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Sequencing of diverse mandarin, pummelo and orange genomes 
reveals complex history of admixture during citrus 
domestication

A full list of authors and affiliations appears at the end of the article.

Abstract

The domestication of citrus, is poorly understood. Cultivated types are selections from, or hybrids 

of, wild progenitor species, whose identities and contributions remain controversial. By 

comparative analysis of a collection of citrus genomes, including a high quality haploid reference, 

we show that cultivated types were derived from two progenitor species. Though cultivated 

pummelos represent selections from a single progenitor species, C. maxima, cultivated mandarins 

are introgressions of C. maxima into the ancestral mandarin species, C. reticulata. The most 

widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour 

orange is an F1 hybrid of pure C. maxima and C. reticulata parents, implying that wild mandarins 

were part of the early breeding germplasm. A wild “mandarin” from China exhibited substantial 
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divergence from C. reticulata, suggesting the possibility of other unrecognized wild citrus species. 

Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and 

enables sequence-directed genetic improvement.

Citrus are widely consumed worldwide as juice or fresh fruit, providing important sources of 

vitamin C and other health-promoting compounds. Global production in 2012 exceeded 86 

million metric tons, with an estimated value of US$9 billion (http://www.fas.usda.gov/

psdonline/circulars/citrus.pdf). The very narrow genetic diversity of cultivated citrus makes 

it highly vulnerable to disease outbreaks, including citrus greening disease (also known as 

Huanglongbing or HLB), which is rapidly spreading throughout the world’s major citrus 

producing regions1. Understanding the population genomics and domestication of citrus will 

enable strategies for improvements including resistance to greening and other diseases.

The domestication and distribution of edible citrus types began several thousand years ago 

in Southeast Asia and spread globally following ancient land and sea routes. The lineages 

that gave rise to most modern cultivated varieties, however, are lost in undocumented 

antiquity, and their identities remain controversial2, 3. Several features of Citrus biology and 

cultivation make deciphering these origins difficult. Cultivated varieties are typically 

propagated clonally by grafting and through asexual seed production (apomixis via nucellar 

polyembryony) to maintain desirable combinations of traits (Fig. 1). Thus many important 

cultivar groups have characteristic basic genotypes that presumably arose through inter 

specific hybridization and/or successive introgressive hybridizations of wild ancestral 

species. These domestication events predated the global expansion of citrus cultivation by 

hundreds or perhaps thousands of years, with no record of the domestication process. 

Diversity within such groups arises through accumulated somatic mutations, generally 

without sexual recombination, either as limb sports on trees or variants among apomictic 

seedling progeny.

Two wild species are believed to have contributed to domesticated pummelos, mandarins 

and oranges (Supplementary Note 1). Based on morphology and genetic markers, 

“pummelos” have generally been identified with the wild species C. maxima (Burm.) Merrill 

that is indigenous to Southeast Asia. Although “mandarins” are similarly widely identified 

with the species C. reticulata Blanco4–6, wild populations of C. reticulata have not been 

definitively described. Various authors have taken different approaches to classifying 

mandarins, and several naming conventions have been developed7, 8. Here we emphasize 

that the term “mandarin” is a commercial or popular designation referring to citrus with 

small, easy-peeling, sweet fruit, and not necessarily a taxonomic one. We use the qualifier 

“traditional” to refer to mandarins without previously suspected admixture from other 

ancestral species, to distinguish them from mandarin types that are known or believed to be 

recent hybrids. For clarity we use "×" in the systematic name of such known hybrids (see 

e.g., Ref.9). Recognizing that genome sequencing and diversity analysis has provided 

insights into the domestication history of several other fruit crops10, 11, cereals12, 13 and 

other crops (reviewed in Ref.14), we sequenced and analyzed the genomes of a diverse 

collection of cultivated pummelos, mandarins and oranges to test the pummelo-mandarin 

species hypothesis and to uncover the origins of several important citrus cultivars.
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Results

A high quality reference Clementine genome

To provide a genomic platform for analyzing Citrus, we generated a high quality reference 

genome from ~7× Sanger dideoxy whole genome shotgun coverage of a haploid derivative 

of Clementine “mandarin” (C. × clementina cv. Clemenules)15 (Supplementary Note 2). The 

use of haploid material (derived from a single ovule after induced gynogenesis15, 16) 

removes complications that arise when assembling outbred diploid genomes. The resulting 

301.4 Mbp reference sequence is nearly complete, with superior assembly contiguity (contig 

L50 = 119 kbp) and scaffolding (scaffold L50 before pseudochromosome construction = 6.8 

Mbp) compared to a recently published sweet orange draft sequence17 (Supplementary Note 

2). The long scaffolds allowed us to construct pseudochromosomes by assigning 96% of the 

assembly to a location on the nine citrus chromosomes using the latest citrus genetic map18, 

compared with only 79% in the sweet orange draft17(Supplementary Note 2). From 

sequence data we also inferred the phase of the two diploid Clementine haplotypes, 

identifying ten crossovers from the meiosis that produced the haploid Clementine 

(Supplementary Fig. 1), and annotated nominal centromeres as large regions of low 

recombination (Supplementary Figs. 2–11). Independently we also sequenced and 

assembled a draft genome of the (diploid) sweet orange variety ‘Ridge Pineapple’ by 

combining deep 454 sequence with light Sanger sampling (Supplementary Note 3) and 

inferred chromosome phasing using the recently reported rough draft genome of a sweet-

orange-derived dihaploid17.

The citrus genome retains substantial segmental synteny (that is, local co-linearity) with 

other eudicots, although it has experienced extensive large-scale rearrangement on the 

chromosome scale (Supplementary Note 4). Based on analysis of synteny we propose a 

specific model for the origin of the citrus genome from the paleo-hexaploid eudicot 

ancestor19 through a series of chromosome fissions and fusions (Supplementary Figs. 

12,13). Despite the compactness of the citrus genome, 45% is repetitive, with long-terminal 

repeat retrotransposons and numerous uncharacterized elements, each making up nearly half 

of the repetitive content; the remainder comprises DNA transposons and LINEs 

(Supplementary Note 5). We identified ~25,000 protein-coding gene loci in both Clementine 

and sweet orange by computational methods combined with extensive long-read 454 and 

Sanger expressed sequence tags (Supplementary Note 5).

Investigation of citrus ancestry

To investigate the origin of cultivated varieties, we sequenced the genomes of four 

mandarins (including Clementine), two pummelos and one sour orange, as well as the sweet 

orange genome reported above (Table 1, Supplementary Table 1, Supplementary Notes 1,6). 

(Cultivars derived from C. medica (the third purported wild species), i.e., citrons, limes and 

lemons, were not part of this study.) Two distinct types of chloroplast genomes (cpDNA) 

were readily identified, with mandarins all having one type (which we define as “M” for 

mandarin or C. reticulata) and pummelos and oranges sharing another type (defined as “P” 

for pummelo or C. maxima), with limited variation within each cpDNA type 

(Supplementary Note 6), consistent with prior studies of mitochondrial markers20. Citrus 
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nuclear genomes tell a more complex story (Supplementary Notes 7, 8). We find that while 

the sequenced pummelos are evidently genotypes from the sexual C. maxima species with 

minimal introgression of other species, all the mandarin-type citrus we sequenced show 

substantial admixture with pummelo and therefore cannot simply be selections from an 

ancestral C. reticulata population (Fig. 2,3). The sweet and sour oranges are also hybrids of 

varying complexity, with pummelo-type chloroplast genomes in both cases.

Ancestry of pummelos

The two diploid pummelos that we sequenced contain three distinct haplotypes, since Low 

acid (Siamese Sweet) pummelo is the known female parent of Chandler pummelo21, so that 

the two pummelos share one haplotype at each locus (Supplementary Note 9). Within the 

two sequenced pummelos and between their non-shared alleles (derived from the other 

parent of Chandler, i.e., Siamese Pink pummelo) modest levels of heterozygosity were 

observed, with a genome-wide nucleotide heterozygosity of 5.7 heterozygous (het) sites/kb 

(Fig. 2a). The presence of a second low-heterozygosity peak (~1 het site/kb) in the 

distribution can be explained by a strong ancient bottleneck in the C. maxima population 

~100–300 kya (Supplementary Note 10). Our reanalysis of three Chinese pummelos 

previously reported17 (including the Wusuan pummelo that we identify as from the same 

somatic lineage as Siamese Sweet pummelo), shows that both Thai and Chinese pummelos 

are derived from the same wild population (Supplementary Note 11). Only a single short 1.5 

Mb segment on chromosome 2 of Chandler shows unusually high heterozygosity that could 

reflect interspecific introgression. These observations are consistent with pummelo 

domestication by selection from a wild sexual C. maxima population.

Ancestry of mandarins

To sample a range of mandarin types, we sequenced two “traditional” mandarins without 

prior suspected admixture (Ponkan, an old and widely grown Asian variety that was 

presumed to be typical of C. reticulata, and Willowleaf, a common Mediterranean variety) 

as well as two mandarins believed to be hybrids of “traditional” mandarins with other citrus 

(Clementine, the diploid parent of the haploid reference accession, and W. Murcott (believed 

to be synonymous with the cultivar also known as Nadorcott and Afourer), widely grown in 

California and the Mediterranean (Supplementary Note 1)). In contrast to pummelos, the 

“mandarin” accessions we sequenced typically include segments of high nucleotide 

heterozygosity (~17 het sites/kb, consistent with inter-specific variation) that span tens of 

cM or Mbp (Fig. 2b). These highly heterozygous blocks are interspersed with long segments 

of substantially lower levels of heterozygosity (~5 het sites/kilobase) that are consistent with 

intra-specific variation and clearly distinct from the higher-heterozygosity blocks (Fig. 2c)). 

In the lower heterozygosity segments, both alleles are often distinct from those observed in 

the pummelos and presumably derive from C. reticulata, which is widely cited as the true 

species from which cultivated mandarins arose7. In contrast, the higher heterozygosity 

blocks typically carry one allele that matches the pummelos, and one non-pummelo allele, 

also presumably C. reticulata. The presumptive C. reticulata alleles are typically common to 

multiple mandarin accessions, further supporting their identification.
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Thus, our surprising conclusion is that “traditional” mandarin types like Ponkan and 

Willowleaf, are in fact interspecific introgressions of C. maxima (pummelo) into C. 

reticulata (wild mandarin). Furthermore, although these traditional mandarins were 

previously thought to be unrelated, we detect extensive haplotype sharing between them 

(Supplemental Note 10). Because microsatellite-based population structure analyses of a 

wide range of citrus genotypes shows mandarins as a defined cluster of genotypes22, such 

admixture is likely widespread among mandarin types. Indeed, reanalysis of a recently 

sequenced Chinese mandarin17 in the light of our discovery of interspecific introgression in 

multiple mandarin types, shows that the traditional Chinese Huanglingmiao mandarin 

(incorrectly treated previously16 as a pure C. reticulata) also exhibits unsuspected admixture 

between C. reticulata and C. maxima (Supplementary Note 11).

Although none of our cultivated mandarin genotypes represent pure C. reticulata, we can 

nevertheless extract wild mandarin alleles from our data by comparing the (admixed) 

cultivated mandarins with each other and the two pure pummelos. By such genome-wide 

comparisons we identified 1,537,264 putative fixed single nucleotide differences between C. 

reticulata and C. maxima (Supplementary File 1, Supplementary Note 7). These diagnostic 

variants can in turn be used to partition the mandarin, pummelo and orange genomes into 

segments according to their species ancestry (Fig. 3). The characterization of C. reticulata 

genomic segments from modern mandarins is analogous to the extraction of African 

haplotypes from Mexican Americans23[SEP1]and native American haplotypes from extant 

ethnic human populations that are admixtures with American, African and European roots24.

We can estimate the parameters of a simple population genetic model for the divergence of 

C. reticulata and C. maxima from an ancestral south Asian citrus founder population, using 

a coalescent framework and our collection of fixed interspecific differences and intraspecific 

variation (Supplementary Note 9). This analysis is consistent with effective population sizes 

of several hundred thousand trees for C. maxima and somewhat fewer for C. reticulata, with 

larger effective population size for pummelos in keeping with their higher heterozygosity. 

Note that the likely occurrence of apomixis in wild mandarin populations, a trait that seems 

to be absent in C. maxima, may contribute to reducing the effective C. reticulata population 

size relative to the census size. If we assume a per site mutation rate of µ ~1 –2 × 10−9/yr 

(comparable to that observed in poplar trees25) then we can estimate that C. reticulata and 

C. maxima diverged ~1.6–3.2 Mya, consistent with the divergence between Citrus and the 

related genus Poncirus, which is estimated at 4–9.6 Mya26. As noted, the excess of low 

heterozygosity segments in pummelo is consistent with a substantial population bottleneck 

several hundred thousand years ago and prior to the separation of Thai and Chinese 

pummelo lineages (Supplementary Notes 9, 11).

Some specific citrus genotypes are generally recognized as “hybrid” varieties. For example, 

Clementine mandarin (also known as Algerian tangerine) is believed to be a chance seedling 

from a Mediterranean mandarin (e.g., Willowleaf) selected just over a century ago in 

Algeria27. Although various male parents have been proposed, serological and molecular 

studies demonstrated that the Clementine was likely a mandarin × sweet orange 

hybrid6, 18, 28. We confirm this hypothesis at the sequence level by definitively identifying a 

Willowleaf and sweet orange allele at each Clementine locus; demarcating the 
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recombination breakpoints in the meiosis that produced the haploid Clementine sequence; 

and determining the Willowleaf and sweet orange haplotypes that contributed to diploid 

Clementine (Supplementary Note 10, Supplementary Fig. 14,15). Similarly, the W. Murcott 

mandarin is believed to be a chance zygotic seedling of Murcott tangor, itself a presumed F1 

hybrid of sweet orange and an unknown mandarin. Our sequence analysis is consistent with 

the suspected grandparent/grandchild relationship between sweet orange and W. Murcott 

(Supplementary Note 10). Although the other parent and grandparent of W. Murcott are not 

known (but see29), a search for these ancestors will be enabled by the other observed alleles.

Ancestry of oranges

Sweet orange (C. × sinensis L. Osbeck) is the citrus type most widely cultivated for fruit and 

juice and is widely believed to be an interspecific hybrid, but its origin is unknown4, 6. 

Different sweet orange cultivars share the same genomic organization with little sequence 

variation, having arisen by mutation from the original sweet orange domesticate (see, e.g. 

Ref.30). Using our genome-wide catalog of fixed C. reticulata vs. C. maxima alleles, we can 

represent the sweet orange genome as segments of these two parental species or hybrid 

segments thereof (Supplementary Note 10; Fig. 2d), with clear boundaries between different 

segments types (Fig. 3a). A recently proposed “(P×M)×M” backcross scheme for the 

derivation of sweet orange from mandarin and pummelo17, however, is easily ruled out by 

the presence of clear “P/P” (i.e., C. maxima/C. maxima) segments in sweet orange, which 

requires both parents to have some pummelo ancestry. (The P/P segment on chromosome 2 

has been confirmed by directed resequencing of three genes in this region31.)

Unexpectedly, in our analysis we found that sweet orange shares alleles with Ponkan 

mandarin across nearly three-quarters of the genome, and many of the same segments are 

also shared with Willowleaf and Huanglingmiao (Supplementary Note 10; Supplementary 

Fig. 16). This leads to the surprising conclusion that these three traditional mandarins, 

previously considered independent selections, in fact show substantial kinship with each 

other and an ancestor of sweet orange, suggesting much more limited genetic diversity 

among the traditional mandarins than previously recognized (Supplementary Note 10). The 

nature of the other parent of sweet orange is more difficult to infer, but the distribution of 

heterozygous segments in sweet orange (Supplementary Fig. 17) and its pummelo-type 

chloroplast genome are more readily accounted for if the female parent was itself a 

pummelo with substantial introgression of wild mandarin (Supplementary Note 9).

Finally, Seville or sour orange (also known as C. × aurantium), which has historically been 

an important rootstock for citrus and, more familiarly, is used in marmalade and other 

products, is another traditional cultivar type that is widely regarded as a pummelo-mandarin 

hybrid. Our genomic analysis shows that sour orange is indeed the direct result of a simple 

interspecific F1 cross between a pummelo (C. maxima) seed parent and a wild mandarin (C. 

reticulata) pollen parent (Supplementary Note 10). Surprisingly in light of our discovery of 

widespread pummelo admixture among traditional mandarins, no such admixture is found in 

the C. reticulata parent of sour orange, but the specific parental genotypes remain unknown. 

Sour orange may have arisen as a natural hybrid of two wild Citrus species, and persisted by 

Wu et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



virtue of its reproduction through apomixis, followed by deliberate human cultivation and 

distribution. We found no detectable recent relationship between sweet and sour orange.

Chinese Mangshan represents a distinct species, C. mangshanensis

Among cultivars traditionally classified as “mandarins”, however, we found another 

surprise. Our analysis of the genome of a presumed “wild mandarin” from Mangshan, 

China17 (CMS) shows (i) a chloroplast genome that is distinct from both C. reticulata and 

C. maxima (Fig. 4a); (ii) limited heterozygosity (Fig. 4b), again uniformly distributed across 

the genome, and no segments of pummelo or mandarin ancestry, indicating no admixture; 

(iii) ~2% homozygous differences from both C. reticulata and C. maxima uniformly across 

the genome, a rate comparable to the divergence between C. maxima and C. reticulata (Fig. 

4b). At the level of nucleotide diversity, CMS is as diverged from C. maxima and C. 

reticulata as they are from each other (Fig. 4b) and is clearly separated from pummelos, 

oranges and mandarins by principal coordinate analysis (Fig. 4c, Supplementary Note 11). 

By all these measures, we find that Mangshan “mandarin”is unrelated to the other cultivated 

mandarins discussed above (including Huanglingmiao mandarin). We therefore propose that 

despite its morphology Mangshan “mandarin” represents a distinct species from C. 

reticulata, supporting the nomenclature C. mangshanensis32.

Discussion

Our genomic analyses clarify some of the murky early history of citrus domestication. The 

nuclear and chloroplast genomes of cultivated pummelos are consistent with the 

identification of pummelos as a single Citrus species, C. maxima. In contrast, the nuclear 

genomes of sequenced “mandarin” type cultivars all contain substantial admixture of C. 

maxima, despite the similarity of mandarin chloroplast sequences. Our results thus show that 

the various conventional Citrus taxonomies that associate mandarin citrus types with the 

ancestral Citrus species C. reticulata are too simplistic. It is particularly surprising that even 

the traditional mandarin types with no prior suspicion of relatedness or admixture such as 

Ponkan, Willowleaf and Huanglingmiao mandarin show substantial haplotype sharing and 

all include introgressed pummelo segments. A supposed “wild mandarin” from Mangshan, 

China, turns out to represent a distinct taxon only distantly related to C. reticulata, based on 

analysis of its nuclear and chloroplast genomes. (In a previous analysis of sweet orange 

ancestry17, Mangshan “mandarin” Clementine and Huanglingmiao were used to represent C. 

reticulata. Our discovery of substantial pummelo admixture in Clementine and 

Huanglingmiao, and the distinctness of Mangshan “mandarin” from C. reticulata, further 

invalidates their conclusions.)

Remarkably, even in the absence of a pure type specimen for C. reticulata, we can 

characterize the genome of this wild mandarin progenitor species from genome-wide 

comparative analysis of admixed descendants23. Our collection of 1,537,264 SNPs 

(Supplementary File 1) that differentiate C. reticulata from C. maxima can be used to guide 

the search for pure C. reticulata mandarin types (or recognize other cryptic species) among 

the hundreds of known cultivars and other germplasm accessions. Small-fruited mandarins 

that are less desirable for fresh consumption based on appearance, flavor, texture and aroma 
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may be considered likely candidates. With the discovery that C. mangshanensis is a distinct 

group, the possibility of additional undescribed wild Citrus species must also be considered.

The prevalence of interspecific admixture in cultivated citrus suggests that either early in 

domestication or in a natural hybrid zone prior to domestication, C. reticulata and C. 

maxima interbreeding occurred. Given the typical size of the hybrid blocks, only a few 

generations of introgression occurred prior to the selection of attractive cultivars, which 

were then propagated asexually by apomictic or vegetative means, perhaps in southern 

China33. Our analysis of sweet orange and sour orange shows that these ancient and widely 

cultivated genotypes are pummelo-mandarin admixtures that are unrelated to each other, 

despite some degree of phenotypic similarity34. The discovery that sour orange is a simple 

F1 hybrid of C. maxima and C. reticulata implies that pure C. reticulata individuals were 

part of the breeding germplasm at the origin of sour orange. Remarkably, we found that 

extant Ponkan, Willowleaf and Huanglingmiao mandarins are related to each other and to 

the male parent of sweet orange. Although the female parent of sweet orange remains 

unknown, it cannot have been a pure pummelo (though it had pummelo cytoplasm, based on 

cpDNA and mtDNA20). Its identity is constrained by the high proportion of hybrid P/M 

segments in sweet orange, which can be naturally explained if the female parent of sweet 

orange were (P×M)×P.

Like many other agricultural enterprises, the global citrus industry relies substantially on 

large-scale monoculture which makes it particularly challenging to meet consumer demand 

for greater product diversity while trying to incorporate tolerance and/or resistance to biotic 

and potentially catastrophic abiotic stresses35. Advances in citrus genomics36, 37 should 

soon allow the identification of the somatic mutations that, with their ancient genetic 

backgrounds, underlie the diversity of citrus color, flavor and aroma in modern cultivars. 

Our analysis of the relationships between cultivated citrus and the ancestral species from 

which they were derived emphasizes the limited ancestral germplasm that contributed to the 

commercially important cultivar types like sweet orange, and highlights the opportunities for 

the creation of new combinations of the ancestral citrus types with novel fruit quality traits 

or even the re-creation of sweet orange with improved disease resistance via sexual 

hybridization, beyond the current approaches based on somatic mutations and genetic 

engineering.

Online Methods

Haploid C. × clementina ‘Clemenules’ sequencing and assembly

A total of 4.6M Sanger reads (including 469k fosmid end and 73k BAC end reads), were 

obtained from an induced haploid plant C. × clementina ‘Clemenules’, assembled with 

Arachne and integrated with a genetic map producing chromosome-scale pseudo-molecules 

(nearly 97% of ESTs aligned to the genome) (Supplementary Note 2).

C. × sinensis genome sequencing and assembly

A total of 16.5 Gb sequence (36M 454 reads and 750k Sanger PE reads) was generated from 

C. × sinensis ‘Ridge Pineapple’ and assembled with Newbler (Supplementary Note 3).
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Annotation of repeats and genes in citrus genome assemblies

Repeat analysis was performed separately in the Clementine and sweet orange genomes. The 

method used RepeatModeler to find novel repeats in the genome sequence, which were 

masked with RepeatMasker. Following this, PASA was used to align and assemble ESTs 

(1.6M for clementine; 6.5M for sweet orange) and integrate Fgenesh+, exonerate and 

GenomeScan gene predictions to generate gene models (Supplementary Note 4).

Evolutionary comparisons with other plant genomes

Evolutionary comparisons to plant genomes used ortholog assignment to generate 

chromosome to chromosome relationships within and between genomes and predict 

ancestral genome structures (Supplementary Note 5).

Analysis of resequencing datasets

Illumina shotgun sequence reads from eight accessions (17×−110× depth; Table 1) were 

mapped to the haploid Clementine reference using bwa, and single nucleotide variants were 

identified using samtools and in-house scripts (Supplementary Note 6). Heterozygosity in 

diploid accessions was estimated in windows of 100–500 kb by dividing the number of 

confidently inferred heterozygous single nucleotide variant (“het”) sites by the number of 

eligible sites in the window at which confident variant calls could be made, based on depth 

and alignment quality (Supplementary Note 6).

Identification of two ancestral species (C. maximavs. C. reticulata alleles) and admixture 
analysis

Diagnostic alleles for the two ancestral Citrus species, C. maxima and C. reticulata, were 

derived from a comparative analysis of two pummelos and two traditional mandarin types, 

and were used to study the admixture patterns in the sequenced cultivars (Supplementary 

Notes 7 and 8).

Population genetic analysis and simulations

Population genetic analysis of the two citrus species and demographic inference were based 

on coalescent simulations conducted using MaCS (Supplementary Note 10).

Analysis of relatedness in citrus

Parentage and relatedness analysis for Clementine and other citrus genomes made use of 

homozygous SNPs in each diploid genome relative to the haploid Clementine reference as 

well as to the inferred second haplotype of Clementine (Supplementary Notes 9 and 11). In 

the same way, the haploid sweet orange assembly was used for identifying shared 

haplotypes with sweet orange (Supplementary Note 9). A modified identical-by-state (IBS) 

method was used for haplotype sharing analysis among mandarins and other citrus pairs 

(Supplementary Note 9).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A selection of mandarin, pummelo and orange fruits, including cultivars sequenced in this 

study. Pummelos (numbered 1, 2 in outline, on left) are large trees that produce very large 

fruit, with white, pink or red flesh color (2) and yellow or pink rinds. Most cultivars have 

large leaves having petioles with prominent wings. Apomictic reproduction is absent and 

most selections are self-incompatible. Mandarins (3–7) are smaller trees bearing smaller 

fruit, with orange flesh (9, 11) and rind color. Mandarins have both apomictic and zygotic 

reproduction and some are self-compatible. Oranges (8, 10) are generally intermediate in 
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tree and fruit size, flesh (10) and rind color is commonly orange, and apomictic reproduction 

is always present. (The sour orange shown (12) is immature.)
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Figure 2. 
Nucleotide diversity distribution in citrus.(a) Nucleotide heterozygosity distribution 

computed in overlapping 100kb windows (with 5 kb step size) across the Low acid (LAP) 

and Chandler (CHP) pummelo genomes and between the non-shared haplotypes of this 

parent-child pair (LAP/CHP) is shown. The peak at ~6 heterozygous sites/kb in all three 

pairwise comparisons represents the characteristic nucleotide diversity of the species C. 

maxima; the peak near ~1 heterozygous site/kb reflects a bottleneck in the ancestral C. 

maxima population after divergence from C. reticulata (Supplementary Note 10). (b) 
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Nucleotide heterozygosity for the traditional Willowleaf mandarin (WLM) plotted along 

chromosome 6, computed in overlapping windows of 200 kb (with 100 kb step size). This 

chromosome shows an example of the clear discontinuity in single nucleotide variant 

heterozygosity levels between ~5/kb in the M/M segment (orange bar) and ~17/kb in the 

M/P segment (blue bar). (c) Nucleotide heterozygosity distribution computed in overlapping 

500kb windows (with 5 kb step size) in Ponkan (PKM, solid line) and Willowleaf (WLM, 

dashed line) mandarins. Genomic segments are designated M/M, M/P or P/P based on a set 

of 1,537,264 SNPs that differentiate C. reticulata (M) from C. maxima (P). Both mandarins 

contain admixed segments from C. maxima introgression (M/P) as well as M/M segments, 

and these are plotted and normalized separately for easy comparison.. (d) Nucleotide 

heterozygosity distribution computed in overlapping windows of 500kb (5 kb offsets) for 

sweet orange (SWO) and sour orange (SSO). The three different genotypes of the SWO 

genome (M/M, P/P and M/P), and the SSO genotype M/P are normalized and plotted 

separately
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Figure 3. 
Admixture patterns and nucleotide diversity in cultivated citrus. For each of the three groups 

of sequenced citrus, variation in nucleotide diversity (averaged over 500kb windows with 

step size 250kb) is shown across the genome for one representative cultivar above genotype 

maps (horizontal bars: green = C. maxima/C. maxima; blue = C. maxima/C. reticulata; 

orange= C. reticulata/C. reticulata; grey=unknown; the 9 chromosomes are numbered at the 

top). (a) Sweet orange (SWO) nucleotide diversity with genotype maps for SWO and sour 

orange (SSO). Note the C. maxima/C. maxima genotype (green segments present on 
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chromosomes 2 and 8) in SWO. (b) Willowleaf mandarin (WLM) nucleotide diversity and 

genotype maps for three traditional mandarins (Ponkan mandarin (PKM), WLM, 

Huanglingmiao (HLM)) and three recent mandarin types (Clementine (CLM), W. Murcott 

mandarin (WMM), haploid Clementine reference (HCR)). For the haploid Clementine 

reference sequence (HCR), red and green segments indicate C.reticulata and C. maxima 

haplotypes, respectively. All five mandarin types show pummelo introgressions (blue or 

green segments). (c) Low acid pummelo (LAP) nucleotide diversity and genotype maps for 

two pummelos (LAP, Chandler pummelo (CHP)).
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Figure 4. Mangshan mandarin is a species distinct from C. maxima and C. reticulata
(a) Midpoint-rooted neighbor-joining phylogenetic tree of citrus chloroplast genomes. (b) 

The frequency distributions of the pairwise sequence divergences (across 100 kb windows) 

between Mangshan mandarin (CMS) and C. maxima (green), CMS and C. reticulata 

(orange), C. reticulata and C. maxima (light blue), as well as the distinctly lower CMS 

intrinsic nucleotide diversity (dashed blue). (c) The first two coordinates of principal 

coordinate analysis of the citrus nuclear genomes, based on pairwise distances and the 

metric multidimensional scaling. The C. maxima - C. reticulata axis (Principle coordinate 1, 

47.5% variance) separates pummelos (green) from mandarins (orange), with oranges (blue) 

lying in between; Principle coordinate 2 (19.6% of variance) separates CMS (purple) from 

the others.
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