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Abstract—Manual labor in tree management is expensive and
not efficient enough to track changes in the number and distribu-
tion of trees in a large area. Recent methods focus on automatic
counting using deep-learning networks, in particular density
map-based methods, in aerial images. This research introduces
two contributions: a new ground truth generation practice to
boost the training effectiveness by minimizing the loss of labeled
trees in the target density maps; and a combination of a Vision
Transformer (ViT) and a dilated convolutional neural network
(CNN), termed TreeVision, to generate high-quality density maps.
The combination of these two methodologies provides us with
high-quality ground truths to extract rich contextual information
by the global self-attention performed by ViT and a large
receptive field of dilated convolutions. Empirically, both of our
proposals yield positive results, in particular, better performance
of models trained in updated ground truth and state-of-the-
art results when evaluating TreeVision on two benchmark tree-
counting datasets (Yosemite and KCL-London). Qur TreeVision
delivers a 9.29% lower Mean Absolute Error (MAE) in the KCL-
London dataset and competitive results in the Yosemite dataset
in comparison with previous leading methods.

I. INTRODUCTION

Trees are vital biological resources that serve many pur-
poses relating to human well-being, such as agriculture [1],
[2], human health [3], [4], [5], or carbon sequestration and
greenhouse effect alleviation [3], [5]. Additionally, since man-
ual labor was barely effective for large areas, a clamor for
automatic counting or estimating the number of trees in a
specific area has arisen to meet the need for statistical analysis
in management. Many counting methods have been introduced
with a variety of input sources, which are primarily remote
sensing imagery [2], [6], [7], retrieved by various manned or
unmanned devices such as satellites [8] or UAVs [2]. Along
with the exponential applications of DNNs and Deep Learning,
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many Convolutional Neural Network (CNN) models have been
introduced to solve this problem efficiently which can be
classified into two main types. The first one utilizes bounding
box annotations and outputs the number of trees detected as
in a tree detection task [11]. The second one applies emerging
and trending point-based annotations and density maps [6],
[71, [8], [12] which is recently ubiquitous for counting objects
in high-density images such as in [14], [15], [13]. Approaches
deployed for this kind of annotation are not prone to typical
errors of bounding box annotations such as overlapped areas
or missing details. However, density map-based methods rely
heavily on the quality of the ground truths to well extract
features and estimate dense values at the pixel level.

In this paper, we propose a new ground truth generation
practice that is improved from [39] for density map-based
methods in the tree counting task. Our method produces
more accurate density maps and better performance of models
trained with the proposed ground truths. We also propose
a new density map-based model for the tree counting task
inspired by CSRNet [15], originally introduced in the crowd
counting field, with a new Vision Transformer backbone.
Firstly introduced in [16], attention-based methods have ap-
pealed to researchers by their power of global context consid-
eration and better suitability for domain generalization than
the traditional CNN model.

II. LITERATURE REVIEW
A. Density maps in tree counting

Counting trees in a dense forest canopy is considerably
difficult because trees can appear continuously and overlap
each other in aerial images. Many early research focuses
on detection-based approaches by identifying and localizing
individual trees with bounding boxes using Mask-RCNN [18]
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YOLO family [19], or Faster R-CNN [20]. However, in
extremely thick tree regions, the detection-based approaches
perform unsatisfactorily due to occlusion and cluttered context
[12], [15], [20], [21].

Therefore, the density map-based methods, which utilize
spatial information to increase performance, have been intro-
duced to tackle the tree counting task. A density map is a
form of visualization in computer vision and spatial analysis,
generated by applying a Gaussian filter, which aggregates
and smooths individual data points represented as dots into
continuous intensity values [21]. In the context of images,
density maps can be generated from dot maps where each
dot represents an object or point of interest in the image
[22]. The integral of this density map provides a quantitative
representation of the total number of objects in the image.
Cheng and Shang [8] combine CNN, a transformer encoder,
and a Density Map Generator to predict the density of trees.
In [12], a semi-supervised framework for tree counting is
built upon a pyramid vision transformer to extract multi-
scale features. In [23], the authors compiled a tree-counting
dataset comprising 24 GF-II images. Their approach involved
rasterizing point labels to match the spatial resolution and
subsequently applying discrete Gaussian kernel blurring to
create density maps.

B. Vision Transformer

The success of Transformer [16] in Natural Language
Processing has motivated researchers to apply attention-based
methods to Computer Vision tasks to which CNN-based
models are the dominant approach. In [38], a novel network
called Pyramid Attention Network is introduced with Feature
Pyramid Attention and Global Attention Upsample modules
to extract global contextual information for semantic seg-
mentation. Vision Transformer (ViT) [24] also employs an
attention-based approach with a pure Transformer architecture
tackling classification tasks. It is kept as close to the original
Transformer as possible with no image-specific inductive
biases and a standard Transformer encoder. The encoder com-
prises alternating layers of Multi-head Attention and Multi-
Layer Perception blocks whose inputs are embedded fixed-
size patches added with learnable position embeddings and
an extra [class] token [25]. ViT delivers modest results when
training in mid-sized datasets but superior performance in
large datasets compared with state-of-the-art CNNs. Following
the success of ViT, many variants have been introduced, for
example, SimpleViT [26], T2TViT [27], CrossViT [28], etc.
improving the performance of Transformer-based models in
vision tasks. Meanwhile, in [29], the authors combine Vision
Transformer with Mask-RCNN [30], a convolutional neural
network, to create ViTDet. ViTDet explores two main ideas
to maintain a simple design while still benefiting from high-
resolution inputs including a Simple Feature Pyramid instead
of a conventional hierarchical Feature Pyramid Network (FPN)
[31] and a backbone adaption with a pre-trained model from
Masked Autoencoder (MAE) [32].

III. METHODS

A. Proposed Ground Truth Generation Method

1) Density map generation: The ground truth tree density
map is derived from the keypoint annotations of the trees.
To accomplish this, we adopt the method outlined in [8]
and [39], which utilizes geometric-adaptive Gaussian functions
to account for the varying size of each tree. This approach
dynamically adjusts the spread of the Gaussian filter based on
the average distance to the k nearest neighbors, ensuring that
tree spreads do not overlap each other. The Gaussian filter is
set to operate in constant mode, extending its effect beyond
the image boundaries. The function is defined as:

N
F(z) =Y 6 (z— ;) x Gy, with oy = Bd; (1)

i=1

In this case, d; denotes the average distance of the k nearest
neighbors, and § is the Dirac delta function for each targeted
item z; in the ground truth. The density map is produced
by convolving o(x — x;) with a Gaussian kernel that is
parameterized by o; (standard deviation), where x denotes
a pixel’s location in the picture. We conduct our experiment
using the same methods as described in [39], with £ = 3 and
8 =0.3.

2) Contribution on density map generation: Aerial pho-
togrammetry in forestry must cover a vast region which
significantly increases the image resolution to retain as much
information as possible. For example, on the Yosemite dataset
[8], a tree counting dataset, the image has an enormous dimen-
sion of 19200 x 38400 pixels which necessitates cropping to
a smaller size. However, because the cropping process divides
the tree area into smaller images and breaks the continuity
of the area across each image, the calculation for geometric-
adaptive Gaussian filters may be affected, especially for trees
at the edges where the nearest neighbor could be cropped
into the adjacent image. Moreover, because the values spread
beyond the edges are lost, if we apply the Gaussian Filter to
a small-size cropped image, the number of objects along the
edges will increase leading to a bigger loss of target trees than
applying the Gaussian Filter to a bigger image.

To address these issues and reduce information loss, we ex-
plore applying the Gaussian filter to larger images (1536x1536
pixels, three times the required size) and subsequently splitting
them into nine sections to achieve the desired size. The sample
density maps are provided in Fig. 1. It can be observed that
the cropped density map contains more information on the
right side and bottom edge compared to the original left-
side map. This discrepancy can be attributed to the fact that
the larger image retains the relationship among trees which
affects the spreading of the Gaussian filter and the number
of trees at the edges of a 1536x1536 image is fewer than
in nine 512x512 images leading to a smaller loss of objects.
As a result, the density map generated from the larger image
captures more information near the edges, which boosts the
learning of models.



(A)

(B)

Fig. 1. Visualization of different ways of generating density maps. In (A),
density maps are generated directly in size 512x512. In (B), density maps
are constructed initially in size 1536x1536 and then cropped into 9 sections
of size 512x512. Red circles indicate the difference in two ways to generate
density maps in the required size.

B. TreeVision architecture

We draw inspiration from the pioneering work in [15] on
CSRNet, which has set a remarkable benchmark in leveraging
deep learning for crowd density estimation. CSRNet designed
with VGG16 at the backbone and dilated convolutions follow
enables efficient handling of variations in crowd density and
occlusions surpassing traditional CNN architectures. Based on
this foundation, we adopt Vision Transformer, in particular
ViT-Base as the backbone of our model, combining its global
attention mechanism with the large receptive field of dilated
convolutions to capture comprehensive contextual information
in images. The resulting architecture, termed TreeVision, is
depicted in Fig. 2.
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Fig. 2. Configuration of TreeVision, in which the parameters are denoted
as (layer type)(kernel size)-(number of filters)-(dilation rate). Conv stands for
a convolutional layer and Trans stands for a transposed convolutional layer.
If the dilation rate is equal to 1, the corresponding dilated convolution is
equivalent to a standard convolution.

1) Dilated Convolution: Density estimation requires ex-
tracting contextual information locally and globally to predict
at a pixel level [34]. Conventional layers of pooling and
standard convolution can be implemented in a deep network to
look at context in a large field but they consequently increase
the number of trainable parameters as well as calculations
and lose details during processing [15]. A solution suggested
by Yu and Koltun [35] is to use dilated convolutions which
can exponentially expand the receptive field without loss of

resolution and maintaining more details. Yu and Koltun [35]
define a 2D Dilated Convolution as follows:

(Frik)(p) = > F(s)k(t)

s+lt=p

2

where *) is referred to as the dilated convolution, (F*k)(p) is
the output for input F(s) and discreet filter k(t). The parameter
I is the dilation rate which determines the size of gaps in
the filter. As shown in Fig. 3, the higher the dilation rate is,
the more sparse the kernel used in the dilated convolution
becomes. In [15], [36], [37], [9] dilated convolutional layers
have been implemented and proved effective in improving
the performance of neural networks by capturing more high-
level contextual information without increasing the number of
parameters or computations. Inspired by the model CSRNet
[15], we implement our dilated convolutional networks with
3x3 kernels and dilation rates equal to 2. An extra 1x1 standard
conventional layer is added at the end of the architecture to
estimate a density map.

T

Kernel size:3x 3
Dilation rate: 3

Kernel size:3x3
Dilation rate: 2

Kernel size:3x3
Dilation rate: 1

Fig. 3. Visualization of dilated convolutions with dilation rates ranging from
1 to 3. This figure is adapted from [15].

2) Vision Transformer as the backbone: We choose ViT-
Base from [24] with a 16x16 input patch size as the backbone
of our model following the configurations of ViTDet [29]. The
primary components of ViTDet’s backbone remain close to the
original work in [24] with positional and patch embeddings
and Transformer blocks. Additionally, ViTDet proposes two
new features to the backbone including a Simple Feature
Pyramid (SFP) and backbone propagation. The SFP is a simple
hierarchical design having the last feature map of ViT passed
through sets of convolutions and deconvolutions in parallel to
extract multi-scale information. This strategy is introduced to
replace the conventional Feature Pyramid Network to elimi-
nate the hierarchical constraints of the ViT backbone. Another
contribution of ViTDet is backbone propagation with the help
of window attention. In this component, ViTDet aims to move
the backbone toward a task-agnostic approach with fewer
inductive biases, which lets the backbone be pre-trained with
irrelevant large datasets before fine-tuning with more specific
but scarce data. In our work, we remove the Simple Feature
Pyramid from our backbone to reduce the computation cost but
still retain the other features of ViTDet. Moreover, while the
last feature map of Vision Transformer has 768 channels and is
1/16 the input resolution, the input of the dilated convolutions
requires 512 channels and the size of 1/8 the input. Hence, to



TABLE I
THE CHARACTERISTICS OF IMAGES AND TREE SAMPLES OF KCL-LONDON AND YOSEMITE DATASETS

Dataset Ratio Imase size Number Minimum number | Maximum number | Average density Total
(Train : Test) 8¢ Siz of images of trees of trees (tree/images)
KCL-London 452 : 161 1024 x 1024 613 4 332 155 95,067
Yosemite 1350 : 1350 512 x 512 2700 0 113 36 98,949
maintain an appropriate shape, we add, after the backbone, an
extra convolutional block that consists of a transposed and two 1 X
: tchi RMSE = or|? 4
standard convolutions. Switching from the VGG16 backbone A\ N Z Hyz —Y; H 4)
i=1

in the original work to the Vision Transformer helps us utilize
the global attention features of the new backbone to yield
better results and mitigate the reliance on the spatial biases
of convolutions which makes our model less vulnerable to the
changes in the spatial structure of the images.

IV. EXPERIMENT SETUP
A. Dataset

1) KCL-London dataset: This tree-counting dataset con-
tains 613 annotated and 308 unannotated images each having
a size of 1024x1024 [12]. The area is focused on London, the
United Kingdom. Within the labeled set, 452 samples are for
training and 161 samples are reserved for testing with 95,067
annotated trees in total. Because our model is trained in a
supervised manner, the unlabeled set is purposefully set aside.

2) Yosemite dataset: The study area is located at Yosemite
National Park, California, United States of America [8]. The
original image covers a 2262.5m x 4525.1m rectangular area
in reality(19200 x 38400 pixels in image). The total number
of labeled trees is 98,949. The data are collected from Google
Maps and divided equally into 4 regions, of which regions B
and D are used for training, while regions A and C are used
for testing. To compare with a state-of-the-art model [12], we
crop the images to 512x512 pixels and update the labels. The
total number of images in this size is 2700 images.

The features of the two datasets are presented in Table 1.

B. Metrics

To evaluate the performance of models, we take into
consideration the ground truth and predicted counts of trees
which are produced by taking the total value of all pixels
in the corresponding density maps. Following the published
works for crowd estimation [15] and tree counting [38], Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE)
are chosen as benchmarking metrics. Moreover, based on a
comprehensive comparison of the tree counting task [7], R-
squared (R?) is also adopted in this experiment. The three
metrics are defined as:

N
1 E GT

N
R — Dz Yi — yo "
- N —

it i — 7"

where N denotes the total number of samples, y; and inT

is the predicted count and ground truth count for the ¢ — th

sample respectively, and 7“7 represents the mean tree number

of all samples. Overall, lower MAE and RMSE and higher R?
correlate with better performance.

®)

C. Training setup

We implement TreeVision and CSRNet on Google Colab
using a T4 GPU, batch size equal to 1, and trained for 20
epochs for the former and 25 epochs for the latter on each
dataset. Following the approach outlined in [15], the dataset
is multiplied by four and randomly shuffled for each epoch.
Additionally, we initialize our dilated convolutions with the
weights of CSRNet trained in dataset ShanghaiB [39] and our
Vision Transformer backbone with the weights of ViTDet [29]
to expedite training. For optimization, we utilize the AdamW
optimizer with a learning rate of 10~% and a weight decay of
5x107%,

D. Comparisons of different density map generation method

To validate the effects of different ground truths on the
training effectiveness, we train and evaluate TreeVision and
CSRNet with two different sizes of density map generation
for the Yosemite dataset [8]. From Table III, although the
number of trees in the proposed density maps is higher after
applying the Gaussian filter with 45666 objects compared to
43324 in the current method, both models make fewer errors
when trained with our proposed ground truth. Similar to the
experiments in [10], because of the reliance on spatial biases of
CNN, in particular, the VGG16 backbone of CSRNet, ampli-
fied by the noises of batch size equal to 1, CSRNet witnesses a
more significant drop in the MAE of 2.33 compared to only a
slight decrease of 0.2 of TreeVision. The positive effect of our
proposed method is also reflected in Fig. 4. The TreeVision
model trained with the normal method tends to predict fewer
trees than the actual number with the graph widening at the
lower half. Meanwhile, the results produced in the proposed
method form a taller graph with higher similarity to the targets.



TABLE II
COMPARISONS WITH STATE-OF-THE-ART METHODS ON KCL-LONDON AND YOSEMITE DATASETS.

LOWER MAE AND RMSE AND HIGHER R?

CORRELATE WITH BETTER PERFORMANCE.

THE BEST AND SECOND-BEST RESULTS ARE WRITTEN IN BOLD AND ITALIC RESPECTIVELY.

Dataset KCL-London Yosemite
Method MAE| RMSE| R?1 | MAE| RMSE| R%%
MCNN 25.87 34.12 0.45 10.44 12.45 0.61
CSRNet 20.21 25.69 0.69 7.25 9.35 0.76
SASNet 24.33 30.12 0.56 6.33 8.46 0.81
EDNet 26.18 32.02 0.52 9.92 12.39 0.60
S-TreeFormer 18.52 24.32 0.72 4.29 5.85 0.91
TreeVision (ours) 16.80 21.98 0.76 4.58 6.17 0.89

TABLE III

COMPARISON OF MODELS ON DIFFERENT GROUND TRUTHS OF YOSEMITE DATASET.

LOWER MAE AND RMSE AND HIGHER R?

CORRELATE WITH BETTER PERFORMANCE.

Yosemite (512x512)

Yosemite (1536x1536)

Method MAE| RMSE| R?1 | MAE| RMSE| R?*?%
CSRNet 725 9.35 0.76 4.92 6.48 0.89
TreeVision 4.58 6.17 0.89 432 5.76 0.91

100 100

|

80 80
]
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Fig. 4. Comparison of the target and predicted number of trees in the
normal and proposed test set of the Yosemite dataset. The inference results
are produced by TreeVision trained on the corresponding ground truth.

E. Comparisons with state-of-the-art Tree-counting models

To evaluate the effectiveness of TreeVision, we compare it
with models reported in [12] including MCNN [39], CSRNet
[15], SASNet [40], EDNet [23], and S-TreeFormer [12],

among which MCNN, CSRNet and SASNet are state-of-the-
art models in crowd counting using density estimation and
have been implemented for the tree counting task in [12].
The results shown in Table II reveal that our model delivers
competitive performance to the previous leading models in
both KCL-London and Yosemite datasets. In the experiment
of the KCL-London dataset, TreeVision achieves the best
accuracy with 9.29% lower MAE and 9.63% lower RMSE
than S-Treeformer. Meanwhile, on the Yosemite dataset, our
model ranks second in all three metrics with small gaps from
S-Treeformer, however, we still outperform the other models
by a large margin.

V. CONCLUSION

In this paper, we propose a new ground truth generation
practice involving applying a Gaussian Filter in a bigger
region before cropping the images down to the required size.
This method is proven to boost the training effectiveness and
discovers the potential of using bigger original ground truth
images to improve the performance of tree-counting models.
We also introduce a novel framework called TreeVision based
on CSRNet architecture that achieved competitive results to



its predecessors in the tree counting task. Combining layers
of global self-attention and dilated convolutions, the model
attains a more detailed look at the images to generate high-
quality pixel-wise density estimation.
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