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Abstract 
 

With artificial intelligence technologies becoming 
commonplace today, enhancing the efficiency of human-
artificial agent (AA) interactions has become increasingly 
important. A growing body of research has revealed how 
dynamic motor primitives (DMPs) of human perceptual-motor 
behavior can be used to create ‘human-like’ AAs, primarily 
focusing on cooperative tasks. Using air hockey as a 
representative task, the current experiment is the first part of a 
large study aimed at determining the utility of DMP-based 
models for developing ‘human-like’ competitive AAs. 
Participants played against a preliminary DMP model and the 
differences in their behaviors were analyzed. Based on these 
observed differences, a revised model is proposed, with 
preliminary results revealing that the new model exhibits 
behaviors more consistent with those of humans. A major 
implication of this work is that it presents a framework for 
creating ‘human-like’ AAs that capture the essential human 
decision and movement dynamics without requiring large 
human gameplay datasets. 
 
Keywords: dynamic motor primitives; human-machine 
interaction; human behavior modelling; artificial intelligence 

 

Introduction 
Recent advances in machine learning methodologies and a 
speedy adoption of artificial intelligence (AI) systems have 
resulted in rapid and innovative uses of these systems in 
science, medicine, and industry (Dobbe et al., 2021; Jamilly 
et al., 2018). Although the capabilities of AI systems vary, 
contingent on underlying algorithms, training procedures, 
and training data (Shank et al., 2019), AI systems are now 
capable of performing a wide array of tasks, including speech 
recognition and translation, decision-making, image 
processing, visual perception, and financial forecasting 
(Norris, 2020). Human-AI systems are also becoming 
commonplace, with AI agents mediating social networks and 
experiences (Papadimitriou, 2016), how video games are 

played (Spronck et al., 2006), training and performing 
workplace activities (Kovacevic, & Radenkovic, 2020; 
Mihailidis et al., 2016), and seeking medical and clinical 
advice (Miller et al., 2020).  

In many instances, the key to effective human-AI 
interaction is the ability of AI agents to exhibit ‘human-like’ 
behavior that can be predicted and easily understood by 
human co-actors (Nalepka et al., 2019). This is particularly 
true for physical or perceptual-motor human-AI interactions, 
where the behavioral actions of an AI agent can significantly 
influence the stability and effectiveness of human behavior 
and learning.  

Indeed, a lack of understanding of how to best develop 
‘human-like’ AI agents remains a significant barrier to the 
full adoption of AI systems within organizations requiring 
physical human-AI interaction (Lorica & Paco, 2019; 
Washburn et al., 2019). Importantly, recent research has 
suggested that one way to develop ‘human-like’ AI agents is 
to define the actions of such artificial agents (AA) using the 
same dynamical motor primitives (DMPs) that generatively 
approximate human actions (Patil et al., 2021; Nalepka et al., 
2019). See (Patil et al., 2021) for an overview of using DMPs 
for modelling human action dynamics. Despite the robustness 
of the latter research, the effectiveness of the DMP approach 
for creating ‘human-like’ AAs has only been demonstrated 
using cooperative human-AA perceptual motor tasks (e.g., 
object pick and place tasks, multiagent herding, and 
collection tasks) (Carroll et al., 2019; Lamb et al., 2017, 
2019; Nalepka et al., 2019; Patil et al., 2021). Furthermore, 
the general framework followed by previous research uses 
data collected from human co-actors to create and 
parameterize the DMP models, which are then validated with 
more human participants.  

The aim of the current study was to explore the potential 
use of DMP controlled AAs in competitive human-AA 
contexts. The novelty of this methodology is that it does not 
rely upon human-human interactions to model AA behaviors, 
but it still uses the primitive models that capture the essential 
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human decision making and movement behaviors as a 
baseline to reveal the complexities of human behaviors. More 
specifically, we compared the behavior of human players to 
those of a preliminary DMP controlled AA to identify the 
differences/similarities between human and AA air hockey 
gameplay. This further allowed us to ascertain how a DMP 
model should be functionally and parametrically realized to 
best capture ‘human-like’ gameplay.  Accordingly, we 
explored the general effectiveness of human and AA 
gameplay (i.e., wins versus losses) and the fundamental 
aspects of offensive and defensive gameplay (Chang et al., 
2020; Chowdhury et al., 2018).   

Method 
Participants 
Fifteen students (7 male, 8 female) with ages ranging from 18 
to 35 years (M = 20.73, SD = 4.82) from an Anonymous 
University participated in this study for course credit. Two of 
the 15 participants were left-handed (13.33%), with the 
remaining 13 being right-handed (86.67%). All participants 
used their dominant hand to play and disclosed that their air 
hockey experience was minimal at best, consisting only of 
experience in an arcade environment. 

Task Environment 
Participants stood on the short side of a 2.2 m x 1.2 m table 
with a height of 0.81 m in a laboratory room of size 2.8 m x 
4.1 m and completed this task in a virtual environment. The 
virtual environment consisted of a room resembling the 
laboratory room with a virtual table that was the same size as 
the real table. The physical table provided a solid surface on 
which participants could glide the controller (that tracks the 
position of the mallet) against. This is synonymous with the 
way a mallet would glide along an actual air hockey table (as 
seen in Figure 1). The virtual environment was created using 
Unity (Unity Technologies, CA, USA) and was presented to 
participants using a HTC Vive Pro virtual reality headset. The 
headset and the controller were tracked by 2 HTC Vive base 
stations which had a positional accuracy of 0.5 cm, latency of 
11.11ms and communicated wirelessly with the computer 
running the air hockey environment.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Laboratory table that mirrored the dimensions of 

the air hockey table in the virtual reality environment 
 

The VR environment, as can be seen in Figure 2, depicted 
circular mallets with knobs (blue for participants and red for 
the AA), a circular puck (green), the air hockey table and the 
scoreboard (presented above the table). The size of both the 
opponent’s and participant’s goals were 30 cm wide and lay 
in the center of the short end of the table on their respective 
sides. 

 
Figure 2: An illustration of the virtual reality air hockey 

environment. 
 

Within the virtual environment, the mallet moved in 
alignment with the movements of the tracker controlled by 
the participant. The mallet had a diameter of 13 cm and height 
of 1.5 cm whilst the puck had a diameter of 10 cm and height 
of 1 cm. These dimensions were chosen such that they 
resembled the size of the mallet and puck in an ordinary game 
of air hockey. Participants’ mallets could be used to hit the 
puck, and in situations where the puck hit the extremities of 
the table (table walls), the puck would bounce off it such that 
it resembled the table walls in a real air hockey environment. 
Additionally, the mallet could not travel past the walls in VR 
and the laboratory table had an adhesive strip which provided 
haptic feedback, resembling the wall hits by the virtual 
mallet. Players scored by hitting the puck into their 
opponent’s goal.  

Artificial Agent 
The AA was modelled using the fundamental DMP equations 
used to model dynamic reaching behavior (Nalepka et al., 
2017, 2019; Patil et al., 2020; Saltzman & Kelso, 1987). This 
DMP model employed discrete mass spring equations to 
determine the x- and z-position of the AA’s mallet (i.e., one 
for x or forward/backward and one for z or left/right) of the 
respective form 

 
�̈� = 	−𝑏�̇� − 𝑘(𝑥 − 𝑇!)      (1a) 
 
�̈� = 	−𝑏�̇� − 𝑘(𝑧 − 𝑇")      (1b) 

 
where b and k represent the damping and the stiffness 
parameters and (𝑇! , 𝑇") is the target location the AA’s mallet 
is attracted to (moves towards). Essentially, b (friction) 
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“resists” motion (for b > 0) and k is a restoring (“spring”) 
force that induces motion (for k > 0) when the system is not 
at equilibrium (i.e., when the mallet is not at the target 
position). The parameter values for b = 10 and k = 50 were 
derived from previous research on comparable dynamic 
reaching/target selection tasks (Nalepka et al., 2019; Patil et 
al., 2020) which previously identified that this ratio of b/k 
generates general movement velocities (re-normalized to the 
specific dimensions of the air hockey table) like human 
arm/hand end effector movements (Lamb et al., 2019).   

The target position (𝑇! , 𝑇") that the AA’s mallet was 
attracted to was determined based on a critical x position (i.e., 
xcritical = 0; middle of the table) of the puck. When the puck 
was on the AA’s side of the table, the AA’s mallet was 
attracted to the puck’s location, whereby 

 
𝑇! =	𝑥#$%& and 𝑇" =	𝑧#$%&. 

 
However, if the puck was on the human participant’s side of 
the table, the AA’s mallet was attracted to 

 
𝑇! =	−0.85 and 𝑇" = 0.25	 ×	𝑧#$%& . 

 
This resulted in the AA moving towards the puck (offensive 
gameplay) when the puck crossed the center line into the 
AA’s side of the table and the AA guarding the goal 
(defensive gameplay) when the puck was in the participant’s 
playing area. 

Procedure 
All participants stood on the same side of the table chosen 
primarily out of convenience. Participants were given 
approximately two minutes to practice hitting the puck 
without their opponent moving from its starting position to 
feel comfortable in the VR environment and to familiarize 
themselves with the game mechanics. After they completed 
the practice block and indicated that they understood the 
objective of the task, participants played air hockey for a total 
of 15 minutes or until 75 goals were scored in total between 
the AA and participant. At the start of each game, the puck 
appeared on the side of the player who lost the previous round 
(randomly assigned for the first game). 

Mallet Position Measures 
Positions of participants and AA’s mallets and the puck were 
recorded during all trials at 50Hz. In addition, every time the 
puck came into contact with any object (e.g., mallet, walls, or 
goals) the name of the object was recorded. The x 
(forward/backward) and z (left/right) coordinates of players’ 
mallets, at the time of each hit, were extracted and split by 
whether the player or their opponent hit the puck (whether 
they were in offensive or defensive positions). This positional 
data was used to calculate the mean mallet positions in both 
directions during offensive and defensive positions in order 
to discern the general strategies used by the players. The 
positional data was additionally grouped into bins of 10cm 
each in the x and z directions to further identify the areas of 

the table frequented by both players while attacking and 
defending.  

Mallet Velocity Measures 
In addition to the positions, the velocities of players’ mallets 
were recorded throughout gameplay. Similar to the positions, 
the velocity of their movements were split by whether they 
were in defensive or offensive positions. Average velocity in 
each direction was calculated to identify the differences in 
movement behaviors between human participants and the 
AA. In addition, the distribution of the velocities in both 
directions were calculated to get an overall idea of how 
players modulated their velocities throughout gameplay.   

Puck Hit Angle Measures 
At the instant when the puck was hit by the mallet, the 
direction of the puck bouncing off was determined as the 
angle at which players hit the puck. These angles were 
analyzed to investigate if players preferred hitting the puck in 
a certain direction when they were in a particular area of the 
table. The angle was 0 if they hit the puck straight ahead, -90 
if they hit the puck straight towards the right edge of the table, 
90 if they hit the puck straight towards the left edge, and 180 
if they hit it straight back (as can be seen in Figure 4). The 
distribution of the puck angles were calculated for all the hits 
that happened in the left side (-.5 < z < -.3), right side (.3 < z 
< .5), and middle (-.1 < z < .1) of the air hockey table in the z 
direction and high (x < -.5) and low (x >= -.5) areas in the x 
direction (refer to Figure 3). 

Figure 3: (top) Division of air hockey table for angular 
analysis. Puck angle hits were split by positional data, such 

that they were separated according to where hits occurred on 
the air hockey table. Correspondingly, these puck angle hits 
are displayed separately for puck hits when the player/agent 
positions were x < -.5 (low) and x >= -.5 (high), where x = -
1 is the player/agents end of the table and when player/agent 
positions were z < -.2 (left side hits), z >=.2 (right side hits), 
and -.2 < z < .2 (middle of table hits). Data for player 2 was 

remapped from 0 < x < 1 to -1 < x < 0 before analysis to 
remain consistent with human data and allow for further 

examination of the differences in gameplay between these 
players. (bottom). 
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Results 
As the behavior of the AA was not independent of participant 
(i.e., the AA behavior was coupled to each participant, and 
therefore participant specific), paired sample t-tests and 
Wilcoxon’s Signed-Ranks tests (the non-parametric 
equivalent) were the primary methods of analysis, the latter 
employed when the assumption of normality was violated. 
Although numerous variables were assessed, no adjustment 
was made to the alpha level (set at p = .05) due to the 
exploratory nature of the research.  

Game performance 
Fourteen participants (93.33%) beat the AA, with only one 
participant failing to win most rounds. The average 
proportion of round wins for human participants (M = .58, SD 
= .08) was significantly more than chance, at .5 (t (14) = 4.10, 
p = .001, d = 2.12), indicating that human participants (M = 
37.20, SD = 9.95) won significantly more rounds of air 
hockey than their AA competitor (M = 27.07, SD = 7.41).  

 
Figure 4: Exemplar scatter plot of a human player and the 
AA’s offensive (puck hit) and defensive mallet positions 

when the puck was hit (see Figure 6 for other representative 
human examples). 

Player Position 
A representative example of the offensive and defensive 
positions of human players and the AA, and the constituents 
of offensive play (i.e., players’ mallet position, velocity and 
angle the puck moved in when players hit the puck) are 
displayed in Figures 4 and 5 respectively. 
 
Offensive Play As can be seen from an inspection of the 
positional distributions in Figure 5, the x-coordinate for the 
average position of the AA’s mallet (M = -.56, SD = .01) was 
significantly different to the position of the human 
participant’s mallet (M = -.79, SD = .04) when hitting the 
puck (t (14) = -24.99, p < .001, d = 7.89). In short, human 
players kept their mallet close to their goal rather than toward 
the center of the table while the AA tended to spend most of 
their time further from their goal. This suggests that human 

players were more comfortable attacking from a position 
closer to their goal. 

As seen in Figure 5, a bimodal distribution existed for the 
AA and a normal distribution for human players. Hence, for 
analysis of the positional distributions in the z-axis, the axis 
was split into three separate bins, such that the distribution 
when player/agent positions were -.5 < z < -.3 (left side hits), 
.3 < z < .5 (right side hits), and -.1 < z < .1 (middle of table 
hits) were analyzed separately. The proportion of hits within 
each third of the air hockey table, representative of the 
positional distribution of player’s mallets, were measured as 
the amount of hits that occurred in each third divided by the 
amount of hits overall. 

A significant difference between the proportion of hits by 
human players (M = .34, SD = .08) and the AA (M = .12, SD 
= .02) was found in the middle third of the air hockey table (-
.1 < z < .1), t (14) = 10.31, p < .001, d = 3.77. The odds of the 
human participant’s mallet occupying space in the middle of 
the air hockey table was 2.76 times that of the AA’s mallet.  
There was also significant difference between the proportion 
of human player hits (M = .17, SD = .05) and AA hits (M = 
.33, SD = .03) within the left third of the air hockey table (-.5 
< z < -.3; t (14) = -11.96, p < .001, d = -3.88), and the 
proportion of human player hits (M = .13, SD = .06) and AA 
hits (M = .32, SD = .04) within the right third of the air hockey 
table (.3 < z < .5; t (14) = -12.33, p < .001, d = -3.73). Indeed, 
the odds of the AA’s hitting the puck on the left or right of 
the air hockey table was 1.9 times that of the human 
participant’s, with human players tending to remain close to 
their goal location, whereas the AA spent time on either side 
of the air hockey table.  
 
Defensive Play No significant differences in the x- or z- 
positions of the human and AA were found, with both 
agents remaining close to their goal location during 
defensive period of play and the results of this analysis are 
not presented here is favor of conserving space. 

Mallet Velocity 
Offensive Play The AA’s mallet movements were 
significantly faster, in the x-axis (forward and backward), 
when the AA hit the puck (M = 5.56, SD = .34) compared to 
the human participant’s (M = 1.24, SD = .39), z = -3.41, p < 
.001, d = 11.81. The AA’s mallet also moved significantly 
faster in the z-axis (left and right), when the AA hit the puck 
(M = 3.34, SD = .29) compared to the human participant’s (M 
= .21, SD = .03), z = -3.41, p = .001, d = 15.18. Furthermore, 
it can be observed from the distribution of velocities while 
hitting the puck (see Figure 5) that participants used a wider 
range of velocities as compared to the AA. 
 
Defensive play The AA’s mallet moved significantly faster, 
in the x-axis (forward and backward), when their opponent 
hit the puck (M = .69, SD = .23) compared to the human 
participant (M = .29, SD = .11), t (14) = 5.07, p < .001, d = 
2.22. The AA’s mallet also moved significantly faster, in the 
z-axis (left and right), when their opponent hit the puck (M =  
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1.53, SD = .21) compared to human players (M = .14, SD = 
.04), t (14) = 28.55, p < .001, d = 9.20. 

Puck Hit Angles 
Strategies employed by players within an air hockey 
environment can be differentiated by the angle at which the 
puck is hit. As displayed in Figure 5, these puck angle hits 
were split by positional data such that they were separated 
according to where hits occurred on the air hockey table.   

Overall, there were very few differences in the puck hit 
angles between the human players and the AA. The only 
significant difference was that puck hit angles were more 
variable for the human player compared to the AA when the 
puck was hit in the -.5 > x < .5 area of the air hockey table (z 
= -3.07, p = .001). Note also that the AA did hit the puck back 
toward their own goal more than human players (see Figure 
5), although this difference was not significant.  

Discussion 
The main aim of this study was to assess the ‘human-like’ 
nature of an DMP controlled AA by examining motor 
movements employed when playing against a human 
opponent in a competitive air hockey environment. Overall, 
the analysis of revealed that human players were better than 
the AA and that the offense gameplay of the AA differed  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from that of human participants. However, there were no 
significant differences in the positional play of human players 
and the AA, indicating that the current DMP model could 
particle replicate “human-like” gameplay (i.e., defending 
near the goal location).  

Key Behavioral Differences 
The analysis of the human player’s and AA’ positions and 
velocities revealed three key differences in gameplay.  

First, that human players kept their mallet closer to their 
own goal location while hitting the puck as compared to the 
AA. Note that the DMP model was configured to initiated 
offense gameplay as soon as the puck crossed the center line 
(see equations 1a and 1b).  

Second, the positions of players while hitting the puck in 
the z-direction was also significantly different, in that, the 
human players spent the majority of their time in the middle 
of the table and the AA spent their time on both the left and 
right sides of the table.  

Third, the AA’s mallet movements were significantly 
faster than that of the human players in both the x- and z-
directions.  

The discrepancies in the offensive positions and puck hits 
of the human players and the AA indicated that the threshold 
used for switching the DMP model between offensive and 
defensive play needed to be refined. Instead of using a  

Figure 5: The average proportional frequencies of (left panel) human player and (right panel) AA (x, 
z) positions (blue), hit velocities (red) and angles when hitting puck (i.e., offensive play). x 

corresponds to the forward-backward table direction. z corresponds to the left-right table direction. 
(top-right of each panel) the puck hit angles are displayed separately for puck hits when the 

player/agent positions was x < -.5 and x >= -.5, where x = -1 is the player/agents end of the table. 
(bottom of each panel) the puck hit angles are displayed separately for puck hits when the 

player/agent positions was z < -.2 (left side), z >= .2 (right side), and -.2 < z < .2 (middle of table). 

Human Player DMP Agent
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constant threshold (the center line in this case), a more 
adaptive threshold is proposed that not only relies on the 
puck’s x position but also on its x velocity and z position. 
More specifically, we propose that the critical threshold 
should be determined at any given time point by 

 
𝑥%'()(%*+ = (𝑑! − 𝛾6�̇�#$%&, + 𝑧#$%&,8)𝜃 

 
where dx is the baseline 𝑥%'()(%*+ value, which based on the 
participants data collected here is expected to be between |.5| 
and |.7|, 𝜃 = ±1 depending on whether the player is on the 
positive or negative side of the table, and 𝛾 is the fixed 
parameter that determines the strength of the DMP model’s 
defensive/offensive tendency. In short, an AA controlled by 
this new DMP model is more likely to venture away from the 
goal to hit the puck when the puck is travelling slower and is 
not coming directly towards the goal. 

Furthermore, to address the differences in velocities, the 
ratio of b/k should be reduced by either increasing damping 
(i.e., b = 20 instead of 10) and/or reducing the value of the 
stiffness (i.e., k = 35 instead of 50). This would result in 
slower DMP movement trajectories and may also result in 
less puck over shooting, which appeared to be why the AA 
tended to hit the puck back towards its own end of the table 
more often than the human participant.  

Finally, the analysis of the puck hit angles also revealed 
significant differences in the variance of the angles with 
which players hit the puck between the AA and human 
players. Specifically, the variance of angle hits by humans 
was significantly larger than that of the AA. This can be 
addressed by adding stochasticity to the DMP models 
movements and future work will investigate the appropriate 
amount and type of noise that leads to more ‘human-like’ 
behaviors. 

Although the initial plan was to test the modified model 
with human participants, lockdowns in 2021 due to the 
ongoing COVID-19 pandemic have delayed this data 
collection to 2022. However, scatter plot of positions when  
the puck was hit (similar to Figure 4) from a pilot trial with 
the revised DMP model are displayed in Figure 6 alongside 
the preliminary DMP model and exemplary participant data 
from playing against the preliminary DMP model. It can be  

 
observed that the offensive and defensive hits by the revised 
DMP model have a larger overlap as compared to the 
preliminary model and the distribution of the hits better 
captures the behaviors observed in participants’ data. 
Furthermore, in a competitive task context like air hockey, 
human behavior can significantly change due to the skill level 
and the behavior of their opponent and further testing is 
required to unravel these effects using the revised DMP 
model. Additionally, future research may consider the height, 
wingspan, and reaching length at the table for human players, 
such that examining these human features can allow for the 
determination of any invariant structure between these 
physiological constraints and the distribution of player’s 
mallet positions (Babajanyan et al., 2022). 

Conclusion 
Using a competitive air hockey environment, the current 
study was able to examine differences in human and a 
preliminary DMP controlled AA. A strength of this study was 
that significant differences in gameplay, between human and 
DMP competitive behaviors, were identified and quantified, 
and hence, a re-parametrized DMP model was proposed. 
Furthermore, no data from human-human interactions in the 
current task context was utilized to construct or parameterize 
the DMP model and the baseline model was formulated only 
based on the preconceived notions of human actions and 
decision making identified from other tasks. This can be 
advantageous in scenarios where human-human data is 
difficult to record as compared to human-AI interactions. 
Furthermore, having a model whose behavior is closer to that 
of human players opens avenues for using hybrid deep 
reinforcement learning-DMP approaches to model the AA 
behavior (Patil et al., 2021). The advantage of the latter 
methodology is that it can create AAs with expert human 
level or even better performance while being scaffolded by 
the essential human action behaviors. These ‘super-human’ 
AAs can further be used as a tool for skill learning by novice 
or expert human players. 
 
Acknowledgements: this research was supported by the 
Australian Research Council Future Fellowship awarded to 
Michael Richardson (FT180100447). 

Figure 6: Exemplary scatter plots comparing offensive and defensive positions of the preliminary DMP model, 
human players, and revised DMP model 
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