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ABSTRACT OF THE THESIS 

 

 

RNA-Seq Analysis of Pancreatic Ductal Adenocarcinoma:  

Epigenetic Modulation and Gemcitabine Adaptation 

 

by 

 

Yuxin Shi 

 

Master of Science in Bioengineering 

University of California San Diego, 2018 

 

Professor Yingxiao Wang, Chair 

 

Chemotherapy is the dominant treatment approach to many cancers. For decades, 

Gemcitabine (GEM) has been used as the first-line therapy for pancreatic ductal adenocarcinoma 

(PDAC), one of the most fatal solid tumor, but its competence is disappointingly constrained by 
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intrinsic or adaptive resistance. The mechanisms beneath such resistance have been intensively 

studied with great efforts and its correlations with many genes and pathways have been found.  

However, our knowledge has not been unified to provide abundant information for major 

advances, since the whole landscape in which drug adaptation and gene expressions are 

associated is not yet clear. Moreover, little had we known about the initiation of adaptation, 

which makes it more difficult to define better therapies and achieve better clinical outcomes.  

Recently, epigenetic alterations have become potential prognostic biomarkers and offered 

vast options for PDAC detection. Previously, we had observed different histone 3 lysine 9 tri-

methylation (H3K9me3) patterns among GEM sensitive and resistant PDAC cells during the 

GEM treatment, suggesting the role of histone modification in GEM resistance initiation and 

exhibition. In this paper, we would provide our analysis workflow to identify the candidate genes 

that might be modulated by H3K9me3 upon GEM treatment, and predict how they dynamically 

affect GEM sensitivity. Our results would be considered as a general framework to construct the 

regulatory network from epigenetic drug response to transcriptomic plasticity, and discover new 

opportunities for therapeutic development. 
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INTRODUCTION 

Pancreatic Ductal Adenocarcinoma: Biological and Genetic Features 

Pancreatic cancer is one of the most lethal and hard-to-treat cancers. As reported in 

Cancer Statistics 2018 by American Cancer Society, pancreatic cancer has already become the 

third leading cause of cancer-related death in the US (Siegel, Miller, & Jemal, 2018). Strikingly, 

its survival for all stages combined is only 8%, the lowest among all cancer types. In contrast to 

the steady increase in survival observed for most cancer types, there has been little improvement 

in pancreatic cancers. Less than 10% of the newly diagnosed pancreatic tumor can be localized, 

making the disease even harder to receive a timely and targeted treatment.  

Among all pancreatic cancer types, Pancreatic ductal adenocarcinoma (PDAC) is by far 

the most common and aggressive one, representing more than 80% of all cases (Adamska, 

Domenichini, & Falasca, 2017; Hessmann, Johnsen, Siveke, & Ellenrieder, 2017). The biological 

features of PDAC have been well defined and confirmed in a broad amount of studies, and some 

of them are described as follows (Ryan, Hong, & Bardeesy, 2014; Wood & Hruban, 2018):  

1. The propensity for both local invasion and distant metastasis. It has been recognized 

that metastatic seeding from PDAC can occur at the initial stage of development, and 

by the end, more than half of diagnosed patients are presented with distant metastasis. 

However, no visible and distinctive symptoms can be observed at the early stage and 

conventional biomarkers to rely on has not been found.   

2. Heterogeneity of tumor composition. PDAC is unique among solid tumors for the 

development of dense fibrotic stroma surrounding the tumor. Hence the tumor does 

not behave as a homogeneous population: besides the tumor cells, its adjacent stromal 
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cells, immune cells, and extracellular matrix have all been reported to play their role 

in tumorigenesis, and contribute to metabolic aberration, immune dysfunction, and 

influence tumor progression and invasion.  

3. Tumor plasticity during progression. The majority of PDAC initiate from the same 

genetic lesion on KRAS oncogene. However, to complete the transformation into 

invasive carcinoma, other genetic mutations and microenvironment variation must 

cooperate, and the progressive accumulation of genetic and environmental 

remodeling allows PDAC to adapt to harsh conditions and increases proliferative 

ability. 

Recent studies on the genomic and epigenetic markers of PDAC had given us more 

insight into the characteristics of PDAC. Like most solid malignancies, PDACs are driven by a 

group of genetic mutations(“Genetics and Biology of Pancreatic Ductal Adenocarcinoma,” 2016; 

Manji, Olive, Saenger, & Oberstein, 2017; Ryan et al., 2014). Large-scale sequencing on PDAC 

cells has reported that PDAC does not have a universal mutational landscape, and the mutation 

patterns can differ to a great extent among patients. For example, among the 184 cases of PDAC 

collected in The Cancer Genome Atlas (TCGA), the number of mutations observed in each 

patient ranges from 1 to more than 20000, and in total 13329 genes mutate and finally result in 

32980 distinct mutations(Aguirre, Hruban, & Raphael, 2017). 

However, despite such diversity, almost all PDACs share the same signature genetic 

lesions (Wood & Hruban, 2018). The most consistent mutations are occurring in four genes: 

KRAS, TP53, SMAD4, and CDKN2A. KRAS, as mentioned already, is an oncogene whose 

mutation affects more than 90% of PDAC (Ryan et al., 2014). Activation of KRAS gene 

stimulate a complicated cascade of tumorigenesis pathways and also play vital roles in aberrant 
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regulations of cell metabolism and autophagy. Loss of KRAS expression has been seen to result 

in massive cell death and arrested proliferation, leading to rapid tumor regression. The other 

three key genes, TP53, SMAD4, and CDKN2A, are all tumor suppressor genes, and loss of 

functions in those genes disrupt networks that normally restrain untoward growth, proliferation, 

survival, and invasion(Bailey et al., 2016; Borazanci et al., 2017; Deer et al., 2010).  

Besides, some other gene mutations have been found in only a small fraction but shown a 

high correlation with certain phenotypes and clinical outcomes. For example, among the four 

subtypes of PDAC suggested by Bailey et al., Squamous PDAC tumors are significantly 

enriched for lysine demethylase 6A (KDM6A) and a poor prognosis, while the progenitor type 

has more TGFBR2 inactivating mutations and a relatively higher survival rate (Bailey et al., 

2016).  

In summary, diversity in PDAC genotypes and its ability to adapt, invade and migrate, 

are believed to give rise to its fatality. What's more, complexity in improving current therapies, 

especially overcome chemotherapy resistance, might also stem from the heterogeneity and 

plasticity of PDAC. Even a novel drug appears to deliver extraordinary outcomes during clinical 

trials, it might fail to bring the same benefits when applied to a larger population and for a longer 

time. However, with a profound understanding of its nature, we will be able to improve today's 

approaches and create effective personalized therapies designed around each tumor's unique 

qualities. 

Gemcitabine:  Strengths and Weaknesses 

Adjuvant treatments, including chemotherapy and radiotherapy, are important alternative 

therapies besides resection surgery for PDAC (Alvarellos et al., 2014; De Sousa Cavalcante & 

Monteiro, 2014). Although surgery is theoretically curative, only patients without a locally 
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advanced or metastatic tumor are considered for resection. Therefore, adjuvant treatments have 

been the mainstay practice and improvements of current approaches have always been in great 

need. 

Gemcitabine (GEM) is the first FDA-approved and so far the most widely used 

chemotherapeutic agent for PDAC (Binenbaum, Na’Ara, & Gil, 2015). It is an analog of 

deoxycytidine that interferes with DNA synthesis by interrupting DNA elongation and causes 

irreversible DNA damage(Alvarellos et al., 2014). Other modes of actions of GEM include self-

potentiation by blocking the nucleoside salvage pathway and apoptosis induction through 

pathways such as the MAPK pathway.  

However, GEM and GEM-based combination therapies prolong life expectancy only 

moderately when comparing to other agents, and resistance is the major impediment for GEM 

therapies deliver satisfactory results (De Sousa Cavalcante & Monteiro, 2014; Fryer, Barlett, 

Galustian, & Dalgleish, 2011; M. P. Kim & Gallick, 2008). Such resistance can be extrinsic, 

intrinsic or acquired and is tightly associated with the characteristics of PDAC (Binenbaum et al., 

2015; Liang et al., 2017; Samulitis et al., 2015).  

The extrinsic resistance is primarily referred to the impaired GEM delivery (Binenbaum 

et al., 2015; Liang et al., 2017). As mentioned above, PDAC is characterized to grow within 

extensive fibrotic tissue and a hypovascular and poorly perfused ECM.  Thus, compounds like 

GEM need to overcome this barrier first before accumulating in PDAC cells, and because of its 

activity on normal tissues, increasing the dose of GEM is not a practical solution. 

The internal resistance can also be stroma-mediated, where the stroma stimulates 

pathways to counteract its toxicity (Liang et al., 2017; Sherman et al., 2017). Another evidence 

of intrinsic resistance is the diversity of drug response in PDAC subtypes. As reported in the 
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article by Collisson et al. in 2011, the log10(IC50) of GEM could span from -4 to 10 among 18 

PDAC subtypes (Collisson et al., 2011). Plus, the response to GEM can be highly specific for 

phenotypes and different transcription profiles (Bailey et al., 2016; Dreyer, Chang, Bailey, & 

Biankin, 2017). The third but not the least mechanism is the cancer stem cell model, in which a 

subset of cells naturally displays the chemo-resistant phenotype (Den, Gremeaux, Topal, & 

Vankelecom, 2012; Fitzgerald & McCubrey, 2014; Lee, Dosch, & Simeone, 2008). 

To make the clinical situation more complex, resistance can develop over time, even in 

patients who usually have a good initial response to GEM along or combined with other agents 

(De Sousa Cavalcante & Monteiro, 2014; Jia & Xie, 2015). Multiple mechanisms of GEM 

resistance have been identified for such adaptations. PDAC cells have observed to show 

plasticity in altering its gene expression profiles, and eventually either become more similar to 

the intrinsically drug-resistant cells or activate other pathways to compensate for the GEM-

induced damage(Alvarellos et al., 2014; Biancur & Kimmelman, 2018; De Sousa Cavalcante & 

Monteiro, 2014; López-Casas & López-Fernández, 2010; Santa Pau, Real, & Valencia, 2014). 

For instance, epithelial-to-mesenchymal transition (EMT) towards stem-cell-like phenotypes 

have been proved to drive GEM resistance(Arumugam et al., 2009). Meanwhile, signaling 

pathways dominating cell growth, proliferation, differentiation, apoptosis, and invasion, 

migration and angiogenesis, such as the notable PIk3/Akt, EGFR, Hedgehog, NOTCH, MAPK, 

and NFκB pathways, appear to either directly or indirectly influence chemosensitivity (Jia & 

Xie, 2015; Lee et al., 2008; Shields, Dangi-Garimella, Krantz, Bentrem, & Munshi, 2011).  

In all, overcoming GEM resistance remains challenging. The mechanisms of GEM 

resistance, although intensively studied in recent years still largely unclear due to the complexity 

of its origin and the tumor features. Targeting on only a single pathway/mechanism is unlikely to 
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bring major improvement in GEM sensitivity since the multiple pathways usually intertwine and 

synergize in drug resistance (Jia & Xie, 2015). Therefore, further studies are urgently needed to 

draw the network involving all players in GEM resistance and develop new strategies to target 

the most vital ones.   

Histone Modification in PDAC: Its Roles and Therapeutic Potential 

As discussed above, GEM resistance can originate from ineffective drug delivery, 

impaired GEM mechanisms in tumor cells, and adaptative responses to GEM therapies. Several 

cell pathways vital for these events have been identified, such as GEM transportation by hENTs 

and hCNTs, GEM activation and degradation by DCK and CDA, as well as nucleoside salvage 

pathways (Ciccolini, Serdjebi, Peters, & Giovannetti, 2016; Kroep et al., 2002; Nordh, Ansari, & 

Andersson, 2014; Saiki et al., 2012). Also, determinants of the tumor and stromal 

microenvironment are crucial for GEM resistance initiation. Whole genome sequencing on 

different subtypes of PDAC has already identified some candidates, such as Heat shock protein 

27 (Mori-Iwamoto et al., 2008), ZEB1(Arumugam et al., 2009), MUC1(Shukla et al., 2017), and 

more genes that involved in correlated cell signaling, differentiation, catabolism, and migration.  

What worth notice is that not all genes involved in these events are mutated; in fact, the 

majority of them are found differentially expressed among phenotypes without any genetic 

alternatives (Wood & Hruban, 2018). Meanwhile, dysregulation of key epigenetic factors and 

chromatin-modifying proteins, particularly those responsible for post-translational histone 

editing, are frequently found in human pancreatic cancer (Bailey et al., 2016; Manji et al., 2017). 

Therefore, epigenetic regulation was suggested to involve or even govern innate resistance and 

plasticity of the tumor.    
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So far, numerous studies have made effort to unveil the association between the 

epigenetic profile and phenotype of PDAC. One consensus is that changes in global levels of 

histone modifications are reliable predictors of clinical outcomes (Brusslan et al., 2015; 

Manuyakorn et al., 2010; Park et al., 2008; Wei et al., 2008). As an example, Wei et al. reported 

the correlation between low expression of H3K27me3 and shorter overall survival time, and the 

following studies have confirmed that reprogramming of H3K27me3 by mutant KDM6A can 

repress crucial tumor suppressor genes (Wei et al., 2008). A large amount of research then 

follows and emphasizes the role of chromatin structure dysregulation in tumorigenesis. 

McDonald and his colleagues reported global redistribution of H3K9 methylation is linked to 

both cell metabolic activities and migration. A recent review also highlights histone modification 

to directly deactivate tumor suppressor genes and give rise to abnormal cell division, stressed 

metabolism and metastasis (McDonald et al., 2017; McDonald, Wu, Timp, Doi, & Feinberg, 

2011). 

Since epigenetic, especially histone modifications have been validated to affect outcomes 

for PDAC, manipulating histone editors have offered exciting possibilities to novel therapies that 

overcome chemoresistance. In recent years histone acetylation inhibitors have shown its 

significant potential to use as a single agent or in combined usage to cover the shortage of 

existing chemotherapies (Lane & Chabner, 2009; Minucci & Pelicci, 2006). In addition, in early 

2018 researchers applied selective histone methyltransferase inhibitors to PDAC cells to reduce 

the H3K9me3 level (Lu et al., 2018). They observed the silencing effect on the biomarkers of 

apoptosis was erased, and sequentially, GEM sensitivity of treated groups was significantly 

increased. Therefore, we expect epigenetic manipulation of PDAC transcriptome, both via 

histone methylation and acetylation, to be an effective approach to overcome GEM resistance. 
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In our previous studies, we utilized H3K9me3 FRET biosensor to visualize the global 

change of chromatin reconstruction in PDAC upon GEM treatment. As a result, we detected 

different patterns of H3K9me3 level in GEM sensitive and resistant clones along the treatment, 

and similar experiments had not been reported in existing publications. To our surprise, both cell 

types became brighter as observed by fluorescence microscopy during the first 24 hours of 

treatment, indicating a significant enrichment in H3K9 methylation and correspondingly a global 

trend of gene deactivation. Then gradually the methylation melted to a state even lower than 

initial ones in GEM resistance cells, while GEM sensitive ones showed similar decline but in a 

much smaller move. These results brought up some further questions: 

• What are the dynamic epigenetic changes upon GEM treatment? 

• What are the genes that have been modulated by such epigenetic change? 

• How these modulations differ in GEM sensitive/resistant phenotypes? 

• What is the correlation between gene modulations and GEM adaptation?  

Since very little had been found in the literature that could elucidate these questions, we 

applied the same dose of GEM to sensitive and resistance PDAC cells for three days, and then 

used RNA-seq to evaluate the differential gene expression between two cell types and capture 

the dynamic response across the time course. In the following sections, we would analyze the 

transcriptome profiles with multiple bioinformatics strategies and interpreted the results together 

with previous findings. In the end, we would discuss the limitations and pitfalls of our 

experiment and make some suggestions on following experiments. 
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To sum up, although great advancements have been made to build up the relationship 

between histone modification, GEM resistance and clinical outcomes of PDAC, our knowledge 

is not yet unified. Therefore, the aim of this study is to test the hypothesis that abnormal 

methylation of H3K9 on a group of mediators underlies the different dynamics of GEM 

response. We were hoping to answer if the global H3K9me3 level could indicate specific 

pathway activation, and how those events would possibly cause the resistance to initiate. In this 

paper, we would discuss the preliminary results of this project based on the first RNA-seq 

experiment and give suggestions for validations and future works. 
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RESULTS 

GEM sensitive and resistant PDAC cells already exhibit different transcriptome profile 

Before the experiment was conducted, GEM sensitive and resistant cells were cultured in 

GEM-free and 100 nM GEM culture media for sufficient period of time and proliferated at a 

similar speed, therefore they were expected to have a stable gene expression profile. However, 

though they had similar proliferation rate as measured through flow cytometry, we were unable 

to justify that whether GEM resistant cells were adapted to drug exposure by differentially 

expressing a special set of genes, or they were recovered from the treatment and regain a similar 

profile as GEM sensitive ones.   

Therefore, comparing the RNA-Seq components extracted from samples before treatment 

would help us to understand if any changes had already appeared on RNA transcript expression 

patterns after long time GEM exposure. Here the RNA-Seq results from the two pre-treatment 

samples were compared and genes with an absolute log2 fold change greater than 1.5 were 

collected as differentially expressed. In total 327 genes were detected to be significantly 

upregulated and 373 genes downregulated in GEM resistant cells with respect to GEM sensitive 

ones. 

To obtain further insight into the function of these genes, Gene Ontology (GO) 

enrichment analysis was conducted on these up and down-regulated genes respectively. We 

uploaded these two gene sets to Metascape and analysis was done based on GO biological 

processes (Tripathi et al., 2015). According to the results, transcripts with higher expression in 

the GEM resistant cells were enriched for glutathione metabolism, lysosome and purine 

metabolism, whereas GEM sensitive cells were overrepresented for Hippo signaling pathway, 

ECM-receptor interaction and TGF-beta signaling pathway. 
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GEM sensitive and resistant PDAC cells responded differently to GEM treatment  

As discussed in previous sections, intrinsic and acquired resistance to GEM has been 

attributed to not only aberrant transport of GEM into PDAC and activation/inactivation of GEM 

but also other biological pathways that compensate the GEM-induced DNA damage and/or 

suppress consequential apoptosis. Therefore, special attention was paid to these pathways when 

we were exploring the dynamic changes of the transcriptome in GEM sensitive and resistant 

cells. 

Before diving into the patterns of certain genes, the similarity between the six samples 

was demonstrated via hierarchical clustering and principle component analysis(PCA), and the 

graphs are shown in Figure 1. Since there were no replicates for samples, the statistical test was 

not applicable and the results therefore would only be described but not interpreted. From the 

graph, it would be obvious that two cell lines were initially similar. However, at 48 hours, the 

two cell lines differed dramatically, indicating a sharp and significant shift of gene expression 

profile in both cell types. What was also remarkable is that at 72 hours, the two cell lines went 

closer to their initial states, and resistant cells were more similar to their starting status than 

sensitive cells. The graph of PCA pointed out that at 48 hours two cell lines altered their 

transcriptome in opposite directions, when GEM sensitive cells responded more vigorously. 

Similarly, the largest change also occurred at S_48 for H3K9me3 methylation (Figure 2), where 

both H3K9me3 methyltransferases and demethylases become less than the initial condition in 

GEM sensitive samples. Therefore, genes that most differentially expressed at 48 hours might be 

regulated by H3K9me3, however we could not know which genes were regulated respectively in 

the two cell lines. Thus, we would expect gene expression analysis to provide more detail on the 

differential response, especially for samples at 48 hours.  
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Differences in GEM transport 

The main transporters that mediate most of GEM uptake are Solute Carrier Family(SLC) 

29A1, 28A1 and 28A3, which were aliases of hENT1 and hCNTs mentioned in our Introduction 

(Alvarellos et al., 2014). To depict the dynamics of GEM uptake during the treatment, we took a 

closer look at the transcription results of these transporters. The expression levels of SLC28A1 

and SLC28A3 were negligible compared to the predominant SLC29A1. Therefore, the mRNA 

reads of SLC29A1 was used as a representative to evaluate the transport level of GEM. As 

shown in Figure 3, the transporter SLC29A before treatment had almost the same level in GEM 

sensitive and resistant cells. What stood out from the plot is that following the application of 

GEM, the number of transporters both decreased in two cell lines at 48 hours, then rose again at 

72hr but not fully returned to the initial level. This could be somehow counterintuitive since 

previous research gave opposite result that lower SLC29A1 level had been shown to associate 

with a poorer prognosis. But since the change was transient, the expression of SLC29 should be 

discussed in a dynamic but not stable context, and we would give our interpretation in the 

discussion section. 

Differences in GEM activation/inactivation 

Deoxycytidine kinase (DCK) and Cytidine deaminase (CDA) are two important enzymes 

are the gatekeepers of GEM metabolism. As illustrated in the graph adapted from Binenbaum et 

al., Phosphorylation of GEM by DCK is the first and rate-limiting step of GEM metabolism 

pathway (Binenbaum et al., 2015), and DCK is known to be the predominant enzyme in the 

salvage of dNTPs for DNA synthesis (Alvarellos et al., 2014). Due to its central role in 

gemcitabine metabolism, its deficiency is a major contributor to GEM resistance (Kroep et al., 

2002; Saiki et al., 2012). Meanwhile, Cytidine deaminase (CDA) deaminating GEM is regarded 
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as the main mechanism for gemcitabine inactivation (Ciccolini et al., 2016; Kroep et al., 2002). 

Most of GEM in cytosol would eventually be degraded into less toxic form and excreted out of 

the cell.  

Here the expression patterns of these two enzymes were illustrated in Figure 3. Within 

each cell type, DCK and CDA expression level went inversely, but the dynamics were distinct 

across cell types. In the sensitive cells, DCK was found to accumulate gradually, whereas CDA 

kept decreasing through the three-day treatment. At the same time, GEM resistant cells 

responded to the treatment with an even lower DCK level at 48 hours and a corresponding higher 

CDA level. Then at 72 hours, these two enzymes both had a slightly higher level than their pre-

treatment state, indicating more active GEM processing was ongoing. The patterns of DCK and 

CDA were in good agreement with their complementary functions in GEM metabolism, and 

differences in these profiles suggested that sensitive and resistant cells might have utilized 

distinct strategies when flooded with GEM.  

Differences in competitive GEM inhibition 

Ribonucleotide reductase RRM1 and RRM2 are responsible for the maintenance of 

deoxyribonucleotide concentration in the cytosol. Increasing RRM expression can expand the 

cellular pool of original dNTPs that competing with GEM during DNA synthesis, and has been 

proved to be inversely correlated with GEM efficiency (Alvarellos et al., 2014; De Sousa 

Cavalcante & Monteiro, 2014; Jia & Xie, 2015).  In our experiment, GEM resistant cells already 

exhibited a higher expression level of RRMs before treated; and stimulation of GEM resulted in 

a reduced RRM expression in both cell lines.  After 72 hours, the total RRMs in GEM sensitive 

and resistant cells all reached their greatest expression level. Although the final observation was 

consistent with our knowledge that GEM could directly inhibit RRM1 covalently and self-
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enhanced (De Sousa Cavalcante & Monteiro, 2014), the temporary decline at 48 hours needs 

more careful interpretation. 

Gene coexpression module  

To illustrate the functional landscape of the transcriptome in GEM sensitive and resistant 

PDAC, WGCNA algorithms were applied to reconstruct the transcriptional network (Langfelder 

& Horvath, 2008). The reads of genes were normalized based on the library size of each sample 

and log-transformed to stabilize the variance. We selected the 5000 genes with the largest 

variance across samples as input to cluster genes by their expression pattern and build up the 

correlation matrix. During the analysis, both the correlations and their shared relationships across 

the whole gene set were considered and the score of Topological overlap measure (TOM) was 

calculated for each gene pair as a comprehensive measurement of similarity. Based on this score, 

hierarchical clustering identified 14 different modules from the selected set of genes. Genes in 

each module were regarded to express with high correlation and potentially participated in 

shared biological processes. The size and unique color label of each module are listed in Table.1. 

To summarize the expression pattern of genes in each module, the Module Eigengenes 

(MEs), was calculated through principal component analysis. Next, correlations between MEs 

and each sample were derived and visualized as the matrix shown in Figure 5. In this case, if one 

module exhibits a great positive/negative correlation with one of the samples, genes in this 

module would be considered to be significantly up/down-regulated in this sample with respect to 

others. From the graph, we found some strong correlated module-sample pairs. For example, the 

turquoise and blue modules, although in opposite direction, were both highly associated with the 

sample of sensitive cells at 48 hours. Similarly, genes in the green module might be expected to 
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constantly activate in GEM sensitive cells, since this module is always positively correlated with 

sensitive samples but negatively with resistant ones.  

Expression of the turquoise module associated with histone modification 

To investigate the pattern of histone modification and its correlation with other pathways, 

the GO and KEGG enrichment analysis of individual module had been conducted as mentioned. 

Combined the results with the correlation matrix, we were able to describe the specific functional 

modifications occurred in each sample.  

Surprisingly, we found that in the turquoise module, one of the most significant 

biological GO terms was "GO:0016569 covalent chromatin modification" (log transformed p-

value = -8.808). Related to this annotation, we found that 11 enzymes that directly acetylate or 

methylate histones, especially H3K9 specific histone demethylase KDM4A, 4B and 4C (Greer & 

Shi, 2012). As shown in Figure 6, KEGG enrichment analysis on biological pathways revealed 

that genes in the turquoise module were also enriched in important cell regulatory pathways, 

such as mTOR, MAPK, PIk3, NOTCH and Hedgehog signaling pathways, which had been 

proved to be crucial for GEM resistance (Binenbaum et al., 2015). Also, there were other 

pathways, for example endocytosis, that were significantly enriched but less mentioned in 

existing literatures.  

As indicated previously, gene expression profiles of GEM sensitive and resistant samples 

were most distinct at 48 hours. Besides, at 48 hours the global H3K9me3 intensity was greater in 

GEM sensitive cells from fluorescence imaging, and H3K9 methylation is believed as a marker 

of gene silencing. In addition, H3K9 demethylases and other tumor-related pathways were 

significantly down-regulated at the same time based on module-sample correlation and function 

annotation analysis. Putting all these facts together, we might propose that difference of 
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transcriptomic profiles in sensitive and resistant PDAC cells were closely related to H3K9 

methylation, specifically via the epigenetic down-regulation of genes in those key pathways.   

Identification of hub genes 

To identify which genes might be directly modulated by H3K9 methylation and involved 

in GEM resistance, the gene set in the turquoise module was further analyzed by constructing the 

protein-protein interaction network (Figure 5). The complete set of 1445 genes in the turquoise 

module were uploaded to the STRING database, which is an extensive database of previously 

discovered protein interactions(Szklarczyk et al., 2017). The whole network was partitioned into 

clusters based on the strength of protein-protein connectivity, and the GO and KEGG enrichment 

analysis revealed the most significant function of each cluster. As a result, we identified 34 

functional groups, and we found that genes related to histone modification were clustered 

together. Therefore, we selected the clusters whose functions were the mostly enriched ones in 

the whole network, and the cluster of endocytosis was chosen for the following analysis.  

To find the hub genes, we paid special attention to the core genes that who forms the 

densest interaction with its neighbors, because genes with high local network density are leading 

the most highly interacted gene groups and have been observed to overpower these complexes. 

Thus, we picked genes with the highest local network density, and those are PIK3C2A and 

RAB5B in this cluster. Since PIK3C2A is not involved in endocytosis, RAB5B was chosen for 

analysis for further validation (Figure 7). 

Evidence of RAB5B expression with PDAC 

To find if the RAB5B expression has any effect on PDAC, we retrieved the PDAC 

mRNA sequencing data from TCGA and analyzed RAB5B expression using GEPIA(Tang et al., 

2017). RAB5B has shown to be differentially expressed in PDAC and normal pancreatic tissue, 
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indicating that it might either function as an oncogene or might serve as a potential biomarker of 

PDAC. Moreover, survival analysis based on the same set of patient data has revealed a 

considerable correlation between high expression level of RAB5B, low overall survival rate (P-

value = 0.11). 

RAB5B appeared in the turquoise module and therefore had been shown to share 

expression pattern across samples with H3K9 demethylase KDM 4A,4B and 4C. Similarly, such 

correlations between RAB5B and common H3K9 demethylases were further validated using 

patient data from TCGA.  All four H3K9-specific KDMs was shown to have to hold a tightly 

correlated expression with RAB5B, suggesting a regulatory influence of H3K9 methylation on 

RAB5B. 

Thanks to the ChIP-Seq results contributed by Duaferia et al., the H3K9 methylation 

level on RAB5B on various PDAC subtypes and normal pancreatic tissue could be extracted and 

visualized in Figure 8 (Diaferia et al., 2016). The comparison showed that the coding region of 

RAB5B was far less H3K9 methylated in tumor samples and suggested that RAB5B might be 

directly activated via the epigenetic regulation mediated by H3K9me3 in PDAC.  

To prove the RAB5B play a role in GEM resistance, additional downstream experiments 

would be necessary. For example, RAB5B could be knocked down or inhibited in GEM resistant 

cells or stimulated RAB5B expression in GEM sensitive cells, and its effects on GEM response 

could then be assessed to verify the correlation. Due to the limitation of time, the validations 

would be reserved for future work; however, some previous studies had provided some support 

to this hypothesis and would be discussed in the following section. 
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DISCUSSION 

Dynamic changes of GEM transport and metabolism 

Multiple independent studies, as well as several meta-analyses, had shown strong 

evidence that improved survival rates in PDAC treated with GEM are positively associated with 

SLC29A1. For instance, in a systematic review published in 2014, data from 855 patients in 10 

individual studies were analyzed and 9 of 10 studies had shown a statistically significant longer 

overall survival with high SLC29A1-expression (Nordh et al., 2014). Notably, the genetic 

variants of SLC29A1 have not been observed to have a consistent association with GEM 

resistance, thus regulation on the translation level would be the possible mechanism for 

SLC29A1 to cause different clinical outcomes. 

Similarly, High level of DCK has also been proved to be a reliable predictor of longer 

survival times in PDAC patients treated with GEM (Alvarellos et al., 2014; Binenbaum et al., 

2015; De Sousa Cavalcante & Monteiro, 2014). Due to the central role of dCK in gemcitabine 

metabolism, deficiency of DCK had been validated to be a major contributor to both intrinsic and 

acquired GEM resistance. Concurrently, other studies had have shown that lower CDA activity 

also tends to be synchronized with faster response and better survival (Ciccolini et al., 2016; De 

Sousa Cavalcante & Monteiro, 2014; Jia & Xie, 2015). 

While GEM directly inhibits the RRM1 and prevent deoxyribonucleoside to be recycled, 

unregulated RRM1 can boost normal DNA synthesis and promote DNA repair (Binenbaum et 

al., 2015; De Sousa Cavalcante & Monteiro, 2014; Jia & Xie, 2015; Santa Pau et al., 2014). This 

mechanism was shown to yield GEM resistance and RRM1 levels were inversely correlated with 

patient survival. On the top of that, in 2015 Tokunaga et al. used siRNA to suppress RRM1 gene 



 

 19 

and successfully sensitized cancer cells to GEM (Tokunaga et al., 2015), which further proved 

the essential role of RRM1 in GEM compensation.  

In our experiment, we extracted mRNA and built up the library for three time points, 

which allowed us to depict the trajectories of gene expression. Our results showed that 

SLC28A1, SLC28A2 and SLC28A3 were rarely expressed and SLC29A1 dominated in all six 

samples. The initial expression level of SLC29A1 was nearly identical in GEM sensitive and 

resistant cells, suggesting that GEM was transported equally into GEM sensitive and resistant 

cell lines before a higher dose were applied. This result might not lead to a solid conclusion due 

to the lack of replicates. In addition, as concluded in reviews by Alvarellos et al in 2014 and 

Adamska et al. in 2017, even though SLC29A1 has been proven to be a predictive marker for 

gemcitabine resistance and patient outcome, the correlation between SLC29A1 expression and 

intrinsic and acquired GEM resistance remains under debates and shows dependency on 

experimental context(Adamska et al., 2017; Alvarellos et al., 2014). 

After 48 hours of intense GEM exposure, the sensitive cells shut down more influx of 

GEM compared to resistant ones. In this case, the effective concentration of GEM would be 

expected to reduce in GEM sensitive samples and so as the induced damages. At 72 hours, the 

level bounced back to a lower level compared to pre-treatment in both cell lines. One possible 

mechanism for such dynamics of SLC29A1 could be: 1) facing a huge amount of GEM, the 

tumor cells need to maintain the nucleoside uptake via reducing transporter expression 2) once 

adapted, the cells would recover the loss of SLC29A1 to support the transportation of other 

necessary nucleosides, and other pathways would be turned on for GEM processing and 3) 

resistant cells have become less vulnerable to greater chemical stimulus upon prolonged 

exposure, as pathways to compensate GEM-induced damages had already been activated.  
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The dynamic change of DCK and CDA status could also fit into this model. GEM 

sensitive cells kept enhancing DCK to deal with the vigorous flow of GEM, but they were not 

able to fully activate CDA for GEM degradation. On the contrary, GEM resistant cells shunt the 

drug to its deactivation path with a higher expression of CDA, and meanwhile turn down DCK to 

suppress the drug flow towards DNA synthesis. These results were in accordance with previous 

observations as well as clinical trials on prolonged fixed-dose treatment of GEM. In the study 

done by Grimison and his coworkers in 2007, they hypothesized an auto-induction of GEM 

metabolism: if the cells had experienced a long-time exposure to GEM, the threshold of GEM to 

saturate GEM phosphorylation by DCK would increase when reapplying the drug. Their results 

were supported by other studies which had reported adaptive DCK activation after GEM 

application (Grimison et al., 2007). Furthermore, CDA activity has been proved to directly 

correlate with the rate of GEM clearance (Gusella et al., 2011). 

The patterns of RRMs agreed with this mechanism as well. Initially, GEM resistant cells 

already exhibited more RRMs to compete over the low drug concentration, while sensitive ones 

were naive from such stress. When a higher dose of GEM was added, RRMs were blocked 

directly by the drugs at 48 hours, but later GEM resistant cells quickly replenished and even 

raised RRMs level to overcome GEM in the competition of DNA elongation. 

However, our results could be partially inconsistent with earlier findings on the 

expression levels of SLCs, DCK, CDA and RRMs after GEM application. For example, Farrell 

and her colleagues treated HPAFII cells for 72 hours with 10 µM GEM and reported that both 

SLC29A family and RRM family remained unchanged, while CDA doubles its amount through 

GEM treatment. This result differs from our findings, that SLCs declined slightly comparing to 

initial state, and CDA reached its lowest level at 72 hours. What leads to contradictory results 
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might be the limitation of samples in both experiments. In their experiment, only two time points 

were measured and the dynamics of cell response was not taken into consideration. Meanwhile, 

they failed to include the drug-tolerant phenotype in comparison, so no information was provided 

on the response of tumor with resistance. On the other hand, since we could not justify that the 

cell status had become stable and would maintain after 72 hours, it is also hard to deny the 

probability for CDA to boost in survived cells after a long time of GEM treatment. Also, the 

other research that we had reviewed paid little attention to the impact of GEM at the very 

beginning of treatment. Therefore, further tests conducted with larger sample size, longer time 

course and sufficient replicates would be favorable for us to validate our explanation on the 

dynamics of GEM processing.   

With respect to the regulatory effect of H3K9me3 on GEM metabolisms, the ChIP-Seq 

results from Duaferia and colleagues had revealed distinct H3K9me3 patterns in PDAC 

compared to normal pancreatic tissues, which is shown in Figure 4. The differences were 

constant across all subtypes of PDAC, that SLC29A1, DCK, CDA and RRM1 might all be 

stimulated as a result of decreased H3K9 methylation. However, since the data could not address 

the dynamic aspect of cell response, it only gave us a hint that H3K9 methylation could be the 

direct cause for drug response, and be responsible for the GEM adaptation and tumor plasticity. 

Now we are in the process of investigating the results from our ChIP-Seq experiment using the 

same settings, and we hope the results could show evidence to solidify the causality of H3K9 

methylation and differences between PDAC in their dynamic response to GEM therapy.  

Histone modification potentially regulated pathways relevant to GEM resistance 

WGCNA was performed to identify gene co-expression modules related with each 

sample and illustrated the differences of cell response to GEM in sensitive and resistant PDAC 
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cells. The gene clustering dendrogram and the module sample correlation matrix are shown in 

Figure 5. Since the relationship between epigenetic modification and drug resistance was of 

interest, we focused on the turquoise module, in which histone modification enzymes were 

enriched. GO and KEGG analysis on the turquoise module also showed that multiple pathways, 

that known to have strong correlations with GEM resistance, were found to share similar 

expression patterns with these histone modifiers, especially H3K9 demethylases.  

Combined with our existing knowledge, we hypothesize a regulatory axis to exist along 

H3K9me3, hub genes in these pathways, and GEM resistance, as we observed the former two 

were varying in the similar pattern and might have a regulatory relationship, meanwhile the 

correlation of the latter ones could be summarized from previous studies. To find a potent gene 

that involved, the protein-protein network of the turquoise module was constructed and 

partitioned into functional clusters. As an example, we took a look at the cluster whose function 

is endocytosis, and RAB5B, which has the highest local network density inside the cluster, was 

chosen as a hub node for the following discussion. 

RAB5B as a potential player in GEM resistance 

RAB5B is a gene that involved in vesicular traffic. Analysis of PDAC dataset derived 

significantly overexpression of RAB5B in PDAC and such overexpression is considerably 

correlated with poor survival rate. Moreover, the RAB5B expression is positively correlated with 

multiple H3K9 demethylases and public ChIP-Seq data shows RAB5B is silenced directly by 

H3K9me3 in normal pancreatic tissue but not in PDAC. The relationship between RAB5B 

expression and GEM resistant phenotype request further validation, however, some existing 

evidence might encourage this hypothesis.   
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A recent study by Igarashi and his colleagues concluded that RAB5 expression is 

correlated to EMT in various cancers (Igarashi et al., 2017). They confirmed that high RAB5 

expression was correlated with low E-cadherin level, a marker for EMT (Arumugam et al., 

2009), and by suppressing RAB5 in PDAC cells E-cadherin expression was enhanced, leading to 

impeded proliferation, invasion, and migration of tumor cells. On the other hand, GEM resistant 

cells were observed to have a decreased E-cadherin expression and the tendency of EMT in 

multiple studies on PDAC (Arumugam et al., 2009; Samulitis et al., 2015). Our RNA-Seq results 

showed E-cadherin was almost eliminated in GEM resist cells at the starting stage and only 

accumulated slightly. In contrast, it was always massive in GEM sensitive cells. However, its 

concentration reduced at 48 hours but then salvaged at 72 hours, and this pattern was in 

accordance with that of KDMs and RAB5B but not inversely correlated. Therefore, further 

justification would be necessary to validate our prediction. 

Another potent relationship might lie in the interaction between RAB5B and other genes 

in its cluster. The cluster was found to be mainly enriched in vesicle-mediated transcript 

pathways, and endocytosis and exosome secretion have become a promising target to overcome 

GEM resistance (Richards et al., 2017). At the same time, the other core genes, such as EGFR 

(Hessmann et al., 2017; Holohan, Van Schaeybroeck, Longley, & Johnston, 2013) and PIK3C2A 

(Binenbaum et al., 2015; Borazanci et al., 2017; Holohan et al., 2013; Hu & Zhang, 2016), have 

been proved to have a strong correlation with GEM sensitivity, therefore it would be reasonable 

to expect RAB5B to incorporate with them and play its role in the tumor plasticity and GEM 

adaptation.  
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Justification, Limitations, and Alternations of Current Workflow 

In this study, our goal of RNA-Seq analysis is to identify genes or pathways whose 

expressions are modulated by H3K9 and are closely correlated to GEM resistance. We observed 

an apparent dissimilarity between the responses of GEM sensitive and resistant cells through 

sample clustering, thus we expected a group of genes that expressed significantly different 

between cell types. To identify those genes, we applied both standard statistical approach using 

DESeq2 and consensus network analysis based on WGCNA to select genes that were altered 

differently in such distinct drug response.  

The statistical approach would not give convincing results due to the lack of replicates. 

This approach assumes a specific model to describe the underlying distribution of count data, in 

DESeq2 the negative binomial distribution, so that genes can be selected if their expressions 

between conditions are significantly different based on a test statistic predicted by the model. 

However, since we only have one sample for each test condition, the statistical test could not 

estimate the variability of each gene and provide proper inference on differential gene 

expression. Therefore, we used this method only for the purpose to explore the data. 

The other method for gene screening is WGCNA, which is a systematic method to group 

genes with highly correlated expression into modules and relate them to external traits. In our 

experiment, since there was a huge difference between the two samples at 48 hours, we were 

expecting to build up the module – sample correlation matrix, and identify candidate genes 

whose patterns had the greatest correlation with these two samples. This method is more suitable 

for our data than the statistical-based approach. Although it also requires biological replicates to 

build up the network, it does not require an arbitrary threshold for dividing expression data into 

significant and non-significant pools but uses the gene expression data in order to detect 
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coordinated changes in the same pathway. Moreover, it accounts for correlations between genes 

and all samples to give a broader impression on the gene expression landscape.  

In the analysis part, the functional annotation and pathway analysis could also be 

conducted in other methods instead of the current simple enrichment analysis. For example, 

Gene Set Enrichment Analysis interprets the gene profiles into common biological functions at 

gene set level and robust to the noises from a single gene. 

Although the results presented herein are very promising, this study contains three main 

limitations. The largest limitation of our experiment is the lack of replicates, and consequently, 

all the results could only be considered as interpretation but not as solid conclusion. Another 

major weakness of our experiment design was the missing control groups. To make our RNA-

Seq results more convincing, RNA samples of S and R cells without treatment should also be 

included. What’s more, since the expression profiles at 24 hours were not measured, it became 

risky to draw the expression curve for each gene during GEM treatment. Lastly, the analysis was 

not completed since the genes expressed along with H3K9me3 methyltransferases had not been 

analyzed.  

To overcome these limitations, our following RNA-Seq experiment had already included 

three replicates for each condition and 24-hour into the time course. Together with our ChIP-Seq 

data, the upcoming results should be more valuable to address our experimental needs.    
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CONCLUSION 

In this paper, we presented the results from our RNA-Seq analysis and revealed an 

epigenetic-transcriptomic regulatory axis that might closely related to GEM adaptation and 

PDAC plasticity. We used weighted gene co-expression analysis to construct a gene co-

expression network, identify and validate network hub genes associated with both global 

H3K9me3 level and GEM resistance. RAB5B were discussed in detail as one of the hub genes 

and its implicit association with GEM adaptation and H3K9me3 modulation was supported using 

public patient data. However, a more comprehensive analysis is in demand to identify other hub 

genes and further studies are required to characterize the hub genes functionally for potential 

therapeutic targets.  
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MATERIALS AND METHODS 

Differential Expression Analysis 

In our experiment, each sample were categorized based on the cell type (sensitive or 

resistant, labeled in S or R) and GEM treatment duration (0hr/48hr/72hr), and then listed as 

independent samples without replicates. The raw sequencing data were uploaded to the Galaxy 

web platform (Afgan et al., 2016), and we used the public server at usegalaxy.org to analyze the 

data. The sequencing results were first aligned to reference genome retrieved from UCSC 

database using HISAT (D. Kim, Langmead, & Salzberg, 2015)and then annotated by 

featureCounts (Liao, Smyth, & Shi, 2014) to generate the expression matrix, and all the setting 

was as default. Next, the count matrix was filtered in R (Ihaka & Gentleman, 1996) by keeping 

entries without zero read, and the resulted matrix had 12839 entries in total. The expression 

matrix was then normalized based on the library size of each sample and then log2-transformed 

to stabilized the variance.  

The R package hclust and pheatmap was used for sample clustering and heat maps. 

Euclidean distances between the transcriptomic profile of each sample pairs were calculated and 

visualized. Lower and higher correlations were depicted in blue and red respectively. Each 

row/column indicates one sample as labeled. 

The R package DESeq2 was used to screen the DEGs between the sensitive and resistant 

samples before treatment (Love, Huber, & Anders, 2014). For each pairwise comparison, the 

fold change was calculated for all genes as a ratio of their expression level between the resistant 

sample and sensitive sample. Since no replicates was made for each condition, absolute log2 fold 

change greater than 1.5 were chosen as the only cut-off criterion to select genes to be further 

considered for our following analysis.  
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Gene Ontology and KEGG Pathway Analysis 

Gene sets were uploaded to Metascape (Tripathi et al., 2015) for functional enrichment 

using ontology terms collected from Gene Ontology for biological processes and pathway 

annotations from KEGG Pathway (Ashburner et al., 2000; Kanehisa & Goto, 2000). Default 

parameters were used (Min Overlap:3, P-Value Cutoff: 0.01, Min Enrichment:1.5). 

Weighted Gene Correlation Network Analysis  

The scale-free co-expression network for the genes was defined using the R package 

WGCNA (Langfelder & Horvath, 2008). 5000 entries in the expression matrix with highest 

standard deviation across six samples were extracted for this analysis. Firstly, power value was 

screened out: the average connectivity degree of different modules with power values ranging 

from 1 to 30 was calculated and the smallest power value with the score above 0.9 was chosen. 

The Pearson's correlation matrices for all genes was by raising all values to this power value and 

transformed into a topological overlap matrix (TOM). Thus, network connectivity of a gene was 

defined as the sum of its adjacency with all other genes and the corresponding dissimilarity (1-

TOM) was calculated. To classify genes into gene modules by hierarchical clustering according 

to the dissimilarity. The dendrogram was simplified by merging similar modules and every 

module was assigned to a specific color. 

Next, Module Eigengenes (MEs) were derived as the major component in the principal 

components for each gene module, whose expression profile is a representative of all gene 

expression patterns within the given module. To identify the relevant module, module-sample 

associations were estimated using the correlation between the ME and each sample. Modules that 

highly correlated to the sample were picked for downstream analysis.  
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Gene Network Construction and Hub Gene Selection  

To find hub genes that comprised highly interconnected nodes within the turquoise 

module, we imported the gene list of this cluster into the STRING database, which is an 

extensive database of previously discovered networks and screened for significant gene-gene 

interactions (http://www.string-db.org/). We chose the default confidence threshold of 0.4 to 

construct protein-protein interaction (PPI). The PPI network was further partitioned into 

clustered using MCODE algorithms and densely connected gene clusters were identified (Bader 

& Hogue, 2003). In each cluster, genes with the highest degree or the largest local network 

connection score were regarded as hub genes and selected for further analyses. Default 

parameters were used for MCODE (Node Score Cutoff: 0.02, K-core: 2, Max.Depth = 100). 

Hub Gene Validation 

The RNA-Seq dataset of PDAC from TCGA was accessed and analyzed for using 

GEPIA(Tang et al., 2017). Survival plot was based on overall survival rate using the median as 

the group cutoff. Boxplots on differentially expressed genes in PDAC and normal pancreatic 

tissue was generated using default cutoff. Gene expression correlations were calculated as the 

Pearson correlation coefficients. 

Public ChIP-Seq Data Visualization 

The raw ChIP-Seq data of PDAC was retrieved from the Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/gds/) under the Super-Series accession number 

GSE64560. Samples of H3K9me3 in seven PDAC subtypes (PT45, PANC-1, Mia Paca-2, 

HPAF-II, CFPAC-1, Capan-2 and Capan-1). Two sets of ChIP-Seq data of normal pancreatic 

tissue were obtained from ENCODE for comparison (Birney et al., 2007). All data was queried 
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through the Cistrome Data Browser database (Liu et al., 2011) and visualized in WashU 

Epigenome Browser (Zhou et al., 2013).  
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Table 1: Modules of WGCNA 
 

Module Color Number of Genes Most Enriched GO Term 

Purple 87 GO:0044283: small molecule biosynthetic process 

Tan 83 GO:0044283: small molecule biosynthetic process 

Brown 800 
GO:0051960: regulation of nervous system 

development 

Turquoise 1636 GO:0043087: regulation of GTPase activity 

Salmon 55 GO:0006270: DNA replication initiation  

Black 99 GO:0007162: negative regulation of cell adhesion 

Greenyellow 87 
GO:0032101: regulation of response to external 

stimulus 

Pink 95 GO:0098609: cell-cell adhesion  

Blue 1374 GO:0022613: ribonucleoprotein complex biogenesis 

Green 115 GO:0043588: skin development  

Magenta 91 GO:0097435: supramolecular fiber organization 

Red 107 GO:0006260: DNA synthesis 

Yellow 355 GO:0097190: apoptotic signaling pathway 

Grey 16 N/A 
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Figure 1: Sample clustering according to whole transcriptome profiles. (A) Hierachical 
clustering. (B) Principal component analysis 
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Figure 2: Expression levels of H3K9 modifiers during GEM treatment. (A) H3K9me3 
methyltransferases. (B) H3K9me3 demethylases 
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Figure 3: Expression levels of GEM metabolism enzymes during GEM treatment. (A) GEM 
transporters SLC families. (B) RRMs. (C) DCK and CDA. 
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Figure 4: Chip-seq of H3K9me3 in normal pancreatic tissues and different subtypes of 
PDAC. The top two rows are from normal pancreatic tissues, and the five rows below are from 
subtypes of PDAC. (A) SLC29A1. (B) DCKs. (C) CDA. (D) RRM1 
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Figure 5: Identification of modules associated with clinical traits. (A) Clustering dendrogram 
of 5000 genes with largest variances. (B) Heatmap of the correlation between module eigengenes 
and samples. Each cell contained the corresponding correlation and p-value  
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Figure 6: Protein Interaction Network of Module Turquoise.(A) Illustration of the network in 
Cytoscape (B) KEGG annotation of the gene set of module turquiose.  
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Figure 7: RAB5B leads gene cluster that functions in Golgi vesicle transport.(A) Gene 
expression levels of RAB5B between normal pancreatic and PDAC samples. (B) KEGG 
annotation of the cluster 
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Figure 8: Validation of RAB5B associated with PDAC and its clinical outcome based on 
TCGA PAAD cohort (A) Gene expression levels of RAB5B between normal pancreatic and 
PDAC samples. (B) Kaplan-Meier curves for overall survival analysis based on the expression 
level of RAB5B. (C) Correlation between RAB5B and KDM4A. (D) Expression level of 
RAB5B and KDM4A in our RNA-Seq data 
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Figure 9: Chip-seq of H3K9me3 at RAB5B in normal pancreatic tissues and different 
subtypes of PDAC.  
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