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An Algorithm for Vortex Loop Generation 

Abstract 

A vortex method in three dimensions to model unbounded flow using 
closed vortex filaments (loops) has been introduced by Chorin [9]. A vortex 
loop generation algorithm is developed here which relates this strategy to 
bounded flow. This algorithm is based on partitioning the boundary into a 
set of polygonal vortex loops which, in aggregate, effect the no-slip condi­
tion along a set of vorticity field-lines lying in the boundary surface. The 
algorithm is illustrated in application to flow over a flat plate. 
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1. Introduction 

The random vortex method introduced by Chorin [4,5,6,7] and its sub­
sequent elaboration and analysis has been extensively described in the lit­
erature (see, for example, the recent review by Puckett [14]). Briefly, the 
equations governing viscous incompressible fluid flow are solved numerically 
by discretizing the vorticity field into a finite collection of Lagrangian ele­
ments. These vortex elements interact with each other, this is to say each 
element is advected in the velocity field induced by the remaining elements 
in the collection. Viscous diffusion is represented by a stochastic model; to 
each element is imparted a gaussian random walk displacement. 

In two dimensions at least, the notion of representing e, the continuum 
vorticity field (Le. e = curl u, where u is the velocity field) by a distribution 
of interacting "particles" - specifically by a distribution of point vortices 
or desingularized versions such as blobs - has obvious appeal. For inviscid 
flow, the system of such particles is Hamiltonian. The inviscid interaction 
of vortices is well-understood, this being a Biot-Savart relationship. The 
velocity field at a point induced by a collection of vortices is the linear 
superposition of the fields induced by each member of the collection. The 
"particles" are passively transported in the resulting induced velocity field. 
The accuracy of this particle representation of the fluid dynamics. can be 
estimated and its convergence to a continuum solution to Euler's equation 
(as the paramaterization is refined) can be analytically demonstrated at 
least for unbounded flow. Similarly the convergence for the case of viscous 
unbounded flow has been demonstrated [13]. A technology is developing for 
the choice of smoothing strategies; a number of core structures for blobs has 
now been studied. The method has found wide application. 

The random vortex method provides a discretization which is naturally 
adaptive: the increasing structure associated with vortical flow is repre­
sented by concentrations of particles, and the method thus concentrates 
computational effort where the flow is most structured. If the model is suit­
ably refined, the smaller scales of this structure should be modelled. The 
choice of an (idealized) point vortex (or vortex blob) as a Lagranian com­
putational element does not imply that these elements have independent 
physical existence. They are in aggregate a particle discretization of a con­
tinuum field. However the vortex interaction between point vortex elements 
is identical to the classical understanding of the interaction between a point 
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vortex model of a physical vortex. The point is, that the computational 
element is modelled after the physical species known as a line vortex. 

The random vortex treatment of boundaries in two dimensions has been 
the focus of some effort. Such boundaries are of obvious importance to the 
study of viscous flow since an implication of the no-slip condition (u = 0) 
at such a surface is the development of sheared flow and hence the creation 
of vorticity. The geometry of flow near such a surface suggests particular 
simplifications to the flow equations can be made in the neighbourhood of 
the surface; this is the boundary layer approximation. This approximation 
has been embedded in the formulation of the random vortex method, the 
blob computational element is expressed as a partitioned vortex sheet [5]. A 
rational strategy for transforming a sheet element into a corresponding blob 
element as the element moves from a neighbourhood of the solid surface into 
the flow interior, has been developed. There are a number of studies of the 
vortex sheet method in the literature (see [14]). 

The random vortex method has been generalized to three dimensions in 
a variety of ways. A number of smoothing kernels (i.e. blob structures) have 
been proposed. One such generalization is the spherically symmetric blob 
developed by Beale and Majda [3]. Chorin [5] has introduced a filament 
consisting of a contiguous collection of vortex "segments", cylinders with 
uniform core radius. In some subsequent applications, the condition of con­
nectivity of these segments has been relaxed, so increasing their resemblence 
to the blob representation. The convergence properties of the Beale..:Majda 
blob [3] and the filament method (see Greengard [10]), have been explored 
for unbounded flow. 

Whereas in viscid vortex dynamics in two dimensions has mathematically 
attractive properties - in particular a simple Hamiltonian property - in three 
dimensions the phenomenon of vortex stretching complicates the picture. 
The elements are subject to stretching consistent with the non-linear terms 
in the three-dimensional Euler equation. The complication this presents is 
considerable, because the stretching is typically accompanied by folding on 
smaller scales (to preserve overall vorticity) and, therefore, can induce in 
adaptive numerical schemes an increasing refinement in the discretization. 

H the computational elements are to be "modelled after" macroscopic, 
physical, vortices, then one might expect such vortex elements to be con­
sistent with the condition V . e = 0 which has the implication that the 
vorticity field is solenoidal, the vortex lines must form closed loops in an 
interior flow. Such a condition is satisfied (by construction) by using closed 
filament loops as elements; on the other hand blobs and disjointed segments 
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are not constrained to satisfy the divergence-free condition, although they 
may well provide a field which is in some measurable sense approximately 
solenoidal. 

The question of what criteria lead to a satisfactory particle discretization 
of a three-dimensional continuum vorticity field can be approached from an 
alternative direction. One can study the stationary statistical properties 
of an ensemble of interacting vortex elements, and try to determine which 
discretization re-creates the expected statistics of turbulent fluids [8]. Nu­
merical experiment seems to suggest that the representation which is most 
successful in this respect is that of a system of closed vortex filaments with 
uniform core diameters. 

2. Creating Divergence-free Vorticity 

} 

The original notion proposed by Chorin [4] for imposing the no-slip con-
dition at a solid surface proceeds as follows: one conceived (in two dimen­
sions) of an obstacle over which there is some flow. We assume at t < 0 
there to be a free-slip condition at the surface. Impulsively at t = 0, at a 
discrete set of points {Xi} on the obstacle surface, a vortex blob would be 
created such that the tangential velocity field it creates would exactly cancel 
this free-slip field. This blob would then diffuse into the flow interior in the 
subsequent time step, establishing again a non-zero velocity field at the set 
of points. The procedure can then be repeated for the next time-step. The 
sequential process of introducing a vortex element at each time step in this 
way is called the vorticity creation algorithm. Some authors have continued 
to use this strategy in recent work (see [1]). 

This original idea was elaborated [5] to construct at a solid surface an 
explicit model of two-dimensional boundary layer dynamics. The no-slip 
condition was established by the creation of a "vortex sheet" which was then 
subdivided into sheet segments, and these participated in the flow according 
to a Lagrangian formulation of the Prandtl boundary layer equations. 

The extension of the vortex sheet method to three dimensions is de­
scribed in Chorin [6J. In this case a two-dimensional vortex sheet is sub­
divided into rectangular tiles, each carrying vorticity (a vector lying in the 
plane of the sheet) which exactly establishes no-slip at a point at the'centre 
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of the tile. 
The preceding strategy in three dimensions is in itself an adequate algo­

rithm for the pointwise establishing of the no-slip condition at a collection 
of points {rt} on a solid surface. The expression "pointwise" is emphasized 
to indicate that the sheets or tiles that are created to establish no-slip are 
created independently of each other in the sense that no attempt is made 
to ensure the vorticity created satisfies V . e = 0, i.e. that the vortices form 
closed contiguous loops lying in the plane of the solid surface. If one wishes 
to use in the flow interior closed loops as computational elements, a strategy 
should be found to establish the no-slip condition in terms of precisely such 
closed loops. 

To do this one may return to Chorin's original [4] strategy and seek to 
generalize this over a three-dimensional surface. We consider a general flow 
over a three-dimensional obstacle, A, bounded by closed surface 8A 

We consider the obstacle to be impermeable, and that there is a "free­
slip" flow which is wholly tangential to the surface at time t. At a point on 
the surface (r E 8A) there is a tangential velocity (which is not necessarily 
irrotational), U". We wish to introduce a vortex (in fact a vortex sheet 
element) at this point whose vorticity will be directed in 8A perpendicular 
to U,,' and which will induce a velocity which, when added to u will lead 
to a vanishing resultant. It is a simple matter to determine this vector 
e = (ex, ey), where (x, y) are local coordinates lying in 8 A. 

If Us = ('Uz , 'Uy), we can infer e = (-u y, 'Uz ) h (where h is a linear dimen-
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sion of the sheet perpendicular to ~). This ~ will have the desired properties 
of being orthogonal to Us and of the appropriate magnitude to induce a 
cancellation field. 

Having determined (at, say, a regular mesh of points on the surface) the 
vector components of vorticity, we can exploit the divergence-free property 
of e and the fact that ~ is strictly tangent to 8A to construct a vector 
potential function rn such that 

e = curl rn 

n is the unit outward normal to 8A. The function r n is essentially a Hertz 
potential (see Section 1.10 of [12] for the development of this idea in an 
electromagnetic context) whose magnitude can be constructed from the line 
integration of the form: 

rex, y) = 1Y 
exdy -lX ~ydx 

=-h f u.dr Jre8A 
(1) 

The level curves of rex, y) on 8A constitute the lines of equivorticity on 
the surface. The fact that the constructed field ~ satisfies V . ~ = 0 on 8A 
implies the level curves of r form closed loops on 8A. One can interpret 
a level curve of r as being the location of a vortex filament (of uniform 
stength) required to exactly establish the no-slip condition. 

One can imagine how the creation of such a closed vortex loop along 
the surface of an obstacle can be embedded into a problem of evolving flow: 
the loop could be made to advect and diffuse in subsequent time steps. 
Conceivably an algorithm can be based on such a model; however such large 
computational structures raise various problems, such as how to ensure that 
diffusion near the surface (in particular at the first time step) does not 
effect any stretching of the element. It is not clear how a complete covering 
of the surface can be effected (i.e. how a set of level curves can lead to an 
effective partitioning of the surface) or how the notion of a vortex sheet can 
be incorporated into such a strategy. 
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3. Constructing a partition which conforms to vorticity 
level curves 

Consider a single level curve, a closed loop of equivorticity with vortex 
strength, 6 lying in 8A. (For purposes of introducing the basic concept, we 
consider the line of equivorticy to be simply connected). 

~1 

We can generate from this a partition of the entire surface of 8A We par­
tition the surface to the left of the level curve into, say, quadrilaterals (later 
to be generalized to polygons) and consider each quadrilateral to coincide 
with a vortex loop of strength -~d2i similarly we partition the surface to 
the right of the level curve, and consider each quadrilateral to coincide with 
a vortex loop of strength +~1/2. The situation is depicted as 

~1 
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(the sign of the vortex loop is indicated here by the direction of the 
arrow). With the exception of the level curve itself, along all the partition 
lines the neighbouring loops mutually cancel (vortex lines of equal strength 
and opposite sense coincide). However along the level curve the adjacent 
loops sum effectively to el' 

Such a partitioning can be repeated for any number of level curves, and 
the results can be linearly superposed. For example if we consider two level 
curves assoc~ated with strengths 6 and 6, we could effect a partition of the 
form: 

~1 

Again the effect of adjacent loops is to cancel except along the level 
curves themselves, where the adjacent loops sum to the values el and 6 
respectively. 

At this stage we have articulated an algorithm for vortex loop generation 
to establish a no-slip surface at each time-step of a flow evolution calculation. 
Two obvious refinement strategies suggest themselves: (1) the quadrilateral 
partition can be refined; (2) the number of level curves can be increased 
(and the increment between them reduced). The latter refinement would 
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result, for N specified level curves {ed, quadrilaterals (or more generally 
polygons) in N + 1 sub domains of the surface, the vortex strength of the 
loops in the mth such sub domain being given by 

(2) 

It might be noted here how this distribution of vortex strengths differs from 
that resulting from the usual blob/sheet method. In the present method the 
greater strength of the created elements (and hence, ultimately, the greater 
density of computational vortex elements) occurs in the neighbourhood of 
stagnation points. In the usual blob/sheet method the greater strength of 
created elements occurs where the interior velocity is greater - typically 
away from stagnation. 

Having established a system ofloops lying in 8A, these can be made to 
interact and otherwise participate in the flow. However, given the proxim­
ity of the adjacent loops in 8A, one might expect instability to arise from 
the singularity in the Biot-Savart relationship. Even invoking a smoothing 
kernel (specifically a vortex filament of finite core size) the density of the 
elements in the neighbourhood of 8A suggests that Chorin's vortex sheet 
model of boundary layer flow could be introduced to model this region. Be­
fore discussing how the vortex sheet algorithm could be embedded in the 
present algorithm, we should discuss the question of how to partition a sur­
face in a manner which conforms to, say, a system of highly structured, 
geometrically complicated level curves. The location and strength of the 
vorticity level curves derives from the surface distribution of "free-slip" field 
upon completion of the diffusion and advection of vortex elements in the 
preceding time-step. The point here is, this field is strongly determined by 
the inadequacy of the discretization to establish no-slip over a given time­
step, and this may be conceivably highly dependent on the numerics of the 
random vortex method algorithm. Ideally one would like a robust strategy 
for partitioning a surface in anticipation of the complex surface field which 
can arise in a given time step. 

One way to approach this problem is to consider an underlying fixed 
regular mesh. We assume that the "slip-field" on 8A has been calculated, 
and from this the scalar function r has been determined at the nodes of 
this underlying grid. For example, consider 8A to be a flat surface, and the 
underlying grid to be rectangular: 
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We could select a particular level curve of r and determine using, for 
example, bilinear interpolation, the points of intersection of this curve with 
the underlying mesh. (For the illustrated example, the level-set indicated 
by 'x'). Joining these points determines a set of polygons each of which 
we can consider to coincide with a closed-loop vortex filament. We can 
assign strengths to the loops either side of the level curve in the way de­
scribed previously. (The shaded region in the diagram would correspond 
to one resulting subdomainj the unshaded region to another.) Furthermore 
we can proceed to determine a set of level curves, and superpose the re­
sulting strengths in a manner very similar to that indicated in the previous 
discussion. 

The discretization can be refined by refining the underlying mesh. Before 
discussing futher questions of refinement and convergence we discuss how a 
sheet representation might be introduced. 
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4. Sheet Representation of Surface Loops 

We have proposed a rational criteria for creating a system of adjacent 
polygonal vortex loops on the surface 8A which will effect "no-slip" along 
pre-determined equivorticity lines. In the neighbourhood of the surface we 
would like to adopt the boundary layer approximation in order to represent 
correctly the symmetry condition at the wall which vorticity exhibits. This 
is to say the Prandtl equations are to be satisfied. Consider coordinates 
(x, y) to be in 8A. 

8ex ( ) 82 ex . 
8t + u· V ex = 11 8z2 + stretching terms 

8e 82e 8: + (u. V)ey = 11 8z: + stretching terms 

ex = 8uy 
8z 

ey = _ 8ux 

{)z 

V·u=O 

Futhermore, we would like to represent the flow dynamics in the interior 
(Le. away from the wall) by a collection of vortex loops of uniform strength. 

. To see how we might approach this problem, consider the case of a 
rectangular loop with vortex strength e. We could understand this as a 
'cluster' of four tiles: 

1- - - - - - - - - ~ 

, - - i---------:--+ 
1 

1 1 

I--...I----!....-
1 1 

1 

1 
- -1- - - - T-

1 1 
+-___ '--_---'-+ _ ...I 

1 
1 

h 

~---~----~ -t 
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Each tile carries a two-dimensional vortex (e:z;, ey). The four tiles in the 
cluster will have strengths per unit length, starting from the right hand 
side and going clockwise around the loop: (O,-elh), (-e/h,O), (O,e/h), 
and (e/h,O). h is the width of the tile in a direction perpendicular to the 
sense of ei H is the length of the tile in the direction of the vorticity vector. 
As h --I- ° we retrieve a vortex line filament representation of the loop. 
We understand e to be the velocity discontinuity associated with the vortex 
sheet, and e/ h is the vorticity per unit length of the sheet element, or vortex 
sheet strength. (From previous discussion we can see that e/ h = (u:z;, uy).) 
We note that in general h :F H. In contrast with the usual blob/sheet 
random vortex method, the tiles overlap at the point of inception. We 
consider the clusters to move with a common random walk displacement 
(to avoid stretching induced solely by diffusion). Otherwise the tiles in the 
cluster interact independently in the sheet layer. The interaction associated 
with such tile elements has been described by Chorin [6]. If we consider the 
case h = H, a collection of tiles whose centres are located at (Xj, 1/j, Zj) will 
induce a velocity u = (u:z;,uy,uz ) at a point (Xi,1/i,Zi) in the sheet layer 
given by 

U:z; = U:z;(Xi,1/i) + 1~ eydz 

uy = Uy(Xi,1/i) - r"" e:z;dz Jzt 

a 100 

a 100 

Uz = -~ u:z;dz - £:I Uy dz 
uX z, u1/ Zi 

where the velocity U = (U:z;, Uy) represents the flow field associated with the 
interior. A discrete approximation for the horizontal components (u:z;, uy) 
at (Xi, 1/i, Zi) is 

j 

(3) 

ULi) = U~i) - 2: e~) dU) 
j 

with only those sheets included in the summation -located at (Xj, 1/j, Zj) 
- such that ° :5 d(i) :5 1, Zj ~ Zi, and the smoothing (or cutoff) function 
given by 
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The vertical component, U z at (Xi,Yi,Zi) can be determined by applying 
centre-difference approximation for derivatives: 

with 
1¥) = U~i) - 2:% eii) d~) z; 
Il) = U~i) - 2:% etj) d~) z; 

zj = min(zi, Zj) 

d~) = {(1- IXi ± ~ - Xjl!. )(1- IYi ± ~ - Yjl!.)} 
2 h 2 h 

The tiles located at (x j, Yj) are included in summation L- if a,<.!.) :5 1; simi­

larly L+ sums over those elements at (Xj, Yj) such that a,<J) :5 1. Essentially 
sheets which do not overlap do not interact with each other. The smooth­
ing functions d~) or d~) are the product of two linear tent functions: an 
implication of this representation is that the magnitude of the interaction 
between two sheets is related to their proportionate area of overlap. In fact, 
the preceding equations require to be modified slightly if one is computing 
the velocity of one tile induced by the remaining collection. We require, for 
example, 

U(i) - U(i) + !di) + "" cU) d(j) 
:c -:I: 2"'Y ~<;'Y 

J 

Since we require generally h '" H, we indicate how the preceding discrete 
approximation must be modified to incorporate tiles interacting which have 
unequal dimensions. H we consider the dimensions of the jth tile to be 
(h¥), h~j», then the smoothing funct~on above must become -

1 1 
dW = {(1- -Ix· - x ·\)(1- -Iy· - Y ·I)} h¥) I J hV)' J 

Also the smoothing function associated with the vertical component becomes 

cn±j) = (1 - -l-lx. - x . ± !(h(i) + hW)I)(l __ l_IY· - y. ± !(h(i) + h(i)I) 
h¥) I J 4:C:C hV) I J 4 Y Y 

The more general case of a polygonal loop can be construed as a cluster 
of vortex tiles by adopting a similar rationale. For example, consider the 
quadrilateral 
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For the three rectilinear sides the tiles can be constructed as before. 
The case of the non-rectilinear side suggests that a convention be adopted, 
namely if the angle the vorticity vector ~ makes with the horizontal axis is 
less than or equal to 45 degrees, the "width" of the tile is taken as in the 
vertical direction, and is the parameter h which is numerically chosen and 
is common to all loops. The "length" of the tile is taken as the horizontal 
distance been base and tip of the vector, Ax. In the present illustration the 
angle is less than 45 degrees, so a tile is constructed: 

h 
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If the angle of the vorticity vector is greater than 45 degrees, the roles 
of h and ~x are reversed: 

h 

L\x 

It is important to adopt some such convention: newly created tiles 
centred on non-rectilinear vortex vectors, but associated with two adjacent 
loops of differing vortex strength, must exactly overlap with each other. This 
implies a width factor h which is independent of individual loop geometry. 

When the tile clusters eventually leave the "sheet layer" they are made 
to regroup into a closed filament. For example if such a cluster upon leaving 
the layer (a distance typically several standard deviations thick from the 
surface) they might have the form (for example, after the individual tiles 
have advected in a non-uniform velocity field) 

-----� 
1 1 

1 
~ ____ I 

1- - - - - - - - - - - , 
1 1 

1 
t 
1 1 ___ - _______ 1 

1-----------, 
1 1 

4 
1 
1- __ -- ______ 1 
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These would be re-connected into a loop of the form: 

• ... 

... ... ... ... 
........ -0IIII·4 .. --.. ... 

... ... ... 

,-

,­
,-

... 

,­
,-

with strength e. The loop is characterised by this strength, and by its 
sign, and by the coordinates of the base and tip of each segment in the loop, 
and by a link number which points to the preceding segment in the loop. 
Each loop is assigned an integer label as well. 

The model described differs in certain respects from that described by 
Chorin [6]. In the previous work, the notion of a partitioned vortex sheet was 
being invoked; furthermore no attempt was made to model vortex stretch­
ing. In the present model, more complex sheet structures (namely vortex 
clusters) are being introduced. Each cluster has, at point of inception, over­
lapping sheets, so the clusters can be self-interacting. There is the possibility 
in -such a model to-re.present stretching of-vorticity in a manner somew.hat 
analogous to that exploited by Chorin [6] to model vortex filament stretching 
in the flow interior. 

5. Matching Boundary Flow to That of the Interior 

It is envisaged that the tiles created at 8A will enter the flow interior, 
rejoin themselves into polygonal loops, and subsequently interact with each 
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other as closed loops of uniform core, all having uniform strength. Each will 
induce a field at a point r according to the Biot-Savart law: 

1 Jax e , 
u(r) = - 47r (i3 dr 

with a = r - r', a = lal, where the integration is taken over the loop. If 
the vorticity field is a sum of N such closed vortex filaments all of uniform 
strength e, then 

e ~Jaxs u(r) = -- L.J -3- ds 
47r i:Fl a 

where s = s(r') is the unit tangent vector to the ith line, s is the arc length 
along the ith line. 

As the tiles leave the sheet-layer they become rejoined into polygonal 
loops, i.e. into loops which inevitably have acute angled corners. The flow 
evolution of discontinuities in vortex filaments leads to the development of 
"hairpins", elongating, tightly wound curling structures. These have signif­
icant effect on the local flow at smaller scales, but as one moves to larger 
scales these structures become less significant individually. This suggests 
heuristically that a strategy can be adopted to remove such hairpins, as they 
develop, from the numerical Lagrangian elements we have created. In fact 
physical observation indicates a limit to the fractal dimension of evolving 
vortex filaments which may be exceeded by computational vortex elements. 
To achieve this limitation numerically, hairpin removal strategies can be in­
voked. A more formal development of this idea is linked to renormalization 
theory (see Chorin [9]). 

This will allow us to avoid the situation where we are investing compu­
tational effort into-numerical artifices which do not significantly influence 
the flow calculation. 

We wish all the loops in the interior to have the same strength, this 
to permit us to embed Chorin's algorithms which invoke renormalization 
strategies to simplify the description of the flow (specifically to allow hair­
pin removal, loop re-connection and de-connection, etc.). These algorithms 
require uniform vortex strength of each IOOPi the strength of the continuum 
vorticity field is thus to be represented by the density of such particles. 

We wish to consider the loop filaments to have compact support; if we 
use some smoothing kernel to effect this, we shall require a rationale for 
determining the core diameter. 
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We commence the specification of these numerical parameters by nomi­
nating an interior loop vortex strength of ~ (which may be positive or nega­
tive depending upon the 'sense' of the loop as viewed from, say, the origin). 
This is to say, we wish to represent the flow by a collection of vortex loops 
of uniform strength,~. In the algorithm described previously we have de­
termined a covering of polygonal surface loops on aA of strength K., and 
these are then replaced by an integer M loops each of strength ~ such that 
M~ = K.. Each such component loop of strength ~ is then converted to 
a cluster of tiles, as previously described, these have vortex strength per 
unit length of eJh. When these tiles enter the interior, they are reformed 
into a loop, with strength~. There are further parameters to be chosen: 
the underlying uniform mesh dimensions flx and fly; and the parameter h, 
the tile 'width' which should satisfy the condition h :5 min(flx, fly). The 
number of level curves and the incremental difference between the values of 
r associated with each curve, must be chosen. Once h is determined the 
core size, (I, of the interior loops is determined, since (I = h/7r. (This choice 
ensures an interior loop segment located at the sheet-layer/interior interface 
will exert the same influence on the wall directly below it, as a sheet at this 
location would do.) 

The flow dynamics in the interior has been described elsewhere [9]. The 
loops are made to advance their position during one time step using a 
fourth-order Runge-Kutta integration. The loops are subjected to a re­
moval of sharp corners, to a re-connection if the loop structure is sufficiently 
"pinched" and to de-connection if segments (with opposite sense) belong­
ing to two loops sufficiently coincide. Either using vortex images or using 
numerical integration, the impermeability condition at the wall must be 
established in the field induced by interior loops. 

The interaction of interior loops, if performed directly, is an O(N2) oper­
ation; each segment must interact with the N -1 remaining segments. Fast 
solver strategies can reduce this computational effort to O(N), for example 
the Greengard Rokhlin method [11] or the method of Anderson [2]. 

6. On the Numerical Determination of r 

The partition of the surface which has been described in Section 3 de-
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pends upon an evaluation of the scalar function r(r E 8A), which in turn is 
determined (to within arbitrary additive irrotational functions) by the nu­
merical integration of equation (1). The line integrations can be performed 
to a level of refinement greater than that of the underlying mesh: we can 
evaluate Us at increments less than h, say. 

This field, Us, is the "departure from no-slip" at 8A arising from the 
particle kinematics of the previous time-step. This field may be expected to 
reflect the numerics of the method: to be explicit, this field is a numerical 
residual, and need not be particularly simple geometrically. The act of 
numerical line-integration introduces, of course, some smoothing of this field. 

The physical significance of the level curves is reflected in the fact that 
the spatial gradients of r are proportional to the local velocity field. Thus 
relatively large slip fields sould be associated with a greater density of level 
curves. This suggests the partitioning of 8A in this way has a naturally 
adaptive character, where the field Us is highly structured, the mesh locally 
becomes more refined. 

Obviously, once one has established level curves (or a partitioning con­
sistent with these curves) one should expect the "departure from no-slip" 
velocity field to point normally to these curves. Given the character of the 
discretization of the line integration one would expect this condition of nor­
mal flow to be satisfied at best in approximation. Once the N level curves, 
r(r E 8A) = ci,i = 1,"',N, have been determined, one needs to evaluate 
the velocity Ui (including, importantly, the sign of u with respect the level 
curve) at least at one point on each ofthese curves (the velocity should be of 
equal magnitude along a given curve - this providing, incidentally, another 
test for validation of the numerics). This evaluation can be performed by 
using equations (3). 

7. A Test-bed Example: A Finite Flat Plate 

To illustrate numerically the algorithm we have described, we consider 
the case of flow (initially uniform with unit magnitude in the x direction) 
over a square flat plate lying in the x - y plane, and of dimensions 1 X 1 units. 
The z-direction points vertically upward from the plate into the interior flow 
which occupies the half-space z > o. 
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The algorithm assumes full meaning on a closed surface aA in three­
dimensional space, thus the present illustration (chosen because of its obvi­
ous simplicity of metric) does introduce edge boundaries which need to be 
rationally modelled. If we conceive of the plate as lying in the z = 0 plane in 
R3 , we can consider the underlying mesh (and the subsequent repartition­
ing) to "wrap aoumd" each edge, continuing on the underside of the plate. 
We can consider the flow above and below the plate to be symmetric, and 
that th,e plate itself shields the upper sheet dynamics from that below. We 
thus consider the upper surface alone: the surface loops along the edge of 
the plate are considered to be adjacent to identical loops (conceptually on 
the underside) which result in a cancellation of vorticity (at inception) of 
tiles centered along the plate edges. 

The edge tiles regain their vorticity as they rejoin into loops upon leaving 
the sheet layer (the notion being that they, at this stage, rip themselves away 
from their underside counterparts). Once the tiles leave the sheet layer, 
and become loops, the impermeability condition at the plate is effected by 
introducing image loops. 

The following steps are performed during a single time-step of the algo­
rithm (subroutines refer to program lop6cray.f): 

Step 1 (subroutine mesher) 
An underlying 8 x 8 mesh is constructed on the plate. This in tum is 

subdivided into a 31 X 31 mesh, at each node of which the tangential velocity 
field is calculated. This is integrated using trapezoidal rule to determine 
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r(x, y) at each node of this fine inner mesh. (The integration is taken first 
along the bottom edge of the plate in the x direction; using these as initial 
values for a set of 31 integrations along the y-directions.) The values of 
r(x, y) on the 8 x 8 mesh points are stored. The maximum and minimum 
of this latter field is determined. The incremental values of the (nlevs) level 
curves are calculated from (r max - r min)jnlevs 

Step 2 (subroutine repart) 
i,From the r( Xi, yj) and previously determined values of the level curves, 

a repartitioning of the underlying mesh is constructed. Each polygon loop 
is identified by the coordinates of its vertices (xvert,yvert), the number of 
vertices (iahd), and the strength of the loop (this indicated by an integer, 
the ikth level). Also the strength (and sign) of the vorticity associated with 
each level is determined by taking a point on each of the level curves of r 
and evaluating there us. This is effectively the eJh described in Section 2. 

Step 3 (subroutine create) 
Having repartitioned the surface, the polygon loops are then superposed 

according to the equation (2); the resulting distribution of surface loops 
is then, decomposed into a summation over loops of uniform, pre-assigned, 
strength. Each of these loops in turn is converted into a cluster of tiles. Each 
cluster is assigned a label. Each side of the polygon forms an individual tile 
characterized by its center, by its (common pre-assigned) width h, by its 
(individually determined) length; by its strength (a two-component vector), 
by the sign (or sense) of the originating polygon loop, and the number of 
tiles in a given cluster. Edge boundary values of this strength are assigned 
as discussed earlier. These tiles and clusters are attached to the existing list 
of tiles and clusters. 

Step 4 (subroutine getdt) 
The incremental time-step is determined so that hjumax < dt, essentially 

a CFL condition, where.h is the tile width, U max is the maximum velocity 
of flow at the sheet layer/ interior interface. 

Step 5 (subroutine stept) 
The tile locations are advanced according to the algorithm described pre­

viously (and in Chorin [6]). Euler stepping is used for advection. Gaussian 
random walk in the z-directiori. models diffusion. The external flow consists 
of the initial free stream, plus the field induced by existant vortex loops in 
the interior. 

Step 6 (subroutine stepf) 
The positions of loop elements in the interior are advanced according to 

the algorithm described in Chorin [6]. Fourth order Runge-Kutta is used 
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for advection. The interaction formulae have been modified to incorporate 
image loops to effect impermeability. 

Step 1 (subroutine convert) 
Tile clusters which have crossed the sheet-Iayer/ interior interface are 

rejoined into loops: each loop is characterized by an integer label, by co­
ordinate positions of the two ends of each segment in the loop; by a link 
list which identifies the predecessor of each segment in the loop (at point 
of inception, "looking back" in an anticlockwise sense), the loop strength 
(preassigned) and the sense (or sign) of the vorticity of the loop at point of 
inception. 

Step 8 (subroutines delete, divide, deconn, reconn) 
The loops are subjected to Chorin's [9] renormalization strategy for mod­

elling loop-loop interaction dynamics. Specifically the possibility for loop 
reconnection and deconnection is incorporated into the kinematics. Sharp 
corners (or potential hairpins) in the loop structure are removed. These 
program contain various adjustible parameters. 

Step 9 (subroutine cleanup) 
The tile clusters which have left the sheet layer to become loops (or 

alternatively deep into the wall to be annihilated) are erased from the list 
of such clusters; the labelling is re-ordered accordingly. 

Return to Step 1 

To illustrate the algorithm in the early stages of time evolution, a flat 
plate has been subjected to incident flow of unit magnitude. An underlying 
6 x 6 mesh is constructed. The number of level curves to be considered has 
been chosen to be 5. (At the first step these curves coincide with various 
grid lines of the underlying mesh.) 78 clusters are then created (consisting 
of 778 sheets) as described previously, and are then made to diffuse during 
the first time step. 

At the beginning of time step 2 the level curves are again computed. The 
resulting partition is illustrated in Fig. 1a. The polygons are quadrilaterals 
in this case. 714 sheets are created during this step. Also sheets emerge 
from the sheet layer to form 400 filament segments (which corresponds to 
50 loops). After invoking the renormalization strategy there remain 342 
filament elements. A plan view of these loops is shown in Fig. lb. 

The partition associated with time step 3 is illustrated in Fig. 2a. At 
this step 154 additional sheet clusters are created, resulting in a total of 
1590 sheets in the sheet layer. Fig. 2b illustrates the filament loops which 
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have entered the flow interior prior to, and during, this step. After renor­
malization, there are 1709 such filament elements. 

Fig. 3a illustrates the partition for the 4th time step. In this step 574 
sheets were created, bringing the total in the sheet layer to 1953. Fig. 3b 
illustrates the resulting (after renormalization) 3687 filament segments from 
the first four time steps. Fig. 3c shows an "elevation" view ofthese elements. 

8. Further Work 

An algorithm has been proposed for the creation of vortex loop elements 
at a no-slip surface. This has been implemented in a preliminary way for the 
case of a flat plate. Further investigation of this algorithm should determine 
improvements to the basic strategy. In particular the appropriate values of 
the various parameters associated with the renormalization algorithms still 
require to be numerically explored. Also some study of the accuracy with 
which level curves are numerically determined should be made. 
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Figure la Partition of surface at beginning of time step 2. 
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Figure lb Loop filaments which have entered the flow interior from the 
sheet layer by completion of time step 2. 
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Figure 2a Partition of surface at beginning of time step 3. 

28 



Figure 2b Loop filaments in flow interior at time step 3. 
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Figure 3a Partition of surface at beginning of time step 4. 
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Figure 3b Loop filaments in flow interior at time step 4. 
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Figure 3c Loop filaments in flow interior at time step 4: an elevation 
view. 
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