
UCLA
UCLA Electronic Theses and Dissertations

Title
Reporting Bugs in Metaprograms

Permalink
https://escholarship.org/uc/item/0mn5w50d

Author
Kalhauge, Christian Gram

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0mn5w50d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Reporting Bugs in Metaprograms

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Christian Gram Kalhauge

2020

c© Copyright by

Christian Gram Kalhauge

2020

ABSTRACT OF THE DISSERTATION

Reporting Bugs in Metaprograms

by

Christian Gram Kalhauge

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Jens Palsberg, Chair

As programs have gotten more sophisticated and integrated into our society, bugs have

become a significant concern. To avoid this, we put a lot of trust in the metaprograms

we use to analyze and compile them; however, these metaprograms might also contain bugs.

The problem when reporting bugs in metaprograms is that they take programs as inputs: the

bug might equally well be in the input program as in the metaprogram. In this dissertation,

we show that modeling the input programs’ validity improves our ability to verify and reduce

bug reports that target metaprograms.

ii

The dissertation of Christian Gram Kalhauge is approved.

Miryung Kim

Ravi Netravali

Harry Xu

Jens Palsberg, Committee Chair

University of California, Los Angeles

2020

iii

Thank you. You are my first and last Line of defence.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Thesis Statement . 3

2 Seperating Bugs from Deliberate Unsoundness in Static Analyses 6

2.1 Introduction . 6

2.2 The Challenge . 8

2.2.1 Examples . 9

2.2.2 The Concept of a Useful Classifier . 10

2.2.3 Our Solution: Easiness Analysis . 11

2.3 Our Classifier . 11

2.4 An Instance of the Challenge . 13

2.5 Experiments . 15

2.5.1 Static Analyses . 15

2.5.2 Setup and Dataset . 17

2.5.3 Quality of the Static Analysis . 19

2.5.4 Easiness Analysis . 21

2.6 Ground Truth . 22

2.6.1 Static and Dynamic Analysis . 22

2.6.2 Feature Detection . 23

2.6.3 Bug Detection . 23

2.6.4 Bug Reports . 24

2.6.5 Results . 26

v

2.7 Evaluation . 28

2.8 Related Work . 31

2.9 Summary . 35

3 Binary Reduction of Dependency Graphs 36

3.1 Introduction . 36

3.2 The Challenge . 38

3.3 Reduction of Dependency Graphs . 44

3.4 Binary Reduction . 47

3.4.1 The Weighted Input Reduction Problem 47

3.4.2 The Binary Reduction Algorithm . 49

3.5 Experimental Results . 52

3.5.1 Experimental Setup . 53

3.5.2 Results . 55

3.5.3 Threats to Validity . 57

3.5.4 Data Availability . 58

3.6 Reporting bugs . 59

3.7 Related Work . 60

3.8 Summary . 64

4 Logical Input Reduction . 65

4.1 Introduction . 65

4.2 Example . 68

4.3 Modeling Dependencies . 74

4.3.1 Featherweight Java with Interfaces 74

vi

4.3.2 Generating the Constraints in the Example 80

4.3.3 Java Bytecode . 83

4.4 Logical Reduction . 86

4.4.1 Notation . 87

4.4.2 Formalizing the Problem . 87

4.4.3 The Generalized Binary Reduction 88

4.4.4 Our Progression . 91

4.4.5 Running the Example . 94

4.5 Experimental Evaluation . 98

4.5.1 Experimental Setup . 98

4.5.2 Analysis . 100

4.6 Related Work . 103

4.6.1 Input Reduction . 103

4.6.2 Fuzz Testing . 104

4.6.3 Input Generation and Internal Reduction 105

4.6.4 Debloating . 106

4.6.5 Type-Safe Code Transformations . 107

4.6.6 Search-Based Testing and Model Transformations 107

4.7 Summary . 109

5 Conclusion . 110

vii

LIST OF FIGURES

2.1 A feature and a bug in WALA. 9

2.2 The first lost method . 14

2.3 The code needed to turn Soot into a reachable methods analysis 18

2.4 Code to turn WALA into a reachable method analysis. 18

2.5 A histogram of the number of methods/program. 19

2.6 Metrics by easiness score. 21

2.7 Minimal examples of two bugs. 28

2.8 The probability of bug, unknown, and feature, given the easiness of the input. 29

3.1 A detailed run of the example using unmodified delta debugging 40

3.2 The dependency graph of our example . 41

3.3 A run where all the invalid bytecode program inputs have been filtered out

before execution (verify). 42

3.4 Three runs of closure the example in Figure 3.2. 46

3.5 Three runs of Binary Reduction (binary) on the example in Figure 3.2 . . . 50

3.6 Histograms on the metrics over the benchmarks 52

3.7 Cumulative frequency diagrams of different metrics. 55

4.1 The example input program . 67

4.2 The variables and dependency constraints of the example 69

4.3 The dependency graph containing syntactic and referential dependencies . . 72

4.4 The syntax of Featherweight Java with Interfaces (FJI). 75

4.5 Our reduce function of FJI. 76

4.6 FJI helper rules. 78

viii

4.7 FJI type rules. 79

4.8 The transposed graph used to generate the variable order 94

4.9 The initial run of LC� on our example . 95

4.10 Two binary searches performed by GBR on our example 97

4.11 The distribution of benchmark over metrics 99

4.12 CFD’s of metrics after reduction . 101

4.13 The reduction over time . 102

ix

LIST OF TABLES

2.1 Relative precision and recall . 20

2.2 Sources of features . 23

2.3 The full list of bugs . 25

2.4 The list of bug reports . 26

2.5 The distribution of ground truth over the different intersections of static analyses 27

2.6 Distribution of ground truth on bug, feature, and unknown 29

2.7 Precision and recall . 30

3.1 Aggregated results of all runs . 55

x

VITA

2015–2015 Consultant, It-Minds, Copenhagen

2009–2015 Bachelor and Master of Science from DTU

xi

CHAPTER 1

Introduction

Metaprograms are programs that take other programs as inputs. Many metaprograms are

merely designed to interpret the input programs, like web-browsers, databases, and calcula-

tors, but others have been developed to extract knowledge from the input program. As it

turns out, one of the favorite activities of developers is to make programs that help them

create new programs. The most interesting question is if the program contains bugs; this

happens if there exists a valid input to the program that makes the program produce unin-

tended output. Therefore, they have designed metaprograms to prove that other programs

do not contain bugs, in a process called verification, or find bugs in the programs, in a process

called testing. Verification aims to prove the absence of bugs given any input, while testing

aims to find a single input that produces a bug. The goal of verification is to guarantee the

absence of bugs in the program. The goal of testing is to find bugs. When we find a buggy

input, then together with the unintended output, we can create a bug report, which we use

to debug the program.

Much like regular programs, metaprograms have bugs, but bugs in metaprograms are

much more critical. For example, a bug in a compiler can affect all the programs that we

compile with it. If we can reduce the number of bugs in a metaprogram, it has a ripple effect

that affects all the programs they take as inputs. Metaprograms are complicated pieces of

software by themselves, but since they also take programs as inputs, it becomes tough to

report bugs. The critical problem is the bug might equally well be in the input program

as in the metaprogram. So, even when presented with a bug report, a developer might

reject it because they think the input is invalid or give up on it because the input is too

1

complex. Ideally, we would use verification or testing; however, these strategies work poorly

for analyzing bugs reports in metaprograms, as we will now see.

Verification has been used to prove the correctness of some metaprograms. The most

popular is CompCert [LBK16] that is a formally proven correct C-compiler written in Coq.

However, writing the entire metaprogram in Coq is a huge endeavor, and most developers

tend to use an automatic verification tool, like a static analysis instead. These tools are

known to over-approximate the number of bugs found in a program. They do this so that

they can soundly reject all programs that contain bugs. Recently in the Soundiness Manifesto

[LSS15], Benjamin Livshits et al. writes “[V]irtually all published whole-program analyses are

unsound and omit conservative handling of common language features when applied to real

programming languages.” In practice, any static analysis written for a real programming

language is neither sound nor complete. When we want to analyze bug reports, this is not

ideal: not all bugs will be reported, and those that are, are not necessarily real. Because

metaprograms need to handle the full semantics of the input programs, they are often as

complex as their inputs, and tend to use the language features that the static analyses under-

approximate. We, therefore, tend to use testing when we want to find bugs in metaprograms.

We can manually sit down and test every input program which we can think of, and see if

the metaprogram produces an intended output. This process is laborious and is often limited

by the imagination of the developer. Instead, we use automatic techniques to generate inputs

in a process called fuzzing [ZGB19]. Much work in testing has been focused on automatically

figuring out if the output is intended, referred to as the oracle validity problem. However,

there exist another problem. When analyzing metaprograms, fuzzing is at a disadvantage

because the inputs which are programs are complicated. The input space is vast, and many

configurations are invalid. For example, only a few sequences of bytes are valid Java Bytecode

programs. Trying inputs at random increases the risk of choosing invalid inputs that produce

undefined behavior in the metaprogram, and the undefined behavior might not be easy to

detect. Yang et al. [YCE11] coined the term Input Validity Problem, when they used their

fuzzer, C-Smith, to generate test programs for a C-compiler. They noticed that many of

2

the inputs programs they generated contained undefined behavior. Because programs with

undefined behavior are unsuitable for bug-reports, they concluded they either had to detect

or avoid these inputs. Therefore, the problem is not finding inputs that produce unintended

behavior in metaprograms but to verify that they are bugs and ultimately have the bugs

fixed.

Both automatic verification and testing has significant drawbacks when reporting bugs

in metaprograms. In this dissertation, I turn the problem on its head and use verification

techniques on the input instead of the program, to tackle the input validity problem straight

on.

1.1 Thesis Statement

I propose a solution between general verification and testing. Instead of modeling the seman-

tics of the metaprogram or trying all inputs, I suggest that we focus on bug reports. A bug

report contains input that produce unintended output in the metaprogram. They can have

been generated by a user of the metaprogram or by any of the existing fuzzing techniques.

We can then statically model the validity of the inputs that have been found to produce

unintended behavior in the metaprogram. By modeling the inputs’ validity, we can check

whether the inputs we have are valid, and we can reduce the input to generate a smaller

valid input that produces the same unintended behavior in the program. The benefit of this

approach is that we focus our statical analysis power on inferring the validity of the input,

which is often more straightforward than modeling the correctness of the metaprogram.

Building custom analyses for the input of a single program is only useful to the developer.

But the stakes are different for metaprograms. First, metaprograms often play a crucial role

in the development chain. For example, a bug in a proof assistant brings all the proofs

proved by it into question. So finding bugs in metaprograms have a more significant impact

on the programming world at large. This can justify using more time designing custom made

solutions for that set of metaprograms. Second, metaprograms often share input; a model of

3

the validity of a Java program can be used to find bugs in a Java-compiler and a Java static

analysis.

There exist a vast literature on fuzz testing [YCE11, GKL08, GLM08, HHZ12, PLS19,

ZGB19], which seeks generate new valid inputs to find unintended outputs in the program.

In contrast, our approach is not to find new bugs but to verify existing bugs, and to help the

developers understand them better by giving smaller examples of the same bug. Furthermore,

previous validity models of inputs have mostly been focused on grammar-based validity

[GKL08, HHZ12, SLZ18]. They did this because grammars can be used to generate new

inputs, potentially finding all possible bugs. Because our goal is ultimately focused on a

single possible bug, we do not have to generate entirely new inputs. Therefore, we can go

beyond grammar-based validity and use more complex validity models with the power to

model programs that do not have a grammar, like bytecode.

In summary, my thesis is:

Modeling the validity of inputs to a metaprogram using easiness, graphs, and

logic improves the effectiveness of verifying and reducing bug reports.

To support my thesis, we will present three different, progressively more complicated

models of the validity of inputs to metaprograms, which goes beyond grammars. All three

examples focus on Java bytecode. We have chosen Java bytecode because it is a highly com-

plex and widely used input, which input validity cannot be modeled using a grammar alone.

Essentially, if the techniques work here, there is a good chance they will work everywhere.

The first part of the dissertation is about verifying bugs in static analyses. Ideally, if a

static analysis fails to over-approximate the program’s behavior, it would be considered a

bug. The problem is that most static analyses are deliberately unsound if the input program

contains hard to model features, like reflection. Thus, an unsoundness is only a bug if the

static analysis did it by accident. In this case, we would say the input is valid if it does not

contain hard to model features, namely that the input is easy to handle. The problem is

that what features are hard to model is often not defined, and even those that are can be

4

hard to detect. To get around this, we model the validity, or easiness, using a consensus of

static analyses. Contrary to previous work on differential testing [McK98], which focuses on

differences in the outputs. We focus on differences in the inputs.

The second and third part is about input reduction. The goal of input reduction is that

given a failure-inducing input to a program, produce the smallest sub-input such that it

still produces the failure, which makes it easier to debug [ZH02]. The biggest problem in

reduction is to avoid invalid inputs. When reducing inputs to metaprograms, avoiding invalid

inputs becomes even harder. In metaprograms, there is much more structure required by

the inputs. They have to pass parsing, type-checking, and sometimes substantial analysis.

If the bug is buried in the metaprogram, building a valid input requires an exact model of

the input.

The rest of the dissertation is structured like this:

• In Chapter 2, we model the easiness of inputs using a consensus of four static analyses.

We define easiness as a continuous measure of the validity of an input to a static

analysis. This enables us to verify or reject bug reports in four deliberately unsound

static analyses.

• In Chapter 3, we model the internal dependencies between class-files. This way, we

avoid invalid inputs and reduce failure-inducing inputs to a smaller final size, faster

than ddmin [ZH02].

• In Chapter 4, we extend our granularity to also include methods and fields. To do this

we have to model the internal dependencies using propositional logic. In total, we can

generate more valid sub-inputs, which allows us to reduce programs even better.

Together, these three examples show that by modeling the input programs’ validity we

can verify and reduce bug reports for metaprograms, which we conclude in Chapter 5.

5

CHAPTER 2

Seperating Bugs from Deliberate Unsoundness in

Static Analyses

A static analysis may be unsound on an input program either because it has a bug or

because its designer deliberately underapproximated a hard-to-model case like reflection. In

other words, the input program is invalid if it contains hard-to-model features. This raises

the question of how to distinguish bugs from deliberate unsoundness. If we have found a

case of unsoundness, how do we know if the input is valid and that we can report it as

a bug? We might compare the output with that of other analyses, but they are allowed

to overapproximate differently. Thus, differences do not imply bugs. In this chapter, we

present the first automated solution to this problem. Our approach uses an easiness analysis

to define a classifier that separates bugs from deliberate unsoundness. In particular, if a

static analysis is unsound in a case where the input is easy, the classifier will say that input

is valid, and the static analysis has a bug. We have implemented our technique for four

static analyses of Java, namely, Doop, Petablox, Soot, and WALA. Our experiments with

6,044 Java programs identified bugs with 90 percent precision and 79 percent recall. It leads

to 12 bug reports that we have confirmed to be real bugs.

2.1 Introduction

How can we find bugs in a static analysis tool? A standard approach is to do soundness

testing, which compares the results of the static analysis with the results of a dynamic

analysis. The idea is that any run-time behavior noted by the dynamic analysis but missed

6

by the static analysis is evidence of unsoundness. Once we have an input program that

induces such behavior, we may want to send it to the static analysis tool developers as

part of a bug report. However, for Java, our experiments show that accuracy is poor: in

many cases, the unsoundness is due to reflection. Reflection is a known challenge for static

analyses and many tools deliberate underapproximate program behavior in its presence. The

Soundiness Manifesto [LSS15] from 2015 used the term soundy for such underapproximation-

by-design and noted that every realistic whole-program analysis tool uses it. Such soundiness

is a feature because it can improve speed and precision. Thus, when faced with a report

about deliberate unsound behavior, a tool developer is unlikely to change the tool.

In general, when a static analysis tool is unsound, it may be a feature or it a may be

a bug. Specifically, a tool may underapproximate some language constructs by design and

underapproximate others by mistake. Either way, the tool’s output looks similar and the

cases are hard to tease apart. In this chapter, we present the first approach that classifies

the bugs and the features correctly with high probability. Our technique is accurate, general,

and automatic. Specifically, for unsound outputs in our experiment, our classifier identifies

the bugs with 90 percent precision. Ultimately, this approach can help developers of static

analysis tools find bugs in their tools easily.

Akin to differential testing [McK98], we run multiple static analyses on the same input,

but in contrast to differential testing, we don’t compare the outputs. The reason is that

static analyses may produce different output for a wide variety of reasons, including that they

underapproximate differently. Thus, differences do not imply bugs. Instead, we additionally

do soundness testing and use the soundness information to build a classifier. Our classifier

is based on a novel notion of easy inputs, which are inputs that most analyses get right in

our experiments. Based on this idea, our classifier says that a static analysis has a bug if it

maps an easy input to an unsound output.

Rest of the Chapter In Section 2.2 we use examples to illustrate the difficulty in differ-

entiating bugs from features in soundy analyses. The following sections make the following

7

contributions.

• In Section 2.3 we show how to define a classifier of bugs and features for any kind of

static analysis. Our approach defines a notion of easiness of an input, which is found

by an easiness analysis, that requires no human intervention.

• In Section 2.4 we instantiate our technique for method reachability with four static

analyses (Doop [BS09], Petablox [MZN15], Soot [VGH00], and WALA [DFS15]) which

we will use in our experiments.

• In Section 2.5, we use the easiness analysis we assign an easiness score to 6,044 Java

programs from NJR [PL18]. We find that 82% of programs are considered easy, and

for the remaining 1,031 programs for which at least one static analysis is unsound,

our classifier predicts that 756 of those cases reveal bugs in at least one of the static

analyses.

• In Section 2.6, we report on a our effort to establish the ground truth about bugs and

deliberate unsoundness for our dataset. This effort resulted in 12 bug reports, which

have been confirmed by the developers, and 6 different sources of features.

• In Section 2.7, we compare our results from Section 2.5 with the ground truth from

Section 2.6. Our results indicate that unsound behavior on easy inputs implies bugs,

and the resulting classifier identifies real bugs with 90% precision and 79% recall.

We compare with related work in Section 2.8 and we summarise our findings in Sec-

tion 2.9.

2.2 The Challenge

Many applications of static analyses do not rely on soundness [LSS15], yet more sound results

are welcome. Finding better ways to handle reflection and other edge cases is a research topic

8

public class Ex1 {

public void main() throws Exception {

Ex1.class.getMethod("target")

.invoke(null);

}

public static void target() {

System.out.println("Reached");

}

// ... 98 methods that are never called

}

(a) A feature

public class Ex2 implements Runnable {

public void main() throws Exception {

java.awt.EventQueue

.invokeLater(new Ex2());

}

public void run() {

System.out.println("Reached");

}

}

(b) A bug

Figure 2.1: A feature and a bug in WALA.

in itself, so finding bugs can be seen as lower hanging fruit that can improve the soundness

of a static analysis. Reporting bugs to static analysis developers is a straightforward way to

help improve all tools that rely on them.

However, when we encounter a unsound behavior, how do know if it is a unintended bug,

or an indented feature of the static analysis. In the rest of the chapter, we are going to denote

deliberate unsoundness as features, while we use bugs to denote unintended unsoundness.

2.2.1 Examples

The programs in Figures 2.1a and 2.1b illustrate the challenge. Both programs use reflection,

which most static analyses underapproximate.

First, we consider an example of a feature. In Figure 2.1a, class “Ex1” uses reflection

to invoke the method “target” and print “Reached”. We used WALA [DFS15] to analyze

class “Ex1” and got the result that “target” is unreachable. This might seem like a bug, but

it turns out to be a feature. Intuitively, WALA’s design choice is to underapproximate the

effect of “invoke” and effectively ignore that “invoke” will call a method. An alternative and

sound approach would be to overapproximate the effect of “invoke” and say that “invoke” can

call any method. In a program with 100 methods, of which 98 are never called, the result

of the alternative approach is uninformative reachability information. Intuitively, WALA

prefers to be unsound instead of useless.

9

Next, we consider an example of a bug. In Figure 2.1b, class “Ex2” calls “invokeLater”,

which, at some point in the future, will call “run”. Method “invokeLater” uses reflection

internally, and we can see that our two examples look somewhat alike. We used WALA to

analyze class “Ex2” and got the result that “run” is unreachable. We contacted one of the

WALA authors who confirmed that this is an unintended unsoundness. The problem stems

from the fact that “invokeLater” is a method in a standard library. For many such methods,

WALA represents their behavior, but it missed “invokeLater”. Our experiments found many

such unintended unsoundnesses; they totaled over half of 710 bug-inducing programs.

The two examples suggest that distinguishing the features from the bugs is hard, espe-

cially if the static analysis is a black box. While our examples used reflection (Java’s reflection

interface has 181 public methods [LSV17]), Java has several other hard-to-model cases, in-

cluding dynamic class loading, proxies, serialization, runtime compilation, native methods,

unsafe, invokedynamic, and instrumentation that modifies the bytecodes after static analysis

[DSR17]. All of these constructs are candidates for deliberate underapproximation.

2.2.2 The Concept of a Useful Classifier

Our challenge is to design and implement a classifier that divides input programs that pro-

duce unsoundness in a static analysis into bugs and features. We want the classifier to be

useful, which means that it is accurate, general, and automated.

Accurate We want a classifier to accurately label the potentially many unsoundness induc-

ing programs as features or bugs. If the classifier is inaccurate, we will have little confidence

in the bug reports.

General We want a classifier to work with each static analysis as a black box. Thus, the

classifier should make no assumptions about the design and implementation of the static

analysis. Rather, the classifier should apply to different kinds of static analysis, to different

static analyses of the same kind, and to different versions of a single static analysis.

10

Automatic If we do automated testing on many input programs to reveal unsoundness,

we will want the classifier to be automated too, to save time.

2.2.3 Our Solution: Easiness Analysis

Several existing approaches find bugs by comparing the output of tools with the same pur-

pose, namely differential testing [McK98] and N-version programming [CA76, Avi85]. These

approaches rely on an assumption that bugs will deviate from the typical behavior of a

collection of programs. Finding bug is as easy as comparing the outputs of many programs.

Static analyses can produce different outputs even on simple inputs; For example one

static analysis could predict that any of the 98 methods in Figure 2.1a is reachable, and it

would still be working as it should be. Differences do not imply bugs.

We turn differential testing inside out. We collect the results of many static analysis on

a given input and use it to determine how easy the inputs is. We call this easiness analysis.

The more analyses that are able to be sound on the input, the “easier” the input must be.

Using this knowledge we can classify bugs as unsoundness on easy inputs and features as

unsoundness on hard inputs. Intuitively, if every other analysis is able to be sound, then the

unsound analysis should have been too. We will describe how this works in the next section.

2.3 Our Classifier

In this section we present the design of our classifier. Our starting point is a set F of static

analyses for which each f ∈ F has a function UNSOUNDf . We will examine each of those in

turn and then define our classifier.

We model a static analysis as a function that maps a program to information about the

program. The static analyses in F must be of the same kind, that is, they must have the

same functionality. For example, an analysis may map each C program to per-statement

information about live variables, map each JavaScript program to per-method information

11

about side effects, or map each Java program to per-class information about whether its

objects are confined to the enclosing package. Given a set of analyses of the same kind, we

can run the analyses on the same input programs.

The function UNSOUNDf must satisfy the following property:

UNSOUNDf : Program → {0, 1}

UNSOUNDf (x) = 1 ⇒ f(x) is unsound information.

Intuitively, UNSOUNDf records that a static analysis f misses behavior that a program could

exhibit when run with x. Typically, an implementation of UNSOUNDf uses testing to demon-

strate that the program x has a behavior that is missed by f . Such testing tends to be

incomplete, so above we use a one-directional implication, which is sufficient for our pur-

poses.

The idea behind our classifier is that if a static analysis maps an easy input to an unsound

output, then it has a bug. What is an easy input? We address this by defining a function

easinessF that maps an input to a score that ranges from hard (0) to easy (1). Notice that

we use the entire set F of static analyses to define easiness. Akin to differential testing, we

run each analysis in F on the same input, but in contrast to differential testing, we don’t

compare the outputs.

Our definition of the easiness counts the analyses that map an input to unsound output.

Specifically, given a set F of static analyses, we define the easiness of an input to be a value

in the interval [0, 1], where higher means easier.

easinessF : Program → [0, 1]

easinessF (x) = 1− 1

|F |
∑
f∈F

UNSOUNDf (x) .

Intuitively, the more static analyses produce unsound information, the harder the input is.

For example, if all the analyses all produce unsound information for x, then the sum above

12

is 1, so easinessF (x) = 0, and the input is hard. Dually, if none of the analysis produces

unsound information for x, then the sum above is 0, so easinessF (x) = 1, and the input is

easy. Note that in case we want to differentiate the static analyses in F , we can generalize

the formula for easinessF to use a weighted sum.

Now we can formalize the idea that if a static analysis maps an easy input to an unsound

output, then it has a bug:

bugF : (F × Program)→ Boolean

bugF (f, x) = UNSOUNDf (x) ∧ easinessF (x) ≥ ϕ

Intuitively, if f maps x to unsound output and the easiness of x is above a threshold ϕ, then

f has a bug. As an example of how to pick the threshold ϕ, consider a set F of size n as

well as f ∈ F where UNSOUNDf (x). If we want bugF (f, x) to mean that all the other analyses

in F map x to sound output, then we can pick ϕ = n−1
n

.

The design of our classifier is general and can be applied to any set F of static analyses

of the same kind and any function UNSOUNDf that satisfies our requirement.

2.4 An Instance of the Challenge

In this section we present an instance of the challenge to separate bugs from deliberate

unsoundness. Our experiments focus on this instance.

Our choice of F Our set F consists of four static analyses that answer the question of

which methods in the application are reachable from main? We picked this problem because

it is fundamental: the reachable methods are the nodes of the call graph. So, we can view

the problem of finding the reachable methods as a subtask of constructing the call graph.

Bugs in the call graph analysis affect all other analyses that rely on the call graph.

Specifically, our set F of static analyses consists of Doop [BS09], Petablox [MZN15], Soot

13

Application
+

Libraries

Std. Library Dynamic

Static

I

M

II

III
F

?

Figure 2.2: The first lost method (F) is the first executed method in the application that
was missed by the static analysis.

[VGH00], and WALA [DFS15]. Among those, Doop, Soot, and WALA are widely used tools.

We picked settings of the tools such that they all use a variant of 0-CFA and do rather little

to analyze reflection.

Our choice of UNSOUNDf Our implementation of UNSOUNDf is a modification of the dynamic

analysis Wiretap [KP18]. Wiretap is a good fit for our purposes because it instruments meth-

ods dynamically (using a Java agent). This means that even in the presence of reflection,

it will log events for every method. Additionally, Wiretap avoids instrumenting its code,

and java and sun classes. We modified Wiretap to take static information about reach-

able methods as input and monitor whether the methods that it enters are in that static

information.

The first lost method In Section 2.3 we defined an easiness score for the entire input

program. For our particular instance of the challenge, which focuses on methods, we refine

the easiness score to apply to individual methods in the input. For simplicity we will report

on the easiness score of a single method in each program: the first executed method that was

14

missed in the static information. We call this method the first lost method. This method is

of particular interest because it marks the first point in the execution for which the static

analysis and the dynamic analysis disagree.

Figure 2.2 illustrates how execution begins in the standard library (I), proceeds to the

main method (M), executes other code in the standard library (II and III), and eventually

executes the first lost method (F). Notice that (II and III) are not considered lost because

they are part of the standard library. Notice also that other methods, executed after (F), is

maybe missed by the static analyses. This can indeed be because the first-lost method was

missed.

Example Consider again example “Ex2” from Figure 2.1b. WALA reports that the reach-

able methods are main, the empty constructor method, and 1,275 standard library methods,

However, a dynamic analysis will note that the run method is also executed, so run becomes

the first lost method. Now the challenge is: was the run method missed because of a bug

or a feature in WALA? Our experiments show that Doop, Petablox, and Soot all agree that

run is reachable. Thus, with 3 against 1, the easiness score is 0.75, which is high, so we

conclude that WALA has a bug, which turns out to be correct.

2.5 Experiments

In this section we introduce our dataset of Java programs and we show our results from

doing easiness analysis based on static and dynamic analysis.

2.5.1 Static Analyses

Doop. Doop is a static analysis tool that uses Datalog as a basic engine to run the static

analysis. It runs datalog using Souffle. We are using doop version “4.10.11” downloaded

15

from the git repository1 at commit “cdc59ce7”. We made a small modification such that

the analysis was pure and did not write to its build directory. Doop uses library definitions,

called platforms, that are stored in another repository2, we used commit “5e0b6a87”.

We use their “context-insensitive” analysis and no reflection handling:

doop --platform java_8 -a context-insensitive -id 0 --main <mainclass> -i <classpath>

Petablox. Petablox also uses datalog as it basic engine, but runs it using the bddbddb

tool. We downloaded Petablox from their git repository3 at commit “b95fd275”. We ran

petablox like this:

java -Dpetablox.work.dir=‘pwd‘ petablox.project.Boot

With a “petablox.properties” in the working directory similar to:

petablox.datalog.engine=bddbddb

petablox.main.class=<mainclass>

petablox.run.analyses=reachable-methods

petablox.jvmargs=-Xmx4096m

petablox.class.path=<classpath>

petablox.reflect.kind=none

Soot. While Petablox and Doop are built on top of Soot, also Soot itself comes with a

built-in call graph construction. Soot is analysis frame work so we had to write our own

extension (see Figure 2.3) to make Soot print the reachable methods.

We used version “3.1.0”, which we downloaded from the official repository4. We ran soot

using this command:

1https://bitbucket.org/yanniss/doop.git

2https://bitbucket.org/yanniss/doop-benchmarks.git

3https://github.com/petablox/petablox.git

4http://soot-build.cs.uni-paderborn.de/nexus/repository/soot-release/ca/mcgill/sable/

soot/3.1.0/soot-3.1.0-jar-with-dependencies.jar

16

https://bitbucket.org/yanniss/doop.git
https://bitbucket.org/yanniss/doop-benchmarks.git
https://github.com/petablox/petablox.git
http://soot-build.cs.uni-paderborn.de/nexus/repository/soot-release/ca/mcgill/sable/soot/3.1.0/soot-3.1.0-jar-with-dependencies.jar
http://soot-build.cs.uni-paderborn.de/nexus/repository/soot-release/ca/mcgill/sable/soot/3.1.0/soot-3.1.0-jar-with-dependencies.jar

java -cp=soot.jar:ext SootReachableMethod \

-p cg.spark on -pp -w -f n -app -cp <classpath> <mainclass>

WALA. We used WALA version “1.5.0” and we downloaded shrike-1.5.0.jar, core-1.5.0.jar,

and util-1.5.0.jar from the maven repository5.

WALA is a static analysis framework, so we have to build our own code to make WALA

print the reachable methods. (see Figure 2.4).

After communication with the authors of WALA, we used the following exclusion file.

Any class that matches any of the regexes in the following file is excluded:

com\/sun\/.*

sun\/.*

org\/netbeans\/.*

org\/openide\/.*

com\/ibm\/crypto\/.*

com\/ibm\/security\/.*

org\/apache\/xerces\/.*

Using this code we can now execute WALA:

java -cp core.jar:util.jar:shrike.jar:ext WalaReachableMethod \

-exclude "excludes.txt" -classpath <classpath> -mainclass <mainclass>

2.5.2 Setup and Dataset

Setup We ran experiments on 4 servers with 24 cores at 2.10GHz each and around 188Gb

of ram. The servers ran NixOS (http://nixos.org/nix). All experiments are with Java

8 and written as nix scripts to be reproducible. The experiments were distributed over the

different servers with one of the servers dedicated as the master. We ran the experiments in

batches of 15 (10 on the master server). We ran each static analysis for maximum of 1,800

5http://central.maven.org/maven2/com/ibm/wala/

17

http://nixos.org/nix
http://central.maven.org/maven2/com/ibm/wala/

import java.util.*; import java.io.*; import soot.*;

public class SootReachableMethod {

public static void main(String[] args) {

PackManager.v().getPack("wjtp").add(

new Transform("wjtp.reachable-methods",

new SceneTransformer() {

protected void internalTransform(String phase, Map<String, String> options) {

try {

Iterator x = soot.Scene.v().getReachableMethods().listener();

BufferedWriter writer = new BufferedWriter(

new FileWriter("reachable-methods.txt"));

while (x.hasNext()) {

writer.write(x.next().toString() + "\n");

}

writer.close();

} catch (IOException e) { e.printStackTrace(); }

}}));

soot.Main.main(args);

}}

Figure 2.3: The code needed to turn Soot into a reachable methods analysis

// import wala files

public class WalaReachableMethod {

public static void main(String[] args)

throws WalaException, IllegalArgumentException, CancelException, IOException {

Properties p = CommandLine.parse(args);

String classpath = p.getProperty("classpath"),

mainclass = p.getProperty("mainclass"),

exclude = p.getProperty("exclude");

ClassHierarchy cha = ClassHierarchyFactory.make(

AnalysisScopeReader.makeJavaBinaryAnalysisScope(classpath, new File(exclude)));

Iterable<Entrypoint> entrypoints = Util.makeMainEntrypoints(scope, cha,

"L" + mainclass.replaceAll("\\.","/"));

AnalysisOptions options = new AnalysisOptions(scope, entrypoints);

options.setReflectionOptions(AnalysisOptions.ReflectionOptions.NONE);

CallGraphBuilder builder = Util.makeZeroCFABuilder(Language.JAVA, options,

new AnalysisCacheImpl(), cha, scope);

Iterator<CGNode> it = builder.makeCallGraph(options, null).iterator();

FileWriter fw = new FileWriter("reachable-methods.txt");

while (it.hasNext()) {

IMethod m = it.next().getMethod();

/* print method to fw */

}

fw.close();

}

}

Figure 2.4: Code to turn WALA into a reachable method analysis.

18

31
8k0k 2k 4k 6k 8k 10
k

The number of methods

0

250

500

750

1000

1250

1500

1750

2000

Th
e

nu
m

be
r o

f p
ro

gr
am

s

Figure 2.5: A histogram of the number of methods/program.

seconds on each program, and we converted the analysis outputs to a common format that

enables easy comparison. We ran Wiretap for no more than 7 minutes on each program.

The Dataset Our dataset is 6,044 Java programs that we got from the NJR project [PL18].

NJR is a project that contains 100,000 Java executable programs scraped from GitHub. We

selected 10,000 programs at random from the set and then filtered on the criteria that each

program executes at least two application methods and that every static analysis returns at

least one reachable method. The selected programs are diverse. Figure 2.5 illustrates the

number of methods in the application and in third-party libraries, but excludes methods in

the standard library. Notice that many of the programs are small, yet we see a long tail of

large projects. The median number of methods is 662. The smallest program has 9 methods,

while the biggest has 317,868 methods. In total those programs have 71,971,612 methods.

2.5.3 Quality of the Static Analysis

In the dataset of 6,044 Java programs, we found 1,031 programs for which at least one static

analysis produces unsound results, compared to the output of Wiretap.

19

relative

analysis |SA| |SA ∩W | precision recall

WALA 523 696 83 266 15.9% 77.3%
Doop 1 016 708 86 137 8.5% 80.0%
Petablox 765 621 80 727 10.5% 75.0%
Soot 1 807 013 86 460 4.8% 80.3%

union 1 823 903 87 198 4.8% 81.0%
intersection 442 051 78 077 17.7% 72.5%

Table 2.1: Relative precision and relative recall for four static analyses and their combina-
tions. The size of W (the output of the dynamic analysis) is 107,697.

To determine the quality of the static analysis we use relative precision and recall. Pre-

cision and recall is normally computed based on ground truth, while in our case we use the

output of Wiretap, which underapproximates the ground truth about reachable methods.

Table 2.1 gives the relative precision and relative recall for the four static analyses. If

we order the analyses by relative precision, then WALA is best, then Petablox, followed by

Doop, and finally Soot. In contrast, if we order the analyses by relative recall, then Soot is

best, then Doop, followed by WALA, and finally Petablox. Table 2.1 also shows results for

the union and for the intersection of the outputs of the four static analysis.

From the low relative precision (4.8–15.9%) we conclude that, relative to the runs done

by Wiretap, every static analysis produces a large number of false positives. We believe

that those false positives are due, in part, to the poor code-coverage of the dynamic analysis

(0.15%). In contrast, from the much higher relative recall (75.0–80.3%), we conclude that

the analyses find high percentages of the executed methods. Additionally, if we combine the

static analyses, we get even better relative recall (81.0%), and if we take the intersection we

get an even better precision (17.7%).

For our purposes, the four static analyses produce sufficiently many unsound outputs for

us to experiment with our classifier.

20

0.00 0.25 0.50 0.75 1.00
Easiness

0k

5k

10k

15k

20k

25k

30k
M

ea
di

an
 n

um
be

r o
f m

et
ho

ds

0k

1k

2k

3k

4k

5k

6k

Nu
m

be
r o

f i
np

ut
s

(a) The number of input programs (blue, solid)
and the median number of methods per input
(orange, dashed).

0.00 0.25 0.50 0.75 1.00
Easiness

0%

20%

40%

60%

80%

100%

Pr
ob

ab
ilit

y
of

 to
ol

 p
ro

du
cin

g
so

un
d

ou
tp

ut

WALA
Doop
Petablox
Soot

(b) The probability that a tool is sound.

Figure 2.6: Metrics by easiness score.

2.5.4 Easiness Analysis

We are now ready to do our easiness analysis. For each input we calculate the easiness by

the formula described in Section 2.3. This produced an easiness score for all 6,044 programs.

The results can be summed up in two plots. For each input we can plot the occurrences of

inputs and the median number of methods in those inputs over easiness score, as seen in

Figure 2.6a. We can see that most of the inputs are easy (1.00: all the static analyses were

sound), some are medium hard (0.25–0.75) (at least one static analysis was sound), and then

finally a small amount of inputs were hard (0.00: no static analysis was sound). The graph

speaks to the maturity of the static analyses we are checking, as most of the programs are

easy. We can also see that the median number of methods per input is decreasing as the

inputs gets easier. This makes sense because bigger programs contain more code and the

chance that they will use the hard-to-model cases of the language is greater.

The second plot (Figure 2.6b) shows the probability that any of the given static analysis

will be sound given the easiness of the inputs. In general, the static analyses shows a trend

toward being more sound on easier inputs, which is what we would expect. We think the

dip in WALA’s performance from 0.5 to 0.75 is an indicator of some kind of bug which is

21

especially easy to fix.

The easiest inputs for which at least one single static analysis is unsound is a group of

756 programs that have an easiness score of 0.75. We expect those programs to have the

highest ratio of bugs to features. The hardest group of programs (with an easiness score of

0) contains 156 inputs. We expect those programs to have the highest ratio of features to

bugs. In the next section we will establish ground truth about bugs and features, and then

in Section 2.7 we will evaluate our classifier based on that ground truth.

2.6 Ground Truth

In this section explain how we established a ground truth about bugs and features. Our

approach is domain-specific and uses both static and dynamic information.

2.6.1 Static and Dynamic Analysis

Our static analysis scans Java bytecode to identify the use of certain language constructs and

get information about the class hierarchy. We used static information to categorize bugs.

Our dynamic analysis records two aspects of the execution. First, it records the stack

trace at the point of entry to the first lost method. Second, it records the returned objects

and methods of calls outside the context of the application. The stack trace is the best way

to find the context in which the method was missed. For example, if a method is called

using reflection, then a reflection method will appear on the stack frame. The log of objects

returned from methods outside the scope can be used to detect indirect loss of context.

Specifically, some static analyses might lose track of objects sent to the standard library,

and then later, these objects might be called, and the static analysis would miss it.

22

feature hard / all

Excluded by WALA 27 / 45
Indirect reflection 2 / 2
java/lang/Class.forName 20 / 22
java/lang/ClassLoader.loadLibrary 0 / 2
java/lang/reflect/Constructor.newInstance 51 / 51
java/lang/reflect/Method.invoke 40 / 40

sum 140 / 162

Table 2.2: Known sources of features, and the number of unsoundnesses from the hard
category (easiness = 0) and everything, that were attributed to them.

2.6.2 Feature Detection

We detected features (deliberate unsoundness) mainly based on the stack trace at entry

to the first lost method. If the stack map contained reflection or known excluded classes,

we classified the case as a feature. While direct use of reflection was the common case,

we also found two cases of indirect reflection. Indirect reflection happens when a program

calls “Class.newInstance”, and then precedes to call a method on the created object. If

that method was lost by a static analysis, then we mark it as indirect reflection. Table 2.2

describe the features we found.

2.6.3 Bug Detection

Bug detection was an intense manual effort with some tool support. First we used the

easiness score from the previous section to identify a list of programs that are likely to reveal

bugs. Then our effort to detect bugs proceeded in three stages:

• Inspect. We take the program with the fewest number of methods and manually inspect

it.

• Minimize. If we detect a bug, then we produce a minimal program that reproduces

the bug and we report it to the developers of the tool.

23

• Categorize. Then we use our knowledge of the bug to build a recognizer that categories

if the bug exist by inspecting the static and dynamic information available. We then

mark all matches as bugs and remove them from the list.

Some bugs have complex origins and were beyond our capability to detect precisely, so

our recognizer is imperfect. In 4 cases, both feature detection and bug detection kicked in,

and in those cases, we classified the cases as bugs.

2.6.4 Bug Reports

We found a total of 12 bugs which we have reported to the developers of the tools. Table 2.3

presents a complete list of all the bugs, and Table 2.4. All bugs were confirmed as bugs by

the developers or fixed in later versions. For each bug we give a short description of the

cause of the bug and a high level description of the recognizer we built.

Bugs in WALA In the easiest unsound category for WALA, there exists 419 programs.

Of those we were able to categorize 402 as bugs and 17 as features which was due to the

excluded classes of WALA. We found 4 distinct bugs. Three of the bugs were about missing

approximations of commonly used methods in the standard library.

Bugs in Petablox Of the 285 easy unsound programs for Petablox we were able to confirm

229 of them as bugs. We found 6 distinct bugs, but were unable to classify the remaining

56 programs.

Petablox has a range of bugs: Some of them are about the standard library and some

of them are not bugs of omission, but bugs in the code of Petablox. A good example is the

indirect implements bug (10): Petablox misses methods that implements a method in an

indirect interface. This is best illustrated in the example in Figure 2.7b. Petablox missed

that an interface can extend other interfaces. This meant that when the static analysis saw

the call to “I”s “notfound”, it concluded no classes implemented “I”, even though “Main”

24

ID easy / all description recognizer (The bug is recognized if..)

W
A

L
A

1 2 / 2 A class extends a class that is excluded,
the class itself is also excluded.

The first lost method is contained in a
class that extended an excluded class.

2 2 / 2 “addShutdownHook” from “Runtime”
can call the “run:()V” method of the
argument when Java is shutting down.

The first element on the stack is a
run method and there is a “addShut-
downHook” in the reachable methods
of WALA.

3 396 / 400 The bug shown in Figure 2.1b. “invoke-
Later” from “EventQueue” is not mod-
eled.

The bottom element in the stack is an
“EventDispatchThread” (which “Even-
tQueue” wraps all its threads in)†.

4 2 / 11 “setDefaultUncaughtExceptionHandler”
special case. The uncaught exception
handler is called when the program is
ended by an uncaught exception.

The first lost method is “uncaugh-
tException” from “DefaultException-
Handler”.

P
et

a
b

lo
x

5 99 / 99 It does not find “toString” methods to
be reachable when called from “print”
and “println”.

The first lost methods is a “toString”
method and it had a print method on
the stack.

6 55 / 55 Some methods from the Executors li-
brary.

The first lost method is a “run” or
“call” method, and “runWorker” from
“ThreadPoolExecutor” is on the stack.

7 24 / 27 It lose the context of the object if put
into a multi-array.

The object of the first lost method that
can be placed in a multi-array some-
where in the code†.

8 39 / 41 Methods called on objects that are re-
turned by an iterator.

The object of the first lost method
at some point is returned by “Itera-
tor.next()”.

9 2 / 2 Methods called on objects that are re-
turned by “Queue.peek”.

Same as above

10 10 / 10 Does not handle transitive interface im-
plementations.

The first lost method implements an in-
direct interface†.

S
o
ot

11 6 / 15 Does not handle the new “default” key-
word In Java 8.

The first lost method is implemented in
an interface.

12 46 / 46 Missed class instantiation when a child
class initializer does not exist.

The fist lost method is a class initializer
and there exist a child class that has no
class initiaizer†.

Table 2.3: The full list of all the bugs found and what we did to categorize them. The easy
/ all column indicate the number of bugs we recognized in the set of inputs with easiness =
0.75 and in all inputs respectively. † means that our recognizer slightly overapproximates.

25

ID Bug Report Response

1 https://github.com/wala/WALA/issues/364 Fixed

2 https://github.com/wala/WALA/issues/368 Fixed

3 https://github.com/wala/WALA/issues/372 Unintended unsoundness†

4 https://github.com/wala/WALA/issues/369 Fixed

5 https://github.com/petablox-project/petablox/issues/20 Categorized as bug

6 https://github.com/petablox-project/petablox/issues/25 Categorized as bug

7 https://github.com/petablox-project/petablox/issues/26 Categorized as bug

8 https://github.com/petablox-project/petablox/issues/27 Categorized as bug

9 https://github.com/petablox-project/petablox/issues/28 Categorized as bug

10 https://github.com/petablox-project/petablox/issues/22 Fixed

11 https://github.com/Sable/soot/issues/1054 Fixed

12 https://github.com/Sable/soot/issues/1055 Categorized as bug

Table 2.4: The full list of bug reports. IDs correspond to the bugs in Table 2.3. † indicates
that the bug was confirmed in a personal correspondence with the author of the tool.

indirectly does.

Bugs in Soot We were able to confirm all the 52 easy unsound programs for Soot as bugs.

We found 2 distinct bugs.

The bugs were interesting because they were very different from the bugs of Petablox and

WALA. An example of Bug 12 can be seen in Figure 2.7a. Here, Soot does not find the class

initializer of “SuperClass” because it is only ever called when “Main” is initialized. Soot did

not model that even if the class initializer of a child does not exist, the class initializer of

the parent might still be called. If the commented line is uncommented in the example then

Soot finds that the class initializer of “SuperClass” is reachable.

Bugs in Doop We found no easy unsound programs for Doop.

2.6.5 Results

Table 2.5 sums up our data about ground truth. Here, we can see the distribution of the

ground truth over the intersection of the different static analyses. In summery, out of the

26

https://github.com/wala/WALA/issues/364
https://github.com/wala/WALA/issues/368
https://github.com/wala/WALA/issues/372
https://github.com/wala/WALA/issues/369
https://github.com/petablox-project/petablox/issues/20
https://github.com/petablox-project/petablox/issues/25
https://github.com/petablox-project/petablox/issues/26
https://github.com/petablox-project/petablox/issues/27
https://github.com/petablox-project/petablox/issues/28
https://github.com/petablox-project/petablox/issues/22
https://github.com/Sable/soot/issues/1054
https://github.com/Sable/soot/issues/1055

W
A

L
A

D
o
op

P
et

ab
lo

x

S
o
ot ground truth

easiness bugs features unknown total

• • • 0.75 52 0 0 52
• • • 0.75 229 0 56 285
• • 0.50 0 0 39 39
• • • 0.75 0 0 0 0
• • 0.50 0 0 0 0
• • 0.50 0 0 3 3
• 0.25 0 1 0 1
• • • 0.75 402 17 0 419
• • 0.50 8 0 0 8
• • 0.50 2 2 35 39
• 0.25 4 0 22 26
• • 0.50 0 0 0 0
• 0.25 0 0 0 0
• 0.25 1 2 0 3

0.00 12 140 4 156

sum 710 162 159 1031

Table 2.5: The distribution of the ground truth of the unsound programs over the different
intersections of static analyses. “•” indicates where the static analysis did not miss the first
lost method.

27

public class Main implements J {

public static void main(String args[]) {

I x = new Main();

x.notfound();

}

public void notfound() { System.out.println("notfound"); }

}

interface I { public void notfound(); }

interface J extends I { }

(a) Bug 12.

public class Main extends SuperClass {

// static int x = 1;

public static void main(String[] args) {}

}

class SuperClass {

static { System.out.println("Hello World"); }

}

(b) Bug 10.

Figure 2.7: Minimal examples of two bugs.

1,031 programs that induces unsoundness in the static analyses we found 710 programs that

induce real bugs (68.9%), 162 programs that induce features (15.7%), while the reasons for

unsoundness induced by the remaining 159 programs (15.4%) remain unknown.

2.7 Evaluation

Now we are ready to evaluate our classifier. Our main claim is that, within the scope of

separating bugs from deliberate unsoundness in static analysis:

a classifier based on easiness analysis is useful.

In particular, we find that using our easiness analysis as the basis of a bug classifier gives a

90.3% precision and 78.6% recall.

Returning to Section 2.2.2, we asserted that a useful analysis has to be accurate, general,

and automatic. We will now evaluate our classifier in those dimensions.

28

0.00 0.25 0.50 0.75
Easiness

0%

20%

40%

60%

80%

100%

Pr
ob

ab
ilit

y
of

 re
as

on
 fo

r u
ns

ou
nd

ne
ss

bug
unknown
feature

Figure 2.8: The probability of bug, unknown, and feature, given the easiness of the input.

ground truth

cut-off bug feature unknown total

bug ≥ 0.75 683 17 56 756
feature < 0.25 12 140 4 156
unknown 15 5 99 119

Table 2.6: This table is like Table 2.5, but is grouped by the classifications made after
easiness analysis.

Accurate First, we will investigate accuracy. By accumulating Table 2.5, we can plot the

chance to find a bug, feature, and unknown of our ground truth as a function of the easiness

of the inputs in Figure 2.8. We can see that most of the features are grouped around the

hard inputs, and most of the bugs are grouped around the easy inputs. The unknown inputs

are most likely in the medium hard inputs. Thus, easiness analysis gives a much better

chance at identifying bugs and features than picking at random. If we picked at random, our

ground truth says that we should expect to find a distribution of 15.7% features and 68.9%

bugs at every easiness level.

As we discussed in Section 2.3, we can exploit easiness analysis as a classifier by defining

29

precision recall

bug 90.3% 78.6%
feature 89.7% 43.6%

Table 2.7: Precision and recall. The precision is calculated in relation to the ground truth.
Recall is calculation is including the programs with unknown unsoundness.

a threshold. By choosing the threshold (≥ 0.75) for bugs and (< 0.25) for features, we can

construct Table 2.6, and then use our ground truth to calculate the precision and recall for

bug and feature detection. In Table 2.7, we can see that our classifier finds bugs with 90.3%

precision and 78.6% recall, and features with 89.7% precision and 43.6% recall. We would

get even higher recall if we only count the categorized bugs and features, but because we

used the easy inputs for categorizing the bugs, this would unfairly skew the results.

Let us compare the above accuracy results against a simpler approach that detects re-

flection, like before, and classifies everything else as bugs. This simpler classifier says that

117 cases of reflection are features and that the remaining 914 case of unsoundness are bugs.

Now the precision of detecting bugs is only 77.7%. In summary, our approach is accurate.

General If we inspect the hard cases only, the easiness analysis was able to categorize

96.5% (Table 2.2) of the reflection as hard problems without having any knowledge of re-

flection. This indicates that we can extract knowledge about hard inputs without knowing

anything the language and its constructs. The only known features that were categorized as

bugs were due to explicit excluded classes of WALA.

Our definitions of easiness and of bugs based on easiness are language independent and

independent of the kind of static analysis. In summary, our approach is general.

Automatic We ran our easiness analysis on 6,044 programs with no human intervention.

In summary, our approach is automatic.

30

2.8 Related Work

In this section, we will go over the most recent related work in differential testing and

classification of unsoundness in static analyses.

Input classification using differential testing Recently, Zhu et al. used differential

testing in a novel way [ZHQ18] by testing two browsers with a known difference. Specifically,

one of the browsers has an adblocker and the other has no adblocker. Their goal was to find

“input” that reveals the difference, namely a website with an anti-adblocker. Their approach

analyzes the two execution traces and gets a higher rate of detecting such websites than

previous work.

Bug finding by voting Engler et al. [ECH01] presented an approach to bug finding that

looks for contradictions in how a program is written. Specifically, if the program access

particular data in one way in the majority of cases but different in other cases, likely the

deviant case is a bug.

Differential testing has been used before with programs as inputs in the tool CSmith

by Yang et al. [YCE11]. Like our work, they work with soundy tools, namely compilers.

In their case, the compilers are expected to produce the same code as long as the input

is well defined. Contrary to our work, the hard cases are found using static analysis, and

the outputs are unknown. In our approach, the hard cases are unknown, but the expected

output is known.

Differential testing of tools with programs as inputs were also used in a paper by Paleari et

al. [PMF10], where they used a differential testing technique, called N-version Disassembly.

The focus of the technique is to compare the output of n disassemblers. The input can be

invalid, but the disassemblers are well defined for all inputs, so they are always supposed to

produce the same answer. They use a partial oracle to weed out decompilers that are wrong

so that they do not affect the voting.

31

Differential testing is closely related to N-version programming [CA76, Avi85]. The

concept is that “Bugs are deviant behavior”, which means that we can recover the correct

behavior by majority vote. Criticism of this statement was made by Knight and Leveson

[KL86], who showed that humans often make the same mistakes when coding. Our technique

is not immune to this effect, yet the consequences are less severe. If multiple static analyses

make the same mistake, we will assign that input a lower easiness score. This will not affect

the quality of our results but might reduce the number of bugs we find.

Analysis of reflection For Java, many static analyses approximate the targets of reflec-

tion calls, often via string analysis [LWL05, LTS14, LTX15, SKB15].

Bodden and his co-authors [BSS11] presented the TamiFlex tool that enables a static

analysis of Java to be sound with respect to a set of recorded program runs. TamiFlex

enforces soundness dynamically: it checks at run time whether the program calls a method

that is unknown to the static analysis.

For JavaScript, static analysis is more difficult than for Java [FSS13]. Richards, Hammer,

Burg, and Vitek [RHB11] presented statistics on the strings that were passed to calls of eval

in a large number of JavaScript applications. Later, Meawad, Richards, Morandat, and Vitek

[MRM12] presented tool support for removing uses of eval from a program. Such studies

could be useful also for Java reflection.

Contrary to these techniques, our tool does not care if the program reflection, only if the

input is hard to do static analysis on. While using a reflection detector can predict if the

input program contains reflection, which is hard to model, it does not help with native calls

and other dynamic features of Java.

Classification with a known outcome Reif et al. [RKE18] did soundness testing of Soot

and WALA. Specifically, they designed a test suite that enabled them to test the soundness

of Soot and WALA. They identified reflection and missing support for Java 8 as sources of

unsoundness. Each program in their test suite was designed to reveal either a bug (missing

32

support for Java 8) or a feature (underapproximation of reflection). Thus, their approach

classifies inputs as revealing bugs or features up front.

Sui et al. [SDE18] presented a carefully designed microbenchmark for dynamic language

features of Java. They used Doop, Soot, and WALA to analyze their microbenchmark and

found that all three analyses produce unsound results. Their microbenchmark reveals many

cases of deliberate unsoundness in a static analysis while it makes no attempt to reveal bugs.

In contrast to both techniques, our approach takes any input program for which a static

analysis is unsound and classifies the unsoundness as a bug or a feature.

Manual classification Lhotak [Lho07] presented a tool for Java that compares a static

call graph produced by Soot (in the Spark configuration) to a dynamic call graph. For a

single benchmark, his tool found 143 methods that were executed but missed by the static

analysis. He did a manual inspection of the calls to those 143 methods and produced a list

of classes that the execution had loaded using reflection. He made no attempt to classify the

unsound results into bugs and features, while this is what our approach can do.

Andreasen et al. [AMN] used soundness testing for JavaScript along with a methodology

for how to identify the root cause of unsound output from a static analysis. Their approach

uses delta debugging [ZH02] on the unsoundness-inducing input to produce a smaller program

with the same property. While delta debugging makes classification easier, their approach

leaves a manual effort to understand whether the root cause is a feature of a bug. In contrast,

our approach will do this automatically.

Classification via program instrumentation Christakis, Müller, and Wüstholz [CMW15]

compared the output from the Clousot static analyzer of CIL bytecodes [ECM06] with the

output from a dynamic analysis. They also presented a tool for instrumenting the input

program such that it tracks all deliberate unsoundness in Clousot. The instrumentation

enabled the authors to evaluate whether their six benchmarks violate Clousot’s unsound

assumptions. They found that the assumptions of the static analysis were violated in 2–26

33

percent of the methods during execution. However, those violations led to no mistakes by

the client of the static analysis, which was an assertion checker. The authors focused entirely

on known features of the static analysis and made no effort to find bugs in the static analysis.

In contrast, our approach can classify unsound results into bugs and features.

Unsoundness due to incomplete input Xue and Ngyuen [XN05] presented a static

analysis of incomplete Java programs. Their analysis produces both static information and

a list of call sites for which the static information may be unsound. They focused entirely on

unsoundness that is due to an incomplete input program rather than due to bugs or features

in the static analysis.

34

2.9 Summary

We have shown that easiness is a continuous indicator of the validity of inputs to static

analysis. And we have used it to verify the correctness of 683 bug reports. Our easiness-

based classifier can, with 90 percent precision and 79 percent recall, determine if an input

that produces unsoundness is valid. Our approach is an accurate, general, and automatic way

of classifying bugs and deliberate unsoundness in static analyses. One could imagine that

a static analysis developer amended their bug tracker with an automatic easiness analysis.

This would automatically assign an easiness score to each reported bug, which indicates if

the bug should be taken seriously or rejected.

Our approach has great potential because it assumes no domain-specific knowledge. Fu-

ture work may evaluate the approach on other approximative metaprograms and types of

input programs. Finally, more work is needed to significantly reduce the size of bug-revealing

inputs before using them in bug reports. Input reduction is precisely the topic of the next

two chapters.

35

CHAPTER 3

Binary Reduction of Dependency Graphs

Delta debugging is a technique for reducing a failure-inducing input to a small input that

reveals the cause of the failure. This has been successful for a wide variety of inputs, including

C programs, XML data, and thread schedules. However, for input with many internal

dependencies, delta debugging produces many invalid inputs and scales poorly. Such input

includes programming languages like C#, Java, and Java bytecode, and they have presented

a significant challenge for input reduction until now. This means that input reduction for

metaprograms for these kinds of input programs have been under-explored.

In this chapter, we show that the core challenge is a reduction problem for dependency

graphs, and we present a general strategy for reducing such graphs. We combine this with

a novel algorithm for reduction called Binary Reduction in a tool, called J-Reduce, for Java

bytecode. Our experiments show that our tool is 12x faster and achieves more reduction

than delta debugging on average. This enabled us to reduce bug reports significantly for

three Java bytecode decompilers, which we reported to the developers.

3.1 Introduction

Delta debugging automates a process that programmers otherwise do by hand. When a

program crashes on an input, the programmer tries to understand the cause of the crash by

reducing the input. Intuitively, the programmer can cut the input in half and see if one of

the two halves causes the crash as well. After some repetitions of this step, the input may

be small enough for the programmer to spot the cause of the problem. Delta debugging

36

executes a more advanced version of this, automatically. For example, delta debugging can

map the original input to a nonconsecutive subsequence. Thus, delta debugging relieves

programmers from the tedium of reducing and executing, and lets them focus on improving

their programs.

In their seminal paper on delta debugging, Zeller and Hildebrandt [ZH02] showed suc-

cessful experiments in which the inputs were C programs, Mozilla user actions, and UNIX

commands. Other papers have reported on experiments with XML data [MS06a], thread

schedules [CZ02], and event sequences [HBB15]. The problem of reducing failure-inducing

input to a minimal size is NP-complete [MS06a], and for an input with n characters, trying

all 2n substrings may be futile. Instead, the delta debugging algorithm ddmin [ZH02] tries

O(n2) substrings. This led to massive success but when most natural subsets of the input

are invalid, most iterations of ddmin fail and are of no help towards reduction. As a step

towards scalability, Zeller and Hildebrandt showed how ddmin does better when applied to

a list of lines. This is better than a character-oriented approach because often a line of code

represents a syntactic element such as a statement. Misherghi and Su [MS06a] went further

and introduced hierarchical delta debugging (HDD) that works with the syntactic structure

of the data. For example, for reduction of a method body, HDD represents the body as a

list of statements and runs ddmin on the list. This is better than a line-oriented approach

because a statement can span multiple lines. The use of the syntactic structure increase the

chance that each input is syntactically valid and increases the chance that each run produces

useful information.

In this chapter, we consider the next level of difficulty, which arises when elements of

the syntactic structure have many internal dependencies. Such input includes C#, Java,

and Java bytecode, where a class may depend on other classes and where compilation and

bytecode verification require all dependencies to be present. We can represent such a program

as a list of classes and run ddmin on the list, yet most runs will fail because the input is

invalid. We solve this by modeling the internal dependencies in the input as a dependency

graph and then running reduction on a list of transitive closures in the dependency graph.

37

We will show experiments with reduction by both ddmin and a novel algorithm called Binary

Reduction.

In the remainder this chapter, Section 3.2 introduces the challenge in detail, after which

Sections 3–6 present our contributions:

• We show that dependency graphs are a convenient data structure for reduction, par-

ticularly by ddmin (Section 3.3).

• We present a new reduction algorithm, called Binary Reduction that runs onlyO(n log n)

iterations (Section 3.4).

• We evaluate on 238 Java bytecode programs that induce failures in three decompilers.

Binary Reduction on graphs is 12x faster and reduces more than ddmin (Section 3.5).

• We submitted bug reports for the decompilers (Section 3.6).

Finally, Section 3.7 discusses related work, and we summarize the chapter in Section 3.8.

3.2 The Challenge

We will explain the challenge of reducing input with dependencies with an example. The

example concerns the Java bytecode decompiler called CFR (http://www.benf.org/other/

cfr/). CFR takes as input a valid Java bytecode program and decompiles it to a Java source

program. This is useful for programmers who want to inspect and reason about libraries

that have been shipped as bytecode. Ideally, a decompiler produces source code that can

be compiled to bytecode such that the input bytecode and output bytecode are behaviorally

equivalent. When we look for bugs, we will use a more modest quality measure: a decompiler

should produce source code that compiles. If CFR maps a valid bytecode program to a source

program that doesn’t compile, we say that CFR fails.

We define a valid bytecode program as a set of class-files that each individually verifies

and depends only on classes in the program itself or in the standard library. A class A

38

http://www.benf.org/other/cfr/
http://www.benf.org/other/cfr/

depends on another class B if A mentions B anywhere in its bytecode. This can happen in

many places, such as in an extends-clause, in a type annotation, in a new-expression, or in

a type cast.

Our example begins with the discovery of a bug in CFR. We ran CFR on a valid Java

bytecode program with 17 classes and then we ran javac on the produced source program,

which led to this error message from javac:

... error: illegal start of expression

if (var2_3.hasNext()) ** break;

Now we would like to send a bug report to CFR, but it can be hard to locate the bug in 17

classes. In this chapter, we focus on reducing the bytecode program to one with a subset of

the classes that still induces CFR to fail with the same bug report. Thus, the reducer picks

classes without changing them.

The task of reducing a set of classes to a smaller set of classes is of the kind for which

delta debugging usually excels. We implemented the delta debugging algorithm called ddmin

by Zeller and Hildebrandt [ZH02] such that it works on a list of classes. However, the result

of reducing our Java bytecode program with 17 classes was disappointing: the result was a

program with 14 classes.

Figure 3.1 illustrates our run of ddmin. The boxes and ×’s show which classes were input

to an iteration of ddmin, while the column labeled fail shows whether CFR failed (marked

with yes), succeeded (marked with no), or whether the bytecode program was invalid (marked

with ?). In most cases, the input bytecode program is invalid so to highlight the few steps

with valid inputs, we use boxes in those steps. Specifically, when CFR reproduces the bug

we use �, and in all other cases with valid inputs we use �.

The many iterations with invalid bytecode programs inputs are of no help towards reduc-

tion. Additionally, each invocation of CFR and javac can take between a couple of seconds

and multiple minutes, which decreases scalability.

39

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 fail

× × × × × × × × × · · · · · · · · ?

· · · · · · · · · × × × × × × × × ?

× × × × × · · · · · · · · · · · · ?

· · · · · × × × × × · · · · · · · ?

· · · · · · · · · · × × × × × · · ?

· · · · · · · · · · · · · · · × × ?

· · · · · × × × × × × × × × × × × ?

× × × × × · · · · · × × × × × × × ?

× × × × × × × × × × · · · · · × × ?

� � � � � � � � � � � � � � � · · yes

× × × × × · · · · · · · · · · · · ?

· · · · · × × × × × · · · · · · · ?

· · · · · · · · · · × × × × × · · ?

· · · · · × × × × × × × × × × · · ?

× × × × × · · · · · × × × × × · · ?

× × × × × × × × × × · · · · · · · ?

× × × · · · · · · · · · · · · · · ?

· · · × × × · · · · · · · · · · · ?

· · · · · · × × × · · · · · · · · ?

· · · · · · · · · × × × · · · · · ?

· · · · · · · · · · · · × × × · · ?

· · · × × × × × × × × × × × × · · ?

× × × · · · × × × × × × × × × · · ?

× × × × × × · · · × × × × × × · · ?

× × × × × × × × × · · · × × × · · ?

× × × × × × × × × × × × · · · · · ?

× × · · · · · · · · · · · · · · · ?

· · × × · · · · · · · · · · · · · ?

· · · · × × · · · · · · · · · · · ?

· · · · · · × × · · · · · · · · · ?

· · · · · · · · × × · · · · · · · ?

· · · · · · · · · · × × · · · · · ?

· · · · · · · · · · · · × × · · · ?

· · · · · · · · · · · · · · × · · ?

· · × × × × × × × × × × × × × · · ?

× × · · × × × × × × × × × × × · · ?

× × × × · · × × × × × × × × × · · ?

× × × × × × · · × × × × × × × · · ?

× × × × × × × × · · × × × × × · · ?

× × × × × × × × × × · · × × × · · ?

× × × × × × × × × × × × · · × · · ?

× × × × × × × × × × × × × × · · · ?

continued on the right

... continued ...

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 fail

� · · · · · · · · · · · · · · · · no

· × · · · · · · · · · · · · · · · ?

· · × · · · · · · · · · · · · · · ?

· · · × · · · · · · · · · · · · · ?

· · · · × · · · · · · · · · · · · ?

· · · · · × · · · · · · · · · · · ?

· · · · · · × · · · · · · · · · · ?

· · · · · · · � · · · · · · · · · no

· · · · · · · · × · · · · · · · · ?

· · · · · · · · · × · · · · · · · ?

· · · · · · · · · · × · · · · · · ?

· · · · · · · · · · · × · · · · · ?

· · · · · · · · · · · · × · · · · ?

· · · · · · · · · · · · · × · · · ?

· · · · · · · · · · · · · · × · · ?

· � � � � � � � � � � � � � � · · yes

· × · · · · · · · · · · · · · · · ?

· · × · · · · · · · · · · · · · · ?

· · · × · · · · · · · · · · · · · ?

· · · · × · · · · · · · · · · · · ?

· · · · · × · · · · · · · · · · · ?

· · · · · · × · · · · · · · · · · ?

· · · · · · · � · · · · · · · · · no

· · · · · · · · × · · · · · · · · ?

· · · · · · · · · × · · · · · · · ?

· · · · · · · · · · × · · · · · · ?

· · · · · · · · · · · × · · · · · ?

· · · · · · · · · · · · × · · · · ?

· · · · · · · · · · · · · × · · · ?

· · · · · · · · · · · · · · × · · ?

· · × × × × × × × × × × × × × · · ?

· × · × × × × × × × × × × × × · · ?

· × × · × × × × × × × × × × × · · ?

· × × × · × × × × × × × × × × · · ?

· × × × × · × × × × × × × × × · · ?

· × × × × × · × × × × × × × × · · ?

· × × × × × × · × × × × × × × · · ?

· × × × × × × × · × × × × × × · · ?

· × × × × × × × × · × × × × × · · ?

· × × × × × × × × × · × × × × · · ?

· × × × × × × × × × × · × × × · · ?

· × × × × × × × × × × × · × × · · ?

· × × × × × × × × × × × × · × · · ?

· × × × × × × × × × × × × × · · · ?

· � � � � � � � � � � � � � � · ·

Figure 3.1: A detailed run of the example using unmodified delta debugging (ddmin). The
rows are the iterations of ddmin. The columns identifies classes (represented using a number)
in the input of each iteration: if a class is included it is marked with �, �, or ×.

40

210

3 4

5

6

78

9 10

11

12

1314 15

16

Figure 3.2: The dependency graph of our example program. The nodes are classes in the
program and the edges represent references to other classes. The class marked 1 induces the
bug in the decompiler.

Regehr et al. [RCC12a] identified this kind of problem in 2012 and called it the test-case

validity problem. They also identified two kinds of solutions, namely:

1. detect invalid inputs or

2. avoid invalid inputs.

In the context of C, Regehr et al. [RCC12a] used two tools to detect invalid code, which led

to an excellent reducer. However, they left avoiding invalid code as an open problem.

Inspired by the success of Regehr et al. [RCC12a], our first attempt to improve the

situation was to detect invalid bytecode programs. Specifically, we enhanced ddmin to a

version called verify that checks, in every iteration, that the bytecode program is valid

before running CFR and javac. Given that the original bytecode program is valid and that

each class stays unchanged, a check of whether a bytecode program is valid boils down to

checking that all dependencies are present. We do this by going through each class to find

its dependencies, after which we assemble the dependencies into a graph.

41

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 fail

� � � � � � � � � � � � � � � · · yes

� · · · · · · · · · · · · · · · · no
· · · · · · · � · · · · · · · · · no
· � � � � � � � � � � � � � � · · yes

· · · · · · · � · · · · · · · · · no

· � � � � � � � � � � � � � � · ·

Figure 3.3: A run where all the invalid bytecode program inputs have been filtered out
before execution (verify).

Figure 3.2 shows the dependency graph for our example; each node represents a class and

each edge represents a dependency. The classes are numbered from 0 to 16 (corresponding to

numbers in Figure 3.1), for simplicity. The edge 1→ 4 means that class 1 depends on class

4. Sometimes classes are tightly coupled, in that case bidirectional edges are possible. Using

this graph, verify can check for each iteration that all the dependencies are present before

running CFR. Figure 3.3 shows that verify invokes CFR and javac just five times, yet still

produces a program with 14 classes. In Section 3.5, our experiments show that verify is 3x

faster than ddmin on a list of classes, on average.

We have found that the actual error is induced by class 1, marked in bold in Figure 3.2.

However, for a bytecode program with class 1 to be valid, classes 2, 4, and 7 also have to be

present. Thus, the smallest valid input that induces an error in CFR is {1, 2, 4, 7}, which is

3.5x smaller than the result given by ddmin and verify. This raises the question: why do

ddmin and verify do poorly and what can we do about it?

The problem has to do with a lack of monotonicity that we explain now. In our example,

consider the two valid, failure-inducing inputs {1, 2, 4, 7} and {0, 1, . . . , 16}. Figure 3.3 shows

many sets S where

{1, 2, 4, 7} ⊆ S ⊆ {0, 1, . . . , 16}

and in every case, S is invalid bytecode. Thus, we don’t have the property that as inputs

get bigger, failure is preserved. Equivalently, we don’t have the property that as inputs get

smaller, nonfailure is preserved. In other words, when we run CFR followed by javac on

possibly invalid bytecode, this combined operation fails to be monotonic.

42

The lack of monotonicity has a big effect on the reduction process. Specifically, the

process can move from a failure-inducing input such as {0, 1, . . . , 16} to a smaller input

such as {0, 1, . . . , 8} that induces no failure, and still miss the even smaller, failure-inducing

input {1, 2, 4, 7}. For example, if we from {0, 1, . . . , 8} remove some classes that had missing

dependencies, the removal may make the input valid again, hence make the failure reappear.

We note that the original paper on ddmin assumes that “failure is monotone” [ZH02,

Section VIII]. However, delta debugging has been successful even when monotonicy fails,

including when the input is a C program, so what is different about our case? The answer

is that

for input with many internal dependencies, monotonicity can fail spectacularly.

Indeed, Figure 3.1 shows that almost every subset is invalid bytecode so trying O(n2) subsets

among the (2n) possible subsets has little chance of success.

Notice that in Figure 3.1, ddmin managed to remove the interdependent classes 15 and

16 in a single step. This was mostly due to a lucky ordering of the classes. We can see from

this example that for ddmin to remove interdependent classes, it must remove them at the

same time. An attempt to remove either one in a single step would run into invalid bytecode.

For another example, notice that if we remove class 11 from {0, 1, . . . , 16}, we get an

invalid bytecode program. By inspecting Figure 3.2 we can see that in addition to removing

class 11, we also have to remove class 8, thus also class 13, and so on. For ddmin to have a

chance to remove such a long dependency chain in a single step, we would need the classes

to be ordered in a particularly fortunate way. However, given that the reduction problem is

NP-complete, finding a good listing is a hard problem.

The above analysis has led us to abandon the idea of detecting invalid input and instead

pursue how to avoid it. We will present a new approach that avoids invalid bytecode pro-

grams entirely by putting dependencies front and center. The key idea is to do reduction of

dependency graphs, as we explain next.

43

3.3 Reduction of Dependency Graphs

In this section, we will distill the essence of reducing an input with internal dependencies in

a way that avoids invalid inputs. Thus, we will run CFR followed by javac only on valid

bytecode. Hence, all remaining violations of monotonicity, in the sense of Section 3.2, come

from CFR and javacc, and those tend to be insignificant.

Let us assume that the validity of an input can be modeled with a dependency graph. If

all elements in the input have no missing dependencies, the input is valid. Intuitively, if we

group all elements with their dependencies, and with the dependencies of their dependencies,

and so on, then picking such a group would be a valid input. For the case of a set of verified

classes, no missing dependencies mean a valid bytecode program.

We avoid invalid inputs by changing the reduction problem from working with a list of

elements to working with a list of sets of elements. We ensure that each such set of elements

is a valid input by requiring that it is a self-contained subset without missing dependencies.

Those subsets are the transitively closed subsets of nodes in the dependency graph of the

input. Recall that the transitive closure (or simply closure) of a set of nodes is the smallest

superset that is transitively closed.

Our reduction strategy is based on the idea that a set of closures represents the union of

those closures, which makes sense because the union of two closures is itself a closure. This

means that no matter what subset of the list of closures a reduction algorithm picks, the

union of that subset would be a closure. And since every closure is valid input we have a

strategy that avoids invalid inputs.

The dependency graph reduction strategy Here is our strategy for reduction of an

input with internal dependencies:

1. Map the input to its dependency graph.

2. Compute the closure of each node.

44

3. Form a list of the closures.

4. Run a reduction algorithm on the list of closures.

5. Output the union of the reduced list of closures.

For our dependency graph in Figure 3.2, Step 2 maps the 17 nodes to the following 8 differ-

ent closures: S1 = {7, 8, . . . , 16}, S2 = {7, 8, . . . , 14}, S3 = {1, 2, . . . , 7}, S4 = {1, 2, 3, 4, 7},

S5 = {1, 2, 4, 7}, S6 = {4, 7}, S7 = {7}, and S8 = {0}. We have fewer closures than nodes

because of cycles in the graph.

The above strategy leaves two aspects to be refined. First, in Step 3 we must decide how

to order the closures. This turns out to be important, as we will discuss below. Second,

in Step 4 we must decide how to reduce the list of closures. We have some freedom here

because when we remove a closure from the list, the result is again a list of closures. Thus,

a reduction algorithm can remove closures and avoid invalid subsets entirely.

Using ddmin on a list of closures In this section we use ddmin in Step 4 and refer to

this algorithm as closure. In each iteration of ddmin, the union of the closures represents

a valid bytecode program so all we need to do is to check whether CFR fails.

Figure 3.4a shows two runs of closure on the closures of the nodes in Figure 3.2. The

difference lies in how we ordered the closures up front; any ordering is possible. In both cases,

the number of iterations is much smaller than in the run of ddmin shown in Figure 3.1. The

reason is that closure encounters no invalid subsets so it homes in on a solution in just

four and five iterations, respectively. In this example closure run as fast as verify, in

Figure 3.3, but the first run returns S3 = {1, 2, . . . , 7}, which is much better than the output

in Figure 3.3, which is {1, 2, . . . , 14}. The second run returns S5 = {1, 2, 4, 7}, which is the

best possible subset.

For the second run in Figure 3.4a, we sorted the closures by size, from smallest to largest.

The reason this works well has to do with a quirk in running ddmin on a list of sets.

Specifically, ddmin views S3, S4, S5 as equally good reduced sets, because each one is a

45

S1 S2 S3 S4 S5 S6 S7 S8 fail

� � � � · · · · yes

� � · · · · · · no
· · � � · · · · yes

· · � · · · · · yes

· · � · · · · ·

S7 S8 S6 S5 S4 S3 S2 S1 fail

� � � � · · · · yes

� � · · · · · · no
· · � � · · · · yes

· · � · · · · · no
· · · � · · · · yes

· · · � · · · ·

(a) Two runs. The first run has the clo-
sures in an arbitrary order; the second has
them sorted after size.

S7 S8 S6 S5 S4 S3 S2 S1 fail

� � � � · · · · no
· · · · � � � � yes

· · · · � � · · no
· · · · · · � � no
· · · · � · · · no
· · · · · � · · no
· · · · · · � · no
· · · · · · · � no
· · · · · � � � yes

· · · · · � · · no
· · · · · · � · no
· · · · · · · � no
· · · · · · � � no
· · · · · � · � yes

· · · · · � · · no
· · · · · · · � no

· · · · · � · �

(b) Failure induced by {1, 12}.

Figure 3.4: Three runs of closure the example in Figure 3.2.

single closure. Whether ddmin produces one of S3, S4, and S5 depends on the order of the

closures, and, like in section 3.2, some orders are more lucky than others. In each of the two

runs in Figure 3.4a, closure produced a single closure and behaved like binary search. We

know that ddmin tends to process input from left to right, as we can see in Figure 3.1, so

when we sort the closures by size we have a good chance to get the smallest closure.

The algorithm closure leaves room for improvement. For example, suppose the failure is

induced by the combination of class 1 and class 12 (rather than only class 1). The smallest

reduced set is S5 ∪ S2, which has size 11. However, Figure 3.4b shows a run of closure

that produces the larger set S3 ∪ S1, which has size 16. Like before, this happens because

ddmin looks for the smallest possible set of sets without considering the sizes of those sets.

Here, ordering the closures by size is insufficient to get the best result. In the next section,

we present an algorithm that matches closure in simple cases and is better and faster in

general.

46

3.4 Binary Reduction

We will extend the classical input reduction problem with a notion of cost that can model

sizes of closures, and we will present an algorithm called Binary Reduction.

3.4.1 The Weighted Input Reduction Problem

For all sets we can refer to the elements using indicies: e.g. if A is a set, then A1, . . . , A|A|

refer to the elements of A. If I is a set, then 2I is the powerset of I. 1 is true and 0 is false.

We say that P : 2I → Bool , a predicate on subsets of I, is monotonic if S1 ⊆ S2 implies that

P (S1)⇒ P (S2).

We recast reduction as a decision problem:

Definition 1 (Weighted Input Reduction Problem). Given (I, P, C, k), where I is failure

inducing input, P : 2I → Bool is a polynomial-time monotonic predicate which is true for all

failures (P (I) = 1), C : 2I → N is a polynomial-time cost function, and k ∈ N is a natural

number, decide ∃S ⊆ I : P (S) ∧ (C(S) < k).

Intuitively, P represents buggy software and I represents failure-inducing input. We

follow the convention of Misherghi and Su [MS06a] that P returns 0 both in the case of

invalid input and in the case of no failure. The novelty in the above definition is the cost

function C. With a cost function we are allowed to use more complicated inputs. Later, in

Chapter 4 (Section 4.4), we will define a version of the Input Reduction Problem which uses

logic to define the valid inputs. In order to define the problem as a decision problem, we use

the standard technique of asking whether the cost of S exceeds a threshold k.

Many instantiations are possible, including the following three.

Original Problem In the seminal delta debugging paper [ZH02], I is the index set of the

input list and C(S) = |S|. The problem is to find the smallest subset of the index set that

induces a failure.

47

Set of Sets If we want to minimize the union of a set of sets, we can pick I = 2E, where

E is a set and C(S) = | ∪ S|. Additionally, we can lift any predicate Q : 2E → Bool on

subsets of E to a predicate P : 2I → Bool by defining P (S) = Q(∪S).

Dependency Graphs The previous section explains how to do reduction of a dependency

graph by mapping it to the Set of Sets problem above. The idea is to compute the closures

of the nodes in the dependency graph and then to find the smallest union of the closures

that satisfies the predicate.

Misherghi and Su [MS06a] proved that the hierarchical delta debugging problem is NP-

complete. In a similar manner, we prove that the Weighted Input Reduction Problem is

NP-complete.

Theorem 1. The Weighted Input Reduction Problem is NP-complete.

Proof. The Weighted Input Reduction Problem is in NP because, given a witness S ⊆ I, we

can check in polynomial time that P (S) ∧ (C(S) < k) since P and C runs in polynomial

time.

We show that the Weighted Input Reduction Problem is NP-hard by reducing from the

Hitting Set Problem, which is NP-complete [Kar72]. The Hitting Set Problem is: given

(Σ, Z, k), where Z ⊆ 2I is a set of sets, decide ∃S ⊆ ∪iZi : (∀i : S ∩Zi 6= ∅)∧ (|S| < k). The

reduction works as follows. Define I = ∪iZi and P (S) = (∀i : S ∩ Zi 6= ∅) and C(S) = |S|.

Notice that P is monotonic. Notice also that if (I, P, C, k) has a solution S, then S ⊆ I,

P (S) and C(S) < k, which means that S ⊆ ∪IZi, ∀i : S ∩ Zi 6= ∅, and |S| < k. This means

that S is also a solution to (Σ, Z, k).

Our problem is NP-complete and, unless P = NP, the best we can do in polynomial time

is an approximation. In the next section, we will present a polynomial-time approximation

algorithm for solving the input reduction problem.

48

Algorithm 1: Binary Reduction

Input: (I, P, C, k) where P (I)
Output: If there exist an S st. P (S) and C(S) < k
Define: A �S′ B := C(S ′ ∪ {A}) ≤ C(S ′ ∪ {B})
Data: A current solution S ← ∅ and sorted search space D ← sort�S

(I)
while ¬P (S) do

r ← min r st. r > 0 ∧ P (S ∪ {Dj : j ≤ r})
S ← S ∪ {Dr}
D ← sort�S

({Dj : j < r})
end
return C(S) < k

3.4.2 The Binary Reduction Algorithm

Recall that in Figure 3.4b, closure makes a bad choice and rejects the left half of the input.

The closures on the left are insufficient to induce a failure. Instead, closure finds a much

worse solution among the bigger closures on the right. The reason is that closure takes no

advantage of getting a sorted input list.

We introduce Algorithm 1, an algorithm called Binary Reduction. The algorithm is

inspired by the second run of closure in fig. 3.4a, where ddmin operates like a binary

search and quickly finds a single closure. Binary Reduction extends this idea to work in

cases where multiple closures are required. We use (sort�S
(X)) to denote the sorting of X

according to the total order �S and (min r st. p) to denote finding the smallest r such that

p is satisfied.

The idea is to maintain two sets S and a D. Here, S is the set of elements that we know

are in the final set, and D is a sorted set of elements still to be searched. We initialize S

to be empty, indicating we know nothing, and we initialize D to be the sorted input, as we

want to search the entire space.

The algorithm starts by testing if the current solution satisfies P (S). If not then we

search for the minimal prefix of a sorted listing of D that together with S satisfies P . Since

we know that S ∪ {Dj : j ≤ r} is the smallest prefix that satisfies P , we also know that

removing Dr from the sets would make P false, therefore Dr must be part of the final set.

49

S1 S2 S3 S4 S5 S6 S7 S8 fail

· · · · · · · · no
� � � � · · · · yes
� · · · · · · · no
� � · · · · · · no
� � � · · · · · yes

· · � · · · · · yes

· · � · · · · ·

S7 S8 S6 S5 S4 S3 S2 S1 fail

· · · · · · · · no
� � � � · · · · yes
� · · · · · · · no
� � · · · · · · no
� � � · · · · · no

· · · � · · · · yes

· · · � · · · ·

(a) The first run has C(X) = |X|; the
second has C(X) = | ∪X|.

S7 S8 S6 S5 S4 S3 S2 S1 fail

· · · · · · · · no
� � � � · · · · no
� � � � � � · · no
� � � � � � � · yes

· · · · · · � · no
� � � · · · � · no
� � � � � · � · yes
� � � � · · � · yes

· · · � · · � · yes

· · · � · · � ·

(b) Failure induced by {1, 12} and with
C(X) = | ∪X|.

Figure 3.5: Three runs of Binary Reduction (binary) on the example in Figure 3.2

We can therefore add Dr to S and reduce the search space to the smaller prefix without Dr,

{Dj : j < r}. We continue to reduce the search space until the P (S). Since we only added

elements to the solution that were required and since P is monotonic, the solution is a local

minimum: if any elements are removed from S, then P is no longer satisfied.

The core of the algorithm is the search for the smallest prefix of D that satisfies P . In

general, this takes O(n) time, where n is the size of the search space. However, we have a

monotonic P so

P (∅)⇒ P ({D1})⇒ P ({D1, D2})⇒ . . .⇒ P ({D1, D2, . . . , Dn})

and thus we can use binary search.

The final touch is to keep the set D sorted, using the cost function C. Our idea is to

use the cost function to sort the search space such that low-cost elements are chosen early.

50

This is a greedy algorithm that makes the best pick possible in each iteration. As with other

greedy algorithms, this may fail to produce the best global solution, yet our experiments

show that the results are good in practice. Notice that every iteration sorts D according to

the cost of the union of the currently selected set S and the individual inputs. This is an

advantage because sometimes the cost of the union of two input sets does not equal the sum

of the cost of each of the sets.

We will use Binary Reduction in Step 4 of the strategy in Section 3.3; we refer to this

algorithm as binary. The first diagram in Figure 3.5a shows a run of binary on the example

in Figure 3.2, with a natural cost function C(X) = |X|. We use � to mark the Dr that is

added to the solution in the line S ← S ∪ {Dr}. Like in the first run of delta debugging

over the closures of the graph in Figure 3.4a, we get S3, which is suboptimal. However, in

contrast to closure, we can easily modify binary to use a more interesting cost function,

like the number of elements in the union of the sets C(X) = |∪X|. Figure 3.5a shows that

run. Like in the second run of closure in Figure 3.4a, we get S5, which is the best solution.

Figure 3.5b shows a run of binary on the example in Figure 3.2, but this time the failure

is induced by {1, 12}. In contrast to the run of closure in Figure 3.4b, we get the best

solution S5 ∪ S2. Notice that the run took only 3 binary searches and 9 invocations of P .

Even thought the choice of C(X) = |∪X| solves our problem, we could imagine more

interesting cost functions like the total size of classes. Binary Reduction greedily choose a

local minimum regardless of cost function, but we expect that it performs best if the cost

function is monotone in the size of X.

Complexity analysis The complexity of Binary Reduction depends on the complexity

of the cost function C ($C), the predicate P ($P), the size n = |I| of the input, and the

final size s of the reduction. We do at most s binary searches, with O(log n) invocations of

P and worst-case n calculations of C(S) as part of sorting (assuming caching) which takes

51

Figure 3.6: These three histograms show the distribution of the failure inducing inputs over
three metrics; number of classes, the average in- and out degree of the underlying dependency
graph, and the number of strongly connected components.

O(n log n) time. So in total we have

O(s (log n · $P(n) + n · $C(s) + n log n)) .

Inspecting the time complexity of the algorithm we can see that we will make at most

O(s log n) invocations of P . Since s is bound by n, the complexity of the algorithm is

O(n log n) iterations.

3.5 Experimental Results

In this section, we present an empirical evaluation of using dependency graphs and Binary

Reduction for reduction. We have implemented those techniques in a tool for Java bytecode

programs called J-Reduce. J-Reduce is a general tool for reducing bytecode programs while

preserving errors. We will use three decompilers as part of the evaluation, yet any tool that

takes Java bytecode as input could have been used. The evaluation supports the two main

claims of the chapter:

(1) Reduction based on a list of closures is faster and better than reduction based

on a list of classes. When we run ddmin on a list of classes, we time out 75% of the

52

runs after an hour. In contrast, when we run ddmin on a list of closures, we time out only

9% of the runs after an hour. Including the timeouts, the list-of-closures approach gives 7x

speedup and 1.07x smaller results, on average.

(2) Binary Reduction is faster and better than ddmin. Only 1% of the runs of

Binary Reduction on a list of closures time out after an hour. Including the timeouts,

Binary Reduction gives 1.7x speedup and 1.15x smaller results, on average, compared to

running ddmin on the same input. Overall, we get 12x speedup and 1.24x smaller results

compared to running ddmin on a list of classes.

3.5.1 Experimental Setup

Implementation J-Reduce has a single frontend that extracts a dependency graph from

binary Java class files. Specifically, J-Reduce scans through each class-file to search for

references to other classes and assembles them into a dependency graph. The common

frontend and backend enable easy comparison of the algorithms. J-Reduce implements four

different reduction algorithms:

• ddmin: Classical delta debugging on a list of classes.

• verify: Uses ddmin plus detection of invalid bytecode.

• closure: Uses ddmin on a list of closures, sorted after size.

• binary: Uses Binary Reduction on a list of closures.

We implemented J-Reduce in 7,929 lines of Haskell code that passed FSE’s artifact evaluation

[KP19a] and is open source1.

1https://github.com/ucla-pls/jreduce

53

https://github.com/ucla-pls/jreduce

Choice of Predicate For testing of the decompilers, we use the property that a decompiler

should produce source code that compiles with javac; otherwise it has a bug. We use the

predicate that javac produces the same bug as the original bug.

To get a monotonic predicate we took special care to keep all inputs except the reduced

class files exactly the same. For example, the internal ordering in the file system may play

a role in the output of the decompilers and in javac. Specifically, javac produces only a

subset of the bugs in the source code, depending on which files it reads first. So, we kept a

sorted lists of files and only wrote to the file system and jars in that order.

Choice of Decompilers We choose three decompilers as the basis of our predicates:

CFR [Ben, version 0.132], Fernflower [Sc, commit 8be977e76], and the decompiler from the

Procyon project [Str, version 0.5.30]. We set up each decompiler according to the instructions

on its webpage. We ran Fernflower with the -dgs=1 flag to enable handling of generics. We

ran CFR with --caseinsensitivefs true. We ran Procyon with no special arguments.

Benchmarks Our benchmarks are 100 large Java programs that we obtained from the

NJR project [PL18]. We selected programs that each has at least 100 classes and for which

we have source code. We focus on bytecode files that we have produced from source code

ourselves to ensure that we start each reduction with a valid bytecode program. Some of

the projects are dependent on large-scale libraries, but our reduction leaves those libraries

unchanged and we exclude them from the dependency graph and our measurements.

We found that CFR fails on 94% of the programs, Fernflower fails on 56%, and Procyon

fails on 88%. Thus, in total we have 238 failure-inducing inputs.

Figure 3.6 shows how the distribution of the inputs over three metrics: number of classes,

average in-degree and out-degree in the underlying dependency graph (excluding self-loops),

and number of strongly connected components. The inputs contain a median of 171 classes,

and between 103 and 1006 classes. The benchmarks are diverse both in terms of the in-degree

and out-degree, with a median of 3.6, and in terms of the number of strongly connected

54

Figure 3.7: Cumulative frequency diagrams of different metrics. The first two charts show
the number of cases that terminate within x seconds and x iterations, and the third chart
shows the final number of classes relative to the original size. Higher is better.

timeout final size time [s]

binary 0.8% 25.7% 203
closure 8.8% 29.8% 336
verify 19.8% 42.6% 750
ddmin 74.8% 31.9% 2339

Table 3.1: Aggregated results of all the runs. The first column indicates the percentage
of runs that we had to timeout. The second column is the average (GM) final relative size
after reduction. The third columns are the average (GM) running times in seconds. Smaller
is better.

components, with a median of 100.

Platform We performed the experiments on a machine with 24 Intel(R) Xeon(R) Silver

4116 CPU cores at 2.10GHz and 188 Gb RAM. We executed the experiments using OpenJDK

(1.8.0 172-02). We ran the experiments in parallel in batches of 8. We ran each reduction

for no more than an hour (3600s).

3.5.2 Results

For each reduction algorithm (binary, closure, verify, and ddmin) we measured the total

time in seconds, the number of invocations of the predicate made by the algorithm, and the

55

fraction of classes left in the output after reduction. The results are shown in Figure 3.7.

If a tool was timed out after an hour (3,600 seconds), we report the smallest set of classes

that had been found to preserve the bug. This reflects that a user can use the best result

available at time out.

The times include the generation of the graph (median 0.5s, max 7.1s), the initial run

that tests if the predicate is true, and for the tools that used closures, the calculation of the

closures (median 5.0ms, max 96.0ms).

Table 3.1 shows the aggregated results of all the runs: the percentage of the runs that we

time out, the geometric mean of the relative final size, and the mean time used (including

timeouts). The geometric mean allows us to talk about how many times a tool is better

than another, based on how much is left after reduction.

We have also plotted all the results in cumulative charts. Figure 3.7 shows the results of

the four configurations in three charts. The first chart shows how many programs that each

reducer has finished after some seconds. The second chart shows how many programs that

each reducer has either finished or timed out on after some invocations of the predicate. The

third and final chart represents the relative size after reduction for an hour.

First, let us evaluate how ddmin (ddmin) performs against ddmin plus detection of invalid

bytecode (verify). Unsurprisingly, verify is much faster than ddmin, because it does

not have to run the predicate for the cases where not all the dependencies are present.

Also, verify timeouts on 19.8% of the programs where ddmin timeouts on 74.8%. The

resulting size of verify, however, is worse, with 42.6% average final size against ddmin’s

average of 31.9%. There are two factors that affect this. One, adding the verifier makes the

predicate more non-monotonic: missing dependencies in classes not visited by javac emerge

as a problem. Two, our dependency graph may be an over-approximation of the actual

dependencies used by the decompilers and compiler. This means that our verifier can reject

a program that might decompile and make javac produce an error.

Second, let us evaluate runs of ddmin on a list of closures (named closure). This is

56

affected by the overapproximation of the dependency graph, but the number of items is

now both smaller (median 100 vs median 171), and also the predicate is now monotonic

(disregarding non-determinism). This has a dramatic effect on speed and leads to a smaller

output. closure only timeouts in 8.8% of all the inputs, and produces on average 29.8%

final size. closure preforms better on most of the inputs, but ddmin outperforms closure in

a few cases. We think this happens because the dependency graph is an overapproximation

of the actual dependencies used by the compiler. This means that ddmin in some cases can

remove an extra class, because it is in reality not needed by the compiler.

Third, let us evaluate runs of Binary Reduction on a list of closures (binary). binary

performs better than closure, with a timoute rate of only 0.8%, and is on average 1.7x faster.

The final size of the reduction is also better, with 25.7% final size on average. The better

reduction can be attributed to two factors: fewer timeouts and Binary Reduction’s ability

to pick the smallest closure. When controlling for the fewer timeouts, by not counting the

benchmarks where either of the algorithms timed out, Binary Reduction is able to produce

1.11x smaller results than delta debugging. On a few cases ddmin outperforms binary, this

is partly due to the overapproximation, but also that some of the benchmarks could yield

different results when run twice. ddmin sometimes runs the same reduction candidate twice,

which means that it has a higher chance of getting lucky and accepting the reduction.

In conclusion, using Binary Reduction on the dependency graph of Java bytecode pro-

grams are 12x faster and 1.24x smaller results on average than delta debugging directly on

the list of classes.

3.5.3 Threats to Validity

External Validity. The primary threats to external validity is the choice of domain. We

chose the domain of decompilers, because bugs were plentiful and easy to find. We do, how-

ever, believe that the results extend to all domains with inputs with internal dependencies,

and especially to domains that expect valid bytecode programs as inputs.

57

Internal Validity. We chose 100 fairly large benchmarks at random from the NJR repos-

itory; we deem them to be representative of real life programs. We chose programs with

over 100 classes to go beyond what people may be willing to reduce by hand. The timeout

time was set at one hour, which might skew the study; however, we think that an hour is

a reasonable cutoff for most simple applications. Our definition of a bug in a decompiler

(produces code that does not compile) is not the strongest definition. We could expect that

we could find even more bugs if we had used a stronger requirement. This does however not

affect our study as we find plenty bugs.

In our experiment, we reduced using a cost function that tries to minimize the number

of classes; however, the classes’ total size would also be an interesting metric, as two small

classes might be better than one big class. Our technique is sufficiently general to reduce

using any cost function, though we do expect ddmin to perform even worse in this case, and it

would be an unfair comparison as ddmin can only reduce based on counts. While we believe

that ddmin is an adequate baseline, we could calculate the reduction approximation ratio of

both algorithms if we had an ideal reduction, which we could find by doing an exhaustive

search. We leave this to future work, perhaps for a smaller benchmark suite. Finally, the

decompilers that we have chosen are not completely deterministic, which means that the

predicates, even over the closures, are not completely monotonic. We see this as a strength

of the study, since real-life programs are often not deterministic, and predicates are often

not completely monotonic.

3.5.4 Data Availability

We have made the raw data used for the analysis available [KP19c]. It includes two files:

a “benchmarks.csv” file, which contains the data for histogram in Figure 3.6, and a “de-

liverable.csv” file, which contains the data for the cumulative diagrams in Figure 3.7 and

averages in Table 3.1.

58

3.6 Reporting bugs

In Section 3.5, we listed results from reducing input in a general manner that preserves the

output from javac in its entirety. The median reduced bytecode program has 84 classes,

which is too many to include in a succinct bug report. This observation led us to consider

how domain-specific knowledge about javac can lead to additional reduction. We found that

the output from javac may list multiple problems so a straightforward idea is to preserve

less than the entire output. As a radical step towards more aggressive reduction, we ran

an experiment in which we preserve only javac’s exit code. Thus, we preserve that javac

returns an error, but not which one(s). Indeed, the final list of problems may have no overlap

with the initial list.

Our experiment with running Binary Reduction on 238 programs took 34 minutes in wall

clock time, or 13 hours in processing time, for an average of 3 minutes per program. The

median reduced bytecode program had 2 classes, excluding libraries. Indeed, in 133 cases

out of 238 cases, the reduced program had 1 or 2 classes: 57 cases for CFR, 46 for Procyon,

and 30 for Fernflower. The output from javacc included many distinct error messages

(disregarding line number and class): 67 distinct error messages for CFR, 83 for Procyon,

and 27 for Fernflower.

We used the results of the experiment to report 2 bugs to CFR, 1 bug to Procyon, and

2 to Fernflower. We choose the benchmarks of size no more than 2 classes, which induced

errors that looked like a fixable bugs and were significantly different from each other. The

developers of CFR have confirmed and fixed one of the bugs, the developers of Procyon have

triaged the bug, but not yet fixed it, and the developers Fernflower have triaged the bugs

but not had time to fix them.

We stopped short of filing additional bug reports because we are aware that two failure-

inducing inputs may be about the same bug. We want to avoid reporting the same bug twice

and we leave it to future work to find an effective way to categorize bug reports.

59

3.7 Related Work

The literature on program reduction and delta debugging is rich and diverse. We will cover

some of the most closely related papers from that literature and we will focus on three

aspects. The first aspect is how previous work has dealt with the test-case validity problem,

the second aspect is how our approach compares to various approaches to input reduction,

and the final aspect looks at program reduction as slicing or debloating.

The Test-Case Validity Problem Our technique is the first to avoid invalid input. We

will discuss how some prominent papers have dealt with invalid input.

Zeller and Hildebrandt [ZH02] introduced delta debugging. They wrote [ZH02, Section

VIII] that “Delta Debugging assumes that failure is monotone”. However, their paper showed

how to apply Delta Debugging to a variety of input for which failure isn’t monotone, namely

C programs, Mozilla user actions, and UNIX commands. For each kind, we can remove a

few characters from a failure-inducing input and thereby change it into an invalid input.

In some cases, we can remove additional characters and get another failure-inducing input.

Delta debugging works well for those kinds of inputs because most natural subsets are valid.

In contrast, for Java bytecode, most natural subsets are invalid. Our experiments show

that for Java bytecode, delta debugging of a list of classes times out often and gives a

disappointing factor of reduction.

Delta debugging has also been implemented in the Delta tool [MWG15]. This tool uses

a line-based algorithm that suppresses newlines below a particular depth in the syntax tree.

This decreases the risk of removing half of a subtree and thereby producing invalid inputs.

Misherghi and Su [MS06a], in their paper on hierarchical delta debugging, avoided invalid

subsets by structuring the input as a syntax tree and by removing entire subtrees at a time.

Their insight is that the elements of a subtree can be a natural subset of the input, such as

a statement in a statement list. They found that they can remove a single statement from

a statement list and preserve that the syntax tree is valid. Compared the classical delta

60

debugging algorithm, the hierarchical approach gave a decrease in the number tests needed

for C-program input by a factor of 11.5 on average. However, while each Java bytecode class

is a natural subset of a bytecode program, most subsets of the classes are invalid. For Java

bytecode, the top level of hierarchical delta debugging is delta debugging of a list of classes,

which we have shown works poorly.

Regehr et al. [RCC12a] identified the problem with invalid input and pursued an ap-

proach, for C, that detects invalid input. The core of their approach is akin to the algorithm

we called verify. They went further and built in detailed knowledge of C that enabled their

tool to reduce C-program 25 times more than language-independent tools. In contrast, our

tool avoids invalid code and uses a general reducer. Our experiments show that for Java

bytecode, detection of invalid input is slow and this gives a small factor of reduction.

Sun et al. [SLZ18] showed, with their tool Perses, how to avoid invalid inputs in a

language-independent manner. They did this by transforming an input grammar into a

convenient form that can guide reduction. They showed that this approach is competitive

with less general approaches. However, the approach relies on that once the grammar has

reached the convenient form, two specific transformations preserve validity. While indeed

those transformations do preserve validity for many kinds of input, they often produce in-

valid subsets in the case where the input is a list of Java bytecode classes. The problem is

that a grammar has no model of the many internal dependencies. Thus, while the generality

of the approach is attractive, the approach is ineffective for inputs such as Java bytecode

programs.

The resent tool Chisel [HLP18] uses reinforcement learning to do fast debloating of C

programs. The approach is 3.7–7.1x faster than competing approaches. The approach detects

invalid input, as illustrated by the following quote from the paper: “Chisel simply rejects

nonsensical programs without invoking the test script by using a simple dependency analysis,

such as programs that do not contain the main function, variable declarations, variable

initializations, or return statements.”. We speculate that one can combine their idea of

reinforcement learning with our idea of using a dependency graph to avoid invalid input. We

61

leave this to future work.

In Cleve and Zeller’s work on STRIPE [CZ00], they tried to use different clustering tech-

niques to increase the speed of delta debugging on an execution trace. Specifically, they

wrote “[O]ur future work will concentrate on introducing domain knowledge into delta de-

bugging. In the domain of code changes, we have seen significant improvements by grouping

changes according to files, functions, or static program slices, and rejecting infeasible con-

figurations[.]” We believe that we have solved this problem by giving the user a simple

interface, graph-based dependencies, with which they can encode many different kinds of

domain specific dependency information.

Approaches to Input Reduction BiSect [Dev, Cza18] is a tool for use with git that does

a binary search to find the commit that introduced a bug. This is akin to the binary search

that we use to implement the min function in Binary Reduction. The BiSect technique does

no reduction of the input.

The papers by Artho [Art11], by Li et al. [LZR16], and by Yu et al. [YLC12] all have the

goal to isolate failure-inducing changes in a revision history. They use clever representations

of revision histories and use variations of delta debugging to achieve the goal. In all three

papers, dependencies among changes and validity of history slices play major roles. Artho

[Art11] notes that, in the context of interdependent changes, the approach “cannot deal with

certain changes affecting multiple files”. Li et al. [LZR16] detects invalid history slices, while

Yu et al. [YLC12] uses classical delta debugging with no optimization for invalid input. We

speculate that those approaches can be enhanced with ways to avoid invalid history slices,

in a way that is akin how we avoid invalid input. We leave this to future work.

Delta debugging has a wide range of applications. In particular, researchers have shown

how to use delta debugging to help normalize, generalize, and improve test cases [GHK17,

GAZ16, LOZ07]. For test cases with many internal dependencies, our approach can be used

to avoid giving invalid inputs to the reducer.

62

Program Slicing and De-bloating Delta debugging can be used to slice a program

[Wei81], that is, reduce the program while preserving its behavior. When the slices are

intended to be used as runnable program, such reduction is called de-bloating.

Delta debugging is a simple approach to slicing as it requires little knowledge about the

program: we can reduce the program while preserving the observable properties like those

given test cases. Binkley et al. [BGH14] uses delta debugging to reduce a set of files using a

technique they call observational slicing (ORBS). Our technique is sufficiently general that

it can augment ORBS by allowing the user to define dependency edges between lines in

different files.

J-Reduce functions perfectly as a program slicer. Since we are using a static analysis to

detect the edges in the dependency graph we likely under-approximate edges that are the

result of reflection. Under-approximating the dependency graph is acceptable, as it will only

result in more strongly connected components in our algorithm. In the worst case we have

exactly one strongly connected component for each input node, which means that we are just

doing regular reduction. This might take longer, but will always output correct bytecode.

Our technique is akin to Agrawal and Horgan [AH90], which uses a over-approximating

static analysis to collect a dependency graph between statements in a program. It then

uses a dynamic analysis to traverse the program and reduce the graph to see which nodes

are actually executed. In contrast our technique starts with a possible under-approximating

static analysis and does not need to run the program. This means that it can be used

on other properties like finding bugs in decompilers. Since our technique tolerates under-

approximation, we might use a dynamic analysis to generate the dependency graph. We

leave this for future work.

63

3.8 Summary

We have presented a new approach to reducing failure-inducing input programs with many

internal dependencies. Our approach uses a dependency graph to avoid invalid inputs, and it

uses a new algorithm called Binary Reduction, that we showed works better than ddmin. We

have implemented an open-source tool J-Reduce that reduces Java class-files. We evaluated

our tool on decompilers, yet our tool works for any program that takes class files as input.

Examples include static and dynamic analyses, code coverage tools, and code visualizers.

Our tool is 12x faster and achieves more reduction than delta debugging. This enabled us

to create and submit short bug reports for three Java bytecode decompilers.

We have only evaluated our approach on Java bytecode and decompilers; however, we

see no reason it would not extend to other input programs and metaprograms. For example,

our technique can be used for languages with module systems, such as C# or Python. We

can also consider using the dependency graph in a graph where the nodes are methods and

fields. However, it turns out to be harder than expected. This is precisely the topic of the

next chapter.

64

CHAPTER 4

Logical Input Reduction

Reducing a failure-inducing input to a smaller one is challenging for input with internal

dependencies because most sub-inputs are invalid. In the previous chapter, we made progress

on this problem by mapping the task to a reduction problem for dependency graphs that

entirely avoided invalid inputs.

In this chapter, we allow the removal of elements within the classes, like fields and meth-

ods. Removing these elements introduce complicated dependencies, which we show cannot

be model precisely using graphs. Our approach uses propositional logic as an expressive

framework for specifying dependencies that generalizes dependency graphs. As a demon-

stration, we show how to specify dependencies among program elements in Java bytecode,

using the full power of propositional logic. The work in the previous chapter using graphs

does not extend to logic. To that end, we generalize the Binary Reduction algorithm to

reduce a progression of increasingly bigger valid sub-inputs and present a simple algorithm

for calculating such progressions given a logical dependency model. We use this to improve

J-Reduce so that it reduces Java bytecode to 4.6% of its original size, which is 5.3 times

better than the previous chapter approach.

4.1 Introduction

We have an input to a program that makes the program produce a bug. The input is

well-formed, so the program should handle it; however, the input is so massive that we

can’t determine the nature of the bug. The process of input reduction, first introduced by

65

Zeller and Hildebrandt [ZH02], finds a small input to the program that reproduces the bug.

Their algorithm, ddmin, produces a sub-input, the original input with pieces removed, that

reproduces the bug in O(n2) runs of the program. They found that a sub-input can result in

three outcomes when given to a program: the bug is still there, the bug is gone, and don’t

know. The “don’t know” outcome happens when it has run an invalid input to the program.

An invalid sub-input is of no help with finding the bug. Since the original input was

valid, the reduction must have violated the internal dependencies in the input. For example,

in Java, if a method constructs an object from a class, then without the class, the method

would no longer type-check. The method depends on the class.

To deal with this problem, we can either detect or avoid invalid inputs. If we can detect

an invalid input, we don’t have to run the program with that input, which is good because

executing the program can take a long time. Avoiding invalid inputs is, however, much more

efficient, as we saw in the previous chapter . The reason is that avoiding invalid inputs makes

the existence of the bug monotone over sub-inputs. That is, monotonicity allows for fast

and precise reduction because if the bug is not present in the input, we do not have to test

any of the sub-inputs contained in the input.

In this chapter, we build on a long tradition of gradually modeling more and more of the

internal dependencies of the input to avoid invalid inputs. In Misherghi and Su’s paper on

hierarchical delta debugging (HDD) [MS06b], they concluded that they were able to avoid

many invalid inputs by exploiting the tree-like nature of the inputs. Sun et al. [SLZ18]

took this a step further and used a syntax tree as their model in their tool Perses, which

enabled them to avoid all inputs that would not syntax-check. These techniques only work

for modeling syntax. To address this, we designed a more expressive model that uses a

dependency graph, in the previous chapter and accompanying paper [KP19b], which can

model strictly more internal dependencies than HDD and Perses.

In this chapter, we introduce a new model of dependencies that goes beyond dependency

graphs. Consider, for example, the Java program in Figure 4.1a, which is the input to a

tool and which makes the tool crash. While a programmer quickly can reduce Figure 4.1a

66

class A implements I {

String m() { /* bug */ }

B n() { ... }

}

class B implements I {

String m() { ... }

B n() { ... }

}

interface I { String m(); B n(); }

(a) The input that we want to reduce.

−→

class A implements I {

String m() { /* bug */ }

}

interface I { String m(); }

(b) The optimal reduction.

class M {

String x(I a) { return a.m(); /* bug */ }

String main() { return new M().x(new A()); /* bug */ }

}

Figure 4.1: The example input program that produces an bug in a tool when the body of
M.x(), M.main(), and A.m() are present at the same time. The second sub-figure is the
optimal reduction that preserves the bug. We exclude the code in ... for brevity.

to Figure 4.1b, automatic reduction based on a dependency graph will produce a bigger

program or be able to produce invalid inputs. The reason is that dependency edges cannot

express, for example, that if we want to preserve that A implements I and that I has a

signature m, then we must also preserve that A implements m. We will see this is more details

in the example in the next section.

In this chapter, we solve the underlying problem of modeling dependencies by using the

full power of propositional Boolean logic. We use the model to search through valid sub-

inputs efficiently while avoiding invalid sub-inputs, and to produce the result in Figure 4.1b.

The claim of this chapter is:

The use of propositional Boolean logic for modeling internal dependencies

leads to an effective and efficient reduction of complex inputs.

We build this claim on that we find dependencies in Java Bytecode, which can only be

represented using propositional Boolean logic. Furthermore, we have shown that we can

67

effectively and efficiently reduce Java Bytecode programs with dependencies described using

this model with our new reduction algorithm, Generalized Binary Reduction.

After a dive into the example in Figure 4.1 that illustrates why previous techniques are

unable to model all dependencies (Section 4.2), we have structured the rest of this chapter

after our contributions.

• We have built a model of internal dependencies for a modest extension of Feather-

weight Java, which we call Featherweight Java with Interfaces (FJI). We prove that if

a program type checks, then every sub-input that satisfies the dependencies also type

checks. This is a sound dependency model of a complex input that previous techniques

are unable to model. We then discuss the changes needed to extend this model to Java

bytecode (Section 4.3).

• We introduce the Generalized Binary Reduction algorithm, which given a model of

the internal dependencies of a bug-inducing input to a program, can find a sub-input

in polynomial time while preserving the bug. Furthermore, we have proved the cor-

rectness, polynomial time complexity, and an optimality property of the algorithm

(Section 4.4).

• We have implemented our approach and evaluated it on the benchmarks from the

previous chapter. Our improved tool reduces to 4.6% while J-Reduce only reduces to

24.3%. This is 5.3x more reduction than J-Reduce (Section 4.5).

Finally, we go over related work in Section 4.6 and summarize our findings in Section 4.7.

4.2 Example

This section illustrates that the previous graph-based approach does not extend to a more

fine-grained reduction of Java bytecode and what we have done to solve it. Consider the

example in Figure 4.1a. It contains a Java source program, which, when compiled, functions

68

Variables:

In A: [A] , [A C I] , [A.m()] , [A.m()!code] , [A.n()] , [A.n()!code]

In B: [B] , [B C I] , [B.m()] , [B.m()!code] , [B.n()] , [B.n()!code]

In I: [I] , [I.m()] , [I.n()]

In M: [M] , [M.x()] , [M.x()!code] , [M.main()] , [M.main()!code] ,

Syntactic Dependencies:

[A.n()!code]⇒ [A.n()] [A.n()]⇒ [A] [A.m()!code]⇒ [A.m()] [A.m()]⇒ [A]

[B.n()!code]⇒ [B.n()] [B.n()]⇒ [B] [B.m()!code]⇒ [B.m()] [B.m()]⇒ [B]

[A C I]⇒ [A] [B C I]⇒ [B] [I.m()]⇒ [I] [I.n()]⇒ [I]

[M.x()!code]⇒ [M.x()] [M.x()]⇒ [M] [M.main()!code]⇒ [M.main()] [M.main()]⇒ [M]

Referential Semantic Dependencies:

[A C I]⇒ [I] [B C I]⇒ [I] [A.n()]⇒ [B] [B.n()] ⇒ [B]

[I.n()]⇒ [B] [M.x()]⇒ [I] [M.x()!code]⇒ [I.m()] [M.x()!code]⇒ [I]

[M.main()!code]⇒ [M.x()] [M.main()!code]⇒ [A] [M.main()!code]⇒ [M]

Non-Referential Semantic Dependencies:

[A C I] ∧ [I.m()]⇒ [A.m()] [A C I] ∧ [I.n()]⇒ [A.n()]

[B C I] ∧ [I.m()]⇒ [B.m()] [B C I] ∧ [I.n()]⇒ [B.n()]

[M.main()!code]⇒ [A C I] [M.main()!code]

Figure 4.2: The variables (20) and dependency constraints (32 + 1 duplicate (gray)) of the
example. All the constraints should be conjoined.

69

as an input to a tool. When we run the tool, we get an error. The error is produced by a

combination of the code in the body of A.m() and M.x(), but we don’t know that. We do

know, from the tool, that it always requires M.main() to run at all. We want to reduce the

input program while preserving the error.

In the previous chapter, we described an approach to reduce Java bytecode. J-Reduce

models the dependencies between classes using a graph, which allows us to produce smaller

results an order-of-magnitude faster than ddmin [ZH02]. The modeling language is a con-

junction of required classes [A] and dependencies between classes [A] ⇒ [B]. If we create

the graph correctly, all closures in the graph are a valid sub-inputs. In this case, the class

dependencies are:

[M] ∧ ([M]⇒ [A]) ∧ ([M]⇒ [I])

∧ ([A]⇒ [I]) ∧ ([A]⇒ [B])

∧ ([B]⇒ [I]) ∧ ([I]⇒ [B])

or

[A]

[I]
[B]

[M]

Since we want to preserve the code of M.main() we require [M]. We include a depen-

dency between every pair of classes if the first mentions the other. However, the resulting

dependency graph is disappointing: the graph only contains a single closure, which contains

[M]. That closure contains all classes, so we cannot reduce the input any further using this

technique.

Going Beyond Classes But all is not lost. We can inspect the program and see that if we

are allowed to remove items within the classes, we can reduce the program. If we reduce the

program by hand, we could get the program, which we show in Figure 4.1b. We can remove

four different kinds of items: classes ([A]), implementations ([A C I]), methods ([A.m()]), and

the code associated with the methods ([A.m()!code]). In this example, we have a total of 20

separate items, which we have listed in Figure 4.2, under the heading Variables.

When we generate constraints beyond the class level, we can reuse some of the ideas

from previous work, but not all. In the previous chapter [KP19b], we exclusively modeled

70

referential dependencies : one item depends on another if the item refers to it. We can transfer

this idea directly to items within classes, and we have added a list of Referential Semantic

Dependencies to fig. 4.2. In summary, both of the implements statements mentions the

interface I, the code of main mentions I, A, and the methods I.m(), and all the n methods

mentions B. The m methods mention String, but since we do not try to remove this class,

there is no reason to model dependencies to it.

Contrary to the previous chapter, items are now nested. The nested structure of the

items means that we cannot remove a parent item before we have removed all its children.

Otherwise, we might find us in a situation where we want to keep a method, but we have

removed its enclosing class. We can fix this by adding dependencies from children to their

parents. We call these Syntactic Dependencies, and we have listed them in Figure 4.2.

Additional Dependencies The syntactic and referential dependencies by themselves are

not enough to correctly model valid inputs. We can see this by inspecting Figure 4.3, which

is the dependency graph created from the syntactic and referential dependencies. This graph

contains closures that are not valid inputs. For example, the closure of variables in M (shaded

gray) is not a valid input! In [M.main()!code] we cast A to I before we call I.m() on A. We

are simply not allowed to cast A to I, unless that A is a subtype of I. In our case, we can

see that we needed to preserve [A C I]. So we know that there exist dependencies that we

have not encoded. Referential dependencies alone are not enough to define all dependencies.

Also, there exist references that does not correspond to dependencies. For example, in Java,

we can refer to methods that are defined in a superclass. Assume we have a class C which

extends A, then we are allowed to call (new C()).m(), because C inherits A’s methods. The

bytecode would refer to C.m(), even thought there is no method m() in C. We need a more

general concept for defining dependencies.

Our First Contribution In the example, the input has to type-check before we can run

the tool on it. The problem is that referential semantic dependencies are not the only kind

71

[A]

[code]

[B]

[B.m()]

[code]

[I]

[A.m()] [B.n()][M.x()]

[M]

[A.n()][M.main()] [I.m()] [B C I][I.n()]

[code]

[A C I]

[code] [code][code]

Figure 4.3: The dependency graph containing syntactic (solid, black) and referential (dashed,
gray) dependencies. We have abbreviated the code variables to [code]. We have shaded the
variables part of the minimal closure from all the variables in M.

of semantic dependencies. By inspecting the type-checking rules, we can see that the code

of M.main() casts A to I and therefore depends on that A implements I. We can model this

like this:

[M.main()!code]⇒ [A C I] .

We also have to model the inheritance laws. If [I.m()] should be preserved then A has to

implement [A.m()]. This is true because A implements I and I.m() is an abstract method.

However, this constraint depends on [A C I], because if [A C I] has been removed we can

safely remove [A.m()] without removing [I.m()]. In other words, if we preserve that A imple-

ments I and I.m() we must also preserve A.m():

[I.m()] ∧ [A C I]⇒ [A.m()] .

Finally, we also include [M.main()!code], because, as described earlier, we know the tool

does not work without it. We add the last six dependencies in Figure 4.2. The dependencies,

now, precisely model the semantics of both the class hierarchy and the type system. A key

part of our first contribution is to model the internal dependencies of the type-system of Java

using propositional Boolean logic. We will describe a full dependency model of Featherweight

Java with Interfaces, which we prove only can produce sub-inputs that type-check. We

present this and how we got these exact constraints in Section 4.3.

72

Our Second Contribution We have shown that we must go beyond dependency graphs

to get better reduction than in previous work. Instead we use propositional Boolean logic:

F ::= [x] | ¬F | F ∧ F

In our formulation, [x] is a variable that indicates if a construct x remains in the sub-input

or is removed. In a sound model, a valid truth assignment corresponds to a valid sub-input

of the original input. The graph-based constraints convert directly to the new modeling

language, as we can model each edge [x]⇒ [y] as an implication: ¬([x] ∧ ¬ [y]).

We can iterate through all satisfying truth assignments to the constraints in Figure 4.2

and see that not only are they all valid sub-inputs that type-check but they also contain the

truth assignment that constitutes the minimal sub-input in Figure 4.1b:

[A C I] , [A.m()] , [A.m()!code] , [A] , [I.m()] , [I] ,

[M.x()!code] , [M.x()] , [M.main()!code] , [M.main()] , [M]

The original input, with no knowledge of the internal dependencies, has 220 = 1, 048, 576

sub-inputs. Far from all of these inputs are valid. Using our new constraints, we can

count the number of valid truth assignments with a tool like sharpSAT [Thu06]. Since a

satisfying truth assignment corresponds to a valid input, we can see that there are 6,766

valid programs left. While it is possible to run 6,766 different sub-inputs to find the smallest

one, this number scales exponentially with the input’s size. The previous chapter, we used

that we could do reduction on a list of closures of the graph. Since each closure is a valid

sub-input and the union of closures is a closure, we could reduce a list of closures quickly

by doing binary searches over the union of the prefixes. Sadly in this case, the union of

two satisfying truth assignments is not always a satisfying truth assignment. Therefore, we

introduce the Generalized Binary Reduction algorithm, which is a new technique to reduce

inputs given internal dependencies constraints. With this new algorithm, we can find the

73

optimal solution by checking only 11 inputs. We present the algorithm and a run on the

example in Section 4.4.

4.3 Modeling Dependencies

We will now formalize how we model dependencies and we will discuss aspect of our im-

plementation that go beyond the formal model. We first formalize a core language called

Featherweight Java with Interfaces (FJI) and prove as a theorem that reduced programs

type check. Then we explain additional aspects of our Java bytecode reducer that go beyond

FJI.

4.3.1 Featherweight Java with Interfaces

Featherweight Java with Interfaces (FJI) is a modest extension of Featherweight Java [IPW99]:

each class implements a single interface. While we can model the dependencies of Feath-

erweight Java with “dependency edges”, we need the full power of propositional logic for

FJI.

FJI is a convenient setting in which to show that reduced programs type check. We

will define the syntax and type system for FJI, along with a reducer. From a program, we

generate constraints that model the internal dependencies, then we solve the constraints,

and finally we feed the solution to a reducer. The idea is that for any solution, the reduced

program type checks (Theorem 2).

For examples in FJI, our formalization generates the same constraints as our imple-

mentation. In particular, the core of the example in Section 4.2 is an FJI program, and our

formalization generates the constraints listed in Section 4.2, we will show this in Section 4.3.2.

Syntax The only novelty compared to Featherweight Java is that a class implements a

single interface. An interface consists of a collection of signatures.

74

P ::= R e programs
R ::= L | Q type declarations

T, U ::= C | I type names

L ::= class C extends D implements I {T f ; K M} classes
Q ::= interface I {S} interfaces

K ::= C(T f) { super(f); this.f = f ; } constructors
M ::= T m(T x) { return e; } methods
S ::= T m(T x); signatures
e ::= x | e.f | e.m(e) | new C(e) | (T) e expressions

Figure 4.4: The syntax of Featherweight Java with Interfaces (FJI).

Our metanotation for Featherweight Java is similar to the one used in the original paper

on Featherweight Java [IPW99]. The grammar in fig. 4.4 uses the following metanotation:

• Nonterminal symbols are words written in this font .

• Terminal symbols are written in this font.

• A production is of the form lhs ::= rhs, where lhs is a nonterminal symbol and rhs is

a sequence of nonterminal and terminal symbols, with choices separated by |.

We use A,B,C,D to range over class names, we use m, p to range over method names, we use

f to range over field names, and we use x to range over formal-parameter names. We write

f as a shorthand for a possible empty sequence f1, . . . , fn (and similarly for C, x, e, etc) and

write M as a shorthand for M1 . . .Mn (with no commas). We write the empty sequence as

• and denote concatenation of sequences using a comma. We abbreviate operations on pairs

of sequences in the obvious way, writing C f for C1 f1, . . . , Cn fn, where n is the length of

C and f , and similarly C f ; as shorthand for the sequence of declarations C1 f1; . . . ;Cn fn;

and this.f = f ; as shorthand for this.f1 = f1; . . . ; this.fn = fn;. Sequences of field

declarations, parameter names, and method declarations are assumed to contain no duplicate

names. We will use subscripts to distinguish metavariables.

Figures 4.6 and 4.7 show the helper rules and type rules of Featherweight Java with

Interfaces. In the type rules, we use Γ to range over type environments, that is, mappings

75

reduce(R e, ϕ) = reduceR(R,ϕ) e

reduceR

(class C extends D

implements I {T f ; K M}
, ϕ)

=


class C extends D

implements reduceI (C, I, ϕ)

{T f ; K reduceM (C,M,ϕ)}
if ϕ([C]) = 1

• o/w

reduceI (C, I, ϕ) =

{
I if ϕ([C C I]) = 1

EmptyInterface o/w

reduceR

(interface I {S}
, ϕ)

=

{
interface I {reduceS (I, S, ϕ)} if ϕ([I]) = 1

• o/w

reduceM

(C

, T m(T x) { return e; }
, ϕ)

=


T m(T x) { return e; } if ϕ([C.m()!code]) = 1

T m(T x) { return this.m(x); } if ϕ([C.m()]) = 1

∧ ϕ([C.m()!code]) = 0

• o/w

reduceS (I, T m(T x), ϕ) =

{
T m(T x) if ϕ([I.m()]) = 1

• o/w

Figure 4.5: Our reduce function of FJI.

from identifiers to types. We use the abbreviation π = π1 ∧ . . .∧πn. We use P (C) to denote

the class in P with name C, and we use P (I) to denote the interface in P with name I. For

every P we assume we have

P (EmptyInterface) = interface EmptyInterface { }.

The type rules specify the conditions under which a program P type checks. When P satisfies

those conditions, we write ` P | π. We explain the role of π below.

Boolean Variables and a Program Reducer For a given program, we define a set of

Boolean variables that will be used by the constraints. Then we define a reducer that given

a solution to the constraints will map a program to a reduced program.

From a program P , we derive a set of Boolean variables that we denote V (P). We use

ϕ as a truth assignment of the variables to range over V (P) → Bool . The idea is that

ϕ([C]) = 1, then the reducer should keep class C and otherwise remove it. We have six kinds

76

of variables: [C] toggles the class C, [I] toggles the interface I, [C.m()] toggles the method

C.m in C and [I.m()] toggles the signature I.m in I. The variable [C C I] signals if we should

keep C implements I or we can change it to C implements EmptyInterface. Finally, the

variable [C.m()!code] signals if we should keep the body of method C.m(). Otherwise, we can

replace it with a trivial body.

The reducer in Figure 4.5 implements the idea of the Boolean variables explained above.

The reducer forms the core of our implementation for Java bytecode. For any mapping

ϕ : V (P)→ Bool , we can construct a reduced program reduce(P, ϕ).

Generating Type-checking Constraints Figure 4.6 and Figure 4.7 show the type rules.

For a program P , we use the notation ` P | π to denote that we simultaneously type check

P and generate a propositional formula π that uses variables in V (P). We use the notation

ϕ |= π to denote that ϕ satisfies π.

The helper rules for FJI in Figure 4.6 are much like in Featherweight Java, there are,

however two differences. The first is that we extended method type lookup to apply to

interfaces, and that now the subtyping rules generate constraints that model the connection

between a class and its interface. The second is a new group of rules for method choice. For

a class C and a method m in a program P , the constraint mAny(P,m,C) is a disjunction

of variables of the form [C.m()]. If we need C to implement a method m in the reduced

program, then we can require mAny(P,m,C) to be true. This will ensure that the reducer

will preserve at least one such method m.

The type rules for FJI in Figure 4.7 are like the type rules for Featherweight Java except

for new rules related to interfaces and signatures, plus the generation of constraints. In the

rule for class typing, the constraints says that if we preserve class C, then we also need

to preserve class D plus the types of the fields. Additionally, if we preserve that class C

implements interface I, then we need to preserve both C and I. In the rule for method typing,

the constraints say that if we preserve method m, then we also need to preserve the enclosing

class C and the parameter types and the return type. Additionally, if we preserve the method

77

Field lookup

f ields(P, Object) = •

P (C) = class C extends D implements I {T f ; K M} f ields(P,D) = U g

f ields(P,C) = U g , T f

Method type lookup

P (C) = class C extends D implements I {T f ; K M} U m(U x) { return e; } ∈M
mtype(P,m,C) = (U → U)

P (C) = class C extends D implements I {T f ; K M} U m(U x) { return e; } 6∈M
mtype(P,m,C) = mtype(P,m,D)

P (I) = interface I {S} U m(U x) ∈ S
mtype(P,m, I) = (U → U)

Method choice

mAny(P,m, Object) = 0

P (C) = class C extends D implements I {T f ; K M} U m(U x) { return e; } ∈M
mAny(P,m,C) = [C.m()] ∨mAny(P,m,D)

P (C) = class C extends D implements I {T f ; K M} U m(U x) { return e; } 6∈M
mAny(P,m,C) = mAny(P,m,D)

P (I) = interface I {S} U m(U x) ∈ S
mAny(P,m, I) = [I.m()]

Subtyping

P ` T ≤ T | 1 P ` T ≤ T ′ | π1 P ` T ′ ≤ T ′′ | π2
P ` T ≤ T ′′ | π1 ∧ π2

P (C) = class C extends D implements I {T f ; K M}
P ` C ≤ D | 1

P (C) = class C extends D implements I {T f ; K M}
P ` C ≤ I | [C C I]

Valid method overriding

mtype(P,m,D) = U → U implies U = T and U = T

override(P,m,D, T → T)

Figure 4.6: FJI helper rules.

78

Program typing

P = (R e) R OK in P | π P, ∅ ` e : T | π
` P | π ∧ π

Class typing

f ields(P,D) = U g K = C(U g, T f) { super(g); this.f = f ; }
P `M OK in C | π P (I) = interface I {S} P ` S OK in I for C | τ

class C extends D implements I {T f ; K M} OK in P | ([C]⇒ ([D] ∧
[
U
]
∧
[
T
]
)) ∧

([C C I]⇒ ([C] ∧ [I])) ∧ π ∧ τ

Interface typing

P ` S OK in I | π
interface I {S} OK in P | π

Method typing

P (C) = class C extends D implements I {U f ; K M} override(P,m,D, T → T)
P, (x : T , this : C) ` e : U | π1 P ` U ≤ T | π2

P ` T m(T x) { return e; } OK in C | ([C.m()]⇒ ([C] ∧ [T] ∧
[
T
]
)) ∧

([C.m()!code]⇒ ([C.m()] ∧ π1 ∧ π2))

Signature typing

P ` T m(T x) OK in I | [I.m()]⇒ ([I] ∧ [T] ∧
[
T
]
)

Signature typing relative to a class

mtype(P,m,C) = T → T

P ` T m(T x) OK in I for C | ([C C I] ∧ [I.m()])⇒ mAny(P,m,C)

Expression typing

P,Γ ` x : Γ(x) | 1 P,Γ ` e : C | π f ields(P,C) = T f

P,Γ ` e.fi : Ti | π

P,Γ ` e : T | π1 mtype(P,m, T) = U → U P,Γ ` e : T | π P ` T ≤ U | π2
P,Γ ` e.m(e) : U | [T] ∧ π1 ∧mAny(P,m, T) ∧ π ∧ π2

f ields(P,C) = T f P,Γ ` e : U | π P ` U ≤ T | π
P,Γ ` new C(e) : C | [C] ∧ π ∧ π

P,Γ ` e : U | π
P,Γ ` (T) e : T | [T] ∧ π

Figure 4.7: FJI type rules.

79

body, then we need to preserve the enclosing method. In the rule for signature typing, the

constraints say that if we preserve a signature, then we must preserve the enclosing interface

as well was the parameter types and the return type. In the rule for signature typing relative

to a class C, the constraints say that if we preserve that C implements interface I and we

preserve that I has a signature m, then C needs to implement a method m in the reduced

program. In the rules for expressions, the constraints ensure that the result type is preserved

in the reduced program. Additionally, the constraint for method calls ensures that at least

one appropriate method is preserved. We also require that the dispatch type exist. This

is not strictly required in FJI because the dispatch type is determined by the expression;

however, in Java bytecode, this might be a problem. We have added this constraint to be

compatible with the constraints generated by our implementation.

Reduction is Type-Safe Our main theorem is that a reduced program type checks. This

means that reduction with any solution to the constraints preserves typability.

Theorem 2. If ` P | σ and ϕ |= σ, then ∃σ′ such that ` reduce(P, ϕ) | σ′.

We present the proof in the full version of the paper this chapter is based on.

4.3.2 Generating the Constraints in the Example

The code in Figure 4.1a is FJI if we assume that every class extends Object, that its con-

structor is implicit, and that M implicitly implements EmptyInterface. Finally, we assume

that there exists a class String, which we preserve while reducing the program. We can

now fill in the blanks of Section 4.2 and show how we generate the constraints in Figure 4.2.

The constraints in Figure 4.2 are structured after dependency kind; however, in our imple-

mentation, we extract them in one go.

From the program typing rules (Figure 4.7), we can see that we can process the classes

in parallel and then conjoin the results. Let’s start with A. We first look at the class typing

rule in fig. 4.7. We can see that we have to generate the dependencies for the superclass

80

and the constructor, the constructor has no parameters so our constraint is [A]⇒ [Object].

The second conjunct generates the constraints for the implements statement ([A C I] ⇒

[A]∧ [I])∧ π ∧ τ . Now let’s focus on the methods requirements π. There are two methods in

A, String m() {...} and B n () {...}. For m we use the method typing rule to see that:

([A.m()]⇒ [A] ∧ [String]) ∧ ([A.m()!code]⇒ [A.m()] ∧ π1 ∧ π2)

For n we can see:

([A.n()]⇒ ([A] ∧ [B])) ∧ ([A.n()!code]⇒ [A.n()] ∧ π1 ∧ π2)

We assume, for these two methods, that the expression (π1), and the return cast (π2) do

not create any constraints. With that out of the way, we create the constraints τ from the

interfaces. Here we use the “Signature typing relative to a class” rules, where we gener-

ate constraints that require all the signatures of a class to be implemented by one of its

superclasses.

([A C I] ∧ [I.m()]) ⇒ mAny(P,m,A) = ([A.m()] ∧mAny(P,m, Object)) = [A.m()]

The same happens for n: ([A C I] ∧ [I.n()])⇒ [A.n()] .

Since we do not reduce String and Object we replace their variables with true, further-

more we expand all the implications so that they become clauses. We now we have generated

the 9 constraints for A.

[A C I]⇒ [A] [A C I]⇒ [I] [A.n()]⇒ [A]

[A.n()]⇒ [B] [A.n()!code]⇒ [A.n()] [A.m()]⇒ [A]

[A.m()!code]⇒ [A.m()] [A C I] ∧ [I.n()]⇒ [A.n()] [A C I] ∧ [I.m()]⇒ [A.m()]

81

The constraints for B is follows the same structure. [B.n()]⇒ [B] occurs twice, so we remove

the duplicate.

[B C I]⇒ [B] [B C I]⇒ [I] [B.n()]⇒ [B]

[B.n()!code]⇒ [B.n()] [B.m()]⇒ [B] [B.m()!code]⇒ [B.m()]

[B C I] ∧ [I.n()]⇒ [B.n()] [B C I] ∧ [I.m()]⇒ [B.m()]

The constraints for I are also straight forward, and uses the “Interface typing” and “Signature

typing” rules:

[I.m()]⇒ [I] [I.n()]⇒ [I] [I.n()]⇒ [B]

Finally generate the constraints for M. M has Object as super class and EmptyInterface

as interface, and no parameters in the constructor. This means we only have to generate

constraints for M.x() and M.main(). From “Method typing” we get [M.x()]⇒ ([M]∧[String]∧

[I]) and [M.x()!code]⇒ ([M.x()]∧ π1 ∧ π2). π2 = 1 from the “Subtyping” rule (P ` String ≤

String | 1). To find that π1 = [I.m()] we have to type-check the expression a.m(), using

the “Expression typing” rule for method calls. Because the method have no parameters it

is relatively simple:

P,Γ ` a : (Γ(a)=I) | 1
. . . String m() {. . .} ∈M

mtype(P,m, I) = • → String

P, (Γ=(a : I, this : C)) ` a.m() : String | [I] ∧ 1 ∧ (mAny(P,m, I) = [I.m()])

The total constraints for M.x() is

[M.x()]⇒ [M] [M.x()]⇒ [I] [M.x()!code]⇒ [M.x()]

[M.x()!code]⇒ [I.m()] [M.x()!code]⇒ [I]

Finally, let us generate the constraints from M.main(). We use the “Methods typing”

rule to see that [M.main()]⇒ [M] and [M.main()!code]⇒ ([M.main()] ∧ π1 ∧ π2)
82

π2 is 1 is because (P ` String ≤ String | 1). Again we find π1 by type-checking the

expression:

f ields(P,M) = ∅
P, ∅ ` new M() : M | [M]

. . . String x(I a){. . .} ∈M
mtype(P, x,M) = I → String

f ields(P,A) = ∅
P, ∅ ` new A() : A | [A]

P (A) = class A extends Object implements I {. . .}
P ` A ≤ I | [A C I]

P, ∅ ` new M().x(new A()) : U | [M] ∧ [M] ∧ (mAny(P, x,M) = [M.x()]) ∧ [A] ∧ [A C I]

So the dependencies from M is:

[M.main()]⇒ [M] [M.main()!code]⇒ [M.main()] [M.main()!code]⇒ [M]

[M.main()!code]⇒ [M.x()] [M.main()!code]⇒ [A] [M.main()!code]⇒ [A C I]

Altogether, we have generated 31 of the 32 constraints from Figure 4.2. We add the last

constraint ([M.main()!code]) after constraint generation because we know that the tool will

not work without the body of [M.main()].

4.3.3 Java Bytecode

We have implemented a reducer and a constraint generator for Java bytecode, where the

above model is the core. Java bytecode is not as neat as Featherweight Java, so we had to

model more dependencies, as follows.

Variables We have a total of 11 kinds of items that can be removed. Some of them give

rise to trivial constraints, which we only use to make sure that the bytecode is formatted

correctly. We add support for constructors (modeled as methods), fields [C.f], if the fields

are final [C.f!final], and super-classes relations [C J C′]. Removing constructors and fields

simply removes them from the bytecode file. If there are no constructors left, then the

standard implementation assumes that the default constructor with no parameters exists.

We can only remove constructors if there are no final fields in the class, which is also why

83

we have a variable for whether a field is final or not. Removing a super-class relation simply

sets Object as the superclass.

Extended Class Hierarchy The Featherweight Java class hierarchy is much simpler than

the full Java Class Hierarchy. Besides also handling removal of superclasses we also have to

handle abstract classes, interfaces implementing other interfaces, and classes that implement

multiple interfaces. The extended class hierarchy plays the most prominent role when we

want to preserve methods and fields. We no longer just have to look at whether the method

has been implemented by some superclass, but also if the class still transitively extends the

superclass. For example, given that A extends B, and both A and B implement m(). Then if

we call A.m() we know that either [A.m()] or [B.m()] have to exist. But now, because we can

set the superclass of any class to Object, we have to also require that the superclass of A

is B [A J B]. This can create long paths, for example if B extends C which also implements

m(), then the constraint looks like this:

[A.m()] ∨ ([A J B] ∧ [B.m()]) ∨ ([A J B] ∧ [B J C] ∧ [C.m()])

Because we can both implement and extend classes, we can implement the same interface

in more than one way. For example, suppose A extends the abstract class B and implements

the interface I which requires the method n() to be implemented. Because B is abstract it

does not have to implement n(). Suddenly there are two requirement paths to implement

n(). So to remove A.n() it is not enough to make A not implement I, we have to break all

paths to I:

([A C I] ∧ [I.n()]) ∨ ([A J B] ∧ [B C I] ∧ [I.n()]) ⇒ [A.n()]

These paths are so prevalent that we compute all extends and implements paths in the

hierarchy, and use these to generate the constraints. We declare SubtypePaths(A) as a set

of all classes and interfaces and paths of implements and extends statements that have to re-

84

main for that class or interface to remain a subtype. In our two examples SubtypePaths(C) =

{(A, [A J B] , [B J C]), (B, [B J C])} and SubtypePaths(I) = {(A, [A J B] , [B C I]), (B, [B C I])}.

Casting Java has both up-casting and down-casting of objects: we can always cast an

A to B by (B)(Object) A. To simplify the type-system in Featherweight Java is, casting

was made type-safe by design. In Java bytecode, this operation is in two steps with the

checkcast instruction. Each of these operations still carries constraints. For example, if we

cast (A) B, then A has to be a subtype of B or B has to be a subtype of A.

Handling Type Inference Featherweight Java only contains expressions and no state-

ments, so it contains no real control flow. Java bytecode does not save all the type informa-

tion. It, therefore, uses some amount of type-inference. One interesting case is that, because

of control flow, a variable can be assigned multiple types. Consider the following code, where

both A and B extends C.

if (x) {l = new A ();} else {l = new B ();} l.toString();

Depending on the value of x, l will contain an object of type A or B. The Java type-checker

claims that l will be of type C, as it is the first superclass of both A and B. We could model

this behavior in by requiring that A is a subtype of C and B is a subtype of C, and then

require that C has a toString method. This would require that we preserve C. This is too

restrictive, as follows. If we set both [A J C] and [B J C], the program would still type check

because they both have Object as a superclass and Object implements toString. To fix

this, we keep a list of possible types for each variable when we type-check the input program.

Then we generate constraints for all possible types of each variable. In our case, we get that

both A and B transitively implement toString.

Stubbing Methods In Featherweight Java, we can replace a method body with a small

expression. For Java bytecode, we have more options for stubbing a method, as follows. If

the return type is void, then we can remove the entire body, and otherwise, we can return

85

a default value of the return type. For example, a stubbed method that returns an Object

will return null and a stubbed method that returns an int return 0.

Java Generics We have strived to make our model sound while still producing as many

interesting sub-inputs as possible. When we compile Java to bytecode, the compiler erases

some of the generic type information. To correctly model generics, we would have to infer

the types of many of the constructs in the code. This problem is undecidable [Gri17]. We

can construct an example of the problem of type-erasure by adding generic type information

to a local variable:

Class<? extends B> a = A.class −→ ldc [class A]

When we compile the source line, we get a single load constant instruction (ldc) and none

of the generic information. Given the original code, we would have created a constraint

for [A J B], but we erased that information when we compiled it to bytecode. To be sound

we could overapproximate and require that the class-hierarchy never changes, but doing so

would significantly restrict the number of sub-inputs. Instead, we chose an unsound middle

ground. It turns out that the example is a particular case that is very prevalent in some

kinds of applications. We do a partial overapproximation, and add dependencies from the

code, which inspects a class in this way, to every implements and extends variable in the

class-hierarchy of that class. If the code above is in a method C.m(), then we would add the

constraint [C.m()] ⇒ [A J B] . In practice, we have seen that our model is good enough and

we never end up with an invalid sub-input, which illustrates that our algorithm does not

need a completely sound model to get good results.

4.4 Logical Reduction

In this section, we will restate the “Input Reduction Problem” using logic and show how

the Generalized Binary Reduction algorithm enables us to efficiently reduce the input. But

first, we will introduce some notation which we use throughout this section.

86

4.4.1 Notation

We use small letters to refer to variables v, capital letters to refer to sets L, and calligraphic

letters L to reference to sets of sets. 2X indicates the power set of a set X.

A solution M is a satisfying assignment to a logical statement R (M |= R). We write all

solutions as the set of true variables. For example {x} |= x∧¬y but {x, y} 6|= x∧¬y. We can

also get the solutions (M ∈ SOLS(R)), and the variables VARS(R) of an logical statement.

When it introduces no confusion we use R(M) to mean (M |= R). We can also condition, or

update, logical expressions (R | x = 1, y = 1), which effectively substitutes x = 1 and y = 1

in R. This also works for sets (R | X = 1).

Monotonicity over sets is a key property of this chapter. We write it as this proposition:

If X ⊆ Y , then A(X) v A(Y), where A is the monotone function, and v is the lattice

relation for the different types: v ≡ ⇒ for Booleans (0 < 1), v ≡ ⊆ for sets, and v ≡ ≤

for integers.

A conjunctive normal form (CNF) is a representation of a logical expression using a

conjunction of clauses. A clause is a disjunction of variables and negated variables, and a

term is a conjunction of variables and negated variables. A transposed graph is a graph

with all edges inverted, and the post order of a graph is a list of variables extracted in a

post-order fashion from a depth-first forest of the graph. Furthermore, we work a lot with

sets of sets, prefixes, clauses, and terms, so we define the following shorthands:

D∪ =
⋃

D∈D
D D∪≤r =

⋃
j≤r
Dj L∨ =

∨
l∈L

l L∧ =
∧

l∈L
l

4.4.2 Formalizing the Problem

We are now ready to formalize the Logical Input Reduction Problem. Using the reduce

function from the last section, we represent an input as a set of variables I and the sub-

inputs as subsets of I. We represent the tool that may have a bug as a predicate P that is

true on a sub-input that induces a bug in the tool. Finally, we generate constraints RI from

87

the input. The problem is now:

Definition 2 (Logical Input Reduction Problem). Instance: (I, P,RI), where I is an input,

represented as a set of variables, P is a predicate on sub-inputs of I that determines whether

a sub-input preserves the error, and RI is a propositional Boolean formula generated from I

that determines whether a sub-input is valid. Assumptions: P can be evaluated in polynomial

time, both P (I) and RI(I) are true, and P is monotonic over valid sub-inputs: if X ⊆ Y

and RI(X) and RI(Y), then P (X) ⇒ P (Y). Problem: find the smallest sub-input S of I

such that P (S) and RI(S).

Contrary to the Weighted Input Reduction Problem from the previous chapter, this

problem definition does not have a cost-function. In the previous chapter, we changed the

inputs, so we reduced sets of inputs, where all unions were valid sub inputs, instead of

individual items. We needed the cost function to represent that each item now could contain

multiple ”real” items. In this case, we don’t change the input. Instead, we model the input

validity using RI . Since we do not map the input, we do not need a cost function. Of course,

there also exists a Weighted Logical Input Reduction Problem that additionally has a cost

function, but we’ll leave the analysis of that problem for future work.

The problem is still NP-hard, which we can see by reducing from SAT. Given a formula ϕ,

we can invoke the Logical Input Reduction Problem on (VARS(ϕ), P, ϕ∨VARS(ϕ)∧) where

P (X) = 1 and get a smallest solution S. We know that S is a solution to ϕ∨VARS(ϕ)∧, so

if S is smaller than VARS(ϕ) or if ϕ(VARS(ϕ)) then we know that ϕ is satisfiable.

4.4.3 The Generalized Binary Reduction

In Algorithm 2, we present the Generalized Binary Reduction (GBR) algorithm. The GBR

extends the Binary Reduction algorithm [KP19b, the previous chapter] with a generic pro-

gression subroutine (PROGRESSION) that, given a set of learned sets (L) and the current

search space, produces a progression of valid inputs. We will present the subroutine in

Section 4.4.4.

88

Algorithm 2: Generalized Binary Reduction

Input: (I, P,RI) where P (I) and RI(I).
Output: A subset of I which satisfy P (I) and RI(I).
Data: The learned sets L ← ∅ and progression D ← PROGRESSIONRI

(L, I)
while ¬P (D0) do

r ← min r st. r > 0 ∧ P (D∪≤r)
L ← L ∪ {Dr}
D ← PROGRESSIONRI

(L,D∪≤r)
end
return D0

The algorithm works like this. The learned sets (L) represent the growing knowledge we

get about P while running the input. Each input that could satisfy P intersects with all sets

in L. In the beginning, we know nothing about P , so L is empty. We then build the first

D progression from the input I. Like the original algorithm, we check if the first element is

a solution by itself. Otherwise, we search the prefixes of the progression D∪≤r, with a binary

search, until we find a minimal r. Because each prefix that did not contain Dr, failed P ,

we know that at least one element in that set must be part of the solution, so we add the

set to L. Finally, we recompute the progression over the new learned sets, and we limit the

search space to variables in the union of the found prefix. We continue like this until the

first element of the progression is a solution to P (D0), in which case we return it.

Progression Properties and Invariants The GBR only works if the progression al-

gorithm has some properties. In Definition 3, we have identified four properties of the

progression, which are crucial for GBR to work correctly.

Definition 3 (Progression Properties). Given an reduction model RI , a set of learned sets

L, and an input space J , then for a progression D = PROGRESSIONRI
(L, J) , assuming

RI(J) and that ∀L ∈ L. J ∩ L 6= ∅:

• The progression is a non-empty split of the input space J .

|D| > 0 ∧ D∪ = J ∧ ∀i, j. i 6= j ⇒ Di ∩ Dj = ∅. (SPLIT)

89

• The progression is correct, if all non-empty prefixes of the progression is a solution to

RI and intersects with all elements in L.

∀r ≥ 0. RI(D∪≤r) ∧ ∀L ∈ L. D∪≤r ∩ L 6= ∅ (CORRECT)

• The progression is semi-optimal if the first set D0 in the progression is minimal:

∀T ⊆ D0. RI(T) ∧ (∀L ∈ L.T ∩ L 6= ∅)⇒ T = D0 (SEMIOPT)

• The progression is limited, if we only can add the last element in the progression D|D|−1

to L a polynomial number of times in |I|:

For constant p ∃k ≤ O(|I|p). |Dk| = 1 (LIMITED)

where Dn = PROGRESSIONRI

(
L ∪ {Di

|Di|−1 | i < n}, J
)

We naturally expect the progression to split the input space (SPLIT), and that it is correct

(CORRECT). The correctness property requires that we only output prefixes that are solutions

to RI and have a chance to satisfy P , namely that it intersects with all sets in L. Given

these two requirements alone, we get the following invariant:

Lemma 1 (Invariant). Given a correct progression ((SPLIT) and (CORRECT)), then for every

step of the Generalized Binary Reduction algorithm on (I, P,RI) the following invariant

holds:

Inv(L,D) ≡ P (D∪) ∧ |D| > 0 ∧ D∪ ⊆ I (INV-1)

∧ (∀r ≥ 0. RI(D∪≤r) ∧ ∀L ∈ L. D∪≤r ∩ L 6= ∅) (INV-2)

∧ (∀T ⊆ D∪. P (T) ∧RI(T)⇒ ∀L ∈ L. T ∩ L 6= ∅) (INV-3)

From (INV-1), we see that the full progression should always satisfy P , have more than

90

one element, and be contained in the initial input. The second part, (INV-2), simply illus-

trates that each progression produced are correct, which is really only used to prove (INV-3).

The last piece of the invariant is the core piece of information. It says that all subsets of the

current progression that satisfy P and are solutions to RI intersect with each of the learned

sets. This is a powerful invariant that trivially allows us to prove that GBR produces a

local minimum, while only requiring that the first element in the progression is semi-optimal

(SEMIOPT).

Theorem 3 (Local Minima). The Generalized Binary Reduction algorithm finds a local

minimal solution S, for T ⊆ S then P (T) ∧ RI(T) if and only if T = S, Furthermore, it

solves the Logical Input Reduction Problem (I, P,RI) if the progression algorithm is semi-

optimal and correct.

Finally, we have identified a property of the progression (LIMITED), which is sufficient to

guarantee polynomial-time reduction.

Theorem 4 (Polynomial Time). The Generalized Binary Reduction algorithm (I, P,RI)

finds a S s.t. P (S)∧RI(S) in polynomial time, given that the progression algorithm runs in

polynomial time, is correct, and limited.

The full proof of these two theorems is two pages and is included in full version of the

accompanying paper.

4.4.4 Our Progression

We have designed a polynomial-time progression algorithm that is correct and limited, and

which is semi-optimal for constraints that encode dependency graphs. Using it in the GBR

means that we can reduce in polynomial time. In the special case where RI can be described

using a dependency graph, it finds a local minimum.

It is possible to see our progression algorithm as running a best-first spanning forest

on a logical expression. While there are variables left, we compute and output the closures

91

from those variables. Because we are working with logical expressions, there is some guessing

involved if we want a polynomial-time algorithm. We distill this guessing to a variable order,

which we will describe later. The full proof that our progression uphold all the progression

properties is three pages and is in the full version of the accompanying paper.

Definition 4 (Our Progression). Our progression D = PROGRESSIONRI
(L, J), is a pro-

gression of logical closures LC�, where � is a variable order based on RI .

Di =


LC� (R) if i = 0

LC� (R ∧ x | D∪≤k = 1) if i = k + 1 and ∃x ∈ min� J \ D∪≤k

Where R = (RI ∧
∧

L∈L
L∨ | VARS(RI) \ J = 0)

Our progression works by first building a logical closure of R, and then while there still

exists a variable that we have not visited (x), we find a solution to R∧ x given the variables

in the prefix so far is true. It is straightforward to see that our progression splits the input

space (SPLIT): we output at least one element, and we output every element exactly once.

Furthermore, we can see that every prefix we output is a solution to R, which means that it

is a solution to RI and intersects with all elements in L, which is precisely the requirement

for correctness (CORRECT).

Implicative Positive Form (IPF) We represent a constraint in implicative positive form

(IPF). An IPF is a CNF where each clause has at least one positive variable in each clause.

An IPF has two characteristic features. One, it has at least one solution: all variables are

true. Two, conditioning with a positive variable gives back an IPF. For every program, we

transform the generated constraint into IPF using the Tseitin transformation [Tse83], which

is possible because we assumed that the constraint is satisfiable. In our reasoning, we will

also use the dual notion of dual-IPF, where at least one variable in each clause is negative,

and where ∅ is a solution.

92

Logical Closure We compute the logical closure by choosing the first variable, according

to a variable order �, from the clause with only positive variables (OR). These clauses will

not automatically be satisfied when we set the remaining variables to false. Because R is in

IPF, we can condition R with x = 1 (R | x = 1), and (R | x = 1) will still be an IPF. We

can continue doing this until there are clauses with only positive variables left. At this point,

R is also dual-IPF, because there are no clauses with only positive variables, which means

that the ∅ is a solution to R. The union of the variables chosen so far will be a solution to

R.

Definition 5 (Logical Closure). Given a variable order � and an IPF R

LC�(R) =


{x} ∪ LC�(R | x = 1) x ∈ min�O∪R

∅ o/w

Where OR is the set of clauses in R that has no false variables.

The logical closure is stable, and will always return the smallest element from each set

in OR, which means that in the full progression algorithm, we will never add a set to L with

the same minimal element. Since there are only |I| distinct elements, we can only do this |I|

times, which in essence shows that our progression is limited (LIMITED). The logical closure

does, however, not guarantee we get the smallest solution. The minimality of the solution

depends on the choice of variable order �.

The Variable Order This part of the algorithm is a heuristic. We choose a variable order

that works well if RI represents a dependency graph. To compute the variable order, we

compute the transposed graph from RI . Each clause give rise to edges from all positive

variables to all negative variables: X∧ ⇒ Y ∨ gets turned into the edges y → x for (x, y) ∈

X × Y in the graph. Notice we reverse edges of the clauses in R. The variable order is the

reverse post-order of this graph.

If RI is effectively a graph, then our progression is a best-first forest algorithm. Since our

93

[B.m()!code]1311

[A.m()!code]42

[B C I]1412

[A C I]53

[M.main()!code]21

[B.m()]1213

0

[B.n()!code]1614

[M.main()]2019

[A]110

[B]1116

[A.n()!code]97[I]1718

[M.x()]1817
[M]1920

[M.x()!code]74

[A.m()]36

[A.n()]89

[I.m()]65

[I.n()]108

[B.n()]1515

Figure 4.8: The transposed graph used to generate the variable order (red and dashed
arrows). The red arrows and numbers symbolise the order of the depth-first forest. The 0
and the dotted red lines represent the root of the forest. The black numbers is the post-order
of the forest. The reverse of those numbers is the variable order.

variable order is the reversed post order of the transposed graph, our progression corresponds

directly with the Kosaraju–Sharir algorithm, which calculates the strongly connected com-

ponents (SCC) [Sha81] of a directed graph. Because each element in our progression is an

SCC in the graph, and we will only add SCC to L. The first element in the progression will

always be the closures of those SCC’s, which is the minimal solution. Thus, our progression

is semi-optimal for graphs (SEMIOPT).

4.4.5 Running the Example

We can now run GBR on the example from Section 4.2, using the constraints from Figure 4.2

(on page 69). This example is produced by running our tool.

94

R OR x ∈ min�O∪R
R {[M.main()!code]} [M.main()!code]

(R | [M.main()!code] = 1) {{[M.main()]}, {[M.x()]}, {[A]}, {[A C I]}} [M.main()]

(R | [M.main()] = 1) {{[M]}, {[M.x()]}, {[A]}, {[A C I]}} [M]

(R | [M] = 1) {{[M.x()]}, {[A]}, {[A C I]}} [M.x()]

(R | [M.x()] = 1) {{[I]}, {[A]}, {[A C I]}} [I]

(R | [I] = 1) {{[A]}, {[A C I]}} [A]

(R | [A] = 1) {{[A C I]}} [A C I]

(R | [A C I] = 1) ∅ •

LC�(R) = {[A] , [A C I] , [I] , [M] , [M.x()] , [M.main()] , [M.main()!code]}

Figure 4.9: The initial run of LC�(R) = D0. Each row corresponds to a recursive call to
LC�. The column R represents the value of R at that call, OR is the set of positive closures
in R, and x is the smallest variable in the union of the sets.

Before we start the algorithm we compute the variable order. We build the transposed

graph in Figure 4.8, by drawing edges from the positive variables to the negated variables in

each clause in Figure 4.2, effectively reversing each implication. The red arrows and numbers

(top) are the result of a depth first search, and the black numbers are the post-order of that

search. We extract the variable order, by reversing the post-order of the variables:

[M]20 � [M.main()]19 � [I]18 � [M.x()]17 � [B]16 � [B.n()]15 � [B.n()!code]14

� [B.m()]13 � [B C I]12 � [B.m()!code]11 � [A]10 � [A.n()]9 � [I.n()]8 � [A.n()!code]7

� [A.m()]6 � [I.m()]5 � [M.x()!code]4 � [A C I]3 � [A.m()!code]2 � [M.main()!code]1

Now we can compute the initial progression. We can see that L = ∅ and J is the full

set of all variables I, so R = RI . We calculate D0 by running the logical closure on the

unmodified constraints. We illustrate this step by step in Figure 4.9.

The rest of the progression is calculated using LC�(R∧x | D∪k≤ =1) with x ∈ min� J \D∪≤k.

For our first choice after D0, we choose x = [B], because it is the smallest variable in J \ D0.

95

[B] implies no new variables, so the set D1 = LC�(R ∧ [B] | D0 = 1) = {[B]}. We calculate

the rest of the progression in the same way. We have annotated each set with the number it

is in the progression:

D = {[A] , [A C I] , [I] , [M] , [M.x()] , [M.main()] , [M.main()!code]}0,

{[B]}1, {[B.n()]}2, {[B.n()!code]}3, {[B.m()]}4, {[B C I]}5, {[B.m()!code]}6, {[A.n()]}7,

{[I.n()]}8, {[A.n()!code]}9, {[A.m()]}10, {[I.m()]}11, {[M.x()!code]}12, {[A.m()!code]}13

The progression is ideal, because the initial element is minimal, and every element after

the first have size one. Before entering the body of the loop, we run P for the first time on

D0: no bug! In Figure 4.10a, we run a binary search over the prefixes of progression to find

the smallest one. First, we try the prefix D∪≤7 indicated by the eight black squares in the first

row. It fails the predicate, so the correct solution must be between 7–13. In binary search

fashion, we cut the search space in half and try D∪≤10. This also fails. We continue this for

two more tries until we conclude that the shortest satisfying prefix is the full progression.

While we do not reduce the size of the search space, we have learned something important:

[A.m()!code] has to be in the solution. We therefore learn {[A.m()!code]} by adding it to L.

We now compute the new progression Ḋ. We use dots to differentiate the different

progressions: Ḋ, D̈, and so on. We can see that R = RI ∧ [A.m()!code]. We start by

computing Ḋ = LC�(R). The set is the same as D0, but we also add [A.m()!code] because it

is in OR and [A.m()] because we have [A.m()!code]⇒ [A.m()] from the constraints. The rest of

our progression is straight forward:

Ḋ = (D0 ∪ {[A.m()] , [A.m()!code]})0

, {[B]}1, {[B.n()]}2, {[B.n()!code]}3, {[B.m()]}4, {[B C I]}5, {[B.m()!code]}6

, {[A.n()]}7, {[I.n()]}8, {[A.n()!code]}9, {[I.m()]}10, {[M.x()!code]}11.

We now start our second iteration of the algorithm. We try P (Ḋ0), which is false. This is

96

0 1 2 3 4 5 6 7 8 9 10 11 12 13 P (D∪
≤r)

� � � � � � � � · · · · · · 0
� � � � � � � � � � � · · · 0
� � � � � � � � � � � � � · 0
� � � � � � � � � � � � � � 1
� � � � � � � � � � � � � � 1

(a) The first binary search

0 1 2 3 4 5 6 7 8 9 10 11 P (Ḋ∪
≤r)

� � � � � � � · · · · · 0
� � � � � � � � � � · · 0
� � � � � � � � � � � · 0
� � � � � � � � � � � � 1
� � � � � � � � � � � � 1

(b) The second binary search

Figure 4.10: The two binary searches performed by GBR on our example. Each row indicates
a call to P . � in n’s column means that Dn was was part of a successful call to P , and �
means that set was part of an unsuccessful call to P . The last row is the result of the binary
search, where � indicates the final selected Dr.

our sixth invocation of P . In Figure 4.10b, we run our second binary search over the prefixes

of the progression. Again we find that the entire progression is needed to satisfy P , but we

learn that [M.x()!code] has to be part of the solution.

Now L = {{[A.m()!code]}, {[M.x()!code]}} and J = Ḋ∪≤11. We recompute the progression

and we get that the initial set in the progression adds [M.x()!code] and [I.m()]. The latter is

added because [M.x()!code] mentions it.

D̈0 =

 [A C I] , [A.m()!code] , [A.m()] , [A] , [I.m()] , [I] ,

[M.main()!code] , [M.main()] , [M.x()!code] , [M.x()] , [M]


The rest of the progression is unimportant because we run our eleventh (11) and last

invocation of P on D̈0, and this time it succeeds. D̈0 is the optimal solution we presented in

Section 4.2. We run our reduce function on it and produce the sub-input in Figure 4.1b. We

can see that all the variables in M are in the solution, so M remains the same. We can remove

B entirely because [B] is not in the solution. Finally, we can see that [I.m()] and [A.m()] are

not in the solution, so we remove the m methods from both I and A. The rest of the variables

in A and I is part of the solution, so we do not reduce them further.

97

4.5 Experimental Evaluation

This section answers this research question:

Does the use of propositional logic for modeling internal dependencies lead to

an effective and efficient reduction of complex inputs in practice?

To which the answer is: yes! Our tool reduces Java bytecode to 4.6% of its original size,

which is 5.3 times better than the 24.3% achieved by J-Reduce. It does this while only being

3.1 times slower. If we only want the amount of reduction produced by J-Reduce, we can

achieve that with our new reducer in only 6 minutes. This is below 10% of the total running

time of J-Reduce.

4.5.1 Experimental Setup

Our implementation and evaluation of this chapter are written as an extension to the artifact

[KP19b, KP19a], which we produced for the previous chapter. Our logical model is built in

a Haskell eDSL and is around 800 lines of code.

Benchmarks We use the benchmarks from J-Reduce’s artifact, which is a collection of

100 programs from the NJR project [PL18], together with three decompilers. We have

removed four benchmarks from the benchmarks set. Three of them because they did not

type check. This was not a problem in the previous chapter, because it did not type check

the programs. The fourth is a reimplementation of the standard library, which caused all

kinds of precedence problems between it and the real standard library, so we excluded it.

In this evaluation, a decompiler is buggy if the output does not compile. The goal of

the evaluation is to reduce the input program while preserving the full error message of the

compiler. We have changed the formatting of the error messages in four ways:

1. We made the maximum number of reported bugs by the compiler explicit by setting

it to 100, which ensures that it stays constant across compiler versions.

98

103 284 464 645 825 1006
Classes

0
32
65
97

130
162
195
227

Be
nc

m
ar

ks
GM 184

0.07 0.77 1.48 2.19 2.89 3.60
Bytes (in MB)

GM 285 KB

1 20 40 60 80 100
Errors in Output

GM 9.2

1k 7k 14k 21k 27k 34k
Reducible Items

0
32
65
97

130
162
195
227

Be
nc

m
ar

ks

GM 2.9k

2k 28k 55k 82k 109k 135k
Clauses

GM 8.7k

92% 94% 95% 97% 98% 100%
Edges per Clause

GM 97.5%

Figure 4.11: The distribution of benchmarks over number of classes, number of bytes, number
of lines of errors in the output, number of reducible items, number of clauses in the model,
and the percentage of the clauses that can be represented as edges in a graph.

2. We removed all warnings from the compiler output. Code transformations can make

the decompilers produce warnings, which made the predicate non-monotone.

3. We removed line numbers and detailed bug descriptions from the output. The line

numbers and the detailed bug descriptions of the bugs can change if we remove items

before that line in the code.

4. We sorted the output, to limit some of the nondeterminism in the decompilers.

Stats In total, the benchmarks contain 227 instances where the decompilers produce

source-code that does not compile. We can distribute these over the different metrics we use.

In Figure 4.11, we see histograms of the number of classes, bytes, lines of error produced by

the compiler, reducible items, clauses, and finally the percentage of clauses that are edges,

per benchmarks. A clause can be represented as an edge in a graph if there exactly one

positive and negative literal in the clause. We also include the geometric mean for each

metric, which is 184 classes, 285 KB, 9.2 errors produced by the compiler, 2.9k reducible

99

items, 8.7k clauses in the model, and 97.5% edges per clause.

Running the Benchmarks To support our findings, we have evaluated two reduction

strategies:

• J-Reduce: A modification of the implementation of J-Reduce, from the previous chap-

ter, which writes the class-files instead of using symbolic links. This gives better

bytecode compression and allows for direct comparison with our techniques.

• Our Reducer: Our new reducer with the model from Section 4.3 and algorithm from

Section 4.4.

We ran each of the strategies in parallel in batches of 8 on every benchmark. We did this

concurrently on three 24 Intel(R) Xeon(R) Silver 4116 CPU, 2.10 GHz core machines with

188 GB RAM. The machines ran OpenJDK version 1.8.0 222.

We also ran the original unmodified implementation of J-Reduce, to check that it is

equivalent to our implementation except for the final size in bytes. On our modification of

the implementation of J-Reduce, we get 12.3% smaller bytecode while only getting a little

worse performance (4.5%). As expected, the number of classes after reduction are equivalent

(<1% difference).

4.5.2 Analysis

To get an overall sense of the run, we have plotted a cumulative frequency diagram of each

of the three metrics: time spent reducing, and the final relative size in both number classes

and bytes left, see Figure 4.12. By inspecting the first figure, we can see that J-Reduce

finishes running on all benchmarks within an hour, while for some benchmarks, our new

reducer takes up to 10 hours. We can, however, see that it has finished on most (>95%) of

the benchmarks within two hours. For this extra running time, we get much more reduction.

We can see that we reduce half of the benchmarks to below 10% in classes and 5% in bytes,

where J-Reduce only reduce to around 40%.

100

0:00 2:00 4:00 6:00 8:00 10:00
Time Spent (h:mm)

0

38

76

114

151

189

227
Be

nc
hm

ar
ks

218.6s
680.7s

MEDIAN

0% 20% 40% 60% 80% 100%
Final Relative Size (Classes)

8.4%

22.8%

0% 20% 40% 60% 80% 100%
Final Relative Size (Bytes)

4.6%

24.3%

Our Reducer
J-Reduce

Figure 4.12: Cumulative frequency diagrams of the time spent and relative final size, both
in term of number of classes and number of bytes. In all figures, steeper is better. The dots
represents the geometric mean.

We can see that J-Reduce’s and our new reducers geometric mean (GM) running time is

218.6 s and 680.7 s, respectively, which means that our new reducer is 3.1 times slower than

J-Reduce. The reduction of our new reducer is much better: for number of classes, we can

reduce to 8.4% while J-Reduce gets 22.8%, and for bytes we reduce to 4.6% while J-Reduce

gets 24.3%. We perform 2.7 times better on classes, and 5.3 times better on bytes.

However, this comparison is only fair if we assume that we have 10 hours to reduce. A

much more likely scenario is that we have a fixed time window, and we want the algorithm

to reduce as much as it can in that time frame. We can stop both algorithms at any point in

the execution and use the smallest input until that point that preserves the error message.

To illustrate this, in Figure 4.13, we have plotted the mean reduction over time. The top

diagrams show the geometric average over the first two hours of the reduction. Because

removing 10 out of 100 classes from a program does not have the same worth as removing

10 out of 11 classes, we also present the bottom two diagrams that more accurately depict

the value of the reduction. In the bottom two diagrams, the x-axis is linear over the number

of times the reducer has made the benchmarks smaller. The two horizontal lines represent

the average reduction after one hour and after every run has completed.

From these graphs, we can conclude two interesting facts. Our reducer performs the bulk

of the reduction in both classes and bytes in the first hour. The remaining 9 hours only finds

101

0:00 0:30 1:00 2:30 2:00
0

37

74

111

148

184

M
ea

n
Cl

as
se

s L
ef

t

0:06
J-Reduce
Our Reducer

0:00 0:30 1:00 2:30 2:00
0 KB

57 KB

114 KB

171 KB

228 KB

285 KB

M
ea

n
By

te
s L

ef
t

0:06

0:00 0:30 1:00 2:30 2:00
Time Spent (h:mm)

x 1

x 5

x 9

x 13

x 17

x 21

x 25M
ea

n
Ti

m
es

 S
m

al
le

r (
Cl

as
se

s)

0:06
0:00 0:30 1:00 2:30 2:00

Time Spent (h:mm)

x 1

x 5

x 9

x 13

x 17

x 21

x 25

M
ea

n
Ti

m
es

 S
m

al
le

r (
By

te
s)

0:06

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 L

ef
t

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 L

ef
t

8.4%

22.8%

9.7%

Pe
rc

en
ta

ge
 L

ef
t

4.6%

24.3%

5.6% Pe
rc

en
ta

ge
 L

ef
t

Figure 4.13: The reduction over time. The two top diagrams show the reduction on a linear
scale in the number of classes and bytes left. The bottom two diagrams show the reduction
on a linear scale of the number of times the item has gotten smaller.

102

an input with 1.15x fewer classes and 1.22x fewer bytes. The second fact is that we can see

that our new reducer outperforms J-Reduce’s total reduction in both classes and bytes after

only 6 minutes of reduction. This means that, on average, if a user has more than 6 minutes,

it would be better to run our new reducer than to run J-Reduce to completion.

4.6 Related Work

We will now discuss related work. We have found four categories where the findings of

this chapter relates to other work: input reduction, fuzz testing, internal input reduction,

debloating, type-safe code transformations, and search-based testing.

4.6.1 Input Reduction

We have already talked about ddmin [ZH02], HDD [MS06b], and J-Reduce [KP19b] in the

introduction.

C-Reduce [RCC12b], to this date, produces the smallest reductions for C, it achieves

this using 30 custom-made transformations, one of which is a variant of delta debugging.

These rules are C-specific and not easily used with other languages. C-Reduce runs through

these transformations one by one, in a loop, until it reaches a fix-point. Because of this, and

because C-Reduce may produce invalid inputs, it is slow. In contrast, GBR is general and

applies to any form of input for which we can represent dependencies using propositional

Boolean logic.

Sun et al.’s tool Perses [SLZ18], models the input using a grammar. Compared to the

other techniques, it allows them to model the validity of the input more closely. For example,

they can specify that at least one element in a list of elements must remain. Their technique

is, however, limited to inputs that can be described using a grammar. Our technique is

only limited by the expressiveness of propositional Boolean logic: we can model Java’s type

system, which Perses cannot. Perses also uses the grammar to do simple transformations

such as promoting syntactic sub-elements. We believe that we can do something similar with

103

a more complicated reduce function and syntactic dependencies. We leave this for future

work.

Chisel is a tool that uses machine learning to learn the underlying dependency graph

while reducing a C program [HLP18]. Future work could address whether a Chisel-like

technique can learn dependencies expressed using propositional Boolean logic. This would

make the technique applicable to Java bytecode. Chisel is a tool that uses machine learning

to learn the underlying dependency model while reducing the input.

4.6.2 Fuzz Testing

There exist a vast work on fuzz testing, which modifies valid inputs to find bugs in a program.

Even though fuzz testing focuses on finding bugs and not reducing existing input, some of

the techniques are related.

Our technique is mostly related to black-box fuzzing, which has no knowledge of the

system under test. To avoid testing invalid inputs, some of the approaches model the input

validity using grammars [Ait02, HHZ12, ZGB19]. However, because they do not model the

more complex dependencies in the input, they are often stuck testing the same validation

paths in the program. To avoid this, white-box fuzz testing [GLM08, GKL08] records the

program’s behavior while running to let it affect the fuzzing. Concolic engines [SA06, CDE08,

Kal15] builds in symbolic path constraints to help choose inputs that find new paths.

In contrast, our work can encode complex semantic constraints in the model without

inspecting the program.

Because we use propositional logic, we can not reason about variables that do not exist

yet. This means that our approach can only generate valid sub-inputs from a valid input,

which is ideal for reduction, but a more expressive model language is needed if we want to

use our reduction approach for fuzzing. We’ll leave this for future work.

Since we know that combining grammar-based black-box techniques with white-box tech-

niques gives better results [DDG07, GKL08, MGM19], it would be interesting to combine

104

our technique with white-box techniques, to get a better reduction. We’ll also leave this for

future work.

4.6.3 Input Generation and Internal Reduction

In Claessen and Hughes’s QuickCheck [CH11], they randomly generate input using a speci-

fication created by the userkkk. When QuickCheck finds an input that produces a fault, it

is often quite large, and QuickCheck tries to reduce the input, using a sub-input generator

provided by the user. These generators are hard to write and can often be slow. Hedge-

hog [Sta17] is a successor to QuickCheck, which can automatically reduce the inputs from

the generator. When Hedgehog finds a faulty input, it tries to make it smaller by choos-

ing smaller inputs to the generator. This is known as internal test-case reduction because

the reduction is internal to the input generation. Because every reduced input is generated

from the internal input, using the generator, it avoids producing invalid inputs. Hypothe-

sis [MD20] is a similar tool implemented in python. Contrary to Hedgehog, which chooses

smaller inputs for each sub-generator, they use a sequence of bits as the input to the gen-

erator. This allows them more flexibility in moving and removing substrings of the internal

input.

While Hedgehog and Hypothesis should not produce invalid inputs, in theory, there are

cases where they do. If a precondition defined by the user fails, or if Hypothesis produces

too few bits. Recently, Zest [PLS19], showed that they were able to combine generator-

based technique with whitebox fuzz testing techniques. This allowed them to do automatic

discovery of semantic constraints to the input. They do however not combine this information

with reduction. It would be interesting to augment internal reduction with our approach

by allowing users to specify preconditions as constraints while writing the generator. We’ll

leave that for future work.

Furthermore, compared to these tools, our technique works on any input and not only

inputs we have generated. This is useful if the input is part of a bug reported by a user.

105

4.6.4 Debloating

We can view debloating or application extraction as a special case of input reduction. We can

use our tool as a debloater in the following way. Given a test suite, we define the predicate

P in Definition 2 to be true if all tests pass. Using it this way, we would guarantee that the

application preserves the behavior described by the test-suite.

Tip et al. introduced the first successful debloater for Java bytecode, named Jax [TLS99]

. Besides removing methods and fields, they also inlined method calls and collapsed the class

hierarchy. Since Jax is an entirely static technique, it has problems with dynamic features

like reflection. In our tool, a missing target method in a reflection call would fail the pred-

icate, which would trigger a search for the target method. Bruce et al. made a comparison

between previous debloating techniques [BZA20], including Jax [TLS99], TamiFlex [BSS11],

ProGuard [Gua20], and JRed [JWL16]. They concluded that most static debloaters are not

semantic preserving. They also introduced their tool JShrink, which uses a checkpointing

technique to maintain semantics. Checkpointing reverts any transformations that do not

preserve the behavior of the test-cases. JShrink reduces program to 86,7% of their original

size; however, the benchmark suite is very different from ours.

Porter et al.’s recent tool BlankIt has a novel technique on debloating where they try to

load as little code as possible while running the program [PMB20], instead of removing as

much as they can statically. The goals of the paper and this chapter are different, as BlankIt

seeks to limit the access to safety-volubilities in C code, where we seek to produce smaller

inputs.

The most significant difference between the tools mentioned here and our tool is that

we are not limited to maintaining the program’s semantics. We can reduce using other

predicates.

106

4.6.5 Type-Safe Code Transformations

When the input itself is a program, input reduction is an example of a program transfor-

mation. In particular, our reducer for Java bytecode is a program transformation, which by

design is type-safe (Theorem 2) but may change the semantics of the program. This makes

it different from a long line of work on type-safe, semantics-preserving program transforma-

tions. Good examples from that line of work include Morrisett et al.’s type-safe translation

from System F to typed assembly language [MWC98], Glew and Palsberg’s type-safe method

inlining [GP04], and Chen, Chugh, and Swamy’s type-safe compiler that helps enforce se-

curity properties [CCS10]. On the technical side, our proof of type safety differs from the

proofs in the cited papers in the following way. While the cited papers prove that each

typed program is transformed into a single typed program, we prove that an entire family

of sub-programs all type check.

4.6.6 Search-Based Testing and Model Transformations

Another approach to retain valid inputs is using search-based testing or Model Transfor-

mations, which works by having a set of possible complex, valid transformations of the

code. These can now searched through possible valid programs, using iterative A* [Kor85],

Generic Algorithms [OKS12], Particle swam optimization [KSB08, KSB12], and many other

techniques [ATF09]) to be directed towards an ideal solution or gain full coverage of all

tests. C-Reduce [RCC12b], which we have already discussed, uses a version of search-based

refactoring.

However, the approach is slow; full path coverage scales exponentially with the depth of

the problem with the number of valid transformations as branching factors. Compared to our

work, we present a full model of all valid sub-inputs of a valid input that produces a bug in

a program, while a search-based technique can only know about the input it has generated.

In other words, we are navigating a maze using a map, while search-based techniques have

to find their way without one. Having this model allows us to plot a course and go directly

107

after the smallest possible input. The drawback of our technique is that it cannot generate

new inputs, and the goal, a minimal satisfying input, is predetermined.

108

4.7 Summary

In this chapter, we have shown that the use of propositional logic for modeling internal

dependencies leads to an effective and efficient reduction of complex inputs.

We have done this by modeling the type-system and many other dependencies of a Feath-

erweight Java with Interfaces and proving the reduction correct. We have shown, experi-

mentally, that the model extends to Java in full. Using logical dependencies, we can model

Java closer than previous work. Our novel polynomial-time reduction algorithm, Generalized

Binary Reduction, can use this validity model to get 5.3 times better results.

Work on other complex inputs is still needed, but we have opened a path to reduce

inputs that were not effectively reduceable before. Our reduction engine is general and can

be applied to all inputs, which can be modeled using propositional Boolean logic.

109

CHAPTER 5

Conclusion

In this dissertation, we have looked at three examples of modeling the validity of input

programs to verify and reduce bug reported to metaprograms. We were able to verify bug

reports correctly, and we reduced bug reports 12 times faster and got more than five times

smaller results. We have solved the Input Validity Problem for reducing the classes of Java,

Featherweight Java with Interfaces, and Java Bytecode without generics. We believe that

the techniques described in this dissertation can be used on many other metaprograms and

their input programs and that we have pushed the envelope of how to model the validity of

useful inputs to metaprograms.

There are many avenues for future work. The biggest problem with our easiness analysis is

the time to run the static analyses, which can be quite time-consuming. Integrating easiness

analysis with machine learning techniques could be used approximate the hard features of a

language.

Previous work on reduction is using Grammars to presents a simple interface for the user

to use. Currently, we write our model as an e-DSL in Haskell. Future work on improving

the logical reduction interface, and maybe augment the grammar-based approach to accept

logical semantic dependencies is needed before the technique is easily adaptable.

Finally, we have mostly focused on reduction and not transformations, which means that

our reduction model can only remove items from the code and not do interesting things like

collapsing the hierarchy or inlining. Some minimal inputs are only possible using these tech-

niques. Future work is needed to fit these more complicated transformations in a framework

that uses a logical validity model.

110

Bibliography

[AH90] Hiralal Agrawal and Joseph R Horgan. Dynamic program slicing. In ACM SIG-

Plan Notices, volume 25, pp. 246–256. ACM, 1990.

[Ait02] Dave Aitel. The advantages of block-based protocol analysis for security testing.

Immunity Inc., February, 105:106, 2002.

[AMN] E. S. Andreasen, A. Møller, and B. B. Nielsen. Systematic approaches for increas-

ing soundness and precision of static analyzers.

[Art11] Cyrille Artho. Iterative delta debugging. International Journal on Software Tools

for Technology Transfer, 13(3):223–246, 2011.

[ATF09] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review of search-

based testing for non-functional system properties. Information and Software

Technology, 51(6):957–976, 2009.

[Avi85] Algirdas Avizienis. The n-version approach to fault-tolerant software. IEEE

Transactions on software engineering, (12):1491–1501, 1985.

[Ben] Lee Benfield. CFR – another Java decompiler. http://www.benf.org/other/

cfr/ (accessed Aug 24, 2018).

[BGH14] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin

Yoo. Orbs: Language-independent program slicing. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, pp. 109–120. ACM, 2014.

[BS09] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of

sophisticated points-to analyses. In Proceedings of OOPSLA’09, Object-Oriented

Programming Systems, Languages and Applications, pp. 243–262, 2009.

111

http://www.benf.org/other/cfr/
http://www.benf.org/other/cfr/

[BSS11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Tam-

ing reflection: Aiding static analysis in the presence of reflection and custom class

loaders. In ICSE, 33rd International Conference on Software Engineering, May

2011.

[BZA20] Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung

Kim. JShrink: In-depth investigation into debloating modern Java applications.

In Proceedings of the 2020 ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering — ESEC/FSE ’20.

ACM, 2020. [To Appear].

[CA76] Liming Chen and Algirdas Avizienis. N-version programing: A fault-tolerance

approach to reliablity of software operation. FTCS-8, (8):3–9, 1976.

[CCS10] Juan Chen, Ravi Chugh, and Nikhil Swamy. Type-preserving compilation for

end-to-end verification of security enforcement. In Proceedings of PLDI’10, ACM

SIGPLAN Conference on Programming Language Design and Implementation,

June 2010.

[CDE08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and

automatic generation of high-coverage tests for complex systems programs. In

OSDI, volume 8, pp. 209–224, 2008.

[CH11] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random

testing of haskell programs. Acm sigplan notices, 46(4):53–64, 2011.

[CMW15] Maria Christakis, Peter Müller, and Valentin Wüstholz. An Experimental Eval-

uation of Deliberate Unsoundness in a Static Program Analyzer. In VMCAI’15,

Verification, Model Checking, and Abstract Interpretation, 2015.

[CZ00] Holger Cleve and Andreas Zeller. Finding failure causes through automated test-

ing. arXiv preprint cs/0012009, 2000.

112

[CZ02] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread schedules.

In ISSTA, 2002.

[Cza18] Wiktor Czajkowski. Sneaky bugs and how to find them (with git bi-

sect). Netguru, January 2018. https://www.netguru.co/codestories/

sneaky-bugs-and-how-to-find-them.

[DDG07] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing

of refactoring engines. In Proceedings of the the 6th joint meeting of the Euro-

pean software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pp. 185–194, 2007.

[Dev] Developers. Bisect. https://git-scm.com/docs/git-bisect (accessed Aug 24,

2018).

[DFS15] J. Dolby, S. J. Fink, and M. Sridharan. T. J. Watson libraries for analysis.

http://wala.sourceforge.net, 2015.

[DSR17] Jens Dietrich, Li Sui, Shawn Rasheed, and Amjed Tahir. On the construction of

soundness oracles. In SOAP’17, Proceedings of the 6th ACM SIGPLAN Interna-

tional Workshop on State Of the Art in Program Analysis, 2017.

[ECH01] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.

Bugs as deviant behavior: A general approach to inferring errors in systems code.

In SOSP, ACM Symposium on Operating Systems Principles, 2001.

[ECM06] ECMA. Standard ECMA-355, Common Language Infrastructure. June 2006.

[FSS13] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Ef-

ficient Construction of Approximate Call Graphs for JavaScript IDE Services. In

ICSE’13, International Conference on Software Engineering, pp. 752–761, 2013.

113

https://www.netguru.co/codestories/sneaky-bugs-and-how-to-find-them
https://www.netguru.co/codestories/sneaky-bugs-and-how-to-find-them
https://git-scm.com/docs/git-bisect
http://wala.sourceforge.net

[GAZ16] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John

Regehr. Cause reduction: delta debugging, even without bugs. Software Testing,

Verification and Reliability, 26(1):40–68, 2016.

[GHK17] Alex Groce, Josie Holmes, and Kevin Kellar. One test to rule them all. In

Proceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis, pp. 1–11. ACM, 2017.

[GKL08] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox

fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 206–215, 2008.

[GLM08] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox

fuzz testing. In NDSS, volume 8, pp. 151–166, 2008.

[GP04] Neal Glew and Jens Palsberg. Type-safe method inlining. Science of Com-

puter Programming, 52:281–306, 2004. Preliminary version in Proceedings of

ECOOP’02, European Conference on Object-Oriented Programming, pages 525–

544, Springer-Verlag (LNCS 2374), Malaga, Spain, June 2002.

[Gri17] Radu Grigore. Java generics are turing complete. ACM SIGPLAN Notices,

52(1):73–85, 2017.

[Gua20] Guardsquare. ProGuard. https://github.com/Guardsquare/proguard, 2020.

[HBB15] Mouna Hammoudi, Brian Burg, Gigon Bae, and Gregg Rothermel. On the use

of delta debugging to reduce recordings and facilitate debugging of web applica-

tions. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, pp. 333–344. ACM, 2015.

[HHZ12] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments.

In Presented as part of the 21st {USENIX} Security Symposium ({USENIX}

Security 12), pp. 445–458, 2012.

114

https://github.com/Guardsquare/proguard

[HLP18] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Effective pro-

gram debloating via reinforcement learning. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, pp. 380–394.

ACM, 2018.

[IPW99] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A

minimal core calculus for Java and GJ. In Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages, and Applications, pp. 132–

146, 1999.

[JWL16] Yufei Jiang, Dinghao Wu, and Peng Liu. Jred: Program customization and bloat-

ware mitigation based on static analysis. In 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), volume 1, pp. 12–21. IEEE,

2016.

[Kal15] Christian Gram Kalhauge. Hyperconcolic-finding parallel bugs in java programs,

using concolic execution. 2015.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pp. 85–103. Plenum

Press, 1972.

[KL86] John C Knight and Nancy G Leveson. An experimental evaluation of the as-

sumption of independence in multiversion programming. IEEE Transactions on

software engineering, (1):96–109, 1986.

[Kor85] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree

search. Artificial intelligence, 27(1):97–109, 1985.

[KP18] Christian Gram Kalhauge and Jens Palsberg. Sound deadlock prediction. In Pro-

ceedings of OOPSLA’18, ACM SIGPLAN Conference on Object-Oriented Pro-

gramming Systems, Languages and Applications, 2018.

115

[KP19a] Christian Gram Kalhauge and Jens Palsberg. Artifact from ”Binary Reduction

of Dependency Graphs”, June 2019.

[KP19b] Christian Gram Kalhauge and Jens Palsberg. Binary reduction of dependency

graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2019, pp. 556–566, New York, NY, USA, 2019. ACM.

[KP19c] Christian Gram Kalhauge and Jens Palsberg. Results from ”Binary Reduction of

Dependency Graphs”, February 2019.

[KSB08] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Model transfor-

mation as an optimization problem. In International Conference on Model Driven

Engineering Languages and Systems, pp. 159–173. Springer, 2008.

[KSB12] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Omar Ben

Omar. Search-based model transformation by example. Software & Systems

Modeling, 11(2):209–226, 2012.

[LBK16] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pis-

ter, and Christian Ferdinand. CompCert - A Formally Verified Optimizing Com-

piler. In ERTS 2016: Embedded Real Time Software and Systems, 8th European

Congress, Toulouse, France, January 2016. SEE.

[Lho07] Ondrej Lhoták. Comparing call graphs. In PASTE’07, Workshop on Program

Analysis for Software Tools and Engineering, 2007.

[LOZ07] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand

Meyer. Efficient unit test case minimization. In Proceedings of the twenty-

second IEEE/ACM international conference on Automated software engineering,

pp. 417–420. ACM, 2007.

116

[LSS15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhotak, J. Nel-

son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders

Møller, and Dimitrios Vardoulakis. In defense of soundiness: A manifesto. Com-

munications of the ACM, 58(2):44–46, February 2015.

[LSV17] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for static

analysis of Java reflection: Literature review and empirical study. In ICSE’17,

International Conference on Software Engineering, pp. 507–518, 2017.

[LTS14] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-Inferencing Reflection Res-

olution for Java. In ECOOP’14, European Conference on Object-Oriented Pro-

gramming, 2014.

[LTX15] Yue Li, Tian Tan, and Jingling Xue. Effective Soundness-Guided Reflection Anal-

ysis. In SAS’15, International Static Analysis Symposium, 2015.

[LWL05] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for Java.

In Asian Symposium Programming Languages and Systems, number 0326227,

2005.

[LZR16] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Precise semantic

history slicing through dynamic delta refinement. In Automated Software Engi-

neering (ASE), 2016 31st IEEE/ACM International Conference on, pp. 495–506.

IEEE, 2016.

[McK98] William M. McKeeman. Differential testing for software. Digital Technical Jour-

nal, 10(1):100–107, 1998.

[MD20] David R MacIver and Alastair F Donaldson. Test-case reduction via test-case

generation: Insights from the hypothesis reducer. In ECOOP’20, 2020. [To

Appear].

117

[MGM19] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias

Höschele, and Andreas Zeller. Parser-directed fuzzing. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pp. 548–560, 2019.

[MRM12] Fadi Meawad, Gregor Richards, Floreal Morandat, and Jan Vitek. Eval Begone

! Semi-Automated Removal of Eval from JavaScript Programs. In OOPSLA’12,

Object-Oriented Programming Systems, Languages and Applications, 2012.

[MS06a] Ghassan Misherghi and Zhendong Su. HDD: Hierarchical delta debugging. In

ICSE’06, International Conference on Software Engineering, 2006.

[MS06b] Ghassan Misherghi and Zhendong Su. Hdd: Hierarchical delta debugging. In

Proceedings of the 28th international conference on Software engineering, pp. 142–

151. ACM, 2006.

[MWC98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to

typed assembly language. In Proceedings of POPL’98, 25th Annual SIGPLAN–

SIGACT Symposium on Principles of Programming Languages, pp. 85–97, 1998.

[MWG15] S McPeak, DS Wilkerson, and S Goldsmith. Berkeley delta. URL http://delta.

tigris. org, 2015.

[MZN15] Ravi Mangal, Xin Zhang, Aditya Nori, and Mayur Naik. A user-guided approach

to program analysis. In Proceedings of FSE’15, ACM SIGSOFT International

Symposium on the Foundations of Software Engineering, 2015.

[OKS12] Ali Ouni, Marouane Kessentini, Houari Sahraoui, and Mohamed Salah Hamdi.

Search-based refactoring: Towards semantics preservation. In 2012 28th IEEE

International Conference on Software Maintenance (ICSM), pp. 347–356. IEEE,

2012.

118

[PL18] Jens Palsberg and Cristina Lopes. NJR: A normalized Java resource. In SOAP’18,

Proceedings of ACM SIGPLAN International Workshop on State Of the Art in

Program Analysis, 2018.

[PLS19] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves

Le Traon. Semantic fuzzing with zest. In Proceedings of the 28th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, pp. 329–340,

2019.

[PMB20] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. Blankit

library debloating: getting what you want instead of cutting what you don’t. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation, pp. 164–180, 2020.

[PMF10] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Br-

uschi. N-version disassembly: differential testing of x86 disassemblers. In Pro-

ceedings of the 19th international symposium on Software testing and analysis,

pp. 265–274. ACM, 2010.

[RCC12a] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. Test-case reduction for C compiler bugs. In PLDI, 2012.

[RCC12b] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. Test-case reduction for c compiler bugs. In Proceedings of the 33rd ACM

SIGPLAN conference on Programming Language Design and Implementation, pp.

335–346, 2012.

[RHB11] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The Eval that

men do: A large-scale study of the use of eval in JavaScript applications. In

ECOOP’11, European Conference on Object-Oriented Programming, 2011.

[RKE18] Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini. Systematic

evaluation of the unsoundness of call graph construction algorithms for Java. In

119

SOAP’18, Proceedings of the 6th ACM SIGPLAN International Workshop on

State Of the Art in Program Analysis, 2018.

[SA06] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit

path model-checking tools. In Proc. 18th International Conference on Computer

Aided Verification, pp. 419–423, 2006.

[Sc] Roman Shevchenko and other contributors. Fernflower. https://github.com/

fesh0r/fernflower (accessed Aug 24, 2018).

[SDE18] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. On

the soundness of call graph construction in the presence of dynamic language

features – a benchmark and tool evaluation. In Proceedings of APLAS’18, Asian

Symposium on Programming Languages and Systems, 2018.

[Sha81] Micha Sharir. A strong-connectivity algorithm and its applications in data flow

analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

[SKB15] Yannis Smaragdakis, George Kastrinis, George Balatsouras, and Martin Braven-

boer. More Sound Static Handling of Java Reflection. In APLAS’15, Asian

Symposium on Programming Languages and Systems, November 2015.

[SLZ18] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. Perses:

Syntax-guided program reduction. In ICSE’18, International Conference on Soft-

ware Engineering, 2018.

[Sta17] Jacob Stanley. Hedgehog. https://hackage.haskell.org/package/hedgehog,

2017.

[Str] Mike Strobel. Procyon Java decompiler. https://bitbucket.org/mstrobel/

procyon/overview (accessed Aug 24, 2018).

120

https://github.com/fesh0r/fernflower
https://github.com/fesh0r/fernflower
https://hackage.haskell.org/package/hedgehog
https://bitbucket.org/mstrobel/procyon/overview
https://bitbucket.org/mstrobel/procyon/overview

[Thu06] Marc Thurley. sharpsat–counting models with advanced component caching and

implicit bcp. In International Conference on Theory and Applications of Satisfi-

ability Testing, pp. 424–429. Springer, 2006.

[TLS99] Frank Tip, Chris Laffra, Peter F Sweeney, and David Streeter. Practical expe-

rience with an application extractor for java. In Proceedings of the 14th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, pp. 292–305, 1999.

[Tse83] Grigori S Tseitin. On the complexity of derivation in propositional calculus. In

Automation of reasoning, pp. 466–483. Springer, 1983.

[VGH00] Raja Vallé-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-

inville, and Vijay Sundaresan. Optimizing Java bytecode using the soot frame-

work: Is it feasible? In Proceedings of CC’00, International Conference on Com-

piler Construction. Springer-Verlag (LNCS), 2000.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th international conference

on Software engineering, pp. 439–449. IEEE Press, 1981.

[XN05] Jingling Xue and Phung Hua Nguyen. Completeness Analysis for Incomplete

Object-Oriented Programs. In CC’05, International Conference on Compiler

Construction, 2005.

[YCE11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understand-

ing bugs in c compilers. In ACM SIGPLAN Notices, volume 46, pp. 283–294.

ACM, 2011.

[YLC12] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Towards automated de-

bugging in software evolution: Evaluating delta debugging on real regression bugs

from the developers’ perspectives. Journal of Systems and Software, 85(10):2305–

2317, 2012.

121

[ZGB19] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. The fuzzing book. In The Fuzzing Book. Saarland University, 2019. Re-

trieved 2019-09-09 16:42:54+02:00.

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing

input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[ZHQ18] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, and Heng Yin. Measuring

and disrupting anti-adblockers using differential execution analysis. In Proceedings

of the Network & Distributed System Security Symposium (NDSS), 2018.

122

	Introduction
	Thesis Statement

	Seperating Bugs from Deliberate Unsoundness in Static Analyses
	Introduction
	The Challenge
	Examples
	The Concept of a Useful Classifier
	Our Solution: Easiness Analysis

	Our Classifier
	An Instance of the Challenge
	Experiments
	Static Analyses
	Setup and Dataset
	Quality of the Static Analysis
	Easiness Analysis

	Ground Truth
	Static and Dynamic Analysis
	Feature Detection
	Bug Detection
	Bug Reports
	Results

	Evaluation
	Related Work
	Summary

	Binary Reduction of Dependency Graphs
	Introduction
	The Challenge
	Reduction of Dependency Graphs
	Binary Reduction
	The Weighted Input Reduction Problem
	The Binary Reduction Algorithm

	Experimental Results
	Experimental Setup
	Results
	Threats to Validity
	Data Availability

	Reporting bugs
	Related Work
	Summary

	Logical Input Reduction
	Introduction
	Example
	Modeling Dependencies
	Featherweight Java with Interfaces
	Generating the Constraints in the Example
	Java Bytecode

	Logical Reduction
	Notation
	Formalizing the Problem
	The Generalized Binary Reduction
	Our Progression
	Running the Example

	Experimental Evaluation
	Experimental Setup
	Analysis

	Related Work
	Input Reduction
	Fuzz Testing
	Input Generation and Internal Reduction
	Debloating
	Type-Safe Code Transformations
	Search-Based Testing and Model Transformations

	Summary

	Conclusion

