
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A PDP Simulation of the Effects of Transcranial Magnetic Stimulation on Semantic Cognition

Permalink
https://escholarship.org/uc/item/0mk3w7gp

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 31(31)

ISSN
1069-7977

Authors
Drakesmith, Mark
Pobric, Gorana
Welbourne, Stephen

Publication Date
2009
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0mk3w7gp
https://escholarship.org
http://www.cdlib.org/


A PDP Simulation of the E ffects of Transcranial Magnetic Stimulation on Semantic 
Cognition 

 
Mark Drakesmith (mark .drakesmith@postgrad.manchester .ac.uk) 

Gorana Pobric (gorana.pobric@manchester .ac.uk) 
Stephen W elbourne (stephen.r .welbourne@manchester .ac.uk) 

 
Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, Zochonis Building, Brunswick Street, 

University of Manchester, Manchester, M13 9PL, UK. 
 
 

Abstract 

Transcranial magnetic stimulation (TMS) is a useful tool for 
determining cortical interactions that take place during 
semantic cognition (Pobric et al, 2007). TMS of the anterior 
temporal lobe (ATL) induces specificity-graded conceptual 
breakdown of stored representations resulting in differential 
effects on naming tasks depending on the level of specificity 
required. This paper aims to elucidate this effect using the 
Rogers et al (2004) model of semantic cognition. TMS effects 
are modelled by reducing the gain of the affected units to 
simulate reduction in neuronal sensitivity. Results show that 
basic-level naming is more robust to rTMS than subordinate 
level naming as found by Pobric et al. In addition the model 
predicts that superordinate naming should be even more robust 
to rTMS than basic level naming. This specificity-graded 
breakdown of semantic memory appears to be independent of 
learnt word frequency. This supports evidence that the ATL’s 
function is that of category differentiation. 
 
K eywords: neuroscience; psychology; cognitive architectures; 
concepts and categories; distributed cognition; memory; 
semantics; computational neuroscience; computer simulation; 
neural networks 

Introduction 
Semantic memory has become a key area for 
neuropsychological and neuroimaging research. There are a 
number of characteristic semantic effects such as typicality, 
context, and familiarity, which can be used to probe the 
organisation of semantic representations.  

One characteristic feature of semantic memory is that 
when naming an item, there is strong bias towards a ‘basic’ 
level of categorisation. For example when asked to name a 
picture of a brown Labrador, the most common response is 
‘dog’,  rather  than a  subordinate name,  like  ‘Labrador’ or a 
superordinate name  such  as  ‘animal’  (see   Murphy & 
Lassaline, 1997 for a review). A proposed explanation of the 
basic-level effect is that of category differentiation, which 
arises from a balance between informativeness and 
distinctiveness (Murphy & Brownell, 1985). Subordinate 
names are the most informative while superordinate names 
are the most distinctive. 

 
Neuropsychological and Neuroimaging F indings Much 
insight into the neural basis of semantic cognition has been 
derived from patients with Semantic dementia (SD) which 
in particular occurs in the anterior temporal lobes (ATL) and 

almost exclusively results in impaired semantic memory 
(see Hodges & Patterson, 2007, for a review). One feature 
common to many SD patients is poor naming performance, 
which is differentiated according to naming level: 
subordinate naming is the worst affected whilst 
superordinate naming is the most likely to be preserved.  

Evidence from neuroimaging studies such as PET and 
fMRI reveal two contradictory perspectives on how 
semantic memory is stored. Some (e.g. Petersen et al, 1988; 
Grabowski et al, 2001) have shown that participants given 
visual and verbal stimuli for various items, show increased 
blood flow to frontal and temporal regions of the cortex. 
However, there is also evidence that semantic memory is 
distributed. Thompson-Schill et al (1999) found that 
participants asked to recall visual properties of an object 
showed increased activity in the left fusiform gyrus. 
Grosman et al (2002) found that retrieval of actions 
associated with tool use elicited higher activation of pre-
motor cortex, suggesting a store of motor representations. 
This distributed theory has been used to explain why there 
appear to be distant neural substrates for animal objects and 
man-made objects (e.g. Caramazza & Shelton, 1998) 
because of differing perceptual content between these 
categories.   

These two contradictory strands have been unified in the 
form of the semantic hub theory (reviewed in Patterson et 
al, 2007). The theory states that semantic memory is 
distributed across regions which store representations 
specific to a certain modality such as visual or motor 
representations. These representations are, however, 
interconnected via a central ‘semantic hub’ in the ATL. This 
hub gives rise to amodal semantic concepts through its 
interconnections between the modality-specific 
representations.  

Some imaging studies have looked at naming level effects 
(e.g. Tyler et al, 2004) and have suggested a continuum of 
naming specificity along the posterior-anterior axis of the 
inferior temporal cortex (Martin & Chao, 2001). However, a 
meta-analysis by Patterson et al (2007) shows subordinate 
name activations are usually no more anterior than those for 
basic-level naming. They suggested alternatively that 
subordinate naming requires activation of more anterior 
regions of temporal cortex because of the increased 
computational demands of differentiation of overlapping 
concepts within a particular category. This argument 
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parallels with the informativeness-distinctiveness account 
for naming level effects (Murphy and Brownell, 1985). It is 
also consistent with that of Rogers et al (2007) (described 
below) which argues that naming-level effects are an 
emergent property of the semantic network. 

 
T ranscranial M agnetic Stimulation (T MS) TMS has been 
used as an investigative technique in cognitive neuroscience 
since the 1980s (reviewed in Walsh & Pascual-Leone, 
2003). Unlike passive imaging techniques, TMS can be used 
to alter the brain’s dynamics and thus establish causal links 
between brain function and cognition.  

The TMS paradigm typically used in cognitive 
neuroscience is a repeated constant train of TMS pulses 
(rTMS) usually at 1Hz for approx. 5-10 minutes. 
Participants are usually tested on a behavioural task before 
and after TMS. Effects of TMS manifest in changes in 
reaction times (RTs) and rarely in obvious behavioural 
changes.  

rTMS provides new avenues to explore the neural basis of 
semantic memory. Pobric et al (2007) applied rTMS to the 
ATL and measured RTs for a naming task. Participants were 
asked to produce basic level or subordinate level names to 
visual images. The results show a significant effect of rTMS 
on subordinate naming but not on basic naming.  

This finding adds further evidence to indicate the ATL is 
required to differentiate overlapping semantic concepts. 
Although the extent of the effect of rTMS is much smaller 
(effects only manifest in RTs), the mechanisms of 
conceptual breakdown are considered analogous.  

 
Physiology of T MS There is still debate of how TMS exerts 
its disruptive effect. One account is that it introduces 
aberrant noise into the neural dynamics (Walsh & Coway, 
2000). This does not account for the relative persistence of 
TMS effects with no further stimulation, or the robustness 
of neural populations to noisy inputs.  

Recent evidence suggests synaptic plasticity as the cause 
(see Thickbroom, 2007 for a review). Some studies find the 
suppressive or facilitatory TMS effects are rate-dependant 
(Fitzgerald et al, 2006). High frequency pulse trains (about  
5Hz or over) have LTP-like effects, while low frequency 
pulse trains, as commonly used for investigation of 
cognitive function, result in LTD-like effects.  

Huang et al (2007) tested the effects of TMS on LTP/D by 
administering participants with an NMDA antagonist; 
NMDA being a vital precursor to LTP induction. They 
found low-frequency TMS applied to participants given the 
NMDA antagonist failed to suppress evoked motor 
responses compared those given placebos. Also, Esser et al 
(2006) measured ERPs before and after high-frequency 
rTMS. They found amplitudes of ERPs recorded near the 
stimulation site were significantly higher after rTMS, 
indicating an LTP-like effect. The reductions in RT in 
behavioural experiments have therefore been attributed to 
reduced sensitivity of the cortex to synaptic inputs. Some 
studies of TMS on motor cortex have measured changes in 

the input-output (I/O) function (e.g. Muellbacher et al, 
2000). This is a convenient analogy to make with sigmoid 
activation function used in many PDP models. Reduction of 
synaptic sensitivity can be simulated by reducing the gain of 
this function. 

 
Computational Models Parallel distributed processing 
(PDP; Rumelhart et al, 1986) is a popular approach to 
studying cognition because of its ability to produce models 
that learn and have biologically inspired features. There has 
been much interest in modelling semantic memory in a PDP 
framework, and particularly, in lesioning such models to 
simulate symptoms of neurological conditions such as SD 
(reviewed in McClelland & Rogers, 2003),  

Many of these models have simply tried to model the 
behavioural characteristics of semantic memory and have, 
until recently, remained divorced from the underlying 
cortical structure. In the spirit of the semantic hub theory, 
Rogers et al (2004) proposed a model consisting of separate 
layers corresponding to different modality-specific 
representations in different cortical regions. All of these 
regions are linked via the semantic layer (representing the 
ATL) which mediates links between modality-specific 
features.  

The model was trained on items derived from a set of 
prototypes, themselves derived from a hierarchical cluster 
analysis of semantic norms (Garard et al, 2001). The model 
was trained on both subordinate and basic names. However, 
it was not specifically tested for naming level effects, 
although a range of deficits that correlate with SD were 
demonstrated.  

Although level effects were not explicitly tested in this 
model, Rogers et al (2007) subsequently made predictions 
about how such effect would arise because of movement 
through the semantic representational space. These 
predictions match Murphy  and  Brownell’s  (1985) 
distinctiveness-informativeness account. As the network 
trains, items rearrange into clusters in the representational 
space. These clusters reflect similarities between items: 
Items that are very similar organise into dense, tightly 
packed clusters. Intra-cluster density is high. Therefore, 
concepts within clusters (at the subordinate level) are 
informative but not distinctive. Inter-cluster density is low 
and therefore concepts between clusters (at the 
superordinate level) are distinctive but uninformative. This 
type of organisation was shown in a previous model by 
Rumelhart & Todd (1993) and by Rogers & McClelland 
(2004) but has not yet been tested in the multi-modal 
network.  

 
Aims The aim of this project is to simulate the effects of 
TMS found by Pobric et al (2007) using the Rogers et al 
(2004) model. As well as showing behavioural aspects of 
normal and impaired semantic cognition, the model’s multi-
modal architecture is capable of replicating the experimental 
paradigm of Pobric et al (2007). The model will be used to 
determine if normal naming level effects are emergent 
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property of the network or dependant on word frequency 
(Brown, 1958). The model can then be ‘lesioned’, but rather 
than removing connection weights, rTMS is simulated by 
reducing the gain of the sigmoid activation function within 
the semantic layer. This is aimed to simulate the reduction 
in synaptic sensitivity in this region as shown by 
physiological evidence.  

Method 
All network simulations are carried out in LENS neural 
network simulator (Rohde, 2003) with subsequent analysis 
carried out in MATLAB. The model is adapted from that of 
Rogers et al (2004). Two frequency manipulations were 
made (flat vs. basic-level inflated frequencies). All layers 
are connected via bidirectional, dense, asymmetrically 
weighted links. Three main type of representation are given: 
visual features, verbal descriptions and names. The visual 
features are encoded in one layer. The verbal descriptions 
are encoded in three layers, subdivided into perceptual, 
functional and encyclopaedic descriptions.  

The naming layer is expanded slightly from the original 
model. (see figure 1). Each name is encoded by the 
activation of one unique unit in each layer. During training, 
the model is presented with separate examples for each level 
of naming and for each modality. Targets for each modality 
are given during training and the name appropriate for the 
specified level is also given. A name is generated in all three 
levels and not restricted to a particular level. This is 
equivalent to the free-recall paradigm in experimental 
psychology.   

The network is trained on 48 items, each associated with 
unique subordinate names, 6 basic names (8 items for each 
name) and 2 superordinate names (24 items for each name). 

All units in the network have a dot product input function 
and a sigmoid output function. The input is also subject to 
an untrainable bias, which is set to -2 throughout the 

network.  The  network  simulates  ‘continuous’  time  over 
seven time intervals; each time interval is further divided 
into 10 ticks, which are arbitrary units of ‘continuous’ time. 
The input function is treated as a derivative of each units 
input. To obtain the actual input for each tick, the Euler 
method is used to integrate the input function over time.  

The weights are initially set at random, and then during 
training are modified by a back-propagation algorithm using 
the delta rule. While training, the network is presented with 
inputs of each item in each modality by clamping the 
relevant layers to the relevant stimuli. The network is then 
permitted to cycle for 3 intervals. Inputs are then removed 
for 2 more intervals and then targets applied for 2 more 
intervals. Since there are 10 ticks per interval, the maximum 
possible length of each example is 70 ticks. Error 
derivatives are only calculated for each unit on each tick for 
which the network is given a target. Training is also subject 
to a learning rate of 0.005 and a weight decay of 0.0002. 
The total training length for the network is 10,000 epochs.  

The training examples were selected in a probabilistic 
manner, with the constraint that each name should be 
presented equally often; because the number of names in 
each level does not match the number of items, the 
frequency of each name level has to be modified to satisfy 
this constraint. For example, there are 48/2=24 examples 
presenting the same superordinate name in the training set 
and each basic name will be 48/6=8 times more likely 
appear in the training set. The frequency of each example is 
therefore matched to the number of names in that examples’ 
naming level. So fsub=48, fbas=6 and fsup=2. The first 
experiment was carried out using the flat name frequencies 
as above. The second experiment used an artificially inflated 
basic-level frequency (fbas=60) to simulate the fact that basic 
level names tend to be higher frequency than subordinate 
level ones.  

Once trained, the network is tested on each item by 
clamping the relevant group for 3 cycles. The RT is defined 
as the tick at which all units are within a threshold of 0.3 of 
their target activations. i.e. the RT is when all ON-target 
units have activations above 0.7 and all OFF-target units 
have activations below 0.3. This level was found to be 

 
 

Figure 1: Structure of the PDP network for the non-
competitive naming simulations. Numbers in brackets 
indicate number of units. 

 

 
 

Figure 2: Sigmoid activation function of semantic 
units (GR=0) and the gain reduction manipulations used 
to simulate rTMS. 
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rigorous enough to prevent potentially ambiguous patterns 
of activation being reported as decisive responses, but also 
lenient enough to allow naming to be at or near 100% 
accuracy.  

The effects of rTMS were simulated in the PDP 
environment by altering the gain of the sigmoid activation 
function to mimic the effect of a reduction in synaptic 
sensitivity. Gain reductions of 0 to 0.5 in increments of 0.1 
were tested (figure 2).  

Results 
Significance tests between different levels of naming were 
carried out with Welch’s t-tests.  

With the flat-frequency network, RTs between all levels 
are significantly different (figure 3a), with subordinates 
having the highest RT and superordinates having the lowest 
RT. This pattern is reflected in the mean unit activation 
during trials, with superordinate name activations reaching 
threshold first, followed by basic, and then subordinate 
naming (figure 3b).  

The effects of TMS (as simulated by gain reduction)  
reveal a specificity-graded breakdown of naming that is 
congruent with the results of Pobric et al’s behavioural data. 

Subordinate naming shows the strongest TMS effect, 
followed by basic naming, with superordinate names 
showing the weakest TMS effect. The TMS effect for 
subordinate naming becomes significantly higher than for 
the other naming levels at a gain reduction of 0.3. The 
difference in TMS effect between basic naming and 
superordinate naming only becomes significant at a gain 
reduction of 0.5 (figure 3c). 

With the basic level inflated frequencies, initial RTs for 
basic naming are significantly lower than for both 
subordinate and superordinate naming, as in human naming. 
There is no significant difference between subordinate and 
superordinate naming (figure 4a). The mean unit activation 
for basic names reaches threshold much sooner than 
subordinate and superordinate naming, the rate of ascent of 
the basic name activations being higher in the basic-inflated 
network than the flat-frequency network (figure 4b).  

The effects of gain reduction on RTs are similar to the 
flat-frequency network and to the results from Pobric et al. 
The TMS effect for subordinate naming becomes 
significantly higher than for the other levels at a gain 
reduction of 0.3. Meanwhile basic naming, although 
showing a similar TMS effect never becomes significant 

(a) 

**
**

*

 

(b) 

70

Time (ticks)

 Subordinate

Superordinate

 

(c) 

 
Figure 3: Results of simulations on network trained on flat frequencies (a) RTs for naming a different levels (b) Time 
course of target-ON name unit activations, averaged over all examples. (c) Effects of gain reduction on RT for each 
naming level. In (a) and (c) error bars indicate standard error and significant differences between naming levels are 
indicated by braces: p<0.05 indicated by * and p<0.001 indicated by **. 

(a) 

** **

 

(b) 

70

Time (ticks)

 Subordinate

Superordinate

 

(c) 

 
 

Figure 4: Results of simulations on network trained on basic-level inflated frequencies. (a) RTs for naming a different 
levels (b) Time course of target-ON name unit activations, averaged over all examples. (c) Effects of gain reduction 
on RT for each naming level. In (a) and (c) error bars indicate standard error and significant differences between 
naming levels are indicated by braces: p<0.05 indicated by * and p<0.001 indicated by **. 
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compared to superordinates (figure 4c). Nevertheless there 
is still a persistent trend for superordinates to be more robust 
to TMS effects and it appears it would continue through 
greater gain reductions, which is likely to yield a significant 
TMS effect for basic names. The robustness of 
superordinates to TMS in the basic-inflated network is 
surprising as the overall RT for basic naming is much lower 
then for superordinate naming (figure 4c) suggesting that it 
is an easier task and so should be more resistant to the effect 
of rTMS than superordinates.  

Discussion 
This project aimed to model impairments in semantic 
processing as a consequence of rTMS to ATL (Pobric et al, 
2007) using a pre-existing PDP framework (Rogers et al, 
2004). Results show that the network with inflated basic-
name frequencies gave rise to both basic-level superiority in 
undamaged naming and selective impairment of 
subordinate, but not basic level, naming by rTMS. These 
results are in accordance with the human data from the 
study by Pobric et al (2007). That study did not obtain 
results for superordinate naming. However, the model 
predicts that superordinate naming should be more stable 
than basic-level naming and so will be unimpaired by rTMS 
at the dosage levels used in the Pobric et al study. In some 
ways this is a surprising prediction as superordinate naming 
is slower than basic level naming which might be taken as a 
sign that it is a harder task and so should be more 
susceptible to TMS. However, it is consistent with the 
neuropsychological evidence of SD patients who show 
impaired subordinate naming but relatively unpaired 
superordinate naming. This suggests that the analogy 
previously made between rTMS and SD is valid.  

The flat-frequency condition shows that the emergent 
naming level effects in the model do not fully account for 
the human naming pattern, although Rogers et al (2007) 
predicted that they would. Only when basic-level name 
frequencies are inflated in the second network, does basic-
level naming superiority arise. This suggests that basic-level 
superiority is only partially an emergent property of the 
network and also depends on frequency.  

Although human-like naming-level effects did not 
manifest themselves without frequency manipulation, there 
is still a specificity-graded breakdown of conceptual 
knowledge caused by rTMS in both networks (figure 3c & 
4c). This suggests that the specificity-graded effects of 
rTMS are independent of name frequency. These results add 
support for Patterson et al’s  (2007)  proposition that the 
ATL’s role is not so much in the storage of highly specific 
information, but in the differentiation of highly overlapping 
concepts. It also supports Rogers et al (2007) position that 
such an ability is emergent. 

Further information about the structure of semantic 
representations can be ascertained by examining the 
behaviour of the semantic layer during testing. Dimensional 
scaling and cluster analysis of the learnt semantic 
representations can reveal patterns reflecting naming 

specificity. If Roger’s et al (2007) predictions hold true, we 
can expect to find a pattern of subordinate categories 
organized in small and dense (informative but indistinctive) 
clusters while superordinate categories being in large and 
sparse (distinctive but uninformative) clusters. As a result, 
basic level categories would show high, intra-cluster density 
(informative) and low inter-cluster density (distinctive).  

 Based on the speculated cluster structure, Rogers et al 
(2007) made predictions about the rate of unit activations: 
unit activation of target-ON units are dictated by the 
network’s movement through representational space as it 
tended towards the target item. Initially, superordinate items 
were predicted to activate first, followed by basic and 
finally subordinate names. However, the dense clustering of 
basic and subordinate names results in subsequent rapid 
activations for those levels, and consequently, in basic 
names reaching threshold first. The mean unit activations in 
the basic-inflated network (figure 4b) shows this predicted 
pattern of activation. The rates of initial descent correspond 
to the naming levels, with subordinates showing the 
sharpest decent. Subordinates and basics subsequently show 
faster ascents than superordinate, but because basic names 
had a slower initial decent, it reaches threshold before either 
subordinate or superordinate.  

Again, this pattern was not observed in the flat-frequency 
network, suggesting again that this effect is to some extent 
frequency-dependant. However, the differing rates of ascent 
for superordinates and subordinates in this network indicate 
only a partial dependence on frequency. The structure of the 
learnt semantic representations also clearly plays a role.  

It should be noted that Roger et al’s (2007) prediction was 
made for semantic unit activations rather than name units. 
The decision to make a response in a semantic task is likely 
to involve a network comprising temporal lobe and pre-
frontal cortex (e.g. Jennings et al, 1997) and not in cortical 
regions responsible for modality-specific representations. 
The name units themselves only activate once threshold is 
reached in the semantic units so one would expect them to 
display similar time courses.  

Another issue with the model that should be considered is 
that there is no delay propagation between units. Although 
units activate in a temporally graded manner, the spreading 
of activations to other linked units do not. When visible 
units are clamped to ON, the activation of the connected 
semantic units progress in a graded manner, but then all 
other visible units connected via those semantic units also 
activate simultaneously. Propagation delays between 
cortical populations during cognitive tasks, often connected 
via polysynaptic connections, are likely to significantly 
contribute to RTs.  

 
Conclusion The basic level superiority effect found in 
normal naming and the differential inhibitory effects of 
rTMS on naming demonstrated by Pobric et al (2007) have 
been successfully replicated in a PDP model based on the 
semantic hub theory. The basic-level superiority effect is 
largely influenced by increased frequency as previously 
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indicated (e.g. Brown, 1958). However, there is also 
indication that internal structure of the learned semantic 
representations, rather than frequency, is responsible for the 
differential rTMS effect on naming. The model also predicts 
that rTMS should have a greater effect on basic level 
naming than on superordinate naming. Although this 
appears counter intuitive, based on superordinate naming 
being an apparently harder task, it is consistent with the idea 
that there is a central inter-modal hub responsible for 
category differentiation.  
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