
Lawrence Berkeley National Laboratory
LBL Publications

Title
PetaBricks

Permalink
https://escholarship.org/uc/item/0mm6n7qb

Journal
ACM SIGPLAN Notices, 44(6)

ISSN
0362-1340

Authors
Ansel, Jason
Chan, Cy
Wong, Yee Lok
et al.

Publication Date
2009-05-28

DOI
10.1145/1543135.1542481

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0mm6n7qb
https://escholarship.org/uc/item/0mm6n7qb#author
https://escholarship.org
http://www.cdlib.org/

PetaBricks: A Language and Compiler for Algorithmic Choice

Jason Ansel Cy Chan Yee Lok Wong Marek Olszewski Qin Zhao
Alan Edelman Saman Amarasinghe

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA, USA

{jansel, cychan, ylwong, mareko, qin zhao, edelman, saman}@csail.mit.edu

Abstract
It is often impossible to obtain a one-size-fits-all solution for high
performance algorithms when considering different choices for
data distributions, parallelism, transformations, and blocking. The
best solution to these choices is often tightly coupled to different
architectures, problem sizes, data, and available system resources.
In some cases, completely different algorithms may provide the
best performance. Current compiler and programming language
techniques are able to change some of these parameters, but today
there is no simple way for the programmer to express or the
compiler to choose different algorithms to handle different parts
of the data. Existing solutions normally can handle only coarse-
grained, library level selections or hand coded cutoffs between base
cases and recursive cases.

We present PetaBricks, a new implicitly parallel language
and compiler where having multiple implementations of multiple
algorithms to solve a problem is the natural way of programming.
We make algorithmic choice a first class construct of the language.
Choices are provided in a way that also allows our compiler to tune
at a finer granularity. The PetaBricks compiler autotunes programs
by making both fine-grained as well as algorithmic choices.
Choices also include different automatic parallelization techniques,
data distributions, algorithmic parameters, transformations, and
blocking.

Additionally, we introduce novel techniques to autotune algo-
rithms for different convergence criteria. When choosing between
various direct and iterative methods, the PetaBricks compiler is
able to tune a program in such a way that delivers near-optimal
efficiency for any desired level of accuracy. The compiler has the
flexibility of utilizing different convergence criteria for the various
components within a single algorithm, providing the user with
accuracy choice alongside algorithmic choice.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Concurrent, distributed, and
parallel languages; D.3.4 [Programming Languages]: Processors
– Compilers

General Terms Algorithms, Languages, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

1. Introduction
While traditional compiler optimizations can be successful at
optimizing a single algorithm, when an algorithmic change is
required to boost performance, the burden is put on the programmer
to incorporate the new algorithm. If a composition of multiple
algorithms is needed for the best performance, the programmer
must write both algorithms, the glue code to connect them together,
and figure out the best switch over points. Today’s compilers
are unable to change the nature of this composition because it
is constructed with traditional control logic such as loops and
switches. In this work, we propose new language constructs that
allow the programmer to specify a menu of algorithmic choices
and new compiler techniques to exploit these choices to generate
high performance yet portable code.

Hand-coded algorithmic compositions are commonplace. A
typical example of such a composition can be found in the C++
Standard Template Library (STL)1 routine std::sort, which uses
merge sort until the list is smaller than 15 elements and then
switches to insertion sort. Our tests have shown that higher cutoffs
(around 60-150) perform much better on current architectures.
However, because the optimal cutoff is dependent on architecture,
cost of the comparison routine, element size, and parallelism, no
single hard-coded value will suffice.

This problem has been addressed for certain specific algorithms
by autotuning software, such as ATLAS (Whaley and Dongarra
1998) and FFTW (Frigo and Johnson 1998, 2005), which
have training phases where optimal algorithms and cutoffs are
automatically selected. Unfortunately, systems like this only work
on the few algorithms provided by the library designer. In these
systems, algorithmic choice is made by the application without the
help of the compiler.

In this work, we present PetaBricks, a new implicitly parallel
programming language for high performance computing. Programs
written in PetaBricks can naturally describe multiple algorithms
for solving a problem and how they can be fit together. This
information is used by the PetaBricks compiler and runtime
to create and autotune an optimized hybrid algorithm. The
PetaBricks system also optimizes and autotunes parameters relating
to data distribution, parallelization, iteration, and accuracy. The
knowledge of algorithmic choice allows the PetaBricks compiler
to automatically parallelize programs using the algorithms with the
most parallelism.

We have also developed a benchmark suite of PetaBricks
programs. These benchmarks demonstrate the importance of
making algorithmic choices available to the compiler. In all cases,
hybrid algorithms, consisting of a non-trivial composition of user-

1 From the version of the libstdc++ included with GCC 4.3.

provided algorithms, perform significantly better than any one
algorithm alone.

In one of our benchmark programs, a multigrid solver for the
Poisson equation, we demonstrate how to incorporate algorithms
with variable convergence criteria in the autotuning process. This
capability is vital when composing direct (exact) and iterative
(approximate) methods in a recursive structure in such a way that
guarantees a specified target accuracy for the output while ensuring
near-optimal efficiency.

1.1 Motivating Example
As a motivation example, consider the problem of sorting. There
are a huge number of ways to sort a list. For example: insertion sort,
quick sort, merge sort, bubble sort, heap sort, radix sort, and bucket
sort. Most of these sorting algorithms are recursive, thus, one can
switch between algorithms at any recursive level. This leads to
an exponential number of possible algorithmic compositions that
make use of more than one primitive sorting algorithm.

Since sorting is a well known problem, most readers will have
some intuition about the optimal algorithm: for very small inputs,
insertion sort is faster; for medium sized inputs, quick sort is faster
(in the average case); and for very large inputs radix sort becomes
fastest. Thus, the optimal algorithm might be a composition of the
three, using quick sort and radix sort to recursively decompose the
problem until the subproblem is small enough for insertion sort to
take over. Once parallelism is introduced, the optimal algorithm
might get more complicated. It often makes sense to use merge
sort at large sizes because it contains more parallelism than quick
sort (the merging performed at each recursive level can also be
parallelized).

Even with this detailed intuition (which one may not have
for other algorithms), the problem of writing an optimized
sorting algorithm is nontrivial. Using popular languages today,
the programmer would still need to find the right cutoffs between
algorithms. This has to be done through manually tuning or using
existing autotuning techniques that would require additional code
to integrate. If the programmer puts too much control flow in the
inner loop for choosing between a wide set of choices, the cost of
control flow may become prohibitive. The original simple code for
sorting will be completely obscured by this glue, thus making the
code hard to comprehend, extend, debug, port and maintain.

PetaBricks solves this problem by automating both algorithm
selection and autotuning in the compiler. The programmer specifies
the different sorting algorithms in PetaBricks and how they fit
together, but does not specify when each one should be used.
The compiler and autotuner will experimentally determine the best
composition of algorithms to use and the respective cutoffs between
algorithms. This has added benefits in portability. On a different
architecture, the optimal cutoffs and algorithms may change. The
PetaBricks program can adapt to this by merely retuning.

1.2 Outline
Section 2 describes the PetaBricks language. Section 3 describes
the implementation of the compiler and autotuning system.
Section 4 describes our benchmark suite. Section 5 presents
experimental results. Section 6 covers related work. Finally,
Sections 7 and 8 describe future work and conclusions.

1.3 Contributions
We make the following contributions:

• We present the PetaBricks programming language, which,
to best of our knowledge, is the first language that enables
programmers to express algorithmic choice at the language
level.

• While autotuners have exploited coarse-grained algorithmic
choice at a programmatic level, to best of our knowledge this
is the first compiler that incorporates fine-grained algorithmic
choices in program optimization.
• We show how our compiler utilizes fine-grained algorithmic

choice to get significant speedup over conventional algorithms.
• We show that PetaBricks programs adapt algorithmically to

different architectures to create truly portable programs. We
demonstrate that a PetaBricks program autotuned locally on
an 8-way x86 64 performs 2.35x faster when compared to a
configuration trained on a 8-way Sun Niagara 1 processor.
• We show that PetaBricks programs are scalable because they

can adapt to expose increasing parallelism as the number of
cores increases. We demonstrate that a configuration autotuned
on 8 cores performs 2.14x faster than a configuration tuned on
a single core, but executed on 8 cores.
• We present a suite of benchmarks to illustrate algorithmic

choice in important scientific kernels, which appear in applica-
tions such as computational fluid dynamics, electrodynamics,
heat diffusion, and quantum physics.
• We present a compiler that can autotune programs with complex

trade-offs such that we ensure the best performance for all
required levels of accuracy.

2. PetaBricks Language
In designing the language we had the following major goals:

• Expose algorithmic choices to the compiler
• Allow choices to specify different granularities and corner cases
• Expose all valid execution orders, to allow parallel execution
• Automate consistency checks between different choices
• Provide flexible data structures, including n-dimensional ar-

rays, trees, and sparse representations

The language is built around two major constructs, transforms
and rules. The transform, analogous to a function, defines an
algorithm that can be called from other transforms, code written in
other languages, or invoked from the command line. The header
for a transform defines to, from, and through arguments, which
represent inputs, outputs, and intermediate data used within the
transform. The size in each dimension of these arguments is
expressed symbolically in terms of free variables, the values of
which must be determined by the PetaBricks runtime.

The user encodes choice by defining multiple rules in each
transform. Each rule defines how to compute a region of data
in order to make progress towards a final goal state. Rules have
explicit dependencies parametrized by free variables set by the
compiler. Rules can have different granularities and intermediate
state. The compiler is required to find a sequence of rule
applications that will compute all outputs of the program. The
explicit rule dependencies allow automatic parallelization and
automatic detection and handling of corner cases by the compiler.
The rule header references to and from regions which are the inputs
and outputs for the rule. The compiler may apply rules repeatedly,
with different bindings to free variables, in order to compute larger
data regions. Additionally, the header of a rule can specify a where
clause to limit where a rule can be applied. The body of a rule
consists of C++-like code to perform the actual work.

PetaBricks does not contain an outer sequential control flow.
The user specifies which transform to apply, but not how to apply
it. The decision of when and which rules to apply is left up
the compiler and runtime system to determine. This has the dual

1 transform M a t r i x M u l t i p l y
2 from A[c , h] , B[w, c]
3 to AB[w, h]
4 {
5 / / Base case , compute a s i n g l e e l e m e n t
6 to (AB. c e l l (x , y) o u t)
7 from (A. row (y) a , B . column (x) b) {
8 o u t = d o t (a , b) ;
9 }

10
11 / / R e c u r s i v e l y decompose i n c
12 to (AB ab)
13 from (A. re g i on (0 , 0 , c / 2 , h) a1 ,
14 A. re g i on (c / 2 , 0 , c , h) a2 ,
15 B . re g i on (0 , 0 , w, c / 2) b1 ,
16 B . re g i on (0 , c / 2 , w, c) b2) {
17 ab = MatrixAdd (M a t r i x M u l t i p l y (a1 , b1) ,
18 M a t r i x M u l t i p l y (a2 , b2)) ;
19 }
20
21 / / R e c u r s i v e l y decompose i n w
22 to (AB. re g i on (0 , 0 , w/ 2 , h) ab1 ,
23 AB. re g i on (w/ 2 , 0 , w, h) ab2)
24 from (A a ,
25 B . re g i on (0 , 0 , w/ 2 , c) b1 ,
26 B . re g i on (w/ 2 , 0 , w, c) b2) {
27 ab1 = M a t r i x M u l t i p l y (a , b1) ;
28 ab2 = M a t r i x M u l t i p l y (a , b2) ;
29 }
30
31 / / R e c u r s i v e l y decompose i n h
32 to (AB. re g i on (0 , 0 , w, h / 2) ab1 ,
33 AB. re g i on (0 , h / 2 , w, h) ab2)
34 from (A. re g i on (0 , 0 , c , h / 2) a1 ,
35 A. re g i on (0 , h / 2 , c , h) a2 ,
36 B b) {
37 ab1= M a t r i x M u l t i p l y (a1 , b) ;
38 ab2= M a t r i x M u l t i p l y (a2 , b) ;
39 }
40 }

Figure 1. PetaBricks source code for MatrixMultiply

advantages of both exposing algorithmic choices to the compiler
and enabling automatic parallelization. It also gives the compiler a
large degree of freedom to autotune iteration order and storage.

Figure 1 shows an example PetaBricks transform, that performs
a matrix multiplication. The transform header is on lines 1 to 3.
The first rule (line 6 to 9) is the straightforward way of computing
a single matrix element. With the first rule alone the transform
would be correct, the remaining rules add choices. Rules two,
three, and four (line 12 to 39) represent three ways of recursively
decomposing matrix multiply into smaller matrix multiplies. The
compiler must pick when to apply these recursive decompositions.
The last two rules are actually not needed because they are
automatically inferred by the compiler as it explores blocking
strategies for iteration. The autotuner discovers that the last two
rules provide no advantage over the compiler’s intrinsic strategies
and correctly chooses not to use them.

In addition to choices between different algorithms, many al-
gorithms have configurable parameters that change their behavior.
A common example of this is the branching factor in recursively
algorithms such as merge sort or radix sort. To support this

PetaBricks has a tunable keyword that allows the user to export
custom parameters to the autotuner. PetaBricks analyzes where
these tunable values are used, and autotunes them at an appropriate
time in the learning process.

PetaBricks contains the following additional language features
that will not be discussed here in detail:

• %{ ... }% escapes used to embed raw C++ in the output file.
This is primarily used for calling external libraries. External
libraries must be thread safe.
• A generator keyword for specifing a transform to be used to

supply input data during training.
• Matrix versions, with a A<0..n> syntax, useful when defining

iterative algorithms. This construct is syntactic sugar for adding
an extra dimension to the matrix, which may then be collapsed
by analysis.
• Rule priorities and where clauses are used to handle corner

cases gracefully.
• Template transforms, similar to templates in C++, where each

template instance is autotuned separately.

3. Implementation
The PetaBricks implementation consists of three components:

• a source-to-source compiler from the PetaBricks language to
C++;
• an autotuning system and choice framework to find optimal

choices and set parameters; and
• a runtime library used by the generated code.

The relationship between these components is depicted in
Figure 2. First, the source-to-source compiler executes and
performs static analysis. The compiler encodes choices and tunable
parameters in the output code so that autotuning can be performed.
When autotuning is performed (either at compile time or at
installation time), it outputs an application configuration file that
controls when different choices are made. This configuration file
can be tweaked by hand to force specific choices. Optionally,
this configuration file can be fed back into the compiler and
applied statically to eliminate unused choices and allow additional
optimizations.

3.1 PetaBricks Compiler
To help illustrate the compilation process we will use the example
transform RollingSum, shown in Figure 3. RollingSum computes
an incremental (sometimes known as a cumulative) sum of an input
list. It includes two rules: rule 0 computes an output directly, by
iterating all input elements to the left; and rule 1 computes a value
using a previously computed value to the left. An algorithm using
only rule 0 is slower (Θ(n2) operations), but can be executed in a
data parallel way. An algorithm using only rule 1 is faster (Θ(n)
operations), but has no parallelism and must be run sequentially.

Compilation consists of the following main phases. The
intermediate representation is built up as the phases proceed. It
starts as an abstract syntax tree and ends as a dependency graph.
All compilation is done on symbolic regions of an unknown size
and is general to any number of dimensions. The compilation steps
are as follows:

Parsing and normalization. First, the input language is parsed
into an abstract syntax tree. Rule dependencies are normalized by
converting all dependencies into region syntax, assigning each rule
a symbolic center, and rewriting all dependencies to be relative
to this center. (This is done using the Maxima symbolic algebra

PetaBricks Compiler

3 4a

Autotuning Binary Static Binary

AutotunerParallel
Runtime

Compiled User Code

Choice
Dependency
Graph

Choice Configuration File

PetaBricks Source Code

1

2 4b

Parallel Runtime

Compiled User Code
w/ static choices

Dependency Graph

Figure 2. Interactions between the compiler and output binaries.
First, in Steps 1 and 2, the compiler reads the source code and
generates an autotuning binary. Next, in Step 3, autotuning is
run to generate a choice configuration file. Finally, either the
autotuning binary is used with the configuration file (Step 4a), or
the configuration file is fed back into a new run of the compiler to
generate a statically chosen binary (Step 4b).

1 transform Roll ingSum
2 from A[n]
3 to B[n]
4 {
5 / / r u l e 0 : sum a l l e l e m e n t s t o t h e l e f t
6 to (B . c e l l (i) b) from (A. re g i on (0 , i) i n) {
7 b=sum (i n) ;
8 }
9

10 / / r u l e 1 : use t h e p r e v i o u s l y computed v a l u e
11 to (B . c e l l (i) b) from (A. c e l l (i) a ,
12 B . c e l l (i −1) l e f t S u m) {
13 b=a+ l e f t S u m ;
14 }
15 }

Figure 3. PetaBricks source code for RollingSum. A simple
example used to demonstrate the compilation process. The output
element Bx is the sum of the input elements A0..Ax.

library (Rand 1984).) In our RollingSum example, the center of
both rules is equal to i, and the dependency normalization does not
do anything other than replace variable names. For other inputs, this
transformation would simplify the dependencies. For example, if 1
were added to every coordinate containing i in the input to rule 0
(leaving the meaning of the rule unchanged), the compiler would
then assign the center to be i + 1 and the dependencies would be
been automatically rewritten to remove the added 1.

Applicable regions. Next, the region where each rule can legally
be applied, called an applicable, is calculated. These are first
calculated for each dependency and then propagated upwards with
intersections (this is again done by the linear equations solver and

inference system). In rule 0 of our RollingSum example, both b
and in (and thus the entire rule) have an applicable region of [0, n).
In rule 1 a and b have applicable regions of [0, n) and leftSum
has an applicable region of [1, n) because it would read off the
array for i = 0. These applicable regions are intersected to get an
applicable region for rule 1 of [1, n). Applicable regions can also
be constrained with user defined where clauses, which are handled
similarly.

Choice grid analysis. Next, we construct a choice grid for each
matrix type. The choice grid divides each matrix into rectilinear
regions where a uniform set of rules are applicable. It does this
using an inference system to sort the applicable regions and divide
them into smaller, simplified regions. In our RollingSum example,
the choice grid for B is:

[0, 1) = {rule 0}
[1, n) = {rule 0, rule 1}

and A is not assigned a choice grid because it is an input. For anal-
ysis and scheduling these two regions are treated independently.

It is in the choice grid phase that rule priorities are applied. In
each region, all rules of non-minimal priority are removed. This
feature is not used in our example code, but if the user had only
provided rule 1, he could have added special handler for [0, 1) by
specifying a secondary rule. This mechanism becomes especially
useful in higher dimensions where there are more corner cases.

Non-rectilinear regions can also be created using where clauses
on rules. In applicable regions and choice grids the bounding box
for these regions is computed and used. An analysis pass of the
choice grid handles these regions. For each rectilinear region in the
choice grid, if some rules are restricted by where clauses, these
restricted rules are replaced by meta-rules that are unrestricted.
These meta-rules are constructed by finding sets of rules that cover
the entire region, and packaging them up into a single meta-rule.
Multiple meta-rules are added to encode any choice.

B.region(1, n)
 Choices: r0, r1

(r1,=,-1)

B.region(0, 1)
 Choices: r0

(r1,=,-1)A.region(0, n)
(r0,<=),(r1,=)

(r0,<=),(r1,=)

Figure 4. Choice dependency graph for RollingSum (in Figure 3).
Arrows point the opposite direction of dependency (the direction
data flows). Edges are annotated with rules and directions, offsets
of 0 are not shown.

Choice dependency graph analysis. A data dependency graph is
constructed using the simplified regions from the choice grid. The
data dependency graph consists of edges between these symbolic
regions. Each edge is annotated with the set of choices that
require that edge, a direction of the data dependency, and an offset
between rule centers for that dependency. The direction and offset
information are especially useful for parallel scheduling; in many
cases, they eliminate the need for a barrier before beginning the
computation of a dependant matrix.

Figure 4 shows the choice dependency graph for our example
RollingSum. The three nodes correspond to the input matrix and
the two regions in the choice grid. Each edge is annotated with
the rules that require it along with the associated directions and
offsets. These annotations allow matrices to be computed in parallel
when the rules chosen allow. This high level coarse graph is passed
to the dynamic scheduler to execute in parallel at runtime. The
dependency edges tell the scheduler when it can split regions to
compute them in parallel. The cost of the dynamic scheduler is

negligible because scheduling is done from the top down on large
regions of the matrix.

The graph for RollingSum does not require simplification,
however if the graph were more complicated analysis would be
required to simplify it. This simplification process is primarily
focused around removing cycles. The input graph can contain
cycles (provided union of the directions along the cycle points in
towards a single hyper-quadrant), but the output schedule must be
a topologically sorted directed acyclic graph. Cycles are eliminated
by merging strongly connected components, into meta-nodes. The
scheduler then finds an axis and direction for iterating this larger
node where the cycle is gone, it then recursively schedules the
components making up this larger node using the remaining edges.

The choice dependency graph is encoded in the output program
for use by the autotuner and parallel runtime. It contains all
information needed to explore choices and execute the program
in parallel. These processes are explained in further detail in
Sections 3.3 and 3.4.

Code generation. Code generation has two modes. In the default
mode choices and information for autotuning are embedded in
the output code. This binary can be dynamically tuned, which
generates a configuration file, and later run using this configuration
file. In the second mode for code generation, a previously tuned
configuration file is applied statically during code generation. The
second mode is included since the C++ compiler can make the final
code incrementally more efficient when the choices are eliminated.

3.2 Parallelism in Output Code
The PetaBricks runtime includes a parallel work stealing dynamic
scheduler. The scheduler works on tasks with a known interface.
The generated output code will recursively create these tasks and
feed them to the dynamic scheduler to be executed. Dependency
edges between tasks are detected at compile time and encoded in
the tasks as they are created. A task may not be executed until all the
tasks that it depends on have completed. These dependency edges
expose all available parallelism to the dynamic scheduler and allow
it to change its behavior based on autotuned parameters.

To expose parallelism and to help the dynamic scheduler
schedule tasks in a depth-first search manner (see Section 3.4), the
generated code is constructed such that functions suspended due to
a call to a spawned task, can be migrated and executed on a different
processor. This is difficult to achieve as the function’s stack frame
and registers need to be migrated. We support this by generating
continuation points, points at which a partially executed function
may be converted back into a task so that it can be rescheduled to
a different processor. The continuation points are inserted after any
code that spawns a task. This is implemented by storing all needed
state to the heap.

The code generated for dynamic scheduling incurs some
overhead, despite being heavily optimized. In order to amortize this
overhead, the output code that makes use of dynamic scheduling
is not used at the leaves of the execution tree where most work
is done. The PetaBricks compiler generates two versions of every
output function. The first version is the dynamically scheduled task-
based code described above, while the second version is entirely
sequential and does not use the dynamic scheduler. Each output
transform includes a tunable parameter (set during autotuning)
to decide when to switch from the dynamically scheduled to the
sequential version of the code.

3.3 Autotuning System and Choice Framework
Autotuning is performed on the target system so that optimal
choices and cutoffs can be found for that architecture. We have
found that the best solution varies both by architecture and
number of processors, these results are discussed in Section 5. The

autotuning library is embedded in the output program whenever
choices are not statically compiled in. Autotuning outputs an
application configuration file containing choices. This file can
either be used to run the application, or it can be used by the
compiler to build a binary with hard-coded choices.

The autotuner uses the choice dependency graph encoded in
the compiled application. This choice dependency graph is also
used by the parallel scheduler discussed in Section 3.4. This
choice dependency graph contains the choices for computing each
region and also encodes the implications of different choices on
dependencies.

The intuition of the autotuning algorithm is that we take a
bottom-up approach to tuning. To simplify autotuning, we assume
that the optimal solution to smaller sub-problems is independent of
the larger problem. In this way we build algorithms incrementally,
starting on small inputs and working up to larger inputs.

The autotuner builds a multi-level algorithm. Each level consists
of a range of input sizes and a corresponding algorithm and set
of parameters. Rules that recursively invoke themselves result
in algorithmic compositions. In the spirit of a genetic tuner, a
population of candidate algorithms is maintained. This population
is seeded with all single-algorithm implementations. The autotuner
starts with a small training input and on each iteration doubles the
size of the input. At each step, each algorithm in the population
is tested. New algorithm candidates are generated by adding
levels to the fastest members of the population. Finally, slower
candidates in the population are dropped until the population is
below a maximum size threshold. Since the best algorithms from
the previous input size are used to generate candidates for the next
input size, optimal algorithms are iteratively built from the bottom
up.

In addition to tuning algorithm selection, PetaBricks uses an
n-ary search tuning algorithm to optimize additional parameters
such as parallel-sequential cutoff points for individual algorithms,
iteration orders, block sizes (for data data parallel rules), data
layout, as well as user specified tunable parameters.

All choices are represented in a flat configuration space.
Dependencies between these configurable parameters are exported
to the autotuner so that the autotuner can choose a sensible order to
tune different parameters. The autotuner starts by tuning the leaves
of the graph and works its way up. In the case of cycles, it tunes
all parameters in the cycle in parallel, with progressively larger
input sizes. Finally, it repeats the entire training process, using the
previous iteration as a starting point, a small number of times to
better optimize the result.

3.4 Runtime Library
The runtime library is primarily responsible for managing paral-
lelism, data, and configuration. It includes a runtime scheduler as
well as code responsible for reading, writing, and managing inputs,
outputs, and configurations.

The runtime scheduler dynamically schedules tasks (that have
their input dependencies satisfied) across processors to distribute
work. When tasks reach a certain tunable cutoff size, they
stop calling the scheduler and continue executing sequentially.
Conversely, large data parallel tasks are divided up into smaller
tasks, to increase the amount of parallelism available to the
scheduler.

The scheduler attempts to maximize locality using a greedy
algorithm that schedules tasks in a depth-first search order.
Following the approach taken by Cilk (Frigo et al. 1998), we
distribute work with thread-private deques and a task stealing
protocol. A thread operates on the top of its deque as if it were
a stack, pushing tasks as their inputs become ready and popping
them when a thread needs more work. When a thread runs out of

work, it randomly selects a victim and steals a task from the bottom
of the victim’s deque. This strategy allows a thread to steal another
thread’s most nested continuation, which preserves locality in the
recursive algorithms we observed. We use Cilk’s THE protocol to
allow the victim to pop items of work from its deque without
needing to acquire a lock in the common case.

3.5 Automated Consistency Checking
A side benefit of having multiple implementations of algorithms
for solving the same problem is that the compiler can check these
algorithms against each other to make sure they produce consistent
results. This helps the user to automatically detect bugs and
increase confidence in code correctness. This automated checking
makes it advisable to include a slow reference implementation as a
choice so that faster choices can be checked against it.

This consistency checking happens during autotuning when a
special flag is set. The autotuner, by design, is already exploring
the space of possible algorithms to find one that performs the best.
The consistency checking merely uses a fixed input during each
autotuning round and ensures that the same output is produced
by every candidate algorithm. While not provably correct, this
technique provides good testing coverage. Notably, this technique
also focuses more testing on the candidate algorithms that are
actually used as the autotuner hones in on an optimal choice. Some
of our benchmarks use iterative approaches that do not produce
exact answers. To support such code, our automated checker takes
a threshold argument where differences below that threshold are
ignored.

3.6 Deadlocks and Race Conditions
Another typical problem in hand written parallel code is deadlocks.
Deadlocks cannot occur in PetaBricks because the program’s
dependency graph is fully analyzed at compile time. Potential
deadlocks manifest themselves as a cycle in the graph, and the
PetaBricks compiler detects this cycle and reports an error to
user. This deadlock freedom guarantee, when using only the core
PetaBricks language, is a great advantage. When external code,
written in other languages, is called from PetaBricks, it is the
programmers responsibility to ensure that the program executes
without deadlocks.

Similar to deadlocks, race conditions cannot exist in PetaBricks,
except when caused by externally called code written in other
languages. Since PetaBricks is implicitly parallel, the programmer
cannot manually specify that two operations should run in parallel.
Instead, analysis is performed by the compiler and tasks that
do not depend on each other are automatically parallelized. If a
race condition were to exist, then the compiler would see that
dependency edge and not run the two tasks in parallel.

4. Benchmarks
In this section, we describe a set of benchmarks we implemented
to illustrate the capabilities of the PetaBricks compiler. The
benchmarks were chosen to be relevant, widely applicable scientific
and computing kernels: solving Poisson’s equation, the symmetric
tridiagonal eigenvalue problem, sorting, and dense matrix multiply.

4.1 Poisson’s Equation
Poisson’s equation is a partial differential equation that describes
many processes in physics, electrostatics, fluid dynamics, and
various other engineering disciplines. The continuous and discrete
versions are

52φ = f and Tx = b, (1)
where T , x, and b are the finite difference discretizations of the
Laplace operator, φ, and f , respectively.

(a) Dependencies for the red cells (b) Dependencies for the black cells

Figure 5. Checkerboard dependency pattern for Red-Black SOR.
Black cells are shown in white for clarity.

To solve Poisson’s equation on a 2D grid, we explore the use
of four methods: one direct (band Cholesky factorization through
LAPACK’s DPBSV routine) and three iterative (Jacobi Iteration,
Red-Black Successive Over Relaxation (SOR), and Multigrid).
From top to bottom, each of the iterative methods has a larger
overhead, but yields a better asymptotic serial complexity (Demmel
1997). The table below lists the complexity of each algorithm, n is
the number of cells in the grid.

Algorithm Direct Jacobi SOR Multigrid

Complexity n2 n2 n1.5 n

4.1.1 Dependencies for SOR
There are different implementations of data dependencies for
SOR, and we implement Red-Black ordering. Figure 5 shows the
classification of cells into red and black (shown in white for clarity)
depending on whether they are updated using neighboring values
from the previous or current iteration. Each cell depends on its
neighbors, as indicated by the arrows in the figure.

During the first half of an iteration, the red cells are updated
using the black cells’ values from the previous iteration. During
the second half of the iteration, the black cells are updated using
the red cells’ values from the current iteration.

PetaBricks supports this complex dependency pattern by
splitting the matrix into two temporary matrices each half the size
of the input. One temporary matrix contains only red cells, the other
only black cells. Each iteration of SOR then involves updating each
matrix in turn. Arranging the data in such a manner leads to better
cache behavior since memory is accessed in a dense fashion.

4.1.2 Multigrid
Multigrid is a recursive and iterative algorithm that uses the
solution to a coarser grid resolution (by a factor of two) as part
of the algorithm. For simplicity, we assume all inputs are of size
N = 2k + 1 for some positive integer k. Let x be the initial state
of the grid, and b be the right hand side of Equation (1).

The full multigrid algorithm requires the use of a sequence
of k V-cycles of increasing refinement run in succession. In this
section, we will focus on tuning a single V-cycle; the methods
employed can be extended to tune a full multigrid algorithm. The
pseudo code for this is shown in Figure 7. At the recursive call on
line 6, the PetaBricks compiler can make a choice of whether to
continue making recursive calls to multigrid (shown as the solid
diagonal arrows) or take a shortcut by using the direct solver or
one of the iterative solvers at the current resolution (shown as the
dotted horizontal arrows). Figure 6 shows these possible paths of
the multigrid algorithm.

G
ri

d
 C

o
a
rs

e
n

e
ss

Iterate & coarsen grid

Refine grid & Iterate

Direct or iterative method

Figure 6. Choices in the multigrid algorithm. The diagonal arrows
represent the recursive case, while the dotted horizontal arrows
represent the shortcut case where a direct or iterative solution
may be substituted. Depending on the desired level of accuracy a
different choice may be optimal at each decision point

MULTIGRID-SIMPLE(x, b)
1: if N = 3 then
2: Solve directly
3: else
4: Iterate using some iterative method
5: Compute the residual and restrict to half resolution
6: Recursively call MULTIGRID-SIMPLE on coarser grid
7: Interpolate result and add correction term to current solution
8: Iterate using some iterative method
9: end if

Figure 7. Pseudo code for MULTIGRID-SIMPLE.

The idea of choice can be implemented by defining a top level
function POISSON, which makes calls to either the direct, iterative,
or recursive solution, and having MULTIGRID call POISSON. The
pseudo code for this is shown in Figure 8.

POISSON(x, b)
1: either
2: Solve directly
3: Use an iterative method
4: Call MULTIGRID for some number of iterations
5: end either
MULTIGRID(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Iterate using some iterative method
5: Compute the residual and restrict to half resolution
6: On the coarser grid, call POISSON
7: Interpolate result and add correction term to current solution
8: Iterate using some iterative method
9: end if

Figure 8. General pseudo code for choices in POISSON and
MULTIGRID.

Making the choice in line 1 of POISSON has two implications.
First, the time to complete the algorithm is choice dependent.
Second, the accuracy of the result is also dependent on choice
since the various methods have different abilities to reduce error
(depending on parameters such as number of iterations or weights).
To make a fair comparison between the choices, we must take the
accuracy of each choice into account.

In the other algorithms we have examined thus far, the compiler
determines which choices to make based solely on some parameters
of the input (such as the input size). In autotuning our Poisson
solver, we also use the desired accuracy level to make that

Accuracy

T
im

e

(a)
...

Accuracy
1 2 3

M
u

lt
ig

ri
d

 L
ev

el

(b)

Figure 9. (a) Possible algorithmic choices with optimal set
designated by squares (both hollow and solid). The choices
designated by solid squares are the ones remembered by the
PetaBricks compiler, being the fastest algorithms better than each
accuracy cutoff line. (b) Choices across different accuracies in
multigrid. At each level, the autotuner picks the best algorithm one
level down to make a recursive call. The path highlighted in red is
an example of a possible path for accuracy level p2

determination. To that end, the autotuner keeps track of not just
a single optimal algorithm at every recursion level, but a set of
such optimal algorithms for varying levels of desired accuracy. In
the following sections, we assume we have access to representative
training data so that the accuracy of our algorithms during tuning
closely reflects their accuracy during use.

4.1.3 Full Dynamic Programming Solution
We will first describe a full dynamic programming solution to
handling variable accuracy, then restrict it to a discrete set of
accuracies. We define an algorithm’s accuracy to be the ratio
between the RMS error of its input versus the RMS error of the
output compared to optimal. Thus, a higher accuracy algorithm is
better.

Let level k refer to an input size of N = 2k + 1. Suppose
that for level k − 1, we have solved for some set Ak−1 of optimal
algorithms, where optimality is defined such that no optimal
algorithm is dominated by any other algorithm in both accuracy
and compute time.

In order to construct the optimal set Ak, we try substituting all
algorithms in Ak−1 for step 6 of MULTIGRID. We also try varying
the parameters in the other steps of the algorithm (e.g. the choice
of iterative method and the number of iterations in steps 3 and 4 of
POISSON and steps 4 and 8 of MULTIGRID).

Trying all of these possibilities will yield many algorithms
that can be plotted as in Figure 9(a) according to their accuracy
and compute time. The optimal algorithms we add to Ak are the
dominant ones designated by square markers.

The reason to remember algorithms of multiple accuracies for
use in step 6 of MULTIGRID is that it may be better to use a less
accurate, fast algorithm and then iterate multiple times, rather than
use a more accurate, slow algorithm. Note that even if we use a
direct solver in step 6, the interpolation in step 7 will invariably
introduce error at the higher resolution.

4.1.4 The PetaBricks Solution
The PetaBricks compiler offers an approximate version of the
above solution. Instead of remembering the full optimal set Ak,
the compiler remembers the fastest algorithm yielding an accuracy
of at least pi for each pi in some set {p1, p2, . . . , pm}. The

vertical lines in Figure 9(a) indicate the discrete accuracy levels
pi, and the optimal algorithms (designated by solid squares) are
the ones remembered by PetaBricks. Each highlighted algorithm is
associated with a function POISSONi, which achieves accuracy pi

on all input sizes.
To further narrow the search space, we only use SOR as the

iteration function since it performs much better than Jacobi for
similar computation cost per iteration. In POISSONi, we fix the
weight parameter of SOR to ωopt, the optimal value for the 2D
discrete Poisson’s equation with fixed boundaries (Demmel 1997).
In MULTIGRIDi, we fix SOR’s weight parameter to 1.15 (chosen by
experimentation to be a good parameter when used in multigrid).
We also fix the number of iterations of SOR in steps 4 and 8 in
MULTIGRIDi to one. The resulting accuracy-aware Poisson solver
is a family of functions, where i is the accuracy parameter. This
family of functions is described in the pseudo code in Figure 10

POISSONi(x, b)
1: either
2: Solve directly
3: Iterate using SORωopt until accuracy pi is achieved
4: For some j, iterate with MULTIGRIDj until accuracy pi is

achieved
5: end either
MULTIGRIDi(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Compute one iteration of SOR1.15

5: Compute the residual and restrict to half resolution
6: On the coarser grid, call POISSONi

7: Interpolate result and add correction term to current solution
8: Compute one iteration of SOR1.15

9: end if

Figure 10. Pseudo code for family of functions POISSONi and
MULTIGRIDi where i is the required accuracy, as used in the
benchmark.

The autotuning process must now determine what choices to
make in POISSONi for each i and for each size input. Since the
optimal choice for any single accuracy for an input of size 2k + 1
depends on the optimal algorithms for all accuracies for inputs of
size 2k−1 + 1, the PetaBricks autotuner tunes all accuracies at a
given level before moving to a higher level.

4.1.5 Performance
The final set of multigrid algorithms produced by the autotuner can
be visualized as in Figure 9(b). Each of the versions can call any of
the other versions during its recursive calls to the lower level, and
the optimal path may switch many times between accuracies as we
recurse down towards either the base case or a shortcut case.

Figure 11 shows the performance of our autotuned multigrid
algorithm for accuracy 109. The autotuned algorithm uses accuracy
levels of {10, 103, 105, 107, 109} during its recursive calls. The
figure compares the autotuned algorithm with the direct solver and
iterated calls to Jacobi, SOR, and MULTIGRID-SIMPLE (labeled
Multigrid). Each of the iterative methods is run until an accuracy
of at least 109 is achieved.

The autotuned algorithm shown calls the direct algorithm for
small cases up to size N = 129, at which point it starts making
recursive calls to MULTIGRID. The number of iterations computed
at each level of recursion is determined by the autotuner to be
optimal given the desired level of accuracy.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

Ti
m

e
(s

)

Input Size

Direct
Jacobi

SOR
Multigrid

Autotuned

Figure 11. Performance for algorithms to solve Poisson’s equation
up to an accuracy of 109 using 8 cores. The iterated SOR algorithm
uses the corresponding optimal weight ωopt for each of the
different input sizes

4.2 Symmetric Eigenproblem
The symmetric eigenproblem is another problem with broad
applications in areas such as mechanics, quantum physics and
structural engineering. Given a symmetric n × n matrix, we want
to find its eigenvalues and/or eigenvectors. Deciding on which
algorithms to use depends on how many eigenvalues to find and
whether eigenvectors are needed. Here we study the problem in
which all the eigenvalues and eigenvectors are computed.

4.2.1 Algorithms and Choices
To find all the eigenvalues and eigenvectors of a symmetric
matrix, we examine the use of three primary algorithms, QR
iteration, Bisection and inverse iteration, and Divide-and-conquer.
The input matrix A is first reduced to A = QTQT , where Q
is orthogonal and T is symmetric tridiagonal. All the eigenvalues
and eigenvectors of T are then computed by the algorithm chosen.
The eigenvalues of A and T are equal. The eigenvectors of A
are obtained by multiplying Q by the eigenvectors of T . The
total work needed is O(n3) for reduction of the input matrix and
transforming the eigenvectors, and the cost associated with each
algorithm (Demmel 1997).

The QR iteration applies the QR decomposition iteratively until
T converges to a diagonal matrix. It computes all the eigenvalues
and eigenvectors in O(n3) operations.

Bisection, followed by inverse iteration, finds k eigenvalues and
the corresponding eigenvectors in O(nk2) operations, resulting in
a complexity ofO(n3) for finding all eigenvalues and eigenvectors.
This algorithm is based on a simple formula to count the number
of eigenvalues less than a given value. Each eigenvalue and
eigenvector thus can be computed independently, making the
algorithm “embarrassingly parallel”.

The eigenproblem of tridiagonal T can also be solved by a
divide-and-conquer approach. The eigenvalues and eigenvectors
of T can be computed using the eigenvalues and eigenvectors of
two smaller tridiagonal matrices, and this can be done recursively.
Divide-and-conquer requires O(n3) work in the worst case.

The PetaBricks transforms for these three primary algorithms
are implemented using LAPACK routines, as is MATLAB polyal-
gorithm eig. Our optimized hybrid PetaBricks algorithm computes
the eigenvalues Λ and eigenvectors X by automating choices of
these three basic algorithms. The pseudo code for this is shown in

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

Ti
m

e
(s

)

Input Size

Bisection
DC
QR

Cutoff 25
Autotuned

Figure 12. Performance for Eigenproblem on 8 cores. “Cutoff 25”
corresponds to the hard-coded hybrid algorithm found in LAPACK.

EIG(T)
1: either
2: Use QR to find Λ and X
3: Use BISECTION to find Λ and X
4: Recursively call EIG on submatrices T1 and T2 to get Λ1,
X1, Λ2 and X2. Use results to compute Λ and X .

5: end either

Figure 13. Pseudo code for eigenvector solve.

Figure 13. There are three algorithmic choices, two non-recursive
and one recursive. The two non-recursive choices are QR iterations,
or bisection followed by inverse iteration. Alternatively, recursive
calls can be made. At the recursive call, the PetaBricks compiler
will decide the next choices, i.e. whether to continue making
recursive calls or switch to one of the non-recursive algorithms.
Thus the PetaBricks compiler chooses the optimal cutoff for the
base case if the recursive choice is made. After autotuning, the best
algorithm choice was found to be divide-and-conquer for matrices
larger than 48, and switching to QR iterations when the size of
matrix n ≤ 48.

4.2.2 Performance
We implemented and compared the performance of five algorithms
in PetaBricks: QR iterations, bisection and inverse iteration, divide-
and-conquer with base case n = 1, divide-and-conquer algorithm
with hard-coded cutoff at n = 25, and our autotuned hybrid
algorithm. In figure 12, these are labelled QR, Bisection, DC,
Cutoff 25 and Autotuned respectively. The input matrices tested
were random symmetric tridiagonal. Our autotuned algorithm
runs faster than any of the three primary algorithms alone (QR,
Bisection and DC). It is also faster than the divide-and-conquer
strategy which switches to QR iteration for n ≤ 25, which is the
underlying algorithm of the LAPACK routine dstevd (Anderson
et al. 1999).

4.3 Sort
For the problem of sorting, we implemented the following
algorithms in PetaBricks: insertion sort; quick sort; n-way merge
sort (when n equals 2, merge sort employs a recursive merge
routine that can also be parallelized), where the compiler can select
n; and a 16 bucket radix sort (a MSD variant that can recursively
call any sorting algorithm). The concepts behind the choices in sort
are discussed in Section 1.1. All of the algorithms are recursive

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

Ti
m

e
(s

)

Input Size

InsertionSort
QuickSort
MergeSort
RadixSort
Autotuned

Figure 14. Performance for sort on 8 cores.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Ti
m

e
(s

)

Input Size

Basic
Blocking

Transpose
Recursive

Strassen 256
Autotuned

Figure 15. Performance for Matrix Multiply on an 8 cores.
“Strassen 256” uses strassen algorithm to decompose until n=256
when it switches to basic matrix multiply.

except for insertion sort. . Each of these algorithms recursively calls
a generalized sort transform, which allows the compiler to switch
algorithms at any level.

Figure 14 shows the performance for sort on 8 cores. Our au-
totuner was able to achieve significant performance improvements
over any single algorithm. Surprisingly, the autotuned composite
algorithm did not utilize radix sort, despite it being the second
fastest algorithm. Instead, it built a hybrid algorithm using first
2-way merge sort, followed by quicksort, followed by a call to
insertion sort for smaller inputs. The sharp bend in performance for
merge sort occurs at 1024 where the binary tree of merges grows
from 10 to 11 levels. If the graph is extended to larger inputs, merge
sort’s performance forms a step ladder. When merge sort is used in
a autotuned hybrid algorithm this step ladder performance pattern
disappears.

4.4 Matrix Multiply
The full PetaBricks code for the basic version of matrix multiply
can be found in the introduction (Figure 1). In addition to that
example code we also implemented Strassen algorithm (fast matrix
multiply). This results in four recursive decompositions and one
base case, for a total of five algorithmic choices. The compiler also
considers non-algorithmic choices including: transposing each of

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Autotuned Matrix Multiply
Autotuned Sort

Autotuned Poisson
Autotuned Eigenvector Solve

Figure 16. Parallel scalability. Speedup as more worker threads
are added. Run on an 8-way (2 processor × 4 core) x86 64 Intel
Xeon System.

the inputs; various blocking strategies; and various parallelization
strategies. For matrix multiply, these non algorithmic choices make
a huge impact.

Figure 15 shows performance for various versions of matrix
multiply. Since the non-algorithmic optimizations (blocking and
transposing) made a large difference performance of those opti-
mizations are also shown. The series labeled “Recursive” is the
recursive decomposition in the “c” dimension shown in Figure 1.
The other two recursive decompositions are equivalent to blocking
and thus are not shown. The autotuned algorithm uses a mixture of
blocking, transpose, and the recursive decomposition.

5. Results
Figures 11, 12, 14, and 15 compare the performance of our
autotuned algorithms to implementation that only utilize a single
algorithmic choice. In all cases the autotuned algorithm has
significant speedup. These results were gathered on a 8-way (dual
socket, quad core) Intel Xeon E7340 system running at 2.4 GHz.
The system was running 64 bit CSAIL Debian 4.0 with Linux
kernel 2.6.18 and GCC 4.1.2.

5.1 Autotuning Parallel Performance and Scalability
A great advantage of PetaBricks is that it allows a single program
to be optimized for both sequential performance and parallel
performance. We have observed our autotuner make different
choices when training in parallel. As a general trend we noticed
much lower cutoffs to bases cases in sequential programs. In many
cases entirely different algorithms are chosen. Of particular note
is the fact that algorithms tuned on 8 cores scale much better than
algorithms tuned on 1 core.

As an example, when tuning sort on 1 core our autotuner picks
radix sort with a cutoff of 98 where it switches to 4-way merge sort
after which it finishes with insertion sort at a cutoff of 75. When
tuned using 8 cores the autotuner decides to use the 2-way-merge
sort (with a parallelizable recursive merge) function until the input
is smaller than 1420, after which it switches to quick sort. Finally,
at inputs smaller than 600, it switches to insertion sort. When both
algorithms are run using 8 cores, the algorithm tuned on 8 cores
performs 2.14x faster than the algorithms tuned on 1 core (as seen
in Table 1).

5.2 Effect of Architecture on Autotuning
Multicore architectures have drastically increased the processor
design space resulting in a large variety of processor designs
currently on the market. Such variance significantly hinders porting
efforts of performance critical code. In this section, we present
the results of PetaBricks autotuner when optimizing our sort
benchmark on three parallel architectures designed for a variety
of purposes: Intel Core 2 Due mobile processor, Intel Xeon E7340
server processor, and the Sun Fire T200 Niagara low power high
throughput server processor.

Table 1 illustrates the necessity of tuning your program for the
architecture that you plan to run on. When autotuning our sort
benchmark, we found that configurations trained on a different
setup than they are run on exhibit significant slowdowns. For
example, even though they have the same number of cores, the
autotuned configuration file from the Niagara machine results in
a 2.35x loss of performance when used on the Xeon processor. On
average we observed a slowdown of 1.68x across all of the systems
we tested.

Table 2 displays the optimal configurations for the sort
benchmark after running the same autotuning process on the three
architectures. It is interesting to note the dramatic differences
between the choice of algorithms, composition switching points,
and scalability. The Intel architectures (with larger computation to
communication ratios) appear to perform better when PetaBricks
produces code with less parallelism, suggesting that the cost of
communication often outweighs any benefits from running code
containing fine-grained parallelism. On the other hand, the Sun
Niagara processor performs best when executing code with lots of
parallelism as shown by the exclusive use of recursive algorithms.

6. Related Work
A number of empirical autotuning frameworks have been devel-
oped for building efficient, portable libraries in specific domains.
PHiPAC (Bilmes et al. 1997) is an autotuning system for dense
matrix multiply, generating portable C code and search scripts to
tune for specific systems. ATLAS (Whaley and Dongarra 1998;
Whaley and Petitet 2005) utilizes empirical autotuning to produce
a cache-contained matrix multiply, which is then used in larger
matrix computations in BLAS and LAPACK. FFTW (Frigo and
Johnson 1998, 2005) uses empirical autotuning to combine solvers
for FFTs. Other autotuning systems include SPARSITY (Im and
Yelick 2001) for sparse matrix computations, SPIRAL (Puschel
et al. 2005) for digital signal processing, UHFFT (Ali et al. 2007)
for FFT on multicore systems, OSKI (Vuduc et al. 2005) for
sparse matrix kernels, and autotuning frameworks for optimizing
sequential (Li et al. 2004, 2005) and parallel (Olszewski and Voss
2004) sorting algorithms.

In addition to these systems, various performance models
and tuning techniques (Williams et al. 2008; Vuduc et al. 2004;
Brewer 1995; Yotov et al. 2003; Lagoudakis and Littman 2000; Yu
et al. 2004) have been proposed to evaluate and guide automatic
performance tuning.

There are a number of systems that provide high-level
abstractions to ease the burden of programming adaptive appli-
cations. STAPL (Thomas et al. 2005) is an C++ template library
that support adaptive algorithms and autotuning. Paluska et al.
propose a programming framework (Paluska et al. 2008) that
allows programmers to specify goals of application behavior and
techniques to satisfy those goals. The application hierarchically
decomposes different situations and adapts to them dynamically.

ADAPT (Voss and Eigenmann 2000, 2001) augments compile-
time optimizations with run-time optimizations based on dynamic
information about architecture, inputs, and performance. It does not

Trained on
Mobile Xeon 1-way Xeon 8-way Niagara

R
un

on

Mobile - 1.09x 1.67x 1.47x
Xeon 1-way 1.61x - 2.08x 2.50x
Xeon 8-way 1.59x 2.14x - 2.35x

Niagara 1.12x 1.51x 1.08x -

Table 1. Slowdown when trained on a setup different than the one run on. Benchmark is sort on an input size of 100,000. Slowdowns are
relative to training natively. Descriptions of abbreviated system names can be found in Table 2.

Abbreviation System Frequency Cores used Scalability Algorithm Choices (w/ switching points)
Mobile Core 2 Duo Mobile 1.6 GHz 2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS(38400) QS(∞)
Xeon 1-way Xeon E7340 (2 x 4 core) 2.4 GHz 1 of 8 - IS(75) 4MS(98) RS(∞)
Xeon 8-way Xeon E7340 (2 x 4 core) 2.4 GHz 8 of 8 5.69 IS(600) QS(1420) 2MS(∞)
Niagara Sun Fire T200 Niagara 1.2 GHz 8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400) 2MS(∞)

Table 2. Automatically tuned configuration settings for the sort benchmark on various architectures. We use the following abbreviations for
algorithm choices: IS = insertion sort; QS = quick sort; RS = radix sort; 16MS = 16-way merge sort; 8MS = 8-way merge sort; 4MS = 4-way
merge sort; and 2MS = 2-way merge sort, with recursive merge that can be parallelized.

support making algorithmic changes, but instead focuses on lower
level compiler optimizations.

FLAME (Gunnels et al. 2001) is a domain-specific tuning
system, providing a formal approach to the design of linear algebra
methods. The system produces C and Fortran implementations
from high-level specifications via code generation.

Yi and Whaley proposed a framework (Yi and Whaley 2007)
to automate the production of optimized general-purpose library
kernels. An embedded scripting language, POET, is used to
describe custom optimizations for an algorithm. Specification files
written in POET are fed into a transformation engine, which
then generates and tunes different implementations. The POET
system requires programmers to describe specific algorithmic
optimizations, rather than allowing the compiler to explore choices
automatically.

SPL (Xiong et al. 2001) is a domain-specific language
and compiler system targeted to digital signal processing. The
compiler takes signal processing transforms represented by SPL
formulas and explores different transformations and optimizations
to produce efficient C and Fortran code. However, the SPL system
was designed only for tuning sequential machines.

7. Future Work
We are continuing to improve the PetaBricks language, expand
our benchmark suite, and improve performance. An interesting
additional future direction is adding a distributed memory backend
to our compiler so that we can run unmodified PetaBricks programs
on clusters. Moving to clusters will add even more choices for the
compiler to analyze, as it must decide both what algorithm to use
and where to run it. A key challenge in this area is autotuning
the management of data. Since distributed systems are often
heterogeneous, autotuning can offer greater benefits since the trade
offs become more complex. Finally, we are also exploring compiler
backends for less traditional architectures such as graphics cards
and embedded systems.

8. Conclusions
Getting consistent, scalable, and portable performance is difficult.
The compiler has the daunting task of selecting an effective
optimization configuration from possibilities with drastically dif-
ferent impacts on the performance. No single choice of parameters
can yield the best possible result as different algorithms may
be required under different circumstances. The high performance

computing community has always known that in many problem
domains, the best sequential algorithm is different from the best
parallel algorithm. Varying problem size and data sets will also
require different algorithms. Currently there is no viable way for
incorporating all these algorithmic choices into a single program to
produce portable programs with consistently high performance.

In this paper we introduced the first language that allows
programmers to naturally express algorithmic choice explicitly so
as to empower the compiler to perform deeper optimization. We
have created a compiler and an autotuner that is not only able
to compose a complex program using fine-grained algorithmic
choices but also find the right choice for many other parameters.
We have shown the efficacy of this system by developing a non-
trivial suite of benchmark applications. One of these benchmarks
also exposes the accuracy of different choices to the compiler. Our
results show that the autotuned hybrid programs are always better
than any of the individual algorithms.

Trends show us that programs have a lifetime running into
decades while architectures are much shorter lived. With the advent
of multicore processors, architectures are experiencing drastic
changes at an even faster rate. Under these circumstances, it is a
daunting task to write a program that will perform well not only on
today’s architectures but also those of the future. We believe that
PetaBricks can give programs the portable performance needed to
increase their effective lifetimes.

Acknowledgments
This work is partially supported by NSF Award CCF-0832997 and
an award from the Gigascale Systems Research Center. We would
also like to thank the anonymous reviewers for their constructive
feedback.

References
Ayaz Ali, Lennart Johnsson, and Jaspal Subhlok. Scheduling FFT

computation on SMP and multicore systems. In Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 293–301, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-768-1.

Ed Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, James
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven
Hammarling, A. McKenney, and Danny Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, third edition, 1999. ISBN 0-89871-447-8.

Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Opti-
mizing matrix multiply using PHiPAC: a portable, high-performance,
ANSI C coding methodology. In Proceedings of the ACM/IEEE
Conference on Supercomputing, pages 340–347, New York, NY, USA,
1997. ACM. ISBN 0-89791-902-5.

Eric A. Brewer. High-level optimization via automated statistical modeling.
In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 80–91, New York, NY, USA,
1995. ACM. ISBN 0-89791-701-6.

James W. Demmel. Applied Numerical Linear Algebra. SIAM, August
1997.

Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, February 2005.
Invited paper, special issue on “Program Generation, Optimization, and
Platform Adaptation”.

Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proceedings of the IEEE International
Conference on Acoustics Speech and Signal Processing, volume 3, pages
1381–1384. IEEE, 1998.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 212–223, Montreal, Quebec, Canada, Jun 1998.
Proceedings published ACM SIGPLAN Notices, Vol. 33, No. 5, May,
1998.

John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de
Geijn. FLAME: Formal Linear Algebra Methods Environment. ACM
Transactions on Mathematical Software, 27(4):422–455, December
2001. ISSN 0098-3500.

Eun-jin Im and Katherine Yelick. Optimizing sparse matrix computations
for register reuse in SPARSITY. In Proceedings of the International
Conference on Computational Science, pages 127–136. Springer, 2001.

Michail G. Lagoudakis and Michael L. Littman. Algorithm selection using
reinforcement learning. In Proceedings of the International Conference
On Machine Learning, pages 511–518. Morgan Kaufmann, 2000.

Xiaoming Li, Maria Jesus Garzaran, and David Padua. A dynamically tuned
sorting library. In Proceedings of the International Symposium on Code
Generation and Optimization, pages 111–122, March 2004.

Xiaoming Li, Mara Jess Garzarn, and David Padua. Optimizing sorting
with genetic algorithms. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 99–110. IEEE Computer
Society, 2005.

Marek Olszewski and Michael Voss. Install-time system for automatic
generation of optimized parallel sorting algorithms. In Proceedings
of the International Conference on Parallel and Distributed Processing
Techniques and Applications, pages 17–23, 2004.

Justin Mazzola Paluska, Hubert Pham, Umar Saif, Grace Chau, Chris
Terman, and Steve Ward. Structured decomposition of adaptive
applications. In Proceedings of the Annual IEEE International
Conference on Pervasive Computing and Communications, pages 1–10,
Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-
7695-3113-7.

Markus Puschel, Jose M. F. Moura, Jeremy R. Johnson, David Padua,
Manuela M. Veloso, Bryan W. Singer, Jianxin Xiong, Aca Gacic
Franz Franchetti, Robbert W. Johnson Yevgen Voronenko, Kang Chen,
and Nicholas Rizzolo. SPIRAL: Code generation for DSP transforms. In
Proceedings of the IEEE, volume 93, pages 232–275. IEEE, Feb 2005.

Richard H. Rand. Computer algebra in applied mathematics: an
introduction to MACSYMA. Number 94 in Research notes in
mathematics. 1984. ISBN 0-273-08632-4.

Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M.
Amato, and Lawrence Rauchwerger. A framework for adaptive
algorithm selection in STAPL. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
277–288, New York, NY, USA, 2005. ACM. ISBN 1-59593-080-9.

Michael Voss and Rudolf Eigenmann. Adapt: Automated de-coupled
adaptive program transformation. In Proceedings of the International
Conference on Parallel Processing, pages 163–170, 2000.

Michael Voss and Rudolf Eigenmann. High-level adaptive program
optimization with adapt. ACM SIGPLAN Notices, 36(7):93–102, 2001.
ISSN 0362-1340.

Richard Vuduc, James W. Demmel, and Jeff A. Bilmes. Statistical models
for empirical search-based performance tuning. International Journal of
High Performance Computing Applications, 18(1):65–94, 2004. ISSN
1094-3420.

Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A
library of automatically tuned sparse matrix kernels. In Proceedings
of the Scientific Discovery through Advanced Computing Conference,
Journal of Physics: Conference Series, San Francisco, CA, USA, June
2005. Institute of Physics Publishing.

Richard Clint Whaley and Jack J. Dongarra. Automatically tuned linear
algebra software. In Proceedings of the ACM/IEEE Conference on
Supercomputing, pages 1–27, Washington, DC, USA, 1998. IEEE
Computer Society. ISBN 0-89791-984-X.

Richard Clint Whaley and Antoine Petitet. Minimizing development and
maintenance costs in supporting persistently optimized BLAS. Software:
Practice and Experience, 35(2):101–121, February 2005.

Samuel Webb Williams, Andrew Waterman, and David A. Patterson.
Roofline: An insightful visual performance model for floating-point
programs and multicore architectures. Technical Report UCB/EECS-
2008-134, EECS Department, University of California, Berkeley, Oct
2008.

Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. SPL:
a language and compiler for DSP algorithms. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 298–308, New York, NY, USA, 2001. ACM.
ISBN 1-58113-414-2.

Qing Yi and Richard Clint Whaley. Automated transformation for
performance-critical kernels. In Proceedings of the ACM SIGPLAN
Symposium on Library-Centric Software Design, Oct. 2007.

Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong,
Maria Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and
Peng Wu. A comparison of empirical and model-driven optimization.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 63–76, New York, NY,
USA, 2003. ACM. ISBN 1-58113-662-5.

Hao Yu, Dongmin Zhang, and Lawrence Rauchwerger. An adaptive
algorithm selection framework. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
pages 278–289, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2229-7.

