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Hybrid LSTM and Encoder-Decoder Architecture
for Detection of Image Forgeries

Jawadul H. Bappy, Cody Simons, Lakshmanan Nataraj, B.S. Manjunath, and Amit K. Roy-Chowdhury

Abstract—With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain
manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of
these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a
high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and
encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture
artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive
fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and
non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from
low-resolution feature maps to pixel-wise predictions for image tamper localization.
With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the
network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to
guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which
is demonstrated through rigorous experimentation on three diverse datasets.

Index Terms—Image Forgery, Tamper Localization, Segmentation, Resampling, LSTM, CNN, Encoder, Decoder.

F

1 INTRODUCTION

The detection of image forgery has become very difficult as
manipulated images are often visually indistinguishable from real
images. With the advent of high-tech image editing tools, an
image can be manipulated in many ways. The types of image
manipulation can broadly be classified into two categories: (1)
content-preserving, and (2) content-changing [40]. The first type
of manipulation (e.g., compression, blur and contrast enhance-
ment) occurs mainly due to post-processing, and they are con-
sidered as less harmful since they do not change any semantic
content. The latter type (e.g., copy-move, splicing, and object
removal) reshapes image content arbitrarily and alters the semantic
meaning significantly [40]. The content-changing manipulations
can convey false or misleading information. As the number of
tampered images grows at an enormous rate, it becomes crucial
to detect the manipulated images to prevent viewers from being
presented with misleading information. Recently, the detection
of content-changing manipulation from an image or a video has
become an area of growing interest in diverse scientific and
security/surveillance applications. In this paper, we present a novel
architecture to localize manipulated regions at pixel level for
content-changing manipulation.

Over the past decades, there have been many works to classify
image manipulation, i.e., whether an image is tampered or not
[13], [30], [39], [47], [65], [74], [78]. However, only few works
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[7], [14] attempt to localize image manipulation at pixel level.
Some recent works [17], [26], [54] address the localization prob-
lem by classifying patches as manipulated. The localization of
image tampering is a very challenging task as well-manipulated
images do not leave any visual clues, as shown by the following
examples in Fig. 1. In Fig. 1(a), copy-move manipulation is
illustrated where one object is copied to another region of the
same image leading to two similar objects, one originally present,
and another manipulated. However, only the latter needs to be
identified. Fig. 1(b) illustrates object splicing manipulation, where
an object from a donor image has been spliced into other image.
As another example, if an object is removed as shown in Fig. 1(c),
the region may visually blend into the background, but needs to
be identified as manipulated.

Most of the state-of-the-art image tamper classification ap-
proaches utilize the frequency domain characteristics and/or sta-
tistical properties of an image [46], [56], [58], [85]. The analysis
of artifacts by multiple JPEG compressions is also utilized in [20],
[85] to detect manipulated images, which are applicable only to
the JPEG formats. In [67], [68], noise has been added to the
JPEG compressed image in order to improve the performance of
resampling detection. In computer vision, deep learning has shown
promising performance in different visual recognition tasks such
as object detection [32], scene classification [90], and semantic
segmentation [55]. Some recent deep learning based methods
such as stacked auto-encoders (SAE) [88] and convolutional
neural networks (CNN) [8], [21], [77] have also been applied to
detect/classify image manipulations. In media forensics, most of
the existing forgery detection approaches focus on identifying a
specific tampering method, such as copy-move [19], [36], [48],
and splicing [61]. Thus, one approach might not do well on other
types of tampering. Moreover, it seems unrealistic to assume
that the type of manipulation will be known beforehand. Our
recent paper [7], upon which this particular work builds, presents
a general detection architecture for different content-changing
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(a)

(b)

(c)

Fig. 1. The figure demonstrates some examples of content-changing
manipulations. (a), (b), (c) illustrate copy-clone, splicing and object
removal techniques to manipulate an image. First and third columns are
tampered images and corresponding ground-truth masks are shown in
second and fourth columns.

manipulations.
Unlike semantic object segmentation where all meaningful

regions (objects) are segmented, the localization of image manip-
ulation focuses only the possible tampered region which makes
the problem even more challenging. In computer vision, recent
advances in semantic segmentation methods [6], [55], [89] are
based on convolutional neural networks (CNN). In [89], a fully
convolutional network is utilized to analyze the content of the ob-
jects and shape of a region by extracting the hierarchical features
at different levels. In object detection [32] and segmentation [6],
[55], CNN based architectures demonstrate very promising perfor-
mance in understanding visual concepts by analyzing the content
of different regions. In contrast to semantic segmentation, manip-
ulated regions could be removed objects, or copied objects from
other parts of the image. Well-manipulated images usually show
strong resemblance between fake and genuine objects/regions (i.e.
content is similar) [77]. Even though CNN generates spatial maps
for different regions of an image, it can not generalize some
other artifacts created by different manipulation techniques. Thus,
the localization of manipulated regions with only CNN based
architecture may not be the best strategy. In our earlier work [7],
we compared with some recent semantic segmentation approaches
[55], [89] that do not perform well for copy-clone and object
removal type of manipulations.

Image tampering creates some artifacts, e.g., resampling, com-
pression, shearing, which are better captured by resampling fea-
tures [17], [29], [79]. In [17], a Long short-term memory (LSTM)
based network is presented in order to classify manipulated
patches where resampling features are utilized as an important
signature. The authors trained six classifiers to detect six different
types of resampling (e.g., JPEG quality thresholded above or

below 85, upsampling, downsampling, rotation clockwise, rotation
counterclockwise, and shearing. Resampling introduces periodic
correlations among pixels due to interpolation. As convolutional
neural networks exhibit robust translational invariance to generate
spatial maps for the different regions of the image, and certain
artifacts are well-captured in resampling features, both can be
exploited in order to localize manipulated regions.

Towards the goal of localizing manipulated regions in an
image, we present a unified architecture that exploits resampling
features, LSTM network, and encoder-decoder architectures in
order to learn the pixel level localization of manipulated image
regions. Given an image, we divide into several blocks/patches
and then resampling features (as discussed in Sec. 3.1.1) are
extracted from each block. LSTM network is utilized to learn
the correlation between manipulated and non-manipulated blocks
at frequency domain. We utilize and modify encoder-decoder
network as presented in [6] to capture spatial information. Each
encoder generates feature maps with varying size and number.
The feature maps from LSTM network and the encoded feature
maps from encoders are embedded before going through the
decoder. We perform end-to-end training to learn the parameters
of the network through back-propagation using ground-truth mask
information. As deep networks are data hungry, a large number
of images are synthesized to augment the training data.. The
proposed model shows promising results in localizing manipulated
regions at the pixel level, which is demonstrated on different
challenging datasets.

1.1 Approach Overview
Given an image, our goal is to localize the manipulated regions
at a pixel level. The proposed framework is shown in Fig. 2.
Our network can be divided into three parts- (1) LSTM network
with resampling features, and (2) convolutional encoder, and (3)
decoder network.

For the first part, we divide image into patches. For each patch,
resampling features [17] have been extracted. With extracted
resampling features, we use Hilbert curve (discussed in Sec. 3.1.2)
to determine the ordering of the patches to feed into LSTM cells.
We allow LSTM cells to learn the transition between manipulated
and non-manipulated blocks in the frequency domain. Finally,
feature maps are generated from the LSTM cell output, which will
be combined with the feature maps from the encoder. An encoder
consists of residual block, batch normalization and activation
function. At each residual block, two convolutions are performed
with shortcut connection. After each residual unit, max-pooling
operation is performed which gives translation invariance.

Our next step is to design a decoder that can provide finer
representation of different regions in a mask. We combine both
spatial features from encoder and output features from LSTM
to understand the nature of manipulation. Then, these features
are taken as input to the decoder. Each decoder follows basic
operations like upsampling, convolution, batch normalization and
activating feature maps (using activation function). The decoders
help learn the finer details of the manipulated and non-manipulated
classes. Finally, a softmax layer is used to predict manipulated
pixels against non-manipulated ones. With the ground-truth mask
of manipulated regions we perform end-to-end training to classify
each pixel. We compute cross entropy loss, which is then min-
imized by utilizing back-propagation algorithm. After optimiza-
tion, we find the optimal set of parameters for the network, that
will be used to predict manipulated regions given a test set.
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Fig. 2. Overview of proposed framework for localization of manipulated image regions.

1.2 Main Contributions

Our main contributions are as follows.

•We propose a novel localization framework that exploits both
frequency domain features and spatial context in order to localize
manipulated image regions, which makes our work significantly
different than other state-of-the-art methods.

• Unlike most of the existing works where patches are used
as input, we consider image as input so that we can utilize global
context. Our architecture is able to localize manipulated region
with high confidence as demonstrated on three datasets.

• We present a new dataset for image tamper localization
task that includes a large number of images with ground-truth
binary mask. This dataset is larger than current publicly available
datasets such as IEEE Forensics [1] and COVERAGE [86]. It will
also help train deeper networks for image tamper classification or
localization tasks.

This work builds upon our earlier paper [7], but with signif-
icant differences. First, the method presented in the paper [7]
exploits low level features such as tampered edges, as evidence
of tampering, which cannot always detect the entire tampered
regions. The proposed method exploits an encoder and an LSTM
network to extract spatial feature maps and frequency domain fea-
tures respectively in order to localize manipulated regions. In the
proposed method, the encoder provides larger receptive fields by
exploiting multiple convolutional layers which allow the network
to identify large manipulated regions. Second, we consider the
image as the input, instead of patches, which helps the network
to learn more meaningful context, i.e., intra-patch and inter-patch
correlation. Third, unlike [7], we utilize resampling features in our
network that captures the characteristics of different artifacts due
to image transformation such as JPEG quality above or below a
threshold, upsampling, downsampling, rotation clockwise, rotation
counterclockwise, and shearing. Fourth, we present a large image
splicing dataset which can be used to train a deep neural network
for the task of manipulation. We show the comparison against
existing dataset in experimental analysis.

2 RELATED WORK

In media forensics, there have been lot of efforts to detect different
types of manipulations such as resampling, JPEG artifacts, and
content-changing manipulations. In this section, we will briefly
discuss some of the existing works for detecting image forgeries.

In last few years, several methods have been proposed to
detect resampling in digital images [29], [59], [69], [73], [79].
Most of the approaches exploit linear or cubic interpolation. In
[79], periodic properties of interpolation by the second-derivative
of the transformed image have been utilized for detecting image
manipulation. In [69], an approach was presented to identify
resampling on JPEG compressed images where noise was added
before passing the image through the resampling detector; it was
shown that adding noise aids in detecting resampling. In [28], [29],
a feature was generated from the normalized energy density and
then SVM was used to robustly detect resampled images. Some
recent approaches [34], [45] have been proposed to reduce JPEG
artifacts produced by compression techniques. In [4], [82], feature
based methods have been presented in order to detect manipulation
in an image. Many methods have been proposed to detect seam
carving [31], [53], [80] and inpainting based object removal [20],
[50], [87]. Several approaches exploit JPEG blocking artifacts to
detect tampered regions [12], [13], [27], [52], [57]. Some recent
works [3], [39], [41], [48] focus on identifying and localizing
copy-move manipulation. In [48], the authors used an interesting
segmentation based approach to detect copy-move forgeries. They
first divided an image into semantically independent patches and
then performed keypoint matching among these patches. In [24],
a patch match algorithm was used to efficiently compute an
approximate nearest neighbor field over an image. They further
used invariant features such as Circular Harmonic transforms and
showed robustness over duplicated blocks that have undergone
geometrical transformations. In [61], an image splicing technique
was presented using visual artifacts. In [64], the steerable pyramid
transform (SPT) and the local binary pattern (LBP) were utilized
to detect image forgeries. The paper [35] highlights the recent
advances in image manipulation and also discusses the process of
restoring missing or damaged areas in an image. In [5], a review
on different image forgery detection techniques is presented.
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Recently, there has been a growing interest to detect image
manipulations by applying different computer vision and machine
learning algorithms [70], [76]. In semantic segmentation, many
deep learning architectures [6], [55], [89] have been proposed,
which surpass previous state-of-the-art approaches by a large
margin in terms of accuracy. Most of the deep networks [6],
[55] are based on Convolutional Neural Networks (CNNs), where
hierarchical features are exploited at different layers in order to
learn the spatial map for semantic region. In [55], a classification-
purposed CNN is transformed into fully convolutional one by
replacing fully connected layers to produce spatial heatmaps.
Finally, a deconvolution layer is used to upsample the heatmaps to
generate dense per-pixel labeling. SegNet [6] designs a decoder to
efficiently learn the low-resolution heatmaps for pixel-wise predic-
tions for segmentation. In [22], [42], the fully connected pairwise
CRF is utilized as a post-processing step to refine the segmentation
result. In [72], skip connection is exploited to perform late fusion
of feature maps for making independent predictions for each layer
and merging the results. In ReSeg [83], Gated Recurrent Units
(GRUs) and upsampling have been used to obtain the segmentation
mask.

Recent efforts, including [8], [9], [17], [62], [77] in the
manipulation detection task, exploit deep learning based models.
These tasks include detection of generic manipulations [8], [9],
resampling [10], splicing [77], and bootleg [16]. In [75], the
authors propose Gaussian-Neuron CNN (GNCNN) for steganal-
ysis. A deep learning approach to identify facial retouching was
proposed in [11]. In [88], image region forgery detection has been
performed using stacked auto-encoder model. In [8], a new form of
convolutional layer is proposed to learn the manipulated features
from an image. In computer vision, deep learning has led to
significant performance gain in different visual recognition tasks
such as image classification [90], and semantic segmentation [55].
The deep networks extract hierarchical features to represent the
visual concept, which is useful in object segmentation. Most of the
architectures are based on Convolutional Neural Network (CNN),
which provides spatial maps relevant to manipulated regions.
However, we can also exploit resampling features that distinguish
other artifacts. Since both spatial context and resampling are
important attributes to localize manipulated regions from image,
we present an unique network that exploits both of the features.

3 NETWORK ARCHITECTURE OVERVIEW

Our main goal of this work is to localize image manipulations
at pixel level. Fig. 2 shows our overall framework. The whole
network can be divided into three parts - (1) LSTM network with
resampling features, and (2) Encoder, and (3) Decoder network.
Convolutional neural network (CNN) architectures extract mean-
ingful spatial features for object segmentation, which could also be
useful to localize manipulated objects. Even though spatial feature
maps are crucial to classify each pixel, solely using CNNs in the
image domain does not usually perform well in identifying image
manipulations. It is simply because there are certain manipulations
like upsampling, downsampling, compression, which are well-
captured in the frequency domain. Thus, we use resampling
features from the extracted patches of an image. These resampling
features are considered as input to the LSTM network which learns
the correlation between different patches. An encoder architecture
is also utilized to understand the spatial location of manipulated
region. Before decoder network, we utilize the meaningful features

by exploiting both spatial and frequency domain. Finally, we use
decoder network to obtain finer representation of binary mask to
localize tampered region from low-resolution feature maps. In or-
der to develop encoder-decoder network, we utilize convolutional
layers, batch normalization, max-pooling and upsampling. Next,
we will discuss the technical details of our proposed architecture
for image tamper localization.

3.1 LSTM Network with Resampling Features

3.1.1 Resampling Features

The typical content-changing manipulations are copy-clone, splic-
ing and object removal, which are difficult to detect. In general,
these manipulations distort the natural statistics at the boundary
of tampered regions. In [59], the method of resampling detection
using Radon transform is presented. Laplacian filter along with
Radon transform is exploited in order to extract resampling fea-
tures given a patch. We will also follow a similar procedure for
extracting resampling features. To illustrate how Radon transform
captures resampling characteristics, we provide two examples to
highlight the difference in statistics between manipulated and
non-manipulated patches as shown in Fig. 3 (c), with the top
row containing no manipulation and the bottom row containing
some manipulations due to resampling. Fig. 3 (d,e) illustrates the
radon transform of two patches from the manipulated and non-
manipulated regions and their sum along the columns. Though
the differences are subtle, we can see that there is a pattern
for manipulated patches which is different from those of non-
manipulated patches. Given an image, we first extract 64 (8 × 8)
non-overlapping patches. As input image has size of 256x256x3,
the dimension of each patch would be 32x32x3. Then, the square
root of magnitude of 3 × 3 Laplacian filter is used to pro-
duce the magnitude of linear predictive error for each extracted
patch as presented in [17]. As resampling signal has periodic
correlations in the linear predictor error, we apply the Radon
transform to accumulate errors along various angles of projection.
In our experiment, we use 10 angles. Finally, we apply Fast
Fourier Transform (FFT) to find the periodic nature of the signal.
In general, these resampling features are capable of capturing
different resampling characteristics- JPEG quality thresholded
above or below a threshold, upsampling, downsampling, rotation
clockwise, rotation counterclockwise, and shearing (in an affine
transformation matrix). In order to reduce computational burden,
we resize images to 256 × 256 which might introduce some
additional artifacts such as degradation in image quality factor,
shearing, upsampling, downsampling. In [17], resampling features
are used to classify these artifacts. In this work, we also utilize
resampling features, which gives us robust performance. Unlike
[17], where resampling features are considered for patch classifi-
cation, we perform localization at pixel level. There is a tradeoff
in selecting the patch size: resampling is more detectable in larger
patch sizes because the resampling signal has more repetitions,
but small manipulated regions will not be localized that well. In
[17], resampling features are extracted from 8 × 8 block. On the
other hand, we choose 32 × 32 small patches from an image to
extract resampling features that capture more information. The
major motivation of utilizing the resampling features for patches
is to characterize the local artifacts due to different types of
manipulations.
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(a) (b) (c) (d) (e)

Fig. 3. (a) Examples of manipulated images from the NIST dataset [2]. (b) Corresponding ground-truth masks for the manipulated images in
column (a), green for non-manipulated patches and red for manipulated ones. (c) The patches extracted from the corresponding image, with the
top containing no manipulation and the bottom one containing some manipulations. (d) Radon transform of two patches from the manipulated
and non-manipulated images. (e) Sum along the columns of the radon transform. Here, we can see that the non-manipulated patch exhibits high
magnitude at the right of the curve, whereas low value is observed in the same region for the manipulated patch. Differences such as these are
seen across other manipulated and non-manipulated patches.

First Order Second Order Third Order

Fig. 4. The figure illustrates Hilbert curves for different orders. In this
work, third order curve has been exploited.

3.1.2 Hilbert Curve

Long-Short Term Memory (LSTM) is commonly used in tasks
where sequential information exists. The performance of LSTM
highly depends on the ordering of the patches (sequence of
the extracted patches). One can consider horizontal or vertical
directions, but these orderings do not capture local information
well. For example, if we were to iterate horizontally over the rows
of patches, then patches that neighbor each other vertically will be
separated by an entire row of patches. Due to this long time lag,
LSTM can not correlate well between these patches. If we were to
iterate vertically over the columns we would face similar issues.

In order to better preserve the spacial locality of the patches,
we use space-filling curve which is commonly used to reduce
multi-dimensional problem to a one-dimensional [15]. The Hilbert
curve has been shown to outperform many other curves in
maintaining the spatial locality, when transforming from a multi-
dimensional space to a one-dimensional space [63]. The major
advantage of Hilbert curve is in applications where the coherence
between neighboring patches/blocks is important [84]. Fig. 4
shows the process of how Hilbert curve works. The basic elements
of the Hilbert curves can be divided into ‘cups’ (a square with
one open side) and ‘joins’ (a vector that joins two cups) [84].
Every cup has two end-points - (a) entry point, and (b) exit point.
From Fig. 4(left), we can see that a single cup represents a first

order Hilbert curve which fills a 2 × 2 space. The second order
Hilbert curve contains four cups, which are linked together by
three joins as shown in Fig. 4(middle). A third order Hilbert curve
repeats the process by dividing into four parts, each of these parts
contains second order Hilbert curve. Finally, the four parts are
connected by three joins. So, the main mechanism is to divide a
plane into four parts, each of these parts into four parts, and so
on. As we have total 64 (8 × 8) blocks extracted from an image,
we require three recursive dividing of the plane. After ordering
the patches with Hilbert curve, LSTM network is utilized. We
empirically observe that this ordering technique helps improve the
performance of localization.

3.1.3 Long-Short Term Memory (LSTM) Network

LSTM network is well-known for processing sequential data
in different applications such as language modeling, machine
translation, image captioning, and hand writing generation. In
computer vision, LSTM network has been successfully used to
capture the dependency among a series of pixels [18], [71]. The
key insight of using LSTM for detecting image manipulations is
to learn the boundary transformation between different blocks,
which provides discriminative features between manipulated and
non-manipulated regions.

In [7], [17], LSTM network is utilized in order to learn
the transition (change) between manipulated vs non-manipulated
blocks by feeding the blocks into an LSTM network. In [17], the
authors propose a patch classification framework where frequency
domain features are extracted from 8 × 8 block before LSTM
network. The method could be more effective by considering
larger block size. Unlike these approaches, we divide an image
into several patches, and extract rasampling features as discussed
in Sec. 3.1.1 from 32× 32 size of patch that are taken as input to
the LSTM network.

After extracting resampling features for each patch, we use
Hilbert curve (discussed in Sec. 3.1.2) to determine the ordering of
the patches. Then, we feed the resampling features extracted from
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patches into LSTM cells in a sequential manner. LSTM network
computes the logarithmic distance of patch dependency by feeding
each patch to each cell. The LSTM cells learn the correlation
among neighboring patches. In this paper, we use 2 stacked layers,
and 64 time steps in LSTM network. We obtain 64 dimensional
feature vector from each time step in the last layer. Then, we
project the vector generated by LSTM network to Nf features
maps. Let us denote a feature vector Fl ∈ R1×Nh produced by
lth time step of LSTM network. We represent the projected vector
as F ′l with Nf dimension. In order to obtain the output Ol, we
introduce a weight matrix Wl (∈ RNh×Nf ) which transforms
from Fl to F ′l . The vector F ′l can be written as

F ′l = Fl.Wl +Bl. (1)

Here, Bl is bias with Nf dimension. Each time step of LSTM
network actually provides the transformed feature for each of the
extracted patches from input image. Finally, we obtain 64 × Nf

size matrix for 64 patches. In our experiment, we choose Nh =
128 and Nf = 64. Next, we carefully choose the ordering of
the cell outputs in order to preserve the spatial information. Then,
we reshape the 64 × Nf matrix to 8 × 8 × Nf , where first two
dimensions represent the location of the patch as shown in Fig. 2.

LSTM Cell Overview. Information flow between the LSTM
cells is controlled by three gates: (1) input gate, (2) forget gate,
and (3) output gate. Each gate has a value ranging from zero to
one, activated by a sigmoid function. Let us denote cell state and
output state as Ct and zt for current cell t. Each cell produces new
candidate cell state C̄t. Using the previous cell state Ct−1 and C̄t,
we can write the updated cell state Ct as

Ct = ft ◦ Ct−1 + it ◦ C̄t (2)

Here, ◦ denotes the pointwise multiplication. Finally, we obtain
the output of the current cell ht, which can be represented as

zt = ot ◦ tanh(Ct) (3)

In Eqns. 2 and 3, i, f, o represent input, forget and output gates.

3.2 Encoder Network
Our main objective is to design an efficient architecture for pixel-
wise tamper region segmentation. We use convolutional layers
to design the encoder which allows the network to understand
appearance, shape and the spatial-relationship (context) between
manipulated and non-manipulated classes. In [6], [22], [55], some
deep architectures are presented where convolutional layers are
utilized in order to produce spatial heatmaps for semantic seg-
mentation. As spatial information is very important to localize
manipulated regions, we also incorporate convolutional layers
into our framework. We exploit and modify encoder-decoder
architecture as presented in [6]. The encoder component is similar
to CNN architecture except the fully connected layers.

Convolutional Network (ConvNet) consists of different layers,
where each layer of data is a three-dimensional array of size h ×
w × c, where h and w are height and width of the data, and c is
the dimension of the channels. Each layer of convolution involves
learnable filters with varying size. The filters in convolutional layer
will create feature maps that are connected to the local region of
the previous layer. In the first layer, image is taken as input with
dimension of 256× 256× 3 (width, height, color channels).

The basic building block of each encoder utilizes convolution,
pooling, and activation functions. We use residual unit [37] for

each encoder. Residual block takes advantage of shortcut connec-
tions that are parameter free. The main advantage of using residual
unit is that it can easily optimize the residual mapping and more
layers are trainable. Let us consider an input to the residual unit
is y, and the mapping from input to output of the unit is T (.).
The output of residual unit would be T (y) + y in the forward
pass. In each convolutional layer, we use kernel size of 3× 3× d,
where d is the depth of a filter. We use different depth for different
layers in the network. In encoder network, the number of filters are
generally in increasing order. In this work, we utilize 32, 64, 128,
and 256 feature maps in first, second, third and fourth layer of
encoder architecture respectively.

Each residual unit in the encoder produces a set of feature
maps. We utilize batch normalization [38] at each convolutional
layer. Batch normalization is robust to covariance shift. As an
activation function, we choose rectified linear unit (ReLU) [66]
that can be represented as max(0, x). At the end of each residual
unit, max-pooling with stride 2 is performed, which reduces the
size of feature maps by a factor of 2. Unlike [7], we exploit max-
pooling [44] at each layer as it provides translation invariance.
Each max-pooling operation introduces a loss of spatial resolution
(i.e., boundary details) of the feature maps. The loss in boundary
detail can be compensated by using decoder which is introduced
in [6], and discussed next.

3.3 Decoder Network
In [55], a decode technique is proposed that requires encoder
feature maps to be stored during prediction. This process might
not be applicable in real-life as it requires intensive memory. In
this paper, we follow a decoding technique that is presented in
[6]. In [6], the advantage of using decoder has been discussed
in details. The key part is the decoder which replaces the fully
connected layers. The decoder decodes the feature output from
encoder. As encoder-decoder is primarily developed for semantic
object segmentation [6], we exploit and tune this network in
order to segment manipulated objects. In the upsampling step, no
learnable parameters are involved. Different multi-channel filters
are utilized which are convolved with the upsampling heatmaps
(coarse representation) to create dense maps. Each decoder follows
basic operations - upsample, convolution, and batch normalization.
Each decoder first performs upsampling of the feature maps
learned at previous layer. Following that, convolutional operation
and batch normalization are performed. We employ 3 × 3 size
kernel for decoder network. In our decoder, 64 and 16 feature
maps are exploited in first and second layer respectively. Finally,
2 heat maps are used for the prediction of manipulated and non-
manipulated class at the end of decoder network. Fig. 2 shows the
decoder operation of the network. At the end of network, we obtain
finer representation of spatial maps that indicates the manipulated
regions in an image.

3.4 Training the Network
Soft-max Layer. In order to predict the pixel-wise classification,
softmax layer is used at the end of the network.

Let us denote the probability distribution over various classes
as P (Yk) which is provided by softmax classifier. Now, we
can predict label by maximizing P (Yk) with respect to k. The
predicted label can be obtained by Ŷ = arg max

k
P (Yk). As

we are only interested to predict manipulated pixels against non-
manipulated pixels, the value of k would be 2. Given the predicted
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(a)

(b)

(c)

(d)

Fig. 5. The figures show some manipulated images with corresponding ground-truth masks from synthetic dataset. (a) and (b) show images created
from DRESDEN [33] dataset. (c) and (d) are the manipulated images created from NIST [2] dataset.

mask provided by softmax layer, we can compute the loss that will
be used to learn the parameter through back-propagation.

Training Loss. During training, we use cross entropy loss,
which is minimized to find the optimal set of parameters of
the network. Let θ be the parameter vector corresponding to
image tamper localization task. So, the cross entropy loss can be
computed as

L(θ) = − 1

M

M∑
m=1

N∑
n=1

1(Ym = n) log(Ym = n|ym; θ) (4)

Here, M and N denote the total number of pixels, and the
number of class. y represents the input pixel. 1(.) is an indicator
function, which equals to 1 if m = n, otherwise it equals 0.
In our experiment, we observe that weighted cross entropy loss
provides better result. It is simply because the imbalance between
the number of non-manipulated and manipulated pixels. We put
more weight on manipulated pixels over non-manipulated pixels.
In this work, the class weights are inversely proportional to their
frequency in the training set. The weights are normalized to lie

in between 0 and 1. We use adaptive moment estimation (Adam)
[43] optimization technique in order to minimize the loss of the
network, shown in Eqn. 4. At each iteration, one mini-batch is
processed to update the parameters of the network. In order to
learn the parameters effectively, we choose the mini-batch very
carefully which will be discussed in details in Sec. 4. After
optimizing the loss function over several epochs, we learn the
optimal set of parameters of the network. With these optimal
parameters, the network is able to predict pixel-wise classification
given a test image.

TABLE 1
A comparison of common image tampering datasets

Data Set # image pairs Avg. Image Size
CoMoFod [81] 260 512× 512

Manip [23] 48 2305× 3020
GRIP [25] 100 1024× 786

COVERAGE [86] 100 400× 486
Synthesized 65k 1024× 1024
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(a)

(b)

(c)

(d)

Fig. 6. This figure illustrates some segmentation results on NIST’16 [2] dataset. First and second columns represent input image and ground-truth
mask for tampered region. Third and fourth columns delineate probability heat map and predicted binary mask.

4 EXPERIMENTS

In this section, we demonstrate our experimental results for seg-
mentation of manipulated regions given an image. We evaluate our
proposed model on two challenging datasets- NIST’16 [2], IEEE
Forensics Challenge [1] and COVERAGE [86] datasets.

4.1 Datasets
4.1.1 Creation of Synthesized Data
As deep learning networks are extremely data hungry, there is
a need to collect images for training and testing the networks.
For training, we will need plentiful examples (usually tens of
thousands) of both manipulated and non-manipulated images.
Towards this goal, we create approximately 65k manipulated
images in order to train the proposed network discussed in Sec. 3.
This network will be referred to as ‘Base-Model’. The ‘Base-
Model’ will then be fine-tuned with the NIST’16 [2] and IEEE

Forensics Challenge [1] datasets. Below we explain the innovation
in the collection of the manipulated image set.

In the synthesized dataset, we have focused on mainly object
splicing (additions/subtractions) manipulation. The major chal-
lenge of creating manipulated images was to obtain segmented
objects to insert into an image. For this we used the MS-COCO
[51], which is largely used for object detection and semantic
segmentation, to obtain segmented objects across a variety of
categories. We extracted the objects from MS-COCO [51] images
using image masks provided in ground-truth. Finally, these objects
are used to create manipulation from the images of DRESDEN
[33] and NIST’16 [2]. To attempt to emulate a copy-move attack
in some cases we spliced multiple version of the same object
onto an image, however the difficulty in obtaining segmented
object automatically makes it infeasible to perform automated
synthesis of copy-move attacks. Please note that we use only non-
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(a)

(b)

(c)

(d)

Fig. 7. Some segmentation examples on IEEE Forensics Challenge [1] dataset are shown in this figure. First and second columns are input images
and ground-truth masks for manipulated regions. Third and fourth columns demonstrate the probability heatmap and predicted binary mask.

manipulated images from NIST’16 dataset to create manipulation.

To create a new manipulated image, we followed the steps
below.
(1) For each raw image in the DRESDEN [33], we cropped each
of the image’s corners to extract a 1024×1024 patch. This method
avoids resizing which introduces additional image distortions.
(2) For each of these image patches we spliced on six different
objects, from the MS-COCO, to create six splice manipulated
images.
(3) In order to create diverse splicing data, we spliced the same
object onto the patch twice with different scaling and rotation
factor, while ensuring no overlap as shown in Fig. 5.
This entire process was automated allowing us to generate tens of
thousands of images in less than a day with no human interaction.
Using the DRESDEN image database as the source of non-

manipulated images we were able to produce approximately 40k
images and an additional 25k using the DRESDEN and NIST’16
datasets respectively. The scale of our data is a hundred fold in-
crease over most datasets that offer similar types of manipulations,
which allows us to train a deep learning model. Our synthesized
data also has a relatively high resolution. We can see how our
dataset compares to similar datasets in table 1. With this newly
generated data, we trained the ‘Base-Model’. The base model
predicts manipulated region at pixel level given an image.

4.1.2 Dataset Preparation

In order to evaluate our model, we chose three datasets which
provided ground-truth mask for manipulated regions. NIST’16 [2]
is a very challenging dataset, which includes three main types of
manipulation - (a) copy-clone, (b) removal, and (c) splicing. This
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(a) NIST’16 [2] (b) IEEE Forensics Challenge [1] (c) COVERAGE [86]

Fig. 8. The figures demonstrate ROC plots on NIST’16 [2], IEEE Forensics Challenge [1] and COVERAGE [86] datasets respectively. Each curve
has area under the curve (AUC), which are provided in Table 3.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. This figure demonstrates the segmentation performance with patches as input on NIST’16 [2] dataset. First column of (a) represents the
input image. Second and third columns of (a) delineate the patches as shown in the bounding boxes of input image (first column). Figures (c,d) and
(e,f) are corresponding ground-truth mask and predicted binary mask.

recently released dataset includes images, which are tampered in
a sophisticated way to beat current state-of-the-art detection tech-
niques. We also show our results on the IEEE Forensics Challenge
[1] dataset which provides ground-truth mask for manipulation.
As manipulated regions are small in number compared to non-
manipulated regions, we also perform data augmentation in order
to get rid of bias in training. In addition, we choose COVERAGE
[86] to demonstrate the performance of our proposed model on
copy-move manipulation.

In data preparation, we first split the whole image dataset
into three subsets- training (70%), validation (5%) and testing
(25%). These subsets are chosen randomly. In order to increase
the training data, we extract bigger patches from the four corners
of the image. One additional patch is also extracted from center
location of the image. We crop patches with size 1024×1024 from
NIST’16 [2] training images to optimize the parameters of our
architecture. The spatial resolution of IEEE Forensics Challenge
[1] dataset is comparatively low. So, we extract 512 × 512 size

of patches for IEEE Forensics Challenge [1] dataset. These newly
generated images usually contain partial manipulated objects when
compared to original images. We only perform data augmentation
on training set, not in validation and test set. As the image and
corresponding ground-truth mask are the same size, we can easily
generate the ground-truth masks for the extracted image patches.
With these newly generated ground-truth masks and patches, we
train the whole network end-to-end. For COVERAGE [86] dataset,
we do not train the proposed network due to small number of
samples.

4.2 Experimental Analysis
In this section, we will discuss the implementation and evaluation
criterion of our model. We also compare our model with different
state-of-the-art methods for segmentation of manipulated regions.

Implementation Details. We implement our proposed frame-
work in TensorFlow. In order to expedite our computational load,
we utilize multi-GPU setting. We use two NVIDIA Tesla K80
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TABLE 2
The table shows the pixel-wise accuracy on NIST’16 [2], IEEE

Forensics Challenge [1] and COVERAGE [86] datasets for image
tamper segmentation.

Methods NIST’16 [2] IEEE [1] COVERAGE [86]
FCN [55] 74.28% – –
Encoder-Decoder [6] 82.96% – –
J-Conv-LSTM-Conv [7] 84.60% 77.67% 81.14%
LSTM-EnDec-Base 91.36% 88.24% 88.76%
LSTM-EnDec 94.80% 91.19% –

GPUs to perform different sets of experiments, which will be
discussed next.

Evaluation Criterion. In order to evaluate our model, we use
pixel-wise accuracy and receiver operating characteristic (ROC)
curve. ROC curve measures the performance of binary classifica-
tion task by varying the threshold on prediction score. The area
under the ROC curve (AUC) is computed from the ROC curve
that measures the distinguishable ability of a system for binary
classification. The AUC value typically lies in between 0 and 1.0.
The AUC with 1.0 is sometimes referred as perfect system (no
false alarm).

Experimental Setup. In this paper, we setup few experiments
to evaluate our proposed architecture. They are (1) performance of
the proposed model, (2) performance with different baseline meth-
ods, (3) comparison against existing state-of-the-art approaches,
(4) ROC curve, (5) qualitative analysis, and (6) impact of global
context.

Baseline Methods: In this section, we will introduce some
baseline methods. We implement and compare against these
methods. The various baseline methods are described below.
� FCN : Fully convolutional network as presented in [55].
� J-Conv-LSTM-Conv: This method utilizes LSTM network and
convolutional layers for segmentation as in [7].
� Encoder-Decoder: This method utilizes convolutional network
as encoder and deconvolution as decoder, proposed in [6].
� EnDec: Similar to encoder-decoder [6] with upsampling factor
of 4 in deconvolution.
� LSTM-EnDec-Base: Proposed architecture as shown in Fig. 2
trained on Synthesized dataset discussed in Sec. 5
� LSTM-EnDec:Finetuned model of proposed architecture as
shown in Fig. 2

4.2.1 Performance of the Proposed Model.

We test our proposed model on three datasets- NIST’16 [2], IEEE
Forensics Challenge [1] and COVERAGE [86]. We first train our
model with synthesized data (discussed in Sec. 5). We refer this
model as ‘LSTM-EnDec-Base’ model. The LSTM-EnDec-Base
model is finetuned with training sets from NIST’16 [2], IEEE
Forensics Challenge [1] datasets. We obtain two finetuned models
for NIST’16 and IEEE Forensics Challenge datasets respectively.
As the number of images in COVERAGE [86] dataset is small,
we do not perform any finetuning. Table 2 shows pixel-wise clas-
sification accuracy on segmentation task. ‘LSTM-EnDec-Base’
model learns good discriminative properties between manipulated
vs non-manipulated pixels. Finally, finetuning this ‘LSTM-EnDec-
Base’ model provides a boost in performance for labeling tamper
class at pixel level. From the table, we can see that proposed
model ‘LSTM-EnDec’ outperforms ‘LSTM-EnDec-Base’ model

TABLE 3
AUC Comparison against existing approaches on NIST’16 [2], IEEE [1]

and COVERAGE [86] datasets.

Methods NIST’16 [2] IEEE [1] COV. [86]
DCT Histograms [52] 0.545 – –
ADJPEG [13] 0.5891 – –
NADJPEG [13] 0.6567 – –
PatchMatch [24] 0.6513 – –
Error level analysis [57] 0.4288 – –
Block Features [49] 0.4785 – –
Noise Inconsistencies [60] 0.4874 – –
J-Conv-LSTM-Conv [7] 0.7641 0.7238 0.6137
LSTM-EnDec 0.7936 0.7577 0.7124

by 3.44%, and 2.95% on NIST’16 [2], IEEE Forensics Challenge
[1] datasets respectively.

4.2.2 Performance with Different Baseline Methods.
In semantic segmentation, some recent architectures such as fully
convolutional netowork (FCN) [55] and Encoder-Decoder (Seg-
Net) [6] have successfully exploited. In this paper, we implement
and train these deep architectures with image manipulation data
to compare the performance of our model. We can see from
Table. 2 that convolutional neural network based model such as
FCN, and SegNet does not perform well compared to proposed
architecture for tamper localization. It is because these models
try to learn the visual concept/feature from an image whereas
manipulation of an image does not leave any visual clue. We
empirically observe that FCN and SegNet prone to misclassify
for copy-clone and object removal type of manipulations. LSTM-
EnDec surpasses FCN and Encoder-Decoder network by 20.52%
and 11.84% on NIST’16 [2] as shown in Table. 2. We also com-
pare against the segmentation framework for tamper localization
(J-Conv-LSTM-Conv) presented in [7]. The proposed network
outperforms J-Conv-LSTM-Conv by large margin. The advantage
of our proposed model over J-Conv-LSTM-Conv is that proposed
model can learn larger context by exploiting correlation between
patches. On the other hand, J-Conv-LSTM-Conv is limited to
correlate between different blocks of a patch. The exploitation of
both LSTM network with resampling features and spatial features
using encoder, helps the overall architecture to learn manipulations
better.

4.2.3 Comparison against Existing Approaches.
Some of the tamper localization techniques include DCT His-
tograms [52], ADJPEG [13], NADJPEG [13], PatchMatch [24],
Error level analysis [57], Block Features [49], and Noise Incon-
sistencies [60]. Table. 3. shows the performance of these state-
of-the-art methods for image tamper localization. From the table,
we can observe that our framework outperforms other existing
methods by large margin on NIST’16 [2] dataset. In our proposed
network, resampling features are exploited to predict manipulated
regions. To understand the effect of resampling features in the
proposed architecture, we run an experiment without LSTM net-
work and resampling features, which is represented as Encoder-
Decoder network in Table. 2. As can be seen in Table. 2, the
proposed model LSTM-EnDec outperforms Encoder-Decoder by
large margin (11.84%) on NIST’16 [2] dataset.

We also compare against [91] where a two-stream Faster R-
CNN network has been exploited to detect manipulated regions.
[91] utilized bounding box to coarsely localize manipulated ob-
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jects. In contrast, we segment out manipulated regions by classify-
ing a pixel (manipulated/non-manipulated). Since our model does
not provide bounding boxes, we exploit contour approximation
method to predict a bounding box on the segmentation maps
produced by the proposed model. We evaluate the performance
of our method in terms of average precision (AP) on NIST’16
[2] dataset. We also generate ground-truth bounding boxes on
ground-truth binary masks using contour approximation method.
In some cases, the proposed method falsely classifies manipulated
pixels, and the contour approximation method puts a bounding
box around these small false positive pixels. In order to reduce
false positive bounding boxes, we use a threshold on the area of
rectangle box. In our case, we eliminate the bounding box which
has area under 64. As a result, we observe significant improvement
in AP score. The AP score rises from 0.825 to 0.923. The AP
score of [91] is 0.934. From the above discussion, we can see
that the proposed model achieves comparable results to [91] even
though the network do not predict a bounding box as output.

4.2.4 ROC Curve.
Figs. 8(a,b) show the ROC plots for image tamper localization,
on NIST’16 [2], IEEE Forensics Challenge [1], and COVERAGE
[86] datasets respectively. These ROC curves measure the perfor-
mance of binary pixel classification whether a pixel is manipulated
or not. We also provide the area under the curve (AUC) results
in Table 3. Our model achieves AUC of 0.7936, 0.7577 and
0.7124 on NIST’16, IEEE Forensics, and COVERAGE datasets
respectively. From the ROC curves as shown in Figs. 8(a), 8(b)
and 8(c), we can see that the proposed network classifies tampered
pixels with high confidence.

4.2.5 Qualitative Analysis of Segmentation.
In Figs. 6 and 7, we provide some examples showing segmen-
tation results produced by the proposed network. Fig. 6 shows
segmentation results on NIST’16 [2] dataset. Segmentation results
for IEEE Forensics Challenge [1] dataset are illustrated in Fig. 7.
We also provide probability heat map for localizing tampered
region as shown in third column of Figs. 6 and 7. As we can see
from the Figs. 6 and 7, the predicted mask can locate manipulated
regions from an image with high probability. The boundary of
tampered objects is affected in the segmentation results as shown
in Fig. 6 (third column), the underlying reason being that image
boundaries are smooth (blurred) for NIST’16 [2] dataset. However,
our proposed network can still localize precisely with higher
overlap compared to ground-truth mask.

4.2.6 Impact of Global Context.
In our framework, we consider images as input so that the network
can exploit global context. In order to observe the effectiveness of
global context, we run an experiment where we consider patches
as input to the network instead of images. Fig. 9 illustrates the
segmentation results with respond to the input patches. From the
figure, we can see that the network can localize more precisely
given an image. On the other hand, the precision of localization
degrades for smaller patch as the patch misses the broader context.
In case of manipulated patch as shown in Figs. 9(a) and 9(b) (mid-
dle column), proposed network detects the part of the manipulated
objects. For example, digit of the person’s dress and wheel of a
plane are identified as manipulated as shown in Figs. 9(e) and
9(f) respectively. For the patch with non-manipulated pixels, the
network may provide false alarm sometimes as demonstrated in

Figs. 9(e) (third column). From this study, we can conclude that
global context helps analyzing the manipulated images.

5 CONCLUSION

In this paper, we present a deep learning based approach to
semantically segment manipulated regions in a tampered image. In
particular, we employ a hybrid CNN-LSTM model that effectively
classifies manipulated and non-manipulated regions. We exploit
CNN architecture to design an encoder network that provides
spatial feature maps of manipulated objects. Resampling features
of the patches are incorporated in LSTM network to observe
the transition between manipulated and non-manipulated patches.
Finally, a decoder network is used to learn the mapping from
encoded feature maps to binary mask. Furthermore, we also
present a new synthesized dataset which includes large number
of images. This dataset could be beneficial to media forensics
community, especially if one wants to train a deep network. Our
detailed experiments showed that our approach could efficiently
segment various types of manipulations including copy-move,
object removal and splicing.
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