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ABSTRACT OF THE DISSERTATION 

 
 

MAC Layer Power Management Schemes for Efficient Energy-Delay Tradeoffs in 

Wireless Local Area Networks 

 
by 
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Doctor of Philosophy in Electrical and Computer Engineering 

(Computer Engineering) 

University of California, San Diego, 2006 

Professor Rene. L Cruz, Chair 

 
 

In order to minimize power consumption and thereby prolong the system lifetime 

of battery powered wireless devices, it makes sense for such devices to transit to a very 

low power “Sleep” state when they are not communicating with their peers.  

 

However the main challenge of the sleep mechanism lies in the wireless nodes 

inability to “wake up” as soon as a packet arrives for it during its sleep state. This leads to 

an obvious tradeoff between power saving and packet delay. In this dissertation we are 

interested in the problem of optimizing the timing and duration of sleep states of wireless 

nodes in an infrastructure WLAN scenario with the objective of minimizing average 

overall system power consumption with respect to a QoS constraint. The QoS parameter 

we have focused on is average packet delay. 

 

  We first considered a simple model comprising of a single transmitter and a single 

receiver. We formulated this as an optimization problem and solved it numerically using 



    

 xi 

dynamic programming. We were able to derive closed form expressions for the optimal 

sleep duration for a given packet delay, as well as the associated minimal rate of power 

consumption. We extended the model to a multi-user system. Results indicated that the 

optimal policy for a specific node was a function of its buffer length as well as the sleep 

states of the other nodes in the system. 

 

    We next considered the problem of scheduling multiple streams with either same 

or different packet delay constraints. We proposed an adaptive sleep-scheduling 

algorithm based on a heuristic derived from the results observed in the dynamic 

programming formulation. Our algorithm has three different sleep scheduling schemes – 

Round Robin scheme, Shortest Sleep First scheme and the Steep Descent method.  

 

We compare and contrast each of these schemes to the theoretical lower bound 

that we have previously computed by the method of dynamic programming. Results show 

that our algorithm performs favorably when compared to the lower bound. Further, in 

order to evaluate the performance of the Steep Descent method we construct a simplified 

simulation of the 802.11 sleep scheduling algorithm. Our simulation results show a 

substantial improvement in the performance of our new sleep scheduling policy when 

compared to the static sleep schedule of 802.11 especially in scenarios where traffic 

conditions change slowly over time which we model as a three state Markov process. 



 1 

1 Introduction 
 

1.1  Overview 
 
  The dream of ubiquitous and universal information access is fast becoming a 

reality. Cell phones with Internet browsing capabilities, Bluetooth connected Personal 

Digital Assistants (PDAs), research on wireless sensor networks by both academia and 

industry; Wireless Local Area Networks (WLANs) in coffee shops, restaurants, airports 

and hotels are on the rise. 

For convenience sake, these wireless devices have to be portable and tiny yet 

powerful. To conform to the portability criteria these devices have to operate over 

wireless links. This limits the energy supply of such devices to built-in batteries. 

Unfortunately, battery technology is not progressing at the pace silicon processing 

technology is, but is expected to improve by a modest 20% over the next 4 years or so 

[1]. Recent trends in research and commercial efforts have thus rightfully shifted their 

emphasis from ever-increasing throughput alone to issues related to power efficiency. 

Energy and power consumption are becoming more formidable and important constraints 

and are being tackled at all levels of design from architecture and hardware to protocols 

and algorithms [2][3][27][29]. 

1.2  Where is the Bottleneck? 
 

In order to develop an energy efficient system, we first have to identify the main 

components that form the bottleneck in terms of energy consumption. Contrary to 

popular belief, the communication functionalities predominate over the computation 
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functionality of most wireless devices [4]. In addition, the relative importance of the 

communication energy is expected to increase in the future [4]. While the energy 

consumption of digital circuits and processors are rapidly decreasing due to Moore’s law 

and ingenious design techniques, the communication subsystem does not follow this 

trend. Wireless communications are therefore expected to become a bottleneck in terms 

of energy consumption and inevitably system viability. This has given rise to a variety of 

power management techniques at every level in system design. At one end of the 

spectrum, radio designers have created very efficient radio architectures [30], 

implementations and control algorithms while at the other end, network and application 

designers have proposed new protocols and algorithms that focus on energy efficiency for 

tasks such as routing [9][28], medium access control [26][31], source coding, error 

coding [38][39], encryption etc. 

1.3 Related Work 
 

In the recent past power management for large classes of applications have been an 

active area of research. The oldest and most straightforward technique to reduce the 

energy consumption of a system is to shut down unused parts. Shutdown-based power 

management has been explored for hard disks [32][33], displays, and communication 

modules [34][35][36], amongst others. For processors, it has been incorporated in the 

kernel of Real-Time Operating Systems (RTOS) [18]. More information can be found, 

for example, in the comprehensive overviews published by Benini et al. [2], and Lorch 

and Smith [37]. 
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Chip-level power management features have been implemented in mainstream 

commercial microprocessors [11][12]. Techniques for automatic synthesis of chip-level 

power management logic are surveyed in [13]. 

In general, power management policies can be classified into predictive, adaptive 

and stochastic schemes. At the system level, the most common power management policy 

is the predictive scheme that uses past history of the workload to predict future idle 

periods. The goal is to predict when the idle period will be “long enough”, so that the 

component can be placed into low power state.  The simplest form of predictive 

technique is the timeout policy implemented in most operating systems. Timeouts assume 

that the component is very likely to remain idle if it has already been idle for a certain 

timeout period. This policy however wastes power while waiting for the timeout to expire 

[14][15]. 

Predictive policies [16][17][18] improve upon the timeout scheme by forcing the 

transition to a low power state as soon as a component becomes idle if the predictor 

estimates that the idle period will last long enough. An incorrect estimate can cause both 

performance and energy penalties. The distribution of idle and busy periods for an 

interactive terminal is represented as a time series in [19] and approximated with a least 

square regression model. The regression model is used for predicting the duration of 

future idle periods.  

In [20], an improvement over the prediction algorithm of [19] is presented where 

idleness prediction is based on a weighted sum of the duration of past idle periods with 
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geometrically decaying weights. The policy is augmented by a technique that reduces the 

likelihood of multiple mis-predictions. 

In contrast, stochastic control approaches formulates policy optimization as an 

optimization problem under uncertainty. Stochastic models use distributions to describe 

the times between arrivals of user requests (inter-arrival times), the length of time it takes 

for a device to service a user’s request and the time it takes for a device to transition 

between its power states. The system model for stochastic optimization can be described 

either with just memoryless distributions (exponential or geometric) [21][22] or with 

general distributions [23][24]. Power management policies can also be classified into two 

categories by the manner in which decisions are made: discrete time [21][22] or event 

driven [23][24]. In addition, policies can be stationary (the same policy applies at any 

point in time) or non stationary (the policy changes over time). All stochastic approaches 

except for the discrete adaptive approach presented in [22] are stationary. The optimality 

of stochastic approaches depends on the accuracy of the system model and the algorithm 

used to compute the solution. In both the discrete and the event-driven approaches 

optimality of the algorithm can be guaranteed since the underlying theoretical model is 

based on Markov chains. Approaches based on discrete time setting [21][22] require 

policy evaluation even in the low power state thus wasting energy. On the other hand, 

event driven models based on exponential distributions [25] show little or no power 

savings when implemented in real systems since the exponential model does not describe 

well the request inter-arrival times [23][24]. 
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1.4 Thesis Contribution 
 

In this dissertation we address the issue of the inevitable tradeoff between power 

management and packet delay for wireless devices. We focus at the MAC layer of the 

protocol stack and study the “sleep” mechanism of wireless data devices. We observed 

that battery powered wireless devices (e.g. as in 802.11 based WLANS, sensor networks, 

ad hoc networks, RFIDs, paging systems)  often undergo dormant phases when they do 

not need to be communicating with each other or with a central base station. Since these 

nodes are battery powered, they are severely energy constrained. Hence in order to save 

energy and thereby prolong the system lifetime, it makes sense for these nodes to transit 

to a “sleep” state when they are not communicating with their peers. Studies in [9] have 

shown that being in an idle state (instead of being in the sleep state, during the non 

communication phases) entails energy consumption that is comparable to being in a 

receiving or transmitting state. A WaveLAN card running at 11 Mbps consumes about 15 

times more energy in the idle state than when the card is in sleep state. Table 1.1 shows 

the energy consumptions of a TR1000 radio operating under different modes. The 

numbers in the table further emphasizes the benefits of operating in the sleep state with 

regards to power savings.  

Table 1.1: Power Consumption of the TR1000 radio in different modes 
 

Transmit (Tx) Receive (Rx) Idle Sleep 

14.88 mW 12.5mW 12.36 mW 0.016 mW 
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We define a sleeping node as a wireless node that has switched off its receiving, 

transmitting and channel sensing circuitry.  Thus, while in the sleep state the wireless 

node has no packet processing capabilities. However since the major power hungry 

circuitries are turned off during the sleep state, the wireless node consumes very little 

power while in this state. If a wireless node remains in the sleep state for too long it can 

result in delay penalties for the packets that accumulate for it at the central node (Access 

Point or similar). On the other hand, it can save substantial power for itself if it remains 

in the sleep state for longer durations. Thus an “optimal” policy may be desired which 

enables the wireless node to save maximum power by sleeping for the longest duration 

while still not violating the system’s packet delay constraint. In this dissertation we are 

interested in the problem of optimizing the timing and duration of sleep states of a 

wireless node with the objective of minimizing power consumption with respect to a QoS 

constraint. The QoS parameter we have focused on is average packet delay. 

The main challenge of the sleep mechanism lies in the wireless nodes incapability 

to “wake up” as soon as a packet arrives for it during its sleep state. Various protocols 

have been suggested to by-pass this problem [4][8][10]. Most of these protocols utilize a 

separate wakeup radio that essentially fulfils the role of an out-of-band paging channel. 

This radio periodically listens for wakeup beacons and could be designed to be less 

power hungry than the main data radio. In this thesis, we take a different view point in 

addressing the above problem. We try to calculate the “optimal'' sleep duration as a 

function of average packet delay tolerance. The wireless node is then allowed to sleep for 

the pre-determined “optimal” number of slots. 
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To help gain a better understanding of the general problem, we first consider a 

simple model comprising of a single transmitter and a single receiver. The receiver is the 

wireless node whose mode we wish to control. The transmitter can give commands to the 

receiver regarding its sleep state, and forwards incoming streaming data to the receiver 

appropriately. We consider packet transmission from the transmitter (e.g a wired Access 

Point (AP)) to a wireless node over a static and perfect channel. To reduce its power 

consumption, the wireless node is capable of going to sleep. While in the sleep state, it is 

incapable of receiving packets from the transmitter or the AP (Note that we use the words 

transmitter and Access Point interchangeably throughout this thesis). The transmitter has 

the provision to buffer packets for the wireless node while it sleeps. These packets are 

transmitted to the wireless node when it wakes up. Clearly, the packets incur delay 

whenever the wireless node goes to sleep. On one hand the wireless node can greatly 

reduce its power consumption by sleeping for long periods of time. On the other hand, 

the longer it sleeps the greater is the delay incurred by its packets which have to be 

buffered at the transmitter during these long sleep durations. In our problem, we have a 

constraint on the maximum average delay that the data packets can tolerate at the 

transmitter, namely Dmax. Given this constraint of Dmax we seek optimal sleep durations 

for the wireless node that minimizes its average power consumption.  

We formulated this as an optimization problem and solved it numerically using 

dynamic programming (DP) [41][42]. The solutions from the numerical calculations 

strongly suggest that the optimal policy (that which minimizes average power 

consumption subject to an average packet delay constraint) is such that the transmitter 

should only command the receiver to sleep when there is no data queued at the 
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transmitter. The system thus behaves as a single server queue with vacations. We were 

able to derive closed form expressions for the optimal sleep duration, as well as the 

associated minimal rate of power consumption [43].  

We extended the 1-user (one receiver-one transmitter) case to a multi-user 

(multiple receivers – one transmitter) scenario and used similar methodology as the 1-

user case to obtain optimal sleep scheduling policies [44]. However, obtaining optimal 

results using the procedure of solving optimization problems proved to be very tedious 

and time consuming as the number of users in the system increased. As we increased the 

number of receivers in the system the state space for the optimization problem grew 

exponentially which made the run time of the numeric calculation unfit for any real time 

application. This motivated us to develop a simple algorithm that is fast, scalable 

realistic, and moreover adaptive to various traffic conditions.  

In this thesis we perform dynamic power management on delay constrained 

wireless nodes by scheduling the nodes to sleep for an “optimal” duration such that they 

meet any “reasonable” average packet delay constraint while consuming the minimal 

power possible.  We present three different sleep prediction schemes and scheduling 

strategies, namely the Round Robin scheme, the Shortest Sleep First scheme and the 

Steep Descent method. Unlike most other algorithms suggested to address similar 

concerns, none of our schemes require the knowledge of past packet arrival history of a 

wireless node. Our algorithm computes the sleep duration of a wireless node as a function 

of its average packet delay constraint and its current buffer load. It learns the traffic 

behavior over time and adapts its sleep-scheduling mechanism according to the traffic 
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trend coupled with the average packet delay constraint. We compare and contrast each of 

these schemes to the optimal results obtained by means of dynamic programming. We 

derive a theoretical lower bound on the average power consumption of a wireless node 

subjected to a specific average packet delay constraint and show that our sleep scheduling 

schemes perform sufficiently close to the lower bound. We also compare the Steep 

Descent method to the static sleep policy as specified in the 802.11 standard [40] and 

show that for certain traffic patterns our scheme outperforms the static sleep scheme. 

1.5 Thesis Organization 
 

This thesis is organized as follows: Chapter 2 presents the elements of the system 

model and the assumptions that we use throughout this work. Chapter 3 discusses the 

mathematical formulation of our optimization problem and outlines the solution method 

using Dynamic Programming (DP) equations for a single user case. It analyses the results 

obtained numerically from the DP and describes the closed form expressions derived for 

the optimal sleep duration.  In Chapter 4 we describe how the power-delay optimization 

problem can be applied to a system comprising of multiple wireless nodes served by a 

single transmitter (or Access Point). We show and analyze the results that were acquired 

from solving this optimization problem numerically using the technique of Dynamic 

Programming for a system comprising of two wireless nodes communicating with a 

single transmitter. We also obtain a lower bound on the power consumption of a wireless 

system for a given average packet delay constraint. Chapter 5 introduces our adaptive 

algorithm – the “Round Robin” Scheme and the “Shortest Sleep First” scheme. 

Comparisons are made between the power-delay tradeoff achieved by this scheme and 
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those acquired from the DP formulation of the optimization problem. Chapter 6 compares 

and contrasts a static sleep scheduling scheme with a dynamic sleep scheduling scheme 

which we refer to as the “Steep Descent Method”. We summarize the thesis and conclude 

with some closing remarks in Chapter 1. 
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2 System Model 
 

There are several aspects of the system model that we have applied in this research 

that are common throughout. Among these are the basic packet arrival model, packet 

service model, basic channel model and some of the system constraints. These common 

elements along with some of the notation that we adopt in this thesis are described in this 

chapter. 

2.1 System Components 
 

As depicted in Figure 2.1, we consider a system comprising of a single transmitter 

or Access Point (AP) and a few wireless devices which we refer to as wireless nodes. We 

also refer to these wireless nodes as “users” of the system. As mentioned in Chapter 1, we 

shall use the term transmitter and AP interchangeably. These wireless nodes can be 

laptops, PDAs, sensor nodes or any wireless node that can receive and transmit data. Data 

for the various wireless nodes arrive at the transmitter at the beginning of every slot. The 

transmitter can either transmit that data to the respective node instantly or buffer the data 

for the time being with the intent of transmitting it at a later point in time. Thus the 

transmitter has the capability to buffer data for the nodes. The transmitter transmits data 

to the nodes over a wireless channel. We discuss the channel characteristics in a later 

section. 



    

  

12

2.2 Time Model, Packet Arrival and Service Model 

 
We consider a discrete time framework in which time is divided into equal length 

intervals referred to as time slots or simply slots. These slots are indexed by integers.  

Data arrives randomly to the transmitter at the beginning of every slot, to be transmitted 

to the wireless nodes. We assume that the arrival process {an} is a sequence of 

independent and identically distributed random variable with mean λ. Given this 

assumption, arrivals at the current slot are independent of arrivals in past slots so the 

arrival process is said to be memoryless. We also assume that the arrival process is 

independent of the channel and independent of arrivals for other nodes. We model the 

arrivals by a Bernoulli process. Let p be the probability of a packet arriving in a slot. We 

also assume that a packet always arrives at the beginning of a slot. It can be served in the 

same slot it arrived or during a later slot. Thus the transmitter has the capability to queue 

packets for the wireless node. For each node we define an to be a random variable that 

represents the number of packets that arrive at the AP at the beginning of slot n, un to be 

the number of packets transmitted to the wireless node in slot n and xn to be the number 

of packets queued at the AP at the end of slot n, also called the backlog of slot n. We 

require that  

un <= xn-1 + an.  

The backlog process xn+1, therefore, satisfies the recursion  

xn+1 = xn - un+1 + an+1  (1) 
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Note that we use packet as a unit of date quantity. In this work the unit of data quantity is 

arbitrary; however, a single unit is assumed for all data quantities. In other words, the unit 

of data can be a bit, byte or fixed length packet as long as the same unit is applied 

uniformly. However the most practical choice is probably packets and hence we refer to 

the Quality of Service (QoS) criteria as average packet delay. We define [ ]np E a= . 

2.3 Node Model 
 

The wireless node can be in one of the two following states – “Sleep” or “Awake”. 

While in the sleep state the wireless node switches off its receiving, transmitting and 

channel sensing circuitries. The awake state comprises of either the transmitting, 

receiving or idle states. When the node is in the idle state it does not receive or transmit 

data but instead it remains in the channel-sensing mode. There is an energy cost 

associated with each state. For each node we define Pn to be the energy consumed by the 

wireless node in slot n. Let Ps denote the energy required per slot while in the sleep state 

and Pa denote the energy required per slot while in the awake state. We do not distinguish 

between the power consumption of the transmit, receive or idle states because the actual 

power consumed in these three modes are not too different as depicted in Table 1.1. Also 

for purposes of our problem, we are interested in the relative difference in energy 

consumption between the sleep and awake state in general and not so much the different 

modes of the awake state. However there is a power and delay penalty in transitioning 

from the sleep to the awake state. We model the delay penalty in terms of the power 

penalty as well. We argue that given sufficiently high power to transition from the sleep 

to the awake state, the delay associated with the same transition can be minimized. Let 
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Pas denote the energy cost for switching from awake to sleep state and Psa  be the energy 

cost for transitioning from sleep to awake state. We assume Pa >> Ps    [7].  

Note that we have deliberately avoided associating a unit with the energy values. 

We observe that these values will be different for different devices. It will also vary from 

one manufacturer to the other for the same device. What we have instead focused on are 

the relative values of these power consumptions which are approximately standard for a 

specific device even across different manufacturers [7] . In general we have followed the 

trend of Pa> Psa> Pas> Ps . 

2.4 Channel Model 
 

Data is transmitted by the transmitter to the wireless nodes across a wireless 

channel. We assume that the channel is static. By that we mean that the channel condition 

does not change with time. We also assume that the channel condition is “good”. Since 

the channel is static, it implies that the channel condition is always “good”. While this 

assumption is clearly not practical, the results obtained by making it can be interpreted as 

an upper bound on the best performance achievable. 

2.5 System State 
 

For a system comprising of ‘L’ nodes we characterize the system state in each slot 

by the L-tuple (x1n , r1n, x2n, r2n,…,xLn, rLn), where  

 xMn denotes the backlog of node M at the end of slot n, and 

 rMn denotes the sleep state of node M during slot n  
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 rMn  can take the following values: 

0, implying that wireless node M is awake during slot n 

1, implying that wireless node M is asleep during slot n but will be awake in slot n+1 

k, implying that node M will be asleep during slot n, n+1,…,n+k-1, but  will be awake 

during slot n+k, where k is any positive integer. 

To illustrate the above concept clearly let us look at a concrete example. Let us 

consider a system comprising of 2 wireless nodes. Let us consider an arbitrary time slot 

say 3 (i.e n=3). Let the system state at the end of the 3rd time slot be denoted by (0,0,2,3). 

This implies that at the end of the 3rd time slot, the first node has no data buffered for it 

and it is in the “Awake” state. The second node has two packets buffered for it at the 

transmitter and is in the “Sleep” state. It will be in the “Sleep” state for slots 4 and 5 as 

well but will be in the “Awake” state in slot 6. 

 

2.6 System Constraint 
 

In this thesis we only focus on the downlink traffic, i.e we are concerned about 

data transmission from the transmitter to the wireless nodes. For scenarios where the 

average packet delay constraint for a given node is same irrespective of whether the 

packet is a downlink packet or an uplink packet, the problem we study and its solution 

does not change. For instance when a node wakes up to receive its packets from the 

transmitter, it can piggyback the packets that it want to transmit along with the ACK 

packets that it is supposed to send to the transmitter as per the protocol of WLAN 

standard [40]. Thus the uplink packets will then incur the same delay as the downlink 
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traffic. However this argument does not hold if the delay constraint on the uplink packets 

is different from those of the downlink ones. We consider this problem to be one that can 

be investigated in the future. 

Channel contention is another issue that we choose to disregard in this 

dissertation. We chose to model our system along the lines of the Point Coordination 

Function (PCF) mechanism as outlined in the standard for 802.11 [40] where the Access 

Point controls channel access resulting in a more harmonious channel allocation scheme. 

 

 
 

Figure 2.1: System model consisting of an AP and three wireless nodes 
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3 Optimal Single User Sleep Scheduling Policy  
 

In this chapter we are generally interested in the problem of optimizing the timing 

and duration of sleep states of a wireless node with the objective of minimizing power 

with respect to a QoS constraint. The QoS parameter we have focused on is average 

packet delay. We try to calculate the optimal sleep duration as a function of average 

packet delay constraint and packet arrival rate.  

To help gain a better understanding of the general problem, in this chapter we 

consider a simple model comprising of a single transmitter and a single receiver. The 

receiver is the wireless node whose mode we wish to control. The transmitter/AP can 

give commands to the receiver regarding its sleep state, and forward incoming streaming 

data to the receiver appropriately. We consider packet transmission from the transmitter 

to a wireless node over a static channel. To reduce its power consumption, the wireless 

node is capable of going to sleep. While in the sleep state, it is incapable of receiving 

packets from the AP. The AP has the provision to buffer packets for the wireless node 

while it sleeps. These packets are transmitted to the wireless node when it wakes up. 

Clearly, the packets incur delay whenever the wireless node goes to sleep. On one hand 

the wireless node can greatly reduce its power consumption by sleeping for long periods 

of time. On the other hand, the longer it sleeps the greater is the delay incurred by its 

packets which have to be buffered at the AP during these long sleep durations. In our 

problem, we have a constraint on the maximum average delay that the data packets can 

tolerate at the AP, namely Dmax. Given this constraint of Dmax, we seek optimal sleep 
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durations for the wireless node that minimizes its average power consumption. We 

formulated this as an optimization problem and solved it numerically using dynamic 

programming. The solutions from the numerical calculations strongly suggest that the 

optimal policy is such that the AP should only command the receiver to sleep when there 

is no data queued for it at the transmitter. The system thus behaves as a single server 

queue with vacations. We were able to derive closed form expressions for the optimal 

sleep duration, as well as the associated minimal rate of power consumption. 

3.1 Problem Statement For the 1-user case  
 

We require that the average delay suffered by data packets at the AP be no more 

than Dmax. We let
_

[ ]nx E x= . According to Little's result, assuming that the backlog 

process xn is stationary, the average delay is given by x
p . Thus, we require that 

maxx pD≤ . (2) 

We approach the problem, by considering it as an optimal control problem over a 

finite time horizon [42] say over slots 0,1,2,….,N-1. In order to reflect the average delay 

constraint, we consider policies φ, such that 

1

max

0

N

n

n

E x pD N
−

=

⎡ ⎤ ≤⎢ ⎥⎣ ⎦
∑  (3) 

Let A be the set of all such policies. 

We thus seek to minimize the total energy expended over the finite time horizon, over the 

set of all policies φ ∈ A, i.e., we consider the following optimization problem: 



    

  

19

 
1

0
subject to Amin

N

n
n

E P
φ

φ
−

=

⎧ ⎫⎡ ⎤
∈⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑ . (4)  

We use a similar approach as in [45] to solve the above equation. 

Let max( )f D be the optimal value of the objective function (4) in our problem, i.e. 

 

max

1
( )

0
min n

A

N
f D

n
E P

φ∈

−
=

=

⎧ ⎫⎡ ⎤∑⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 (5) 

We use duality to solve the above equation, since direct evaluation of max( )f D appears 

difficult. Defining β as a “dual variable”, where β ≥ 0, we define the dual function 

 

1 1
( ) 0

0 0
min n n

N N
h

n n
E P xβ β

φ
β

− −
= ∀ ≥

= =

⎧ ⎫⎡ ⎤+∑ ∑⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 (6) 

Assuming, we can calculate ( )h β , max( )f D can be lower bounded as follows: 

 

max

1 1

max
0 0

1 1

max
0 0

max

1
( )

0

( ) ( ) so that

min

min

min

N N

n
A n n

N N

n n
n n

N
f D

A n

E Pn E x pD N

E P E x pD N

h pD N

E Pn

φ

φ

φ

β

β

β β

− −

∈ = =

− −

= =

−
=

∈ =

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪≥ + −⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪≥ + −⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

= −

⎧ ⎫⎡ ⎤∑⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑ ∑

∑ ∑

  

 ( ){ }max max
0

( ) ( )supf D h pD N
β

β β
≥

≥ −  (7) 
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For sufficiently large N, using a time sharing argument, it is clear that max( )f D is 

asymptotically convex. It can thus be seen that there is no “duality gap”, and therefore in 

this case the difference between the two sides of (7) becomes negligible as compared 

with N, as N gets larger.  

3.2 Dynamic Programming Formulation for the 1 user case 
 

We calculate ( )h β , using the approach of dynamic programming [41]. We define, 

 
1 1

0 0

0 0

( , ) min | ,
N N

N
n n

n n

J x r E P x x x r r
φ

β
− −

= =

⎡ ⎤= + = =⎢ ⎥⎣ ⎦
∑ ∑  (8) 

Then ( , )NJ x r  satisfy the following recursions:  

For simplicity we assume here that 

( 1) [ ]n np probability a E a= = =  

 { }

1

1

( ,0)

[ ( ,0)] (1 )[ (( 1) ,0)],
min min ( 1, ) (1 ) ( , )

N

N N

N N
as

k

J x Pa x

p J x p J x

P pJ x k p J x k

β+

+

≥

= + +

⎧ ⎫+ − −
⎪ ⎪
⎨ ⎬+ + + −
⎪ ⎪⎩ ⎭

 (9) 

where (x-1) += max(x-1,0) 

 { }
1( ,1)

[ ( ,0)] (1 )[ (( 1) ,0)]

N

N N

J x Ps Psa x

p J x p J x

β+

+

= + + +

+ − −
 (10) 
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 { }
1( , )

[ ( 1, 1)] (1 )[ ( , 1)] 1

N

N N

J x k Ps x

p J x k p J x k k

β+ = + +

+ − + − − ∀ >
 (11) 

The initial condition of the recursion is: 

 0 ( , ) 0, ,J x k x k= ∀  (12) 

We augment the dynamic programming recursions to calculate: 

 
1

0 0

0

| ,
N

n

n

E P x x r r
−

=

⎡ ⎤= =⎢ ⎥⎣ ⎦
∑  (13) 

 
1

0 0

0

| ,
N

n

n

E x x x r r
−

=

⎡ ⎤= =⎢ ⎥⎣ ⎦
∑  (14) 

for the corresponding optimal policy, for each value of β. 

3.3 Results 
 

We performed a series of numerical calculations to calculate the minimum average 

energy required per slot that satisfied the maximum allowed average delay constraint. In 

order to realize a finite state space, we truncated the state space to a finite maximum 

backlog, xmax and the maximum consecutive sleep duration, kmax. The value of kmax was 

found experimentally, for a corresponding packet arrival rate p. Specifically, kmax is 

chosen sufficiently large so that its value does not affect the numerical results. 

We developed a computer program, to implement the dynamic programming 

algorithm [42] for computing h(β) over a range of values of β, given a Bernoulli arrival 

distribution with a packet arrival probability of p in every slot, a fixed service rate of one 

packet per slot and fixed energy costs of Pa, Ps, Pas, Psa. We assumed Pa >> Ps [7]. While 
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only finite horizon, finite state solutions can ever be exactly computed, we apply the 

value iteration algorithm described in [41], to compute good approximations to the 

optimal policy and corresponding average cost for the infinite horizon case. In other 

words, using this technique, we were able to compute policies and corresponding average 

power costs, that are stable as N →∞ and the size of the backlog state space, xmax 

becomes large. The results of this computation can then be used to select the optimal 

policy that satisfies the average delay constraint or to study the behavior of the optimal 

policy over a range of conditions like average packet arrival rate and average power 

costs. 

Let, M*(x, r) denote the optimal policy for an initial system state of (x, r). We 

observed that as long as we had, Pa >> Ps, M*(x,r) was always found to be of the form : 

     
* ( , ) 0 ; w h e n  0 , 0
; w h e re  0 , 0 , 0

1; 0 , 0

M x r x r
k k x r
r r x

= > =
= > = =
= − > ≥

   (15) 

Explicitly stating, the optimal policy commands the receiver to be in the awake state 

(denoted by ‘0’) as long as there are packets buffered for it at the transmitter (x>0). It puts 

the receiver to sleep (for ‘k’ slots) when there are no packets buffered for the receiver 

(x=0). If the receiver is already in the sleep mode (r>0) then the optimal policy has no 

other choice but to decrement the sleep duration till the receiver is awake again (denoted 

by the expression ‘r-1’). The value of k (the sleep duration) is dependant on Dmax and p. 

We present some representative results related to specific scenarios in a graphical 

representation. We assume p =.1, Pa =1, Pas=.0001, Psa=.01, Ps=.001 to obtain the results 

displayed  in Figure 3.1 and Figure 3.2. 
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We see that the average power consumption per slot of a wireless node decreases 

as the tolerable average packet delay of the node increases.  This is explained by the fact 

that as the average packet delay tolerance of an user increases, the transmitter can subject 

the user to longer sleep durations without compromising on the average delay constraint. 

These longer sleep durations result in lower power consumptions. Thus in Figure 3.2 we 

see that as the system tolerance to average packet delay increases, the sleep durations also 

increase. Figure 3.1 illustrates the fact that an increase in tolerable average packet delay, 

decreases the average power consumption per slot. 
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Figure 3.1:  Average packet delay versus average power consumption/slot for a 
single user system 
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Average Delay versus optimal Sleep Duration
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Figure 3.2: Average packet delay versus optimal sleep duration for a single user 
system 

 
It is evident that in the optimal policy, the system behaves similar to a single 

server queue with vacations. Specifically, when the queue empties, the server goes on 

“vacation” for k slots. Therefore we can evaluate the performance of the optimal policy 

by analyzing such a queuing model. We applied a branching process argument to the 

policy derived from the numerical computation, to acquire two closed form equations. 

One of these equations, relate the average packet delay Dmax, to the sleep duration k, of 

the wireless node. The other gives us the average power expended per slot under the 

policy obtained as per the dynamic programming formulation. We elaborate on the 

derivation in the next section. 
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max

1
( 1)

2 2(1 )

Average packet delay= 

k
k k

k p

D

= +
+

+ −
 (16) 

 1

1

Average Energy Expended per slot
{(1- )(    ) {(1- )   }}=

{ (1 ) }

k
as s sa

k

p P P k P Pa p pk
k p

+

+

+ + + +
+ −

 (17) 

It is of interest, to note from equation (16) that the optimal sleep duration k is only a 

function of the average delay Dmax and packet arrival rate p. It does not depend on the 

associated energy costs like Pa, Pas, Psa and Ps. 

3.4 Derivation of the Closed-Form Expression  
 

We now present an analysis of the optimal policy as outlined in (14). We shall 

study the optimal policy with a branching process analysis [41] to obtain a closed form 

expression of the average power consumption and the average delay as a function of the 

sleep duration k. 

Let us assume that the receiver goes to sleep for k slots when there are 0 packets in 

the buffer. Packets for the sleeping node accumulate at the AP during these k slots. When 

the receiver wakes up after k slots, it serves the first batch of packets. A second batch of 

packets may arrive while packets from the first batch are being served and so forth until 

the backlog is cleared and the buffer occupancy goes down to 0 again. The receiver then 

goes to sleep again for k slots. If there are no packet arrivals during the sleep duration (k 

slots), the receiver goes back to sleep again for yet another k slots. Since the arrival rate p 

<service rate, where service rate is equal to 1 packet per slot the system is stable and 

hence reaches this 0 backlog state often. 
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We define one “Epoch” as the time period between the onset of two consecutive 

Sleep cycles (of duration k slots). Thus each epoch consist of several sub-epochs. The 

first sub-epoch comprises of the k slots during which the receiver is in the sleep state. 

The second sub-epoch comprises of a random number of slots required to serve the batch 

of packets that arrives during the k sleep slots. In general, the nth sub-epoch comprises of 

the service time of the batch of packets that arrive during the (n-1)th sub-epoch. 

Obviously, the receiver is asleep during the first sub-epoch and awake during the 

remaining sub-epochs. An epoch terminates when the receiver has no more packets to 

serve and is ready to go to sleep again. 

Let L be a random variable that represents the duration of an epoch. Note that, 

L=k+A where A is a random variable representing how long the node is awake during an 

epoch and  k is the duration of the receiver's sleep state.  

Let Zn denote the length (i.e the number of slots) of the nth sub-epoch. 

 

0

0
1

Epoch Length n

n

n
n

L Z

Z Z

k A

∞

=

∞

=

= =

= +

= +

∑

∑  (18) 

As mentioned previously, time is divided into equal unit length intervals called slots. 

Packets follow a Bernoulli arrival pattern, with probability p of a packet arrival in every 

slot. For simplicity we assume that when the receiver is awake, one packet can be served 

in each slot.  

Note that,  
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Average Power Expended per slot

[ ]
[Epoch Length]

as s sa aP P k P P E A
E
+ + +

=
 (19) 

 

 

[ ]
[ ]

Average Backlog per slot
Average Backlog Over an Epoch

Average Epoch Length
Cumulative Backlog Over an Epoch

Epoch Length
E

E

=

=

 (20) 

 

 [ ] [ ]E L k E A= +  (21) 

We now use branching process techniques to analyze average epoch length and average 

backlog over an epoch. Note that the minimum length of an epoch = k +1, since the 

wireless node is awake for at least one slot after it sleeps for k slots. 

We define the following terms. Figure 3.3 provides a pictorial depiction of the system. 
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Thus, we have, 

 0[ ]E B pk=  

 2 2
0[ ] ( 1)E B pk k p k= + −  

Also, 

 1 0 0 0[ | ]E B B B pB= =  

Note that if B0 = 0, then 

 1 0[ | 0]E B B p= =  

Hence, 

 2
1 0[ ] [ ] ( )E B pE B p pk p k= = =  

Generalizing, we have 

 1
1[ ] [ ] m

m mE B pE B p k+
−= =  (22) 

Similarly 

 
2 2 2 2

1 1 1
2 2 2

1

[ ] [ ] [ ] [ ]

[ ] [ (1 )] [ ]
m m m m

m
m m

E B pE B p E B p E B

E B p kp p p E B
− − −

−

= + −

= − +
 (23) 

After solving the above recursion we get, 

 2 2 2 1[ ] [ ( 1)] (1 )m m m
mE B p pk p k k p k p+= + − + −  (24) 

We now find a general expression for the expected cumulative backlog after each sub-

epoch. 
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[ ] 1 1

1 1
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m m
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p B BE Ym B B

B p B p

− −
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+
= + + + − +
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Therefore, 

 [ ]
[ ]2

1 1( ) ( 1) ( 1)
0

2
m m

m

E B p E B p
E Y m− −⎡ ⎤ + + −⎣ ⎦= ∀ >  (26) 

Substituting values of E[(Bm-1)2] and E[Bm-1] and simplifying, we get, 

 [ ]
2 1( 1)( 1) 2 0

2

m mp k k p p kE Ym m
+− + +

= ∀ >  (27) 

Thus, 

 [ ]
2

1

( 1)
2(1 )
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m

p k kE Y
p

∞

=

+
=

−∑  (28) 

Next, we find the average length of an epoch. 

 0

0 1

Epoch Length 1,if 0
...,otherwise

k B
k B B

= + =
= + + +

 (29) 

 [ ] 0 0 11*Probability( 0) [ ] [ ] ...E L k B E B E B= + = + + +  

Simplifying, we have, 

 [ ]Epoch Length (1 )
1

kkE p
p

= + −
−

 (30) 

Thus,  
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[ ] [ ]Epoch Length
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 (31) 

    Therefore, 

[ ] [ ] [ ]
[ ]
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Average Backlog per slot
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E Y E Y E Y

E
+ +

=  (32) 

 

Replacing with appropriate values, we get, 

 1

( 1)Average Backlog/slot
2 2(1 )k

pk k
k p +

+
=

+ −
 (33) 

From Little's Formula, we get, 
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=
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Average Power Expended/slot
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Hence replacing (35) with appropriate values we get: 
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It is of interest, to note from equation (34) that the sleep duration k is only a 

function of the average delay Dmax and packet arrival rate p. It is independent of the 

associated energy costs like Pa, Pas, Psa and Ps. 

We have obtained a similar expression for a more general case. If, the service 

times of the packets are independent and identically distributed random variables, with a 

general distribution, then the average packet delay and average power cost expressions 

take the following form: 

 

Let, 
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0

0 0
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Then, 
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 (37) 

From Little’s Formula, we get 
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Average Power Expended/slot
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In the next chapter we extend this model to a system comprising of multiple wireless 

nodes communicating with a single transmitter or AP. 

 
 

Figure 3.3:System model for the purpose of queuing analysis
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4 Multiple User Transmission Policy 
 

In the previous chapter we considered transmitting a single stream of data over a 

wireless link. However in most wireless systems the channel is normally shared by 

multiple users. Methods for accomplishing such channel sharing appear to fall into two 

broad categories:  

1) coordinated approaches in which users share the channel in an orthogonal manner (i.e. 

without interfering with each other) and  

2) un-coordinated approaches in which interference in allowed.  

Time division multiplexing (TDM), frequency division multiplexing (FDM) and 

code division multiplexing (CDM) are all examples of the coordinated approach. At the 

other extreme we have random access techniques such as ALOHA and CSMA in which 

the channel is shared through contention so users do interfere with each other. In this 

thesis we assume the coordinated approach in which users share the channel in an 

orthogonal manner. Hence we do not take channel contention into account. Instead we 

ask the question when and for how long the transmitter (or AP) schedules the sleep state 

of individual nodes such that their individual average packet delay constraints can be met 

and overall average system power consumption can be minimized. In this chapter we 

consider this question in the context of two users. 
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4.1 Two User System 
  

For the two-user case, we have two wireless nodes served by a single Access Point 

(AP). The AP has provision to buffer data packets for these two wireless nodes during 

their sleep durations. The system model for each node is the same as described for the 

one-user case. We denote the energy costs per slot associated with the sleep state for the 

two users as P1s and P2s respectively. The energy required by the two users per slot while 

in the awake state is denoted by P1a and P2a . In addition, let P1as and P2as denote the 

energy required for switching from the awake to the sleep state and P1sa and P2sa be the 

energy required for switching from the sleep to the awake state for the two users 

respectively. We assume P1a >> P1s and P2a >> P2s [7]. 

For the two-user system we characterize the system state in each slot by the quadruple  

(x1n, r1n, x2n, r2n), where  

  x1n, x2n  denote the backlog at the end of slot n, for user 1 and 2 respectively and 

  r1n, r2n denote the sleep/awake state of users 1 and 2 respectively during slot n   

  r1n and r2n can take the following values: 

 0; denotes that wireless node awake during slot n 

 1; denotes that wireless node is asleep during slot n but will be awake in slot n+1 

 k; denotes that wireless node is asleep during slot n, n+1,…,n+k-1, but will be awake 

during slot n+k. 
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4.2 Formulating the 2-User Optimization Problem 
 

We consider a system comprising of two wireless nodes (or users) that are served 

by a single transmitter (or AP). We formulate an optimization problem similar to the one 

we did in the chapter 3 for a single user. The aim is to study the scheduling policy that the 

AP resorts to in transmitting packets to the two users. We are interested in finding 

answers to the following questions: 

i) For a given average packet delay constraint (same for both users) which user does the 

AP serve first and how many packets does it serve at one go (does it empty the user’s 

buffer or not) 

 ii) How long does the AP subject a user to sleep for? On what factors is this decision 

based? 

 iii) Are the sleep durations staggered such that the potential scenario where both nodes 

are awake at the same time can be avoided as much as possible? 

 iv) How do the above scenarios change if the packet delay constraints are different for 

the two users? 

  We require that the average delay suffered by data packets at the transmitter be no 

more than D1max and D2max respectively for nodes 1 and 2. According to Little's result, 

assuming that the backlog process is stationary, the average delay for the two nodes are 

given by x1* and x2*. Thus, we require that, x1*<= pD1max and x2*<= pD2max.       

Similar to the one user case we also approach this problem by considering it as an 

optimal control problem over a finite time horizon [41] say over slots 0,1,2,….,N-1. In 
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order to reflect the average delay constraint, we consider policies φ1 and φ2 such that

  

 

1

max

0

1

max
0

1 1

and

2 2

N

n

n

N

n
n

E x pD N

E x pD N

−

=

−

=

⎡ ⎤ ≤⎢ ⎥⎣ ⎦

⎡ ⎤
≤⎢ ⎥⎣ ⎦

∑

∑

 (40) 

Let ∏ be the set of all such policies. 

We thus seek to minimize the total energy expended over the finite time horizon, over the 

set of all policies φ’ belonging to ∏, i.e., we consider the following optimization 

problem: 

 
1

' 0
min 1 2 subject to '

N

n n
n

E P P
φ

φ
−

=

⎧ ⎫⎡ ⎤
+ ∈∏⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑  (41) 

 

We use a similar approach as in [42] to solve the above equation. Let  

max max( 1 , 2 )f D D be the optimal value of the objective function, in our problem, i.e. 

  

 
1

max max 1 0
( 1 , 2 ) min ( 1 2 )

N

n n
n

f D D E P P
φ

−

∈∏
=

⎧ ⎫⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑  (42) 

We use duality to solve the above equation, since direct evaluation of max max( 1 , 2 )f D D  

appears difficult. Defining β1 and β2 as “dual variables”, where β1,β2 >=0, we define the 

dual function 
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 (43) 

∀β1,β2 >=0 

Assuming, we can calculate ( 1, 2)h β β , max max( 1 , 2 )f D D  can be lower bounded as 

follows: 
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so that 

 max max max
1, 2 0

max

( 1, 2)
( 1 , 2 ) sup 1( 1 1 )

2( 2 2 )

h
f D D p D N

p D N
β β

β β
β
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As in the single user case, for sufficiently large N, using a time sharing argument, it is 

clear that apparent that f is convex. It can thus be seen that there is no “duality gap”, and 

therefore in this case (45) is an equality. 

4.3 Dynamic Programming Formulation  
 

We calculate ( 1, 2)h β β , using the approach of dynamic programming [42]. We 

define, 

 ( )
1 1 1

0 0 0
1

0 0 0 0

( 1, 1, 2, 2)

1 2 1 1 2 2
min

| 1 1, 1 1, 2 2, 2 2

N

N N N

n n n n
n n n

J x r x r

P P x x
E

x x r r x x r r
φ

β β
− − −

= = =

=

⎡ ⎤+ + +⎢ ⎥
⎢ ⎥

= = = =⎢ ⎥⎣ ⎦

∑ ∑ ∑  (46) 

For simplicity we assume here that 

1 ( 1 1) [ 1 ]
2 ( 2 1) [ 2 ]

n n

n n

p probability a E a
p probability a E a
= = = =
= = =

. 

Then ( 1, 1, 2, 2)NJ x r x r  satisfies the following recursions:  
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where (x-1) += max(x-1,0). 

The initial condition of the recursion is: 

 0 ( 1, 1, 2, 2) 0, 1, 1, 2, 2J x r x r x r x r= ∀  (56) 

Qualitatively, ( 1, 1, 2, 2)NJ x r x r  denotes the optimal value of the cost function, over a 

horizon of N slots, given that wireless nodes 1 and 2 had a backlog of x1 and x2 packets 

respectively at the end of the first slot of the time horizon and the nodes were in state r1 

and r2 respectively, during that slot. 

The above equations enumerate all the different possible combinations of the initial 

state of the two users. For instance equation (47) calculates the optimal value of the cost 

function of the system when the initial condition of the two users are as follows: user 1 is 

in the awake state (sleep state 0) with x1 packets in its buffer and  user 2 is also in the 

awake state with x2 packets in its buffer. Under such an initial state, the AP can choose to 

execute one of the following actions: 

i) Keep both users awake but transmit only to user 1. 

 

ii) Keep both users awake but transmit only to user 2. 
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iii) Put user1 to sleep and keep user 2 awake (and hence transmit to user 2) 

 

iv) Put user 2 to sleep and keep user 1 awake (and hence transmit to user 1) 

 

v) Put both users to sleep. 

 

The DP chooses the option that yields the lowest value for the cost function.  

 

We augment the dynamic programming recursions to calculate: 
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for the corresponding optimal policy, for each value of β1  and β2. 

4.4  Results for the 2 user DP case 
 

We performed a series of numerical calculations to evaluate the minimum average 

energy required per slot that satisfied the maximum allowed average packet delay. As 

with the 1-user case, in order to realize a finite state space, we constrained an as well as 

un for both users, to take on only integer values. In addition, we truncated the state space 

of both users to a finite maximum backlog, xmax and the maximum consecutive sleep 

duration, kmax. The value of kmax was found experimentally, for the corresponding packet 

arrival rate p. 
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We developed a computer program, to implement the dynamic programming 

algorithm [42] for computing h(β1 , β2) over a range of values of β1 and β2 given a 

Bernoulli arrival distribution with a packet arrival probability of p1 and p2 in every slot, a 

fixed service rate of one packet per slot and fixed power costs of P1a, P2a, P1s, P2s, P1as, 

P2as, P1sa, P2sa. We assumed P1a << P1s and P2a << P2s [7]. While only finite horizon, 

finite state solutions can ever be exactly computed, we apply the value iteration 

algorithm described in [41], to compute good approximations to the optimal policy and 

corresponding average cost for the infinite horizon case. 

In other words, using this technique, we were able to compute policies and 

corresponding average power costs, that are stable as N →∝ and the size of the backlog 

state space, xmax, becomes large. The results of this computation can then be used to 

select the optimal policy that satisfies the average delay constraint or to study the 

behavior of the optimal policy over a range of conditions (e.g, packet arrival rates and 

power costs).  

4.5 Results 
 

We present some representative results related to specific scenarios in a graphical 

representation. The results represent the scenarios where at time t=0 both nodes have 0 

packets buffered for them at the AP and both nodes are in the awake state. We assume 

p=.1,  Pa=1, Pas=0.0001, Psa =0.01, Ps=0.001 to obtain the results displayed in Figure 4.1. 

We observe that power consumption of the system is inversely proportional to the 

average packet delay of the wireless nodes. The graph shows that for a higher average 

packet delay (denoted by the X-axis), the power consumed per slot (denoted by the Y-
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axis) is lower. This can be explained by the fact that a higher average packet delay 

tolerance enables the wireless nodes to be in the sleep state for longer durations. This 

leads to lower average power consumption by the nodes. 

Average Delay versus Power for a Multiuser system
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Figure 4.1: Graph representing average system packet delay to the average system 
power consumption per slot 

 

The numerical results also provided us with insights to the questions outlined in 

section 4.2. For instance, under appropriate circumstances we saw that the policy 

subjected the nodes to unequal sleep durations such that their wake-up time would not 

overlap and unnecessary power consumption by a node having to wait its turn to be 

served, can be avoided. Unfortunately, unlike the 1-user case, we were unable to 

formalize a well-defined service policy for the 2-user case. When and for how long the 
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nodes were scheduled to sleep, varied widely depending on a number of parameters. For 

instance if both users had packets buffered for them at the AP and both of them were in 

the “awake” state, the DP chose different actions under different scenarios. Sometimes it 

subjected one node to sleep (most often the node with lesser number of packets), 

sometimes it had both nodes remain in the Awake state (mainly noticed if the difference 

between the buffer sizes of the two nodes was “small”). Even if the DP chose to put a 

node to sleep, the sleep duration varied widely depending on the relative difference 

between the buffer sizes of the two users. Thus it was very difficult to formalize the 

optimal policy for the 2-user system. However, we did gain a lot of insight into possible 

“optimal” actions that were later incorporated in our adaptive sleep-scheduling algorithm.  

The other point worth noting is that the power-delay curve for the 2 user system 

almost fits snugly to the curve obtained for the 1-user system. This allows us to coin a 

lower bound for the average power consumption of a system for a specific average packet 

delay. 
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Delay vs Power Comparison
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Figure 4.2: Comparing the energy - delay tradeoff for a 1 user and a 2-user system 

4.6 A Lower Bound  
 
We claim that the result of the minimization problem stated in equation (4) in Chapter 3, 

for a system comprising of a single wireless node can be used as a lower bound for the 

power consumption of a multi-node wireless system.  

Let there be L wireless nodes in the system denoted by ‘1’, ‘2’,…’L’. Let, 

g(p,Pa,Ps,Pas,Psa) denote the minimum average power consumption for a user in the 

single user case, 

( )jP n denote the energy consumed by node ‘j’ in slot ‘n’ 

Xj(n) denote the backlog of user ‘j’ and the end of slot ‘n’. 



    

  

49

Let the total amount of energy consumed by node ‘j’ over a time horizon of N slots be 

1
( )

N

n
j jW P n

=
= ∑ (60) 

For a multi-node system we wish to minimize the overall average power consumption of 

the system while conforming to the average packet delay constraint of every node. 

Mathematically speaking we consider the following optimization problem: 
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Theorem 1: 
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Acquiring the “optimal” sleep duration for a wireless node given an average packet delay 

constraint using the technique of solving a minimization problem is rather cumbersome 

for a multi-node system. Even for a system comprising of two wireless nodes the problem 

becomes hard to tackle. This is mainly because implementing the Dynamic Programming 

recursions (the technique that we use to solve the minimization problem since direct 

evaluation of the problem is hard) requires maintaining state spaces of each wireless 

node. The state spaces grow exponentially as the number of wireless nodes in the system 

increase. This makes the run time of the dynamic programming implementation to be 

painfully slow. Thus, although the above technique gives us the optimal solution to our 

problem, in practice it is hard to achieve this solution. Moreover, this optimization 

formulation requires perfect knowledge of packet arrival rate of a wireless node that is 

again hard to acquire realistically. These limitations led us to devise a more realistic 

algorithm that would be simple, fast, scalable and feasible yet which would meet the 

average packet delay constraint of the wireless system while consuming the least amount 

of power possible. In the following chapters we describe these algorithms and compare 

the energy-delay tradeoff of these algorithms to the theoretical lower bound that we have 

computed.  
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5 An Adaptive Algorithm – The “Round Robin” 
Scheme and the “Shortest Sleep First” Scheme 

 

In the previous chapter, we observed that under various initial buffer occupancies 

(different values of x10 and x20) and initial sleep states (different values of r10 and r20) of 

the two nodes, the DP generated different optimal sleep schedules and sleep durations for 

each of the two nodes, which minimized the overall system power cost. We studied the 

different sleep policies generated by the DP under different initial conditions of the two 

nodes and used them as a guideline to coin our own sleep-scheduling algorithm. The aim 

of our algorithm is to minimize the overall average power consumption of a system 

comprising of multiple wireless nodes operating in an infrastructure mode in a WLAN 

where each node is subjected to a packet delay constraint. We consider a model 

comprising of multiple wireless nodes served by a single wired transmitter (or AP).  As 

before, we study downlink traffic only. We also assume static and perfect channel 

conditions. 

5.1 The Round Robin Scheme 
 

We consider two different service orders - a Round Robin scheme and a non-Round 

Robin scheme which we refer to as the “Shortest Sleep First (SSF)” scheme. The 

difference between the two schemes lies in the order in which the AP transmits packets to 

the wireless nodes. The other functionalities are common to both schemes. In this section 
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we describe the common functionalities as well as the functionalities unique to the Round 

Robin scheme in detail. 

 

Let us consider a system comprising of ‘L’ wireless nodes served by a single 

Access Point. Let the wireless nodes be arbitrarily indexed by the IDs ‘1’, ‘2’,…’L’. Let 

the tolerable average packet delay of the nodes be denoted by D1, D2,…., DL respectively. 

Time is divided into discrete units which we refer to as ‘slots.’ At time t=0, we assume 

for concreteness that there are no packets buffered for any node and that the nodes are 

subjected to sleep for arbitrary sleep durations of s1, s2, …., sL slots respectively.  

In every slot, the AP has a state associated with it. . We denote the states of the AP 

by numbers ‘1’,’2’,.. ‘L’. The state of the AP designates the index of the node that is 

currently eligible for service. In the Round Robin scheme, the state of the AP cycles 

through the states in round robin order, i.e. 1,2, …, L, 1,2,…, L, 1, 2. …. The state of the 

AP may remain the same for consecutive slots.  For concreteness, we assume that the 

state of the AP at time t=0 is 1. If the state of the AP is ‘m’ in a slot, then we say that 

node ‘m’ is the “current node” in that slot. For the Round Robin scheme, we call node 

‘m+1’ the “next node” in that slot, where this is understood to be node 1 in the case 

where m=L.  

In every slot a sequence of tasks are performed for every node in the system 

(except for task (4) which is performed on the current node). These tasks are executed in 

both the Round Robin scheme as well as the Shortest Sleep First scheme. These actions 

are sequentially outlined below: 
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1) Packet Arrival: Packets arrive (if at all) for a node at the beginning of a slot. 

2) Buffer Update: Every node has two buffers assigned to it. Packets that arrive for a 

node when the node is in the sleep state, are placed in buffer ‘S’. Packets that arrive for 

the node when the node is awake but the state of the AP is not equal to the node ID are 

also placed in buffer ‘S’.  Packets that arrive for a node when the node is in the awake 

state and while the state of the AP is equal to the node ID are placed in buffer ‘R’. 

3) Set “Early” bit : If a node in the awake state and the state of the AP is not equal to the 

node ID, then we set a parameter which we refer to as “early” to the Boolean value 

“true”. It is otherwise set to “false”. We discuss the impact of this parameter on 

calculating the sleep duration of a particular node later in this paper. 

4a) Serve the current node if possible: If the current node is in the awake state then the 

AP transmits a packet from the S buffer for the current node provided that the S buffer is 

not empty.  If the S buffer is empty, depending on the sleep state of the next node, we 

may serve a packet from the R buffer. Otherwise if the current node is asleep, then the 

AP does not transmit a packet to any node. We discuss in details the service order and the 

service policy followed by the AP later in this section. 

4b) Calculate Next Sleep duration of the current node if needed: It is first determined 

if the current state of the AP should be changed. If so, the current node will be put to 

sleep (assuming that the current node was assigned a sleep duration greater than 0. If not, 

the current node remains in the awake state but the state of the AP might still change). 

The AP calculates the sleep duration based on various factors which are discussed 

separately later in this section. 
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4c) Put the node to sleep: If it was determined in the previous step that the state of the 

AP should be changed, the current node is then put to sleep for the calculated number of 

slots (which might be 0 as well). Various book-keeping updates are performed when a 

node is put to sleep.  For instance contents of buffer R are transferred to buffer S of the 

current node. Specifically in the SSF scheme, the vector V is re-arranged. We discuss this 

in detail in the next section. 

5) Calculate packet delay: At the end of every slot, and for each node, the AP calculates 

a weighted average packet delay. For a particular node ‘m’, this value is referred to as the 

calculated packet delay of node ‘m’ and is denoted by (CD)m . 

We now discuss the process in which we calculate (CD). 

Let Ďi denote the delay of the ‘i’th packet in ‘N’ slots. 

(CD) of that packet can then be recursively defined as : 

(CD) = (1-ω)(CD) + ω Ďi,  

where ω is a parameter that represents the reciprocal of the “memory window”. 

6) Update the vector V: This functionality is executed at the end of every slot in the SSF 

scheme only. We discuss this functionality in details in next section. 

5.1.1 Service Order 
 

In the Round Robin (RR) scheme, we serve the nodes in a fixed, pre-determined 

sequential order. The service sequence is chosen arbitrarily. As mentioned earlier in the 

previous section the AP has a state associated with it in every slot. The state of the AP 
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designates the index of the node that is currently eligible for service. In the Round Robin 

scheme, the state of the AP strictly cycles through the states in round robin order, i.e. 1,2, 

…, L, 1,2,…, L, 1, 2. …. The state of the AP may remain the same for consecutive slots.  

For concreteness, we assume that the state of the AP at time t=0 is 1. 

In the Round Robin scheme the decision to change the state of the AP from ‘m’ to 

‘m+1’(where ‘m+1’ can be the node with ID ‘1’ when m=L) is based on the buffer 

occupancy of node ‘m’ and the sleep/awake state of the next node. We discuss the 

decision of when to change the state of the AP in the following sub-section. 

5.1.2 Service Policy 

 
When the current node is in the awake state, there are primarily two tasks that 

have to be performed. First, the current node has to receive the packets that have been 

buffered for it at the AP. In this section we discuss the first task. We postpone the 

discussion of the second task until the next sub-section. We describe the actions followed 

by the AP while transmitting packets to a particular node. 

Let us assume that node ‘m’ is the current node, and that it is currently in the 

awake state. As mentioned previously, node ‘m’ has two buffers which we refer to as 

‘Sm’ and ‘Rm’ respectively. Recall that any packet that arrives for the current node when 

it  is in the awake state will be stored in buffer Rm. In every slot, there are two scenarios 

that can possibly arise: 

I. Buffer Sm can have greater than 0 packets 

 

II. Buffer Sm can have 0 packets 
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We now discuss the actions executed by the AP under the two different scenarios. 

 

I. Buffer Sm has greater than 0 packets: 

In the above scenario, the AP first checks the sleep/awake state of the next node. Again, 

there can be two possible scenarios: 

a) Next node can be in the sleep state 

b) Next node can be in the awake state 

Based on the above scenario, the AP executes different actions which we discuss below. 

a) Next node is in the sleep state: 

In such a case, the AP transmits a packet to the current node ‘m’ from its buffer 

Sm. If both buffers Sm and Rm are empty, the AP switches its state from the current node 

thus marking the end of the service duration of current node. The current node ‘m’ 

transits to the sleep state (if possible).  

b) Next node is in the awake state: 

In such a case, the AP transmits a packet to the current node ‘m’ from its buffer 

Sm. If buffer Sm becomes empty, the AP switches its state from the current node, thus 

marking the end of the service duration of the current node. Note that unlike the previous 

case, the AP does not check to see the status of buffer Rm in this case. The current node 

‘m’ transits to the sleep state (if possible).  

II. Buffer Sm has 0 packets: 
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If the AP encounters a situation where buffer Sm is empty, it checks for two things : 

• the sleep/awake status of the next node and  

• the buffer Rm  of the current node 

 

We now enumerate the actions executed by the AP for each of the three possible 

scenarios enumerated below. 

 

a) Next node is in the awake state and Rm. has greater than 0 packets: 

In the above scenario, the AP transfers the packets from buffer Rm to buffer Sm 

and transmits one packet to the current node. If the number of packets in Sm then reduces 

to either 0 or is less than the number of packets in Snext node, then the AP switches its state 

from the current node thus marking the end of the service duration of current node.  

 

b) Next node is in sleep state and Rm.has greater than 0 packets: 

In this case, the AP transfers the packets from buffer Rm to buffer Sm and 

transmits one packet to the current node. If the number of packets in Sm reduces to 0 then 

the AP switches its state from the current node, thus marking the end of the service 

duration of the current node.  
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c) Rm.has 0 packets: 

In this scenario the AP switches its state from the current node thus marking the 

end of the service duration of the current node.  

 

5.1.3 Calculating the next sleep duration 
 

In section 5.1.2 we said that when the current node is in the awake state, there are 

primarily two tasks that have to be performed. First, the current node has to receive the 

packets that have been buffered for it at the AP. After the AP has transmitted all or some 

of the data packets to the current node, it might choose to switch its state to another node 

thus marking the end of the service duration of the current node. In this case we need to 

determine the sleep duration of the current node. If this sleep duration is zero, this 

corresponds to keeping the current node awake. Otherwise, the current node is put to 

sleep for the calculated sleep duration. Our algorithm calculates this sleep duration 

through an adaptive “trial and error” mechanism. It examines the average delay suffered 

by the data packets buffered for the current node in the recent past and assigns a sleep 

duration based on that observation. In addition, in the Round Robin scheme the algorithm 

also takes into account the sleep duration of the other nodes in the system that are 

scheduled to be served before the node under consideration along with the number of data 

packets already buffered for them.  
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In order to motivate how we calculate the sleep duration, consider the first slot in 

the current cycle where the AP state was set to the current node. We call this slot the 

beginning of the current cycle. There are 3 scenarios. 

1) Current node was early (early bit was set in this slot 

 

2) Current node was not early, with no packets in buffer 

 

3) Current node was not early with packets in buffer 

 

If the current node was not early, we say it was “On time.” Ideally we want to 

avoid scenarios 1) and 2) because they result in unnecessary power consumption. Thus, 

in our algorithm, under the circumstances where a node woke up “early” or was on time 

but had no packets to receive when its turn came up in the service order, the algorithm 

prolongs the sleep duration of that node in the next cycle in an effort to avoid the above 

scenarios that lead to unnecessary power consumption. However prolonging the sleep 

duration of a node is also dependent on the value of an important parameter δ. (We 

provide a rigorous definition of δ shortly). When δ  is positive this implies that the actual 

average packet delay of the node is below the tolerable average packet delay, and our 

algorithm tends to increase the sleep duration of the node in its next cycle by a “few” 

slots. When δ is negative this implies that the average packet delay of the node is higher 

than the tolerable average packet delay, and our algorithm decreases the sleep duration of 

the node, again by a “few” slots. The magnitude by which the sleep duration is increased 

or decreased in every cycle is governed by another parameter Κ.  We now provide a more 
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precise description of our algorithm which calculates the sleep duration of a particular 

node. 

Let us assume that node ‘m’ is the node whose sleep duration we wish to calculate. 

Recall that the tolerable delay for node m is given by Dm,, and (CD)m is the estimate of 

the average packet delay for packets for node ‘m’ that is calculated at the end of every 

slot.  

1> Calculate δ :   

 

The algorithm calculates δm which is defined as the quantity  

( Dm - (CD)m ). 

        

δm can be equal to, greater than or less than 0.  

 

2> Check “early” bit: 

 

We then check to see if the node transitioned to its awake state “early” by checking the 

parameter “early” which we described in the beginning of the next section. 

3> Determine value of ‘K’: 

 

We define Κ to be a parameter that can acquire different positive values based on the 

conditions outlined in Table 5.1.  

Table 5.1 shows the action that the algorithm takes on altering the sleep duration of a 

node in the next cycle under different conditions which are considered in the first slot of 

the current cycle. 
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Table 5.1: Sleep Prediction Scheme for Round Robin Policy 
 

 Early On time 

with no 

packets 

On time 

with 

packets  

δ > 0 Lengthen 

sleep 

Κ = α1 

Lengthen 

sleep 

Κ= α2 

Lengthen 

sleep 

Κ= α3 

δ < 0 Shorten 

sleep 

Κ= α4 

Shorten 

sleep 

Κ= α5 

Shorten 

sleep 

Κ= α6 

 
 
For example, if we assume node ‘m’ was on time at the beginning of the current cycle, 

and if node m had no packets buffered for it at the beginning of the current cycle, and if 

δm is positive, then the parameter K acquires the value of α3. 

4> Calculate (I): 

 

For the node ‘m’, we define the parameter - Increment = (Im) = Κ(δm)2. 

The parameter K is positive, so that (Im) will always acquire positive values. The current 

sleep duration of node ‘m’ is increased or decreased by (Im) number of slots in the next 

cycle, in accordance with the sign of δm. Thus, for the particular node ‘m’, we perform 

the following operation: 

If (δm) <0, then we set  (Im) to (Im)(-1) = (- Im). 
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5> Update “Calculated Sleep Duration” (CSD):  

 

Initially, at time t=0, (CSD)m is set to an arbitrary value. We update CSD of  node ‘m’ as 

follows.   

 (CSD)m = max{ (CSD)m + Im , 0} 

 

6> Calculate SSB (Sum of Sleep duration and Buffer length): 

 

At any time t>0, we define the term (SSB) of node ‘m’ as follows: 

(SSB)m
t = (buffer length)m t  + (sleep duration)m t 

i.e., (SSB)m
t denotes the sum of the number of packets buffered for node ‘m’ at time t and 

the number of remaining slots for which node m shall be in the sleep state. Since we are 

calculating the sleep duration of node ‘m’, we calculate the SSB of every node in the 

system except for node ‘m’.  

 

7>Calculate max(SSB) : 

 

Let Zm = max {(SSB)j
t} ∀j = 1,2,..L,  j ≠ ‘m’  

 

8> Calculate ASD (Actual Sleep Duration): 

 

We define (ASD)m of node ‘m’ as the actual number of slots that the node is subjected to 

sleep for. For node ‘m’, our algorithm calculates (ASD)m as follows: 

   (ASD)m =  (Zm) slots,  if (CSD)m < Zm 
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   (ASD)m  =  (CSD)m , otherwise 

The node ‘m’ is then subjected to sleep for (ASD)m slots. In every cycle, when a node 

transitions to the sleep state, the algorithm executes the eight steps mentioned above. 

Obviously the value of CSDm is updated in every cycle. 

5.2 Shortest Sleep First (SSF) Scheme 
 

In terms of average power consumption versus average packet delay, the Round 

Robin Scheme that we discussed in Section 5.1 performs fairly close to the theoretical 

lower bound that we have acquired through the process of dynamic programming as 

outlined in Chapter 3 and 4 for the symmetric case where all nodes have identical arrival 

statistics and the same tolerable average delay values. However we realized that the 

Round Robin Scheme is inappropriate for cases where all the wireless nodes in the 

system do not have the same average packet delay constraint or have very different 

arrival statistics. Thus we designed a variation of the Round Robin scheme. We refer to 

this new scheme as the Shortest Sleep First (SSF) scheme. The variation lies in the 

sequence of states that the AP acquires. Loosely speaking, unlike the Round Robin 

scheme the AP does not cycle through its various states in a fixed round robin order. On 

the contrary, the state of the AP is dictated by the sleep/awake duration of the wireless 

nodes in the system. We provide a rigorous description of the algorithm shortly. We 

retain all the other functionalities of the Round Robin scheme. In the following section 

we only describe the unique feature of the SSF scheme which is the Service Order. In 

order to avoid repetition we refrain from discussing the other functionalities of the SSF 

scheme. 
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Similar to the Round Robin scheme, let us consider a system comprising of ‘L’ 

wireless nodes served by a single Access Point. Let the wireless nodes be arbitrarily 

indexed by the IDs ‘1’, ‘2’,…’L’. Let the tolerable average packet delay of the nodes be 

denoted by D1, D2,…., DL respectively. It is to be noted that the SSF scheme is most 

effective when D1, D2,…., DL are all not equal or the arrival statistics for the traffic to the 

nodes are substantially different..  

5.2.1 Service Order 
  

Unlike the Round Robin Scheme, the SSF scheme has no arbitrarily pre-

determined fixed order in which nodes are served. In other words, unlike the Round 

Robin scheme, the states of the AP in the SSF scheme does not cycle through 

‘1’,‘2’,..‘L’,‘1’,‘2’,…,‘L’ sequentially in a round robin fashion.  

In the SSF scheme, we maintain a vector V which comprises of an ordered 

arrangement of the sleep/awake durations of every node in the system. The sleep/awake 

durations in the vector V are ordered in ascending order. Thus in some slot ‘q’, vector V 

can assume the following configuration: 

Vq={Ŝqc, Ŝqg, ŜqL…., Ŝqm}, 

where Ŝqi denotes the sleep/awake duration of node ‘i’ in slot ‘q’. It is worth mentioning 

that Ŝ values corresponds to the ‘r’ values defined in the system state in Chapters 3 and 4. 

Note that Ŝqi can acquire values greater than, less than or equal to 0. A value less than or 

equal to 0 denotes the awake state while a positive value denotes the sleep state.  
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For example, Ŝqi = 0, implies that in slot ‘q’, node ‘i’ transitioned to the awake state from 

the sleep state. Similarly, 

Ŝqi = -2 implies that node ‘i’ is awake in slot ‘q’ and has been awake in slots ‘q-1’ and ‘q-

2’ as well. 

Ŝqi = 2 implies that node ‘i’ is in the sleep state in slot ‘q’ and will continue doing so in 

slots ‘q+1’. It will transition to the awake state in slot ‘q+2’. 

For further clarification, Vq={Ŝqc, Ŝqg, ŜqL…., Ŝqm}, implies that in slot ‘q’, the 

sleep/awake duration of node with ID ‘a’ is less than that of node with ID ‘g’ and so on. 

It is evident that in slot ‘q’, node with ID ‘a’ has the lowest sleep/awake duration while 

node with ID ‘m’ has the highest sleep/awake duration.  

In the beginning of any slot ‘q’, the state of the AP for that slot corresponds to the 

node ID of the first entry in vector Vq. The state of the AP designates the index of the 

node that is eligible for service in slot ‘q’. If the state of the AP is ‘i’ in slot ‘q’, then we 

say that node ‘i’ is the “current node” in slot ‘q’. Also, in slot ‘q’, the second entry in 

vector Vq denotes the “next node” that is scheduled to receive service.  

At the end of every slot ‘q’, the AP decreases the sleep/awake duration of all the 

wireless nodes in its system by one slot and updates the vector Vq with these values. This 

updated version serves as the new vector for slot ‘q+1’, i.e Vq+1 is thus created. As per the 

service policy described in section 5.1.2, when an AP decides to switch state from the 

current node, it reorders the vector V at the end of that slot. Thus explicitly stating, the 
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vector V is updated in every slot but reordered only in slots where the AP switches its 

state.  

During the re-ordering procedure, it might be the case that two nodes have the 

same sleep/awake duration.  The AP then assigns higher precedence to the node that has 

the least amount of packets in its S buffer. This decision might apparently seem counter-

intuitive but this approach turns out to be the most power-efficient choice. This decision 

was decided upon by examining the policy generated by the 2-user dynamic 

programming formulation under a similar circumstance.  

If further the number of packets buffered for two nodes in their respective S 

buffers are equal then the AP assigns a higher precedence to the node which has 

consumed higher power till that point in time. If a tie exists even after the above 

classifications, then precedence of one node is chosen randomly over the other. 

5.2.2 Calculating Next Sleep Duration 
 

We use almost the same method as described in Section 5.1.2 of the Round Robin 

scheme to calculate the sleep duration of a node. Steps 1>through 5> through as 

described in Section 5.1.3 are followed as is. The ASD of a node is assigned its CSD 

value. Note that we do not calculate the SSB value of a node. 

5.3  Discussion on the Results of the Algorithm  
 

We wrote a computer program to implement both schemes of our algorithm. Our 

algorithm has the capability to schedule the sleep time and duration of several wireless 

nodes operating in an infrastructure mode in a WLAN. We tested our algorithm for 
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wireless local area networks comprising of up to ten wireless nodes. Recall that in 

chapter 4 we had acquired a lower bound on the average power consumption of a WLAN 

system subjected to an average packet delay constraint. We compare the results derived 

from the two schemes (Round Robin and SSF) of our algorithm to that lower bound. 

Figure 5.1 shows the delay versus power consumption tradeoff for the three schemes 

(DP, RR, SSF) for a system comprising of two wireless nodes served by a single 

AP/transmitter. The curve representing the results acquired from the DP formulation 

offers the best average delay-average power tradeoff. The Round Robin and SSF scheme 

does consume higher average power for a given average packet delay than the DP 

formulation. However, our algorithm is still very useful in a system comprising of 

multiple wireless nodes. What is lost in performance is gained in simplicity, scalability 

and speed. Moreover, our algorithm does not require a-priori knowledge of average 

packet arrival rate of any user. It has the ability to “learn” the traffic pattern and make 

“intelligent” decisions on subjecting the nodes to appropriate sleep durations. Another 

key merit of our algorithm over the DP formulation is its scalability. The number of users 

in the system has insignificant bearing on the run time of our algorithm. This is not true 

for the DP formulation. For every user that gets added to the system, the time to calculate 

the optimal action in each slot increases exponentially.  

We now focus our discussion on comparing and contrasting the power efficiency of 

the Round Robin scheme to the SSF scheme. As is evident from Figure 5.1, under the 

condition where every wireless node in the system has the same average packet delay 

constraint the Round Robin scheme consumes less power on average than the SSF 

scheme for a given average packet delay. This can be explained by the fact that the 
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Round Robin scheme knows a-priori the order in which nodes will be served. It uses this 

information coupled with the knowledge of the service policy of the AP to calculate sleep 

durations for nodes such that unnecessary energy expenditure by a node is greatly 

minimized. For instance, the number of slots for which a node is in the awake state but 

the node ID does not correspond to the state of the AP in those slots, is greatly reduced 

thus minimizing unnecessary power consumption by a node. This improvisation renders 

the Round Robin scheme to be more power efficient than the SSF scheme where such an 

optimization is not possible. 

However, the SSF scheme turns out to be more effective when the packet delay 

constraint of all users in the system are not equal. Especially under scenarios where huge 

disparity exists between the delay constraints of the users, the Round Robin scheme 

simply cannot meet the individual packet delay constraints. In the SSF, scheme, in 

contrast, a node with a large tolerable delay is allowed to sleep throughout several sleep 

cycles for nodes with small tolerable average delays, thus conforming to the packet delay 

constraint of every node in the system. 
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Figure 5.1: Comparison of power consumption for the DP, RR and SSF scheme 
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6 A Comparative Study of a Static and a 
Dynamic Sleep Scheduling Algorithm  

 
  As stated in Chapter 1, the issue of designing power efficient wireless devices has 

been approached at various levels. At one end of the spectrum, radio designers have 

created very efficient radio architectures, implementations and control algorithms while 

at the other end, network and application designers have proposed new protocols and 

algorithms that focus on energy efficiency for tasks such as routing, medium access 

control, source coding, error coding, encryption etc. It has been observed that, though 

radios and networks are designed to achieve a specified peak performance, it is often the 

case that the required performance is significantly less. For example, a wireless link to a 

PDA might be able to support streaming video; however it might only be used to upload 

emails. The bandwidth requirement in the case of email uploads is much less compared to 

what the link is capable of handling. We observe that such slack in system requirement 

can be used to our advantage in designing power efficient wireless communication 

systems. For example, in scenarios where the system does not need to perform at its peak 

rate, energy can be saved by slowing down transmission rate or turning off the radio for a 

while. 

The above idea forms the corner stone of this chapter. We address the issue of 

designing power efficient wireless communication systems by developing a power 

efficient MAC layer sleep-scheduling algorithm. Instead of designing a rigid algorithm 

based on the worst-case operating conditions alone, we have designed an adaptive, 

learning algorithm that takes advantage of the changing requirements of the system and 
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acts accordingly. This strategy avoids superfluous power consumption without sacrificing 

system performance. 

6.1  A Brief Overview of Power Management Scheme in 802.11  
 

 The power saving mode (PSM) in the Infrastructure model of an 802.11 [40] 

system has the provision for the wireless nodes to notify the Access Point (AP), at the 

time of association, of their sleep duration. The AP then allocates enough resources to 

support the sleeping nodes during their sleep states. The nodes wake up after their 

stipulated sleep duration to hear the beacon frame, transmitted by the AP. The beacon has 

information regarding packets buffered for the sleeping nodes at the AP. If the wireless 

node realizes (from the beacon message) that the AP has packets buffered for it, it stays 

awake for the entire duration of the beacon transmission and requests the AP to deliver its 

packets until its buffer is emptied. However, the standard does not specify any algorithm 

or scheme that the wireless nodes should follow to decide upon the duration of their sleep 

state. Usually the nodes choose a sleep period that is equal to their average packet delay 

tolerance. We refer to this scheme as the “Sleep Equals Delay” or SED scheme. This 

conservative scheme guarantees to meet any “reasonable” pre specified average packet 

delay at the cost of substantial power consumption. This led us to devise a simple, 

centralized, dynamic, scalable and adaptive algorithm that is a variation of the SSF 

scheme that we described in Chapter 5. We refer to this algorithm as the “Steep Descent 

Method” (SDM). Our algorithm adapts dynamically to the packet arrival rate and the 

average packet delay constraint of the wireless nodes. For a given average packet delay 

constraint a wireless node running our algorithm consumes much less power than when it 
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runs the SED scheme especially under non uniform traffic conditions. The simulation 

results prove the power efficiency of our adaptive sleep algorithm over the static SED 

scheme. In addition, we also compare the SDM scheme to the lower bound on power 

consumption derived in Chapter 4.6. Results show that the SDM scheme performs fairly 

close to the lower bound in terms of power consumption. 

6.2 Adaptive Sleep Algorithm : STEEP DESCENT METHOD 
(SDM) 

 

For the SDM scheme, we adhere to the system model that we described in Chapter 

2. Specifically, we characterize each node in any particular slot ‘i’, by the tuple (xm (i), rm 

(i)), where  

 xm (i)  = backlog of node ‘m’ at the end of slot ‘i’, and  

 rm(i)  = state of node ‘m’ during slot ‘i’  

 rm can independently take the following values in any slot ‘i’: 

0;  {node ‘m’ is awake during slot ‘i’}  

-h; {node ‘m’ is awake during slot ‘i’ and has been awake in the previous h-1 consecutive 

slots} 

 1; {node ‘m’ is asleep during slot ‘i’ but will be awake in slot ‘i+1’} 

  k; {node ‘m’ asleep during slot ‘i’, ‘i+1’….'i+k-1’ but will be awake during slot ‘i+k’} 

We now describe the algorithm in detail: 
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Let us consider a system comprising of ‘L’ wireless nodes served by a single 

Access Point. Let the wireless nodes be arbitrarily indexed by the IDs ‘1’, ‘2’,…’L’. Let 

the tolerable average packet delay of the nodes be denoted by D1, D2,…., DL respectively. 

Time is divided into discrete units which we refer to as ‘slots.’ At time t=0, we assume 

for concreteness that there are no packets buffered for any node and that the nodes are 

subjected to sleep for durations that equals their respective packet delay constraints, 

namely  D1, D2, …., DL slots respectively.  

In every slot, the AP has a state associated with it. We denote the states of the AP 

by numbers ‘1’,’2’,.. ‘L’. The state of the AP designates the index of the node that is 

currently eligible for service. The state of the AP may remain the same for consecutive 

slots.  If the state of the AP is ‘m’ in slot ‘q’, then we say that node ‘m’ is the “current 

node” in slot ‘q’. The state that the AP would acquire next in some slot ‘q+y’ 

corresponds to the ID of the “next node” in slot ‘q’. We define the concept of a “next 

node” more rigorously in the next section. In every slot a sequence of tasks are 

performed for every node in the system (except for task (4) which is performed on the 

current node). These actions are sequentially outlined below: 

1) Packet Arrival: Packets arrive (if at all) for a node at the beginning of a slot. 

2) Buffer Update: Every node has two buffers assigned to it. Packets that arrive for a 

node when the node is in the sleep state, are placed in buffer ‘S’. Packets that arrive for 

the node when the node is awake but the state of the AP is not equal to the node ID are 

also placed in buffer S.  Packets that arrive for a node when the node is in the awake state 

and while the state of the AP is equal to the node ID are placed in buffer ‘R’. 
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3a) Serve the current node if possible: If the current node is in the awake state then the 

AP transmits a packet from the S buffer for the current node provided that the S buffer is 

not empty.  If the S buffer is empty, depending on the sleep state of the next node, the AP 

may serve a packet from the R buffer. Otherwise if the current node is asleep, then the 

AP does not transmit a packet to any node. We discuss in details the service order and the 

service policy followed by the AP later in this chapter. 

3b) Calculate Next Sleep duration of the current node if needed: It is first determined 

if the current state of the AP should be changed. If so, the current node will be put to 

sleep. The AP calculates the sleep duration based on various factors which are discussed 

separately later in this chapter. 

3c) Put the current node to sleep: If it was determined in the previous step that the state 

of the AP should be changed, the current node is then put to sleep for the calculated 

number of slots. Various book-keeping updates are performed when a node is put to 

sleep.  For instance contents of buffer R are transferred to buffer S of the current node, 

the vector V is re-arranged. We discuss this in detail shortly. 

4)Calculate packet delay: At the end of every slot, and for each node, the AP calculates 

a weighted average packet delay. This value is referred to as the calculated packet delay 

(CD) and for a node ‘m’ it is denoted by (CD)m . 

We now discuss the process in which we calculate (CD). 

For node m,  
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m

m

(Weighted Average Backlog) (q)( ) ( )
(Weighted Average Packet Arrival Rate) (q)

where ( ) ( ) denotes the weighted average 
                packet delay of node 'm' in slot 'q'.

m

m

CD q

CD q

=

 

Recall that xm (q) denotes the backlog of node ‘m’ at the end of slot ‘q’. Let us define 

Am(q) as the number of packets that arrive for node ‘m’ in slot ‘q’.  

Let (CB)m(q) of node ‘m’ in slot ‘q’ be recursively defined as : 

( ) ( ) ( ) ( )(1 ) ( )m m mCB q CB q x qα α= − +  

Also, let (PA)m(q) of node ‘m’ in slot ‘q’ be defined as: 

( ) ( ) ( ) ( )(1 ) ( )m m mPA q PA q A qα α= − +  

where α is a parameter that represents the reciprocal of the “memory window”.  

Note that at time t=0, 

(CB)m = (PA)m = 0, ∀m. 

Thus in slot ‘q’, (CD)m (q) is calculated as follows: 

 ( ) ( )( ) ( )
( ) ( )

m
m

m

CB qCD q
PA q

=  

When (PA)m (q) is equal to zero, then (CD)m(q) is set to zero as well. 

5) Update the vector V: This functionality is executed at the end of every slot and we 

discuss this functionality in detail shortly. 
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6.2.1 Service Order  
 

We recall that rm(q) denotes the state of node ‘m’ in slot ‘q’. In every slot we 

maintain a vector V that comprises of the ‘r’ values of every node in the system arranged 

in ascending order. Thus in some slot ‘q’, vector V can assume the following 

configuration: 

Vq={rm(q), rn(q),….,ra(q)}, where m,n,…a∈{1,2,…,L} 

In the beginning of any slot ‘q’, the state of the AP for that slot corresponds to the 

node ID of the first entry in vector Vq. Since the state of the AP designates the index of 

the node that is eligible for service in slot ‘q’, thus if the state of the AP is ‘i’ in slot ‘q’, 

then we say that node ‘i’ is the “current node” in slot ‘q’. Also, in slot ‘q’, the second 

entry in vector Vq denotes the “next node” that is scheduled to receive service.  

At the end of every slot ‘q’, the AP decreases the ‘r’ value of all the wireless 

nodes in its system by one slot and updates the vector Vq with these new ‘r’ values. This 

updated vector acts as the new vector for slot ‘q+1’. Vq+1 is thus created. As per the 

service policy (which we describe shortly), when an AP decides to switch state from the 

current node, it reorders the vector V at the end of that slot. Thus explicitly stating, the 

vector V is updated in every slot but reordered only in slots where the AP switches its 

state.  

During the re-ordering procedure, it might be the case that two nodes have the 

same ‘r’ value.  The AP then assigns higher precedence to the node with a lower ‘x’ 

value. This decision might apparently seem counter-intuitive but it turns out to be the 

most power-efficient choice. This decision was decided upon by examining the policy 
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generated by the 2-user dynamic programming formulation under similar circumstance 

[44].  

If further the ‘x’ values of two nodes are equal then the AP assigns a higher 

precedence to the node that has consumed higher power till that point in time. If a tie 

exists even after the above classifications, then precedence of one node is chosen 

randomly over the other. 

6.2.2  Service Policy 
 

The service policy for the Steep Descent Method is exactly the same as the Round 

Robin and the SSF scheme described in Chapter 5. However for continuity sake, we 

describe the service policy here again.  

When the current node is in the awake state, there are primarily two tasks that 

have to be performed. First, the current node has to receive the packets that have been 

buffered for it at the AP. In this section we discuss the first task. We postpone the 

discussion of the second task until the next sub-section. We describe the actions followed 

by the AP while transmitting packets to a particular node. 

Let us assume that node ‘m’ is the current node, and that it is currently in the 

awake state. As mentioned previously, node ‘m’ has two buffers which we refer to as 

‘Sm’ and ‘Rm’ respectively. Recall that any packet that arrives for the current node when 

it is in the awake state will be stored in buffer Rm. In every slot, there are two scenarios 

that can possibly arise: 

I. Buffer Sm can have greater than 0 packets 
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II. Buffer Sm can have 0 packets 

We now discuss the actions executed by the AP under the two different scenarios. 

I. Buffer Sm has greater than 0 packets: 

In the above scenario, the AP first checks the state of the next node. Again, there can be 

two possible scenarios: 

a) Next node can be in the sleep state 

b) Next node can be in the awake state 

Based on the above scenario, the AP executes different actions which we discuss below. 

a) Next node is in the sleep state: 

In such a case, the AP transmits a packet to the current node ‘m’ from its buffer Sm. If 

both buffers Sm and Rm are empty, the AP switches its state from the current node thus 

marking the end of the service duration of current node. The current node ‘m’ transits to 

the sleep state.  

b) Next node is in the awake state: 

In such a case, the AP transmits a packet to the current node ‘m’ from its buffer Sm. If 

buffer Sm becomes empty, the AP switches its state from the current node, thus marking 

the end of the service duration of the current node. Note that unlike the previous case, the 

AP does not check to see the status of buffer Rm in this case. The current node ‘m’ 

transits to the sleep state.  
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II. Buffer Sm has 0 packets: 

If the AP encounters a situation where buffer Sm is empty, it checks for two things –  

• the state of the next node and  

• the buffer Rm  of the current node 

We now enumerate the actions executed by the AP for each of the three possible 

scenarios enumerated below. 

a) Next node is in the awake state and Rm. has greater than 0 packets: 

In the above scenario, the AP transfers the packets from buffer Rm to buffer Sm and 

transmits one packet to the current node. If the number of packets in Sm then reduces to 

either 0 or is less than the number of packets in Snext node, then the AP switches its state 

from the current node thus marking the end of the service duration of current node.  

b) Next node is in sleep state and Rm. has greater than 0 packets: 

In this case, the AP transfers the packets from buffer Rm to buffer Sm and transmits one 

packet to the current node. If the number of packets in Sm then reduces to 0 then the AP 

switches its state from the current node, thus marking the end of the service duration of 

the current node.  

c) Rm has 0 packets: 

In this scenario the AP switches its state from the current node thus marking the end of 

the service duration of the current node.  
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6.2.3  Calculating the Next Sleep Duration 
 

In section 6.2.2 we said that when the current node is in the awake state, there are 

primarily two tasks that have to be performed. First, the current node has to receive the 

packets that have been buffered for it at the AP. After the AP has transmitted all or some 

of the data packets to the current node, it might choose to switch its state to another node 

thus marking the end of the service duration of the current node. In this case we need to 

determine the sleep duration of the current node. We define a “cycle” for a particular 

node ‘m’ as the number of consecutive slots for which it remains in the awake state 

followed by the number of consecutive slots for which it remains in the sleep state. Our 

algorithm calculates this sleep duration through an adaptive “trial and error” mechanism. 

It examines the average delay suffered by the data packets buffered for the current node 

in the recent past and compares it to the nodes tolerable delay value. It assigns a sleep 

duration based on this observation. If the (CD)m value for node ‘m’ is “almost equal” to 

its Dm value, then the algorithm assigns the same sleep duration for node ‘m’ in the next 

cycle as well. If however the (CD)m value for node ‘m’ is “slightly less” than its Dm 

value, then the algorithm assigns a sleep duration for node ‘m’ that is “slightly longer” 

than the current sleep duration in the next cycle. Otherwise, it assigns a “longer” sleep 

duration for node ‘m’ in the next cycle. We use parameters ‘K’ and ‘Y’ (which we define 

shortly) as tools to control the increment of a node’s sleep duration. We now provide a 

more precise description of our algorithm that calculates the sleep duration of a particular 

node. 
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Let us assume that node ‘m’ is the node whose sleep duration we wish to 

calculate. Recall that the tolerable delay for node ‘m’ is given by Dm, and (CD)m is the 

average packet delay of node ‘m’ that is calculated at the end of every slot.  

1> Calculate δ :   

The algorithm calculates δm which is defined as the quantity  

( Dm - (CD)m ). 

 δm can be equal to, greater than or less than 0.  

 

2> Determine Maximum Sleep Duration:  

We define ‘M’ to be a parameter that can take positive values only. The maximum 

number of consecutive slots a node ‘m’ can sleep for is then defined as : 

(MAXSLEEP)m = M(Dm) 

 

3> Determine values of ‘K’ and ‘Y’: 

We define Κ and Y to be two parameters that can acquire different positive values based 

on different δ values as outlined in 
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Table 6.1. The table also shows the action that the algorithm takes on altering the sleep 

duration of a node in the next cycle under different conditions which are considered in 

the first slot of the current cycle. 



    

  

83

Table 6.1: Sleep Prediction Protocol for the SDM Scheme 
 

 γ1 ≤ δ ≤ γ2 γ2< δ ≤ γ3 δ > γ3 

δ ≥ 0 Lengthen 

sleep 

Κ = α1 

Y = £1 

Lengthen 

sleep 

Κ= α2 

Y = £2 

Lengthen 

sleep 

Κ= α3 

Y = £1 

δ < 0 Shorten 

sleep 

 

Shorten 

sleep 

 

Shorten 

sleep 

 
 

For example, if we assume node ‘m’ had a positive value for δm at the beginning of the 

current cycle, and if the δm value was γ’, where γ1 ≤ γ’ ≤ γ2, then the parameters K and Y 

would acquire the values of α1 and £1 respectively.   

 

4> Calculate (I): 

For a node ‘m’, we define the parameter - Increment = (Im) = Κ(δm)2 + Y 

 

5> Update “Calculated Sleep Duration” (CSD):  
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Initially, at time t=0, (CSD)m is set to Dm . 

We update CSD of  node ‘m’ as follows.  

      (CSD)m = max{ (CSD)m + Im , MAXSLEEP}; if  δ ≥ 0 

                    = Dm , otherwise 

 

The node ‘m’ is then subjected to sleep for (CSD)m slots. In every cycle, when a node 

transitions to the sleep state, the algorithm executes the five steps mentioned above. 

Obviously the value of  (CSD)m is updated in every cycle. 

6.3 The Static “SLEEP EQUALS DELAY” (SED) Algorithm 
 

A conservative mechanism to facilitate sleeping of a wireless node while still 

meeting an average packet delay constraint is to allow the node to sleep for a duration no 

longer than the desired average packet delay requirement. We refer to such a scheme as 

the “Sleep Equals Delay” (SED) scheme. This scheme is often implemented in 

commercial WLANs. Given our system model where time is divided into discrete units 

called slots with a packet arrival rate λ (0<=λ<=1) in every slot, the above mechanism 

guarantees that any “practically feasible” average packet delay requirement of a system 

will be met.  

For fairness, the functionalities of the SED scheme, namely the tasks that are 

performed in every slot, the service order and the service policy are exactly the same as 

described for the SDM scheme in section 6.2. The only functionality of the SED scheme 

that is different from the SDM scheme is the procedure by which “Next Sleep Duration” 
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for a particular node is calculated. To prevent repetition we refrain from re-stating the 

entire SED algorithm. Instead we only discuss the procedure by which the next sleep 

duration of a particular node is calculated. In the SED scheme, for any node ‘m’,  

      (CSD)m   = Dm , ∀ δ 

 i.e every node is subjected to a sleep duration equal to its maximum tolerable packet 

delay in every cycle. The sleep duration is independent of the value of δ or λ. 

In the next section, we show via our simulation results that such a static sleep 

scheduling mechanism though guarantees to deliver the required QoS, is not always the 

most power efficient scheme especially for non uniform traffic arrivals. 

 

6.4 Simulation Setup and Results  
 

We wrote a computer program to implement both the adaptive and the static “Sleep 

Equals Delay” (SED) algorithm. We first compare the power consumption of our 

Adaptive SDM scheme to the lower bound on the average power consumption that we 

had derived by solving an optimization problem in Chapter 4.6. We consider a Bernoulli 

traffic arrival pattern with λ=0.1. We assume the following values for the several energy 

costs: Pa= 1.0, Pas= 0.0001, Psa=0.01 and Ps=.001. The values of these energy costs are on 

a relative scale to each other and have been acquired from [7]. Figure 6.1 represents a 

comparison between the overall average power consumption per slot of a system 

comprising of two wireless nodes that are served by a single AP and the lower bound on 

average power consumption as computed in Chapter 4.6. The X-axis represents the 



    

  

86

average packet delay and the Y-axis represents the average power consumption per slot 

for the entire system. We see from Figure 6.1 that the overall average power consumption 

of a system running our SDM scheme is fairly close to the theoretical lower bound on 

power consumption. What is lost in terms of power consumption by our algorithm, is 

gained in terms of ease of implementation, simplicity, speed and most importantly 

scalability. 

We next compare the power consumption of a system comprising of four wireless 

nodes executing the SED scheme with the power consumption of a similar system 

executing the adaptive SDM scheme. In order to demonstrate how our adaptive algorithm 

dynamically adapts to the packet arrival rate, we consider the following Markov 

Modulated Bernoulli traffic arrival pattern pictorially depicted in Figure 6.2.  

Let us consider a packet generator that is capable of being in one of the three 

possible states – ON1, ON2 and ON3. Each state is associated with a particular value of 

λ, say λ1, λ2 and λ3 respectively. The packet generator has the capability to switch from 

one state to another with specific transition probabilities. Figure 6.2 represents the 

transition probabilities and the respective values of λ1, λ2 and λ3 that we use in our 

simulation.  

  Figure 6.3 represents the overall average power consumption per slot for a system 

comprising of four wireless nodes that are served by a single AP. We compare the power 

consumption of such a system when it operates under the SED scheme and then again, 

under the adaptive SDM scheme. The result in Figure 6.3 has been generated using the 

Markovian traffic model as depicted in Figure 6.2. In Figure 6.3, the X-axis represents 
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the average packet delay of the system while the Y-axis denotes the average power 

consumption per slot of the entire system. The data on the graph wes generated by 

running the simulation for 300,000 slots and averaged over 10 runs. The values of the 

different energy parameters that we used in our simulation are as follows: Pa=1, 

Pas=0.0001, Psa=0.01, Ps=0.001. It is evident from Figure 6.3, that the adaptive SDM 

algorithm consumes significantly less power than the SED scheme. This can be attributed 

to the fact that the SDM scheme has the capability to assign sleep durations to a node, 

based on its individual packet arrival rate and average packet delay constraint. It also has 

the ability to dynamically adapt to changes in packet arrival rates. The adaptive algorithm 

exploits this feature to subject a node to longer sleep durations when the packet arrival 

rate for it is lower, thus minimizing the power consumption. The static SED scheme has 

no such provision and thus cannot utilize the varying traffic condition to its advantage. 
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Lower bound vs SDM Scheme
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Figure 6.1: Comparison of Power consumption between the SDM scheme and the 

lower bound 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 6.2: A Markov Modulated Bernoulli Packet Arrival Model 
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SED Scheme vs Adaptive Scheme
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Figure 6.3: Comparison of power consumption between the SED scheme and the 

SDM scheme for a 4 user system with a MMBP traffic arrival model 
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7 Closing Remarks 
 

7.1  Research Summary 
 

There are numerous existing and upcoming wireless applications (e.g. 802.11 based 

WLANS, sensor networks, ad hoc networks, RFIDs, paging systems) that require a 

number of mostly-dormant wireless nodes to be communicating with each other or with a 

central base station, intermittently. Since these nodes are battery powered, they are 

severely energy constrained. Hence in order to save energy and thereby prolong the 

system lifetime, it makes sense for these nodes to transit to a “sleep” state when they are 

not communicating with their peers. In this dissertation we are interested in the problem 

of optimizing the timing and duration of sleep states of a wireless node with the objective 

of minimizing power consumption with respect to a QoS constraint. The QoS parameter 

we have focused on is average packet delay. 

Unlike other approaches [10][4] that uses a separate, less power hungry wakeup 

radio that essentially fulfils the role of an out-of-band paging channel designed to 

periodically listen for wakeup beacons we perform dynamic power management on 

wireless nodes by subjecting the nodes to sleep for an “optimal” duration. We present 

three algorithms that do not require the knowledge of current or past packet arrival 

history of a wireless node. Our algorithms compute the sleep duration of a wireless node 

as a function of its average packet delay constraint. It learns the traffic behavior over time 

and adapts its sleep-scheduling mechanism according to the traffic trend coupled with the 

average packet delay constraint. The wireless node is then allowed to sleep for the pre-



    

  

91

determined “optimal” number of slots. Our adaptive schemes dynamically subject a 

wireless node to sleep durations that minimize power consumption while meeting an 

average packet delay constraint. We calculate a theoretical lower bound on the average 

power consumption of such delay constrained wireless nodes and show that our schemes 

perform favorably close to the lower bound. In addition, we compare one of our schemes 

to the static sleep mechanism [40] deployed by most 802.11 vendors and show that for 

irregular, bursty traffic our scheme outperforms the static sleep scheduling protocol. 

7.2  Future Directions 
 

The scheduling framework and approach we have developed in this dissertation is 

fairly general and allows us to study a broad class of “sleep” scheduling problems. Two 

major extensions of our work are listed below. 

• Energy Efficient Uplink Transmission : 

In our model we focus on the downlink traffic alone, i.e packet transmission from the 

transmitter to the receiver. Adding a packet transmission scheme for the uplink traffic 

which has the same average packet delay constraint as the downlink traffic will be a 

trivial task for the scheduling schemes we have developed. Whenever a wireless node is  

in the awake state and ready to receive its packets from the transmitter, it can also send 

the packets to the transmitter in those same slots. However, if the packet delay constraint 

for the uplink traffic is different from that of the downlink traffic then such a scheme will 

not be efficient in meeting the delay constraint. This aspect of minimizing power 

consumption while meeting the average packet delay constraint for both the uplink and 

downlink traffic can pose to be a very interesting problem. 
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• A Time Varying Channel :  

In our framework, we have assumed a static and perfect channel condition that does 

not vary with time. Adding a more realistic channel condition – one that is time varying – 

is desirable. It will also add a new dimension to the problem. Scheduling the sleep time 

and duration shall not only be a function of the packet delay constraint of a node but also 

the channel condition as well.  
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