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Comparison of DNA methylation measurements from EPIC BeadChip and 
SeqCap targeted bisulphite sequencing in PON1 and nine additional candidate 
genes
Dennis Khodasevich a,*, Anna R. Smith a,b,*, Karen Huena, Brenda Eskenazic, Andres Cardenasa,b,*, 
and Nina Hollanda,*

aDivision of Environmental Health Sciences, Children’s Environmental Health Laboratory, School of Public Health, University of California, 
Berkeley, CA, USA; bCenter for Computational Biology, University of California, Berkeley, CA, USA; cCenter for Children’s Environmental 
Health, School of Public Health, University of California, Berkeley, CA, USA

ABSTRACT
Epigenome-wide association studies (EWAS) are widely implemented in epidemiology, and the 
Illumina HumanMethylationEPIC BeadChip (EPIC) DNA microarray is the most-used technology. 
Recently, next-generation sequencing (NGS)-based methods, which assess DNA methylation at 
single-base resolution, have become more affordable and technically feasible. While the content 
of microarray technology is fixed, NGS-based approaches, such as the Roche Nimblegen, SeqCap 
Epi Enrichment System (SeqCap), offer the flexibility of targeting most CpGs in a gene. With the 
current usage of microarrays and emerging NGS-based technologies, it is important to establish 
whether data generated from the two platforms are comparable. We harnessed 112 samples from 
the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth 
cohort study and compared DNA methylation between the EPIC microarray and SeqCap for PON1 
and nine additional candidate genes, by evaluating epigenomic coverage and correlations. We 
conducted multivariable linear regression and principal component analyses to assess the ability 
of the EPIC array and SeqCap to detect biological differences in gene methylation by the PON1−108 
single nucleotide polymorphism. We found an overall high concordance (r = 0.84) between 
SeqCap and EPIC DNA methylation, among highly methylated and minimally methylated regions. 
However, substantial disagreement was present between the two methods in moderately methy
lated regions, with SeqCap measurements exhibiting greater within-site variation. Additionally, 
SeqCap did not capture PON1 SNP associated differences in DNA methylation that were evident 
with the EPIC array. Our findings indicate that microarrays perform well for analysing DNA 
methylation in large cohort studies but with limited coverage.
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Introduction

Epigenetic mechanisms, such as DNA methyla
tion, histone modifications, and non-coding 
RNAs, regulate gene expression by altering DNA 
accessibility and chromatin structure[1]. DNA 
methylation is the most widely investigated epi
genetic mechanism. It occurs when a methyl 
group is added at a cytosine nucleotide that pre
cedes a guanine (CpG dinucleotides), influencing 
DNA function by altering transcriptional activity 
of a gene and chromatin accessibility and remo
delling [1,2]. The human genome contains 
approximately 30 million CpG sites distributed 

throughout several gene regions, including CpG 
islands, shores, shelves, and gene bodies. CpG 
islands are stretches of DNA with a high fre
quency of CpG dinucleotides that occur in proxi
mity to gene promoter regions[3]. It was 
previously believed that the majority of functional 
changes occurred in CpG islands, but more addi
tional research has shown that DNA methylation 
changes along CpG shores (regions within 2kb of 
islands) and within the gene body may also have 
functional effects on gene expression[4]. DNA 
methylation patterns are established during the 
prenatal period and vary by tissue and cell type 
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with the potential to be influenced by some envir
onmental exposures[5]. Differential DNA methy
lation is associated with ageing, cancer, and the 
development of cardiovascular and neurodegen
erative diseases [6–10]. This has generated 
increased interest in studying DNA methylation 
changes that may act as a mechanism through 
which environmental exposures could influence 
gene expression and health[11].

Epigenome-wide association studies (EWAS) are 
widely used to examine associations between DNA 
methylation and either exposures or health outcomes. 
At present, the Illumina HumanMethylationEPIC 
BeadChip (EPIC) DNA microarray is the most widely 
used technology for conducting EWAS in epidemio
logical studies, as it efficiently measures methylation 
at >850,000 CpG sites throughout the genome[12]. 
Recently, targeted next-generation sequencing 
(NGS)-based technologies have been developed, 
which assess DNA methylation at single-base resolu
tion[13], and are becoming more affordable and tech
nically feasible. While the content of microarrays is 
pre-selected and fixed, NGS-based technologies, such 
as Roche Nimblegen, SeqCap Epi Enrichment System 
(SeqCap)[14], offer the flexibility of assessing methy
lation of most CpGs [15] and enable the reproducible 
targeting of selected genomic regions, up to 210 Mb, 
from bisulphite-treated genomic DNA[14].

Despite technological availability, literature 
comparing the use of the two platforms in large 
human cohort studies is sparse. One study utiliz
ing DNA from whole blood samples from 96 par
ticipants found that overall bisulphite-based 
amplicon sequencing (BSAS), a method that com
bines bisulphite conversion with targeted amplifi
cation of regions of interest, transposome- 
mediated library construction, and benchtop 
NGS[16], correlated highly with EPIC arrays, how
ever exhibited substantial variation in sites where 
the magnitude of change via the EPIC array was 
greater than 5%[17]. Another study utilizing cord 
blood DNA from 4 participants compared the 
EPIC DNA microarray to a NGS-based technology 
similar to SeqCap, Illumina TruSeq Methyl 
Capture EPIC Kit (TruSeq), and found that 
although TruSeq offered greater read depth and 

excellent coverage, the methylation data generated 
from the EPIC array were more precise than that 
of TruSeq[18].

We aim to expand on prior studies [18] and 
compare the performance of the widely used EPIC 
BeadChip array with SeqCap sequencing metho
dology in terms of coverage, correlation between 
platforms, and identification of differential methy
lation by the PON1 gene, which was previously 
characterized[19]. We will harness blood samples 
from children participating in the Center for the 
Health Assessment of Mothers and Children of 
Salinas (CHAMACOS) longitudinal birth cohort 
study and compare DNA methylation in 10 
genes, including the well-studied PON1 gene, five 
PON1-related genes (PON2, PON3, ACHE, AHR, 
SP1), two genes that regulate DNA methylation 
(DNMT1, DNMT3B), and two candidate genes 
(TAPBP, VTRNA2-1) from our prior analyses 
that may be of interest for future studies in envir
onmental epidemiology.

Methods

Study participants

Participants were Mexican-American children 
from the CHAMACOS birth cohort study, which 
examined the impact of pesticides and other envir
onmental and social exposures on the health and 
development of children living in the Salinas 
Valley, California. A detailed description of the 
CHAMACOS cohort and results from prior epige
netic analyses were previously published 
[12,20,21]. For this study, we included 
a convenience subset of data from 112 seven-year- 
old children, who had sufficient DNA samples and 
DNA methylation measured on both the EPIC and 
SeqCap platforms. Study protocols were approved 
by the University of California, Berkeley. Written 
informed consent and verbal assent were obtained 
from adults and children, respectively.

Gene selection

We examined DNA methylation in 10 genes rele
vant to environmental epidemiology, including the 
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Paraoxonase 1 (PON1) gene on chromosome 7, 
which has a broad spectrum of functions ranging 
from pesticide sensitivity to inflammation and can 
serve as a useful model for integrating genetic and 
epigenetic data[19]. Paraoxonase 2 (PON2) and 
Paraoxonase 3 (PON3) were chosen due to their 
proximity to PON1 on chromosome 7 and their 
similar biological functions[22]. 
Acetylcholinesterase (ACHE), also located on 
chromosome 7, codes for the enzyme AChE, 
whose activity is associated with PON1 due to the 
PON1-catalysed hydrolyzation of organopho
sphates[23]. Aryl Hydrocarbon Receptor (AHR), 
on chromosome 7, codes for the AHR transcrip
tion factor, which plays a role in the induction of 
PON1 expression[24]. DNA methyltransferase 1 
(DNMT1) on chromosome 19 and DNA methyl
transferase 3 beta (DNMT3B) on chromosome 20 
play an integral role in maintaining DNA methy
lation[25]. SP1 on chromosome 12 encodes 
a transcription factor that positively regulates 
PON1 transcription[26]. Finally, we examined 
two additional genes, VTRNA2-1 (also known as 
miR886) on chromosome 5 and TAPBP on chro
mosome 6, which were differentially methylated 
region (DMR) hits of interest from our prior stu
dies[27].

Blood collection and processing

Blood specimens were collected by venipuncture at 
the CHAMACOS field office by a paediatric phle
botomist. Whole blood was collected in BD vacu
tainers® (Becton, Dickinson and Company, 
Franklin Lakes, NJ) containing no anticoagulant. 
These samples were centrifuged, divided into 
serum and clot, and stored at – 80°C at the 
Berkeley Public Health Biorepository, University 
of California, Berkeley. DNA was isolated from 
the banked blood clot samples using QIAamp 
DNA Blood Maxi Kits (Qiagen, Valencia, CA) 
according to the manufacturer’s protocol with 
minor modifications, as previously described[28].

EPIC methylation analysis and data processing

DNA was normalized to 55 μg/ml, and bisulphite 
conversion was performed on 1 μg aliquots of 
DNA using Zymo Bisulphite conversion Kits 

(Zymo Research, Orange, CA). DNA was whole 
genome amplified, enzymatically fragmented, pur
ified, and applied to the Illumina Infinium 
MethylationEPIC BeadChips (Illumina, San 
Diego, CA) according to the Illumina methylation 
protocol [29–31]. BeadChip processing was per
formed using robotics, and the Illumina Hi-Scan 
system was used for analysis. DNA methylation 
was measured at 866,836 CpG sites on the EPIC 
BeadChip. Quality control (QC) measures were 
previously described [21] and included use of 
repeats, internal standards, and randomization of 
samples across chips and plates.

DNA methylation data was initially processed 
using the R package minfi (v.136.0)[32]. Briefly, 
sample quality was estimated using the function 
getQC, and any samples with weak median methy
lated/unmethylated signal strength were dropped. 
Cell type proportions (CD8 T-Cells, CD4 T-Cells, 
B Cell, Monocytes, Granulocytes, and Natural 
Killer Cells) were estimated using the function 
estimateCellCounts in minfi, which uses the 
Reinius adult reference data set. Probes were 
mapped to genome, and sex was estimated using 
the functions mapToGenome and getSex, respec
tively. Functional normalization was applied using 
the function preprocessFunnorm. Failed probes, as 
well as any samples with � 1% of probes below 
the limit of detection, were identified and removed 
from normalized data using the function 
detectionP. Beta values were calculated from nor
malized data using getBeta. Any zero values in the 
betas were set to half the minimum observed non
zero value. Signal levels of type I and II probes 
were normalized using rcp from the package 
Enmix (v1.26.10)[33]. Batch effects associated 
with plates used during the bisulphite conversion 
step were estimated and removed using the 
ComBat method[34], as implemented in the 
R package sva (v3.38.0)[35]. Within the 7-year 
samples utilized for this study, no samples were 
dropped due to poor signal quality.

SeqCap methylation analysis and data 
processing

Browser extensible data (BED) files for SeqCap 
were created for all genes of interest using the 
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table browser in the University of California, Santa 
Cruz (UCSC) Genome Browser Gateway[36]. For 
promoter regions, we chose 2000 bp upstream of 
the gene. Genome locations were converted from 
hg19 to hg38 using the UCSC Genome LiftOver 
tool[37].

A total of 90 μL of DNA (normalized to 50ng/ 
uL, 260/280 > 1.8) from each participant was sent 
to the Functional Genomics Laboratory at the 
University of California, Berkeley for DNA methy
lation analysis by the Roche Nimblegen, SeqCap 
Epi Enrichment System, following company pro
tocol[14]. Raw sequencing data was then processed 
at the UC Davis Bioinformatics Core. Briefly, pair- 
end 151 bp raw sequencing reads were subjected to 
adapter removal by scythe-0.993. Bases that have 
qualities lower than 30 were trimmed using sickle- 
1.33, and trimmed reads that are less than 30 bp 
long were not considered for downstream analysis. 
The reads that have passed the above quality con
trol were aligned to the human genome (version 
GRCh38), using BSseeker2[38]. Bowtie2 [39] was 
used as the underlying aligner. Methylation status 
was identified using a built-in function in 
BSseeker2. The methylation results for the regions 
that include the selected genes, as well as 20 K bp 
up- and down-stream were aggregated using bed
tools-2.25.0[40].

Determination of PON1−108 single nucleotide 
polymorphism

The promoter single nucleotide polymorphism 
(SNP), PON1−108 was genotyped using 
a fluorogenic allele-specific assay (Amplifluor, 
Chemicon, Temecula, CA), as described pre
viously[19].

Statistical analyses

To assess the overall coverage and correlations, we 
calculated the Pearson correlation coefficient 
between EPIC array and SeqCap methylation 
values, for each CpG site common to both the 
EPIC array and SeqCap, across all 10 genes, to 
obtain an overall correlation per gene.

To assess the ability of the EPIC array and 
SeqCap to detect biological differences in DNA 
methylation, we used multivariable linear 

regression to determine whether PON1−108 SNP 
is associated with PON1 DNA methylation, using 
each of the technologies. We chose the functional 
PON1−108 SNP as a model for the detection of 
biologically relevant differential DNA methylation 
because the SNP is a known predictor of PON1 
gene methylation and affects PON1 enzyme quan
tity[19]. DNA methylation data were expressed as 
M-values, which are calculated as the log2 ratio of 
the intensities of methylated to unmethylated 
probes[41]. SeqCap data featured a relatively 
large number of methylation measurements read
ing 0 or 1. To avoid the formation of infinite 
values, betas of 0 and 1 were converted to 0.01 
and 0.99, respectively, prior to M-value 
conversion.

Linear regression models were fit for each CpG 
site using the following DNA methylation out
comes: (1) EPIC array DNA methylation values 
for PON1 CpG sites also included on SeqCap (14 
comparisons), (2) SeqCap DNA methylation 
values for PON1 CpG sites also included on the 
EPIC array (14 comparisons), and (3) all SeqCap 
DNA methylation values for the PON1 gene (255 
comparisons). Linear regression models were run 
with site-specific M-value as the dependent vari
able and PON1−108 genotype and relevant covari
ates as the independent variables, which included 
batch and cell-type proportions in the EPIC mod
els and cell-type proportions in the SeqCap mod
els, since batch effects were not a concern for 
SeqCap. The purpose of the first two models is to 
compare the ability of EPIC and SeqCap to detect 
differences in associations between genotype and 
methylation using only sites available in both plat
forms, while the final model serves to elucidate the 
number of associations detected from SeqCap, 
which provides higher gene coverage. We assessed 
statistical significance after adjusting for multiple 
comparisons using the Bonferroni correction.

In addition, we conducted principal component 
analyses (PCA) using spectral decomposition on 
the covariance matrix of the centred DNA methy
lation data matrix, consisting of methylation mea
surements in the 14 selected CpG sites in PON1. In 
both EPIC and SeqCap analyses, the first two 
principal components were extracted and used 
for visualization. Given the strong associations 
between the PON1−108 SNP and DNA methylation 
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within PON1, we then utilized linear regression to 
determine whether the first two principal compo
nents could predict the identity of the PON1−108 
SNP, using the SNP as the dependent variable, and 
the principal components and relevant covariates 
as the independent variables, which included batch 
and cell-type proportions in the EPIC models and 
cell-type proportions in the SeqCap models. All 
analyses were conducted in R (version 3.6.2 R 
Development Core Team).

Results

Study participants and design

Seven-year-old children from the CHAMACOS 
cohort with DNA methylation measured using 
both EPIC and SeqCap (n= 112) were included 
in the coverage and correlation analyses. Of 
these, 48 were assigned male and 64 were assigned 
female at birth. After excluding one participant 
with missing PON1−108 promoter polymorphism 
data, the final sample size for analyses examining 
detection of biological differences was 111 partici
pants, including 29 individuals with the CC geno
type, 60 individuals with the CT genotype, and 22 
individuals with the TT genotype. The CC geno
type has been associated with higher levels of gene 
expression, and thus lower levels of methylation, 
the CT genotype has been associated with inter
mediate levels of methylation, and those with TT 
genotypes have been associated with the highest 
level of methylation[19].

Coverage and correlations

Table 1 describes the 10 genes included in the 
reproducibility analyses, number of CpG sites 
assessed, beta distribution, and DNA methylation 
correlation between EPIC and SeqCap. SeqCap 
greatly expanded the number of CpG sites avail
able for analysis across the included genes. This 
increase in CpG site coverage ranged from a five- 
fold increase in TAPBP to an approximately forty- 
fold increase in SP1. Overall correlation of DNA 
methylation results between the two methods was 
relatively high (r = 0.84), with the individual genes 
exhibiting a wide range of correlation coefficients, 
ranging from −0.02 (TAPBP) to 0.88 (PON2) 

(Table 1). Although there was a wide range of 
correlation coefficients within each gene for the 
two methods, the overall patterns of correlation 
between the two methods were consistent 
throughout all genes (Table 1). EPIC DNA methy
lation values within each site tended to be concen
trated within a small range, while corresponding 
SeqCap values ranged more broadly and regularly 
featured outliers close to the extreme methylation 
values of 0 and 1 (Figure S1).

In PON1, SeqCap measured methylation at 255 
CpG sites, compared to 19 sites with the EPIC array, 
and particularly increased coverage within the gene 
body (Figure 1). Corresponding boxplots displaying 
methylation from SeqCap of the other included 
genes are shown in Figure S2. Both EPIC and 
SeqCap reveal similar overall methylation patterns 
in PON1, with highly methylated outer sites and 
moderately methylated central sites of the gene 
(Figure 2). However, EPIC methylation values 
within each site exhibit lower variability than 
SeqCap methylation values within each site. This 
pattern of SeqCap data exhibiting higher within- 
site methylation measurement variability was con
sistent throughout all genes included in this study 
(Figure S3). The high overall correlation (r = 0.84) 
between the two methods is largely driven by a high 
level of agreement in highly methylated sites and 
sites with the lowest methylation (Figure 3). 
Despite the high correlation, noticeable disagree
ment exists between the two methods in moderately 

Table 1. Summary statistics of genes included in the analysis, 
beta distributions, and correlations between DNA methylation 
measured using EPIC and SeqCap.

Gene Chr

EPIC 

sites 

(n)*

EPIC β mean 

(range)

SeqCap 

sites (n)

SeqCap β 

mean 

(range)

Pearson 

correlation 

coefficient (r)

Overall – 249 – 5006 – 0.84
ACHE 7 34 0.35 (0.00–0.98) 500 0.28 (0–1) 0.82
AHR 7 15 0.92 (0.62–0.98) 436 0.87 (0–1) 0.02
PON1 7 14 0.82 (0.20–0.98) 255 0.74 (0–1) 0.49
PON2 7 21 0.38 (0.00–0.97) 248 0.32 (0–1) 0.88
PON3 7 31 0.44 (0.01–0.97) 328 0.39 (0–1) 0.84
DNMT1 19 49 0.72 (0.01–0.98) 1397 0.62 (0–1) 0.74
DNMT3B 20 31 0.54 (0.02–0.97) 884 0.44 (0–1) 0.74
SP1 12 21 0.26 (0.01–0.96) 795 0.20 (0–1) 0.88
TAPBP 6 26 0.04 (0.00–0.24) 126 0.01 (0–1) −0.02
VTRNA2- 

1

5 7 0.38 (0.02−0.69) 37 0.30 (0–1) 0.48

Notes: *EPIC sites correspond to those also included in SeqCap and not 
total sites available on the EPIC array. 

Abbreviations: Chr, chromosome; EPIC, Illumina HumanMethylationEPIC 
BeadChip; SeqCap, Roche Nimblegen, SeqCap Epi Enrichment System. 
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methylated sites. Additionally, the SeqCap measure
ments exhibit a skewed distribution towards 0 and 1 
throughout the entire range of EPIC methylation 
measurements.

Detection of biological differences in DNA 
methylation

We aimed to characterize the utility of SeqCap to 
detect biologically relevant differences in DNA 
methylation by comparing its performance to that 
of the EPIC array. For this aim, we characterized 
associations between the functional PON1−108 SNP, 

which exerts a strong effect on PON1 enzyme 
expression, and DNA methylation within the PON1 
gene. Overall, SeqCap methylation measurements 
exhibit higher variability compared to the EPIC 
methylation measurements. SeqCap provides 
methylation measurements on CpG sites closer to 
the location of the PON1−108 SNP. EPIC contains 
measurements on CpG sites located 61 base pairs 
upstream and 85 base pairs downstream of the 
PON1−108 SNP, while SeqCap contains measure
ments on CpG sites located 9 base pairs upstream 
and 1 base pair downstream of the PON1−108 SNP. 
PON1−108 polymorphism-associated trends in PON1 

Figure 1. Complete CpG methylation distribution in the PON1 gene, measured by the Roche Nimblegen, SeqCap Epi enrichment 
system (SeqCap). All CpG sites in PON1 covered by SeqCap, organized by hg38 genome location. All CpG sites also included in the 
Illumina HumanMethylationEPIC BeadChip are shaded in red. Approximate locations of the promoter and gene body are labelled on 
the x-axis.

Figure 2. Distribution of methylation values in the PON1 gene. Each row contains methylation measurements from a single 
participant and each column contains all measurements from a single CpG site, organized by position in the hg38 reference 
genome. CpG-site specific methylation values across all participants from EPIC data (left) and SeqCap targeted data (right). Colour 
scale corresponds to the methylation beta value, ranging from 0 (completely unmethylated) to 1 (completely methylated).
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methylation are clearly defined in EPIC data, with 
participants harbouring the CC genotype exhibiting 
lower methylation values in the central PON1 CpG 

sites and samples of participants with the TT geno
type exhibiting higher methylation values in the 
central PON1 CpG sites (Figure 4). Polymorphism- 
associated trends were less pronounced in the 
SeqCap data, largely due to higher within-site 
variability.

Linear regression models, with methylation at 
each site as the dependent variable and the 
PON1−108 polymorphism genotype as the indepen
dent variable, support the visual trends from the 
differential methylation boxplots. The linear 
regression models reveal stronger associations 
between the PON1−108 polymorphism and methy
lation when using EPIC data (Table 2). The 
PON1−108 polymorphism was negatively associated 
with methylation at eight CpG sites when using 
EPIC data, all of which were located within the 
PON1 promoter. The PON1−108 polymorphism 
was positively associated with methylation at two 
CpG sites when using the full SeqCap data, both of 
which were in the PON1 gene body. No sites were 
statistically significant when using the subset 
SeqCap data. Extended model summaries with 

Figure 3. Direct comparisons between DNA methylation from 
the Roche Nimblegen, SeqCap Epi enrichment system (targeted 
Methylation; x-axis) and the Illumina HumanMethylationEPIC 
Bead (EPIC Methylation; y-axis) at 242 CpG sites from 112 
participants. Pearson correlation coefficient of 0.84.

Figure 4. Differential methylation by PON1−108 single nucleotide polymorphism. Distribution of methylation values in PON1 from 
Illumina HumanMethylationEPIC BeadChip (EPIC; left) and Roche Nimblegen, SeqCap Epi enrichment system (targeted; right), 
grouped by PON1−108 polymorphism. Blue region highlights the two closest EPIC CpG sites to the PON1−108 polymorphism.
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detailed coefficients, standard errors, and p-values 
for the significant sites are reported in Table S1.

Finally, we utilized principal component analy
sis (PCA) to compare the ability of DNA methyla
tion measurements from SeqCap and EPIC, in the 
14 CpG sites of interest, to predict PON1−108 poly
morphism identity. While the first principal com
ponent in the EPIC PCA roughly categorizes 
participants by PON1−108 genotype, neither of the 
first two principal components in the SeqCap PCA 
corresponds to PON1−108 genotype (Figure 5). 
This visual trend is supported by regression mod
els, in which the first principal component for 
EPIC predicted PON1−108 genotype, while the 
first principal component for SeqCap did not pre
dict PON1−108 genotype (Table S2).

Discussion

We performed DNA methylation analyses of the 
PON1 gene and nine additional genes in child 
leukocytes using the NGS-based technology, 
SeqCap, to generate DNA methylation data with 
base pair resolution. We compared our results 
with the same DNA analysed by the EPIC micro
array, which queries ~850,000 CpG sites in the 
human genome [18] and is currently the most 
widely used platform for conducting EWAS in 
epidemiological studies. Since the samples were 
isolated from whole blood clots, the results of 
this study are generalizable to other studies analys
ing DNA methylation in leukocytes, which is 
a common sample type used in human studies 
[12,42].

We found an overall high concordance between 
SeqCap and EPIC DNA methylation, particularly 
among highly methylated and minimally methy
lated regions. However, noticeable differences 
were observed between the two methods in mod
erately methylated regions, with SeqCap measure
ments generally exhibiting greater within-site 
variation. The higher variability of methylation 
measurements in SeqCap became apparent when 
looking at a small number of candidate genes. The 
higher within-site methylation measurement varia
bility in SeqCap inhibited the detection of biologi
cally relevant differences in DNA methylation. 
While 8 of the 14 PON1 CpG sites were signifi
cantly more methylated in association with the 

Table 2. Linear regression model summaries examining asso
ciations between PON1−108 single nucleotide polymorphism and 
DNA methylation using two analytical platforms.

Dataset1
CpG sites 

(n)
Significant 

sites
Directionality of 

Association4

EPIC2 14 8 All negative
SeqCap 

(subset)3
14 0 –

SeqCap (full)3 255 2 All positive
1Three different datasets: (1) EPIC: DNA methylation measured by 

Illumina HumanMethylationEPIC BeadChip and also measured by 
Roche Nimblegen, SeqCap Epi Enrichment System; (2) SeqCap (sub
set): DNA methylation measure by SeqCap and also measured by 
EPIC; (3) SeqCap (full): DNA methylation measured by complete 
Roche Nimblegen, SeqCap Epi Enrichment System dataset. 

2Controlling for cell type proportions and batch. 
3Controlling for cell type proportions. 
4A negative association between genotype and methylation indicates 

that the presence of more C alleles is associated with lower methyla
tion within the CpG site. 

Figure 5. Principal component analysis of PON1 methylation data. PCA was performed on both datasets, Illumina 
HumanMethylationEPIC BeadChip (EPIC PCA; left) and Roche Nimblegen, SeqCap Epi enrichment system (targeted PCA; right), 
using only the methylation data from the selected 14 CpG sites. First and second principal components are plotted from both 
analyses, with added colour based on PON1−108 polymorphism.
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PON1−108 polymorphism (C alleles) when using 
EPIC data, none of those same sites at the 
PON1−108 were significant when using SeqCap 
data. However, the increased coverage from 
SeqCap revealed two novel CpG sites within the 
gene body that were significantly less methylated 
in association with the PON1−108 polymorphism. 
These findings are consistent with the current 
knowledge of the relationship between methyla
tion and expression of the genes, because while 
more DNA methylation in the promoter region is 
usually associated with downregulated expression, 
higher DNA methylation in a gene body can be 
associated with higher gene expression [43,44]. 
This novel observation in PON1 suggests that the 
substantial expansion of CpG site coverage in 
SeqCap provides the possibility of further novel 
findings in other genes that may be otherwise 
missed due to the limited coverage in EPIC arrays. 
However, this may be at the expense of greater 
accuracy as suggested by our data.

Several prior publications compared the use 
of arrays and targeted sequencing for the 
assessment of DNA methylation [13,15]. 
However, most of the studies have not con
ducted comparisons for scenarios encountered 
in environmental epidemiology, in which there 
are often large sample sizes and small effect 
sizes [18,42]. To address this gap in the litera
ture, a recent study harnessed cord blood sam
ples from the PROGRESS cohort to compare 
DNA methylation results from TruSeq with 
those obtained from the EPIC array, and eval
uate both methods in terms of coverage, repro
ducibility, and identification of differential 
methylation by infant sex at birth[18]. Among 
many metrics, EPIC outperformed TruSeq in 
the identification of differential methylation by 
sex. The study suggested that although TruSeq 
offers greater read depth and coverage, it does 
not have the precision of microarrays, which 
are therefore still preferred for conducting 
EWAS in environmental epidemiology[18]. 
This finding was consistent with our study in 
which EPIC outperformed SeqCap in the iden
tification of differential methylation by 
genotype.

Another study[17], using whole blood from 
adults participating in the Christchurch Health 
and Development longitudinal birth cohort study, 
aimed to determine whether the NGS-technology 
BSAS could validate prior EPIC array findings[45], 
have utilization as a replication, and/or expansion 
tool, as well as assess CpG sites residing in geno
mic regions not included on the EPIC microarray 
[17]. The study found that while BSAS validated 
EPIC array data at some loci and correlated across 
all loci, some individual loci did not validate, espe
cially those in which the magnitude of change via 
the EPIC array was greater than 5%. The authors 
suggested that BSAS may serve as an investigative 
tool for specific genomic regions[17]. These find
ings were consistent with our study using whole 
blood, in which methylation levels correlated 
across loci as a whole but did not validate in 
those with moderate methylation in the EPIC 
array.

Studies using other biological matrices found 
more concordance between array and NGS-based 
methods, than those that used human blood from 
large cohort studies. For example, one recent 
experimental study utilized data from seven well- 
characterized human cell lines to compare DNA 
methylation results from a broad range of methy
lome sequencing assays and targeted approaches 
(NEBNext Enzymatic Methyl-Seq, Swift 
Biosciences Accel-NGS Methyl-Seq, SPlinted 
Ligation Adapter Tagging, NuGEN TrueMethyl 
oxBS-Seq, TruSeq, Nanopore) and the EPIC 
array. Overall high concordance between the var
ious methods was observed with some notable 
differences in performance, as well as higher con
cordance between replicates when using microar
ray-based methods. There was also indication that 
a minimum amount of population variance may 
have driven poor concordance between assays in 
a subset of CpG sites[46]. In our study, genes 
containing CpG sites with a wide range of methy
lation (e.g., SP1 and PON2) exhibited higher over
all correlation coefficients than genes containing 
sites with similar methylation ranges (e.g., AHR 
and TAPBP).

Finally, another study examined the reproduci
bility and ability of the EPIC array, TruSeq, and 
HumanMethylation450 BeadChip (450 K) array to 
identify loci differentially methylated between 
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sample groups in a transformed prostate cancer 
cell line (LNCaP) and primary cell cultures of 
prostate epithelial cells (PrEC). The study found 
that methylation readings from the EPIC array and 
TruSeq were in high agreement, with Spearman 
correlation coefficients of 0.88 and 0.82 for the 
LNCaP and PrEC cell lines, respectively[30]. This 
was similar to the overall Pearson correlation 
observed in our study (r = 0.84).

The strength of our study includes the use of 
blood from a paediatric cohort study for the com
parison of DNA methylation between two state-of- 
the-art technologies. In addition, we utilized the 
PON1 gene, which was extensively studied in this 
cohort and serves as an ideal candidate to evaluate 
technological performance due to the strong asso
ciations between the PON1−108 SNP, gene methy
lation, and enzyme activity[19]. However, the 
major limitation was that while the EPIC array 
measured >850,000 CpG sites throughout the gen
ome, our SeqCap assay was designed to measure 
CpG sites in 10 selected genes at base-pair resolu
tion. This focus on a small number of candidate 
genes limited the comparison between the two 
methodologies to only 249 CpG sites located in 
10 genes. The performance in other genomic 
regions or at larger scales may differ, so our results 
should be interpreted with caution. Although this 
reduced the number of CpG sites compared to an 
epigenome-wide approach, our approach more 
closely resembles a hypothesis-driven analysis of 
a specific selection of candidate genes. We also did 
not assess reproducibility, because while we had 
sample duplicates for DNA methylation measured 
on the EPIC array, we did not have duplicates for 
the SeqCap platform. In addition, we compared 
results from the EPIC array to just one candidate 
NGS-based technology, and it is possible that 
other technologies could have different perfor
mances[47].

In summary, our study agreed with prior vali
dation studies, in that while SeqCap offered high 
coverage, the EPIC array outperformed in its abil
ity to detect biologically meaningful differential 
DNA methylation across a range of methylation 
levels, which is often the goal in environmental 
epidemiology. While microarrays appear preferen
tial for assessing differential methylation in cohort 
studies, NGS-based technologies could 

supplementally identify differentially methylated 
loci not included on the microarray or obtain 
high coverage information on genes of interest. 
Since our study can only be generalized to the 
one NGS-based technology we assessed, future 
studies could compare the performance of the 
EPIC array to additional NGS-based technologies 
in large human cohort studies.
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