.05) (0.09) (0.18) (0.23)

6 −1.26 −0.61 −0.14 −0.05 0.13 1.39 −0.83 −0.38 0.05 0.34 0.89 1.72
(0.16) (0.11) (0.08) (0.11) (0.15) (0.25) (0.11) (0.06) (0.06) (0.10) (0.18) (0.24)

12 −1.32 −0.57 −0.18 −0.03 0.20 1.52 −0.84 −0.42 −0.01 0.32 1.00 1.85
(0.16) (0.12) (0.09) (0.10) (0.16) (0.26) (0.11) (0.06) (0.06) (0.09) (0.19) (0.25)

18 −1.28 −0.58 −0.19 0.00 0.18 1.46 −0.84 −0.44 −0.04 0.32 1.05 1.89
(0.16) (0.11) (0.09) (0.10) (0.16) (0.27) (0.11) (0.06) (0.06) (0.10) (0.20) (0.26)

24 −1.24 −0.57 −0.17 0.00 0.15 1.38 −0.81 −0.42 −0.06 0.31 1.02 1.84
(0.16) (0.11) (0.10) (0.11) (0.16) (0.27) (0.11) (0.07) (0.06) (0.10) (0.20) (0.26)

36 −1.20 −0.49 −0.11 −0.01 0.15 1.35 −0.80 −0.42 −0.07 0.33 1.00 1.81
(0.17) (0.13) (0.10) (0.11) (0.15) (0.27) (0.12) (0.07) (0.06) (0.10) (0.20) (0.27)

Notes: This table reports the monthly FF-3 alphas for the value- (Panel A) and equal-weighted (Panel B) portfolios.
For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated using the past
H months of daily return data relative to the FF-5 model. Rank 1 (5) refers to the portfolio containing the 20% lowest
(highest) SIV stocks. 5 − 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and West (1987)
standard errors with 12-month lags are reported in parentheses. The sample period is from July 1963 to December
2018.
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Table B.15. Expected Returns from IV Portfolios Constructed wrt. CAPM Model

Value-Weighted Portfolios E[re] Equal-Weighted Portfolios E[re]

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.04 0.42 0.76 0.81 0.76 0.80 0.33 0.73 1.05 1.25 1.53 1.20
(0.23) (0.23) (0.23) (0.23) (0.26) (0.23) (0.23) (0.24) (0.25) (0.27) (0.33) (0.27)

3 −0.08 0.37 0.75 0.84 0.95 1.03 0.23 0.64 1.03 1.27 1.72 1.50
(0.23) (0.25) (0.24) (0.25) (0.29) (0.24) (0.23) (0.23) (0.24) (0.28) (0.35) (0.28)

6 −0.17 0.36 0.74 0.86 1.03 1.20 0.20 0.63 0.98 1.26 1.83 1.63
(0.24) (0.25) (0.25) (0.25) (0.30) (0.25) (0.23) (0.23) (0.25) (0.28) (0.35) (0.29)

12 −0.15 0.35 0.72 0.91 1.08 1.22 0.20 0.58 0.95 1.25 1.91 1.71
(0.24) (0.25) (0.26) (0.26) (0.28) (0.23) (0.23) (0.23) (0.24) (0.29) (0.35) (0.28)

18 −0.15 0.35 0.69 0.90 1.09 1.25 0.19 0.55 0.92 1.24 1.94 1.75
(0.25) (0.25) (0.25) (0.26) (0.29) (0.23) (0.23) (0.23) (0.25) (0.28) (0.36) (0.29)

24 −0.16 0.34 0.70 0.87 1.09 1.24 0.18 0.56 0.91 1.24 1.92 1.74
(0.25) (0.25) (0.25) (0.26) (0.29) (0.23) (0.23) (0.23) (0.24) (0.28) (0.36) (0.28)

36 −0.17 0.38 0.68 0.88 1.05 1.21 0.17 0.56 0.88 1.26 1.90 1.73
(0.25) (0.26) (0.26) (0.27) (0.27) (0.22) (0.23) (0.23) (0.25) (0.28) (0.35) (0.28)

Notes: This table reports the monthly average excess returns for the value- (Panel A) and equal-weighted (Panel B)
portfolios. For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated using
the past H months of daily return data relative to the CAPM model. Rank 1 (5) refers to the portfolio containing
the 20% lowest (highest) SIV stocks. 5− 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and
West (1987) standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to
December 2018.
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Table B.16. Expected Returns from IV Portfolios Constructed wrt. FF-3 Model

Value-Weighted Portfolios E[re] Equal-Weighted Portfolios E[re]

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.04 0.40 0.75 0.80 0.82 0.85 0.31 0.72 1.05 1.25 1.55 1.24
(0.23) (0.23) (0.23) (0.24) (0.26) (0.22) (0.23) (0.23) (0.25) (0.28) (0.33) (0.27)

3 −0.07 0.36 0.77 0.85 0.97 1.04 0.22 0.64 1.02 1.27 1.73 1.52
(0.23) (0.24) (0.24) (0.25) (0.29) (0.24) (0.23) (0.23) (0.24) (0.28) (0.34) (0.28)

6 −0.16 0.35 0.75 0.86 1.05 1.21 0.20 0.63 0.97 1.27 1.83 1.63
(0.24) (0.25) (0.25) (0.25) (0.30) (0.25) (0.23) (0.23) (0.24) (0.28) (0.35) (0.29)

12 −0.15 0.37 0.73 0.91 1.07 1.22 0.21 0.57 0.95 1.25 1.91 1.71
(0.24) (0.25) (0.26) (0.26) (0.28) (0.23) (0.23) (0.23) (0.24) (0.28) (0.35) (0.28)

18 −0.16 0.36 0.72 0.92 1.08 1.24 0.19 0.55 0.92 1.25 1.95 1.76
(0.25) (0.25) (0.25) (0.25) (0.29) (0.23) (0.23) (0.23) (0.25) (0.28) (0.36) (0.28)

24 −0.15 0.35 0.71 0.90 1.07 1.22 0.18 0.56 0.90 1.25 1.93 1.75
(0.25) (0.25) (0.25) (0.26) (0.29) (0.23) (0.23) (0.23) (0.25) (0.28) (0.35) (0.28)

36 −0.17 0.39 0.69 0.88 1.05 1.22 0.17 0.56 0.88 1.26 1.90 1.73
(0.25) (0.26) (0.25) (0.27) (0.27) (0.22) (0.23) (0.23) (0.25) (0.28) (0.35) (0.28)

Notes: This table reports the monthly average excess returns for the value- (Panel A) and equal-weighted (Panel B)
portfolios. For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated
using the past H months of daily return data relative to the FF-3 model. Rank 1 (5) refers to the portfolio containing
the 20% lowest (highest) SIV stocks. 5− 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and
West (1987) standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to
December 2018.
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Table B.17. Expected Returns from IV Portfolios Constructed wrt. FF-4 Model

Value-Weighted Portfolios E[re] Equal-Weighted Portfolios E[re]

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.03 0.43 0.75 0.79 0.83 0.87 0.31 0.73 1.04 1.25 1.56 1.25
(0.22) (0.23) (0.23) (0.24) (0.26) (0.22) (0.23) (0.24) (0.25) (0.27) (0.33) (0.26)

3 −0.06 0.36 0.77 0.85 0.95 1.01 0.22 0.64 1.02 1.29 1.73 1.52
(0.23) (0.25) (0.24) (0.25) (0.28) (0.23) (0.23) (0.23) (0.24) (0.28) (0.35) (0.28)

6 −0.16 0.34 0.75 0.87 1.06 1.22 0.20 0.62 0.97 1.27 1.84 1.64
(0.24) (0.25) (0.25) (0.25) (0.30) (0.25) (0.23) (0.23) (0.25) (0.28) (0.35) (0.29)

12 −0.16 0.35 0.73 0.89 1.09 1.24 0.18 0.56 0.94 1.25 1.91 1.73
(0.24) (0.25) (0.26) (0.26) (0.29) (0.23) (0.23) (0.23) (0.25) (0.29) (0.35) (0.28)

18 −0.16 0.36 0.72 0.92 1.07 1.24 0.18 0.54 0.92 1.25 1.92 1.74
(0.25) (0.25) (0.25) (0.26) (0.29) (0.24) (0.23) (0.23) (0.25) (0.28) (0.36) (0.29)

24 −0.18 0.33 0.69 0.87 1.06 1.23 0.16 0.54 0.88 1.24 1.91 1.75
(0.25) (0.25) (0.26) (0.25) (0.29) (0.23) (0.23) (0.23) (0.25) (0.28) (0.36) (0.28)

36 −0.13 0.43 0.73 0.92 1.10 1.23 0.21 0.59 0.92 1.30 1.95 1.74
(0.24) (0.25) (0.25) (0.27) (0.27) (0.22) (0.23) (0.23) (0.25) (0.28) (0.35) (0.28)

Notes: This table reports the monthly average excess returns for the value- (Panel A) and equal-weighted (Panel B)
portfolios. For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated
using the past H months of daily return data relative to the FF-4 model. Rank 1 (5) refers to the portfolio containing
the 20% lowest (highest) SIV stocks. 5− 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and
West (1987) standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to
December 2018.
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Table B.18. Expected Returns from IV Portfolios Constructed wrt. FF-5 Model

Value-Weighted Portfolios E[re] Equal-Weighted Portfolios E[re]

H 1 2 3 4 5 5− 1 1 2 3 4 5 5− 1

1 −0.32 0.20 0.60 0.67 0.55 0.87 0.09 0.52 0.87 1.10 1.33 1.24
(0.27) (0.24) (0.24) (0.24) (0.25) (0.22) (0.26) (0.25) (0.25) (0.27) (0.30) (0.22)

3 −0.46 0.14 0.60 0.65 0.62 1.08 −0.03 0.43 0.90 1.12 1.52 1.55
(0.28) (0.27) (0.26) (0.26) (0.29) (0.27) (0.26) (0.25) (0.25) (0.26) (0.32) (0.25)

6 −0.56 0.12 0.56 0.64 0.79 1.35 −0.06 0.40 0.84 1.10 1.64 1.70
(0.30) (0.28) (0.27) (0.27) (0.30) (0.27) (0.26) (0.25) (0.25) (0.27) (0.33) (0.26)

12 −0.61 0.15 0.52 0.64 0.87 1.48 −0.09 0.35 0.76 1.07 1.74 1.83
(0.31) (0.29) (0.29) (0.27) (0.31) (0.28) (0.27) (0.25) (0.25) (0.27) (0.34) (0.27)

18 −0.56 0.12 0.51 0.66 0.85 1.41 −0.09 0.33 0.72 1.06 1.76 1.85
(0.32) (0.29) (0.28) (0.28) (0.32) (0.29) (0.27) (0.26) (0.26) (0.27) (0.34) (0.27)

24 −0.51 0.13 0.51 0.65 0.78 1.30 −0.07 0.34 0.70 1.04 1.72 1.78
(0.32) (0.30) (0.29) (0.29) (0.31) (0.29) (0.27) (0.26) (0.26) (0.27) (0.34) (0.27)

36 −0.52 0.17 0.53 0.60 0.72 1.25 −0.11 0.29 0.64 1.00 1.63 1.74
(0.33) (0.31) (0.30) (0.30) (0.31) (0.28) (0.28) (0.27) (0.26) (0.28) (0.34) (0.28)

Notes: This table reports the monthly average excess returns for the value- (Panel A) and equal-weighted (Panel B)
portfolios. For each month, I sort stocks into quintiles based on the SIV. Idiosyncratic volatility (IV) is estimated
using the past H months of daily return data relative to the FF-5 model. Rank 1 (5) refers to the portfolio containing
the 20% lowest (highest) SIV stocks. 5− 1 is the portfolio that goes long portfolio 5 and short portfolio 1. Newey and
West (1987) standard errors with 12-month lags are reported in parentheses. The sample period is from July 1963 to
December 2018.
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Table B.19. Average Excess Returns by Size

Panel A: Value-Weighted Portfolios

1 2 3 4 5 5− 1

SP500 Stocks 0.29 0.41 0.64 0.62 0.80 0.51
(0.25) (0.23) (0.22) (0.22) (0.24) (0.18)

Largest 1000 stocks 0.24 0.46 0.55 0.66 0.63 0.39
(0.28) (0.24) (0.22) (0.23) (0.26) (0.22)

Largest 2000 stocks 0.07 0.47 0.56 0.73 0.58 0.51
(0.30) (0.26) (0.24) (0.25) (0.28) (0.26)

Largest 3000 Stocks −0.11 0.34 0.61 0.69 0.61 0.73
(0.32) (0.28) (0.26) (0.27) (0.30) (0.28)

Largest 1001 to 2000 stocks 0.21 0.69 0.77 0.75 0.68 0.47
(0.30) (0.26) (0.25) (0.26) (0.29) (0.26)

Largest 2001 to 3000 stocks −0.03 0.52 0.75 0.88 0.72 0.74
(0.31) (0.30) (0.28) (0.30) (0.34) (0.30)

Panel B: Equal-Weighted Portfolios

SP500 Stocks 0.37 0.57 0.78 0.83 0.97 0.61
(0.24) (0.21) (0.20) (0.21) (0.25) (0.21)

Largest 1000 stocks 0.33 0.58 0.70 0.74 0.63 0.30
(0.27) (0.22) (0.21) (0.22) (0.25) (0.24)

Largest 2000 stocks 0.21 0.61 0.74 0.83 0.69 0.48
(0.29) (0.24) (0.23) (0.24) (0.27) (0.26)

Largest 3000 Stocks −0.01 0.54 0.78 0.88 0.82 0.83
(0.29) (0.25) (0.24) (0.25) (0.30) (0.28)

Largest 1001 to 2000 stocks 0.20 0.71 0.78 0.78 0.70 0.50
(0.30) (0.26) (0.25) (0.26) (0.28) (0.27)

Largest 2001 to 3000 stocks −0.01 0.53 0.75 0.89 0.76 0.77
(0.31) (0.30) (0.29) (0.30) (0.35) (0.30)

Notes: This table reports the monthly average excess returns for the value- (Panel A) and
equal-weighted (Panel) portfolios. For each month, I sort stocks into quintiles based on the
signed idiosyncratic volatility (SIV). Idiosyncratic volatility (IV) is estimated using the past 12
months of daily return data relative to the FF-3 model. I limit the universe to include either
S&P 500 stocks or a subset of the largest N stocks (by its market capitalization). Rank 1 (5)
refers to the portfolio containing the 20% lowest (highest) SIV stocks. 5 − 1 is the portfolio
that goes long portfolio 5 and short portfolio 1. Newey and West (1987) standard errors with
12-month lags are reported in parentheses. The sample period is from July 1973 to December
2018.
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Table B.20. Constructing 10 SIV Portfolios Using Alternative breakpoints

Panel A: S&P500 Breakpoints

Weight 1 2 3 4 5 6 7 8 9 10 10− 1

Value αFF−3 −0.03 0.04 0.10 0.11 0.31 0.41 0.48 0.72 0.70 1.08 1.11
(0.14) (0.16) (0.18) (0.19) (0.20) (0.21) (0.20) (0.23) (0.24) (0.30) (0.23)

Mean 0.10 0.20 0.30 0.33 0.54 0.64 0.74 0.93 0.90 1.38 1.28
(0.16) (0.20) (0.22) (0.24) (0.25) (0.27) (0.27) (0.29) (0.27) (0.39) (0.28)

Equal αFF−3 0.19 0.24 0.34 0.41 0.53 0.62 0.70 0.86 1.04 1.68 1.49
(0.12) (0.15) (0.16) (0.17) (0.19) (0.19) (0.21) (0.22) (0.24) (0.28) (0.21)

Mean 0.31 0.40 0.52 0.60 0.77 0.87 0.98 1.18 1.37 2.08 1.77
(0.14) (0.18) (0.20) (0.22) (0.25) (0.26) (0.29) (0.32) (0.34) (0.42) (0.33)

% Market Share 26.7 17.6 13.7 10.8 8.2 6.4 5.2 4.2 3.7 3.5

Panel B: Equal Market Share Breakpoints

Value αFF−3 0.04 −0.07 −0.04 0.10 0.09 0.02 0.15 0.24 0.36 0.68 0.64
(0.13) (0.15) (0.15) (0.16) (0.17) (0.16) (0.18) (0.18) (0.20) (0.24) (0.17)

Mean 0.13 0.06 0.07 0.20 0.24 0.16 0.29 0.40 0.56 0.90 0.77
(0.15) (0.16) (0.17) (0.17) (0.19) (0.18) (0.21) (0.22) (0.24) (0.29) (0.20)

Equal αFF−3 0.20 0.18 0.18 0.24 0.28 0.34 0.41 0.49 0.62 1.25 1.05
(0.11) (0.12) (0.13) (0.13) (0.14) (0.15) (0.16) (0.17) (0.19) (0.24) (0.18)

Mean 0.30 0.31 0.29 0.34 0.40 0.45 0.55 0.65 0.80 1.56 1.26
(0.13) (0.14) (0.15) (0.14) (0.16) (0.16) (0.18) (0.20) (0.23) (0.33) (0.24)

% Market Share 9.6 10.0 10.2 10.0 10.1 10.0 10.1 10.0 10.1 10.1

Note: This table reports the FF-3 alphas and average excess returns (‘Mean’) for value- and equal-weighted portfolios.
For each month, I sort stocks into deciles based on the signed idiosyncratic volatility (SIV), where the breakpoints are
determined either by NYSE stocks (Panel B) or by the market share of the stocks in the deciles (Panel B). Idiosyncratic
volatility (IV) is estimated using the past 12 months of daily return data relative to the FF-3 model. Rank 1 (10) refers to
the portfolio containing the 10% lowest (highest) SIV stocks. 10− 1 is the portfolio that goes long portfolio 10 and short
portfolio 1. Market share is the simple average market share of the firms within the portfolio. Newey and West (1987)
standard errors with 12-month lags are reported in parentheses. The sample period is from July 1927 to December 2018.
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Table B.21. Average Monthly Excess Returns Controlling for Size, Value, Reversal and Lottery

Panel A: Value-Weighted Portfolios

Size B/M ST-R Lottery-like

Rank Small Large Growth Value Low rt−1 High rt−1 Low MAX High MAX

1 0.42 0.26 −0.73 −0.16 0.49 −0.64 0.38 −0.44
(0.29) (0.21) (0.32) (0.28) (0.26) (0.27) (0.18) (0.31)

2 0.80 0.58 −0.10 0.29 0.58 0.13 0.62 −0.09
(0.32) (0.20) (0.32) (0.30) (0.28) (0.28) (0.18) (0.34)

3 1.09 0.68 0.36 0.76 1.02 0.37 0.81 0.20
(0.34) (0.20) (0.31) (0.28) (0.30) (0.28) (0.19) (0.37)

4 1.39 0.82 0.62 1.02 1.30 0.59 1.05 0.37
(0.36) (0.21) (0.30) (0.29) (0.32) (0.28) (0.19) (0.34)

5 1.58 0.83 0.60 1.36 2.01 0.67 1.11 0.94
(0.38) (0.23) (0.31) (0.34) (0.35) (0.31) (0.20) (0.38)

5− 1 1.16 0.57 1.33 1.52 1.52 1.31 0.73 1.38
(0.25) (0.16) (0.27) (0.30) (0.29) (0.26) (0.13) (0.27)

Panel B: Equal-Weighted Portfolios

1 0.92 0.37 −0.34 0.42 1.07 −1.54 0.58 0.23
(0.30) (0.20) (0.27) (0.26) (0.24) (0.14) (0.17) (0.30)

2 1.06 0.65 0.06 0.72 1.06 −0.83 0.74 0.33
(0.33) (0.19) (0.28) (0.25) (0.25) (0.11) (0.17) (0.32)

3 1.38 0.78 0.46 1.14 1.43 −0.39 0.93 0.58
(0.35) (0.19) (0.28) (0.25) (0.29) (0.08) (0.18) (0.35)

4 1.71 0.87 0.68 1.52 1.99 −0.26 1.19 1.10
(0.37) (0.21) (0.28) (0.27) (0.35) (0.09) (0.19) (0.36)

5 2.46 0.86 1.16 2.35 3.26 −0.12 1.64 2.02
(0.43) (0.22) (0.33) (0.33) (0.43) (0.15) (0.23) (0.43)

5− 1 1.54 0.49 1.50 1.93 2.19 1.43 1.06 1.79
(0.29) (0.18) (0.27) (0.25) (0.33) (0.21) (0.15) (0.28)

Notes: This table reports average monthly excess returns of double sorted portfolios, where I first
sort the stocks by size, book-to-market-ratio, past return, and maximum daily return to generate
bottom and top 30 percentile bins. For each bin, I then sort the stocks into SIV quintile portfolios.
Rank 1 (5) refers to the portfolio containing the 20% lowest (highest) SIV stocks. Newey and West
(1987) standard errors with 12-month lags are reported in parentheses. The sample period is from
July 1927 to December 2018, except for the value and growth stocks, which starts in August 1950.
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Table B.22. Double Sort with Amivest Liquidity Measure

Panel A: Value-Weighted Portfolios
1 (Illiquid) 2 3 4 5 (Liquid) 5− 1

1 (Low SIV) −0.46 −0.93 −0.97 −1.02 −0.90 −0.44
(0.14) (0.14) (0.13) (0.13) (0.14) (0.17)

2 −0.25 −0.48 −0.58 −0.62 −0.53 −0.28
(0.10) (0.09) (0.09) (0.07) (0.10) (0.16)

3 −0.06 −0.09 −0.17 −0.22 −0.29 −0.22
(0.10) (0.06) (0.06) (0.06) (0.09) (0.15)

4 0.31 0.17 0.06 0.11 −0.21 −0.51
(0.12) (0.09) (0.08) (0.08) (0.10) (0.16)

5 (High SIV) 1.08 0.55 0.38 0.40 −0.06 −1.15
(0.24) (0.14) (0.14) (0.16) (0.14) (0.26)

5− 1 1.53 1.48 1.35 1.42 0.84
(0.27) (0.23) (0.21) (0.23) (0.22)

Panel B: Equal-Weighted Portfolios
1 (Illiquid) 2 3 4 5 (Liquid) 5− 1

1 (Low SIV) −0.08 −0.65 −0.84 −0.89 −0.85 −0.77
(0.14) (0.11) (0.10) (0.11) (0.12) (0.17)

2 −0.07 −0.32 −0.41 −0.47 −0.43 −0.36
(0.09) (0.08) (0.06) (0.06) (0.08) (0.13)

3 0.14 0.03 −0.06 −0.07 −0.18 −0.32
(0.08) (0.05) (0.05) (0.06) (0.07) (0.12)

4 0.60 0.31 0.20 0.14 −0.12 −0.72
(0.11) (0.08) (0.09) (0.09) (0.09) (0.14)

5 (High SIV) 1.98 1.03 0.68 0.42 0.12 −1.87
(0.22) (0.16) (0.15) (0.15) (0.13) (0.21)

5− 1 2.06 1.68 1.52 1.31 0.97
(0.25) (0.22) (0.21) (0.22) (0.22)

Notes: The table reports alphas relative to the FF-3 model of double sorted
portfolios, where I double sort the stocks by Signed Idiosyncratic Volatility and
the average daily Amivest liquidity measure within a month. Panel A (B) reports
value- (equal-) weighted portfolios. Newey-West standard errors with 12 month-
lags are reported in the parentheses. The sample period is July 1927 to December
2018.
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Table B.23. Double Sort with Zero Return Frequency

Panel A: Value-Weighted Portfolios
1 (Liquid) 2 3 4 5 (Illiquid) 5− 1

1 (Low SIV) −0.97 −1.03 −1.09 −0.69 −0.58 0.39
(0.14) (0.14) (0.15) (0.16) (0.16) (0.14)

2 −0.54 −0.64 −0.52 −0.58 −0.39 0.16
(0.10) (0.10) (0.08) (0.10) (0.13) (0.14)

3 −0.31 −0.14 −0.17 −0.03 −0.15 0.22
(0.09) (0.09) (0.09) (0.09) (0.11) (0.15)

4 −0.17 0.07 0.11 0.10 0.29 0.45
(0.09) (0.10) (0.12) (0.11) (0.11) (0.15)

5 (High SIV) −0.08 0.24 0.65 0.61 1.12 1.13
(0.14) (0.14) (0.19) (0.21) (0.23) (0.22)

5− 1 0.89 1.21 1.46 1.10 1.56
(0.22) (0.23) (0.25) (0.26) (0.28)

Panel B: Equal-Weighted Portfolios
1 (Liquid) 2 3 4 5 (Illiquid) 5− 1

1 (Low SIV) −0.89 −0.74 −0.78 −0.36 −0.25 0.69
(0.10) (0.11) (0.12) (0.12) (0.15) (0.11)

2 −0.41 −0.42 −0.26 −0.35 −0.11 0.33
(0.06) (0.07) (0.08) (0.08) (0.10) (0.10)

3 −0.14 −0.06 −0.01 0.07 0.14 0.31
(0.06) (0.06) (0.07) (0.07) (0.09) (0.10)

4 0.02 0.20 0.26 0.32 0.59 0.56
(0.08) (0.09) (0.11) (0.10) (0.11) (0.10)

5 (High SIV) 0.24 0.68 1.07 1.24 1.82 1.48
(0.14) (0.15) (0.17) (0.20) (0.22) (0.17)

5− 1 1.13 1.38 1.55 1.42 1.89
(0.20) (0.21) (0.21) (0.24) (0.26)

Notes: The table reports alphas relative to the FF-3 model of double sorted
portfolios, where I double sort the stocks by Signed Idiosyncratic Volatility and
the frequency of zero returns within a month. Panel A (B) reports value- (equal-)
weighted portfolios. Newey-West standard errors with 12 month-lags are reported
in the parentheses. The sample period is July 1927 to December 2018.
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B.3 Proofs

Proof of Lemma 2.1

To derive Lemma 2.1, assume WLOG that rM−1 − rf > 0 such that EA[z̃] = λA. In addition,
let

d̃ = a+ bz̃ + ẽ (B.1)

be the vector-notation of the dividend process (2.7), where d̃, a, b and ẽ are all N -dimensional
vectors. The variance-covariance matrix of the dividend process is given by

Σ ≡ Cov(d̃, d̃>) = bb>σ2
z +D, (B.2)

where D is an N×N diagonal matrix with cash flow idiosyncratic variance σ2
i on the diagonal

and zeroes elsewhere. Consider first the objective function of agents in group A

max
xA

E[W̃A
1 |IA]− γ

2
Var[W̃A

1 |IA], (B.3)

where the wealth process is given by

W̃A
1 = (W0 − xA>P )(1 + r) + xA> d̃. (B.4)

Given the assumptions of the model, it follows that E[W̃A
1 |IA] = (W0 − xA>P )(1 + r) +

xA>(a+ bλA). The first order condition with respect to xA equals

−P (1 + r) + (a+ bλA)− γΣxA = 0. (B.5)

Consider next the objective function of agent (B, k):

max
xBk

E[W̃B,k
1 |IB,k]−

γ

2
Var[W̃B,k

1 |IB,k]. (B.6)

Because agents of type B are segmented, agent (B, k) has access to asset k only, resulting
in the following wealth process:

W̃
(B,k)
1 = (W0 − xBk Pk)(1 + r) + xBk d̃k, (B.7)

where Pk denotes the equilibrium price of asset k, and xBk is the demand function of agent
(B, k) with respect to asset k. It follows that E[W̃B,k

1 |IB,k] = (W0 − xBk Pk)(1 + r) + xBk ak,

and Var[W̃B,k
1 |IB,k] = (xBk )2Σkk, where Σkk is the (k, k)-th element of Σ, which is the total

variance of the dividend process of asset k: Σkk = Var(dk) = b2
kσ

2
z + σ2

k. The first order
condition for agent (B, k) is given by:

−Pk(1 + r) + ak − γΣkkx
B
k = 0. (B.8)
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Rewriting the first order conditions, we obtain the following individual demand functions:

xA =
1

γ
Σ−1(a+ bλA − P (1 + r)), (B.9)

xBk =
1

γ
Σ−1
kk (ak − Pk(1 + r)), ∀k. (B.10)

Since the market has to clear in equilibrium, the total demand must equal the total fixed
supply:

x∗ = θxA +
1− θ
N

x(B,1) + ...+
1− θ
N

x(B,N), (B.11)

where x(B,k) = (0, ..., 0,

k-th position︷︸︸︷
xBk , 0, ..., 0)> is a sparse vector with holdings of asset k xBk on

the k-th dimension and zeroes elsewhere. Let us now stack all the individual demand func-
tions of agents in group B into a single vector. To this end, let us define xB = (xB1 , ..., x

B
n )>.

It follows that:

xB =
1

γ
S−1(a− P (1 + r)), (B.12)

where S = diag(Σ11, ...,Σnn) is the diagonal matrix with Σkk on the diagonal. Rewriting the
market clearing condition gives:

x∗ = θxA +
1− θ
N

xB. (B.13)

Proof of Lemma 2.2

Substituting the solutions xA and xB into the market clearing condition gives

γx∗ = Ω−1(a− P (1 + r)) + θΣ−1bλA, (B.14)

where I define Ω−1 ≡ θΣ−1+ 1−θ
N
S−1 to be the weighted average of inverse covariance matrices

of agents A and B. Rewriting (B.14) gives the equilibrium price vector

P =
1

1 + rf

(
a− γΩx∗ + θΩΣ−1bλA

)
. (B.15)

To simplify this expression, I use the following two claims.
Claim: The inverse of Σ is given by:

Σ−1 = diag

(
1

σ2
1

, · · · , 1

σ2
N

)
− (b� σ2)(b� σ2)>

1

c
, (B.16)
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where c = 1
σ2
z

+
∑

i

(
bi
σi

)2

is a constant, σ2 = (σ2
1, · · · , σ2

n)> is an N -dimensional idiosyncratic

variance vector, and � indicates the Hadamard division, i.e. the element-wise division of
two matrices of the same dimensions.
Proof of claim: Because c > 0, this follows immediately by applying the Sherman and Mor-
rison (1950) lemma1, on Σ = bb> +D.

�
Claim:

Ω =
1

θ
diag(ω1σ

2
1, · · · , ωNσ2

N) +
1

θ

σ2
z

κ
(b ◦ ω) (b ◦ ω)> , (B.18)

where ω is an N -dimensional vector with ωi = θΣii
θΣii+

1−θ
N
σ2
i

on the ith row, κ = 1+
∑N

i=1
b2i σ

2
z

σ2
i

(1−
ωi) is a constant, and ◦ is the Hadamard (element-wise) product.
Proof of claim: Using the definition of Ω−1 gives

Ω−1 ≡ θΣ−1 +
1− θ
N

S−1

= θD−1 +
1− θ
N

S−1 − θ

c
(b� σ2)(b� σ2)>

= θ diag
(
ω−1

1 σ−2
1 , · · · , ω−1

N σ−2
N

)
− θ

c
(b� σ2)(b� σ2)>,

where I substitute the expression for Σ−1 on the second equality, and define ωi ≡ θΣii
θΣii+

1−θ
N
σ2
i

.

Consider now the determinant of Ω−1, which is (
∏

i
θ

ωiσ2
i
)(1 − 1

c

∑
i ωiσ

2
i

(
bi
σ2
i

)2

). The deter-

minant of Ω−1 is nonzero, because

1− 1

c

∑
i

ωiσ
2
i

(
bi
σ2
i

)2

= 1− 1

c

∑
i

b2
i

σ2
i

θΣii

θΣii + 1−θ
N
σ2
i

=
1

c

(
1

σ2
z

+
∑
i

b2
i

σ2
i

(
1− θΣii

θΣii + 1−θ
N
σ2
i

))

=
1

c

(
1

σ2
z

+
∑
i

b2
i

σ2
i

(1− ωi)
)

1The Sherman and Morrison (1950) lemma states that for a given invertible N×N matrix A and column
vectors u, v ∈ RN , A+ uv is invertible if and only if 1 + v>A−1u 6= 0. Then,

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
. (B.17)

.
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is strictly positive, implying that Ω−1 is invertible. Applying the Sherman and Morrison
(1950) lemma on Ω−1 gives

Ω =
1

θ
diag(ω1σ

2
1, ..., ωNσ

2
N) +

1

θ

1

c

 (b ◦ ω) (b ◦ ω)>

1− 1
c

∑N
i=1 ωiσ

2
i

(
bi
σ2
i

)2

 (B.19)

=
1

θ
diag(ω1σ

2
1, · · · , ωNσ2

N) +
1

θ

σ2
z

κ
(b ◦ ω) (b ◦ ω)> , (B.20)

where κ = 1 +
∑

i
b2i σ

2
z

σ2
i

1−θ
N
σ2
i

θΣii+
1−θ
N
σ2
i

. �

Given the expression for Ω, Ωx∗ can be simplified as:

Ωx∗ =
1

θ

 ω1σ
2
1x
∗
1

...
ωNσ

2
Nx
∗
N

+
1

θ

σ2
z

κ

 ω1b1
...

ωNbN

 N∑
i=1

ωibix
∗
i . (B.21)

For notation, let’s call ζ∗ =
∑

i ωibix
∗
i , where the star(∗) indicates that it depends on the

exogenous supply curve. Second, I can simplify the expression for θλAΩΣ−1b as follows.
First, simplify Σ−1b as:

Σ−1b = D−1b− 1

c

N∑
i=1

b2
i

σ2
i

(b� σ2) (B.22)

= (b� σ2)

1−
∑N

i=1
b2i
σ2
i

c

 (B.23)

=
(b� σ2)

cσ2
z

, (B.24)

where I substitute the expression for Σ−1 in the first equality, then collect terms and simplify.
I can then simplify θλAΩΣ−1b as:

θλAΩΣ−1b =
θλA
cσ2

z

Ω(b� σ2) (B.25)

=
λA
cσ2

z

(
diag(ω1σ

2
1, · · · , ωNσ2

N)(b� σ2) + σ2
z

(b ◦ ω)(b ◦ ω)>

κ
(b� σ2)

)
(B.26)

=
λA
cσ2

z

(
1 +

1

κ

∑
i

b2
iσ

2
z

σ2
i

ωi

)
(b ◦ ω) (B.27)

= λA
1

κ
(b ◦ ω), (B.28)
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where I substitute the expressions for Σ−1b and Ω in the first and second equality, respectively,

and the last equality holds because κ+
∑

i
b2i
σ2
i
ωi = cσ2

z .

The equilibrium price for asset i is thus given by:

Pi =
ai + biωi

κ
λA − γωi

θ

(
biσ

2
z

κ

∑
j
ωjbj
N

+
σ2
i

N

)
1 + rf

. (B.29)

Proof of Lemma 2.3

Rewrite (2.17) as:

xA =
1

γ
(E[re]� σ2)− 1

γ

1

c

∑
i

bi
σ2
i

E[rei ](b� σ2) +
λA
γ

(b� σ2)

cσ2
z

, (B.30)

where I substitute the simplified expression for Σ−1b, and re = (re1, · · · , reN) is the excess
return vector, and c is defined as before. Consider the ith element of xA, which is given by

xAi =
1

γ

 1

1 +
∑

j

b2jσ
2
z

σ2
j

bi
σ2
i

λA
γ

+
E[rei ]

σ2
i

− bi
σ2
i

∑
j
bj
σ2
j
σ2
z E[rej ]

1 +
∑

j

b2jσ
2
z

σ2
j

 (B.31)

after substituting for c. Multiplying both sides by c and γ yields

xAi ∝
bi
σ2
i

λA +
E[rei ]

σ2
i

+
E[rei ]

σ2
i

∑
j

b2
jσ

2
z

σ2
j

− bi
σ2
i

∑
j

bjσ
2
z

σ2
j

E[rej ] (B.32)

=
bi
σ2
i

λA +
1

σ2
i

(
E[rei ] +

∑
j

bjσ
2
z

σ2
j

(bj E[rei ]− bi E[rej ])

)
. (B.33)

Proof of Theorem 2.1

Define the expected excess return vector as E[re] = a − (1 + rf )P , and similarly define the
market risk premium as E[reM ] = aM − (1+rf )PM , where PM = x∗>P . From the equilibrium
price vector, I obtain

(1 + rf )P = a− γΩx∗ + λAθΩΣ−1b. (B.34)

The expected excess return of asset i conditional on λA is then given by

E[rei |λA] = γe>i Ωx∗ − θλΩΣ−1b, (B.35)

where ei is the unit vector along the ith axis. Similarly, the market risk premium conditional
on λA is:

E[reM |λA] = γx∗>Ωx∗ − θλAx∗>ΩΣ−1b. (B.36)
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Substituting equation (B.36) back into (B.34) gives:

E[rei |λA] = β̂i E[reM |λA] + β̂iρM − ρi, (B.37)

where β̂i is defined as

β̂i =
e>i Ωx∗

x∗>Ωx∗
= ωi

σ2
i

N
+ biσ

2
z

κ
ζ∗∑

i
ωiσ2

i

N2 + σ2
z

κ
ζ∗2

, (B.38)

ρM is the average risk premium due to extrapolation

ρM = θλAx
∗>ΩΣ−1b =

1

N

∑
i

ρi, (B.39)

and ρi is the asset-specific risk-premium due to extrapolation, defined as

ρi = θλAΩΣ−1b =
λA
κ
biωi. (B.40)

Finally, substitute the expressions for κ in β̂i and rearrange to obtain

β̂i = ωi ·
biσ

2
zζ
∗ +

σ2
i

N
(1 +

∑
j

b2jσ
2
z

σ2
j

(1− ωj))

σ2
zζ
∗2 + (

∑
j

ωjσ2
j

N2 )(1 +
∑

j

b2jσ
2
z

σ2
j

(1− ωj))
. (B.41)

Proof of Corollary 2.1

Let δi = β̂iρM − ρi denote mispricing of asset i relative to the market factor. Note that I
suppress λA in the notation here. Fixing λA, statements (1) and (2) are equivalent to

∂

∂σ2
i

δi =
∂

∂σ2
i

λA
κ

(
β̂iζ
∗ − biωi

)
> 0. (B.42)

Because θx∗>Ωx∗ = σ2
z

κ
ζ∗2 +

∑
i
ωiσ

2
i

N2 > 0, this is equivalent to

∂

∂σ2
i

(θx∗>Ωx∗)δi > 0. (B.43)

Thus, I will prove condition (B.43) to show statements (1) and (2). Expanding on θx∗>Ωx∗δi
gives

θx∗>Ωx∗δi =
λA
κ

(
ωi
σ2
i

N
ζ∗ − biωi

∑
j

ωjσ
2
j

N2

)
.
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Because
∂

∂σ2
i

ωi =
−θ 1−θ

N
b2
iσ

2
z

(θΣii + 1−θ
N
σ2
i )

2
< 0, (B.44)

it follows that

∂

∂σ2
i

=
λA
κN

(
ζ∗

(
ωi + σ2

i

−θ 1−θ
N
b2
iσ

2
z

(θΣii + 1−θ
N
σ2
i )

2

)
+ bi

θ 1−θ
N
b2
iσ

2
z

(θΣii + 1−θ
N
σ2
i )

2

∑
j

ωjσ
2
j

N

)

=
λA
κN

1

(θΣii + 1−θ
N
σ2
i )

2

(
ζ∗θΣii

(
θΣii +

1− θ
N

σ2
i

)
+

(
bi
∑
j

ωjσ
2
j

N
− σ2

i ζ
∗

)
θ

1− θ
N

b2
iσ

2
z

)

is positive because

ζ∗θΣii

(
θΣii +

1− θ
N

σ2
i

)
+

(
bi
∑
j

ωjσ
2
j

N
− σ2

i ζ
∗

)
θ

1− θ
N

b2
iσ

2
z > 0

after expanding Σii = b2
iσ

2
i + σ2

i . To show statement (3), first note that

∂ωi
∂bi

=
θ 1−θ
N

2biσ
2
i σ

2
z

(θΣii + 1−θ
N
σ2
i )

2
> 0 (B.45)

because bi > 0 are assumed to be strictly positive for all assets. Showing statement (3) is
equivalent to showing that the sign of ∂δi

∂bi
is undetermined. Similar to before, I evaluate the

partial derivative multiplied by θx∗>Ωx∗:

∂

∂bi
(θx∗>Ωx∗)δi =

λA
κ

(
ζ∗
σ2
i

N

∂ωi
∂bi
−
(
ωi + bi

∂ωi
∂bi

)∑
j

ωjσ
2
j

N2

)

=
λA
κN

1

(θΣii + 1−θ
N
σ2
i )

2

[
ζ∗σ2

i θ
1− θ
N

2biσ
2
i σ

2
z−

∑
j

ωjσ
2
j

N

(
θΣii

(
θΣii +

1− θ
N

σ2
i

)
+ θ

1− θ
N

2b2
iσ

2
i σ

2
z

)]
.

Because the constant is positive, the sign of the partial derivative is solely determined by
the following term

Ψi = ζ∗σ2
i θ

1− θ
N

2biσ
2
i σ

2
z −

∑
j

ωjσ
2
j

N

(
θΣii

(
θΣii +

1− θ
N

σ2
i

)
+ θ

1− θ
N

2b2
iσ

2
i σ

2
z

)
, (B.46)

which I call Ψi for notation.
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(i) Consider the case that Ψi < 0. Note that Ψi < 0,∀i if and only if

ζ∗
1− θ
N

2biσ
4
i σ

2
z <

∑
j

ωjσ
2
j

N

(
Σii

(
θΣii +

1− θ
N

σ2
i

)
+

1− θ
N

2b2
iσ

2
i σ

2
z

)
(B.47)

for all assets i. Consider for example asset i with 0 < bi < 1, such that b2
i is sufficiently

small. Ignoring O(b2
i ), the condition is rewritten as:

ζ∗
1− θ
N

2biσ
4
i σ

2
z <

∑
j

ωjσ
2
j

N

(
θ +

1− θ
N

)
σ4
i .

Cancelling terms and substituting for ζ∗, I get:

1− θ
N

∑
j

ωjbj
N

2biσ
2
z <

(
θ +

1− θ
N

)∑
j

ωjσ
2
j

N
. (B.48)

Clearly the LHS cannot be bounded by the RHS unless additional assumptions are made
on the aggregate variables. Thus, the relationship between mispricing and beta cannot be
monotonously decreasing.

(ii) Consider the case that Ψi > 0, which is equivalent to

ζ∗
1− θ
N

2biσ
4
i σ

2
z >

∑
j

ωjσ
2
j

N

(
Σii

(
θΣii +

1− θ
N

σ2
i

)
+

1− θ
N

2b2
iσ

2
i σ

2
z

)
. (B.49)

Consider an asset i such that σ2
i =

∑
j

ωjσ
2
j

N
, and bi > 1. Clearly, the above condition cannot

be satisfied. Thus, no monotonous relationship exists between mispricing and bi’s unless
additional assumptions are made on the joint distribution of bi and σi.

Proof of Corollary 2.2

To prove that when N → ∞, my model reduces to the standard CAPM, recall that Ω−1 =
θΣ−1 + 1−θ

N
S−1, such that

lim
N→∞

Ω−1 = θΣ−1. (B.50)

Substituting this expression into β̂i (and using the properties of limit functions) yields

lim
N→∞

β̂i = lim
N→∞

e>i Ωx∗

x∗>Ωx∗

= lim
N→∞

e>i
1
θ
Σx∗

x∗> 1
θ
Σx∗

= lim
N→∞

βi

= bi,
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where βi is the standard CAPM beta, and bi is the cash flow beta. In addition, when N →∞,
we note that limN→∞ ωi = 1. It then follows that:

lim
N→∞

(β̂iρM − ρi) = lim
N→∞

(
bi

1

N

∑
j

λA
κ
bj −

λA
κ
bi

)
= 0,

since
∑

j bj = 1.

Proof of Corollary 2.3

The proof follows the same arguments as the proof for Theorem 2.1. For completeness, I
write down the demand functions of all agents:

xA =
1

γ
Σ−1(a+ bλA − P (1 + r)), (B.51)

xB =
1

γ
Σ−1(a− P (1 + r)), (B.52)

and

xCk =
1

γ
Σ−1
kk (ak − Pk(1 + r)), ∀k. (B.53)

The market clearing condition is now

x∗ = θAx
A + θBx

B +
1− θ
N

xC , (B.54)

where θ = θA + θB. Substituting the demand functions gives

γx∗ = (θΣ−1 +
1− θ
N

S−1)(a− P (1 + r)) + θAΣ−1bλA. (B.55)

Define Ω−1 = θΣ−1 + 1−θ
N
S−1. It then follows that

a− (1 + rf )P = γΩx∗ − θAΩΣ−1bλA. (B.56)

The expression for Ω is given by (B.18). Following the same argument as the proof for
Theorem 2.1, I can simplify

ρi = θAΩΣ−1bλA =
λA
κ

θA
θ
biωi, (B.57)

and the rest of the proof follows the same arguments as the proof for Theorem 2.1.




