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Abstract

Beyond bounded rationality: Reverse-engineering and enhancing human intelligence

by Falk Lieder

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Thomas L. Griffiths, Chair

Bad decisions can have devastating consequences, and there is a vast body of literature suggest-
ing that human judgment and decision-making are riddled with numerous systematic violations
of the rules of logic, probability theory, and expected utility theory. The discovery of these cogni-
tive biases in the 1970s challenged the concept of Homo sapiens as the rational animal and has pro-
foundly shaken the foundations of economics and rational models in the cognitive, neural, and so-
cial sciences. Four decades later, these disciplines still lack a rigorous theoretical foundation that can
account for people’s cognitive biases. Furthermore, designing effective interventions to remedy cog-
nitive biases and improve human judgment and decision-making is still an art rather than a science. I
address these two fundamental problems in the first and the second part of my thesis respectively.

To develop a theoretical framework that can account for cognitive biases, I start from the assump-
tion that human cognition is fundamentally constrained by limited time and the human brain’s
finite computational resources. Based on this assumption, I redefine human rationality as reasoning
and deciding according to cognitive strategies that make the best possible use of the mind’s limited
resources. I draw on the bounded optimality framework developed in the artificial intelligence liter-
ature to translate this definition into a mathematically precise theory of bounded rationality called
resource-rationality and a new paradigm for cognitive modeling called resource-rational analysis. Ap-
plying this methodology allowed me to derive resource-rational models of judgment and decision-
making that accurately capture a wide range of cognitive biases, including the anchoring bias and
the numerous availability biases in memory recall, judgment, and decision-making. By showing that
these phenomena and the heuristics that generate them are consistent with the rational use of lim-
ited resources, my analysis provides a rational reinterpretation of cognitive biases that were once
interpreted as hallmarks of human irrationality. This suggests that it is time to revisit the debate
about human rationality with the more realistic normative standard of resource-rationality. To en-
able a systematic assessment of the extent to which human cognition is resource-rational, I present
an automatic method for deriving resource-rational heuristics from a mathematical specification of
their function and the mind’s computational constraints. Applying this method to multi-alternative
risky-choice led to the discovery of a previously unknown heuristic that people appear to use very
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frequently. Evaluating human decision-making against resource-rational heuristics suggested that,
on average, human decision-making is at most 88% as resource-rational as it could be.

Since people are equipped with multiple heuristics, a complete normative theory of bounded
rationality also has to answer the question of when each of these heuristics should be used. I address
this question with a rational theory of strategy selection. According to this theory, people gradually
learn to select the heuristic with the best possible speed-accuracy trade-off by building a predictive
model of its performance. Experiments testing this model confirmed that people gradually learn to
make increasingly more rational use of their finite time and bounded cognitive resources through a
metacognitive reinforcement learning mechanism.

Overall, these findings suggest that–contrary to the bleak picture painted by previous research on
heuristics and biases–human cognition is not fundamentally irrational, and can be understood as
making rational use of bounded cognitive resources. By reconciling rationality with cognitive biases
and bounded resources, this line of research addresses fundamental problems of previous rational
modeling frameworks, such as expected utility theory, logic, and probability theory. Resource-
rationality might thus come to replace classical notions of rationality as a theoretical foundation
for modeling human judgment and decision-making in economics, psychology, neuroscience, and
other cognitive and social sciences.

In the second part of my dissertation, I apply the principle of resource-rationality to develop tools
and interventions for improving the human mind. Early interventions educated people about cog-
nitive biases and taught them the normative principles of logic, probability theory, and expected
utility theory. The practical benefits of such interventions are limited because the computational
demands of applying them to the complex problems people face in everyday life far exceed individ-
uals’ cognitive capacities. Instead, the principle of resource-rationality suggests that people should
rely on simple, computationally efficient heuristics that are well adapted to the structure of their en-
vironments. Building on this idea, I leverage the automatic strategy discovery method and insights
into metacognitive learning from the first part of my dissertation to develop intelligent systems that
teach people resource-rational cognitive strategies. I illustrate this approach by developing and evalu-
ating a cognitive tutor that trains people to plan resource-rationally. My results show that practicing
with the cognitive tutor improves people’s planning strategies significantly more than does practic-
ing without feedback. Follow-up experiments demonstrate that this training effect transfers to more
difficult planning problems in novel and more complex environments, and that this transfer effect
is retained over time. This indicates that discovering and teaching resource-rational heuristics may
be a promising approach to improving human judgment and decision-making. While this approach
adapts people’s heuristics to the structure of their environment, the theory of resource-rationality
suggests that human decision-making can also be improved by adapting the structure of the envi-
ronment to the heuristics people already use. I illustrate this approach by developing a cognitive
prosthesis for goal achievement that helps people overcome procrastination, spring into action, and
achieve their goals on time.

2



By virtue of integrating rational principles with cognitive constraints, resource-rationality pro-
vides a realistic normative standard for human reasoning and decision-making. My findings about
human rationality and metacognitive learning are consistent with the view that evolution and learn-
ing adapt the mind to the structure of its environment and the constraints imposed by its limited
resources. These adaptive mechanisms appear to optimize for resource-rationality, and the benefits
of training with the cognitive tutor demonstrate that this adaptation can be accelerated with the
help of artificial intelligence. This makes resource-rationality a promising theoretical framework for
modeling and improving human cognition.
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0
General Introduction

The decisions we make determine our personal and collective destiny. Technological, scientific, so-
cial, and cultural advances have given us tremendous power over our lives, the lives of others, and
the future of humanity. The power of our choices comes with the responsibility to choose wisely.
Yet making good decisions is much easier said than done. We have all witnessed regrettable decisions,
unwarranted conclusions, and questionable arguments more often than we would like.

To address the problem of questionable arguments and unwarranted conclusions, Aristotle set
out to characterize what distinguishes valid inferences from fallacies (R. Smith, 2017). His efforts
laid the foundation of modern logic. This inspired the creation of artificial intelligence and became a
normative standard for human reasoning. While logic is a normative theory of deductive reasoning
under certainty, human reasoning often involves uncertainty and inferring unobservable principles
from limited data. Bayesian statistics holds that we should draw such inferences by updating our
beliefs according to the rules of probability theory (Bayes, 1763; Laplace & Simon, 1951; Savage, 1971).
Finally, expected utility theory (von Neumann & Morgenstern, 1944) prescribes that we should
always choose the course of action that maximizes our expected utility.

Over the past 50 years a substantial literature on heuristics and biases has documented that peo-
ple’s judgments and decisions often violate these normative principles (Gilovich, Griffin, & Kahne-
man, 2002; Tversky & Kahneman, 1974; Wason, 1968). These systematic errors are known as cogni-
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tive biases. As the resulting errors can have severe consequences, developing interventions to remedy
these biases has become a prominent research topic. In the following paragraphs, I briefly review the
main approaches that have been explored previously and identify their limitations, which motivate
the research of this dissertation.

Debiasing,the first approach, aims to eliminate or reduce cognitive biases through motivational,
cognitive, or technological interventions (Larrick, 2002). Motivational approaches to debiasing seek
to reduce cognitive biases by adding financial incentives for good performance or by holding people
accountable. Incentives and accountability generally increase effort, however, this does not necessar-
ily equate to increased performance (Camerer & Hogarth, 1999). The effectiveness of motivational
approaches appears to critically depend on whether people already possess effective cognitive strate-
gies (Camerer & Hogarth, 1999; Lerner & Tetlock, 1999).

Cognitive approaches to debiasing teach strategies that are consistent with normative princi-
ples or approximate them. It aims for strategies that are simple and memorable. Early cognitive
approaches taught people basic statistical principles (e.g., (a) the law of large numbers and (b) the
variability of small samples [Fong & Nisbett, 1991]) and simple implications of normative princi-
ples (e.g., (a) how to check whether an if-then statement is true [Cheng, Holyoak, Nisbett, & Oliver,
1986] or (b) that sunk costs should be ignored [Larrick, Morgan, & Nisbett, 1990]).People learned
to apply those simple rules to simple problems. Moreover, some studies found transfer to simple
problems that are superficially different from the examples used during training (Fong & Nisbett,
1991, e.g., ). Another successful example of cognitive debiasing is teaching people to ask themselves
why their initial judgment or decision might be wrong. This strategy has been found to reduce over-
confidence, the anchoring bias, and the hindsight bias (Arkes, 1991; Mussweiler & Strack, 2000).
However, cognitive approaches to debiasing and their evaluation have been restricted to simple rules
for simple problems, and Larrick (2002) argued that it would be unsuitable for more complex nor-
mative strategies such as Bayes rule.

Technological approaches to debiasing include: (a) replacing human judgments by regression
models (Dawes, Faust, & Meehl, 1989), (b) performing decision analysis (Howard, 1988), and (c) de-
cision support systems (Power, Sharda, & Burstein, 2015). Decision analysis guides people to decom-
pose their decision problem, estimate its components, and then combine their estimates according
to expected utility theory. The effectiveness of these tools remains to be evaluated (Larrick, 2002).
Decision support systems carry out facets of the decision process for the decision-maker, to compen-
sate for their cognitive limitations. They can thus be interpreted as cognitive prostheses. Most deci-
sion support systems are highly specific to a particular domain, such as supply chain management
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for a particular industry. There are more general decision support systems based on decision-analysis
(Edwards & Fasolo, 2001). Unfortunately, they inherit the issues arising from the inaccuracy and
biases of people’s probability judgments and utility estimates.

Despite their differences, all of these approaches to debiasing are based on two assumptions. First,
they assume that all cognitive biases reflect irrational heuristics and suboptimal cognitive perfor-
mance. Second, since this literature defines cognitive biases as deviations from the rules of logic,
probability theory, and expected utility theory, its interventions aim to bring people’s cognitive
strategies into closer alignment with those normative principles. In Part 1 of my dissertation, I argue
that the assumptions of debiasing are flawed because logic, probability theory, and expected utility
theory are unrealistically high normative standards that are oblivious to the computational con-
straints that people have to work with. Consequently, the traditional approach of debiasing might
not be the most effective way to improve human judgment and decision-making in complex real-life
situations.

Similar to debiasing, boosting (Hertwig & Grüne-Yanoff, 2017) aims to increase people’s decision-
making competency. But in contrast to debiasing it does not define competency as adhering to the
rules of expected utility theory, logic, and probability theory. Instead, it views a competent decision-
maker as somebody who uses simple heuristics that are well adapted to the structure of their envi-
ronment. Boosting therefore aims to teach people simple rules of thumb that differ considerably
from the normative rules taught in classic debiasing interventions. Boosting also aims to change how
information is presented to match the presentation format that people’s heuristics are adapted to.
One successful example of this approach is to present conditional probabilities as natural frequen-
cies. This intervention has been shown to significantly improve people’s performance at Bayesian
reasoning (Gigerenzer & Hoffrage, 1995). For a more lasting effect, people can be taught to translate
conditional probabilities into natural frequencies by themselves (Sedlmeier & Gigerenzer, 2001).
Despite these successes, the effectiveness of boosting is limited by our ability to discover effective
heuristics. It would be a coincidence if the heuristics people are currently taught were already opti-
mal. So there may still be a lot of room for improvement in the curriculum of boosting. But coming
up with better heuristics is very difficult. This dissertation addresses this challenge by developing a
principled method for deriving optimal heuristics automatically.

While debiasing and boosting target judgment and decision-making directly, cognitive training
targets the basic underlying cognitive capacities such as working memory (Klingberg, 2010), pro-
cessing speed (Ball, Edwards, & Ross, 2007; Nouchi et al., 2012, 2013), attention (Slagter et al., 2007;
Tang & Posner, 2009), and cognitive control (Anguera et al., 2013; Karbach & Kray, 2009; Nouchi
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et al., 2012, 2013). Generally, cognitive training leads to reliable improvements on the trained task.
While these improvements frequently transfer to similar tasks, they rarely transfer to performance in
everyday life. Whether existing training programs, such as working memory training, achieve mean-
ingful transfer effects is the subject of a heated debate (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008;
Melby-Lervåg & Hulme, 2013; Morrison & Chein, 2011; Owen et al., 2010; Redick et al., 2013; Ship-
stead, Redick, & Engle, 2012). Furthermore, the learning mechanisms underlying potentially gener-
alizable improvements in high-level cognition remain poorly understood. Furthermore, there is very
little theoretical guidance for designing effective training regimens; this might be a serious bottle-
neck to the development of effective cognitive training programs. To address this problem Chapters
5 and 9 of my dissertation propose and evaluate a theoretical framework and computational tools for
developing a new kind of cognitive training program.

In contrast to debiasing, boosting, and cognitive training, nudging aims to exploit people’s cogni-
tive biases instead of trying to remedy them (Thaler & Sunstein, 2008). Nudging structures decision
environments in such a way that people’s biases favor a desirable decision without restricting their
freedom of choice. This methodology has been successfully used in public policy to promote organ
donation and saving for retirement. The most prominent example of nudging is to make the pre-
sumably better option (e.g., to save for retirement) the default, while allowing people to opt out.
There are many more examples of how the presentation of choices can be tweaked to improve peo-
ple’s decisions (Johnson et al., 2012). To date, nudging is primarily used in public policy. It allows
governments and organizations to gently nudge citizens and consumers towards pro-social and re-
sponsible behavior. But the widespread use of nudging raises concerns about manipulation and
unintended side effects, which remain unaddressed. Furthermore, nudges are typically only avail-
able for a very small fraction of the thousands of decisions we have to make every day. In actuality
there are very few tools that people can use to nudge themselves to perform a desired task. Chapter 7
of my dissertation addresses this problem by developing a theory-based approach to nudging and a
practical tool that individuals can use to nudge themselves towards their goals.

In summary, while there are at least four existing approaches to improving human judgment and
decision-making, all of them have serious limitations. Overcoming those limitations will require
significantly more research into their theoretical foundations.

My research is driven by the need for a solid theoretical and computational foundation for im-
proving human decision-making. To be useful, a theoretical framework for improving the human
mind should be able to answer the following questions:
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1. How should we think and decide to make the best possible use of our limited time and cogni-
tive resources?

2. How does human cognition compare to this idea?

3. How do we learn to think more clearly and make better decisions?

4. What can be done to promote cognitive growth?

5. How can we help people overcome their cognitive limitations and achieve their goals?

This dissertation addresses each of these questions within the domains of judgment, decision-
making, and planning. The first part of my dissertation addresses questions 1–3 via a combination of
computational modeling and behavioral experiments. The second part of my dissertation addresses
questions 4 and 5. There, I leverage the theoretical framework developed in Part I to formulate in-
terventions for expanding the bounds of human rationality. These interventions take the form of a
cognitive tutor that teaches people optimal planning strategies, and a cognitive prosthesis that lets
people nudge themselves towards their goals.

My research on optimal reasoning and decision-making under limited resources sheds new light
on the debate about human rationality. It challenges the conclusion that people are fundamentally
irrational and provides more realistic normative standards for assessing human rationality. The the-
ory and computational tools I have developed for deriving optimal cognitive strategies provide a
useful methodology for cognitive modeling, one that lets researchers leverage the power of norma-
tive principles to develop precise mathematical models of cognitive mechanisms. Furthermore, my
model of strategy selection closes an important gap in theories of bounded rationality. Those the-
ories postulate that the mind is equipped with a toolbox of heuristics, and the model presented in
Chapter 4 completes them by specifying how people should decide when to use which heuristic. My
research on metacognitive learning leads to a nuanced, dynamic perspective on what it means to be
rational. According to this view, rationality entails gradually learning to make increasingly more ef-
fective use of fallible heuristics. This perspective reconciles people’s use of fallible heuristics with the
normative principles of rational decision-making and rational learning. Furthermore, it shifts the
focus from how people think and decide when they are tested to how their reasoning and decision-
making improve over time. According to this dynamic view, human rationality should be measured
by people’s ability to improve their reasoning and decision-making based on their experience.

In addition to these scientific contributions, the research presented in this dissertation is also a
step towards several practical applications for helping people make better decisions. First, the the-
ory of resource-rationality makes it possible to derive optimal cognitive strategies that might enable
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people to make better decisions and think more clearly. Second, the theory and models of metacog-
nitive learning (Chapter 5) provide guidance for how to promote and accelerate cognitive growth.
To support this argument, I show that these principles can be used to design feedback mechanisms
that make cognitive training more effective (Chapter 9). Finally, my research on decision-support
(Chapter 8) provides a theoretical foundation for developing cognitive prostheses for goal achieve-
ment. The approach I have taken leverages artificial intelligence to enable people to effectively nudge
themselves towards their goals. As a proof-of-concept, I present a to-do list gamification app that
can help people overcome procrastination and achieve their goals on time.

This dissertation is structured into two parts: The six chapters of the Part 1 develop a method-
ology for deriving realistic normative models of human cognition. By taking into account people’s
finite time and bounded cognitive resources, these rational models can explain cognitive biases that
would otherwise appear irrational. Chapter 1 reviews the literature on rational models of reasoning
and decision-making with limited cognitive resources and identifies open problems. Chapter 2 devel-
ops a resource-rational model of a ubiquitous systematic error in human judgment: the anchoring
bias. Chapter 3 develops a resource-rational model of a wide range of availability biases in human
decision-making, judgment, and memory recall. These findings establish that at least some heuris-
tics can be understood as resource-rational cognitive strategies for specific problems. However, no
single heuristic is resource-rational for all problems. Thus, achieving resource-rationality requires
adaptively choosing between multiple heuristics. Chapter 4 formalizes this idea by a rational model
of strategy selection and tests its predictions in behavioral experiments. The findings suggest that
people can select heuristics adaptively because they have learned to predict how well each heuristic
will perform for different problems. Inspired by these results, Chapter 5 tests the hypothesis that
people gradually learn to make increasingly more rational use of their limited cognitive resources.
A series of experiments confirmed this prediction. Follow-up experiments suggested that these im-
provements may be driven by a metacognitive reinforcement learning mechanism. Finally, while
I derived the resource-rational models presented in Chapters 1-5 by hand, Chapter 6 presents and
evaluates a method for deriving resource-rational models automatically. The primary objective of
all of this research is to go beyond fuzzy, verbal theories of bounded rationality. This is achieved by
developing mathematically precise normative models of how people should think and decide; and
then leveraging those models to revisit the debate about human rationality.

Part 2 of this dissertation applies these advances to develop tools and interventions to push the
boundaries of human rationality farther outward. Concretely, Chapter 8 develops a cognitive pros-
thesis that augments the brain’s decision-making systems. Chapter 9 develops a cognitive tutor that
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teaches people resource-rational planning strategies. Finally, I conclude by discussing the implica-
tions of these findings for understanding and improving human rationality.

Most chapters of my dissertation are based on previously published articles with several co-
authors. In these chapters, I will use the pronoun “we” when describing work that I or my collabora-
tors have done as part of this project. When collaborators have performed substantive components
of the presented work this is explicitly acknowledged in the footnote at the beginning of the corre-
sponding chapter. I will continue to use the pronoun “I” in the chapters and sections that are not
based on published collaborative work and also to express my personal opinion – which does not
necessarily reflect the views of my co-authors.
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Part I

Bounded rationality revisited
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Introduction to Part I

As laid out in the General Introduction, I believe that developing a precise normative theory of
bounded rationality will allow us to establish tools and interventions that will help people think
more clearly, and make better decisions. Here, I will argue that bounded optimality is a promising
theoretical framework for building such a theory. To illustrate the potential of this framework, I
apply it to derive bounded-optimal models of judgment and decision-making; which I will then
bring to bear on the debate about human rationality.

The first four chapters argue that human rationality should be understood in terms of the opti-
mal use of our finite time and limited cognitive resources. I formalize this idea within the framework
of bounded optimality, as established in the artificial intelligence literature (Russell & Subramanian,
1995), in Chapter 1. This leads to a new normative standard for human cognition called resource-
rationality and a new methodology for cognitive modeling called resource-rational analysis. In the
subsequent chapters, I apply this methodology to derive resource-rational models of judgment
(Chapter 2), decision-making (Chapter 3), and strategy selection (Chapter 4). I illustrate how such
models can contribute to a better understanding of human cognition, and I use them to revisit the
debate about human rationality. In order to make resource-rational analysis more easily applicable
to a wider range of phenomena, Chapter 6 develops an automatic method for deriving rational pro-
cess models from first principles. As a proof of concept, I apply this method to multi-alternative
risky choice and show that it yields new insights into the mechanisms of human decision-making.
This enables a quantitative assessment of human rationality against a realistic normative standard.
These case studies illustrate that resource-rational analysis is a promising paradigm for modeling
human cognition.

The analyses mentioned so far derived the optimal cognitive strategies for fixed cognitive archi-
tectures confronting known environments. Humans, however, often confront unknown environ-
ments with a changing brain. I believe that a complete theory of human rationality should take these
additional challenges into account by specifying bounded-optimal learning mechanisms that render
cognitive mechanisms increasingly more resource-rational by adapting them to cognitive constraints
and the structure of the environment. As a first step in this direction, I develop a theory of how peo-
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ple learn when to use which heuristic, and outline how this approach could be expanded in order
to model how those strategies are learned in the first place (Chapter 5). Based on these models, I
hypothesize that people generally learn to make increasingly more rational use of their limited cogni-
tive resources over time. I will argue that an understanding of human rationality which is based on
learning, and rooted in a realistic normative standard, can capture human performance far more ac-
curately than models derived from the unrealistically high normative standards of logic, probability
theory, and expected utility theory.
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1
Resource-Rationality*

1.1 Introduction

What does it mean to be rational? How should we reason about what is true and how should we
decide what to do? Do the cognitive strategies that people already use come close to these ideals or
are they far off? Which strategies should we teach people to improve the quality of their reasoning
and decision-making?

This chapter introduces the theoretical framework used to answer these questions. Its central
idea is that people should make rational use of their finite time and limited cognitive resources. The
chapter starts by briefly summarizing and discussing previous theories of rationality and the de-
bate about human rationality. The open problems and limitations of previous work are pointed
out and the new theoretical framework of resource-rationality is introduced to address them. This
framework leads to a new methodology called resource-rational analysis that is the foundation for
the work presented in Part 1. To illustrate the utility of taking a resource-rational perspective for un-
derstanding human cognition, previous work that can be understood within the resource-rational
framework is also reviewed. The chapter closes with a preview of how the subsequent chapters will

*This chapter reuses material from Griffiths, Lieder, and Goodman (2015).
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build on and apply this overarching theoretical principle.

1.2 Notions of rationality

Existing definitions of rationality differ along four dimensions: The first distinction is whether ratio-
nality is defined in terms of beliefs (theoretical rationality) or actions (practical rationality; Harman,
2013). The second distinction is whether rationality is judged by the reasoning process (rule-based)
or its consequences (consequentialism; Sosis & Bishop, 2013). Third, some notions of rationality
take into account the agent’s computational capacity are bounded (bounded rationality) whereas
others do not (unbounded rationality; Lewis, Howes, & Singh, 2014; Russell, 1997). Fourth, ratio-
nality may be defined either by the agent’s performance on a specific task or by its average perfor-
mance in the natural environment (ecological rationality; Chater & Oaksford, 2000; Gigerenzer,
2008b; Lewis et al., 2014).

The most influential rule-based notion of rationality is logic. A logic is a formal system of infer-
ence rules for transforming one set of formula into another set such that the resulting formula (con-
clusion) will be true if the initial formula (premises) were true (Reichenbach, 1947). The most basic
form of logic is propositional logic where each formula comprises atomic statements, such as “Aris-
totle was a human.” that can be connected by AND, OR, IF ... THEN ..., and NOT. While logic
defines rational rules for reasoning from statements that are known to be true or false, probability
theory defines rational rules for reasoning under uncertainty. Concretely, Bayesian rationality holds
that people should reason according to the laws of Bayesian probability theory (Oaksford & Chater,
2007). This entails maintaining graded beliefs over alternative hypotheses θ ∈ Θ. The degree of
belief P (θ) in a hypothesis θ is formalized as a probability such that P (θ|K) = 0 if and only if the
hypothesis cannot possibly be true and P (θ|K) = 1, if and only if, the hypothesis cannot possibly
be false given the agent’s knowledgeK . The latter entails that the sum of the probabilities assigned
to all possible values a state of the world can take has to be equal to 1. Finally, the last critical ele-
ment of probability theory is the notion of conditional probability. Concretely, the conditional
probability of θ1 given θ2, which is written as P (θ1|θ2), specifies how strongly one should belief in
θ1 being true if θ2 was true. Formally, the conditional probability of θ1 given θ2 is defined as

P (θ1|θ2) =
P (θ1 ∧ θ2)
P (θ2)

, (1.1)

where the proposition θ1 ∧ θ2 defines the set of worlds in which both propositions (θ1 and θ2) are
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true simultaneously. The definition notion of conditional probability enforces that all of the agent’s
beliefs are coherent with each other. Furthermore, Bayesian rationality also demands that all beliefs
should be consistent with the agent’s observations o. Concretely, probability theory entails that
when the agent makes a new observation o, then it should update its belief in each of its hypotheses
θ ∈ Θ from p(θ), which is known as the prior to P (θ|o)which is known as the posterior. Con-
cretely, Bayes theorem (Bayes, 1763) holds that a rational agent’s posterior belief in hypothesis θ after
having seen observation o should be

P (θ|o) = P (o|θ) · P (θ)
P (θ) · P (o|θ) + P (¬θ) · P (o|¬θ)·

, (1.2)

where ¬θ is the negation of hypothesis θ. This means that observing o turns the odds of θ being
true versus false from P (θ)

P (¬θ) into

P (θ|o)
P (¬θ|o)

=
P (θ)

P (¬θ)
· P (o|θ)
P (o|¬θ)

. (1.3)

Intuitively, this means that an observation should increase your degree of belief in a hypothesis θ
proportionally to how much more likely that observation is to occur if θ than if θ was false.

By contrast to these process-based notions of rationality, consequentialist notions of rationality
evaluate human reasoning based on its outcomes (Sosis & Bishop, 2013). There are two main ver-
sions of consequentialist theoretical rationality: reliabilism and pragmatism. Reliabilism evaluates
reasoning strategies based on how reliably they yield correct conclusions across a wide range prob-
lems. By contrast, pragmatism evaluates the reasoning strategies according to the usefulness of the
resulting beliefs regardless of their factual accuracy. For instance, if a reasoning strategy leads us to
incorrectly conclude that filing our taxes will be fun that counts against its rationality from the re-
liabilist perspective. But from the pragmatist perspective a factually incorrect inference about how
enjoyable it is to file taxes could count as rational if it helps you avoid the negative consequences of
procrastinating on filing your taxes for too long. The most prominent version of consequentialism
is expected utility theory (von Neumann & Morgenstern, 1944). According to expected utility the-
ory, a rational decision-maker should always choose the action a⋆ that maximizes the expected utility
of the resulting outcomeO, that is

a⋆ = argmax
a

EP (O|s,a) [u(O)|s, a] , (1.4)

where the agent’s utility function u defines how good or bad different outcomes are with respect to
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the agent’s goals and the outcomeO includes both the immediate reward and the next state.

While process-based notions of rationality are conceptually very different from consequentialist
notions of rationality, and theoretical rationality is distinct from practical rationality, all of them
could, in principle, be attained simultaneously. This might be why the standard picture of ratio-
nality combines them by demanding that people reason according to the normative rules (Sosis &
Bishop, 2013) of logic and probability (which is a process-based notion of theoretical rationality) and
acting according to the maxim to maximize expected utility (which is a form of consequentialism).
In my view, the critical shortcoming of the standard picture of rationality are that it does not recog-
nize that to think and decide effectively in the world people and machines have to make efficient use
of their limited time and bounded computational resources. Incorporating cognitive constraints
into theories of rationality began with the foundational work of Herbert Simon who argued that
computational limitations place substantial constraints on human reasoning (Simon, 1972, 1982).
The following sections briefly summarize Simon’s work on bounded rationality and subsequent
extensions and refinements.

1.2.1 Early extensions to bounded agents

Simon pointed out that our finite computational capacities make it impossible for us to always find
the best course of action, because we cannot consider all possible consequences. He illustrated this
using the game of chess, where choosing the optimal move would require considering about 10120

possible continuations. Thus, Simon concluded, to adequately model human behavior, we need a
theory of rationality that takes our minds’ limitations into account. Simon called such an approach
bounded rationality, emphasizing that it depends on the structure of the environment (Simon, 1956)
and entails satisficing, that is accepting sub-optimal solutions that are good enough in place of striv-
ing for the very best solution possible. While he provided some formal examples of satisficing strate-
gies (Simon, 1955), Simon viewed bounded optimality as a principle rather than a formal framework.

Arguably, the question of what it means to be rational in the face of limited computational re-
sources is also fundamental to the endeavour of creating artificial intelligence (Russell, 1997). So, it
might come as no surprise that computer scientists have subsequently expanded Simon’s ideas on
bounded rationality into formal theories of computational rationality (for a review see Gershman,
Horvitz, & Tenenbaum, 2015). Two early notions of computational rationality were calculative ra-
tionality and Type II rationality. Calculative rationality refers to algorithms whose answers would,
eventually, converge to the optimal solution within the limits of infinite computation. These algo-
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rithms are commonly run for a much shorter length of time than would be necessary to guarantee
their convergence to the optimal solution but their asymptotic guarantees are seen as evidence that
they are at least approximating the right thing. Good (1983) defined Type II rationality as the maxi-
mization of expected utility taking into account the cost of deliberation. Intuitively, this means that
rational bounded agents optimally trade off the expected utility of the action that will be chosen
with the corresponding deliberation costs. But Good (1983) did not make this notion mathemati-
cally precise.

1.2.2 Rational metareasoning

Later work on rational metareasoning formalized Good’s ideas with mathematical precision (Horvitz,
1987; Russell & Wefald, 1991b). If reasoning seeks an answer to the question “what should I do?”,
metareasoning seeks an answer to the question “how should I decide what to do?”. The theory of
rational metareasoning (Russell & Subramanian, 1995; Russell & Wefald, 1991b) frames this problem
as selecting computations so as to maximize the sum of the rewards of resulting decisions minus the
costs of the computations involved. Concretely, one can formalize reasoning as a meta-level Markov
decision process (meta-level MDP) and metareasoning as solving that MDP (Hay et al., 2012). In
brief, a meta-level MDP

(1.5)Mmeta = (B,A, Tmeta, rmeta)

is a Markov decision process (Puterman, 2014) where the actionsA are computations, the states B
encode the agent’s beliefs, and the transition function Tmeta describes how the computations change
those beliefs. A includes computations C that update the beliefs, as well as, a special meta-level ac-
tion⊥ that terminates deliberation and initiates acting on the current belief. A belief state b encodes
a probability distribution over parameters θ of a model in the domain. The meta-level reward func-
tion rmeta captures the cost of computation and the external reward r the agent expects to receive
from the environment.

This formulation makes rational metareasoning amenable to the wide range of methods that have
been developed to solve Markov decision processes including dynamic programming (Puterman,
2014) and reinforcement learning (Sutton & Barto, 1998).
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1.2.3 Bounded Optimality

Despite its precision and elegance, rational metareasoning does not take into account the delibera-
tion costs of determining the optimal trade-off between the costs and benefits of reasoning about
the world. This problem cannot be solved by applying the same thinking that created it because
metareasoning about efficient metareasoning would invite an infinite regress. Instead, Stuart Russell
and colleagues overcame this limitation by relaxing the standards of rationality from always selecting
the optimal computation to running a program that performs as well as or better than any other pro-
gram that the agent could execute (Russell, 1997; Russell & Subramanian, 1995; Russell & Wefald,
1991a). This standard is attainable by its very definition. It is conceivable that a bounded optimal
program for a particular problem would often select sub-optimal computations because the im-
provement that could be achieved by selecting optimal computations would be lower than the cost
of identifying them. This notion of rationality is known as bounded optimality.

Bounded optimality is a theoretical principle for designing intelligent programs that run on
performance-limited hardware and have to interact with their environment in real time (Russell
& Subramanian, 1995). Equation 1.6 defines bounded optimality as running a program program⋆

that when run on the agent’s hardware will generate world states through its decisions and whose
expected utility is at least as high as those generated by any other program that the agent’s hardware
can execute, that is

program⋆ = argmax
program∈Programs(HW)

EP (S1,···,ST |S0,At=program(historyt))
[
u
(
historyT

)]
, (1.6)

where Programs(HW) is the set of programs that the agent’s hardware can execute, and historyt =
{S0, · · · , St} and program(historyt) is the action that program would choose when executed on
the hardware after having observed historyt, and T is the number of time steps in the episode start-
ing with situation S0. Finally, u is the utility function that the agent is designed to optimize under
the constraints of its hardware.

By solving the optimal program problem defined in Equation 1.6 it is sometimes possible to de-
rive optimal algorithms. For instance, Russell and Subramanian (1995) derived an optimal mail sort-
ing program. This suggests the intriguing possibility that it might also be possible to derive optimal
cognitive strategies for people.
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1.3 The debate about human rationality

The theories of rationality summarized above have had a fundamental impact on classic theories in
psychology, economics, philosophy, linguistics,neuroscience, and the social sciences (Braine, 1978;
Chater, Tenenbaum, & Yuille, 2006; Fodor, 1975; Frank & Goodman, 2012; Friedman & Savage,
1948; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Harman, 2013; Hedström & Stern,
2008; Knill & Pouget, 2004; Lohman, 2008; Mill, 1882; Newell, Shaw, & Simon, 1958; Oaksford &
Chater, 2007; von Neumann & Morgenstern, 1944). Whether and to what extent human reasoning
satisfies the premises of these rational models and what this entails for human rationality has been
intensely debated (Stanovich, 2009). More recently, the debate has shifted from “Are we rational?”
to “Is building rational models a useful methodology for understanding human cognition?” and
this is an important distinction (Bowers & Davis, 2012; Chater et al., 2011; Griffiths, Chater, Nor-
ris, & Pouget, 2012). This section briefly reviews both the debate about human rationality and the
merits and challenges of rational modeling as a methodology for understanding human cognition.

The assumption that people are rational became hotly debated when a series of experiments sug-
gested that people’s judgments systematically violate the laws of logic (Wason, 1968) and probability
theory (Tversky & Kahneman, 1974), and subsequent studies demonstrated that people’s decisions
systematically deviate from the prescriptions of expected utility theory (Kahneman & Tversky, 1979).
These systematic errors are known as cognitive biases. For instance, Tversky and Kahneman (1974)
demonstrated that when people are asked to compare the number of countries to a low versus high
number that was generated by spinning a wheel of fortune before they estimate its value, then their
estimates are systematically biased towards an irrelevant random number; this is known as the an-
choring bias. Furthermore, people tend to dramatically overestimate the frequency of events that
come to mind easily; this is known as the availability bias. Moreover, when people are asked to judge
the probability of a sequence of coin tosses, they assign a higher probability to sequences that are less
regular and, hence, more representative of randomness, even though, all sequences are equally prob-
able; this is known as the representativeness heuristic. These are just three among dozens of cognitive
biases that have been identified in the last four decades (Gilovich et al., 2002).

According to Tversky and Kahneman (1974), cognitive biases result from people’s use of fast
but fallible cognitive strategies known as heuristics. The discovery of cognitive biases was highly
influential, because following the rules of logic and probability was assumed to be the essence of
rational thinking. Evidence that people deviate from these rules thus called human rationality into
question, and this doubt has shaken the foundations of economics, the social sciences, and rational
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models of cognition.

The debate about human rationality concerns the interpretation of these findings, and Stanovich
(2009) aptly summarized the positions taken in this debate in the following terms: Meliorists inter-
pret cognitive biases as evidence that human reasoning is not as good as it could be. Meliorists often
paint a bleak picture according to which people are profoundly irrational (Ariely, 2009; Marcus,
2009; Sutherland, 1992) but they are also optimistic that human reasoning can be improved (Nisbett,
1993). By contrast, Panglosians reject the interpretation that people are irrational by one of three ar-
guments: The first argument maintains that the principles of logic, probability theory, or expected
utility theory that were used as the yard stick of rationality have serious limitations (Gigerenzer &
Goldstein, 1996; Sosis & Bishop, 2013). The second argument maintains that the mind’s compu-
tational limitations are so severe that even rational people cannot be expected to conform to the
normative standards of logic, probability theory, and expected utility theory; proponents of this ar-
gument are calledApologists. The third argument maintains that many of the apparent violations
of rationality have been shown to be consistent with the rational solution to a reasonable alternative
construal of the task (Austerweil & Griffiths, 2011; Griffiths & Tenenbaum, 2001; Hahn & Oaks-
ford, 2007; Hahn & Warren, 2009; Oaksford & Chater, 1994, 2007; Tenenbaum, Griffiths, et al.,
2001). These rational explanations often draw on the methodology of rational analysis (Anderson,
1990; Chater & Oaksford, 1999) introduced in the following section. I believe that there is merit in
all three of these arguments, and Chapters 2–6 revisit the debate about human rationality with a
more appropriate notion of rationality that accounts for people’s cognitive constraints.

1.3.1 Rational models of cognition and Marr’s levels of analysis

The debate about human rationality also has implications for how we should model the human
mind. A long tradition of rational modeling has leveraged normative principles, such as Bayes theo-
rem and expected utility theory, to explain human behavior. As more and more violations of these
normative principles surfaced in the research on judgment and decision-making, the interpretation
of rational models has become increasingly constrained to what David Marr called the computational
level of analysis (Marr, 1982) which defines the function of a cognitive system in terms of the prob-
lem that it solves and the optimal solution to that problem. Marr distinguishes the computational
level of analysis from the algorithmic level of analysis that concerns the representations and cognitive
strategies that the system uses to approximate the optimal solution, and the implementation level
that concerns how those representations and computational mechanisms are bio-physically realized
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in the brain. While most rational models of human cognition are formulated at the computational
level of analysis, the remainder of this chapter and most of the subsequent chapters are dedicated to
showing that we can gainfully push normative principles down to the algorithmic level of analysis to
better understand people’s cognitive strategies and representations.

1.3.2 Rational analysis

Contrary to the bleak picture painted by research on heuristics and biases, other studies have shown
that many aspects of human cognition can be understood as rational adaptations to the environ-
ment and the goals people pursue in it (Anderson, 1990; Chater & Oaksford, 1999). Rational analy-
sis leverages this assumption to derive models of human behavior from the structure of the environ-
ment.

Concretely, Anderson (1990, p. 29) laid out the six-step methodology for developing rational
models of cognition summarized in Figure 1.1. Rational analysis derives models of human behavior
from the structure of the environment by assuming that cognitive mechanisms are near-optimally
adapted to achieving their goals in people’s natural environment. While cognitive psychology has
traditionally explained human behavior primarily in terms of the structure of the mind and its ca-
pacity limits, rational analysis explains human behavior primarily in terms of the structure of the
environment and makes only minimal assumptions about cognitive limitations. In the context of
the debate on human rationality, rational analysis has been used to provide rational explanations for
a wide range of cognitive biases including the confirmation bias (Austerweil & Griffiths, 2011; Oaks-
ford & Chater, 1994), the representativeness heuristic (Griffiths & Tenenbaum, 2001; Tenenbaum
et al., 2001), the gambler’s fallacy (Hahn & Warren, 2009), and fallacious argumentation (Hahn &
Oaksford, 2007).

1.3.3 Rational process models

The computational challenges posed by rationality are not just problems for human minds; they
are also faced by computer scientists and statisticians who work with complex probabilistic models.
These computer scientists and statisticians have developed a variety of strategies for approximating
the resulting computations, and those strategies provide a source of hypotheses about cognitive
processes that could be used to produce behavior that approximates a given rational model. The
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1. Precisely specify what are the goals of the cognitive system.
2. Develop a formal model of the environment to which the system is

adapted.
3. Make the minimal assumptions about computational limitations.
4. Derive the optimal behavioral function given items 1 through 3.
5. Examine the empirical literature to see if the predictions of the behav-

ioral function are confirmed.
6. If the predictions are off, iterate.

Figure 1.1: The methodology of rational analysis.

result is what has been dubbed a “rational process model” (Griffiths, Vul, & Sanborn, 2012; Sanborn,
Griffiths, & Navarro, 2010; Shi, Griffiths, Feldman, & Sanborn, 2010).

For example, Sanborn et al. (2010) showed how two algorithms commonly used to perform prob-
abilistic inference – Markov chain Monte Carlo and particle filters – can be be reinterpreted as hy-
potheses about the psychological mechanisms of categorization. With a large sample, these algo-
rithms give a close approximation to the ideal rational model, but with a small sample, they deviate
from this ideal in systematic ways, producing biases (such as order effects) that are easy to compare
against human performance. Such comparisons yield clues about the computational constraints that
might be relevant for explaining human behavior.

Process models based on approximation algorithms (such as Monte Carlo methods) are ratio-
nal in that their answers converge to the optimal solution in the limit of infinite computational
resources. However, this is a weak form of rationality that corresponds to the notion of calculative
rationality introduced above. One of the contributions of this dissertation will be to bolster the ra-
tionality of rational process models by grounding them in the theory of bounded optimality. This
idea has led to the notion of resource-rationality and the methodology of resource-rational analysis
presented below.

1.4 Redefining human rationality as the rational use of finite time and lim-
ited cognitive resources

As reviewed above, research on human judgment and decision-making has established that peo-
ple do not obey to the norms of logic, probability theory, and expected utility theory. The brain’s
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finite computational power limits how rational people can possibly act and think. As a result of
this bounded rationality, the ideals of maximizing expected utility, reasoning according to the laws
of logic, and handling uncertainty according to the laws of probability are out of reach for people.
As Figure 1.2 illustrates, the realization that people’s cognitive limitations rule out that people are
optimal (according to the standard picture of rationality), is compatible with a large number of
ways how the mind might work instead. So how should we think and decide instead? In my view,
bounded optimality is the literature’s most principled, general answer to the question of what it
means to be rational. I will, therefore, instantiate this abstract notion as a concrete theory of human
rationality. Concretely, I propose that to be rational a person has to reason and decide according
to cognitive strategies that perform as well as or better than any other strategies that they could be
using instead. I will refer to this new normative standard as resource-rationality.

As illustrated in Figure 1.2, resource-rationality uniquely identifies the best biologically feasible
mind(s) out of the infinite set of bounded rational minds. Concretely, I define a resource-rational
mindm⋆ for a brainB in an environmentE with respect to the utility function u as

m⋆ = argmax
m∈MB

EP (T,lT |E,At=m(lt)) [u (lT )] , (1.7)

where the agent’s life history lt = (S0, · · · , St) is the sequence of states it has experienced up until
time t, u(lT )measures how good this life was until it ended at time T ,MB is the set of minds that
are biologically feasible given the biophysical constraints of its brainB, St is the state of the environ-
ment at time t, andAt = m(lt) is the action that the mindm chooses in state st if the previous
states were s0, · · · , st−1. The cognitive limitations inherent in the biologically feasible mindsMB

include a limited set of elementary operations (e.g., counting and memory recall are available but
exact Bayesian inference is not), a limited processing speed (each operation takes a certain amount of
time), and potentially other constraints, such as limited working memory. Critically, the world state
St is constantly changing while the mindm deliberates. Thus, to perform well, the bounded opti-
mal mindm⋆ does not only have to generate good decisions but it also has to generate them quickly.
Since each cognitive operation takes a certain amount of time, this entails that bounded optimality
often requires computational frugality.

Unfortunately, it might be intractable to compute the resource-rational mind defined by Equa-
tion 1.7 because it requires optimizing over an entire lifetime. To provide a more tractable definition
that can be used to derive predictions about which heuristic h a person should use to make a partic-
ular decision or inference, it will be assumed that life can be partitioned into a sequence of episodes
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Figure 1.2: Resource rationality and its relationship to optimality and bounded rationality.

each of which starts with a state s0 = (w0, b0) that comprises the unknown state of the external
worldw0 and the person’s internal belief state b0. Furthermore, let result(s0, h) denote the judg-
ment, decision, or belief update that results from applying heuristic h in the initial state s0. In this
setting, we can decompose the value of having applied a particular strategy into the utility of its ter-
mination state u(s⊥) and the computational cost of its execution. The latter is critical because the
time and cognitive resources a person expends on any one decision or inference (current episode)
take away from their budget for other decisions and inferences (future episodes). To capture this,
let the random variable cost(th, ρ, λ) denote the total opportunity cost of investing the cognitive
resources ρ used or blocked by the heuristic h for the duration th of its execution, when the agent’s
cognitive opportunity cost per quantum of cognitive resources and unit time is λ. In this setting, I
define the resource-rational heuristic h⋆ for a brainB to use in the belief state b0 as

h⋆(b0, B,E) = argmax
h∈HB

EP (result|s0,h,E) [u (result)]− Eth,ρ,λ|h,s0,B,E [cost(th, ρ, λ)] , (1.8)

whereHB is the set of heuristics the brainB can execute. The cost of thinking can be defined by

cost(d, ρ, λ) =
∫ th

0
ρ(t) · λ(t) dt. (1.9)

For simplicity, I will assume that the heuristic’s cognitive demands ρ and the agent’s opportunity
cost λ are roughly constant while the heuristic h is being executed. In this case, the cost of thinking
can be approximated by cost(th, ρ, λ) = th · ρ · λ. To further simplify this analysis, ρ · λ can be
approximated by the agent’s reward rate in the environmentE; this corresponds to the assumption
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that a) the agent cannot multitask and b) the current reward rate is an accurate estimate of the value
of the agent’s time. In brief, the essence of resource-rationality is that people’s cognitive mechanisms
should trade off accuracy versus opportunity cost in an adaptive, near-optimal manner.

This definition improves upon what Lewis et al. (2014) call ecological bounded optimality in at
least three major ways: First, it explicitly captures the opportunity costs of the time and computa-
tion that applying a strategy h to the current problem incurs at the expense of the agent’s ability to
solve other problems concurrently or in the future. Second, it weighs the states the environment
might be in according to the person’s belief state (b0) rather than their overall frequency in the envi-
ronment. This accounts for people’s ability to adapt their cognitive strategy to individual problems
based on their (imperfect) knowledge about the state of their environment (Payne, Bettman, &
Johnson, 1993). Third, the utility function is allowed to depend on the belief state b⊥ that results
from reasoning according to h. This captures the potential benefits of belief updates achieved by
reflecting in the current episode for decisions made in future episodes.

Another way in which the resource-rational approach advances the methodology of computa-
tional rationality is that it leverages ideas from computer science to generate hypotheses about the
mind’s computational architecture and the space of heuristics that it might support. This gives rise
to a methodology for reverse-engineering the mind’s cognitive strategies known as resource-rational
analysis that will be presented in the following section.

Resource-rationality differs from the standard picture of rationality along three of the four di-
mensions: First, it evaluates reasoning by its utility for subsequent decisions rather than by its for-
mal correctness; this makes it an instance of pragmatism. Second, it agrees with Tversky and Kah-
neman’s approach (Tversky & Kahneman, 1974) in that resource-rationality is an attribute of the
process that generates conclusions and decisions. Third, it takes into account the cost of time and
the boundedness of people’s cognitive resources. Fourth, resource-rationality is defined with respect
to the distribution of problems in the environment rather than a set of arbitrary laboratory tasks.
Arguably, all three changes are necessary to obtain a normative, yet realistic, theory of human ratio-
nality. Unlike the decision theoretic and Bayesian accounts, resource-rationality is not defined by the
quality of the people’s actions or the truthfulness or coherence of their beliefs, but rather, in terms
of their cognitive strategies. Unlike logic and probability theory, it does not measure the quality of
these strategies by their adherence to rules that preserve truth or coherence, but rather, by its prac-
tical effects on the people’s actions and their consequences. Limited time and bounded cognitive
resources necessitate tradeoffs. This amplifies the effect of resource-rationality’s departures from
the standard picture of rationality by its pragmatic perspective on reasoning and its emphasis of per-
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1. Start with a computational-level (ie. functional) description of an aspect
of cognition, formulated as a problem and its solution.

2. Posit a class of algorithms for approximately solving this problem, a cost
to computational resources used by these algorithms, and a utility of
more accurately approximating the correct solution.

3. Find the algorithm in this class that optimally trades off resources and
approximation accuracy (Equation 1.8).

4. Refine by revising the model, algorithms, or costs (Steps 1, 2, or 3), or
by proceeding to the next level down: approximating the algorithms in
Step 2 to capture further resource constraints.

Figure 1.3: Recipe of resource-rational analysis.

formance in the real world over performance in the laboratory. The following chapters illustrate
that this allows resource-rationality to accommodate cognitive biases that were previously deemed
irrational.

1.5 Resource-rational analysis

One of the principles of rational analysis is to make only minimal assumptions about cognitive
constraints (see Figure 1.1). But the constraints imposed by people’s cognitive limitations are often
substantial. Herbert Simon has famously argued that to understand people’s cognitive strategies,
we have to simultaneously consider people’s cognitive constraints and the structure of their envi-
ronment (Simon, 1956, 1982). To achieve this, resource-rational analysis (Griffiths, Lieder, & Good-
man, 2015) incorporates cognitive constraints into rational analysis. Concretely, it takes into account
which cognitive operations are available to people, how long they take, and how costly they are.

Resource-rational analysis is a four-step methodology (see Figure 1.3) that leverages the theory
of resource-rationality introduced above to derive process models of cognitive abilities from formal
definitions of their function and assumptions about the mind’s computational architecture. This
function-first approach starts at the computational level of analysis (Marr, 1982). When the problem
solved by the cognitive capacity under study has been formalized, resource-rational analysis postu-
lates an abstract computational architecture, that is a set of elementary operations and their costs,
with which the mind might solve this problem. Next, a resource-rational analysis derives the algo-
rithm that is optimal for solving the problem identified at the computational level with the abstract
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Figure 1.4: Illustration of how resource-rational analysis connects levels of analysis.

computational architecture (Equation 1.8). The resulting process model is used to predict people’s
responses and reaction times in a given experiment and those predictions are then tested against em-
pirical data. Based on this evaluation, the assumptions about the computational architecture and
the problems to be solved are revised and the analysis cycle is repeated (see Figure 1.5). The iterative
refinements of the assumed cognitive architecture proceeds from abstract, minimal assumptions to
an increasingly more realistic model of the underlying neuro-cognitive architecture (see Figure 1.4).
In this way, resource-rational analysis can be used to connect Marr’s levels of analysis (Marr, 1982).

By explicitly positing a class of possible algorithms and a cost to the resources used by these al-
gorithms, we can invoke an optimality principle to derive the algorithm that the mind should be
using. This makes resource-rational analysis a methodology for analyzing information-processing

25



Computational
Level	Theory

Computational
Architecture

Rational
Process Model

Experiments	&	
Empirical Data

1. Specify
Function

5b.	Stop

Figure 1.5: Illustration of the resource-rational analysis cycle.

systems at an intermediate level defined by an idealized family of computational mechanisms which
corresponds to a particular computational architecture. This method enables us to reverse-engineer
not only the problem that a system solves (computational level of analysis), but also, the system’s
computational architecture.

To identify a family of potential cognitive strategies and the corresponding cognitive architec-
ture (Step 2), resource-rational analysis draws on previous research in the computational sciences.
Concretely, having formulated the problem to be solved in precise mathematical terms allows us to
mine the literature of artificial intelligence, machine learning, operations research, and other areas of
the computer science and statistics for classes of algorithms that have been developed to efficiently
solve such problems. Such a literature search generally yields one or more parametric families of
algorithms. Different settings of algorithm’s parameters often produce qualitatively different behav-
iors and different speed-accuracy trade-offs. For instance, particle filtering is a general approach that
leads to specific algorithms varying in the number of particles, the re-sampling criteria, and so on
(Abbott & Griffiths, 2011). This results in an infinite collection of algorithms some of which have
qualitatively different properties (e.g., one particle vs. millions of particles). Steps 2 and 3 allow us
to find reasonable points within this space of algorithms, which can then be compared to human
behavior. To the degree that evolution, development, and learning have adapted the system to make
optimal use of its finite computational resources, resource-rational analysis can be used to derive the
system’s algorithm from assumptions about its computational architecture.
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1.6 Resource-rationality as an organizing principle for understanding hu-
man cognition

The general principle that human cognition is optimal subject to computational constraints has
been successfully instantiated in previous models of decision-making, perception, memory, atten-
tion, reasoning, and cognitive control (Gershman et al., 2015; Lewis et al., 2014; Shenhav et al., 2017).
In this section, I review this literature to highlight the potential of resource-rational analysis and
opportunities for future work.

1.6.1 Resource-rational models of decision-making

Models of bounded-optimal decision-making differ widely in their assumptions about the nature,
costs, and limits of the cognitive operations they assume to be available to the decision-maker and in
which aspects of decision-making are assumed to be bounded-optimal.

Costly information acquisition. At a minimum, the models reviewed here assume that it
is costly to acquire information while retaining the assumption that acquired information will be
processed optimally (Caplin, Dean, & Martin, 2011; Colombo, Femminis, & Pavan, 2014; Gabaix,
Laibson, Moloche, & Weinberg, 2006; Lieder, Krueger, & Griffiths, 2017; Reis, 2006; Verrecchia,
1982). By leveraging the principle of bounded-optimality, these studies were able to show that pre-
viously proposed heuristics can be resource-rational: Caplin et al. (2011) derived a bounded-optimal
version of Herbert Simon’s classic satisficing heuristic (Simon, 1956). Similarly, Lieder, Krueger, and
Griffiths (2017) found that the Take-The-Best heuristic might be bounded-optimal when the stakes
are low and one outcome is much more probable than all the others. Evaluating models of optimal
decision-making with information costs in experiments has revealed that human performance is
constrained by additional limitations, such as limited working memory (Sanjurjo, 2017) and limited
information about the statistics of the decision environment that necessitate exploration (Caplin et
al., 2011).

Neural noise. Other studies have assumed that decision-making is constrained by neural noise
corrupting the fidelity of internal representations (Bhui & Gershman, 2017; Howes, Warren, Farmer,
El-Deredy, & Lewis, 2016; Khaw, Li, & Woodford, 2017; Summerfield & Tsetsos, 2015). Khaw et
al. (2017) that risk aversion follows from Bayesian inference of the gambles’ expected values from

27



a psychophysically plausible noisy representation of their payoffs. Similarly, Howes et al. (2016)
showed that contextual preference reversals can be explained as the consequence of an optimal infer-
ence of value from a noisy representation of the alternatives’ attributes. Bhui and Gershman (2017)
point out that the neural noise assumed by these models can be understood as a consequence of
bounded-optimal neural coding under metabolic constraints. Assuming that the fidelity of neural
representations is constrained, how should value be represented? Bhui and Gershman (2017) present
an information theoretic argument for the idea that it is bounded-optimal for the brain to represent
utilities and probabilities by their smoothed rank. Their analysis provides a rational justification
for the core assumptions of the decision-by-sampling model (N. Stewart, 2009; N. Stewart, Chater,
& Brown, 2006) and extends it in a way that explains additional biases in decision-making (range
effects and certain context effects).

Bounded-optimal evidence accumulation. A large number of studies have applied
bounded-optimality to different components of the drift-diffusion model of decision-making
(Gold & Shadlen, 2007): the decision threshold (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Bogacz, Hu, Holmes, & Cohen, 2010; Fudenberg, Strack, & Strzalecki, 2018; Gabaix & Laibson,
2005; Tajima, Drugowitsch, & Pouget, 2016; Vul, Goodman, Griffiths, & Tenenbaum, 2014), ev-
idence generation (Dickhaut, Rustichini, & Smith, 2009; Woodford, 2014, 2016), and evidence
accumulation (Bogacz et al., 2006; Tsetsos et al., 2016). While these models were first fully devel-
oped for the domain of perceptual decision-making (Bogacz et al., 2006, 2010) they have also been
extended to value-based choice (Dickhaut et al., 2009; Fudenberg et al., 2018; Gabaix & Laibson,
2005; Tajima et al., 2016; Tsetsos et al., 2016; Woodford, 2014, 2016). The resulting models offer a
resource-rational reinterpretation for phenomena that were previously considered irrational, includ-
ing intransitive preferences (Tsetsos et al., 2016) and probability matching (Vul et al., 2014). Other
studies have found systematic deviations of human performance from the predictions of the opti-
mal drift-diffusion model of perceptual decision-making (Holmes & Cohen, 2014). For instance,
Bogacz et al. (2010) found that most people under-perform the optimal speed-accuracy tradeoff by
setting their decision threshold too high leading to a heightened accuracy at the expense of respond-
ing too slowly. This finding suggests that human performance is constrained by additional bounds
that limit the accuracy of their time estimates and that make it costly for them to adjust the decision
threshold through cognitive control (Holmes & Cohen, 2014).
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Limited attention. Other studies have applied bounded optimality principles to model the ef-
fect of limited attention resources (Caplin & Dean, 2015; Caplin, Dean, & Leahy, 2017; Gabaix, 2014;
Lieder, Griffiths, & Hsu, 2017; C. A. Sims, 2003, 2006; Woodford, 2012). The starting point of this
line of inquiry was Sim’s theory of rational inattention (C. A. Sims, 2003, 2006). This theory models
people’s limited attention in terms of an information theoretic constraint on the mutual informa-
tion between the state of the environment and the bounded agent’s behavior. This model has been
able to successfully explain several apparent irrationalities in economic behavior, including the iner-
tia, randomness, and abruptness of the reactions of decision-makers to new financial information.

One limitation of the rational inattention model is that it discounts all information equally
whereas people tend to focus their attention on a small number of important pieces of informa-
tion while neglecting others completely. Gabaix (2014) addressed this limitation by deriving an op-
timal attention function that selects which variables the decision-maker should attend to and how
much attention each of the selected variables should receive. Gabaix (2014) argues that his sparsemax
model can be used as a more psychologically plausible foundation for elements of micro-economic
theory and shows that its predictions deviate from standard micro-economic theory which assumes
perfectly rational agents in similar ways as human behavior. A second limitation of the rational
inattention model is that it makes very specific assumptions about the cost of attention whose pre-
dictions where not borne out by subsequent experiments (Caplin & Dean, 2013; Caplin et al., 2017;
Dean & Neligh, 2017). Subsequent models addressed this problem by generalizing the attention cost
function in ways that make it possible to reconcile these deviations with bounded-optimal decision-
making under limited attention resources (Caplin & Dean, 2015; Caplin et al., 2017). This illustrates
that resource-rational analysis can be used to reverse-engineer what the cognitive constraints on
human decision-making might be. A third limitation of the rational inattention model is that it
abstracts away from the cognitive processes of decision-making. I will address this limitation by de-
veloping a resource-rational process model of decision-making with limited attention resources in
Chapter 3.

Computational complexity. The models discussed so far assumed that human decision-
making is bounded-optimal, subject to the constraints imposed by incomplete information, neural
noise, and limited attention. By contrast, Beck, Ma, Pitkow, Latham, and Pouget (2012) argue that
the relatively levels of neural noise measured neuro-physiologically are not nearly high enough to
fully explain the variability and suboptimality of human performance. They propose that instead
of making optimal use of noisy representations, the brain uses approximations that entail systematic
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biases. Such approximations appear to be warranted by the intractable computational complexity
of decision-making (Bossaerts & Murawski, 2017). The notions of Type II rationality and rational
metareasoning introduced above seek to address this problem by terminating deliberation as soon as
the expected improvement of decision quality that can be achieved by performing another compu-
tation drops below the cost of computation. Unfortunately, performing this cost-benefit analysis is
itself intractable. The directed cognitionmodel by Gabaix and Laibson (2005); Gabaix et al. (2006)
addresses this concern by selecting computations according to a myopic cost-benefit analysis that
looks only a single step ahead. They show that their model predicts people’s decisions in certain sce-
narios more accurately than expected utility theory and predicts qualitative properties of how peo-
ple choose between multiple complex goods (Gabaix et al., 2006). However, there are many ways in
which people violate the prediction of this model (Sanjurjo, 2017; Yang, Toubia, & De Jong, 2015).
Resource-rational analysis might be able to address these limitations, and recent study found that
a bounded-optimal model of planning explained human performance significantly better than the
directed cognition model (Callaway et al., 2018).

Ideas of bounded optimality have been applied to model how people leverage their habits to
eschew or reduce the computational challenges of planning. Huys et al. (2015) employed an opti-
mal fragmentation model according to which people decompose sequential decision problems into
sub-problems so as to optimally trade-off savings in the cost of planning attained by reusing pre-
vious action sequences with the resulting decrease in decision quality. This model helped them to
gain insights into how people combine different heuristics to efficiently solve complex planning
problems. Recent work has provided additional empirical evidence for the view that people adap-
tively leverage their habit system to simplify planning (Keramati, Smittenaar, Dolan, & Dayan,
2016). Beyond that, there appears to be very little, if any, research that has applied the principle
of bounded-optimality to understand the simple heuristics people use to solve complex problems
(Gigerenzer, 2008a; Gigerenzer & Selten, 2002). While it is commonly assumed that a boundedly
rational decision-maker would rely on heuristics (Bossaerts & Murawski, 2017; Gigerenzer, 2008a;
Gigerenzer & Selten, 2002), there used to be no theory for deriving bounded-optimal heuristics. To
address this problem, I developed the theory of resource-rationality presented above (Equation 1.8).
Chapters 2-3 apply this framework to derive resource-rational heuristics, and Chapter 6 presents
a computational method for discovering rational heuristics automatically and applies it to multi-
alternative risky-choice and planning.
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1.6.2 Resource-rational models of memory

Human memory is fundamentally constrained by the fact that some cognitive resources which are
critical for human performance, such as working memory, are very limited (Miller, 1956). The com-
bination of limited resources and adaptive pressures suggests that resource-rational analysis might
be particularly useful for understanding the memory mechanisms. In addition to Anderson’s fa-
mous rational analysis of memory storage and retrieval (Anderson & Milson, 1989), recent work has
applied the principles of bounded optimality to understand the working memory mechanisms gov-
erning people how many items are committed to working memory (Howes et al., 2016), how those
items will be encoded (Orhan, Sims, Jacobs, & Knill, 2014; C. R. Sims, 2015, 2016; C. R. Sims, Jacobs,
& Knill, 2012; van den Berg & Ma, 2017), and how their memories will maintained (Suchow, 2014;
Suchow & Griffiths, 2016).

Anderson and Milson’s rational analysis of memory (Anderson & Milson, 1989) can be inter-
preted as the first application of the principle of bounded optimality to understanding the human
mind. It assumed that memory retrieval is bounded by the computational constraints of time and
effort and that retrieving relevant information from memory requires searching through a list of po-
tentially relevant memories until one either finds a relevant one or gives up the search. Given these
computational constraints, Anderson and Milson (1989) derived an optimal memory storage mech-
anism that exploits the statistical structure of the environment to sort the memories in the order
of the probability that they will be needed and a stopping rule that terminates the search when its
expected gain drops below its cost. The resulting bounded-optimal memory mechanisms correctly
predict the effects of frequency, recency, and spacing on the how accurate people were at recalling
information and how long it took them to do so. Anderson and Schooler (1991) followed up on this
analysis by showing that the frequency with which a previously encountered piece of information
will be needed again in people’s natural environment does indeed possess the statistical structure
that makes the empirically observed memory mechanisms bounded-optimal.

The work by C. R. Sims et al. (2012) and van den Berg and Ma (2017) illustrates that developing
and evaluating bounded-optimal models is a promising way to reverse-engineer the constraints that
limit people’s cognitive performance. The bounded optimality framework allowed C. R. Sims et
al. (2012) to derive the effects of different kinds of capacity limits and test the resulting predictions
against empirical data. This allowed them to infer that rather than being constrained to a fixed num-
ber of items, visual working memory is a more continuous resource that can be flexibly divided to
either maintain a small number of items with high fidelity or a larger number of items with lower
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fidelity. Furthermore, their bounded optimal model predicts that how information is encoded in
working memory should depend on the statistics of the input distribution, the nature of the task,
and the relative costs of different kinds of errors (C. R. Sims, 2016; C. R. Sims et al., 2012). This al-
lowed their model to correctly predict how the precision with which items are encoded in working
memory depends on task characteristics such as the number of items and the variability of their fea-
tures. These contingencies challenge the capacity limits inferred from previous working memory
studies that have used artificial stimuli and suggest that more naturalistic stimuli might reveal the
capacity of human working memory to be less limited than it seems (Orhan et al., 2014). Going
one step further, van den Berg and Ma (2017) challenged the ingrained assumption that working
memory always distributes a fixed amount of representational resources among the encoded items.
Instead, their model expresses the assumption that the total amount of working memory resources
invested at any given time is chosen according to a rational cost-benefit analysis that trades-off the
expected behavioral performance against the neural/metabolic cost of active memory maintenance.
They show that the resulting model provides a better and more principled explanation of how work-
ing memory performance depends on the number of items to be remembered. Finally, the work
by C. R. Sims (2015) illustrates that resource-rational analysis (see Figure 1.5) can be used to reverse-
engineer not only the capacity limitations of working memory, but also, its implicit goals.

1.6.3 Resource-rational models of perception and neural coding

Many previous studies have successfully modeled perception as Bayesian inference (Kersten, Mamas-
sian, & Yuille, 2004; Knill & Pouget, 2004; Knill & Richards, 1996; Lee & Mumford, 2003; Marr,
1982; Yuille & Kersten, 2006).The observation that rational models have been most successful in the
domain of perception might reflect that our perceptual systems have been under direct evolutionary
pressure for a very long time and have been equipped with considerable neural resources. However,
perception is also an intractably difficult problem (Tsotsos, 1988). So, it would be very surprising if
it was not also shaped by computational constraints.

Recent work has shown that there are indeed systematic deviations of human perception from
Bayesian inference that can be understood in terms of bounded optimality (C. R. Sims, 2016; Stocker,
Simoncelli, & Hughes, 2006; Wei & Stocker, 2015, 2017). The principle of bounded optimality has
also been invoked to elucidate the underlying neural mechanisms (Lennie, 2003; Levy & Baxter,
1996; Olshausen & Field, 2004; Z. Wang, Wei, Stocker, & Lee, 2016). Stocker et al. (2006) found
that the biases and variability of people’s judgments of the speed of visual motion were consistent
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with the Bayes-optimal use of a noisy internal representation of the sensory evidence. Wei and
Stocker (2015,2017) proposed that the limited fidelity of these representations arises from the ne-
cessity to distribute finite neural resources across all possible percepts. They proceed to show that
the optimal allocation of these limited resources according to natural image statistics can explain
why people’s orientation judgments are sometimes biased away from their prior expectation rather
than towards it. It also correctly predicted a lawful relationship between the perceptual discrimina-
tion of a particular stimulus value, say orientation, and the amount of bias in people’s perception
of it (Wei & Stocker, 2017). Another recent resource-rational analysis of perception (C. R. Sims,
2016) has emphasized that bounded-optimal perceptual representations are also shaped by the fact
that certain perceptual errors (e.g., confusing a poisonous mushroom for an edible one) are more
costly than others (e.g., confusing two poisonous mushrooms). One payoff of this approach is that
it makes it possible to infer people’s cost function (which can be interpreted as specifying the goal of
perception) from their perceptual performance.

Furthermore, the principle of bounded optimality can also be applied to the neural implemen-
tation of perceptual mechanisms. This approach makes it possible to ground the assumed capacity
limitations of resource-rational models in biophysical constraints that can be measured indepen-
dently. One of these constraints is metabolic energy. In fact, action potentials are so metabolically
expensive that at most 1% of all neurons in the brain can sustain substantial activity in parallel
(Lennie, 2003). This bound imposes serious constraints on neural coding and computation. In-
deed, many aspects of morphology, physiology, and wiring of neural circuits can be understood as
the adaptation to the evolutionary pressure to achieve a near-optimal trade-off between the compu-
tational efficacy and metabolic cost (Levy & Baxter, 1996, 2002; Niven & Laughlin, 2008; Sterling &
Laughlin, 2015). This principle can, in turn, be used to mathematically derive optimal neural codes
that respect biological constraints (Levy & Baxter, 1996). For instance, Z. Wang et al. (2016) derived
some of the visual system’s neural codes by maximizing the mutual information between the neural
representation and the sensory input subject to metabolic constraints and limited fidelity caused
by neural noise. Furthermore, the principle of sparse coding (Olshausen & Field, 1996), which has
been highly successful in explaining the receptive fields of sensory neurons (Olshausen & Field, 1997,
2004), can be interpreted as a bounded optimal solution to the problem of accurately representing
the environment subject to the constraint that only a very small fraction of all neurons can be active
simultaneously. Finally, the effects of metabolic constraints are not restricted to the details of the
neural implementation but propagate all the way up to high-level cognition by necessitating cogni-
tive mechanisms like selective attention (Lennie, 2003).
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1.7 Conclusion and outlook

The successes of resource-rational analysis summarized above suggest that resource-rationality is a
promising theoretical framework for understanding bounded rationality. As these examples illus-
trate, resource-rational analysis has a number of benefits:

1. The resource-rational perspective provides an overarching principle from which we can de-
rive models of human cognition that are both mathematically precise and psychologically
plausible.

2. Resource-rationality can, therefore, be used to develop a theoretical foundation for the eco-
nomic sciences that is substantially more realistic than expected utility theory.

3. Resource-rationality provides a unifying explanation for a wide range of seemingly unrelated
phenomena.

4. Resource-rational models allow us to make sense of cognitive biases.

5. Resource-rationality provides a realistic normative standard against which human behavior
can be evaluated to identify genuine sub-optimalities.

6. Resource-rational analysis can be used to reverse-engineer cognitive limitations and to infer a
cognitive system’s implicit goals from errors in its performance.

The fact that some “cognitive biases” were found to be compatible with the principles of bounded
optimality suggests that it is time to re-evaluate human rationality against this more realistic norma-
tive standard. Despite the considerable progress summarized above, many questions remain to be
answered. In particular, it remains unclear whether classic cognitive biases, such as anchoring and
availability, that have been instrumental to the conclusion that people are irrational are compatible
with the principles of resource-rational information processing or not. Furthermore, almost all of
the resource-rational analyses reported above were restricted to optimizing single parameters of cog-
nitive mechanisms, resource-allocation, or abstractly characterizing representations. But there is still
no principled way to derive resource-rational cognitive strategies, and it remains unclear whether
and under which conditions the heuristics advocated by proponents of ecological rationality are
resource-rational. Furthermore, while bounded optimality has already been applied to answer de-
scriptive and normative questions about the human mind, it has yet to be translated into useful
prescriptive theories that can be used to improve human cognition through training, instruction, or
technology.
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To address these gaps in our knowledge, the remaining chapters of Part 1 revisit the debate about
human rationality by applying resource-rational analysis to two cognitive biases that have been in-
strumental to the conclusion that people are fundamentally irrational: the anchoring bias (Chap-
ter 2) and the availability bias (Chapter 3). Furthermore, my dissertation illustrates how resource-
rationality can be leveraged to elucidate the cognitive mechanisms of judgment, decision-making,
planning, and strategy selection. To facilitate these efforts, Chapter 6 introduces a computational
method for deriving bounded-optimal strategies automatically (Step 3 of resource-rational analysis;
see Figure 1.3). In Part 2 I apply this method and insights into people’s bounded rationality towards
overcoming cognitive limitations and improving decision-making. As part of these efforts, I develop
a cognitive tutor for boosting people’s decision-making competence (Hertwig & Grüne-Yanoff,
2017) with automatically discovered resource-rational heuristics.
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2
A resource-rational perspective on

anchoring-and-adjustment*

Achieving demanding goals in limited time requires balancing being quick and being accurate. We
regret the opportunities we miss when we fail to make up our mind on time, but we also regret
the errors we commit by jumping to conclusions. When we think too little our judgments can be
skewed by irrelevant information that we happened to see, hear, or think about a moment ago. This
phenomenon is known as anchoring. Anchoring is one of the cognitive biases discovered by Tver-
sky and Kahneman (1974) and played an important role in the debate about human rationality. It
impacts many important aspects of our lives including the outcome of salary negotiations (Galinsky
& Mussweiler, 2001), economic decisions (e.g., Simonson & Drolet, 2004), criminal sentences (En-
glich, Mussweiler, & Strack, 2006), and even our ability to understand other people (Epley, Keysar,
Van Boven, & Gilovich, 2004).

In their classic paper, Tversky and Kahneman (1974) showed that people’s judgments could be
systematically skewed by providing them with an arbitrary number before their judgment: The ex-
perimenter generated a random number by spinning a wheel of fortune, and then asked participants

*This chapter is based on Lieder, Griffiths, Huys, and Goodman (2018a), Lieder, Griffiths, Huys, and
Goodman (2018b), and Lieder, Griffiths, Huys, and Goodman (2017).
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to judge whether the percentage of African countries in the United Nations was smaller or larger
than that number. Participants were then asked to estimate this unknown quantity. Strikingly, the
participants’ estimates were biased towards the random number: their median estimate was larger
when the random number was high than when it was low. This appears to be a clear violation of
rationality. According to Tversky and Kahneman (1974) this violation occurs because people use a
two-stage process called anchoring-and-adjustment (see also Nisbett & Ross, 1980). In the first stage,
people generate a preliminary judgment called their anchor. In the second stage, they adjust that
judgment to incorporate additional information, but the adjustment is usually insufficient.

In Tversky and Kahneman’s experiment people appear to have anchored on the random number
provided by the experimenter and adjusted it insufficiently. Consequently, when the anchor was
low people’s judgments were too low, and when the anchor was high then their judgments were too
high.

At first sight, anchoring appears to be irrational, because it deviates from the standards of logic
and probability which are typically used to assess rationality. But it could also be a reasonable com-
promise between error in judgment and the cost of computation, and hence be resource-rational.
Anchoring-and-adjustment has two components that could be irrational: the generation of the
anchor and the process by which it is adjusted. Previous research found that when no anchor is pro-
vided, the anchors that people generate for themselves are relevant quantities that are reasonably
close to the correct value and can be generated quickly (Epley & Gilovich, 2006). Furthermore, re-
search on human communication suggests that in everyday life it is reasonable to assume that other
people are cooperative and provide relevant information (N. Schwarz, 2014). Applied to anchoring,
this means that if somebody asks you in real life whether a quantity you know very little about is
larger or smaller than a certain value, it would be rational to treat that question as a clue to its value
(Zhang & Schwarz, 2013). Thus, having the queried value in mind might make it rational to reuse it
as your anchor for estimating the unknown quantity. This suggests that the mechanism by which
people generate their anchors could be rational in the real world.† If this is true, then the rationality
of anchoring-and-adjustment hinges on the question of whether adjustment is a rational process. To
answer this question, we investigate whether insufficient adjustment can be understood as a rational
tradeoff between time and accuracy. If so, then how much people adjust their initial estimate should
adapt rationally to the relative utility of being fast versus being accurate. To formalize this hypoth-
esis, we present a resource-rational analysis of numerical estimation. We then leverage the predic-
tions of this analysis to experimentally test our hypothesis that adjustment is rational. Our analysis

†We will revisit this issue in more depth in the general discussion.
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suggested that the rational use of finite resources correctly predicts the anchoring bias and how it
changes with various experimental manipulations (see Table 2.1). Our rational account makes the
novel prediction that opportunity cost increases the anchoring bias and decreases reaction time re-
gardless of whether the anchor is provided or self-generated. We tested these predictions in two con-
trolled experiments where participants estimate numerical quantities under four different combina-
tions of time cost and error cost. The experiments confirmed our theory’s predictions and provided
strong support for our rational process model of adjustment over alternative, less rational models of
anchoring. All of these results support the conclusion that adjustment is resource-rational.

The remainder of this chapter begins with a brief survey of empirical findings on anchoring and
discusses the challenges that they pose to existing accounts of anchoring-and-adjustment. We then
present our resource-rational analysis of numerical estimation, a rational process model that can be
interpreted in terms of anchoring-and-adjustment, and a series of simulations demonstrating that
this model is sufficient to explain the reviewed phenomena. This motivates our two experiments,
which we present in turn. We close by discussing our findings and their implications.

2.1 Empirical findings on the anchoring bias

Anchoring is typically studied in numerical estimation tasks. Numerical estimation involves making
an informed guess of the value of an unknown numerical quantity. Since the first anchoring exper-
iment by Tversky and Kahneman (1974) a substantial number of studies have investigated when
anchoring occurs and what determines the magnitude of the anchoring bias (see Table 2.1).

The anchors that people use when forming estimates can be relevant to the quantity they are
estimating. For instance, Tversky and Kahneman (1974) found that people sometimes anchor on the
result of calculating 1× 2× 3× 4when the task is estimating 1× 2× 3× 4× · · · × 8. However,
people can also be misled, anchoring on numbers that are irrelevant to the subsequent judgment.
For instance, many anchoring experiments first ask their participants whether an unknown quantity
is larger or smaller than a given value and then proceed to have them estimate that quantity. Having
compared the unknown quantity to the value provided by the experimenter makes people re-use
that value as their anchor in the subsequent estimation task. Those numbers are therefore known
as provided anchors. Importantly this procedure works with irrelevant numbers such as the random
number that Tversky and Kahneman (1974) generated for their participants or one’s own social
security number (Ariely, Loewenstein, & Prelec, 2003).
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Although asking people to compare the quantity to a given number is particularly effective, the
anchoring bias also occurs when anchors are presented incidentally (Wilson, Houston, Etling, &
Brekke, 1996), although this effect is smaller and depends on particulars of the anchor and its presen-
tation (Brewer & Chapman, 2002). Furthermore, anchoring-and-adjustment can also occur without
an externally provided anchor: At least in some cases people appear to generate their own anchor
and adjust from it (Epley & Gilovich, 2004). For instance, when Americans are asked to estimate the
boiling point of water on Mount Everest they often recall 212◦F (100◦C) and adjust downwards to
accommodate the lower air pressure in higher altitudes.

Although people’s adjustments are usually insufficient, various factors influence their size and
consequently the magnitude of the anchoring bias. For instance, the anchoring bias is larger the
more uncertain people are about the quantity to be estimated (Jacowitz & Kahneman, 1995). Indeed,
Wilson et al. (1996) found that people knowledgeable about the quantity to be estimated were im-
mune to the anchoring bias whereas less knowledgeable people were susceptible to it. While familiar-
ity (Wright & Anderson, 1989) and expertise (Northcraft & Neale, 1987) do not abolish anchoring,
expertise appears to at least reduce it (Northcraft & Neale, 1987). Other experiments have system-
atically varied the distance from the anchor to the correct value. Their results suggested that the
magnitude of the anchoring bias initially increases with the distance from the anchor to the correct
value (Russo & Schoemaker, 1989). Yet this linear increase of the anchoring bias does not continue
indefinitely. Chapman and Johnson (1994) found that increasing an already unrealistically large
anchor increases the anchoring bias less than increasing a realistic anchor by the same amount.

Critically for the resource-rational account proposed here, the computational resources available
to people also seem to influence their answers. Time pressure, cognitive load, and alcohol decrease
the size of people’s adjustments and inter-individual differences in how much people adjust their
initial estimate correlate with relevant personality traits such as the need for cognition (Epley &
Gilovich, 2006). In addition to effects related to cognitive resources, adjustment also depends on in-
centives. Intuitively, accuracy motivation should increase the size of people’s adjustments and there-
fore decrease the anchoring bias. Interestingly, experiments have found that accuracy motivation de-
creases the anchoring bias only in some cases, but not in others (Epley & Gilovich, 2006; Simmons,
LeBoeuf, & Nelson, 2010). On questions where people generated their own anchors, financial incen-
tives increased adjustment and reduced the anchoring bias (Epley & Gilovich, 2006; Simmons et al.,
2010). But on questions with provided anchors, financial incentives have typically failed to eliminate
or reduce the anchoring bias (Ariely et al., 2003; Tversky & Kahneman, 1974) with some exceptions
(Wright & Anderson, 1989). A recent set of experiments by Simmons et al. (2010) suggested that
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accuracy motivation increases adjustment from provided and self-generated anchors if and only if
people know in which direction to adjust. Taken together, these findings suggests that the anchoring
bias depends on how much cognitive resources people are able to and willing to invest.

Before the experiments by Simmons et al. (2010) demonstrated that accuracy motivation can
increase adjustment from provided anchors, the bias towards provided anchors appeared immutable
by financial incentives (Chapman & Johnson, 2002; Tversky & Kahneman, 1974; Wilson et al., 1996),
forewarnings and time pressure (Mussweiler and Strack, 1999; but see Wright and Anderson, 1989).
Since incentives were assumed to increase adjustment and increased adjustment should reduce the
anchoring bias, the ineffectiveness of incentives led to the conclusion that the anchoring bias results
from a mechanism other than anchoring-and-adjustment, such as selective accessibility (Chapman
& Johnson, 2002; Epley, 2004; Mussweiler & Strack, 1999). Later experiments found that when
people generate the anchor themselves accuracy motivation and time pressure are effective (Epley &
Gilovich, 2005, 2006; Epley et al., 2004). This led Epley and Gilovich (2006) to conclude that people
use the anchoring-and-adjustment strategy only when they generated the anchor themselves whereas
provided anchors bias judgments through a different mechanism.

The wide range of empirical phenomena summarized in Table 2.1 have suggested a correspond-
ingly wide range of explanations, including the idea that anchoring and adjustment is not a simple,
unitary process. The remainder of the chapter explores an alternative account, showing that these
disparate and seemingly inconsistent phenomena can all be explained by a unifying principle: the
rational use of finite time and cognitive resources. From this principle we derive a resource-rational
anchoring-and-adjustment model and show that it is sufficient to explain the anchoring bias regard-
less of whether the anchor was provided or self-generated.

2.2 Anchoring and Adjustment as Resource-Rational Inference

In this section we formalize the problem people solve in anchoring experiments – numerical estima-
tion – and analyze how it can be efficiently solved in finite time with bounded cognitive resources.
We thereby derive a resource-rational model of anchoring-and-adjustment. We then use this model
to explain a wide range of anchoring phenomena.

Conceptually, our model assumes that adjustment proceeds by repeatedly considering small
changes to the current estimate. The proposed change is accepted or rejected probabilistically such
that the change is more likely to be made the more probable the new value is and the less probable
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the current one is (see Figure 2.1). After sufficiently many adjustments the estimate becomes cor-
rect on average and independent of the initial guess. However, each small adjustment costs a certain
amount of time. According to our model, the number of steps is chosen to minimize the expected
value of the time cost of adjustment plus the error cost of the resulting estimate. In the remainder
of this section, we derive our model from first principles, specify it in detail, and show that the opti-
mal number of adjustments is very small. As Figure 2.1 illustrates, this causes the final estimates to be
biased towards their respective anchors.

In contrast to previous theories of anchoring (Epley & Gilovich, 2006; Simmons et al., 2010),
our model precisely specifies the number, size, and direction of adjustments as a function of the
task’s incentives and the participant’s knowledge. In contrast, to the proposal by Epley and Gilovich
(2006) our model covers adjustments from provided anchors and self-generated anchors. Further-
more, while Epley and Gilovich (2006) assumed that the correct direction of adjustment is known,
our model does not make this assumption and allows the direction of adjustment to change from
one step to the next. The model by Simmons et al. (2010) also makes these conceptual assumptions.
However, it does not specify precisely how the direction and size of each adjustment are determined.
While their model predicts a deterministic back-and-forth in the face of uncertainty, our model as-
sumes that adjustments that improve the estimate are probabilistically preferred to adjustments
that do not. This enables our model to capture streaks of adjustments in the correct direction inter-
rupted by small steps in the wrong direction, whereas the model by Simmons et al. (2010) appears
to predict that the direction of adjustment should constantly alternate. Finally, while both previ-
ous models assumed that adjustment stops as soon as the current estimate is sufficiently plausible
(Epley & Gilovich, 2006; Simmons et al., 2010), we propose that the number of adjustments is pre-
determined adaptively to achieve an optimal speed-accuracy tradeoff on average. In the subsequent
section we apply the resulting model to explain the various anchoring phenomena summarized in
Table 2.1, and after that we will empirically test its predictions against the predictions of alternative
models of adjustment including the stopping rule assumed by Epley and Gilovich (2006) and Sim-
mons et al. (2010).

2.2.1 Resource-Rational Analysis of Numerical Estimation

Resource-rational analysis is a new approach to answering a classic question: how should we think
and decide given that our time and our minds are finite?

Having introduced the basic concepts of resource rationality in Chapter 1, we now apply resource-
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rational analysis to numerical estimation: We start by formalizing the problem solved by numerical
estimation. Next, we specify an abstract computational architecture. We then derive the optimal
solution to the numerical estimation problem afforded by the computational architecture. This
resource-rational strategy will then be evaluated against empirical data in the remainder of this chap-
ter.

Function

In numerical estimation people have to make an informed guess about an unknown quantityX
based on their knowledgeK . In general, people’s relevant knowledgeK is incomplete and insuffi-
cient to determine the quantityX with certainty. For instance, people asked to estimate the boiling
point of water on Mount Everest typically do not know its exact value, but they do know related
information, such as the boiling point of water at normal altitude, the freezing point of water, the
qualitative relationship between altitude, air pressure, and boiling point, and so on. We formalize
people’s uncertain belief aboutX by the probability distribution P (X|K)which assigns a plausi-
bility p(X = x|K) to each potential value x. According to Bayesian decision theory, the goal is
to report the estimate x̂with the highest expected utilityEP (X|K)[u(x̂, x)]. This is equivalent to
finding the estimate with the lowest expected error cost

x⋆ = argminx̂EP (X|K)[cost(x̂, x)], (2.1)

where x⋆ is the optimal estimate, and cost(x̂, x) is the error cost of the estimate x̂when the true
value is x.

Model of mental computation

How the mind should solve the problem of numerical estimation (see Equation 2.1) depends on its
computational architecture. Thus, to derive predictions from the assumption of resource-rationality
we have to specify the mind’s elementary operations and their cost. To do so, we build on the resource-
rational analysis by Vul et al. (2014) which assumed that the mind’s elementary computation is sam-
pling. Sampling is widely used to solve inference problems in statistics, machine learning, and arti-
ficial intelligence (Gilks, Richardson, & Spiegelhalter, 1996). Several behavioral and neuroscientific
experiments suggest that the brain uses computational mechanisms similar to sampling for a wide
range of inference problems ranging from vision to causal learning (Bonawitz, Denison, Gopnik, &
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Griffiths, 2014; Bonawitz, Denison, Griffiths, & Gopnik, 2014; Denison, Bonawitz, Gopnik, & Grif-
fiths, 2013; Fiser, Berkes, Orbán, & Lengyel, 2010; Griffiths & Tenenbaum, 2006; N. Stewart et al.,
2006; Vul et al., 2014). One piece of evidence is that people’s estimates of everyday events are highly
variable even though the average of their predictions tends to be very close to the optimal estimate
prescribed by Bayesian decision theory (see Equation 2.1, Griffiths & Tenenbaum, 2006; 2011). Fur-
thermore, Vul et al. (2014) found that the relative frequency with which people report a certain value
as their estimate is roughly equal to its posterior probability, as if the mind was drawing one sample
from the posterior distribution.

Sampling stochastically simulates the outcome of an event or the value of a quantity such that, on
average, the relative frequency with which each value occurs is equal to its probability. According to
Vul et al. (2014), people may estimate the value of an unknown quantityX using only a single sam-
ple from the subjective probability distribution P (X|K) that expresses their beliefs. If the expected
error cost (Eq. 2.1) is approximated using a single sample x̃, then that sample becomes the optimal
estimate. Thus, the observation that people report estimates with frequency proportional to their
probability is consistent with them approximating the optimal estimate using only a single sample.

However, for the complex inference problems that people face in everyday life generating even a
single perfect sample can be computationally intractable. Thus, while sampling is a first step from
computational level theories based on probabilistic inference towards cognitive mechanisms, a more
detailed process model is needed to explain how simple cognitive mechanisms can solve the complex
inference problems of everyday cognition. Here, we therefore explore a more fine-grained model
of mental computation whose elementary operations serve to approximate sampling. In statistics,
machine learning, and artificial intelligence sampling is often approximated by Markov chain Monte
Carlo (MCMC) methods (Gilks et al., 1996). MCMC algorithms allow the drawing of samples from
arbitrarily complex distributions using a stochastic sequence of approximate samples, each of which
depends only on the previous one. Such stochastic sequences are called Markov chains; hence the
name Markov chain Monte Carlo.

The remainder of the chapter explores the consequences of assuming that people answer numer-
ical estimation questions by engaging in a thought process similar to MCMC. We assume that the
mind’s computational architecture supports MCMC by two basic operations: The first operation
takes in the current estimate and stochastically modifies it to generate a new one. The second oper-
ation compares the posterior probability of the new estimate to that of the old one and accepts or
rejects the modification stochastically. Furthermore, we assume that the cost of computation is pro-
portional to how many such operations have been performed. These two basic operations are suf-
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ficient to execute an effective MCMC strategy for probabilistic inference known as the Metropolis-
Hastings algorithm (Hastings, 1970). This algorithm is the basis for our anchoring-and-adjustment
models as illustrated in Figure 2.1.
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Figure 2.1: The figure illustrates the resource-rational anchoring-and-adjustment. The three
jagged lines are examples of the stochastic sequences of estimates the adjustment process might
generate starting from a low, medium, and high anchor respectively. In each iteration a potential
adjustment is sampled from a proposal distribution pprop illustrated by the bell curves. Each pro-
posed adjustment is stochastically accepted or rejected such that over time the relative frequency
with which different estimates are considered q(x̂t) becomes the target distribution p(x|k). The
top of the figure compares the empirical distribution of the samples collected over the second half
of the adjustments with the target distribution p(x|k). Importantly, this distribution is the same
for each of the three sequences. In fact, it is independent of the anchor, because the influence
of the anchor vanishes as the number of adjustments increases. Yet, when the number of adjust-
ments (iterations) is low (e.g., 25), the estimates are still biased towards their initial values. The
optimal number of iterations i⋆ is very low as illustrated by the dotted line. Consequently, the re-
sulting estimates indicated by the red, yellow, and red cross are still biased towards their respective
anchors.

To be concrete, given an initial guess x̂0, which we will assume to be the anchor a (x̂0 = a), this
algorithm performs a series of adjustments. In each step a potential adjustment δ is proposed by
sampling from a symmetric probability distribution Pprop (δ ∼ Pprop, Pprop(−δ) = Pprop(δ)).
The adjustment will either be accepted, that is x̂t+1 = x̂t + δ, or rejected, that is xt+1 = x̂t.
If a proposed adjustment makes the estimate more probable (P (X = x̂t + δ|K) > P (X =

x̂t|K)), then it will always be accepted. Otherwise the adjustment will be made with probability
α = P (X=x̂t+δ|K)

P (X=x̂t|K) , that is according to the posterior probability of the adjusted relative to the
unadjusted estimate. This strategy ensures that regardless of which initial value you start from, the
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frequency with which each value x has been considered will eventually equal to its subjective prob-
ability of being correct, that is P (X = x|K). This is necessary to capture the finding that the dis-
tribution of people’s estimates is very similar to the posterior distribution P (X = x|K) (Griffiths
& Tenenbaum, 2006; Vul et al., 2014). More formally, we can say that as the number of adjustments
t increases, the distribution of estimatesQ(x̂t) converges to the posterior distribution P (X|K).
This model of computation has the property that each adjustment decreases an upper bound on
the expected error by a constant multiple (Mengersen & Tweedie, 1996). This property is known as
geometric convergence and illustrated in Figure 2.2.

There are several good reasons to consider this computational architecture as a model of men-
tal computation in the domain of numerical estimation: First, the success of MCMC methods in
statistics, machine learning, and artificial intelligence suggests they are well suited for the complex
inference problems people face in everyday life. Second, MCMC can explain important aspects of
cognitive phenomena ranging from category learning (Sanborn et al., 2010) to the temporal dynam-
ics of multistable perception (Gershman, Vul, & Tenenbaum, 2012; Moreno-Bote, Knill, & Pouget,
2011), causal reasoning in children (Bonawitz, Denison, Gopnik, & Griffiths, 2014), and develop-
mental changes in cognition (Bonawitz, Denison, Griffiths, & Gopnik, 2014). Third, MCMC is
biologically plausible in that it can be efficiently implemented in recurrent networks of biologically
plausible spiking neurons (Buesing, Bill, Nessler, & Maass, 2011). Last but not least, process models
based on MCMC might be able to explain why people’s estimates are both highly variable (Vul et al.,
2014) and systematically biased (Tversky & Kahneman, 1974).

Optimal resource-allocation

Resource-rational anchoring-and-adjustment makes three critical assumptions: First, the estimation
process is a sequence of adjustments such that after sufficiently many steps the estimate will be a
representative sample from the belief P (X|K) about the unknown quantityX given the knowl-
edgeK . Second, each adjustment costs a fixed amount of time. Third, the number of adjustments
is chosen to achieve an optimal speed-accuracy tradeoff. It follows, that people should perform the
optimal number of adjustments, that is

t⋆ = argmin
t

[
EQ(X̂t)

[cost(x, x̂t) + γ · t]
]
, (2.2)
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Figure 2.2: In resource-rational anchoring-and-adjustment the bias of the estimate is bounded
by a geometrically decaying function of the number of adjustments. The plots shows the bias of
resource-rational anchoring-and-adjustment as a function of the number of adjustments for five dif-
ferent initial values located 1, · · · , 5 posterior standard deviations (i.e., σ) away from the posterior
mean. The standard normal distribution was used as both the posterior P (X|K) and the proposal
distribution Pprop(δ).

whereQ(X̂t) is the distribution of the estimate after t adjustments, x is its unknown true value, x̂t
is the estimate after performing t adjustments, cost(x, x̂t) is its error cost, and γ is the time cost per
adjustment.

Figure 2.3 illustrates this equation showing how the expected error cost – which decays geometri-
cally with the number of adjustments–and the time cost – which increases linearly – determine the
optimal speed-accuracy tradeoff. We inspected the solution to Equation 2.2 when the belief and the
proposal distribution are standard normal distributions (i.e. P (X|K) = P (Xprop) = N (0, 1))
for different anchors. We found that for a wide range of realistic time costs the optimal number of
adjustments (see Figure 2.4, top panel) is much smaller than the number of adjustments that would
be required to eliminate the bias towards the anchor. Consequently, the estimate obtained after the
optimal number of adjustments is still biased towards the anchor as shown in the bottom panel of
Figure 2.4. This is a consequence of the geometric convergence of the error (see Figure 2.2) which
leads to quickly diminishing returns for additional adjustments. This is a general property of this
rational model of adjustment that can be derived mathematically (Lieder, Griffiths, & Goodman,
2012).

The optimal speed-accuracy tradeoff weights the costs in different estimation problems according
to their prevalence in the agent’s environment; for more information please see Appendix A.
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Figure 2.3: The expected value of the error cost cost(x, x̂n) shown in green decays nearly geomet-
rically with the number of adjustments n. While the decrease of the error cost diminishes with the
number of adjustments, the time cost γ · t shown in red continues to increase at the same rate.
Consequently, there is a point when further decreasing the expected error cost by additional ad-
justments no longer offsets their time cost so that the total cost shown in blue starts to increase.
That point is the optimal number of adjustments t⋆.

Figure 2.4: Optimal number of adjustments (a) and the bias after optimal number of adjustments
(b) as a function of relative time cost and distance from the anchor.

2.2.2 Resource-rational explanations of anchoring phenomena

Following the definition of the bias of an estimator in mathematical statistics, we quantify the an-
choring bias byBt(x, a) = E[x̂t|x, a] − x, where x̂t is a participant’s estimate of a quantity x
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after i adjustments, and a denotes the anchor. Figure 2.5 illustrates this definition and four basic
ideas: First, the average estimate generated by anchoring-and-adjustment equals the anchor plus the
adjustment. Second, the adjustment equals the relative adjustment times the total distance from
the anchor to the posterior expectation. Third, adjustments tend to be insufficient, because the rela-
tive adjustment size is less than one. Therefore, the average estimate usually lies between the anchor
and the correct value. Fourth, because the relative adjustment is less than one, the anchoring bias
increases linearly with the distance from the anchor to the correct value.

More formally, the bias of resource-rational anchoring-and-adjustment cannot exceed a geometri-
cally decaying function of the number of adjustments as illustrated in Figure 2.2:

Bt(x, a) = E[x̂t|x, a]− x ≤ B0(x, a) · rt = (a− x) · rt, (2.3)

where r is the rate of convergence to the distribution P (X|K) that formalizes people’s beliefs. Con-
sequently, assuming that the bound is tight, resource-rational anchoring-and-adjustment predicts
that, on average, people’s predictions x̂ are a linear function of the correct value x and the anchor a:

E[x̂t|x, a] ≈ a · rt + (1− rt) · x. (2.4)

Therefore the anchoring bias remaining after a fixed number of adjustments increases linearly with
the distance from the anchor to the correct value as illustrated in Figure 2.5.

The hypothesis that the mind performs probabilistic inference by sequential adjustment makes
the interesting, empirically testable prediction that the less time and computation a person invests
into generating an estimate, the more biased her estimate will be towards the anchor. As illustrated
in Figure 2.6a, the relative adjustment (see Figure 2.5) increases with the number of adjustments.
When the number of adjustments is zero, then the relative adjustment is zero and the prediction
is the anchor regardless of how far it is away from the correct value. However, as the number of
adjustments increases, the relative adjustment increases and the predictions become more informed
by the correct value. As the number of adjustments tends to infinity, the average guess generated by
anchoring-and-adjustment converges to the expected value of the posterior distribution.

Our analysis of optimal resource-allocation shows that, for a wide range of plausible costs of com-
putation, the resource-rational number of adjustments is much smaller than the number of adjust-
ments required for convergence to the posterior distribution. This might explain why people’s esti-
mates of unknown quantities are biased towards their anchor across a wide range of circumstances.
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Figure 2.5: If the relative adjustment is less than 100%, then the adjustment is less than the dis-
tance from the anchor and the prediction is biased (Panel a) and the magnitude of the anchoring
bias increases with the distance of the correct value from the anchor (Panel b).

Yet, optimal resource allocation also entails that the number of adjustments increases with the rel-
ative cost of error and decreases with the relative cost of time. Hence, our theory predicts that the
anchoring bias is smaller when errors are costly and larger when time is costly; Figure 2.6b illustrates
this prediction.

Although we derived the implications of making rational use of finite cognitive resources for
a specific computational mechanism based on sampling, the crucial property of diminishing re-
turns per additional computation is a universal feature of iterative inference mechanisms including
(stochastic) gradient descent, variational Bayes, predictive coding (Friston, 2009; Friston & Kiebel,
2009), and probabilistic computation in cortical microcircuits (Habenschuss, Jonke, & Maass, 2013).
Therefore the qualitative predictions shown in Figures 2.3–2.6 are not specific to the abstract com-
putational architecture that we chose to analyze but characterize bounded rationality for a more
general class of cognitive architectures.

In the following sections, we assess these and other predictions of our model through computer
simulation and behavioral experiments.
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Table 2.1: Anchoring phenomena and resource-rational explanations

Anchoring Effect Simulated Results Resource-Rational Explanation
Insufficient adjustment from
provided anchors

Tversky and Kahneman
(1974), Jacowitz and
Kahneman (1995)

Rational speed-accuracy tradeoff.

Insufficient adjustment from
self-generated anchors

Epley and Gilovich
(2006), Study 1

Rational speed-accuracy tradeoff.

Cognitive load, time pres-
sure, and alcohol reduce
adjustment.

Epley, & Gilovich
(2006), Study 2

Increased cost of adjustment reduces the
resource-rational number of adjustments.

Anchoring bias increases
with anchor extremity.

Russo and Schoemaker
(1989)

Each adjustment reduces the bias by a
constant factor (Equation 2.3). Since the
resource-rational number of adjustments is
insufficient, the bias is proportional to the
distance from anchor to correct value.

Uncertainty increases anchor-
ing.

Jacowitz and Kahne-
man (1995)

The expected change per adjustment is small
when nearby values have similar plausibility.

Knowledge can reduce the
anchoring bias.

Wilson et al. (1996),
Study 1

High knowledge means low uncertainty.
Low uncertainty leads to high adjustment
(see above).

Accuracy motivation reduces
anchoring bias when the
anchor is self-generated but
not when it is provided.

Tversky and Kahne-
man (1974), Epley and
Gilovich (2005)

1. People are less uncertain about the
quantities for which they generate
their own anchors.

2. Accuracy motivation increases the
number of adjustments but change
per adjustment is lower when people
are uncertain.

Telling people whether
the correct value is larger
or smaller than the anchor
makes financial incentives
more effective.

Simmons et al. (2010),
Study 2

Being told the direction of adjustments
makes adjustments more effective, because
adjustments in the wrong direction will
almost always be rejected.

Financial incentives are more
effective when the anchor is
extreme.

Simmons et al. (2010),
Study 3

Values on the wrong side of an extreme
anchor are much less plausible than values
on the correct side. Therefore proposed
adjustments in the wrong direction will
almost always be rejected.50



Figure 2.6: The number of adjustments increases the relative size of adjustments (left panel). As
the relative cost of time increases, the number of adjustments decreases and so does the relative
size of the adjustment (right panel).

2.3 Simulation of Anchoring Effects

Having derived a resource-rational model of anchoring-and-adjustment we performed computer
simulations to test whether this model is sufficient to explain the plethora of anchoring effects re-
viewed above. To capture our assumption that people make adjustments in discrete steps, we model
the size of adjustments using the Poisson distribution P (δ) = Poisson(|δ|;µprop). The simulated
effects cover a wide range of different phenomena, and our goal is to account for all of these phe-
nomena with a single model.

2.3.1 Simulation Methodology

We simulated the anchoring experiments listed in Table 2.1 with the resource-rational anchoring-and-
adjustment model described above. The participants in each of these experiments were asked to esti-
mate the value of one or more quantitiesX ; for instance Tversky and Kahneman (1974) asked their
participant to estimate the percentage of African countries in the United Nations. Our model’s pre-
diction of people’s estimates of a quantityX depends on their probabilistic belief P (X|K) based
on their knowledgeK , the number of adjustments, the anchor, and the adjustment step-size. Thus,
before we could apply our model to simulate anchoring experiments, we had to measure people’s
probabilistic beliefs P (X|K) about the quantities used on the simulated experiments. Appendix A
describes our methodology and reports the estimates with obtained.

51



To accommodate differences in the order of magnitude of the quantities to be estimated and the
effect of incentives for accuracy, we estimated two parameters for each experiment: the expected step-
size µprop of the proposal distribution P (δ) = Poisson(|δ|;µprop) and the relative iteration cost
γ. These parameters were estimated by the ordinary least-squares method applied to the summary
statistics reported in the literature. For experiments comprising multiple conditions using the same
questions with different incentives for accuracy we estimated a single step-size parameter that is
expected to apply across all conditions and a distinct relative time cost parameter for each incentive
condition.

2.3.2 Insufficient adjustment from provided and self-generated anchors

Resource-rational anchoring-and-adjustment provides a theoretical explanation for insufficient
adjustment from provided and self-generated anchors in terms of a rational speed-accuracy tradeoff,
but how accurately does this describe empirical data? To answer this question, we fit our model to
two well-known anchoring experiments: one with provided and one with self-generated anchors.

Provided anchors

As an example of adjustment from provided anchors, we chose the study by Jacowitz and Kahne-
man (1995), because it rigorously quantifies the anchoring bias. Jacowitz and Kahneman (1995) asked
their participants two questions about each of several unknown quantities: First they asked whether
the quantity is larger or smaller than a certain value–the provided anchor. Next they asked the par-
ticipant to estimate that quantity. For the first half of the participants the anchor was a low value
(i.e. the 15th percentile of estimates people make when no anchor is provided), and for the second
half of the participants the anchor was a high value (i.e. the 85th percentile). People’s estimates were
significantly higher when the anchor was high than when it was low. Jacowitz and Kahneman (1995)
quantified this effect by the anchoring index (AI), which is the percentage of the distance from the
low to the high anchor that is retained in people’s estimates:

AI =
Median(X̂high anchor)− Median(X̂low anchor)

high anchor − low anchor
· 100% (2.5)

Jacowitz and Kahneman (1995) found that the average anchoring index was about 50%. This means
that the difference between people’s estimates in the high versus the low anchor condition retained
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about half of the distance between the two anchors.

We determined the uncertainty σ for each of the 15 quantities by the elicitation method described
above. Since Jacowitz and Kahneman (1995) measured people’s median estimates in the absence of
any anchor, we used those values as our estimates of the expected values µ, because their sample and
its median estimates were significantly different from ours.

Next, we estimated the adjustment step-size parameter and the relative time cost parameter by
minimizing the sum of squared errors between the predicted and the observed anchoring indices.
According to the estimated parameters, people performed 29 adjustments with an average step-size
of 22.4 units. With these two estimated parameters the model accurately captures the insufficient
adjustment from provided anchors reported by Jacowitz and Kahneman (1995): The model’s ad-
justments are insufficient (i.e. anchoring index> 0; see Equation 2.5) on all questions for which
this had been observed empirically but not for the question on which it had not been observed; see
Figure 2.7. Our model also captured the magnitude of the anchoring bias: the model’s average an-
choring index of 53.22%was very close to its empirical counterpart of 48.48%. Furthermore, our
model also captured for which questions the anchoring bias was high and for which it was low: the
correlation between the predicted and the empirical anchoring indices (r(13) = 0.62, p = 0.0135).
The simulated and empirical anchoring effects are shown in Figure 2.7.

Self-generated anchors

As an example of adjustment from self-generated anchors we chose the studies reported in Epley and
Gilovich (2006). In each of these studies participants were asked to estimate one or more unknown
quantities such as the boiling point of water on Mount Everest for which many participants readily
retrieved a well-known related quantity such as 272◦F (100◦C). Afterwards participants were asked
whether they knew and had thought of each intended anchor while answering the corresponding
question. For each question, Epley and Gilovich (2006) computed the mean estimate of those par-
ticipants who had thought of the intended anchor while answering it. We combined the data from
all self-generated anchor questions without additional experimental manipulations for which Epley
and Gilovich (2006) reported people’s mean estimate, i.e. the first five question from Study 1a, the
first five questions from Study 1b, and the control conditions of Study 2b (2 questions) and the first
seven questions from Study 2c.‡ We determined the means and uncertainties of the model’s beliefs

‡The quantities were the year in which Washington was elected president, the boiling point on Mt. Ever-
est, the freezing point of vodka, the lowest body temperature, the highest body temperature, and the duration
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Figure 2.7: Simulation of the provided anchor experiment by Jacowitz and Kahneman (1995).
.

about all quantities used in Epley and Gilovich’s studies by the elicitation method described above.
The anchors were set to the intended self-generated anchors reported by Epley and Gilovich (2006).
We estimated the model’s time cost and adjustment step-size parameters by fitting the relative adjust-
ments reported for these studies using the ordinary least-squares method.

The estimated parameters suggest that people performed 8 adjustments with an average step-
size of 10.06 units. With these parameters the model adjusts its initial estimate by 80.62% of the
distance to the correct value; this is very close to the 80.95% relative adjustment that Epley and
Gilovich (2006) observed on average across the simulated studies. Our model captures that for
the majority of quantities (13 out of 19) people’s adjustments were insufficient. It also captures for
which questions people adjust more and for which questions they adjust less from their uncertain-
ties and anchors: as shown in Figure 2.8 our model’s predictions of the relative adjustments were
significantly correlated with the relative adjustments that Epley and Gilovich (2006) observed across
different questions (r(17) = 0.61,p = 0.0056). Comparing the parameter estimates between
the experiments with provided versus self-generated anchors suggests that people adjusted less when
they had generated the anchor themselves. This makes sense because self-generated anchors are typi-

of pregnancy in elephants. Some of these quantities were used in multiple studies.
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cally much closer to the correct value than provided anchors.
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Figure 2.8: Simulation of self-generated anchors experiment by Epley, & Gilovich (2006).
.

2.3.3 Effect of cognitive load

In an experiment with self-generated anchors Epley and Gilovich (2006) found that people adjust
their estimate less when required to simultaneously memorize an eight-letter string. To investigate
whether resource-rational anchoring-and-adjustment can capture this effect, we fit our model simul-
taneously to participants’ relative adjustment with versus without cognitive load. Concretely, we
estimated a common step-size parameter and separate time cost parameters for each condition by
the least squares method. We included all items for which Epley and Gilovich (2006) reported peo-
ple’s estimates. The resulting parameter estimates captured the effect of cognitive load: when people
were cognitively busy, the estimated cost per adjustment was 4.58% of the error cost, but when
people were not cognitively busy then it was only 0.003% of the error cost. The estimated average
step-size per adjustment was µ = 11.69. According to these parameters participants performed only
14 adjustments when they were under cognitive load but 60 adjustments when they are not. With
these parameters our model captures the effect of cognitive load on relative adjustment: cognitive
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load reduced the simulated adjustments by 18.61% (83.45% under load and 102.06%without
load). These simulated effects are close to their empirical counterparts: people adjusted their esti-
mate 72.2%when under load and 101.4%without cognitive load (Epley & Gilovich, 2006). Fur-
thermore, the model accurately captured for which questions the effect of cognitive load was high
and for which it was low; see Figure 2.9. Concretely, our model explained 93.03% of the variance in
the effect of cognitive load on relative adjustments (r(5) = 0.9645, p < 0.001).

2.3.4 The anchoring bias increases with anchor extremity

Next we simulated the anchoring experiment by Russo and Schoemaker (1989). In this experiment
business students were first asked about the last three digits of their telephone number. Upon hear-
ing the number the experimenter announced he would add 400 to this number (providing an an-
chor) and proceeded to ask the participant whether the year in which Attila the Hun was defeated in
Europe was smaller or larger than that sum. When the participant indicated her judgment, she was
prompted to estimate the year in which Attila had actually been defeated. Russo and Schoemaker
(1989) then compared the mean estimate between participants whose anchor had been 500 ± 100,
700 ± 100, · · ·, 1300 ± 100. They found that their participants’ mean estimates increased linearly
with the provided anchor even though the correct value was A.D. 451.

To simulate this experiment, we determined the values of µ and σ by the elicitation method de-
scribed above. Since the variability of people’s estimates and confidence intervals was very high, we
increased the sample size of this one experiment to 200. We set the model parameters to the values
estimated from the provided anchor experiments by Jacowitz and Kahneman (1995) (see above). As
Figure 2.10 shows, our model correctly predicted that people’s estimates increase linearly with the
provided anchor (Russo & Schoemaker, 1989). To determine whether the quantitative differences
between the model predictions and the data reported by Russo and Schoemaker (1989) were due
to differences between business students in 1989 and people working on Mechanical Turk in 2014,
we ran an online replication of their experiment on Mechanical Turk with 300 participants. There
appeared to be no significant difference between the estimates of the two populations. However,
people’s estimates were highly variable. Consequently, the error bars on the mean estimates are very
large.

Taking into account the high variance in people’s judgments, our simulation results are largely
consistent with the empirical data. In particular, both Russo and Shoemaker’s data and our replica-
tion confirm our model’s qualitative prediction that the magnitude of the anchoring bias increases
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Figure 2.9: Simulated versus observed effect of cognitive load on the size of people’s adjustments.
.

linearly with the anchor, although our model’s prediction for the highest anchor was more extreme
than the average judgment.
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Figure 2.10: Simulated effect of the anchor on people’s estimates of the year of Atilla’s defeat
and empirical data from Russo & Shoemaker (1989).

.

2.3.5 The effects of uncertainty and knowledge

Several experiments have found that the anchoring bias is larger the more uncertain people are about
the quantity to be estimated (Jacowitz & Kahneman, 1995; Wilson et al., 1996). To assess whether
and how well our theory can explain this effect, we re-analyzed our simulation of the experiment
by Jacowitz and Kahneman (1995) reported above. Concretely, we computed the correlation be-
tween the uncertainties σ of the modeled beliefs about the 15 quantities and the predicted anchoring
indices. We found that resource-rational anchoring-and-adjustment predicted that adjustments
decrease with uncertainty. Concretely, the anchoring index that our model predicted for each quan-
tityX was significantly correlated with the assumed uncertainty (standard deviation σ) about it
(Spearman’s ρ = 0.5857, p = 0.0243). This is a direct consequence of our model’s probabilis-
tic acceptance or rejection of proposed adjustments on a flat (high uncertainty) versus sloped (low
uncertainty) belief distribution P (X|K) = N (µ, σ). Our model thereby explains the negative cor-
relation (r(13) = −0.68) that Jacowitz and Kahneman (1995) observed between confidence ratings
and anchoring indices.

Uncertainty reflects the lack of relevant knowledge. Thus people who are knowledgeable about
a quantity should be less uncertain and consequently less susceptible to anchoring. Wilson et al.
(1996) conducted an anchoring experiment in which people first compared the number of countries
in the United Nations (UN) to an anchor, then estimated how many countries there are in the UN,
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and finally rated how much they know about this quantity. They found that people who perceived
themselves as more knowledgeable were resistant to the anchoring bias whereas people who per-
ceived themselves as less knowledgeable were susceptible to it. Here, we asked whether our model
can explain this effect by smaller adjustments due to higher uncertainty. To answer this question, we
recruited 60 participants on Mechanical Turk, asked them how much they knew about the number
of nations in the UN on a scale from 0 (“nothing”) to 9 (“everything”) and elicited their beliefs by
the method described in Appendix A. We then partitioned our participants into a more knowledge-
able and a less knowledgeable group by a median split as in Wilson et al. (1996). We model the beliefs
elicited from the two groups by two separate normal distributions (Appendix A).

We found that the high-knowledge participants were less uncertain than the low-knowledgeable
participants (σhigh = 35.1 vs. σlow = 45.18). Furthermore, their median estimate was much closer
to the true value of 193 (µhigh = 185 vs. µlow = 46.25). We fit the relative adjustments from the
anchor provided in Wilson et al.’s experiment (1930) by the least-squares method as above. With the
estimated parameters (17 adjustments, step-size 488.2) the model’s predictions captured the effect
of knowledge: For the low-knowledge group the model predicted that providing the high anchor
would raise their average estimate from 45.18 to 252.1. By contrast, for the high-knowledgeable
group our model predicted that providing a high anchor would fail to increase people’s estimates
(185without anchor, 163with high anchor).

2.3.6 Differential effects of accuracy motivation

People tend to invest more mental effort when they are motivated to be accurate. To motivate par-
ticipants to be accurate some experiments employ financial incentives for accuracy, while others
warn their participants about potential errors that should be avoided (forewarnings). Consistent
with the effect of motivation, resource-rational anchoring-and-adjustment predicts that the number
of adjustments increases with the relative cost of error. Yet, financial incentives for accuracy reduce
the anchoring bias only in some circumstances but not in others: First, the effect of incentives ap-
peared to be absent when anchors were provided but present when they were self-generated (Epley
& Gilovich, 2005; Tversky & Kahneman, 1974). Second, the effect of incentives was found to be
larger when people were told rather than asked whether the correct value is smaller or larger than the
anchor (Simmons et al., 2010). Here, we explore whether and how these interaction effects can be
reconciled with resource-rational anchoring-and-adjustment.
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Smaller incentive effects for provided than self-generated anchors

Epley and Gilovich (2005) found that financial incentives and forewarnings decreased the anchoring
bias when the anchor was self-generated but not when it was provided by the experimenter. From
this finding Epley and Gilovich (2005) concluded that people use anchoring-and-adjustment only
when the anchor is self-generated but not when it is provided. By contrast, Simmons et al. (2010)
suggested that this difference may be mediated by people’s uncertainty about whether the correct
answer is larger or smaller than the anchor. They found that people are often uncertain in which
direction they should adjust in questions used in experiments with provided anchors; so this may
be why incentives for accuracy failed to reduce the anchoring bias in those experiments. Here we
show that resource-rational anchoring-and-adjustment can capture the differential effectiveness
of financial incentives in experiments with provided versus self-generated anchors. First, we show
through simulation that given the amount of uncertainty that people have about the quantities to
be estimated our model predicts a larger effect of accuracy motivation for the self-generated anchor
experiments by Epley and Gilovich (2005) than for the provided anchor experiments by Tversky and
Kahneman (1974) and Epley and Gilovich (2005).

First, we analyze people’s beliefs about the quantities used in experiments with provided versus
self-generated anchors with respect to their uncertainty. We estimated the mean µ and standard
deviation σ of people’s beliefs about each quantityX by the elicitation method described above.
Because the quantities’ values differ by several orders of magnitude, it would be misleading to com-
pare the standard deviations directly. For example, for the population of Chicago (about 2, 700, 000
people) a standard deviation of 1, 000would express near-certainty, whereas for the percentage
of countries in the UN the same standard deviation would express complete ignorance. To over-
come this problem, the standard deviation has to be evaluated relative to the mean. We therefore
compare uncertainties in terms of the signal-to-noise ratio (SNR). We estimated the SNR by the
median of the signal-to-noise ratios of our participants’ beliefs (SNRs = µ2s/σ

2
s ). We found that

people tended to be much more certain about the quantities Epley and Gilovich (2005) used in
their self-generated anchors experiments (median SNR: 21.03) than about those for which they
provided anchors (median SNR: 4.58). A Mann-Whitney U-test confirmed that the SNR was sig-
nificantly higher for self-generated anchoring questions than for questions with provided anchors
(U(18) = 74.0, p = 0.0341).

Given that people were more uncertain about the quantities used in the experiments with pro-
vided anchors, we investigated how this difference in uncertainty affects the effect of financial incen-
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tives on the anchoring bias predicted by our resource-rational model. To do so, we simulated Study 1
from Epley and Gilovich (2005), in which they compared the effects of financial incentives between
questions with self-generated versus provided anchors, and the provided anchors experiment by
Tversky and Kahneman (1974). To assess whether our model can explain why the effect of motiva-
tion differs between questions with provided versus self-generated anchors, we evaluated the effects
of motivation as follows: First, we fit our model to the data from the condition with self-generated
anchors. Second, we use the estimated numbers of adjustments to simulate responses in the condi-
tion with provided anchors. Third, for each question, we measured the effect of motivation by the
relative adjustment with incentives minus the relative adjustment without incentives. Fourth, we
averaged the effects of motivation separately for all questions with self-generated versus provided
anchors and compared the results.

We fit the relative adjustments on the questions with self-generated anchors with one step-size
parameter and two relative time-cost parameters: The estimated step-size was 17.97. The estimated
number of adjustments was 5 for the condition without incentives and 9 for the condition with
incentives. According to these parameters, motivation increased the relative adjustment from self-
generated anchors by 12.74% from 65.62% to 78.35%. This is consistent with the significant ef-
fect of 33.01%more adjustment that Epley and Gilovich (2005) observed for questions with self-
generated anchors. For the condition with provided anchors Epley and Gilovich (2005) used four
questions from the experiment by Jacowitz and Kahneman (1995) simulated above and the same in-
centives as in the questions with self-generated anchors. We therefore simulated people’s responses
to questions with provided anchors using the step-size estimated from the data by Jacowitz and
Kahneman (1995) and the number of adjustments estimated from questions with self-generated an-
chors. Our simulation correctly predicted that incentives for accuracy fail to increase adjustment
from provided anchors. Concretely, our simulation predicted 44.09% adjustment with incentives
and 44.48%without. Thus, as illustrated in Figure 2.11, our model captures that financial incentives
increased adjustment from self-generated anchors but not from provided anchors. According to our
model, this difference is just an artifact of the confound that people know more about the quantities
used in experiments with self-generated anchors than about the quantities used in experiments with
provided anchors.

Finally, we simulated Study 2 from Epley and Gilovich (2005) in which they compared the ef-
fect of warning participants about the anchoring bias between questions with provided versus
self-generated anchors. This study had 2 (self-generated anchors vs. provided anchors)× 2 (fore-
warnings vs. no forewarnings) conditions. Epley and Gilovich (2005) found that in the conditions
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with self-generated anchors forewarnings increased adjustment, but in the conditions with provided
anchors they did not. As before, we set the model’s beliefs about the quantities used in this experi-
ment using the elicitation method described above. We fit our model to the relative adjustments in
the conditions with self-generated anchors. Concretely, we used the least-squares method to fit one
step-size parameter and two time cost parameters: one for the condition with forewarnings and one
for the condition without forewarnings. With these parameters, we simulated people’s estimates
in the conditions with self-generated anchors (to which the parameters were fit) and predicted the
responses in the provided anchor conditions that we had not used for parameter estimation.

Figure 2.11: Simulation of Study 1 from Epley and Gilovich (2005): Predicted effects of financial
incentives on the adjustment from provided versus self-generated anchors.

According to the estimated parameters, forewarnings increased the number of adjustments from
8 to 28. We therefore simulated the responses in both conditions with forewarnings (provided and
self-generated anchor questions) with 8 adjustments and all responses in the two conditions without
forewarnings (provided and self-generated anchor questions) with 28 adjustments. For the ques-
tions with self-generated anchors, forewarnings increased the simulated adjustments by 30% from
insufficient 81% to overshooting 111% of the total distance from the anchor to the correct value.§

By contrast, for questions with provided anchors forewarnings increased the simulated adjustments
by only 12.5% from 6.9% to 19.4%. Thus, assuming that forewarnings increase the number of
adjustments from provided anchors by the same number as they increase adjustments from self-
generated anchors our model predicts that their effect on people’s estimates would be less than one
third of the effect for self-generated anchors; see Figure 2.12. According to our model, the reason is

§Overshooting is possible, because the expected value of the estimated belief P (X|K) = N (µ, σ) can
be farther away from the anchor than the correct value.
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that people’s uncertainty about the quantities for which anchors were provided is so high that the
effect of additional adjustments is much smaller than in the questions for which people can read-
ily generate their own anchors. Our results are consistent with the interpretation that the absence
of a statistically significant effect of forewarnings on the bias towards the provided anchors in the
small sample of Epley and Gilovich (2005) does not imply that the number of adjustments did not
increase. Therefore adjustment from provided anchors cannot be ruled out.
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Figure 2.12: Simulation of Study 2 from Epley and Gilovich (2005): Predicted effects of forewarn-
ings for questions from experiments with provided versus self-generated anchors.

Direction uncertainty masks the effect of incentives

Simmons et al. (2010) found that accuracy motivation decreases anchoring if people are confident
about whether the quantity is larger or smaller than the anchor but not when they are very uncer-
tain. Simmons et al. (2010) showed that even when the anchor is provided, incentives for accuracy
can reduce the anchoring bias provided that people are confident about the correct direction of
adjustment. Concretely, Simmons et al.’s second study unmasked the effect of incentives on adjust-
ment from provided anchors by telling instead of asking their participants whether the true value
is larger or smaller than the anchor. Similarly, in their third study Simmons et al. (2010) found that
the effect of incentives is larger when the provided anchor is implausibly extreme than when it is
plausible. Here we report simulations of both of these effects.

First, we show that our model can capture that the effect of incentives increases when people
are told the correct direction of adjustment. Simmons et al.’s second study measured the effect of
accuracy motivation on the anchoring index as a function of whether people were asked or told if
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the correct value is larger or smaller than the anchor. We modeled the effect of being told that the
quantityX is smaller or larger than the anchor a by Bayesian updating of the model’s belief about
X from P (X|K) to P (X|K,X < a) and P (X|K,X > a) respectively. The original beliefs
P (X|K)were determined by the elicitation method described in Appendix A. We fit the model
simultaneously to all anchoring indices by ordinary least squares to estimate one step-size parameter
and one number of adjustments for each incentive condition. According to the estimated param-
eters, incentives increased the number of adjustments from 5 to 1000 and the average adjustment
step-size was 11.6 units. For both incentive conditions, our model captured the variability of ad-
justments across trials: For trials with incentives for accuracy the correlation between simulated and
measured anchoring indices was r(18) = 0.77 (p = 0.0001), and for trials without incentives this
correlation was r(18) = 0.61 (p = 0.004). Our model also captured the overall reduction of an-
choring with incentives for accuracy observed by Simmons et al. (2010), although the predicted 42%
reduction of anchoring with incentives for accuracy was quantitatively larger than the empirical
effect of 8%. Most importantly, our model predicted the effects of direction uncertainty on adjust-
ment and its interaction with accuracy motivation: First, our model predicted that adjustments are
larger if people are told whether the correct value is larger or smaller than the anchor. The predicted
13.7% reduction in the anchoring index was close to the empirically observed reduction by 18.8%.
Second, our model predicted that the effect of accuracy motivation will be 6.3% larger when people
are told the direction of adjustment. The predicted effect of direction uncertainty is smaller than the
21% increase reported by Simmons et al. (2010) but qualitatively consistent. Therefore, our model
can explain why telling people whether the correct value is larger or smaller than the anchor increases
the effect of accuracy motivation. According to our model, financial incentives increase the number
adjustments in both cases, but knowing the correct direction makes adjustment more effective by
eliminating adjustments in the wrong direction.

Second, we simulated Study 3b of Simmons et al. (2010) in which they showed that financial in-
centives increase adjustments away from implausible anchors. Concretely, this study compared the
effect of accuracy motivation on adjustments between plausible versus implausible provided an-
chors. As before, we determined the model’s beliefs by the procedure described above and estimated
the number of adjustments with and without incentives (781 and 188) and the adjustment step-size
(0.01) by fitting the reported relative adjustments by ordinary-least squares.¶ With this single set
of parameters we simulated adjustments from plausible versus implausible provided anchors. The

¶The reason that the estimated step-size is so small appears to be that all quantities and distances in
this experiment are small compared to those in other experiments such as Study 2 by the same authors. The
increase in the number of adjustments appears to compensate for the reduced step-size.
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predicted adjustments captured a statistically significant proportion of the effects of anchor type,
motivation, and quantity on the size of people’s adjustments: ρ(22) = 0.72, p < 0.0001. Most
importantly, our simulations predicted no statistically significant effect of accuracy motivation on
absolute adjustment (mean effect: 0.76 units; 95% CI: [−0.42; 1.94]) when the anchor was plau-
sible but a substantially larger and statistically significant effect when the anchor was implausible
(17.8 units; 95% CI: [9.76; 25.91]); see Figure 2.13. This prediction results from the fact that large
adjustments away from plausible anchors will often be rejected because they decrease the estimate’s
plausibility and small adjustments in the wrong direction are almost as likely to be accepted as ad-
justment in the correction direction because values on either side of the plausible anchor are almost
equally plausible if the distribution is symmetric around its mode. Thus the expected change per
adjustment is rather small.

Figure 2.13: Simulation of Experiment 3 from Simmons et al. (2010): Predicted effect of accu-
racy motivation on adjustments from plausible versus implausible provided anchors.

In conclusion, resource-rational anchoring-and-adjustment can explain why motivating partici-
pants to be accurate reduces the anchoring bias in some circumstances but not in others. In a nut-
shell, our model predicts that incentives for accuracy have little effect when adjustments in either
direction hardly change the estimate’s plausibility. The simulations reported above demonstrate
that this principle is sufficient to explain the differential effect of accuracy motivation on adjust-
ments from provided versus self-generated anchors. Therefore, a single process – resource-rational
anchoring-and-adjustment – may be sufficient to explain anchoring on provided and self-generated
anchors.
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2.3.7 Summary

Our resource-rational analysis of numerical estimation showed that under-adjusting an initial esti-
mate can be a rational use of computational resources. The resulting model can explain ten different
anchoring phenomena: insufficient adjustments from both provided and self-generated anchors,
the effects of cognitive load, anchor extremity, uncertainty, and knowledge, as well as the differen-
tial effects of forewarnings and financial incentives depending on anchor type (provided vs. self-
generated), anchor plausibility, and being asked versus being told whether the quantity is smaller or
larger than the anchor (see Table 2.1). None of the previous models (Epley & Gilovich, 2006; Sim-
mons et al., 2010) was precise enough to make quantitative predictions about any of these phenom-
ena let alone precisely predict all of them simultaneously. The close match between our simulation
results and human behavior suggests that resource-rational anchoring-and-adjustment provides a
unifying explanation for a wide range of disparate and apparently incompatible phenomena in the
anchoring literature. Our model was able to reconcile these effects by capturing how the effect of ad-
justment depends on the location and shape of the posterior distribution describing the participants’
belief about the quantity to be estimated. For instance, our model reconciles the apparent ineffec-
tiveness of financial incentives at reducing the bias towards provided anchors (Tversky & Kahneman,
1974) with their apparent effectiveness at reducing bias when the anchor is self-generated (Epley &
Gilovich, 2005). To resolve this apparent contradiction, we did not have to postulate additional pro-
cesses that operate only when the anchor is provided–unlike Epley and Gilovich (2006). Instead, our
computational model directly predicted this difference from people’s higher uncertainty about the
quantities used in experiments with provided anchors, because when the uncertainty is high then ad-
justments in the wrong direction are more likely to be accepted. Our model thereby provides a more
parsimonious explanation of these effects than the proposal by Epley and Gilovich (2006). While
Simmons et al. (2010) offered a conceptual explanation along similar lines, our model predicted the
exact sizes of these effects a priori.

The parameter estimates we obtained differed significantly across the simulated phenomena.
This is partly due differences in the incentives and other experimental manipulations. Additional
reasons for the variability in the parameter estimates are somewhat arbitrary differences in the res-
olution of the hypothesis spaces across different quantities and the interdependence between the
average change per adjustment and the number of adjustments: the same amount of adjustment
can be explained either by a small number of large steps or a large number of small steps. For some
experiments maximum likelihood estimation chose the former interpretation and for others it chose
the latter. But because a larger step size can compensate for a smaller number of adjustments, it is
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quite possible that the model could have explained all of the findings with a very similar step size and
number of adjustment parameters if we knew the structure and resolution of people’s hypothesis
spaces for the quantities used in each experiment. Although the model’s parameters were unknown
and had to be estimated to make quantitative predictions, all of the qualitative phenomena we sim-
ulated logically follow from the structure of the model itself. In this sense, our model did not just
capture the simulated phenomena but predicted them. Most importantly, our theory reconciles the
apparently irrational effects of potentially irrelevant numbers with people’s impressive capacity to
efficiently handle a large number of complex problems full of uncertainty in a short amount of time.
To further test the proposed cognitive mechanism, the following section test its novel empirical pre-
dictions against the predictions of alternative mechanisms including the stopping rule assumed by
Epley and Gilovich (2006) and Simmons et al. (2010).

2.4 Experimental Tests of the Model’s Novel Predictions

Having established that resource-rational anchoring-and-adjustment can explain a wide range of
anchoring phenomena, we will now test its assumption that the number of adjustments is chosen to
rationally tradeoff speed versus accuracy and test its novel predictions in two experiments. Here, we
derive empirical predictions from this assumption that will be tested in the following two sections.

Recall that the number of adjustments determines how rapidly the anchoring bias increases with
the distance of the correct value from the anchor, because the the slope of the anchoring bias is one
minus the relative adjustment (Figure 2.5). We can therefore test our theory’s predictions about the
number of adjustments by measuring the slope of the anchoring bias in people’s predictions. In
the theory section, we derived an upper bound on the anchoring bias (Equation 2.3). This bound
decays geometrically with the number of adjustments. If the bound is tight, then people’s average
prediction after a fixed number of adjustments should be a linear function of the distance from the
anchor to the correct value (Equation 2.4). We can therefore rearrange Equation 2.4 into a linear
regression model that allows us to estimate people’s anchor a, their relative adjustments (E[X̂|x]−a

x−a ),
and the resulting anchoring bias Biast(x, a) by regressing their estimates X̂ on the correct value x:

X̂ = α+ β · x+ ε, ε ∼ N (0, σ2ε) (2.6)
E[X̂|x]− a

x− a
= β, a =

α

1− β
(2.7)

Biast(x, a) = α− (1− β) · x (2.8)
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Optimal resource allocation implies that the relative adjustment decreases with the relative cost of
time (Figure 2.6). Therefore the slope of the anchoring bias should be highest when time cost is high
and error cost is low; see Figure 2.6. Conversely, the slope of the anchoring bias should be the shal-
lowest when error cost is high and time cost is low. Lastly, when time cost and error cost are both
high or both low, then the slope should be intermediate. Figure 2.14 illustrates these predictions.
The following two sections report two experiments testing these predictions for self-generated and
provided anchors respectively. Contrary to Epley and Gilovich (2006) our model assumes that peo-
ple adjust not only with self-generated anchors but also from provided anchors. If this assumption
is correct, then error cost should decrease and time cost should increase the anchoring bias regardless
of whether anchors are self-generated (Experiment 1) or provided (Experiment 2). While previous
studies have investigated the effect of financial incentives or deadlines (Epley & Gilovich, 2006), we
are not aware of any study that has explicitly manipulated people’s opportunity cost. Our opportu-
nity cost manipulation is a more realistic model of the time constraint on judgment in the real world
than imposing a deadline, because it allows participants to invest as much or as little of their valuable
time as they like. This difference is critical because it allows us to study whether people rationally
allocate their time and limited cognitive resources as predicted by our model. To measure time al-
location we recorded our participants’ reaction times. Another innovation of our experiments is
to measure potential interactions between opportunity cost and error cost and to control people’s
uncertainty about the quantities to be estimated.

Figure 2.14: Resource-rational anchoring-and-adjustment predicts that the negative anchoring
bias increases linearly with the distance from the anchor to the true value.
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2.5 Experiment 1: Self-generated Anchors

In the experiments simulated above the biases in people’s judgments result not only from anchor-
ing but also from the discrepancy between the truth and what people actually know. To avoid this
confound we designed a prediction task in which we can control both the prior and the likelihood
function. To test if people adapt the number of adjustments to the relative cost of time we manipu-
lated both the cost of time and the cost of error within subjects.

2.5.1 Method

Participants

We recruited 30 participants (14 male, 15 female, 1 unreported) on Amazon Mechanical Turk. Our
participants were between 19 and 65 years old, and their level of education ranged from high school
to graduate degrees. Participants were paid $1.05 for participation and could earn a bonus of up to
$0.80 for points earned in the experiment. Six participants were excluded because they incorrectly
answered questions designed to test their understanding of the task (see Procedure).

Materials

The experiment was presented as a website programmed in HTML and JavaScript. Participants
predicted when a person would get on a bus given when he had arrived at the bus stop based on
the bus’s timetable and examples of previous departure times. Figure 2.15 shows a screenshot from
one of the trials. The timeline at the top of the screen was used to present the relevant informa-
tion and record our participants’ predictions. At the beginning of each trial the bus’s timetable
(orange bars) and the person’s arrival at the bus stop (blue bars) were highlighted on the timeline.
Participants indicated their prediction by clicking on the corresponding point on the timeline.
When participants were incentivized to respond quickly, a falling red bar indicated the passage
of time and its cost in the bottom right corner of the screen, and the costs of error and time were
conveyed in the bottom left corner; see Figure 2.15. Feedback was provided by highlighting the ac-
tual departure time on the number line (green bar) and a pop-up window informed participants
about how many points they had earned. The complete experiment can be inspected online at
http://cocosci.berkeley.edu/mturk/falk/PredictionExperiment1/experiment.html. We chose this
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task to induce a bimodal posterior distribution (bus missed vs. not missed) because this might am-
plify the difference between sufficient versus insufficient adjustment.

Figure 2.15: Screenshot of a prediction trial from Experiment 1 with time cost and error cost.
The number line on the top conveys the bus schedule and when the person arrived at the bus stop.
The cost of error and time are shown in the bottom left corner, and the red bar in the bottom
right corner shows the passage of time and the cost associated with it.

Procedure

After completing the consent form, each person participated in four scenarios corresponding to
the four conditions of a 2 × 2within-subject design. The independent variables were time cost (0
vs. 30 points/sec) and error cost (0 vs. 10 points/unit error). The order of the four conditions was
randomized between subjects. At the end of the experiment participants received a bonus payment
proportional to the number of points they had earned in the experiment. The conversion rate was 1
cent per 100 points, and participants could earn up to 100 points per trial.
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Each scenario comprised a cover story, instructions, 10 examples, 5 practice trials, 5 attention check
questions, 20 prediction trials, 3 test questions, and one demographic question. Each cover story was
about a person repeatedly taking the same bus route in the morning, for example “Jacob commutes
to work with bus #22. On average, the first bus departs at 8:01 AM, and the second bus departs at
8:21 AM but departure times vary. On some days Jacob misses the first bus and takes the second
bus.” In each scenario both the person and the bus route were different. The task instructions in-
formed participants about the cost of time and error and encouraged them to attentively study the
examples and practice trials so that they would learn to make accurate predictions. After the cover
story, participants were shown when the bus had arrived on the ten workdays of the two preceding
weeks (10 examples); see Figure 2.16. Next participants made 5 practice predictions with feedback.

Figure 2.16: Screenshot of the first examples screen of Experiment 1.

The ensuing attention check questions verified the participants’ understanding of the time line and
the costs of time and error. Participants were allowed to go back and look up this information if
necessary. Participants who made at least one error were required to retake this test until they got

71



all questions correct. Once they had answered all questions correctly, participants proceeded to 20
predictions trials with feedback. In both the practice trials and the prediction trials the feedback
comprised the correct departure time, the incurred error cost, the incurred time cost, and the result-
ing number of points for the trial. The times at which the fictitious person arrived at the bus stop
were chosen such that the probability that he had missed the first bus approximately covered the full
range from 0 to 1 in equal increments. In the 1st,3rd,· · · , 2nd-last prediction trial the person arrived
early and the bus was on time. The purpose of these odd-numbered trials was to set the anchor on
the even-numbered trials to a low value. After each scenario’s prediction trials we tested our par-
ticipants’ understanding of the number line, the cost of time, and the cost of error once again. We
excluded six participants, because their answers to these questions revealed that they had misunder-
stood the number line, the cost of time, or the cost of error in at least one condition. After this they
reported one piece of demographic information: age, gender, level of education, and employment
status respectively. On the last page of each block, participants were informed about the bonus they
had earned in the scenario.

To pose a different prediction problem on every trial of each block despite the limited number of
meaningfully different arrival times, we varied the distribution of the bus’s delays between blocks.
There were four delay distributions in total. All of them were Pearson distributions that differed
only in their variance. Their mean, skewness, and kurtosis were based on the bus lateness statistics
from Great Britain.‖ The order of the delay distributions was randomized between participants in-
dependently of the incentives. The 10 examples of bus departure times were chosen such that their
mean, variance, and skewness reflected the block’s delay distribution as accurately as possible. For
each trial, a “correct” departure time xwas sampled from the conditional distribution of departure
times given that the fictitious person departs after his arrival at the bus stop. Our participants’ re-
sponses were scored according the condition’s cost of time ct and cost of error ce according to

points = max{0, 100− ce · PE − ct · RT}, (2.9)

PE = |x̂− x|, (2.10)

where PE is the absolute prediction error between the estimate x̂ and the true value x, and RT is the
response time. The bottom part of Figure 2.15 shows how time cost and error cost were conveyed
to the participants during the trials. The red bar on the right moved downward and its position
indicates how much time has passed and how many points have consequently been lost.

‖Bus Punctuality Statistics GB 2007 report; http://estebanmoro.org/2009/01/waiting-for-the-bus/
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2.5.2 Results

The aim of this experiment was to test our theory’s novel predictions. Before assessing these pre-
dictions, we verified our assumptions that a) people’s predictions are biased, and b) the negative
anchoring bias increases approximately linearlywith the distance from the anchor to the correct
value (Equation 2.3).

Data analysis Statistical analyses were performed using the Matlab statistics toolbox. Analysis
of variance (ANOVA), regression, and t-tests were performed using the functions anovan, regress,
and ttest respectively. Repeated measures ANOVAs were performed by including the participant
number as a random effects factor.

Anchoring bias and linear effect of distance To assess whether our participants’ pre-
dictions were systematically biased, we inspected their average prediction for a range of true bus
delays. The true bus delays were sampled from a distribution, of which subjects had seen 10 samples.
We binned participants’ average predictions when the true bus delay was 0.5 ± 2.5min, 5.5 ±
2.5min, . . . , or 35.5 ± 2.5min. Participants showed a systematic bias, overestimating the delay
when its true value was less than 3minutes (t(815) = 16.0, p < 10−15), but underestimating it
when its true value was larger than 7minutes (all p ≤ 0.0011; see Figure 2.17).

Visual inspection suggested that the bias was approximately proportional to the correct value
(cf. Equations 2.3-2.4). Fitting the linear regression model derived from our theory (Equations 2.6-
2.8)confirmed that the linear correlation between correct value and bias was significantly different
from zero (P (slope ∈ [−0.6148,−0.5596]) = 0.95). This replicates the finding by (Russo &
Schoemaker, 1989) predicted by our theory (Equation 2.3) and simulations (Figure 2.10). As shown
in Figure 2.17, the bias was positive when the delay was greater than 7.5min and negative for greater
delays. Our participants thus appeared to anchor around 7.5min and adjust their initial estimate
by about 41.3% of the total distance to the true value (95%-CI: [38.52%, 44.04%]). Another, and
perhaps more rational, strategy for choosing the anchor would be to re-use the estimate from the
previous trial as the initial guess on the current trial. If so, then the estimate X̂t on trial tmight be
generated according to

X̂t = x̂t−1 + β · (xt − x̂t−1) + ε, ε ∼ N (0, σ2ε), (2.11)
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where x̂t−1 was the participant’s estimate on the previous trial and xt is the true value on the current
trial. To determine which of the two regression models better explains our data, we performed a
model comparison using the Bayesian Information Criterion (BIC; Kass & Raftery, 1995). Our data
provided very strong evidence for our original model with a fixed unknown anchor (BIC: 12 394)
over the alternative model (BIC: 12 770). Hence, our participants did not appear to anchor on their
previous estimate.** Critically, the anchoring effect we observed is more than a simple regression to
a mean because its magnitude increased with the cost of time and decreased with the cost of error as
shown in the following section.
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Figure 2.17: In Experiment 1 the magnitude of the anchoring bias grew linearly with the correct
value. The error bars indicate 95% confidence intervals on the average bias, that is ±1.96 standard
errors of the mean.

Effects of time and error cost Since the data showed standard anchoring effects, we can
now proceed to testing its novel predictions. First, we investigated whether people adjust their pre-
diction strategy to the incentives for speed and accuracy. To get a first impression we performed two
repeated measures ANOVAs of the absolute error and the log-transformed reaction time in terms of

**According to the slope estimated using the alternative model, participants adjusted their estimate
65.76% of the distance to the correct value (95% CI: [63.49%; 68.03%]). Thus, regardless of which model is
used to analyze our data, the results suggest that people’s adjustments were insufficient.
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time cost and error cost. The ANOVA models included the main effects of time cost and error cost
and their interaction (fixed effects) as well as the main effect of participant number (random effect).
The results suggest that participants traded accuracy for speed according to the experiment’s incen-
tives (see Figure ??): When errors were costly people took more time (F (1, 1894) = 28.73, p <

0.0001) and were more accurate (F (1, 1824) = 15.52, p < 0.0003) than when there was no error
cost. Conversely, when time was costly people took less time (F (1, 1824) = 73.51, p < 10−8)
and were less accurate (F (1, 1824) = 12.07, p = 0.0011) than when there was no time cost. The
interaction between time cost and error cost was significant for log reaction time (F (1, 1824) =

7.17, p = 0.0075) but not for accuracy (F (1, 1824) = 0.13, p = 0.72).

No Error Cost High Error Cost
0

2

4

6

8

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

No Time Cost
High Time Cost

No Error Cost High Error Cost
0

500

1000

1500

2000

M
e

d
ia

n
 R

T
 (

m
s
)

No Time Cost
High Time Cost

Figure 2.18: Mean absolute errors and reaction times as a function of time cost and error cost
indicate an adaptive speed-accuracy tradeoff.

Given that our participants appeared to be sensitive to incentives for speed and accuracy, we
asked whether time cost decreased and error cost increased our participants’ anchoring biases. To
answer this question we performed a repeated-measures ANOVA of our participants’ relative adjust-
ments as a function of time cost and error cost. To be precise, we first estimated each participant’s
relative adjustment separately for each of the four conditions using our linear regression model of
anchoring and adjustment (Equation 2.6). We then performed an ANOVA on the estimated relative
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adjustments with the factors time cost and error cost (fixed-effects) as well as participant number
(random effect) and the interaction effect of time cost and error cost; see Table 2.2. We found that
time cost significantly reduced relative adjustment from 50.7% to 31.0% (F (1, 69) = 21.86, p <

0.0001) whereas error cost significantly increased it from 31.6% to 50.1% (F (1, 69) = 19.49, p <

0.0001) and the interaction was non-significant. The mean relative adjustments of each condition
are shown in Table 2.3. Consequently, as predicted by our theory (Figure 2.14), the anchoring bias in-
creased more rapidly with the true delay when time cost was high or error cost was low (Figure 2.19).
This is consistent with the hypothesis that people rationally adapt the number of adjustments to the
relative cost of time.††

Table 2.2: ANOVA of relative adjustment as a function time cost and error cost.

Source d.f. Sum Sq. Mean Sq. F p
error cost 1 0.82461 0.82461 19.49 3.6e-05
time cost 1 0.92484 0.92484 21.86 1.4e-5
error cost x time cost 1 0.04483 0.04483 1.06 0.3069
subject 23 1.77458 0.07716 1.82 0.0293
Error 69 2.91871 0.0423
Total 95 6.48757

Table 2.3: Relative size of our participants’ adjustments of their initial guesses towards the cor-
rect answer by incentive condition with 95% confidence intervals.

No Error Cost High Error Cost
No Time Cost 43.6± 11.2% 57.8± 4.8%
High Time Cost 19.6± 9.0% 42.5± 9.8%

The effects of time cost and error cost on our participants’ adjustments were also evident from
how often their adjustments were insufficient. For this analysis, we only considered trials in which
the arrival time suggested that the bus had been missed, that is when the probability of having
missed the bus was larger than 0.5. For those trials, adjustments were considered sufficient when
the prediction was larger than the expected departure of the second bus minus 2 standard deviations
of the delay distributions. We found that the proportion of sufficient adjustments changed substan-
tially with the cost of error and the cost of time (see Figure 2.20). Error cost significantly increased

††Estimating relative adjustment under the assumption that people anchor on their previous estimate led
to the same conclusions.
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Figure 2.19: Anchoring bias in Experiment 1 by time cost and error cost confirms our theoretical
prediction; compare Figure 2.14. The shaded areas are 95% confidence bands. The slope of a line
equals one minus the relative adjustment.

the proportion of complete adjustments by 21% ± 4% from 56% to 77% (p < 10−6), whereas
time cost significantly decreased it by 28.6%± 4% from 80.3% to 51.7% (p = 4 · 10−12).

2.5.3 Computational models of anchoring-and-adjustment

To test competing theories of the anchoring bias, we formalized four theories using eight probabilis-
tic models of numerical estimation. Appendix A describes these models in detail; in this section we
will give only a brief conceptual overview. The theories range from unbounded Bayesian rationality
(theory 1) to random guessing (theory 4) with theories 2 and 3 formalizing intermediate levels of ra-
tionality: the sampling hypothesis (theory 3; Vul et al., 2014) and four models of the anchoring-and-
adjustment heuristic that range from resource-rational anchoring-and-adjustment to less rational
anchoring heuristics like the ones proposed by Epley and Gilovich (2006) and Simmons et al. (2010).
By formally comparing these models using Bayesian model selection, we will be able to titrate exactly
how rational our participants’ estimation strategy was.

According to the first theory, people draw Bayes-optimal inferences and the observed biases
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Figure 2.20: This plot shows the relative frequency of complete adjustments as a function of time
cost and error cost. The length of the error bars is 1.96 standard errors.

merely reflect a regression towards their prior expectation. We formalized this explanation in terms
of Bayesian decision theory (mBDT; Equations A.2-A.5). To connect the deterministic predictions
of Bayesian decision theory to people’s variable responses, measurement and response errors are
included in the model. According to the second theory, people approximate optimal inference by
drawing a single sample from the posterior distribution (posterior probability matching, Vul et al.,
2014,mPPM, Equations A.6-A.8). However, generating even a single perfect sample can require an
intractable number of computations. Therefore, according to the third theory, the mind approxi-
mates sampling from the posterior by anchoring-and-adjustment (Lieder et al., 2012). We modeled
adjustment using the probabilistic mechanisms illustrated in Figure 2.1. We modified the stopping
criterion to model several variants of anchoring-and-adjustment. Existing theories of anchoring-and-
adjustments commonly assume that people adjust their estimate until it is sufficiently plausible (Ep-
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ley & Gilovich, 2006; Simmons et al., 2010). Our first anchoring-and-adjustment model formalizes
this assumption by terminating adjustment as soon as the estimate’s posterior probability exceeds a
certain plausibility threshold (mA&As, Equations A.9-A.17). The plausibility threshold and the aver-
age size of the adjustment are free parameters. According to the second anchoring-and-adjustment
model, people make a fixed number of adjustments to their initial guess and report the result as their
estimate (mA&A, Equations A.18-A.25). Here the number of adjustments replaces the plausibility-
threshold as the model’s second parameter. According to the third anchoring-and-adjustment
model, people adapt the number of adjustments and the adjustment step size to optimize their
speed-accuracy tradeoff (maA&A, Equations A.26-A.37; Lieder, Griffiths, & Goodman, 2013). The
optimal speed-accuracy tradeoff depends on the unknown time τadjustment it takes to perform an ad-
justment, so this time constant is a free-parameter. The fourth anchoring-and-adjustment model ex-
tends the third one by assuming that there is an intrinsic error cost in addition to the extrinsic error
cost imposed by the experimenter, and this intrinsic cost is an additional model parameter (maAAi,
Equations A.38-A.39). All anchoring models assumed that the anchor in Experiment 1 was the esti-
mate reported in the previous section, that is 7.5 minutes. Finally, we also included a fourth theory.
According to this “null hypothesis”, our participants chose randomly among all possible responses
(mrandom, Equation A.40).

Except for the null model, the response distributions predicted by our models are a mixture of
two components: the distribution of responses expected if people perform the task and the distribu-
tion of responses expected when they do not. The relative contributions of these two components
are determined by an additional model parameter: the percentage of trials pcost in which participants
fail to perform the task. Not performing the task is modeled as random choice according to the null
model. Performing the task is modeled according to the assumed estimation strategies described
above. For a precise definition and comprehensive explanation of the each model, please consult
Appendix A.

2.5.4 Model Selection

To formally test the four theories—anchoring-and-adjustment, posterior probability matching,
Bayesian decision theory, and random choice—and which of the seven models that instantiate
them against each other, we performed random-effects Bayesian model selection at the group level
(Stephan, Penny, Daunizeau, Moran, & Friston, 2009) and family-level Bayesian model selection
(Penny et al., 2010) as implemented in SPM8. For each model we separately approximated the log-
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probability of each participant’s predictions using the Laplace approximation (Tierney & Kadane,
1986) when applicable, that is when the likelihood function is differentiable with respect to the pa-
rameters, and numerical integration of the joint density otherwise. Numerical integration was nec-
essary for discrete-valued parameters such as the number of adjustments. Numerical integration
was also necessary for continuous parameters that affect the resource-rational number of adjust-
ments. This is because the likelihood function changes abruptly by a non-differential step when
the resource-rational number of adjustments jumps from one number to another. Numerical in-
tegration with respect to continuous parameters was performed using the functions integral and
integral2 available in Matlab 2013b.

According to Bayesian model selection, adaptive anchoring-and-adjustment with intrinsic error
cost (maAAi) explained our participants’ predictions better than any of the alternative models: we
can be 99.99% confident that the adaptive anchoring-and-adjustment with intrinsic error is the
best model for a larger percentage of people (64.4%) than any of the alternative models; see Fig-
ure 2.21, top panel. In addition to this random-effects analysis we also performed a Bayesian fixed
effects analysis by computing the group Bayes factor for each pair of models. Reassuringly, this anal-
ysis led to the same conclusion: according to the posterior odds ratios, the adaptive anchoring-and-
adjustment with intrinsic error cost was at least exp(220) times as likely as any of the other models
we considered. Next, we applied family level inference to determine which theory best explains our
data; see Figure 2.21, bottom left panel. According to this method, we can be 99.99% confident that
anchoring-and-adjustment is the most probable explanation for a significantly larger proportion
of participants (78.2%) than either posterior probability matching (11.0%), Bayesian decision the-
ory (7.2%), or random choice (3.6%). Finally, we compared adaptive to non-adaptive models; see
Figure 2.21, bottom right panel. According to the result, we can be 99.86% confident that for the
majority of people (79.2%) our adaptive models’ predictions are more accurate than the predictions
of their non-adaptive counterparts.

Validation of the adaptive control of the number of adjustments

To validate that people perform more adjustments when errors are costly and fewer adjustments
when time is costly, as assumed by the adaptive resource-rational model, we computed the maximum-
a-posteriori estimates of the parameters of the second anchoring-and-adjustment model (mAA) sep-
arately for each of the four incentive conditions. Figure 2.22 shows the estimated number of adjust-
ments as a function of the incentives for speed and accuracy. For five of the six pairs of conditions,
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we can be more than 96.9% confident that the number adjustments differ in the indicated direc-
tion, and for the sixth pair we can be more than 92% confident that this is the case. Therefore, this
analysis supports the conclusion that our participants adapted the number of adjustments to the
cost of time and error. To determine whether this pattern is consistent with choosing the number
of adjustments adaptively we fit the parameters determining the rational number of adjustments to
these estimates. We found that rational resource allocation predicts a qualitatively similar pattern of
adjustments for reasonable parameter values (convergence rate: 0.71, time per adjustment: 27ms,
assumed initial bias: 6.25min).

2.5.5 Discussion

We observed a bias in people’s predictions under uncertainty that increases with time cost and de-
creases with error cost. This phenomenon is consistent with the interpretation that people use
anchoring-and-adjustment to make predictions under uncertainty. Our results suggested that
anchoring-and-adjustment is used adaptively: When errors were costly, people invested more time
and were more accurate. Their adjustments were larger and their anchoring bias was smaller. By con-
trast, when time was costly then our participants were faster and less accurate. Their adjustments
appeared to be smaller and their anchoring bias was larger. This is consistent with the interpretation
that people rationally choose the number of adjustments to optimize their speed-accuracy tradeoff.
In fact, the experiment confirmed the predictions of optimal resource-allocation, and the data were
best explained by a resource-rational anchoring-and-adjustment model. The anchoring bias may
therefore be a consequence of resource-rational computation rather than a sign of human irrational-
ity.

While our results demonstrate that people adaptively tradeoff being biased for being fast, our
analysis had to postulate and estimate people’s self-generated anchors. Therefore, we cannot be sure
whether people really self-generated and adjusted anchors, or whether their responses merely look as
if they did so. If people’s predictions in Experiment 1 were generated by anchoring-and-adjustment,
then we should be able to shift the biases shown in Figure 2.17 by providing different anchors; we
tested this prediction in Experiment 2.
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2.6 Experiment 2: Provided Anchors

To test whether the biases observed in Experiment 1 resulted from anchoring and to evaluate whether
the effects of time cost and error cost also hold for provided anchors, we ran a second experiment in
which anchors were provided by asking participants to compare the to-be-predicted delay to a low
versus a high number before every prediction. Concretely, this experiment tested two predictions:
Our first prediction was that people’s anchor will be higher when the number is high than when it is
low. Our second prediction was that the bias towards the provided anchor decreases with error cost
but increases with time cost.

2.6.1 Method

The materials, procedures, models, and data analysis tools used in Experiment 2 were identical to
those used in Experiment 1 unless stated otherwise.

Participants

We recruited 60 participants (31 male, 29 female) on Amazon Mechanical Turk. They were between
18 and 60 years old, and their level of education ranged from high school diploma to PhD. Partici-
pants were paid $1.25 for participation and could earn a bonus of up to $2.20 for the points they
earned in the experiment.

Materials

Experiment 2 was presented as a website programmed in HTML and JavaScript. Experiment 2 was
mostly identical to Experiment 1. The relevant changes are summarized below. The complete exper-
iment can be inspected online at http://cocosci.berkeley.edu/mturk/falk/PredictionExperiment2/
experiment.html.

Procedure

Experiment 2 proceeded like Experiment 1 except for three changes: First, each prediction was pre-
ceded by the question “Do you think he will depart before or afterX am?”, whereX is the an-
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chor. This question was presented between the sentence reporting the time the person reached
the bus stop and the number line. Participants were required to answer this question by selecting
“before” or “after”. This is the standard procedure for providing anchors (Jacowitz & Kahneman,
1995; Russo & Schoemaker, 1989; Tversky & Kahneman, 1974). In the two conditions with time
cost, participants were given 3 seconds to answer this question before the timer started. Participants
were not allowed to make a prediction until they had answered. We incentivized them to take this
question serious by awarding +10 points for correct answers and -100 points for incorrect ones. For
each participant the anchor was high in half of the trials of each condition and low in the other half.
The low anchor was 3 minutes past the scheduled departure of the first bus, and the high anchor was
3 minutes past the scheduled departure of the second bus. The list of anchors was shuffled separately
for each block and participant. Second, the 1st, 3rd, 5th,· · · , 2nd-last trial were no longer needed, be-
cause they merely served to set the anchor on the even numbered trials of Experiment 1 to a small
value. We therefore replaced those trials by 10 trials whose query times tighten the grid of those in
the even-numbered trials. Thus for each participant, each block includes ten prediction trials with
low anchors and ten prediction trials with high anchors. Third, we increased the base payment and
the bonus payment, because Experiment 2 takes longer than Experiment 1. The conversion of points
into bonuses remained linear but was scaled up accordingly. The instructions were updated to re-
flect the changes.

We excluded one participant due to incomplete data, and 16 participants because their answers to
our test questions indicated they had misunderstood the time line used to present information and
record predictions, or the cost of time or error in at least one condition.‡‡

2.6.2 Results

Our participants answered the anchoring questions correctly in 74.8% of the trials. As in Experi-
ment 1, people’s predictions were systematically biased: Our participants significantly overestimated
delays smaller than 8 min (all p < 10−11) and significantly underestimated delays larger than 13 min
(all p < 10−4); see Figure 2.23. Furthermore, the biases were shifted upwards when the anchor was
high compared to when the anchor was low (z = 7.26, p < 10−12; see Figure 2.23). This effect
was also evident in our participants’ average predictions: when the anchor was high, then partici-
pants predicted significantly later departures than when the anchor was low: 12.06 ± 0.29min

‡‡This exclusion rate would be high in a laboratory experiment, but it is not unusual for long online
experiments run on Amazon Mechanical Turk.
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versus 10.03 ± 0.15min (t(3438) = 6.16, p < 10−15). To estimate our participants’ anchors
and quantify their adjustments, we applied the linear regression model described above (Equation
2.6). Overall, our participants’ apparent anchor was significantly higher in the high anchor con-
dition (12.69min) than in the low anchor condition (9.74min, p < 10−15). Our participants’
adjustments away from the anchor tended to be small: on average, our participants adjusted their
estimate only 29.86% of the distance from the anchor to the correct value when the anchor was
low (95% CI: [26.38%; 30.85%]) and 27.25% of this distance when the anchor was high (95% CI:
[24.00%; 30.50%]). Thus the relative adjustments were significantly smaller than in Experiment 1
(95% CI: [38.52%, 44.04%]) and they did not differ between the high and low anchor condition
(z = 1.16; p = 0.12). Thus the linear relationship between the bias and the true delay and differ-
ence between the biases for the high versus the low anchor (Figure 2.23) may result from insufficient
adjustment away from different anchors. This also explains why the average predictions were higher
in the high anchor condition than in the low anchor condition.

Next, we investigated whether people adapted their prediction strategy to the experiment’s incen-
tives for speed and accuracy. To get a first impression, we performed a 2-factorial, repeated-measures
ANOVA of the prediction errors’ absolute values, and the ANOVA models included only the main
effects of time cost and error cost and their interaction (fixed effects) and the main effect of partic-
ipant number (random effect). This analysis confirmed that error cost made our participants’ esti-
mates significantly more accurate (F (1, 3391) = 12.33, p < 0.0001), but the effect of time cost
was not statistically significant (F (1, 3391) = 1.81, p = 0.185) and neither was its interaction
with the effect of error cost (F (1, 3391) = 0.0027, p = 0.9583). §§ Next we assessed whether the
amount by which participants adjusted their initial estimate increased with error cost and decreased
with time cost. To answer this question we performed a repeated-measures ANOVA of relative ad-
justment as a function of time cost and error cost. To be precise, we first estimated each participant’s
relative adjustment separately for each of the four conditions and the two anchors using our linear
regression model of anchoring and adjustment (Equation 2.6). We then performed an ANOVA on
the estimated relative adjustments with the factors time cost, error cost, and high vs. low anchor
(fixed-effects) as well as participant number (random effect) and the interaction effect of time cost
and error cost; see Table 2.4. We found that time cost significantly reduced relative adjustment from
37.2% to 28.2% (F (1, 297) = 15.5, p = 0.0001) whereas error cost significantly increased it from
31.2% to 34.2% (F (1, 297) = 10.39, p = 0.0014), and the interaction was non-significant. These

§§Unfortunately, we cannot report an analysis of the reaction times, because they were not measured in
the conditions without time cost due to programming error.
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findings are consistent with the prediction of our resource-rational theory that the number of ad-
justments decreases with time cost but increases with error cost regardless of the anchor. The mean
relative adjustments of each condition are shown in Table 2.5. Figure 2.24 shows the effects of incen-
tives for speed and accuracy on the anchoring bias in the provided anchors experiment; note that the
slope of each line is 1 minus the relative size of the adjustments in the corresponding condition. As
predicted by our theory (cf. Figure 2.14) and observed for self-generated anchors (cf. Figure 2.19), the
slope of the anchoring bias was largest when time cost was high and errors were not penalized. Table
2.5 summarizes the relative adjustments sizes in the four incentive conditions.

Table 2.4: ANOVA of relative adjustment as a function of time cost and error cost.

Source d.f. Sum Sq. Mean Sq. F p
error cost 1 1.0318 1.03178 15.5 0.0001
time cost 1 0.6912 0.69115 10.39 0.0014
subject 42 11.3544 0.27034 4.06 10−12

anchor (high vs. low) 1 0.0774 0.07739 1.16 0.2817
error cost× time cost 1 0.1066 0.10659 1.6 0.2066
Error 297 19.7643 0.06655
Total 343 33.0256

Table 2.5: Relative size of our participants’ adjustments of their initial guess towards the correct
answer by incentive condition in the experiment with provided anchors with 95% confidence inter-
vals.

No Error Cost High Error Cost
No Time Cost 30.0± 7.4% 44.4± 8.4%
High Time Cost 24.5± 6.5% 32.0± 9.1%

2.6.3 Testing models of the anchoring bias

Consistent with the biases and the effects of time cost and error cost, we found that the two adap-
tive anchoring-and-adjustment models explained our participants’ predictions significantly bet-
ter than any of the alternative models; see Figure 2.25, top panel. Concretely, the first adaptive
anchoring-and-adjustment model (maAA) was the best explanation for 36.9% of our participants,
and the adaptive anchoring-and-adjustment model with an additional intrinsic error cost parame-
ter (maAAi) was the best explanation for another 24.8% of our participants. Thus for the majority
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of our participants, responses were best explained by adaptive anchoring-and-adjustment. Further-
more, we can be 85.9% confident that the first adaptive anchoring-and-adjustment is the best model
for a larger percentage of people than any of the alternative models. In addition to this random
effects analysis, we also ran a Bayesian fixed-effects analysis by computing the group Bayes factors.
This analysis confirmed that the two adaptive anchoring-and-adjustment models explain the data
substantially better than any of the alternatives, but among these two models it strongly favored the
more complex model with intrinsic error cost: According to the posterior-odds ratios this model is
at least 1030 times as likely as any other model we considered. In conclusion, we found that most
participants performed adaptive anchoring-and-adjustment (maAA andmaAAi) and while the con-
tribution of the intrinsic error cost is negligible in many participants it is crucial in others. Next, we
asked which theory best explains our participants’ responses; see Figure 2.25, bottom left panel. Ac-
cording to family-level Bayesian model selection, we can be 99.99% confident that anchoring-and-
adjustment is the most probable explanation for a significantly larger proportion of people (76.9%)
than either posterior probability matching (10.6%), Bayesian decision theory (10.4%), or random
choice (2.1%). Furthermore, we can be 98.5% confident that for the majority of people (67.6%)
our adaptive models’ predictions are more accurate than the predictions of their non-adaptive coun-
terparts; see Figure 2.25, bottom right panel.

2.6.4 Discussion

Our participants’ predictions were significantly biased towards the provided anchors. When the
anchor was high, their predictions and biases were shifted upwards compared to when it was low.
This bias increased linearly with the distance from the anchor to the correct value. Furthermore,
this experiment also confirmed our second prediction: the bias towards the provided anchor de-
creased with error cost but increased with time cost (compare Figures 2.14 and 2.24). Thus the bias
towards the provided anchors and the effects of time cost and error cost were qualitatively the same
as with self-generated anchors (Figure 2.19). Contrary to the claims by Epley and Gilovich (2006),
our results suggest that anchoring-and-adjustment is sufficient to explain the anchoring bias towards
provided as well as self-generated anchors.

While time cost had an effect on the imputed number of adjustments, the effect of time cost on
absolute error was not statistically significant. This might have been because the timer started three
seconds after the anchoring question and the number line were presented. Our rationale was to en-
sure that our participants encode the anchor before predicting the departure time and we found that

86



it takes about three seconds to read, think about, and answer the anchoring question. However, this
change might have reduced the time pressure experienced by our participants and thereby dimin-
ished the effect of time cost on accuracy relative to Experiment 1.

Interestingly, our model-based analysis suggested that our participants’ effective anchors were
less extreme than the values we provided. One possible reason is that people after sometimes discard
the provided anchor and generate their own anchor instead after having stated that the provided
anchor is too high or too low. Having stated the direction in which the correct value deviates from
the anchor could potentially also increase people’s propensity to make adjustments consistent with
this judgment. Since our participants’ direction judgments were mostly correct, this effect would
increase adjustment, but adjustments were smaller than in Experiment 1. However, it is also conceiv-
able that our analysis picked up this omnipresent additional adjustment as a shift in the anchor.

Despite the qualitative commonalities between the results of our two experiments with self-
generated versus provided anchors, there were quantitative differences: In three of the four condi-
tions, our participants’ adjustments were significantly smaller for provided anchors than for self-
generated anchors. There are at least two possible complementary explanations: First, self-generated
anchors are probably much more variable than the initial guesses elicited by provided anchors, and
the anchoring biases towards high versus low self-generated anchors might cancel each other out.
Second, people probably treat provided anchors not only as initial guesses but also as conversational
hints that the correct value is close to the provided anchor (Y. C. Zhang & Schwarz, 2013). Based on
this hint people may either strategically decrease the number of adjustments or assign a higher plausi-
bility to estimates close to the provided anchor. The latter could be modeled as a Bayesian inference
from the hint on the to-be-predicted value, but this rational inference alone would be insufficient to
account for our data because the effect of the anchor type disappeared when time cost was high and
error cost was zero (cf. Table 2.3 with Table 2.5).

Thus, resource-rational anchoring-and-adjustment is a promising process model of numerical
estimation. It can explain the plethora of anchoring effects summarized in Table 2.1 from empirically
supported first principles: probabilistic inference by an iterative (sampling) algorithm and optimal
resource-allocation. The resulting models enable new insights into old and new empirical phenom-
ena.
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2.7 General Discussion

Anchoring and adjustment is one of the classic heuristics reported by Tversky and Kahneman (1974)
and it seems hard to reconcile with rational behavior. In this article, we have argued that this heuris-
tic can be understood as a signature of resource-rational information processing rather than a sign of
human irrationality. We have supported this conclusion by a resource-rational analysis of numerical
estimation, simulations of anchoring phenomena with a resource-rational process model, two novel
experiments that confirmed the predictions of our rational account of anchoring, and quantitative
model comparisons against alternative explanations of anchoring. We showed that anchoring-and-
adjustment can be interpreted as a Markov chain Monte Carlo algorithm–a rational approximation
to rational inference. We found that across many problems the optimal speed-accuracy tradeoff of
this algorithm entails performing so few adjustments that the resulting estimate is biased towards
the anchor. Our simulations demonstrated that resource-rational anchoring-and-adjustment, which
adaptively chooses the number of adjustments to maximize performance net the cost of computa-
tion, provides a unifying explanation for ten different anchoring phenomena (see Table 2.1). Finally,
our experiments confirmed that people rationally adapt the number of adjustments to the relative
cost of time.

Although we explored the implications of limited time and finite cognitive resources assuming
an abstract computational architecture based on sampling, the results of our mathematical analysis
are more general and the algorithms we derived illustrate general properties of resource-rational in-
formation processing. Other iterative inference mechanisms such as (stochastic) gradient descent,
variational Bayes, predictive coding (Friston, 2009; Friston & Kiebel, 2009), and probabilistic com-
putation in cortical microcircuits (Habenschuss et al., 2013) also have the property of diminishing
returns for additional computation. Therefore the qualitative predictions shown in Figures 2.3–2.6
are valid now only for the abstract computational architecture that we chose to analyze but charac-
terize bounded rationality for a more general class of cognitive architectures. Therefore, our results
support the adaptive allocation of finite computational resources and the resource-rationality of bias
regardless of the specific cognitive mechanism that people use to draw inferences.

We discuss the implications of our results for general theoretical questions. We start with the
conclusion that people use anchoring-and-adjustment more widely than previously assumed, that is
they adjust not only from self-generated anchors but also from provided anchors. Next, we discuss
how our model is related to previous theories of anchoring and how they can be integrated into our
resource-rational framework. We then turn to two questions about rationality: First, we discuss

88



existing evidence for the hypothesis that anchors are chosen resource-rationally and how it can be
tested in future experiments. Second, we argue that resource-rationality, the general theory we have
applied to explain the anchoring bias, provides a more adequate normative framework for cognitive
strategies than classical notions of rationality. We close with directions for future research.

2.7.1 People adjust from provided and self-generated anchors

In contrast to most heuristics, anchoring-and-adjustment is a very flexible strategy. It can be quick
and biased by performing only a few adjustments, or accurate and slow by performing many adjust-
ments. Intuitively, people should perform more adjustments and be less biased when they are mo-
tivated to be accurate. Therefore, the reduction of the bias with financial incentives has been used
to operationalize anchoring-and-adjustment: Epley and Gilovich (2005) found no evidence that
the bias towards a provided anchor decreases with financial incentives and concluded that therefore
people use anchoring-and-adjustment only with self-generated but not with provided anchors. By
contrast, in our experiments financial incentives increased the number of adjustments regardless of
whether the anchor was self-generated (Experiment 1; Figure 2.19) or provided (Experiment 2; Figure
2.24). How is this finding compatible with previous studies in which financial incentives failed to
reduce the anchoring bias in Epley and Gilovich (2005); Tversky and Kahneman (1974)? According
to our simulations and empirical data, the reason is that people know much less about the quantities
for which Epley and Gilovich (2005) decided to provide anchors than for those for which people
were found to generate their own anchors. In our experiments with self-generated versus provided
anchors we eliminated the confounding effect of uncertainty by having people estimate the same
quantities with and without being provided an anchor. Consistent with Simmons et al. (2010), we
found that the anchoring bias decreased with financial incentives regardless of whether we provided
an anchor or not. Thus our results suggest that resource-rational anchoring-and-adjustment is a uni-
fying mechanisms for the anchoring biases observed for self-generated as well as provided anchors.
Our simulations show that this conclusion is compatible with the results reviewed by Epley and
Gilovich (2006), because the effect of financial incentives declines with the uncertainty about the
quantity to be estimated. This explanation is similar to the argument by Simmons et al. (2010), but
our formal model does not need to assume that people reason about the direction of their adjust-
ments. Last but not least, our findings suggest that incentives are more effective at debiasing than
previously thought as long as people are sufficiently knowledgable.
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2.7.2 Relation to previous theories of anchoring and adjustment

Previous models of anchoring-and-adjustment (Epley & Gilovich, 2006; Simmons et al., 2010) as-
sumed that adjustment terminates when the plausibility of the current estimate exceeds a threshold.
Here we formalized this idea by the anchoring-and-adjustment model with a simple stopping rule
(mAAs, Equations A.9-A.12). Importantly, this model was not supported by our experimental data;
see Figures 2.21 and 2.25. Instead, our data supported adaptive anchoring-and-adjustment according
to which the number of adjustments is chosen in advance such as to optimize the strategy’s expected
speed-accuracy tradeoff. From an information processing perspective the limitation of models postu-
lating that adjustment stops when plausibility exceeds a threshold is that there is no single threshold
that works well across all estimation problems. Depending on the level of uncertainty successful
estimation requires different thresholds. A threshold that is appropriate for low uncertainty will
result in never-ending adjustment in a problem with high uncertainty. Conversely, a threshold that
is appropriate for a problem with high uncertainty would be too liberal when the uncertainty is low.
In addition, Simmons et al. (2010) postulate that people reason about the direction of their adjust-
ment whereas resource-rational anchoring-and-adjustment does not. It would be interesting to see
whether an extension of our model that incorporates directional information would perform better
in numerical estimation and better predict human behavior. We will return to this idea when we
discuss directions for future research.

According to the selective-accessibility theory of anchoring (Strack & Mussweiler, 1997), com-
paring an unknown quantity to the provided anchor increases the accessibility of anchor-consistent
knowledge and the heightened availability of anchor-consistent information biases people’s esti-
mates. There is no quantitative mathematical model of selective accessibility that could be tested
against our resource-rational anchoring-and-adjustment model using the data we have collected.
The evidence that some anchoring biases result from selective accessibility (Strack & Mussweiler,
1997) does not undermine our analysis, because the existence of selective accessibility would not
rule out the existence of anchoring-and-adjustment and vice versa. In fact, from the perspective of
resource-rational probabilistic inference a mechanism similar to selective accessibility is likely to co-
exist with anchoring-and-adjustment. Concretely, we have formalized the problem of numerical
estimation of some quantityX as minimizing the expected error cost of the estimate x̂with respect
to the posterior distribution P (X|K)whereK is the entirety of the person’s relevant knowledge.
This problem can be decomposed into two sub-problems: conditioning on relevant knowledge to
evaluate (relative) plausibility and searching for an estimate with high plausibility. It appears un-
likely that the mind can solve the first problem by simultaneously retrieving and instantly incorpo-
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rating each and every piece of knowledge relevant to estimatingX . Instead, the mind might have
to sequentially recall and incorporate piecesK(1),K(2),K(3), · · · of its knowledge to refine P (X)

to P (X|K(1)) to P (X|K(1),K(2)) to P (X|K(1),K(2),K(3)), and so forth. This process could
be modeled as bounded using a sequential Monte Carlo algorithm (Doucet, De Freitas, & Gordon,
2001) and bounded conditioning (Horvitz, Suermondt, & Cooper, 1989).

Furthermore, it would be wasteful not to consider the knowledge that has been retrieved to an-
swer the comparison question in the estimation task and impossible to retrieve all of the remaining
knowledge. Selective accessibility may therefore result from the first process. Yet, regardless of how
the first problem is solved, the mind still needs to search for an estimate x̂with high posterior prob-
ability, and this search process might be implemented by something like anchoring-and-adjustment.
Furthermore, the knowledge retrieved in the first step might also guide the generation of an anchor.
Importantly, both processes are required to generate an estimate. Therefore, we agree with (Sim-
mons et al., 2010) that selective accessibility and anchoring-and-adjustment might coexist and both
of them might contribute to the anchoring bias.

In summary, our resource-rational analysis of estimation sheds new light on classic notions of
anchoring-and-adjustment (Epley & Gilovich, 2006; Tversky & Kahneman, 1974), explaining why
they work and why people use them. Furthermore, our framework is sufficiently general to incor-
porate and evaluate the extensions proposed by Simmons et al. (2010) and Strack and Mussweiler
(1997) and many others. Exploring these extensions is an interesting direction for future work.

2.7.3 Are anchors chosen rationally?

Anchoring-and-adjustment has two components: generating an anchor and adjusting from it. Our
experiments and simulations supported the conclusion that adjustment is resource-rational. Thus, a
natural next question is whether anchors are also generated resource-rationally.

Self-generated anchors are usually close to the correct value, but provided anchors can be far off.
For instance, it appears irrational that people can be anchored on their social security number when
they estimate how much they would be willing to pay for a commodity (Ariely et al., 2003). Yet, the
strategy failing people in this specific instance may nevertheless be resource-rational overall for at
least four reasons: First, it is sensible to assume that the experimenter is reasonable and cooperative.
Therefore her utterances should follow the Gricean maxims. Specifically, according to Grice’s maxim
of relation the stated anchor should be relevant (Y. C. Zhang & Schwarz, 2013). Furthermore, as a

91



rational information-seeking agent the experimenter should ask the question whose answer will
be most informative. The most informative anchor to compare the true value to would be at the
center of the experimenter’s belief distribution. This too suggests that it is reasonable to treat the
provided anchor as a starting point. Second, subsequent thoughts and questions are usually related.
So it is reasonable to use the answer to a preceding question as the starting point for next thought.
This holds for sequences of arithmetic operations such as 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 for
which people anchor on their intermediate results when they are forced to respond early (Tversky &
Kahneman, 1974) and in many other cases too. Third, when the provided anchor is the only number
available in working memory, then using it may be faster and require less effort than generating
a new one. Last but not least, one’s beliefs may be wrong and the anchor may be more accurate.
This was the case in Russo and Shoemaker’s experiment: People overestimated the year in which
Attila the Hun was defeated in Europe so much that the anchor was usually closer to the correct
value (A.D. 451) than the mean of their unbiased estimates (A.D. 953.5). For these reasons, the
observation that people anchor on irrelevant values provided in psychological experiments does
not imply that anchors are selected irrationally. Anchor selection could be well adapted to the real-
world. Consequently, anchoring biases in everyday reasoning would be much more benign than
those observed in the laboratory. This is probably true, because most anchoring experiments violate
people’s expectation that the experimenter will provide relevant information, provide negligible
incentives for accuracy, and ask people to estimate quantities about which they know very little.

There also is empirical evidence suggesting that people do not always use the provided value as
their anchor. For instance, our model-based analysis of Experiment 2 suggested that people’s effec-
tive anchors were less extreme than the provided values. This suggests that our participants did not
always use the provided number as their anchor. Furthermore, in the experiment by Strack and
Mussweiler (1997) the provided anchor influenced the participants’ estimates only when it was se-
mantically related to the quantity to be estimated. Pohl (1998) found that the anchoring bias was
absent when the anchor was perceived as implausible, and Hardt and Pohl (2003) found that the
bias was smaller on trials where the anchor’s judged plausibility was below the median plausibility
judgment. Thus, at least under some circumstances, people appear to discard the provided value
when it appears irrelevant or misleading.

However, realizing that the provided anchor is implausible and generating a better anchor require
knowledge, effort, and time. Therefore, when people are asked to estimate a quantity they know
almost nothing about, it may be resource-rational for them to anchor on whatever the experimenter
suggested. This seems applicable to most anchoring experiments, because participants are usually
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so uncertain that they do not even know in which direction to adjust from the provided anchor
(Simmons et al., 2010). If you cannot even tell whether the correct value is larger or smaller than the
anchor, how could you generate a better one? The effect of the anchor is largest in people with little
knowledge and high uncertainty about the quantity to be estimated (Jacowitz & Kahneman, 1995;
Wilson et al., 1996). These people would benefit from a better anchor, but they cannot easily gener-
ate one, because they lack the relevant knowledge. Conversely, our simulation of the effect of knowl-
edge suggested that people knowledgeable enough to generate good anchors, will perform well even
if they start from a highly implausible anchor. Although this argument is speculative and has yet to
be made precise it suggests that, at least in some situations, self-generating an anchor might not be
worth the effort regardless of one’s knowledge.

In conclusion, existing data are not necessarily inconsistent with the idea that anchors are chosen
resource-rationally. Thus, whether anchors are chosen rationally is still an open question. Experi-
mental and theoretical approaches to this question are an interesting avenue for future research that
we will discuss below.

The experiments reported in this chapter provide further support for resource-rationality as a
descriptive theory of human cognition. Previous experiments supported the prediction of resource-
rationality that mental algorithms tolerate bias in exchange for speed when accuracy is not crucial
(Lieder, Goodman, & Griffiths, 2013; Lieder et al., 2012). Here we went one step further and tested
whether the human mind rationally allocates its computational resources according to the utility
of being accurate and the cost of time. Our empirical data confirmed this prediction. This is in line
with the finding of near-optimal speed-accuracy tradeoffs in perceptual decision-making (Bogacz
et al., 2010). The key difference is that we studied the control of reasoning whereas Bogacz et al.
(2010) studied the collection of sensory information. Resource-rationality is a general framework
applicable to all cognitive abilities. Even though resource-rationality is a very recent approach, it has
already shed some light on a wide range of cognitive abilities and provides a unifying framework
for the study of intelligence in psychology, neuroscience, and artificial intelligence (Gershman et al.,
2015). For example, we have recently applied the resource-rational framework to decision-making
(Lieder, Hsu, & Griffiths, 2014), planning (Lieder, Goodman, & Huys, 2013), and strategy selection
(Lieder & Griffiths, 2015; Lieder, Plunkett, et al., 2014). In conclusion, resource-rationality appears
to be a promising framework for normative and descriptive theories of human cognition.
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2.7.4 Directions for future research

The question to which extent anchors are chosen resource-rationally is one interesting avenue for
future research. The hypothesis that anchors are chosen rationally predicts that if everything else is
equal people will choose a relevant anchor over an irrelevant one. This could be probed by provid-
ing people with two anchors rather than just one. Alternatively, one could manipulate the ease of
self-generating a good anchor and test whether this ease decreases the bias towards an implausible
provided anchor. To analyze such experiments, the models developed could be used to infer which
anchor people were using from the pattern of their responses.

Future studies could also leverage people’s reaction times to further test whether the number of
iterations is predetermined before adjustment begins against the alternative hypothesis that people
decide whether or not to make another adjustment based on the plausibility of the current estimate
as assumed by earlier theories (Epley & Gilovich, 2006; Simmons et al., 2010). Our model also pre-
dicts a multiplicative interaction between opportunity cost and error cost such that the anchoring
bias is proportional to the ratio of time cost over error cost. Qualitatively, this means that the ef-
fect of error cost should increase with opportunity cost and the effect of opportunity cost should
increase with time cost. However, when both are increased or decreased by the same factor, then the
anchoring bias should remain constant.

An additional direction for future work is to extend the adaptive anchoring-and-adjustment
model. This could be done in several ways. First, the model could be extended by mechanisms for
choosing and generating anchors. Second, the model could be extended by specifying how the mind
approximates optimal resource allocation. A third extension of our models might incorporate di-
rectional information into the proposal distribution as in the Hamiltonian Monte Carlo algorithm
(Neal, 2011) to better capture the effects of direction uncertainty discovered by Simmons et al. (2010).
A fourth extension might capture the sequential incorporation of relevant knowledge by iterative
conditioning and explore its connection to the selective accessibility theory of the anchoring bias
(Strack & Mussweiler, 1997). A fifth frontier is to make resource-rational anchoring-and-adjustment
more adaptive: How can the proposal distribution and a mechanism for choosing the number of
adjustments be learned from experience? Can better performance be achieved by adapting the pro-
posal distribution from one adjustment to the next? Finally, our resource-rational anchoring-and-
adjustment only uses a single sample, but it can be generalized to using multiple samples. Each of
these extensions might improve the performance of the estimation strategy and it is an interesting
question of whether or not those improvements would bring its predictions closer to human behav-
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ior. Future studies might also evaluate additional alternatives to our model, such as an anchoring
model with adaptive plausibility threshold or algorithms that directly approximate the most proba-
ble estimate rather than a sample from the posterior distribution.

Most previous models of heuristics are formulated for the domain in which the corresponding
bias was discovered. For instance, previous models of anchoring-and-adjustment were specific to
numerical estimation (Epley & Gilovich, 2006; Simmons et al., 2010). Yet, everyday reasoning is
not restricted to numerical estimation and anchoring also occurs in very different domains such as
social cognition (Epley et al., 2004). This highlights the challenge that models of cognition should
be able to explain not only what people do in the laboratory but also their performance in the real-
world. Heuristics should therefore be able to operate on the complex, high-dimensional semantic
representations people use in everyday reasoning. Resource-rational anchoring-and-adjustment
lives up to this challenge, because Markov-chain Monte Carlo methods are as applicable to semantic
networks (Abbott, Austerweil, & Griffiths, 2012) as they are to single numbers. In fact, resource-
rational anchoring-and-adjustment is a very general mechanism that can operate over arbitrarily
complex representations and might be deployed not only for numerical estimation but also in many
other cognitive faculties such as memory retrieval, language understanding, social cognition, and
creativity. For instance, resource-rational anchoring-and-adjustment may be able to explain the hind-
sight bias in memory recall (Hardt & Pohl, 2003; Pohl, 1998), primacy effects in sequential learning
(Abbott & Griffiths, 2011), and the dynamics of memory retrieval (Abbott et al., 2012; Bourgin, Ab-
bott, Griffiths, Smith, & Vul, 2014).

2.7.5 Conclusion

Resource-rational anchoring-and-adjustment provides a unifying, parsimonious, and principled
explanation for a plethora of anchoring effects including some that were previously assumed to be
incompatible with anchoring-and-adjustment. Interestingly, we discovered this cognitive strategy
purely by applying resource-rational analysis to estimation under uncertainty. It is remarkable that
the resulting model is so similar to the anchoring-and-adjustment heuristic. Our experiments con-
firmed that people rationally adapt the number of adjustments to the environment’s incentives for
speed and accuracy. Resource-rational anchoring-and-adjustment thereby reconciles the anchoring-
bias with people’s adaptive intelligence and Bayesian models of reasoning under uncertainty. Con-
cretely, the anchoring bias may reflect the optimal speed-accuracy tradeoff when errors are benign,
which is true of most, if not all, laboratory tasks. Yet, when accuracy is important and speed is not
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crucial, then people perform more adjustments and the anchoring bias decreases. In conclusion, the
anchoring bias may be a window on resource-rational computation rather than a sign of human irra-
tionality. Being biased can be resource-rational, and heuristics can be discovered by resource-rational
analysis.
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Figure 2.21: Results of Bayesian model selection given the data from Experiment 1. The top
panel shows the posterior probabilities of individual models. The bottom left panel shows the pos-
terior probabilities of the four theories (BDT: Bayesian decision theory, PPM: posterior probability
matching, AA: anchoring-and-adjustment, random: predictions are chosen randomly). The bottom
right panel shows the posterior probabilities of adaptive versus non-adaptive models.
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Figure 2.23: Biases when the provided anchor was high versus low. Solid lines show the results
of linear regression. Shaded areas are 95% confidence bands, the diamonds with error bars are
the average biases within a five minute window and their 95% confidence intervals; that is ±1.96
SEM.
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Figure 2.24: Effect of incentives for speed and accuracy when a high anchor was provided confirm
our theory’s prediction; cf. Figure 2.14.
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3
A resource-rational perspective on

availability biases*

In addition to the anchoring bias analyzed in the previous chapter, Tversky and Kahneman’s ground-
breaking paper “Judgment under uncertainty: heuristics and biases” (Tversky & Kahneman, 1974)
reported another way in which human judgment violates the laws of probability theory: The avail-
ability bias is the phenomenon that people overestimate the probability of events that come to mind
easily (Tversky & Kahneman, 1973). It leads people to overestimate the frequency of extreme events
(Lichtenstein, Slovic, Fischhoff, Layman, & Combs, 1978) which in turn contributes to overreac-
tions to the risk of terrorism (Sunstein & Zeckhauser, 2011) and other threats (Lichtenstein et al.,
1978; Rothman, Klein, & Weinstein, 1996). Such availability biases result from the fact that not all
memories are created equal: while most unremarkable events are quickly forgotten, the strength of
a memory increases with the magnitude of its positive or negative emotional valence (Cruciani, Be-
rardi, Cabib, & Conversi, 2011). This may be why memories of extreme events, such as a traumatic
car accident (Brown & Kulik, 1977; Christianson & Loftus, 1987) or a big win in the casino, come
to mind much more easily (Madan, Ludvig, & Spetch, 2014) and affect people’s decisions more
strongly (Ludvig, Madan, & Spetch, 2014) than moderate events, such as the 2476th time you drove

*This chapter is based on Lieder, Griffiths, and Hsu (2017).
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home safely and the 1739th time a gambler lost $1 (Thaler & Johnson, 1990).

The availability bias is commonly assumed to be irrational, but here we propose that it might
reflect the rational use of finite time and limited cognitive resources (Griffiths et al., 2015). This
chapter explores the implications of these bounded resources within the resource-rational frame-
work introduced in Chapter 1. According to our mathematical analysis, the availability bias could
serve to help decision-makers focus their limited resources on the most important eventualities. In
other words, we argue that the overweighting of extreme events ensures that the most important
possible outcomes (i.e., those with extreme utilities) are always taken into account even when only
a tiny fraction of all possible outcomes can be considered. Concretely, we show that maximizing
decision quality under time constraints requires biases compatible with those observed in human
memory, judgment, and decision-making. Without those biases the decision-maker’s expected utility
estimates would be so much more variable that her decisions would be significantly worse. This fol-
lows directly from a statistical principle known as the bias-variance tradeoff (Hastie, Tibshirani, &
Friedman, 2009).

Starting from this principle, we derive a rational process model of memory encoding, judgment,
and decision making that we call utility-weighted learning (UWL). Concretely, we assume that the
mind achieves a near-optimal bias-variance tradeoff by approximating the optimal importance sam-
pling algorithm (Geweke, 1989; Hammersley & Handscomb, 1964) from computational statistics.
This algorithm estimates the expected value of a function (e.g., a utility function) by a weighted
average of its values for a small number of possible outcomes. To ensure that important potential
outcomes are taken into account, optimal importance sampling optimally prioritizes outcomes
according to their probability and the extremity of their function value. The resulting estimate is
biased towards extreme outcomes but its reduced variance makes it more accurate. To develop our
model, we apply optimal importance sampling to estimating expected utilities. We find that this
enables better decisions under constrained resources. The intuitive reason for this benefit is that
overweighting extreme events ensures that the most important possible outcomes (e.g., a catastrophe
that has to be avoided or an epic opportunity that should be seized) are always taken into account
even when only a tiny fraction of all possible outcomes can be considered.

According to our model, each experience o creates a memory trace whose strengthw is propor-
tional to the extremity of the event’s utility u(o) (i.e.,w = |u(o) − ū|where ū is a reference point
established by past experience). This means that when a person experiences an extremely bad event
(e.g., a traumatic accident) or an extremely good event (e.g., winning the jackpot) the resulting mem-
ory trace will be much stronger than when the utility of the event was close to zero (e.g., lying in bed
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and looking at the ceiling). Here, we refer to events such as winning the jackpot and traumatic car
accidents as ‘extreme’ not because they are rare or because their utility is far from zero but because
they engender a large positive or large negative difference in utility between one choice (e.g., to play
the slots) versus another (e.g., to leave the casino).

In subsequent decisions (e.g., whether to continue gambling or call it a day), the model proba-
bilistically recalls past outcomes of the considered action (e.g., the amounts won and lost in previous
rounds of gambling) according to the strengths of their memory traces. As a result, the frequency
with which each outcome is recalled is biased by its utility even though the recall mechanism is obliv-
ious to the content of each memory.

Concretely, the probability that the first recalled outcome is an instance of losing $1would be
proportional to the sum of its memory traces’ strengths. Although this event might have occurred
very frequently, each of its memory traces would be very weak. For instance, while there might be
1345memory traces their strengths would be small (e.g., |u(−$1) − ū|with ū close to u(−$1)).
Thus, the experience of losing $1 in the gamble would be only moderately available in the gambler’s
memory (total memory strength 1345 · |u(−$1) − ū|). Therefore, the one time when the gambler
won $1000might have a similarly high probability of coming to mind because its memory trace is
significantly stronger (e.g., one memory trace of strength |u($1000)− ū|). According to our model,
this probabilistic retrieval mechanism will sample a few possible outcomes from memory. These
simulated outcomes (e.g., o1 = $1000, o2 = $− 1, · · · , o5 = $1000) are then used to estimate the
expected utility of the considered action by a weighted sum of their utilities where the theoretically
derived weights partly correct for the utility-weighting of the memory traces (i.e., Û =

∑
iwi ·u(oi)

withwi =
1

|u(oi)−ū| ). Finally, the considered action is chosen if and only if the resulting estimate of
the expected utility gain is positive.

Our model explains why extreme events come to mind more easily, why people overestimate their
frequency, and why they are overweighted in decision-making. It captures published findings on bi-
ases in memory recall, frequency estimation, and decisions from experience (Erev et al., 2010; Ludvig
et al., 2014; Madan et al., 2014) as well as three classic violations of expected utility theory in decisions
from description. Our model is competitive with the best existing models of decisions from expe-
rience and correctly predicted the previously unobserved correlation between events’ perceived ex-
tremity and the overestimation of their frequencies. The empirical evidence that we present strongly
supports the model’s assumption that the stronger memory encoding of events with extreme utili-
ties causes biases in memory recall that in turn lead to biases in frequency estimation and decision-
making. Concretely, people remember extreme events more frequently than equally frequent events
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of moderate utility, overestimate their frequency, and overweight them in decision-making (Ludvig
et al., 2014). Furthermore, the magnitude of overweighting increases significantly with the magni-
tude of the memory bias (Madan et al., 2014), and we found that the extent to which people overes-
timate an event’s frequency correlates significantly with its extremity. The theoretical significance
of our analysis is twofold: it provides a unifying mechanistic and teleological explanation for a wide
range of seemingly disparate cognitive biases and it suggests that at least some heuristics and biases
might reflect the rational use of finite time and limited cognitive resources (Griffiths et al., 2015).

The remainder of this chapter proceeds as follows: We start by deriving a novel decision mecha-
nism as the rational use of finite time under reasonable, abstract assumptions about the mind’s com-
putational architecture. We show that the derived mechanism captures people’s availability biases in
frequency judgment and memory recall. Next, we demonstrate that the same mechanism can also ac-
count for three classic violations of expected utility theory and evaluate it against alternative models
of decisions from description. We proceed to show that our model can also capture the heightened
availability, overestimation, and overweighting of extreme events in decisions from experience. Fi-
nally, we show that utility-weighted sampling can emerge from a biologically-plausible learning
mechanism that captures the temporal evolution of people’s risk preferences in decisions from ex-
perience and evaluate it against alternative models of decisions from experience. We conclude with
implications for the debate on human rationality and directions for future research.

3.1 Resource-rational decision-making by utility-weighted sampling

According to expected utility theory (von Neumann & Morgenstern, 1944), decision-makers should
evaluate each potential action a by integrating the probabilities P (o|A = a) of its possible out-
comes owith their utilities u(o) into the action’s expected utilityEp(O|A=a) [u(O)]. Unlike simple
laboratory tasks where each choice can yield only a small number of possible payoffs, many real-life
decisions have infinitely many possible outcomes.† As a consequence, the expected utility of action
a becomes an integral:

Ep(O|A=a)[u(O)] =

∫
p(o|a) · u(o) do. (3.1)

†People often cope with this complexity by partitioning possible outcomes into chunks like “stock goes
up” vs. “stock goes down”. We do not consider this approximation to be an inherent component of the
problem itself, but rather as useful component of many heuristic strategies.
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In the general case, this integral is intractable to compute. Below we investigate how the brain might
approximate the solution to this intractable problem.

3.1.1 Sampling as a decision strategy

To explore the implications of resource constraints on decision-making under uncertainty, we model
the cognitive resources available for decision-making within a formal computational framework that
has been successfully used to develop rational process models of human cognition and can capture
the variability of human performance, namely sampling (Griffiths, Vul, & Sanborn, 2012). Sampling
methods can provide an efficient approximation to integrals such as the expected utility in Equa-
tion 3.1 (Hammersley & Handscomb, 1964), and mental simulations of a decision’s potential conse-
quences can be thought of as samples. The idea that the mind handles uncertainty by sampling is
consistent with neural variability in perception (Fiser et al., 2010) and the variability of people’s judg-
ments (Denison et al., 2013; Griffiths & Tenenbaum, 2006; Vul et al., 2014). For instance, people’s
predictions of an uncertain quantityX given partial information y are roughly distributed accord-
ing to its posterior distribution p(X|y) as if they were sampled from it (Griffiths & Tenenbaum,
2006; Vul et al., 2014). Such variability has also been observed in decision-making: in repeated bi-
nary choices from experience animals chose each option stochastically with a frequency roughly pro-
portional to the probability that it will be rewarded (Herrnstein & Loveland, 1975). This pattern of
choice variability, called probability matching, is consistent with the hypothesis that animals perform
a single simulation and chose the simulated action whenever its simulated outcome is positive. Peo-
ple also exhibit probability matching when the stakes are low, but as the stakes increase their choices
transition from probability matching to maximization (Vulkan, 2000). This transition might arise
from people gradually increasing the number of samples they generate to maximize the amount of
reward they receive per unit time (Vul et al., 2014). Decision mechanisms based on sampling from
memory can explain a wide range of phenomena (N. Stewart et al., 2006). Concordant with recent
drift-diffusion models (Shadlen & Shohamy, 2016) and query theory (Johnson, Häubl, & Keinan,
2007; Weber et al., 2007), this approach assumes that preferences are constructed (Payne, Bettman,
& Johnson, 1992) through a sequential, memory-based cognitive process.

Assuming that people make decisions by sampling, we can express time and resource-constraints
as a limit on the number of samples, where each sample is a simulated outcome: According to our
theory, the decision-maker’s primary cognitive resource is a probabilistic simulator of the environ-
ment. The decision-maker can use this resource to anticipate some of the many potential futures
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that could result from taking one action versus another, but each simulation takes a non-negligible
amount of time. Since time is valuable and the simulator can perform only one simulation at a time,
the cost of using this cognitive resource is thus proportional to the number of simulations (i.e. sam-
ples).

If a decision has to be based on only a small number of simulated outcomes, what is the optimal
way to generate them? Intuitively, the rational way to decide whether to take action a is to simulate
its consequences o according to one’s best knowledge of the probability p that they will occur and
average the resulting gain in utility∆u(o) to obtain an estimate of∆ÛRS

s (a) of the expected gain or
loss in utility for taking action a over not taking it, that is

∆ÛRS
s (a) =

1

s

s∑
i=1

∆u(oi), o1, · · · , os ∼ p(O). (3.2)

This decision strategy, which we call representative sampling (RS), generates an unbiased utility esti-
mate. Yet – surprisingly – representative sampling is insufficient for making good decisions with
very few samples. Consider, for instance, the choice between accepting versus declining a game
of Russian roulette with the standard issue six-round NGant M1895 revolver. Playing the game
will most likely, i.e. with probability p1 = 5

6 , reward you with a thrill and save you some ridicule
(∆u(o1) = 1) but kill you otherwise (p2 = 1

6 , ∆u(o2) = −109). Ensuring that representative
sampling declines a game of Russian roulette at least 99.99% of the time, would require 51 samples
– potentially a very time-consuming computation.

Like Russian roulette, many real-life decisions are complicated by an inverse relationship between
the magnitude of the outcome and its probability (Pleskac & Hertwig, 2014). Many of these prob-
lems are much more challenging than declining a game of Russian roulette, because their probability
of disaster is orders of magnitude smaller than 1

6 and it may or may not be large enough to warrant
caution. Examples include risky driving, medical decisions, diplomacy, the stock market, and air
travel. For some of these choices (e.g., riding a motor cycle without wearing a helmet) there may be a
one in a million chance of disaster while all other outcomes have negligible utilities:

∆u(od) = −109, p(od) = 10−6, ∀i ̸= d : |∆u(oi)|≤ 1. (3.3)

If people decided based on n representative samples, they would completely ignore the potential dis-
aster with probability 1 − (1 − 10−6)n. Thus to have at least a 50% chance of taking the potential
disaster into account they would have to generate almost 700000 samples. This is clearly infeasible;
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thus one would almost always take this risk even though the expected utility gain is about−1000.
In conclusion, representative sampling is insufficient for resource-bounded decision-making when
some of the outcomes are highly improbable but so extreme that they are nevertheless important.
Therefore, the robustness of human decision-making suggests that our brains use a more sophisti-
cated sampling algorithm—such as importance sampling.

Importance sampling is a popular sampling algorithm in computer science and statistics (Geweke,
1989; Hammersley & Handscomb, 1964) with connections to both neural networks (Shi & Griffiths,
2009) and psychological process models (Shi et al., 2010). It estimates a function’s expected value
with respect to a probability distribution p by sampling from an importance distribution q and
correcting for the difference between p and q by down-weighting samples that are less likely under
p than under q and up-weighting samples that are more likely under p than under q. Concretely,
self-normalized importance sampling (Robert & Casella, 2009) draws s samples x1, · · · , xs from a
distribution q, weights the function’s value f(xj) at each point xj by the weight wj =

p(xj)
q(xj)

and
then normalizes its estimate by the sum of the weights:

X1, · · · , Xs ∼ q, wj =
p(xj)

q(xj)
(3.4)

Ep[f(X)] ≈ ÊIS
q,s =

1∑s
j=1wj

·
s∑

j=1

wj · f(xj). (3.5)

With finitely many samples, this estimate is generally biased. Following Zabaras (2010), we approxi-
mate its bias and variance by

Bias[ÊIS
q,s] ≈

1

s
·
∫
p(x)2

q(x)
· (Ep[f(x)]− f(x)) dx (3.6)

Var[ÊIS
q,s] ≈

1

s
·
∫
p(x)2

q(x)
· (f(x)− Ep[X])2 dx. (3.7)

We hypothesize that the brain uses a strategy similar to importance sampling to approximate the
expected utility gainEp(O|A=a)[∆u(O)] of taking action a and approximate the optimal decision
a⋆ = argmaxaEp(O|A=a)[∆u(O)] by

â⋆ = argmax
a

∆U
IS
q,s(a), ∆U

IS
q,s(a) ≈ Ep(O|a)[∆u(o)] (3.8)

∆U
IS
q,s(a) =

1∑s
j=1wj

s∑
j=1

wj ·∆u(oj), o1, · · · , os ∼ q. (3.9)
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Note that importance sampling is a family of algorithms: each importance distribution q yields a
different estimator, and two estimators may recommend opposite decisions. This leads us to investi-
gate which distribution q yields the best decisions.

3.1.2 Which distribution should we sample from?

Representative sampling is a special case of importance sampling in which the simulation distribu-
tion q is equal to the outcome probabilities p. Representative sampling fails when it neglects crucial
eventualities. Neglecting some eventualities is necessary, but particular eventualities are more impor-
tant than others. Intuitively, the importance of potential outcome oi is determined by |p(oi) ·u(oi)|
because neglecting oi amounts to dropping the addend p(oi) · u(oi) from the expected-utility inte-
gral (Equation 3.1). Thus, intuitively, the problem of representative sampling can be overcome by
considering outcomes whose importance (|p(oi) · u(oi)|) is high and ignoring those whose impor-
tance is low.

Formally, the agent’s goal is to maximize the expected utility gain of a decision made from only s
samples. The utility foregone by choosing a sub-optimal action can be upper-bounded by the error
in a rational agent’s utility estimate. Therefore the agent should minimize the expected squared error
of its estimate of the expected utility gainE [∆U ], which is the sum of its squared bias and variance

, that isE
[
(∆U

IS
q,s − E [∆U ])2

]
= Bias

[
∆U

IS
q,s

]2
+ Var

[
∆̂U

IS
q,s

]
(Hastie et al., 2009). As the

number of samples s increases, the estimate’s squared bias decays much faster (O(s−2)) than its vari-
ance (O(s−1)); see Equations 3.6-3.7. Therefore, as the number of samples s increases, minimizing
the estimator’s variance becomes a good approximation to minimizing its expected squared error.

According to variational calculus the importance distribution

qvar(o) ∝ p(o) · |∆u(o)− Ep[∆U ]| (3.10)

minimizes the variance (Equation 3.7) of the utility estimate in Equation 3.9 (Geweke, 1998; Zabaras,
2010; see Appendix B). This means that the optimal way to simulate outcomes in the service of esti-
mating an action’s expected utility gain is to over-represent outcomes whose utility is much smaller
or much larger than the action’s expected utility gain. Each outcome’s probability is weighted by
how disappointing (Ep[∆U ] − ∆u(o)) or elating (∆u(o) − Ep[∆U ]) it would be to a decision-
maker anticipating to receive the gamble’s expected utility gain (Ep[∆U ]). But unlike in disap-
pointment theory (Bell, 1985; Loomes & Sugden, 1984, 1986), the disappointment or elation is not
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added to the decision-maker’s utility function but increases the event’s subjective probability by
prompting the decision-maker to simulate that event more frequently. Unlike in previous theories,
this distortion was not introduced to describe human behavior but derived from first principles of
resource-rational information processing: Importance sampling over-simulates extreme outcomes to
minimize the mean-squared error of its estimate of the action’s expected utility gain. It tolerates the
resulting bias because it is more important to shrink the estimate’s variance.

Unfortunately, importance sampling with qvar is intractable, because it presupposes the expected
utility gainEp[∆U ] that importance sampling is supposed to approximate. However, the average
utility∆u of the outcomes of previous decisions made in a similar context could be used as a proxy
for the expected utility gainEp[∆U ]. That quantity has been shown to be automatically estimated
by model-free reinforcement learning in the midbrain (Schultz, Dayan, & Montague, 1997). There-
fore, people should be able to sample from the approximate importance distribution

q̃(o) ∝ p(o) ·
∣∣∆u(o)−∆u

∣∣ . (3.11)

This distribution weights each outcome’s probability by the extremity of its utility. Thus, on aver-
age, extreme events will be simulated more often than equiprobable outcomes of moderate utility.
We therefore refer to simulating potential outcomes by sampling from this distribution as utility-
weighted sampling.

3.1.3 Utility-weighted sampling

Having derived the optimal way to simulate a small number of outcomes (Equation 3.11), we now
turn to the question how those simulated outcomes should be used to make decisions under un-
certainty. The general idea is to estimate each action’s expected utility gain from a small number of
simulated outcomes, and then choose the action for which this estimate is highest.

If the simulated outcomes were drawn representatively from the outcome distribution p, then
we could obtain an unbiased expected utility gain estimate by simply averaging their utilities (Equa-
tion 3.2). However, since the simulated outcomes were drawn from the importance distribution q̃
rather than p, we have to correct for the difference between these two distributions by computing
a weighted average instead (Equation 3.5). Concretely, we have to weight each simulated outcome
oj by the ratiowj =

p(oj)
q̃(oj)

of its probability under the outcome distribution p over its probabil-
ity under the importance distribution q̃ from which it was sampled. Thus, the extreme outcomes
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that are overrepresented among the samples from q̃ will be down-weighted whereas the moder-
ate outcomes that are underrepresented among the samples from q̃ will be up-weighted. Because
q̃(o) ∝ p(o) ·

∣∣∆u(o)−∆u
∣∣, the weightwj of outcome oj is 1

|∆u(o)−∆u|/z for some constant
z. Since the weighted average in Equation 3.5 is divided by the sum of all weights, the normalization
constant z cancels out. Hence, given samples o1, · · · , os from the utility-weighted sampling distri-
bution q̃, the expected utility gain of an action or prospect can be estimated by

∆U
IS
q̃,s =

1∑s
j=1 1/

∣∣∆u(oj)−∆u
∣∣ · s∑

j=1

∆u(oj)∣∣∆u(oj)−∆u
∣∣ . (3.12)

If no information is available a priori, then there is no reason to assume that the expected utility
gain of a prospect whose outcomes may be positive or negative should be positive, or that it should
be negative. Therefore, in these situations, the most principled guess an agent can make for the ex-
pected utility gainEp[∆U ] in Equation 3.10 – before computing it – is∆u = 0. Thus, when the
expected utility gain is not too far from zero, then the importance distribution qvar for estimating
the expected utility gain of a single prospect can be efficiently approximated by

q̃(o) ∝ p(o) · |∆u(o)| . (3.13)

This approximation simplifies the UWS estimator of a prospect’s expected utility gain (Equation
3.12) into

∆Û IS
q̃,s =

1∑s
j=1 1/|∆u(oj)|

·
s∑

j=1

sign (∆u(oj)) , oj ∼ q̃, (3.14)

where sign(x) is−1 for x < 0, 0 for x = 0, and+1 for x > 0.

This utility-weighted sampling mechanism succeeds where representative sampling failed. For
Russian roulette, the probability that a sample drawn from the utility-weighted sampling distribu-
tion (Equation 3.13) considers the possibility of death (o2) is

q(o2) =
p(o2) · |∆u(o2)|

p(o2) · |∆u(o2)|+p(o2) · |∆u(o2)|
=

1/6 · |−109|
5/6 · |1|+1/6 · |−109|

> 0.9999. (3.15)

Consequently, utility-weighted sampling requires only 1 rather than 51 samples to recommend
the correct decision at least 99.99% of the time, because the first sample is almost always the most
important potential outcome (i.e., death). In this case, the utility estimate defined in Equation
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3.14 would be 1/|109| · −1 = −109 and its expected value for a single sample is also very close to
−109. While this mechanism is biased to overestimate the risk of playing Russian roulette (E[U ] =

−109/6+5/6 > −109), that bias is beneficial because it makes it easier to arrive at the correct decision.
Likewise, a single utility-weighted sample suffices to consider the potential disaster (Equation 3.3) at
least 99.85% of the time, whereas even 700, 000 representative samples would miss the disaster al-
most half of the time. Thus, utility-weighted sampling would allow people to make good decisions
even under extreme time pressure. This suggests that to achieve the optimal bias-variance tradeoff
(Hastie et al., 2009) the sampling distribution has to be biased towards extreme outcomes. This bias
reduces the variance of the utility estimate enough to enable better decisions than representative
sampling whose expected utility gain estimate is unbiased but has high variance.

To apply the utility-weighted sampling model to decisions people face in life and experiments,
we have to specify the utility u(o) of the outcomes o. To do so, we interpret an outcome’s utility as
the subjective value that the decision-maker’s brain assigns to it in the choice context. Concretely,
we follow the proposal of Summerfield and Tsetsos (2015) that the brain represents value in an ef-
ficient neural code. This proposal is based on psychophysical and neural data (Louie, Grattan, &
Glimcher, 2011; Louie, Khaw, & Glimcher, 2013; Mullett & Tunney, 2013) and fits into our resource-
rational framework: The brain’s representational bandwidth is finite, because the possible range of
neural firing rates is limited. Efficient coding makes rational use of the brain’s finite representational
bandwidth by adapting the neural code to the range of values that have to be represented in a given
context. This implies rescaling the values of potential outcomes such that all of them lie within the
representational bandwidth. If the representational bandwidth is 1 and the largest and the smallest
possible values in the current context c are omax

c and omin
c respectively, then the utility of an outcome

o should be represented by
u(o) =

o

omax
c − omin

c

+ ε, (3.16)

where ϵ ∼ N (0, σε) is neural noise that reflects uncertainty about the outcome’s value. Since it is
the neural representation of value rather than value itself that drives choice, we interpret u(o) as the
subjective utility of outcome o in context c. We will consistently use this formal definition of utility
(Equation 3.16) in this and all following sections.

Our basic UWS model of how people estimate a prospect’s expected utility thus has only two
parameters: the number of samples s and the unreliability σε of the decision-maker’s representation
of utility.
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3.1.4 Utility-weighted sampling in binary choices yields a simple heuristic

Having derived a resource-rational mechanism for estimating expected utilities, we now translate it
into a decision strategy. Many real-world decisions and most laboratory tasks involve choosing be-
tween two actions a1 and a2 with uncertain outcomesO(1) ∈ {o(1)1 , o

(1)
2 , · · · , o(1)n1 } andO(2) ∈

{o(2)1 , o
(2)
2 , · · · , o(2)n2 } that depend on the unknown state of the world. Consider, for example, the

choice between two lottery tickets: the first ticket offers a 1% chance to win $1000 at the expense
of a 99% risk to lose $1 (O(1) ∈ {−1, 1000}) and the second ticket offers a 10% chance to win
$1000 at the expense of a 90% risk to lose $100 (O(2) ∈ {−100, 1000}). According to expected
utility theory, one should choose the first lottery (taking action a1) ifE[u(O(1))] > E[u(O(2))]

and the second lottery (action a2) ifE
[
u(O(1))

]
< E

[
u(O(2))

]
. This is equivalent to taking the

first action if the expected utility differenceE
[
u(O(1) − u(O(2))

]
is positive and the second action

if it is negative. The latter approach can be approximated very efficiently by focusing computation
on those outcomes for which the utilities of the two actions are very different and ignoring events
for which they are (almost) the same. For instance, it would be of no use to simulate the event that
both lotteries yield $1000 because it would not change the decision-maker’s estimate of the differ-
ential utility and thus have no impact on her decision. To make rational use of their finite resources,
people should thus use utility-weighted sampling to estimate the expected value of the two actions’
differential utility∆U = u(O(1)) − u(O(2)) as efficiently as possible. This is accomplished by
sampling pairs of outcomes from the bivariate importance distribution

q⋆∆(O
(1), O(2)) ∝ p(O(1), O(2)) ·

∣∣∣u(O(1))− u(O(2))− E [∆U ]
∣∣∣ , (3.17)

integrating their differential utilities according to

∆Û IS
q,s =

1∑s
j=1wj

s∑
j=1

wj ·
(
u(o

(1)
j )− u(o

(2)
j )

)
, o1, · · · , os ∼ q∆

(
O(1), O(2)

)
, (3.18)

and then choosing the first action if the estimated differential utility is positive, that is

â⋆ =


1 if∆Û IS

q,s > 0

2 if∆Û IS
q,s < 0

1with 50% probability and 2 50% probability if∆Û IS
q,s = 0

. (3.19)
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Note that each simulation considers a pair of outcomes: one for the first alternative and one for the
second alternative. This is especially plausible when the outcomes of both actions are determined by
a common cause. For instance, the utilities of wearing a shirt versus a jacket on a hike are both pri-
marily determined by the weather. Hence, reasoning about the weather naturally entails reasoning
about the outcomes of both alternatives simultaneously and evaluating their differential utilities in
each case (e.g. rain, sun, wind, etc.) instead of first estimating the utility of wearing a shirt and then
starting all over again to estimate the utility of wearing a jacket.

Given that there is no a priori reason to expect the first option to be better or worse than the
second option,E [∆U ] is 0 and the equation simplifies to

q∆(O
(1), O(2)) ∝ p(O(1), O(2)) ·

∣∣∣u(O(1))− u(O(2))
∣∣∣ . (3.20)

This distribution captures the fact that the decision-maker should never simulate the possibility that
both lotteries yield the same amount of money– no matter how large it is. It does not overweight
extreme utilities per se, but rather pairs of outcomes whose utilities are very different. Its rationale is
to focus on the outcomes that are most informative about which action is best. For instance, in the
example above, our UWS model of binary choice overweights the unlikely event in which the first
ticket wins $1000 and the second ticket loses $100. Plugging the optimal importance distribution
(Equation 3.20) into the UWS estimate for the expected differential utility yields an intuitive heuris-
tic for choosing between two options. Formally, the optimal importance sampling estimator for the
expected value of the differential utility (E [∆U ]) is

∆Û IS
q̃,s =

1∑s
j=1 1/

∣∣∣u(o(1)j

)
− u

(
o
(2)
j

)∣∣∣ ·
s∑

j=1

sign
(
u
(
o
(1)
j

)
− u

(
o
(2)
j

))
, oj ∼ q∆, (3.21)

where sign(x) is+1 for positive x and−1 for negative x. If the heightened availability of extreme
events roughly corresponded to the utility-weighted sampling distribution (Equation 3.20), then the
decision rule in Equation 3.21 could be realized by the following simple and psychologically plausible
heuristic for choosing between two actions:

1. Imagine a few possible events
(e.g., 1. Ticket 1 wins and ticket 2 loses. 2. Ticket 2 wins and ticket 1 loses. 3. Ticket 1 winning
and ticket 2 losing comes to mind again. 4. Both tickets lose.).

2. For each imagined scenario, evaluate which action would fare better
(1. ticket 1, 2. ticket 2, 3. ticket 1, 4. ticket 1).
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3. Count how often the first action fared better than the second one (3 out of 4 times).

4. If the first action fared better more often than the second action, then choose the first action,
else choose the second action (Get ticket 1!).

As a quantitative example, consider how UWS would choose between a ticket with a 10% chance
of winning $99 and a 90% chance of losing $1 versus winning $1 for sure. If, the frequency with
which events come to mind reflects utility-weighted sampling, then people could simply tally whether
winning came to mind more often than losing. According to UWS, winning should came to mind
about 86% of the time whereas losing should come to mind only about 14% of the time (the deriva-
tion of these simulation frequencies is provided in Appendix B). Hence, if the decision-maker imag-
ined the outcome of choosing the gamble twice, there would be a 71.4% chance that winning came
to mind twice, a 26.2% chance that winning and losing each came to mind once, and an only 2.4%
chance of imagining losing twice. In the first case, the heuristic would always choose the gamble, in
the second case it would choose it half of the time, and in the last case it would always decline the
gamble. Hence, simply tallying which option (gambling vs. playing it safe) the imagined outcomes
favored more frequently (and breaking ties at random) would be sufficient to make the correct de-
cision 84% of the time despite having imagined the outcome only twice. Appendix B provides a
complete description of this worked example and applies UWS to the general case of choosing be-
tween a gamble and its expected value.

The overweighting of outcomes that strongly favor one action over another in UWS is similar
to the effect of anticipated regret in regret theory (Loomes & Sugden, 1982), but in UWS extremity
changes the frequency with which an event is simulated and does not affect its utility. Magnifying
the subjective probabilities of extreme events makes UWS more similar to salience theory (Bordalo,
Gennaioli, & Shleifer, 2012) according to which pairs of payoffs that are very different receive more
attention than pairs of payoffs that are similar. Yet, while salience theory provides a descriptive ac-
count of binary choice frequencies in decisions from description, UWS additionally provides a
resource-rational mechanistic account of decisions from experience, memory recall, and frequency
judgments.

3.1.5 Summary and prospections

In summary, our analysis suggested that the rational use of finite cognitive resources implies that
extreme events should be overrepresented in decision-making under uncertainty. Utility-weighted

114



sampling is a rational process model that formalizes this prediction. This biased mechanism leads
to better decisions than its unbiased alternative (i.e. representative sampling). Utility-weighted sam-
pling thereby enables robust decisions under time constraints that prohibit the careful consideration
of many possible outcomes.

We have derived two versions of utility-weighted sampling: The first version estimates the ex-
pected utility gain of a single action. The second version chooses between two actions. Although
both mechanisms overweight extreme events their notions of extremity are different. The UWS
mechanism for estimating the expected utility gain of a single action overweights individual out-
comes with extreme utilities. By contrast, the UWS mechanism for choosing between two actions
overweights pairs of outcomes whose utilities are very different. In the remainder of this chapter,
the first mechanism is applied to simulate frequency judgment, pricing, and decisions from experi-
ence, and the second mechanism is applied to simulate binary decisions from description. Despite
this difference, we can interpret the first mechanism as a special case of the second one, because its
importance distribution (Equation 3.11) compares the utility of the prospect’s outcomes against the
average utility of alternative actions. Hence, UWS always overweights events that entail a large differ-
ence between the utility of the considered action and some alternative. The frequency with which a
state has been experienced or its stated probability also influence how often it will be sampled. Thus,
impossible and highly improbable states are generally unlikely to be sampled. However, states with
high differential utility are sampled more frequently than is warranted by how often they have been
experienced or their stated probability. This increases the probability that improbable states with
extreme differential utility will be considered. We support the proposed mechanism by showing that
it can capture people’s memory biases for extreme events, the overestimation of the frequency of
extreme events, biases in decisions from description, and biases in decisions from experience.

3.2 Biases in frequency judgment confirm predictions of UWS

If people remembered the past as if they were sampling from the UWS distribution (Equation 3.11),
they would recall their best experience and their worst experience much more frequently than an
unremarkable one (Madan et al., 2014, cf.). If people relied on such a biased memory system to esti-
mate frequencies and assess probabilities, then their estimate f̂k of the frequency fk = p(ok) of the
event ok would be

f̂k =

∑s
i=1wi · δ(oi = ok)∑s

i=1wi
, wi =

1

|u(oi)|
, oi ∼ q̃, (3.22)
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where q̃(o) ∝ p(o) · |u(o)| is the utility-weighted sampling distribution. Since q̃ over-represents
each event ok proportionally to its extremity |u(ok) − ū|, that is q̃(ok)

p(ok)
∝ |u(ok) − ū|, we pre-

dict that people’s relative over-estimation f̂k
fk

is a monotonically increasing function of the event’s
extremity |u(ok) − ū|. Formally, the bias (Equation 3.6) of utility-weighted probability estimation
(Equation 3.22) implies that the relative amount by which people overestimate an event’s frequency
(i.e., f̂k−fk

fk
) should increase with the event’s extremity (|u(ok)|−ū), according to

f̂k − fk
fk

=
1

s

(
c− 1

|u(ok)− ū|

)
, (3.23)

where c is an upper bound on people’s relative overestimation. This predicts that people should
overestimate the frequency of an event more the more extreme it is regardless of its frequency. In
this section, we test this prediction against people’s judgments: we first report an experiment suggest-
ing that frequency overestimation increases with perceived extremity, and then we show that UWS
can capture the finding that overestimation occurs regardless of the event’s frequency (Madan et al.,
2014).

3.2.1 Frequency overestimation increases with perceived extremity

Lichtenstein et al. (1978) and Pachur, Hertwig, and Steinmann (2012) found that people’s estimates
of the frequencies of lethal events are strongly correlated with how many instances of each event
they can recall. Furthermore, Lichtenstein et al. (1978) also found that overestimation was positively
correlated with the number of lives lost in a single instance of each event, the likelihood that an
occurrence of the event would be lethal, and the amount of media coverage it would typically attract.
We hypothesize that extremity-weighted memory encoding contributed to these effects. If this were
true, then overestimation should increase with perceived extremity. Here, we test this prediction
of UWS in a new experiment that measures perceived extremity and correlates it with the biases in
people’s frequency estimates.

Methods We recruited 100 participants on Amazon Mechanical Turk. Participants received a
baseline payment of $1.25 for about 30 minutes of work. Participants were asked to estimate how
many American adults had experienced each of 39 events in 2015 as accurately as possible and ac-
curate frequency estimation was incentivized by a performance dependent bonus of up to $2. In
addition, participants judged each event’s valence (good or bad) and extremity (0: neutral – 100: ex-
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treme). The 39 events comprised 30 stressful life events from Hobson et al. (1998), four lethal events
(suicide, homicide, lethal accidents, and dying from disease/old age), three rather mundane events
(going to the movies, headache, and food-poisoning), and two attention-checks. As a reference, par-
ticipants were told the total number of American adults and how many of them retire each year.

To assess overestimation we compared our participants’ estimates to the true frequencies of the
events according to official statistics.‡ The complete experiment can be inspected online.§ Out of
100 participants 22 failed one or more attention checks (number of Americans elected president,
number of Americans who slept between 2h and 10h at least once) and were therefore excluded.

Results and Discussion A significant rank correlation¶ between the average extremity judg-
ments of the 37 events and average relative overestimation f̂k−fk

fk
confirmed our model’s prediction

(Spearman’s ρ = 0.46, p = .0045, see Figure 3.1), and we observed the same effect at the level of
individual judgments (Spearman’s ρ = 0.14, p < 10−12). The frequencies of the five most extreme
events, that is murder (93.3%), suicide (92.6% extreme), dying in an accident (90% extreme), the
death of one’s partner (86% extreme), and suffering a major injury or serious illness (85% extreme)
were overestimated by a factor of 159 (p = 0.0001), 9 (p = 0.0026), 35 (p = 0.0035), 1.01
(p = 0.03), and−0.22 (p = 0.25) respectively. By contrast, the prevalences of the five least extreme
events, that is headache (20% extreme), change in work responsibilities (21% extreme), getting a
traffic ticket (26% extreme), moving flat (26% extreme), and career change (32% extreme) were un-
derestimated by 4% (p = 0.42), 1% (p = 0.95), 10% (p = 0.52), 52% (p < 0.0001), and
24% (p = 0.0211) respectively. Like Rothman et al. (1996), we found that people overestimate the
frequency of suicide (overestimated by 927%) more heavily than the frequency of divorce (overesti-
mated by 27%). According to our theory, this is because suicide is perceived as more extreme than
divorce (92.6% extreme vs. 59% extreme).

Furthermore, we found that the effect of extremity on overestimation also holds across the three
categories the events were drawn from (see Figure 3.2): people significantly underestimated the fre-
quency of mundane events (t(233)=-3.66,p=0.0003) while overestimating the frequency of stressful
life events (t(2338) = 2.02, p = 0.0433) and lethal events (t(311) = 5.46, p < 10−7). Two-

‡This data was obtained from Hobson & Delunas (2001),www.cdc.gov/nchs/fastats/deaths.htm,
www.mpaa.org/resources/3037b7a4-58a2-4109-8012-58fca3abdf1b.pdf,www.cdc.gov/foodborneburden/,
and Rasmussen, Jensen, Schroll, & Olesen (1991).

§http://cocosci.berkeley.edu/mturk/falk/freq_estimation_revised.html
¶We analyzed this relationship using Spearman’s rank correlation, since we cannot assume that people’s

extremity judgments follow a ratio scale.
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Figure 3.1: Relative overestimation ((f̂k−fk)/fk) increases with perceived extremity (|u(ok)|).
Each circle represents one event’s average ratings.

sample t-tests confirmed that relative overestimation was larger for stressful life events than for mun-
dane events (t(2571) = 3.16, p = 0.0016) and even larger for lethal events t(544) = 12.70, p <

10−15). Figure 3.2 illustrates that overestimation and perceived extremity increased together.

While people’s judgments were biased for the events studied here, there are many quantities, such
as the length of poems, for which people’s predictions are unbiased (Griffiths & Tenenbaum, 2006).
This is consistent with UWS because unlike monetary gains and losses they impart no (dis)utility
on their observer. For instance, hearing that a poem is 8 lines long carries virtually the same utility
as hearing that another poem is 25 lines long. Hence, for such quantities, UWL would predict ef-
fectively unbiased memory encoding, recall, and prediction. Our theory’s ability to differentiate
situations where human judgment is biased from situations where it is unbiased speaks to its valid-
ity.

In conclusion, the experiment confirmed our theory’s prediction that an event’s extremity in-
crease the relative overestimation of its frequency. However, additional experiments are required
to disentangle the effects of extremity and low probability, because these two variables were anti-
correlated (ρ(36) = −0.67, p < 0.0001). To address this problem, we examined our model’s
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Figure 3.2: Judged frequency and extremity by event type.
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predictions using two published studies that kept frequency constant across events (Madan et al.,
2014).

3.2.2 UWS captures overestimation of extreme events regardless of frequency

The results reported above supported the hypothesis that people overestimate the frequency of ex-
treme events, but most extreme events in that experiment were also rare. Therefore our findings
could also be explained by postulating that people overestimate extreme events only because they
are rare (Hertwig, Pachur, & Kurzenhäuser, 2005). This possibility is supported by empirical evi-
dence for regression to the mean effects in frequency estimation (Attneave, 1953; Hertwig et al., 2005;
Lichtenstein et al., 1978; H. Zhang & Maloney, 2012). Yet, extremity per se also contributes to over-
estimation: Madan et al. (2014) found that people overestimate the frequency of an extreme event
relative to a non-extreme event even when both were equally frequent. The hypothesis that people
overestimate the frequency of extreme events because those events are rare cannot account for this
finding, but utility-weighted sampling can. To demonstrate this, we simulated the experiments by
Madan et al. (2014) using utility-weighted sampling.

In the first experiment by Madan et al. (2014) participants repeatedly chose between two doors.
Each door probabilistically generated one of two outcomes, and different doors were available on
different trials. There were a total of four doors generating a sure gain of+20 points, a sure loss of
−20 points, a risky gain offering a 50/50 chance of+40 or 0, and a risky loss offering a 50/50 chance
of 0 or−40 points. In most trials participants either chose between the risky and the sure gain (gain
trials) or between the risky and the sure loss (loss trials). After each choice, participants were shown
the number of points earned, and they received no additional information about the options. After
6 blocks of 48 such choices participants were asked to estimate the probability with which each door
generated each of the possible outcomes and to report the first outcome that came to their mind for
each of the four doors. In their second experiment Madan et al. (2014) shifted all outcomes from
Experiment 1 by+40 points.

We estimated the two parameters of the UWS model (i.e., the number of samples s and the nois-
iness σε of the utility function) from the choice frequencies reported by Madan et al. (2014) using
the maximum-likelihood principle. While participants had to learn the outcome probabilities from
experience, the model developed so far assumes known probabilities. We thus restricted our analysis
to the last block of each experiment. For each experiment, our model defines a likelihood function
over the number of risky choices in gain trials and the number of risky choices in loss trials. We max-
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Table 3.1: UWS simulation of people’s memory recall (A) and frequency estimates (B) after the
Experiments by Madan et al. (2014).

A
Comes to mind first: Extreme Gain vs. Neutral Extreme Loss vs. Neutral
Experiment 1 64.5% vs. 35.5% 71% vs. 29%
Experiment 2 70.0% vs. 30% 72.6% vs. 27.4%

B
Estimated Frequency of ... Extreme Gain vs. Neutral Extreme Loss vs. Neutral
Experiment 1 83.0% vs. 17.0% 87.5% vs. 12.5%
Experiment 2 87.5% vs. 12.5% 90.0% vs. 10.0%

Table 3.2: UWS captures people’s risk preferences in the Experiments by Madan et al. (2014).

Risky Choices in Gain Trials Loss Trials
Experiment 1: UWS: 54% People: 45% UWS: 36%, People: 35%
Experiment 2: UWS: 60% , People: 55% UWS: 31%, People: 14%

imized the product of these likelihood functions with respect to our model’s parameters using grid
search over possible numbers of samples and global optimization with respect to σε. The resulting
parameter estimates were s = 4 samples and σε = 0.05.

With these parameters, utility-weighted sampling correctly predicted that extreme outcomes
come to mind first more often than the equally frequent moderate outcomes; see Table 3.1A. Next,
we simulated people’s frequency estimates according to Equation 3.22. UWS correctly predicted that
people overestimate the frequency of extreme outcomes relative to the equally frequent moderate
outcome; see Table 3.1B. In addition, UWS captured that participants were more risk-seeking for
gains than for losses (see Table 3.2), and a later section investigates this phenomenon in more detail.

3.2.3 Summary and Discussion

The findings presented in this section provide strong support for our hypothesis that utility-weighting
is the reason why people over-represent extreme events: First, Experiment 1 showed that there is a
significant correlation between an event’s utility and the degree to which people overestimate its fre-
quency. Second, the data from Madan et al. (2014) rule out the major alternative explanation that
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people overestimate the frequency of extreme events only because they are rare and also demonstrate
that the overestimation is mediated by a memory bias for events with extreme utility. Furthermore,
we found that the adaptive bias predicted by our theory exists not only in decision-making but also
in frequency estimation and memory.

A parsimonious explanation for these three phenomena could be that the over-representation of
extreme events results from a known bias in learning: emotional salience enhances memory forma-
tion (Cruciani et al., 2011). While overestimation has been previously explained by high “availability”
of salient memories (Tversky & Kahneman, 1973), our theory specifies what exactly the availabil-
ity of events should correspond to – namely their importance distribution q̃ (Equation 3.13) – and
why this is useful. Our empirical findings were consistent with utility-weighted sampling but in-
consistent with the hypothesis that the bias in frequency estimation is merely a reflection of the
regression to the mean effect (Hertwig et al., 2005). While alternative accounts of why people over-
estimate the frequency of extreme events, such as selective media coverage (Lichtenstein & Slovic,
1971), can explain the overestimation of certain lethal events, they cannot account for the data of
Madan et al. (2014). Thus at least part of the overestimation of extreme events appears to be due to
utility-weighted sampling. Hence, an event’s extremity may sway people’s decisions by increasing
their propensity to remember it, and this is clearly distinct from extremity’s potential effects on the
subjective utility of anticipated outcomes (Bell, 1985; Loomes & Sugden, 1982, 1984, 1986).

Our model’s predictions are qualitatively consistent with the data of Madan et al. (2014)(Madan
et al., 2014) but often more extreme. This difference might result from the idealistic assumption that
there is no forgetting. This issue will be revisited with a more realistic learning model later in the
chapter.

3.3 Biases in decisions from description

According to decision theory, an event’s probability determines its weight in decision-making under
uncertainty. Therefore, the biased probability estimates induced by utility-weighted sampling sug-
gest that people should overweight extreme events in decisions under uncertainty. We will test this
prediction in the domain of decisions from experience. Since this will require a model of learning,
we model decisions from description as an intermediate step towards building a model of decisions
from experience.

In the decisions from description paradigm participants choose between gambles that are de-

122



scribed by their payoffs and outcome probabilities (Allais, 1953; Kahneman & Tversky, 1979). Typ-
ically participants make binary choices between pairs of gambles or between a monetary gamble
and a sure payoff. While people could, in principle, make these decisions by computing and com-
paring the gamble’s expected values, ample empirical evidence demonstrates that they do not. In-
stead, people might reuse their strategies for everyday decisions. Everyday decisions are usually based
on memories of past outcomes in similar situations. Hence, if people reused their natural decision
strategies, then their decisions from description should be affected by the availability biases that have
been observed in memory recall and frequency judgments. Our section on utility-weighted learning
in decision from experience provides a precise, mechanistic account of how these biases arise from
biased memory encoding. Here, we assume that similar mechanisms are at play in decisions from de-
scription. For instance, it is conceivable that the high salience of large differential payoffs in decisions
from description (Bordalo et al., 2012) attracts a disproportionate amount of people’s attention,
making them more memorable, and increasing the frequency with which they will be considered.
We think that such mechanisms could roughly approximate the utility-weighting prescribed by our
model, at least for simple gambles whose outcomes are displayed appropriately.

In this section, we therefore apply UWS to decisions from description, validate the resulting
model on the data from the Technion choice prediction competition (Erev et al., 2010), and demon-
strate that it can capture three classic violations of expected utility theory.

3.3.1 Validation on decisions from description

We validated the utility-weighted sampling model of binary choices (Equations 3.18–3.21) with the
stochastic normalized utility function defined in Equation 3.16 against people’s decisions from de-
scription in the Technion choice prediction tournament (Erev et al., 2010). There are many factors
that influence people’s responses that are outside the scope of our model. These include acciden-
tal button presses, mind-wandering, misperception, and the occasional use of additional decision
strategies that might be well adapted to the specific problems to which they are applied (Lieder &
Griffiths, 2015, 2017). We therefore extended UWS to allow for an unknown proportion of choices
(prandom) that are determined other factors. We model the net effect of those choices as choosing
either option with a probability of 0.50.

We fitted the number of samples s, the noisiness σε of the utility function, and the percentage
of trials in which people choose at random to the training data of the Technion choice prediction
competition. The maximum likelihood estimates of these model parameters were s = 10 samples,
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σε = 0.1703, and prandom = 0.07. We then used these parameter estimates to predict people’s
choices in the decision problems of the test set of the Technion choice prediction competition. Fig-
ure 3.3 shows our model’s predictions and compares them to people’s choice frequencies. On average
across the 60 problems, people chose the risky option about 46.75 ± 3.98% of the time and the
UWS model chose the risky option about 48.92 ± 2.56% of the time. This difference was not
statistically significant (t(59) = −1.03, p = 0.31) suggesting that the predictions of UWS were un-
biased. While there was no bias—on average—the predictions of UWS were regressed towards 50/50
compared to people’s choice frequencies: On problems where people were risk-seeking UWS chose
the risky option less often than people (66.11% vs. 79.20%, t(24) = −6.48, p < .0001). But
on problems where people were risk-averse, UWS chose the risky option more often than people
(35.54% vs. 21.97%, p < .0001).

Our model predicted people’s choice frequencies more accurately than cumulative prospect
theory (CPT; Tversky, & Kahneman, 1992) or the priority heuristic (Brandstätter, Gigerenzer, &
Hertwig, 2006): Its mean squared error (MSDUWS = 0.0266) was significantly lower than for
cumulative prospect theory (MSDCPT = 0.0837, t(59) = −5.4, p < .001) or the priority
heuristic (MSDpriority = 0.1437, t(59) = −4.9,p < .001). Furthermore, the predicted risk
preference agreed with people’s risk preferences in 87% of the trials (CPT: 93%, priority heuristic:
81%) and the predicted choice frequencies were highly correlated with people’s choice frequencies
(rUWS(59) = 0.88, p < 10−15 versus rCPT = 0.86 and rpriority = 0.65). Our model’s predictive ac-
curacy was similar to those of the best existing models, namely stochastic cumulative prospect theory
with normalization (r = 0.92,MSD = 0.0116) and Haruvy’s seven parameter logistic regression
model that won the competition (r = 0.92,MSD = 0.0126), although the differences were still
statistically significant (t(59) = 3.5, p < .001 and t(59) = 3.97, p < .001). In addition to per-
forming about as well as the best existing models our model is distinctly principled: UWS is the only
accurate mathematical process model that is derived from first principles. All alternative models that
perform similarly well were tailored to capture known empirical phenomena or fail to specify the
mechanisms of decision-making.

Having estimated our model’s parameters and validated it, we now proceed to demonstrate that
it can explain three paradoxes in risky choice, namely the Allais paradox (Allais, 1953), the fourfold
pattern of risk preferences (Tversky & Kahneman, 1992), and preference reversals (Lichtenstein &
Slovic, 1971).
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Figure 3.3: Predictions of UWS on the test set of the Technion choice prediction tournament for
decisions from description according to the parameters estimated from the training set. Each data
point reports the frequency with which UWS (horizontal axis) versus people (vertical axis) chose
the risky option in one of the 60 decision problems of the Technion competition, and the solid line
is the identity line.
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Table 3.3: The Allais gambles: Participants choose between lottery L1 and lottery L2 for z =
2400 versus z = 0.

(o1, p1) (o2, p2) (o3, p3)
L1(z) : (z, 0.66) (2500, 0.33) (0, 0.01)
L2(z) : (z, 0.66) (2400, 0.34)

3.3.2 The Allais paradox

In the two lotteriesL1(z) andL2(z) defined in Table 3.3 the chance of winning z dollars is exactly
the same. Yet, when z = 2400most people prefer lotteryL2 over lotteryL1, but when z = 0 the
same people preferL1 overL2. This inconsistency is known as the Allais paradox (Allais, 1953).

We simulated people’s choices between both pairs of lotteries according to utility-weighted
sampling with the parameters estimated from the Technion training set. To do so, we computed
the probability p and utility difference∆U for each possible pair of outcomes of the first lottery
L1 and the second lotteryL2. Since the outcomes of the two lotteries are statistically indepen-
dent, the probability that the first lottery yields outcomeO1 while the second lottery yieldsO2 is
P (O1) · P (O2). To apply UWS to predict people’s choices between the two lotteries, we deter-
mined all possible values of the differential utility∆U and their respective probabilities. For in-
stance, when z = 0, then the possible differential utilities are 0,−u(2400), u(2500) − u(2400),
and u(2500) (see Tables 3.3 and 3.4). In this case,∆U is−u(2400) if the first or the third outcome
is drawn for the first lottery and the second outcome is drawn for the second lottery. The proba-
bility of the first scenario is p1 · p2 = 0.66 · 0.34 and the probability of the second scenario is
p3 · p2 = 0.01 · 0.34; hence the probability of∆U = −u(2400) is 0.67 · 0.34. Next, we com-
puted the simulation frequency q̃(∆U)which is proportional to p(∆U) · |∆u|. For instance, in
this example,E [q̃(∆U = −u(2400))] ∝ 0.67 · 0.34 · u(2400) and normalizing this probability
distribution yieldsE [q̃(∆U = −u(2400))] = 0.5 suggesting that this extreme eventuality would
occupy half of the decision-maker’s mental simulations even though its probability is less than 23%.
This corresponds to overweighting this event by a factor of 2.19. Table 3.4 presents these numbers
for all differential utilities possible with z = 2400 or z = 0.

Our simulations with UWS predicted people’s seemingly inconsistent preferences in the Allais
paradox. For the first pair of lotteries (z = 2400), UWS preferred the second lottery to the first
one, choosingL2 55.66% of the time andL1 only 44.34% of the time. But for the second pair
of lotteries (z = 0), UWS choose the first lottery more often than the second one (50.38% vs.
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Table 3.4: Utility-weighted sampling explains the Allais paradox.

z = 2400:

∆U p E [q̃] E [q̃] /p
0 0.66 0 0
u(2500)− u(2400) 0.33 0.58 1.8
−u(2400) 0.01 0.42 42

z = 0 :

∆U p E [q̃] E [q̃] /p
0 0.66 · 0.67 0 0
−u(2400) 0.67 · 0.34 0.5 2.19
u(2500)− u(2400) 0.33 · 0.34 0.01 0.08
u(2500) 0.33 · 0.66 0.49 2.26

Note: The agent’s simulation yields∆U = ∆uwith probability q̃(∆u) ∝ p(∆u) · |∆u|where p is
∆u’s objective probability.

49.62%). Table 3.4 shows how our theory explains why people’s preferences reverse when z changes
from 2400 to 0: According to the importance distribution q̃ (Equation 3.13), people overweight the
event for which the utility difference between the two gambles’ outcomes (O1 andO2) is largest
(∆U = u(O1) − u(O2)). Thus when z = 2400, the most over-weighted event is the possibility
that gambleL1 yields o1 = 0 and gambleL2 yields o2 = 2400 (∆U = −u(2400)); consequently
the bias is negative and the first gamble appears inferior to the second (E[∆Û IS

q̃,2] = −0.0294which
corresponds to $ − 75.54). But when z = 0, thenL1 yielding o1 = 2500 andL2 yielding o2 = 0

(∆U = +u(2500)) becomes the most over-weighted event making the first gamble appear superior
(E[∆Û IS

q̃,2] = +0.0013which corresponds to $3.25). Our model’s predictions are qualitatively
consistent with the empirical findings by Kahneman and Tversky (1979) but less extreme; this is
primarily because fitting the model to the data from the Technion choice prediction Tournament
led to large number of samples (s = 10) and the predicted availability biases decrease with the
number of samples; for a smaller number of samples, the model predictions would have been closer
to the empirical data.

3.3.3 The fourfold pattern of risk preferences

Framing outcomes as losses rather than gains can reverse people’s risk preferences (Tversky & Kah-
neman, 1992): In the domain of gains people prefer a lottery (o dollars with probability p) to its
expected value (risk seeking) when p < .5, but when p > .5 they prefer the expected value (risk
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aversion). In contrast, in the domain of losses, people are risk averse for p < .5 but risk seeking for
p > .5. This phenomenon is known as the fourfold pattern of risk preferences. Formally, decision-
makers are risk seeking when they prefer a gamble (p, o; 0)which yields $owith probability p and
nothing otherwise to its expected value p · o dollars, and risk averse if they prefer receiving the ex-
pected value for sure to playing the gamble. We therefore determined the risk preferences predicted
by utility-weighted sampling by simulating choices between such gambles and their expected values.
Concretely, we used the gambles (p, o; 0) for 0 < p < 1 and−1000 < o < 1000 and applied
UWS with the parameters estimated from the Technion choice prediction tournament. Appendix
B illustrates how utility-weighted sampling makes these decisions and how this leads to inconsistent
risk preferences.

We found that utility-weighted sampling predicts the fourfold pattern of risk preferences (Tver-
sky & Kahneman, 1992); see Figure 3.4. To understand how utility-weighted sampling explains this
phenomenon, remember that it estimates the expected value of the differential utility∆U by sam-
pling from the importance distribution q̃(∆u) ∝ |∆u|·p(∆u). The differential utility of choosing
a gamble that yields owith probability p over its expected value p · o is

∆U =

u(o)− u(p · o) with probability p

−u(p · o) with probability 1− p
. (3.24)

Utility-weighted sampling thus overweights the gain/loss o of the lottery if p is small, because then
|u(o) − u(p · o)|> |u(p · o)|. Conversely, it underweights the gain/loss o if p is large, because
then |u(o) − u(p · o)|< |u(p · o)|. Concretely, when choosing between a two-outcome gamble
and its expected value, UWS simulates the outcome of the gamble as if winning and losing were
equally probable even when the probability of winning is much larger or much smaller than 0.5

(see Appendix B). On top of this over-simulation of the more extreme outcome, the noise term of
the utility function (Equation 3.16) stochastically flips the sign of the differential utilities of some
of the simulated outcomes. When the probability of winning is close to 0 or 1, then this happens
almost exclusively for the outcome whose differential utility is closer to zero. Combined with the
over-simulation of the more extreme outcome this asymmetry renders the decision-maker’s bias posi-
tive (risk-seeking) for improbable gains and probable losses but negative (risk-aversion) for probable
gains and improbable losses (see Figure 3.4). Appendix B elaborates this explanation with detailed
worked examples.

In everyday life the fourfold pattern of risk preferences manifests itself in the apparent para-
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dox that people who are so risk-averse that they buy insurance can also be so risk-seeking that they
play the lottery. Our simulations resolved this apparent contradiction: First, we simulated the de-
cision whether or not to play the Powerball lottery.‖ The jackpot is at least $40million, but the
odds of winning it are less than 1:175 million. In brief, people pay $2 to play a gamble whose ex-
pected value is only $1. We simulated how much people would be willing to pay for a ticket of
the Powerball lottery according to UWS. We found that UWS overestimates the value of a lot-
tery ticket by more than a factor of 2 more than 36% of the time. Thus, a person who evaluates
lottery tickets often should consider them underpriced about one third of the time. Applied to
choice, UWS predicts that people buy lottery tickets almost every second time they consider it
(PUWS(buy lottery ticket) = 0.497), because they over-represent the possibility of winning big.
Next, we applied UWS to predict how much the same people would be willing to pay for insurance.
Our simulation assumed that the total insured loss follows the heavy-tailed power-law distribution
of debits (N. Stewart et al., 2006) over the range from $1 to $1 000 000. To simplify the applica-
tion of UWS to this continuous distribution, we set the reward expectancy ū to zero and assumed
that the simulation distribution is not affected by noise. We determined the certainty equivalents of
the utility-weighted sampling estimates of the utility of an insurance against a loss drawn from this
distribution. To do so, we applied the inverse of the utility function to the UWS estimates of the
expected disutility of the hazard. We found that UWS overestimates the expected hazard about 80%
of time, and it overestimates it by a factor of at least 2 in 64% of all cases. Therefore, most people
should be motivated to buy insurance even when they just bought a lottery ticket. The prediction of
utility-weighted sampling for whether people actually decide to buy an overpriced insurance policy
are more moderate, because the high price of insurance makes the possibility of paying nothing and
losing nothing more salient. Nevertheless, UWS predicts that people would be willing to buy insur-
ance for 130% of its expected value about 37.3% of the time. Thus 90% of customers would buy
130% overpriced insurance after considering at most 5 offers.

Utility-weighted sampling thereby resolves the paradox that people who are so risk-seeking that
they buy lottery tickets can also be so risk-averse as to buy insurance by suggesting that people over-
weight extreme events regardless of whether they are gains (as in the case of lotteries) or losses (as in
the case of insurance).

‖The payoffs and probabilities of this lottery were modeled according to http://www.calottery.com/
play/draw-games/powerball.

129

http://www.calottery.com/play/draw-games/powerball
http://www.calottery.com/play/draw-games/powerball


-1000 -500 0 500 1000
Outcome in $

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
u
tc

o
m

e
 p

ro
b
a
b
ili

ty

Probability of risky choice

0.4

0.45

0.5

0.55

0.6

Figure 3.4: Utility-weighted sampling predicts the fourfold pattern of risk preferences. The color
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dollar value of the outcome.
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3.3.4 Preference reversals

When people first price a risky gamble and a safe gamble with similar expected value and then choose
between them, their preferences are inconsistent almost 50% of the time: most people price the
risky gamble higher than the safe one, but many of them nevertheless choose the safer one (Licht-
enstein & Slovic, 1971). This inconsistency does not result from mere randomness, as preference
reversals in the opposite direction are rare.

To evaluate whether our theory can capture this inconsistency, we simulated the pricing of a safe
gamble offering an 80% chance of winning $1 and a risky gamble offering a 40% chance of winning
$2, and the subsequent choice between them according to UWS with the parameters estimated
from the Technion choice prediction tournament for decisions from description. Since the largest
and the smallest possible outcome are omax = 2 and omin = 0 respectively, the utility function from
Equation 3.16 becomes u(o) = o

2 + εwith ε ∼ N (0, σ = 0.17).

We assumed that people price a gamble by estimating its expected utility gain∆U
IS
q,s according to

Equation 3.14 and then convert the resulting utility estimate into its monetary equivalent. Plugging
the payoffs and outcome probabilities of the safe gamble in to Equation 3.14 reveals that, for the safe
gamble, winning (o = 1) and losing (o = 0) would be simulated with the frequencies

qsafe(o = 1) =
0.8 · |u($1)|

0.8 · |u($1)|+0.2 · |u($0)|
, and (3.25)

qsafe(o = 0) =
0.2 · |u($0)|

0.8 · |u($1)|+0.2 · |u($0)|
, (3.26)

respectively. For the risky gamble the possibility of winning is over-represented more:

qrisky(o = 2) =
0.4 · |u($2)|

0.4 · |u($2)|+0.6 · |u($0)|
, and (3.27)

qrisky(o = 0) =
0.6 · |u($0)|

0.4 · |u($2)|+0.6 · |u($0)|
. (3.28)

Each simulated decision-maker sampled 10 possible outcomes. We then applied Equation 3.14 to
translate the 10 samples from qsafe into the UWS estimate of the expected utility gain of playing the
safe gamble (∆uIS

qsafe,10
) and the 10 samples from qrisky into the UWS estimate of the expected utility

gain of playing the risky gamble (∆uIS
qrisky,10

) ). Finally, we converted each estimated utility gain into
the equivalent monetary amountm by inverting the utility function uwithout adding any noise,
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that is

mrisky = u(−1)(∆u
IS
qrisky,10

) = (omax − omin) ·∆u
IS
qrisky,10

(3.29)

msafe = u(−1)(∆u
IS
qsafe,10

) = (omax − omin) ·∆u
IS
qsafe,10

. (3.30)

Each value ofmrisky corresponds to one participant’s judgment of the fair price for the risky gamble
and likewise for the values ofmsafe.

To simulate choice, we applied the UWS model for binary decisions from description (Equa-
tions 3.20-3.21) with the parameters estimated from the Technion choice prediction tournament. To
choose between the risky versus the safe gamble, this model estimates the expected differential utility
E
[
u(Orisky)− u(Osafe)

]
directly instead of estimating the gambles’ expected utilitiesE

[
u(Orisky)

]
andE [u(Osafe)] separately. Consequently, it overweights pairs of outcomes whose utilities are very
different instead of individual outcomes whose utilities are far from 0. Concretely, it simulates pairs
of outcomes (i.e., one outcome for the risky gamble and one outcome for the safe gamble) according
to the distribution q∆ defined in Equation 3.20, which weights their joint probability by the abso-
lute value of their difference in utility. The differential utilities∆u1, · · · ,∆u10 of the simulated
outcome pairs are then translated into an estimate of the difference between the expected utility of
the risky gamble versus the safe gamble according to Equation 3.21. If the resulting decision variable
∆Û IS

q∆,10 is positive, the simulated decision-maker chooses the risky gamble, if it is negative they
choose the safe gamble, and if it is 0 then they choose randomly.

Since the utilities u(o) that drive the overweighting of extreme outcomes are stochastic (Equa-
tion 3.16), we conducted 100 000 simulations to average over a large number of utility-weighted
sampling distributions q. Each simulation generated one price for the safe gamble, one price for the
risky gamble, and one simulated choice between the two. At the beginning of each simulation, the
utilities u(0), u(1), and u(2)were drawn fromN (µ = o

2 , σ = 0.17) for each possible outcome
o ∈ {0, 1, 2} and plugged into Equations 3.25–3.28 to yield the distributions the decision-maker
would sample from in that simulation. Within each simulation, the sampled outcomes were evalu-
ated by independent applications of the noisy utility function (Equation 3.16). Hence, even when
the same outcome was sampled multiple times in a simulation, its subjective utility could be differ-
ent every time.

UWS predicted that 42% of participants should reverse their risk preference from pricing to
choice. In 66% of these reversals the model prices the risky gamble higher but choose the safe one.
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As a result, utility-weighted sampling typically prices the risky gamble higher than the safe gamble
(67% of the time), but it choses the safe gamble almost every second time (49% of the time). The
rational decision mechanism of utility-weighted sampling weights events differently depending on
whether it is tasked to perform pricing versus choice. Given that its shift in attention is a rational
adaption to the task, the inconsistency between people’s apparent risk preferences in pricing versus
choice is consistent with resource-rationality.

While the laboratory experiments that demonstrated the effects simulated above can be criticized
as artificial because their stakes were low or hypothetical, the overweighting of outcomes with ex-
treme differential utility has also been observed in high-stakes, financial decisions whose outcomes
do count (Post, van den Assem, Baltussen, & Thaler, 2008), and UWS can capture those effects as
well (see Section “Deal or No Deal: Overweighting of extreme events in real-life high-stakes eco-
nomic decisions” of Appendix B).

3.3.5 Summary

In this section, we have shown that utility-weighted sampling accurately predicts people’s decisions
from description across a wide range of problems including those that elicit inconsistent risk pref-
erences. Our utility-weighted sampling model of decisions from description rests on three assump-
tions: Its central assumption is that expected utilities are estimated by importance sampling. In
addition, we assumed that binary choices from description are made by directly estimating the dif-
ferential utility of choosing the first option over the second option. This assumption was important
to predict the fourfold pattern of risk preferences, preference reversals, and the Allais paradox. Fi-
nally, we assumed that the mapping from payoffs to utilities is implemented by efficient coding.
This assumption is not critical to the simulations reported here, but it will become important in our
simulations of decisions from experience in the next section.

3.4 Overweighting of extreme events in decisions from experience

In decisions outside the laboratory we are rarely given a list of all possible outcomes and their re-
spective probabilities. Instead, we have to estimate these probabilities from past experience. When
people learn outcome probabilities from experience their risk preferences are systematically differ-
ent than when the probabilities are described to them (Hertwig & Erev, 2009). For instance, people
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overweight rare outcomes in decisions from description but tend to underweight them in decisions
from experience (Hertwig, Barron, Weber, & Erev, 2004).

A common paradigm for studying decisions from experience is repeated binary choices with feed-
back. In this paradigm, the outcomes and their probabilities are initially unknown and must be
learned from experience. Madan et al. (2014)(Madan et al., 2014) discovered an interesting memory
bias in this paradigm: people remember extreme outcomes more often than moderate ones and over-
estimate their frequency. Ludvig et al. (2014) showed that people also overweight the same extreme
outcomes in their decisions when their probability is 1

2 . Above we showed that utility-weighted
sampling can account for the memory biases discovered by Madan et al. (2014), and in this section
we investigate whether utility-weighted sampling can also account for the corresponding biases in
decisions from experience by simulating the experiments by Ludvig et al. (2014). Our analysis sug-
gests that biased memory encoding serves to help people make future decisions more efficiently by
making the most important desiderata come to mind first.

Ludvig et al. (2014) conducted a series of four experiments. In each of the four experiments peo-
ple made a series of decisions from experience. For instance, Experiment 1 comprised 5 blocks with
48 choices each. There were a total of four options: a sure gain of+20 points, a sure loss of−20

points, a risky gain offering a 50/50 chance of+40 or 0, and a risky loss offering a 50/50 chance of
0 or−40 points. In most trials participants either chose between the risky and the sure gain (gain
trials) or between the risky and the sure loss (loss trials). After each choice subjects were shown the
number of points earned, and they received no additional information about the options. Experi-
ments 2-4 used different outcomes but were otherwise similar. In Experiment 2 the absolute values
of all outcomes of Experiment 1 were shifted by 5 points. In Experiment 3 the gain and loss trials
were supplemented by extreme gain trials and extreme loss trials whose outcomes were double the
outcomes in Experiment 1. Experiment 4 had a loss condition in which all outcomes were losses (4L)
and a gain condition in which all outcomes were gains (4G). Both conditions comprised risky gam-
bles in which only the high outcome was extreme (HX), gambles in which only the low outcome
was extreme (LX), and gambles in which both outcomes were extreme (BX).

To simulate these experiments, we assumed that Ludvig et al.’s participants had learned the out-
come probabilities in the first four blocks and modeled their choice frequencies in the final block of
each experiment. We can therefore model each individual decision as the choice between two lotter-
ies each of which is defined by the value of the high outcome ohigh, the probability phigh of receiving
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it, and the low outcome olow:

l1 =
(
o
high
1 , p

high
1 , olow1

)
(3.31)

l2 =
(
o
high
2 , p

high
2 , olow2

)
. (3.32)

We model utility-weighted sampling as simulating s possible outcomes of each action a by sampling
from the importance distribution defined in Equation 3.11:

ô
(a)
1 , · · · , ô(a)s ∼ q(o|a) ∝ p(o|a) · |u(o)− ū|, (3.33)

where ū is the average outcome experienced by the participant. The simulated utilities are then com-
bined into estimates of each action’s expected utility gain according to Equation 3.12, and the option
with the highest expected utility gain estimate is chosen. Our model defines the likelihood of indi-
vidual choices in terms of two parameters: the number of samples s, and the noise variance σ2ε of the
brain’s representation of utilities. We estimated these parameters from the choice frequencies in the
final blocks of each condition of Experiments 1-4 by the maximum-likelihood method.

The results of fitting our model to the data of Ludvig et al. (Figure 3.5) revealed that utility-
weighted sampling can capture the effects in all of the experiments with a single set of parameters
(i.e. s = 2 samples, and a noise standard deviation of σϵ = 0.65) and the fit is robust to small
changes in these parameters. Most importantly, utility-weighted sampling predicts that people are
more risk seeking when the extreme outcome is high than when the extreme outcome is low. This
explains why participants were more risk seeking for gains than for losses (Experiments 1-2). Experi-
ment 3 combined trials in which the outcomes were twice the outcomes in Experiment 1 (3X) with
the original trials from Experiment 1 (3NX). Our model correctly predicted the two main effects:
more risk seeking on extreme gain trials than on extreme loss trials (3X) and a substantially smaller
difference in risk seeking between their non-extreme counterparts (3NX).

UWS also captured the finding that the effect for the non-extreme outcomes is substantially
smaller than in Experiment 1 even though the options were identical. According to our model,
the context of the extreme outcomes in Experiment 3 suppresses the difference between the non-
extreme gain and loss trials, because each outcome is divided by the range of all outcomes that need
to be represented; see Equation 3.16. Since the range of outcomes is twice as large in Experiment 3
than in Experiment 1, the difference between the rewards of the non-extreme outcomes in Exper-
iment 3 is only half as large as in Experiment 1. Consequently the noise in the reward signals can
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Figure 3.5: Differential risk preferences in the experiments by Ludvig et al. (2014). (A) Observed
and predicted patterns of risk preferences. (B) Scatterplot combining all experimental conditions.

overturn the signal in Experiment 3NX more often than in Experiment 1. For Experiment 4 utility-
weighted sampling correctly predicted more risk seeking when the high outcome was extreme and
the low outcome was moderate (HX; prisky choice = 0.61) than vice versa (LX; prisky choice = 0.39),
and an intermediate amount of risk seeking when both outcomes were extreme (BX, prisky choice =

0.49). Utility-weighted sampling predicted this pattern of risk preferences regardless of whether
all outcomes were gains (Experiment 4G) or all outcomes were losses (Experiment 4L). Utility-
weighted sampling predicts all of these effects from the assumption that the brain’s simulation mech-
anism is biased towards outcomes with extreme utility. Future models might be able to achieve a
better fit, but to our knowledge utility-weighted sampling is the only theory to date that captures at
least the qualitative effects observed by Ludvig et al. (2014).

In the experiments by Ludvig et al. (2014) all outcome probabilities were equal to 0.5. In prospect
theory (Kahneman & Tversky, 1979) probability weighting only depends on the magnitude of the
probability. Hence, it cannot overweight the 50% chance of one event and underweight the 50%
chance of the other event at the same time. UWS, by contrast, can explain the effects, because it
predicts that extreme events will always be overweighted regardless of their probability. This high-
lights a critical difference between UWS and prospect theory: In prospect theory over- versus under-
weighting depends on the value of the probability but is independent of the utility. By contrast, in
UWS the over- or under-weighting is determined by the outcome’s utility but is independent of its
probability. Cumulative prospect theory (Tversky & Kahneman, 1992) captures the effect of extrem-
ity on overweighting in principle, but it doesn’t capture this effect when there are only two possible
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outcomes.

To apply our theory to the empirical data, we had to choose a utility function. We chose the
stochastic normalized utility function defined in Equation 3.16 because of its neuroscientific un-
derpinnings and its ability to explain context-sensitive preferences in value-based decision-making
(Summerfield & Tsetsos, 2015). Concretely, UWS combined with a context-insensitive utility func-
tion, such as a simple linear function of the outcome, or the concave utility function of prospect the-
ory, would be unable to explain why people’s preference for the risky gamble +40/0 over the safe op-
tion +20 is lower in Experiment 3 than in Experiment 1 even though the choices are exactly the same.
In addition to the normalization by the dynamic range, the noise term is also necessary, because
otherwise any scaling of the utility function is canceled out by the normalization of the sampling
distribution. Therefore, there appears to be no simpler or more conventional utility function that
can explain the qualitative features of the data of Ludvig et al. (2014) than the normalized stochastic
utility function defined in Equation 3.16. Given this utility function, UWS predicts that the over-
weighting of the gain (+40) in the choice between a 50/50 chance to gain 40 or 0 vs. 20 for sure in
Experiment 1 would disappear if there were only gain trials so that the average outcome would be 20
which is exactly in the middle between 0 and 40.

3.5 Utility-weighted learning from experience

So far, we have shown that utility-weighted sampling can capture biases in frequency judgment,
decision-making, and memory recall. Our explanation postulates that the brain samples from an
importance distribution that weights each outcome’s probability by the absolute value of the ex-
tremity of the outcome’s utility, but it remains unclear whether and how the brain could implement
this mechanism. We have speculated that there may be a common root to these biases: the enhance-
ment of learning by emotional salience. Consistent with this mechanism, memory consolidation is
enhanced when the reward associated with an experience is larger (Adcock, Thangavel, Whitfield-
Gabrieli, Knutson, & Gabrieli, 2006). Adcock et al. (2006) found that this modulation of memory
consolidation is mediated by the release of dopamine from the ventral tegmental area. The enhance-
ment of learning by emotional salience implies that extreme events, such as the terrorism, natural dis-
asters, and traumatic accidents, are engraved more deeply into our memory than mundane events. A
single extreme experience, such as a traumatic event, in a neutral context can instill an enduring asso-
ciation that is much stronger than the association formed with a mundane event that occurred more
frequently in the same context. Based on this idea we propose a biologically-plausible learning mech-
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anism that tunes neural networks to sample from the importance distribution of utility-weighted
sampling.

3.5.1 UWS can emerge from reward-modulated associative plasticity

Utility-weighted sampling can be implemented using a stochastic winner-take-all network (Nessler,
Pfeiffer, Buesing, & Maass, 2013, c.f.) whose units represent potential outcomes and receive inputs
from units representing the alternatives of the choice (a). The weightwa,o of connection between
the input units representing alternative a and the output units representing outcome o encode the
strength of the association between alternative a and outcome o. The weightsw thereby determine
the relative frequency with which the network simulates each outcome for each alternative. In this
section, we propose a learning rule for the weightsw that tunes the network to simulate outcomes
according to utility-weighted sampling (Equation 3.33).

We assume that the initial association strengthsw are zero, and that choosing an alternative a and
receiving a rewarding outcome o reinforces their associationwa,o. The association strengthens more
the more surprising the outcome is (Courville, Daw, & Touretzky, 2006). Our model captures this
effect by updates that are proportional to the absolute value of the reward prediction error PE(o):

wa,o(t+ 1) =

(1− γ) · (wa,o(t) + α · |PE(o)|) ifA(t) = a andO(t) = o

(1− γ) · wa,o(t) ifA(t) = a andO(t) ̸= o
, (3.34)

whereA(t) andO(t) are the chosen alternative and the outcome in trial t, α is the learning rate, and
γ is the forgetting rate. The reward prediction error is the difference between the experienced reward
r(o) and reward expectancy r̄(t):

PE(o) = r(or)− r̄(t), (3.35)

where r (o(t)) is the subjective utility of outcome o defined in Equation 3.16, and r̄(t) is the re-
ward expectancy ū(t) associated with any trial in the experiment. It can therefore be thought of as a
recency-weighted average over all rewards regardless of the choices that generated them. We assume
that this expectancy is learned independently from the alternative-outcome associations by temporal
difference learning, that is

ū(t+ 1) = ū(t) + η · PE, (3.36)
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where η is a learning rate and the reward prediction error PE is conveyed by phasic dopamine sig-
nals from the ventral tegmental area to the ventral striatum and the frontal lobe (Niv, 2009). This
concludes the learning part of our model.

To model decision-making we assume that the rate at which units representing alternative a acti-
vate units representing outcome o is proportional to the strength of their connection, that is

P (Ô = o|A = a) =
wa,o∑n
o=1wa,o

∝ wa,o (3.37)

The learning rule (Equation 3.34) increases the weightwa,o with probability p(o|a) by an increment
proportional to |PE(o)|. Therefore, the probability that outcome owill be simulated when consider-
ing action a (i..e, P (Ô = o|A = a)) converges to p(o|a) · |PE(o)|= p(o|a) · |u(o) − ū|∝ qUWS,
where u(o) = r(o). In this way, the network gradually learns to perform utility-weighted sampling
(Equation 3.11). The simulated outcomes could be read out by a decision network that chooses the
alternative with the highest value of the utility estimate defined in Equation 3.12. Thus, after suffi-
cient learning the simulation network and the decision network jointly perform utility-weighted
sampling. The above equations are meant as an abstract specification of network properties rather
than the definition of a concrete neural network, but they suggest a way in which the brain might
learn to perform utility-weighted sampling.

Having proposed a learning mechanism that can give rise to utility-weighted sampling, we will
now evaluate its predictions against the temporal dynamics of people’s risk preferences in repeated
decisions from experience.

3.5.2 Temporal dynamics of risk preferences

Above, we simulated people’s risk preferences in the final blocks of the experiments by Ludvig et al.
(2014) assuming that the participants had already learned the utility-weighted sampling distribution.
Here, we test whether the utility-weighted learning (UWL) model can predict this learning outcome
and capture the temporal evolution of people’s risk preferences from the first block through the last
block. The utility-weighted learning model predicts participants’ choice probabilities as a function
of seven parameters: the number of samples s, the uncertainty σε about utilities, the learning rate α,
the forgetting rate γ, the initial reward expectancy r̄(0), the rate η at which the reward expectancy
r̄ is being updated, and the probability of random choice prandom. To estimate these parameters, we
fitted the block-by-block choice frequencies reported by Ludvig et al. (2014) by maximum-likelihood
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estimation.

The parameter estimates were s = 1 samples, learning rate α = 1, forgetting rate γ = 0.375,
noise standard deviation σε = 0.1, initial reward expectancy 3, TD learning rate η = 0.05, prob-
ability of random choice prandom = 0.64. We found that utility-weighted learning captures several
qualitative properties of how people’s risk preferences changes with experience: Our simulations
of Experiments 1-2 captured that people gradually become more risk-averse on loss trials but more
risk-seeking on gain trials (Figure 3.6A). Our simulations of Experiment 3 captured that this effect
is reduced when gains and losses are non-extreme in the context in which they occur (Figure 3.6B),
and the simulation of Experiment 4 captured that more experience makes people more risk-seeking
when the high outcome is extreme, but more risk-averse when the low outcome is extreme, even if all
outcomes are gains or all outcomes are losses (Figure 3.6C). According to utility-weighted learning
the determinant of risk-seeking is that the high outcome is farther away from the learned reward ex-
pectancy than the low outcome. The reward expectancy tracks to average across all recent outcomes.
Thus, UWL predicts risk seeking when the high outcome is farther away from the average outcome
than the low outcome.

3.5.3 Predicting memory biases

Earlier in this chapter, the experiments by Madan et al. (2014) was simulated according to utility-
weighted sampling. We found that UWS correctly predicted the qualitative differences between
moderate and extreme events in frequency estimation and memory recall, but its predictions were
more extreme than the biases observed in people. In this section we revisit these effects with the
utility-weighted learning model. In addition, the utility-weighted learning model also allows us to
simulate the relationship between memory biases and risk preferences, as well as the effect of recent
outcomes on risky choice.

Concretely, we fitted the UWL model to the block-by-block choice frequencies in Experiments
1 and 2 by Madan et al. (2014) using the maximum-likelihood method. We then used the resulting
parameter estimates to predict participants’ frequency estimates and memory biases. To do so, we
modeled people’s frequency estimates according to utility-weighted sampling as defined in Equation
3.22. Likewise, participants’ answers to the memory recall question were modeled by the outcome
that was sampled most frequently; if two or more outcomes occurred equally frequently one of
them was chosen at random.
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Figure 3.6: The utility-weighted learning (UWL) model captures the temporal evolution of peo-
ple’s risk preferences in the experiments by Ludvig et al. (2014). (A) UWL captures that partici-
pants in Experiments 1-2 became increasingly more risk seeking on gain trials but more risk averse
on loss trials. (B) UWL captures that in Experiment 3 risk seeking increased primarily on trials
with extreme outcomes. (C) UWL captures that in Experiment 4 people became risk seeking when
the larger outcome was extreme and risk averse when the smaller outcome was extreme regardless
of whether the outcomes were gains or losses.
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The maximum likelihood parameter estimates indicated increased accuracy motivation: more
simulations (s = 2), faster learning (α = 9), and slower forgetting (γ = 0). The estimated stan-
dard deviation of the noise was σε = 0.1, the estimated initial reward expectancy r̄(0)was 7, the
estimated rate at which the reward expectancy is updated was 0.5, and the estimated probability
of random choice was 0. With these parameters our model captured people’s memory biases (see
Figure 3.7) and their relationship with risk seeking: Even though the risky choice generated the mod-
erate outcome (0 points) and the extreme outcome (±40 points) equally often, for most people the
extreme outcome came to mind first (Figure 3.7B), and their frequency estimates were significantly
higher for the extreme loss than for the moderate outcome (Figure 3.7A). This was not the case for
the high gain (+40), because according to the parameter estimates participants entered the experi-
ment with the expectation that outcomes would average 560 points. As a comparison with Table
3.1 shows, the predictions of UWL are closer to the empirical data than the predictions of the basic
UWS model.

In addition, our model correctly predicted that people who recalled the extreme gain first were
more risk seeking on gain trials than people who remembered the moderate outcome first (56.32 ±
0.24% vs. 50.83±0.26% risky choices) whereas people who remembered the extreme loss first were
less risk seeking on loss trials than people who remembered the moderate outcome first (31.83% ±
0.34% vs. 33.67 ± 0.34% risky choices). The simulated frequency estimates were significantly
correlated with the model’s preference for the risky option: The higher the model estimated the
frequency of the extreme loss to be the fewer risky choices it made on loss trials (r = −0.4419, p <

10−15). Conversely, risk seeking on gain trials increased with the estimated frequency of the extreme
gain (r = 0.23,p < 10−15). Utility-weighted learning also captured that people were more risk
seeking when the most recent risky choice in the same context yielded the good outcome than when
it yielded the bad outcome: For gain trials UWS predicted 8.6% higher risk seeking after receiving
the high gain (+40) than after winning nothing on the previous risky gain trial. Conversely, UWS
predicted 6.0% less risk seeking following the large loss (-40) compared to no loss on the previous
risky loss trial.

Finally, we simulated Experiment 2 from Madan et al. (2014) according to the same parameters.
This experiment was identical to Experiment 1 except that all outcomes were shifted by+40 points
so that there were no negative outcomes. Our model correctly predicted that this manipulation
changes none of the qualitative effects observed in Experiment 1, and our model now correctly pre-
dicted that people overestimate the frequency of the extreme gain relative to the neutral outcome
(UWS: 56.4% versus 43.2%).
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Figure 3.7: Utility-weighted learning (UWL) predicts the biased memory recall and frequency
estimates observed by Madan et al. (2014). Error bars denote 95% confidence intervals. (A) Dif-
ference between estimated frequencies of extreme versus moderate outcomes. (B) Proportion of
people who recalled the extreme outcome first minus proportion who recalled the moderate one
first.

3.5.4 Validation on decisions from experience

Having shown that UWL predicts people’s biases in memory recall and frequency estimation more
accurately than the original UWS model and captures the temporal dynamics of people’s risk pref-
erences in repeated decisions from experience and the effect of recent outcomes on risky choice, we
now evaluate UWL against alternative models of repeated decisions from experience. To do so, we
use data from the Technion choice prediction tournament as we did for our basic utility-weighted
sampling model of decisions from description. As before, we fit our utility-weighted learning model
to the training set by maximum-likelihood estimation, evaluate its predictive accuracy on the test set,
and perform formal model comparisons against the best models from the competition. The only
difference is that we now use the data sets and models from the Technion tournament on repeated
decisions from experience rather than decisions from description.

The parameter estimates were as follows: learning rate α = 2, number of samples s = 9, for-
getting rate γ = 0, standard deviation of the noise σε = 0.1, probability of random choice
prandom = 0.12, initial reward expectancy r̄(0) = 3, and η = 0.05. We set our model’s param-
eters to these values and evaluated its predictions against people’s choice frequencies on the test
set; see Figure 3.8. Our model’s predictions agreed with people’s risk preferences for 90% of the
decision problems. The correlation between the predicted and observed choice frequencies was

143



10 20 30 40 50 60 70 80 90
UWL chooses risky option in %

10

20

30

40

50

60

70

80

90

P
e

o
p

le
 c

h
o

o
s
e

 r
is

k
y
 c

h
o

ic
e

 i
n

 %

Technion Decisions from Experience, Test Set

Figure 3.8: Utility-weighted learning (UWL) predictions for test set of Technion prediction tour-
nament for repeated decisions from experience. Each data point reports the risky choice frequency
of UWL (horizontal axis) versus people (vertical axis) for one of the 60 decision problems, and the
solid line is the identity line.

r = 0.80, and the mean-squared error of the predicted choice frequencies was MSD = 0.0120.
Our model thereby explained the data substantially better than the basic reinforcement learning
model that Erev et al. (2010) considered as a baseline (66% agreement, r = 0.51, MSD = 0.0263;
t(59) = −3.2, p = .002), and not significantly worse than the best model in the competition:
the explorative sampler with recency (MSD = 0.0066, t(59) = 1.65, p = .1, 86% agreement,
r = 0.89). While the best model was provided as a baseline, the best submission was the ACT-R
model of instance-based learning (MSD: 0.08, r = 0.89). After the competition, Lejarraga, Dutt,
and Gonzalez (2012) introduced an improved instance-based learning model that performed slightly
better than the exploratory sampler with recency (MSD = 0.006, 86% agreement, r = 0.89) and
its mean-squared error was significantly lower than that of our model (t(118) = −2.21, p = 0.01).
The predictive accuracy of the normalized reinforcement learning model was comparable to the per-
formance of our model (MSD: 0.0087, 84% agreement, r = 0.84). Additional analyses comparing
the risk preferences of UWL to those of people are provided in the Appendix B.
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3.5.5 Discussion

We hypothesized that utility-weighted sampling arises from biased memory encoding. In this sec-
tion, we formalized this proposal by a biologically-plausible learning rule that we call utility-weighted
learning (UWL). The empirical data of Ludvig et al. (2014) and Madan et al. (2014) provides four
strong pieces of evidence for our hypothesis that the over-representation of extreme events results
from utility-weighted memory encoding: First, people overweight outcomes with extreme utilities
in decisions from experience relative to equally probably outcomes with moderate utilities. Second,
this overweighting emerged gradually through learning and the time course of learning matched the
predictions of our utility-weighted-learning model. Third, participants displayed biases in memory
recall that matched the biases of their decisions and our model captured both. Fourth, as predicted
by our model, there was a significant correlation between the magnitude of each participant’s bias
in memory recall and the bias in their choice frequencies. This is consistent with our model’s as-
sumption that the overweighting of events with extreme utilities and their heightened availability
in memory have a common cause: utility-weighted memory encoding. While the correlation be-
tween biases in memory and choice does not imply causation, our model’s assumption that utility-
weighted memory encoding causes memory biases that in turn cause biases in decision-making does
offer a plausible explanation for this phenomenon. Under this assumption the covariation of the
ease with which extreme events come to mind could plausible arise from individual differences in
the sensitivity to reward and punishment (Corr, 2004): The higher a person’s reward sensitivity, the
more biased their memory encoding will be. The more biased the strengths of a person’s memories
are in favor of extreme events, the more easily they will be recalled, and this in turn increases their
decision weights.

We found that our model explained the temporal dynamics of of people’s risk preferences and
memory biases in repeated decisions from experience and evaluated the utility-weighted learning
model against people’s choice frequencies in a wide range of decisions problems. UWL was com-
petitive with the best existing models of decisions from experience. Together with the findings
presented in previous sections, the results in this section show that utility-weighted sampling can
provide a unifying, mechanistic explanation for a wide range of biases in decisions from description
and decisions from experience. This is important for two reasons. First, it is often implied that deci-
sions from description and decisions from experience rely on separate mechanisms, and second our
most influential theories of decision-making are not mechanistic.

Although the experiments simulated here had only two possible outcomes, the UWL learning
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model is equally applicable to decisions with many possible outcomes and one example thereof can
be found in the Section “Payoff-variability effects in decisions with very many possible outcomes” of
the Appendix B.

The proposed learning mechanism is similar to the Pearce-Hall model of classical condition-
ing (Pearce & Hall, 1980) in that both update the strength of a stimulus-reward association by an
amount proportional to the absolute value of a reward prediction error. However, there are several
important differences. Most importantly, our model learns the conditional probabilities of multiple
possible outcomes given a single cue whereas the Pearce-Hall model learns to predict the intensity
of a single reward or punishment given multiple cues. Consequently, in the Pearce-Hall model, the
reward prediction is derived from the learned associations. By contrast, in our model the reward
prediction is learned independently of the cue-outcome associations. Furthermore, the Pearce-Hall
model uses the reward prediction error from the previous trial whereas our model uses the reward
prediction error from the current trial. The two models also differ in the remaining terms of their
learning rules.

To fit the temporal dynamics of risk preferences with learning, we had to make a number of as-
sumptions about the underlying learning mechanisms. The details of this proposal are not essential
to our theory and may be revised and simplified in future versions of the utility-weighted learn-
ing model. Instead, the utility-weighted learning model should be seen as a proof of principle that
utility-weighted sampling can emerge from reward-modulated associative learning in the brain.

3.6 General Discussion

While the resource-rational analysis presented in the previous chapter addressed the question “How
long should you think given that your time is valuable?”, the resource-rational analysis presented
in this chapter answered the complementary question “Given that you can consider only a limited
number of things, which ones should you think about?”. The analysis revealed that in order to take
the most important outcomes into account most of the time, it is necessary for us to think about
the potential outcomes of our decisions in a way that is biased towards events that are extremely
good or extremely bad. According to this argument, our seemingly irrational availability biases are
a rational adaptation to the constraints imposed by our limited time and finite processing speed.
These cognitive constraints, make utility-weighted sampling a resource-rational mechanisms for
decision-making under risk and uncertainty. The analysis presented here incorporated an additional
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cognitive constraint, namely the finite representational resources that are available to encode the
outcome of each simulation. The rational use of this finite representational bandwidth by efficient
coding scales reward values by their dynamic range (Summerfield & Tsetsos, 2015). This makes ex-
tremity context-dependent, thereby explaining why potential outcomes that are over-weighted in
some contexts are under-weighted in others.

Utility-weighted sampling explains not only how we are able to make sensible decisions under
severe time pressure but also why we overestimate the frequency of extreme events and have incon-
sistent risk preferences. Utility-weighted sampling explains why extreme events come to mind first
and why people overestimate their frequencies and overweight them in decisions under uncertainty.
Our model captures how people’s risk preferences depend on valence (gains versus losses), proba-
bility, the elicitation method (pricing versus choice), and on whether probabilities are described or
experienced. Utility-weighted sampling can thus explain preference reversals, the Allais paradox,
and the fourfold pattern of risk preferences. In addition, our utility-weighted learning model cap-
tures the temporal dynamics of people’s risk preferences during repeated decisions from experience,
the effect of recent outcomes on risky choice, and the relationship between memory biases and risk
preferences.

Our model’s predictive validity in the Technion choice prediction tournaments for repeated de-
cisions from description and decisions from experience was competitive with, although not quite
as good as, the fit of the models that won these competitions. Yet, while most of these models were
specific to their competition, our model was derived from first principles, it also applies to more
complex decisions with (infinitely) many possible outcomes, and it can simultaneously explain a
much wider range of biases in decision-making, judgment, and memory than ever attempted be-
fore. In addition, our model does not just describe risk preferences but specifies the underlying
(neuro)computational mechanisms. The biases explained by our model include newly discovered
phenomena (Ludvig et al., 2014; Madan et al., 2014) that have not been modeled before as well as
classic findings that were previously explained separately.

The remainder of this chapter synthesizes and discusses the results presented above. We start by
showing that the difference between our theory’s predictions for decisions from description versus
decisions from experience captures the description-experience gap. We then discuss the similarities
and differences between UWS and previous theories of inconsistent risk preferences. Afterwards, we
take a step back and discuss how the work presented here instantiates the general resource-rational
approach to modeling cognitive mechanisms. Next, we discuss the connections between our theory
and theory of ecological rationality. Finally, we acknowledge the limitations of our analysis, discuss
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directions for future work, and conclude.

3.6.1 Utility-weighted sampling captures the description-experience gap

People’s risk preferences in decisions from description and decisions from experience are systemat-
ically different. This difference is known as the description-experience gap (Hertwig & Erev, 2009).
Most prominently, people appear to overweight small probabilities in decisions from description
but underweight them in decisions from experience. Having applied utility-weighted sampling
to decisions from description and decisions from experience, we are now in a position to evaluate
whether the difference between the UWS model of binary decisions from description (Equations
3.20-3.21) and the utility-weighted learning model (Equations 3.34-3.37) captures the description ex-
perience gap. To do so, we computed the difference between the two models’ predictions on the
test set of the Technion choice prediction tournament (Figure 3.3 versus Figure 3.8) and compared it
against the difference between people’s choice frequencies in these two conditions.

Figure 3.9 shows that the difference between the two models correctly predicted the sign of
the description-experience gap on 95% of the decision problems in the test set of the Technion
choice prediction tournament. The correlation between the predicted and the actual description-
experience gaps was r = 0.8853 (p < 10−15), and the mean squared deviation was 0.0361. Our
model of decisions from experience captures the effects of either not experiencing, or gradually for-
getting rare outcomes. This explains why rare events tend to receive less weight in decisions from
experience than in decisions from description. For instance, in problems 1-5 where the probability of
the high outcome is at most 0.1, people and utility-weighted sampling are more risk-seeking when
the probabilities are described than when they are experienced. According to our models, there is an-
other difference: In decisions from description people over-simulate eventualities in which the out-
comes of two choices are extremely different. In decisions from experience, by contrast, people sim-
ulate the possible outcomes of each option independently, so that utility-weighted sampling over-
simulates each option’s most extreme outcome even when they are identical. Thus, when choosing
between losing a moderate amount for sure and the chance of winning a small amount or losing
a large amount, UWS is more risk seeking in decisions from description than in decisions from ex-
perience, and this correctly predicts the positive description-experience gap in problems 30-34 (see
Figure 3.9 and Erev et al., 2010). According to our theory, the description-experience gap is not only
due to the fact that rare events in decisions from experience sometimes go unnoticed or are gradually
discounted or forgotten but also due to difference between overweighting unusually large and un-
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Figure 3.9: Utility-weighted sampling captures the gap between people’s risk preferences in deci-
sions from description and decisions from experience. 95% agreement, r = 0.8853, mean-squared
error 0.0361.

usually small outcomes in decisions from experience versus overweighting of pairs of outcomes with
large utility differences in binary decisions from description. Recent empirical evidence for the im-
portant contribution of memory biases in favor of extreme events to the description-experience gap
(Madan, Ludvig, & Spetch, 2016) strongly supports our model’s explanation. Furthermore, Kellen,
Pachur, and Hertwig (2016) found that people are more sensitive to the payoffs and less sensitive to
their probabilities in decisions from experience than in decisions from description even when the
difference between experienced frequencies and described probabilities is controlled for. This too is
consistent with the overweighting of extreme payoffs in decisions from experience.
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3.6.2 Comparison to previous theories of judgment and decision-making

Unlike previous theories of decision-making, our model is both normative and mechanistic. In con-
trast to descriptive theories of choice, our approach has been to explore the implications of limited
cognitive resources for the mechanisms by which people should make decisions under uncertainty.
In contrast to most normative theories of choice, we have engaged with people’s limited cognitive
resources and derived a process model. This makes our theory the first rational process model (Grif-
fiths et al., 2015) of cognitive biases in decision-making. The proposed mechanism for decisions from
experience is psychologically plausible in that it relies on the well-known availability bias in memory
recall (Tversky & Kahneman, 1973). Furthermore, we have shown that UWS naturally emerges from
a biologically-plausible reward-modulated associative plasticity mechanism that is driven by the re-
ward prediction error conveyed by dopamine (Schultz et al., 1997). But unlike most process models,
UWS was derived from first principles and instantiates rational information processing.

Our theory provides the first rational perspective on the heightened availability of extreme events
and the cognitive biases in judgment and decision-making that result from it. We have shown that it
can explain a wide range of phenomena in memory, judgment, learning, decisions from description,
and decisions from experience. Subsets of these phenomena, such as the simulated violations of ex-
pected utility theory in decisions from description were already accounted for by previous theories,
but our model is the first to provide a unifying explanation for all of them, and none of the previous
theories could explain why events with extreme utilities should be remembered first and sway peo-
ple’s decisions. As far as we know, UWS is the first theory that can simultaneously explain decisions
from description and decisions from experience, and it reconciles the discrepancies between them.
In particular, no previous theory was able to reconcile the reflection effect in decisions from descrip-
tion (risk aversion for a 50% chance of a large gain but risk seeking for a 50% chance of a large loss)
with the exact opposite of this effect in decisions from experience (Ludvig et al., 2014; Madan et al.,
2016). We think that our theory is unique in providing the first rational process model of availability
biases in judgment and decision-making and offering a unifying explanation for a very wide range of
seemingly disparate phenomena, but it builds on previous work (Bordalo et al., 2012; Griffiths et al.,
2015; Hertwig et al., 2005; Lichtenstein et al., 1978; Ludvig et al., 2014; Madan et al., 2014; Pachur et
al., 2012; N. Stewart et al., 2006; Tversky & Kahneman, 1973; Vul et al., 2014) and has commonalities
with many existing theories of judgment and decision-making. We provide a detailed discussion of
how our theory is similar to and different from previous accounts of memory, frequency judgment,
decisions from description, and decisions from experience in the Appendix B. Table 3.5 summarizes
these comparisons in terms of the range of phenomena explained by UWS and some previous mod-
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els and theories, namely the availability-by-recall model (Hertwig et al., 2005; Pachur et al., 2012), the
regressed-frequency model (Hertwig et al., 2005), the value-assessment model (Barron & Erev, 2003),
instance-based learning theory (T. C. Stewart, West, & Lebiere, 2009), the exploratory sampler with
recency (Erev et al., 2010), the contingent average and trend (CAT) model (Plonsky, Teodorescu, &
Erev, 2015), the decision-by-sampling model (N. Stewart et al., 2006), salience theory (Bordalo et
al., 2012), the priority heuristic (Brandstätter et al., 2006), regret theory (Loomes & Sugden, 1982),
prospect theory (Kahneman & Tversky, 1979), stochastic cumulative prospect theory (SCPT; Erev,
et al., 2010), dynamic prospect theory (Post et al., 2008), disappointment theory (Bell, 1985; Loomes
& Sugden, 1984, 1986), and the 3-moments model (Allais, 1979; Hagen, 1979). These and other com-
parisons suggest that UWS is the first mathematical theory to provide a unifying explanation for
availability biases in frequency judgment, memory, decisions from experience, and decisions from
description.

3.6.3 Resource-rationality

We derived utility-weighted sampling by resource-rational analysis (Griffiths et al., 2015): We first
defined the function of decision-making. Second, we modeled people’s cognitive capacities by an
abstract computational architecture that can simulate outcomes by sampling, evaluate their utility,
combine the simulated utilities into an estimate of each action’s expected utility by a weighted av-
erage, and choose the action with the highest utility estimate. In addition, we assumed that time
constraints and cognitive capacity severely limit the number of simulations the mind can perform.
Third, we derived an approximately optimal strategy for allocating the architecture’s computational
resources. Finally, we evaluated our original proposal (Lieder, Hsu, & Griffiths, 2014) against em-
pirical data and alternative models of decision-making under uncertainty and refined it by making
the utility-function context sensitive. Consistent with previous results (Vul et al., 2014), we also
found that people appear to perform more simulations for high-stakes decisions (see Section“Deal
or No Deal: Overweighting of extreme events in real-life high-stakes economic decisions” of the Ap-
pendix B) than for low-stakes decisions (Technion choice prediction tournament). Furthermore,
simulations reported in the Appendix B showed that UWS captures that people’s decision quality
approaches optimality as the difference between their options increases. Overall, we found that the
availability biases and inconsistent risk preferences modeled in this chapter can be reconciled with
the rational use of cognitive resources (Griffiths et al., 2015).

Our rational analysis assumed that people’s judgments and decisions are based on sampling. We
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Table 3.5: Comparison of the range of phenomena explained by UWS versus previous theories.

Note: A checkmark means that theory can qualitatively account for the phenomenon, and
‘.5’ means that theory can qualitatively account for a subset of the phenomena.152



view sampling as a rational computational mechanism for approximating the expected utilities in de-
cision problems with many possible outcomes whose probabilities have to be estimated from expe-
rience. This characterization holds for most everyday decisions. This suggests that utility-weighted
sampling might be a resource-rational strategy for the decisions people make in real life. By con-
trast, when choosing between simple gambles with numerically stated outcome probabilities and
payoffs, people could, in principle, compute each gamble’s expected value and choose the gamble
with the highest expected value. When the stakes are high enough to offset the additional time and
effort required to compute expected values then the expected value strategy would become resource-
rational and participants should apply it. Is it therefore a sign of irrationality when people use utility
weighted sampling in decisions from description? On the one hand, it appears suboptimal that
people use sampling in simple decisions from description instead of relying on arithmetic. On the
other hand, decisions from description are very rare outside the laboratory and resource-rationality
is defined with respect to the distribution of problems in the agent’s natural environment. Further-
more, the payoffs used in the decisions from description paradigm are usually small or hypothetical,
and people’s application of mathematical procedures is often error prone, slow, and effortful. We
therefore believe that people’s use of utility-weighted sampling in the simulated decisions from de-
scription is not necessarily inconsistent with resource-rationality.

Our results should be taken with a grain of salt, because there is no guarantee that the param-
eter estimates for which our model captures empirical phenomena accurately reflect the resource-
limitations of the human brain. We cannot rule out that the actual opportunity cost of simulating
an outcome is so low that it would be resource-rational for people to generate so many samples that
their availability biases should be much smaller than they are. Hence, without independent measure-
ments of the available cognitive resources we cannot conclude that people are resource-rational but
only that the simulated cognitive biases could be resource-rational in principle. To complete our the-
ory of resource-rational decision-making, future work will have to provide a precise specification of
the available cognitive resources and their costs as well as a mechanism that determines the optimal
number of samples. We will discuss these limitations and future directions in more detail below.

Pushing our abstract computational model further towards the algorithmic and implementa-
tional level (Marr, 1982), we have shown that utility-weighted sampling can emerge from reward-
modulated associative learning during repeated decisions from experience. Our learning rule as-
sumes that synaptic plasticity is modulated by the absolute value of the reward prediction error
(Equation 3.34) which can be interpreted as surprise or emotional salience. The success of the utility-
weighted learning model might suggest that people gradually learn to make more rational use of
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their finite cognitive resources and that emotion contributes to the emergence of resource-rational
decision-making. A recent neuroimaging study discovered a neural correlate of the absolute reward
prediction error in the basolateral amygdala (Roesch, Esber, Li, Daw, & Schoenbaum, 2012) – an
area known to mediate the impact of emotional salience on associative learning in the dorsal and
ventral striatum (Cador, Robbins, & Everitt, 1989; McGaugh, 2004; McGaugh, McIntyre, & Power,
2002). This suggests that the learning mechanism of our UWL model could be implemented via the
amygdala’s control over the neuromodulation of synaptic plasticity. Our work on utility-weighted
sampling thereby illustrates how resource-rational analysis can be used to connect the computa-
tional level of analysis to the algorithmic and the implementation level (Griffiths et al., 2015; Marr,
1982). Future work might be able to leverage insights from neuroscience to quantify the resource-
constraints and cost of computation in models of rational information processing (Lieder, Good-
man, & Griffiths, 2013).

3.6.4 Connection to fast-and-frugal heuristics and ecological rationality

Interestingly, our resource-rational analysis led to simple and psychologically plausible decision
strategies that resemble two fast-and-frugal heuristics (Gigerenzer, 2008b). Biased mental simulation
(stochastically) considers the most important consequence first – like take-the-best – and binary
choices are made by tallying if there are more positive than negative simulated outcomes – as in
the tallying heuristic. The fact that we derived this strategy as a resource-efficient approximation to
normative decision-making (resource-rational analysis) sheds light on why fast-and-frugal heuristics
work and how they can be generalized to harder problems (Lieder et al., 2012, cf.).

Pleskac and Hertwig (2014) point out that natural decision environments often exhibit and in-
verse relationships between probability and reward, such as power-law distributions. It is these
reward structures for which representative sampling fails and utility-weighted sampling becomes
necessary. This suggests that utility-weighted sampling is an ecologically rational heuristic, and this
might be why it is so effective and predictive of people’s decisions and biases. Although we derived
utility-weighted sampling for complex real-life decisions with infinitely many possible outcomes, we
found that it also captures the simpler two-outcome choices people make in laboratory experiments
that could be solved by computing and maximizing expected value. This is consistent with the view
that people’s heuristics are adapted to the structure of the problems they face in real-life rather than
those posed in the laboratory (Gigerenzer, 2015). This highlights the value of deriving theories from
an analysis of the problems people have to solve in real life instead of building them in a bottom-up
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fashion from empirical findings in artificial laboratory experiments.

Importantly, utility-weighted sampling works not despite its bias but because of it (Gigerenzer
& Brighton, 2009)). The underlying principle is the bias-variance tradeoff (Hastie et al., 2009). Fast-
and-frugal heuristics tolerate bias to make good inferences from incomplete, noisy observations, and
utility-weighted sampling tolerates bias to make good decisions based on incomplete, noisy simu-
lations of possible outcomes. Thus, biased minds can not only make better inferences but also bet-
ter decisions. However, our results highlight a tension between good inference and good decision-
making: To make good decisions bounded sample-based agents should over-sample extreme events
even though this leads to bad inferences such as the overestimation of event frequencies, and people
appear to do the same. In more general terms, the human mind should, and appears to, sacrifice the
rationality of its beliefs (theoretical rationality) for the rationality of its actions (practical rationality,
), because limited computational resources necessitate tradeoffs. Concretely, our analysis suggested
that the availability bias is a manifestation of resource-rational decision-making. Being biased can be
resource-rational.

3.6.5 Limitations and future work

In addition to the many phenomena that our model captures there are others that it does not cap-
ture. For instance, UWS with the parameters estimated from the Technion choice prediction compe-
tition for decisions from description does not capture the common-ratio effects observed by Starmer
and Sugden (1989)(Starmer & Sugden, 1989). Consistent with the failure of UWS to capture these
effects, Starmer and Sugden (1989) demonstrated that at least some common-ratio effects are partly
driven by a distortion of stated probabilities that is independent of the outcome. Furthermore,
UWS with the parameters estimated from the Technion choice prediction competition for decisions
from description also cannot capture the violation of weak stochastic transitivity demonstrated by
Tversky (1969) as this effect appears to be driven by people’s limited sensitivity to small differences
in outcome probability. For both experiments, UWS predicted that people would always choose
the gamble with higher expected value. These discrepancies highlight that probability weighting
in decisions from description is impacted not only by the extremity of the associated outcomes but
also by the probabilities themselves. UWS fails to capture these effects because it cannot account for
outcome-independent distortions of probability. Incorporating this distortion into the UWS model
of decisions from description is a potential direction for future research.

It is important to keep in mind that our goal was not to test a specific computational mechanism
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but rather to explore the implications of finite time and limited cognitive resources for decision-
making under uncertainty. We explored these implications under specific simplifying assumptions
about people’s utility function, resources, and cognitive operations that may have to be revised in
the future. The empirical data we examined supported the conclusion that the neural mechanisms
of decision-making share some of the abstract properties of utility-weighted sampling, but there
additional intricacies that remain to be captured. The following discrepancies between our models’
predictions and human behavior could be a starting point for making the utility-weighted sampling
mechanism more realistic: Although our model’s predictions of the Allais paradox are qualitatively
correct, the predicted effect was much smaller than the one observed by Kahneman and Tversky
(1979). Furthermore, despite its large number of parameters, the utility-weighted learning model
does not fully capture the experimental data of Ludvig et al. (2014); in particular, our model could
not predict that participants in Experiment 3 were more risk seeking for non-extreme loss trials than
for non-extreme gain trials. Another avenue towards identifying the computational mechanism that
underly availability biases could be to investigate their neural implementation. Although the utility-
weighted learning model is inspired by neuroscientific findings, our hypotheses about the neural
basis of utility-weighted learning remain to be tested.

Unlike most laboratory experiments, many real-world decisions involve many possible alterna-
tives. This makes extending UWS to multi-alternative decisions an important direction for future
research. One way to extend UWS to multi-alternative choice is to apply the UWS mechanism de-
fined in Equation 3.12 to efficiently estimate the expected utility gain of each option separately and
choose the alternative whose utility estimate is highest:
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∣∣∣∆u(o(a)j )−∆u
∣∣∣ ·
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j )∣∣∣∆u(o(a)j )−∆u

∣∣∣ , (3.38)

a⋆ = argmax
a∈A

Û IS
q̃,s(a), (3.39)

where a ∈ A ranges from the first to the last alternative, and∆u can be thought of as the average
utility gain obtained in past decisions or the reward expectancy conveyed by dopamine, as discussed
above. This mechanism could be very efficient for decisions from experience because it allows mul-
tiple alternatives to be evaluated in parallel. Given the resulting estimates of the expected utility
gain, the brain could read out the preferred action with a winner-take-all network (Maass, 2000).
Alternatively, it is conceivable that decision-makers sometimes reduce multi-alternative decisions
into a series of binary choices and make those choices with the UWS heuristic for binary decisions
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(Equations 3.18–3.21). Finally, it is also conceivable that decision-makers would first identify which
alternatives are most promising by evaluating them separately according to Equation 3.38 and then
apply the UWS heuristic for binary decisions (Equations 3.18–3.21) to choose between the two ac-
tions with the highest estimated utility gains. Future work should evaluate which of these alternative
extensions best predicts people’s multi-alternative decisions from experience.

Our resource-rational analysis assumed that the limited resource is the number of samples that
can be generated. This assumption appears justified for memory-based decisions where sampling
by memory retrieval is the primary cognitive operation. But in decisions from description other
cognitive and perceptual operations, such as inspecting the probabilities, or gauging the differential
utilities of pairs of outcomes also consume a non-negligible amount of time and cognitive resources.
In particular, the cost of determining the differential utility of all pairs of outcomes becomes pro-
hibitive as the number of outcomes increases. Since our analysis ignores these computational costs,
the applicability of our original model of decisions from descriptions is limited to choices with a
small number of possible outcomes. However, this limitation does not apply to our model of deci-
sions from experience, and a recent resource-rational analysis of multi-alternative, multi-outcome
decisions from description captured important aspects of people’s adaptive decision strategies in the
Mouselab paradigm (Lieder, Krueger, & Griffiths, 2017).

While the simulation and integration mechanisms of UWS were derived from first principles, the
choice of the utility function in Equation 3.16 was less principled. We chose it because it is the sim-
plest instantiation of the efficient coding theory proposed by Summerfield and Tsetsos (2015) that
captures our findings. It thus remains to be validated independently. Consistent with this normal-
ized representation of utility, there is neural evidence that the human brain encodes relative value
rather than absolute value (Mullett & Tunney, 2013). Yet, this evidence equally consistent with a
rank-dependent utility function. Neurophysiological data from animal studies (Louie et al., 2011)
and psychophysical data from humans (Louie et al., 2013) speak to the encoding of normalized value,
but further research is needed to determine the exact nature of the brain’s relative utility representa-
tion and its variability.

While we focused on one particular strategy for mitigating resource constraints, namely adjust-
ing the simulation distribution, the brain also appears to adjust the number of samples. Our own
and other recent findings suggest that people draw more samples when the stakes are high (Vul et
al., 2014) and when they are very uncertain (Hamrick, Smith, Griffiths, & Vul, 2015). The models
presented here capture neither of these effects, but future versions of UWS will accommodate them
according to the principle that people make rational use of their finite cognitive resources (Griffiths
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et al., 2015). Recent work has developed a mechanism for determining the optimal number of sam-
ples (Tajima et al., 2016), and future work should integrate this mechanism into UWS.

Testing whether the magnitude of the simulated availability biases is resource-rational will addi-
tionally require independent measurements of people’s cognitive resources. Therefore, measuring
resource constraints independently and using these measurements to derive and test quantitative
predictions of human performance as a function of incentives and time pressure is an important di-
rection for future research. A first step towards deriving these predictions could be to measure how
long it takes to generate a single sample using psychophysical methods (Lengyel, Koblinger, Popović,
& Fiser, 2015). It might also be possible to measure how long it takes to generate a sample by investi-
gating the relationship between the time available to make a choice and the resulting choice variabil-
ity. Alternatively, a lower bound on how long it takes to generate a sample could be derived from
spiking neural network models of how the brain generates samples (Buesing et al., 2011). This bound
on how fast samples can be generated could then be translated into an upper bound on how much
the availability biases simulated here can be reduced by financial incentives. The estimated time per
sample could also be used to derive the cost of sampling in scenarios where people have to trade off
how much computation to invest in a decision against the number of choices they can make (Vul et
al., 2014). The resulting model of the cost of sampling could inform a rational mechanism for choos-
ing the number of samples (Hay et al., 2012; Tajima et al., 2016; Vul et al., 2014) to be generated by
utility-weighted sampling. Future experiments should also test the assumption that the number of
mental simulations is a critical limiting factor to the quality of people’s decisions. This assumption
predicts that time pressure and cognitive load should make people’s risk preferences more inconsis-
tent between gains versus losses. Conversely, instructing or incentivizing participants to simulate
their decision more often should reduce the impact of extreme events.

Another avenue for future research is to investigate whether people use utility-weighted sampling
adaptively. Three mechanisms of adaptivity are conceivable: First, people might adapt the number
of simulations to the decision problem’s incentives for speed and accuracy. Second, people might use
their current estimate of the expected utility gain to adapt their simulation distribution from one
simulation to the next as in adaptive importance sampling (Oh & Berger, 1992):

ūs = Û IS
q,s−1 (3.40)

Third, people might use utility-weighted sampling selectively only for those problems in which they
expect it to work well (Lieder & Griffiths, 2015, 2017).
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Finally, utility-weighted sampling makes a number of novel predictions that can be tested empiri-
cally: Because the predicted availability biases increase with the extremity of the event, the probability-
weighting function (Tversky & Kahneman, 1992) should be monotonic in the outcome’s payoff rela-
tive to other outcomes. According to our UWL model, the rate at which action-outcome associa-
tions are learned is proportional to the absolute value of the reward’s utility. This assumption could
be tested by measuring the temporal evolution of memory biases as a function of outcome extremity
in a modified version of the paradigm by Madan et al. (2014). In addition, the utility-weighted learn-
ing model predicts that whether an outcome becomes overweighted and how strongly depends on
what the decision-maker expected when they experienced that outcome: A person who expected a
large reward will come to overweight a neutral outcome whereas a person whose reward expectation
was zero would come to underweight it. Likewise, people with a negative reward expectation should
come to overweight positive outcomes much more strongly than people with a positive reward ex-
pectation and vice versa. In terms of individual differences, UWL predicts that people with lower
sensitivity to rewards and punishments (Corr, 2004) should be less susceptible to develop availabil-
ity biases in memory recall, frequency estimation, and decision-making than people with higher
reinforcement sensitivity. Furthermore, people who are more sensitive to punishment than to re-
ward should be more prone to develop such biases for losses than for gains, and the opposite should
be true for people who are more sensitive to reward than to punishment.Perhaps the most counter-
intuitive prediction of UWS is that for certain decisions, such as the one illustrated in the Appendix
B, where people’s risk preferences should become more biased the more people think about them.

3.6.6 Conclusion

Overall, the findings presented in this chapter show that utility-weighted sampling is a promising
rational process model of judgment and decision-making that provides a unifying explanation for a
wide range of cognitive biases in memory recall, learning, frequency estimation, decisions from expe-
rience, and decisions from description. According to our resource-rational analysis, all of these avail-
ability biases result from the rational use of limited time and bounded cognitive resources. From this
perspective, cognitive biases are a window on resource-rational information processing rather than a
sign of human irrationality.
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4
A rational solution to the strategy selection

problem*

To succeed in life we have to solve a wide range of problems that place very different demands on
us: sometimes we have to think fast and sometimes we have to think slow (cf. Kahneman, 2011).
For instance, avoiding a car accident requires a split-second decision, whereas founding a successful
start-up requires investing a lot of time into anticipating the future and weighting potential out-
comes appropriately. No single decision mechanism works well across all situations. To meet the
wide range of demands posed by different decision problems, it has been proposed that the human
brain is equipped with multiple decision systems (Dolan & Dayan, 2013) and decision strategies
(Payne, Bettman, & Johnson, 1988). Dual-process theories are a prominent example of this perspec-
tive (Evans, 2003; Evans & Stanovich, 2013; Kahneman, 2011). The coexistence of multiple alternative
strategies is not specific to decision making. People also appear to possess multiple strategies for in-
ference (Gigerenzer & Selten, 2002), memory (Bjorklund & Douglas, 1997), self-control (Braver,
2012), problem solving (Fum & Del Missier, 2001), and mental arithmetic (Siegler, 1999) to name
just a few.

*This chapter is based on Lieder and Griffiths (2017).
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The availability of multiple strategies that are applicable to the same problems raises the question
how people decide when to use which strategy. The fact that so many different strategies have been
observed under different circumstances shows that people’s strategy choices are highly variable and
contingent on the situation and the task (Beach & Mitchell, 1978; Fum & Del Missier, 2001; Payne,
1982; Payne et al., 1988). Overall, the contingency of people’s strategy choices appears to be adap-
tive. Even though under certain circumstances people have been found to use heuristics that cause
systematic errors (Ariely, 2009; Sutherland, 1992), their strategies are typically well-adapted to the
problems to which they are applied (Anderson, 1990; Braver, 2012; Bröder, 2003; Fum & Del Missier,
2001; Payne et al., 1993). For instance, Payne and colleagues found that when the probabilities of al-
ternative outcomes fall off quickly, then decision makers employ frugal heuristics that prioritize the
most probable outcomes at the expense of less probable ones. Similarly, decision makers select fast
heuristics when they are under time pressure but more accurate ones when they are not (Payne et al.,
1988). These and other studies (e.g., Siegler, 1999) have also documented that people’s propensity to
use one strategy rather than another changes over time.

The adaptiveness of people’s strategy choices appears to increase with experience. For instance, as
children gain more experience with mental arithmetic they gradually learn to choose effective and
efficient strategies more frequently (Siegler, 1999). In adults, adaptive changes in strategy selection
have been observed on much shorter time scales. For instance, adults have been found to adapt their
decision strategy to the structure of their decision environment within minutes as they repeatedly
choose between different investment based on multiple attributes (Rieskamp & Otto, 2006): In a
decision environment where the better investment option is determined by a single attribute peo-
ple learn to use a fast-and-frugal heuristic that ignores all other attributes. But when the decision
environment does not have that structure, then people learn to integrate multiple attributes.

How can we explain the variability, task- and context-dependence, and change in people’s strategy
choices? Despite the previous work reviewed in the following section and some recent progress on
how the brain decides how to decide (Boureau, Sokol-Hessner, & Daw, 2015) the strategy selection
problem remains unsolved (Marewski & Link, 2014). Finally, while it is typically assumed that peo-
ple’s use of heuristics is irrational (Ariely, 2009; Marcus, 2009; Sutherland, 1992), there is increasing
evidence for adaptive strategy selection (Boureau et al., 2015; Braver, 2012; Daw, Niv, & Dayan, 2005;
Fum & Del Missier, 2001; Gunzelmann & Anderson, 2003; Keramati, Dezfouli, & Piray, 2011; Payne
et al., 1988). This raises the additional question whether and to what extent people’s strategy choices
are rational.

In this chapter, we formalize the strategy selection problem, derive a rational strategy selection
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mechanism, and show that it can explain a wide range of empirical phenomena including the vari-
ability, contingency, and change of strategy selection across multiple domains – ranging from
decision-making to arithmetic – and time scales. Our theory adds an important missing piece to
the puzzle of bounded rationality by specifying when people should use which heuristic, and our
findings reconcile the two poles of the debate about human rationality by suggesting that people
gradually learn to make increasingly more rational use of their fallible heuristics.

The next section situates our work in the debate about human rationality and previous research
on strategy selection. We then develop an alternative, rational account of strategy selection based on
the idea of rational metareasoning from artificial intelligence research (Russell & Wefald, 1991b). The
following sections evaluate our theory against traditional theories of strategy selection and show that
it provides a unifying explanation for a wide range of phenomena: We show that rational metarea-
soning can account for people’s ability to adaptively choose the sorting strategy that works best for
each individual problem based on limited experience, while traditional theories of strategy selection
cannot. The subsequent sections show that this conclusion holds not only for behavioral strategies
but is equally true of cognitive strategies for decision-making, and mental arithmetic that operate on
internal representations. We conclude with the implications of these findings for the debate about
human rationality and directions for future research.

4.1 Background

4.1.1 The debate about human rationality

The results presented in Chapters 1–3 suggested that major cognitive biases in judgment and decision-
making that have been interpreted as evidence against human rationality are consistent with the
rational use of finite cognitive resources. Concretely, the anchoring bias that pervades human judg-
ment appears to be the manifestation of a resource-rational strategy for drawing inferences under
uncertainty (Chapter 2) and numerous cognitive biases in people’s decisions under uncertainty
are accurately predicted by a resource-rational decision strategy (Chapter 3). This line of work
demonstrates that fallible heuristics can be resource-rational for certain problems under some cir-
cumstances. Similarly, Gigerenzer and colleagues have found that simple, fast-and-frugal heuristics
perform very well when their assumptions match the structure of the environment (Gigerenzer,
2008a, 2008b; Gigerenzer & Brighton, 2009; Gigerenzer & Selten, 2002; Gigerenzer & Todd, 1999;
Todd & Gigerenzer, 2012).
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Scholars who view heuristics as irrational kluges that give rise to fallacies and biases (Ariely, 2009;
Marcus, 2009; Sutherland, 1992) emphasize situations in which the chosen heuristics are maladap-
tive, whereas researchers who interpret heuristics as rational strategies point to situations where
people use them adaptively (Griffiths et al., 2015; Todd & Gigerenzer, 2012). Arguably, most heuris-
tics are neither rational nor irrational per se. Instead, their rationality depends on how well they fit
the problem to which they are being applied. Hence, the degree to which people are rational de-
pends on when they use which heuristic. The critical question thus becomes “Are heuristics chosen
rationally?” In this chapter, we address this question by developing and testing a rational model of
strategy selection.

4.1.2 Previous theories of strategy selection

Strategy selection was initially viewed as a metacognitive decision based on explicit metacognitive
knowledge about which cognitive strategies are best suited for which purposes (Flavell, 1979). Con-
sistent with this perspective, Beach and Mitchell (1978) proposed that people choose decision strate-
gies by performing an explicit cost-benefit analysis. Although Beach and Mitchell (1978) did not
formalize this process enough to make quantitative predictions, their qualitative predictions were
later confirmed in the domain of decision-making (Payne et al., 1988). Payne and colleagues demon-
strated that which decision process performs best is contingent on time pressure and the structure of
the decision problem.

The participants in the experiments conducted by Payne et al. (1988) responded adaptively to
task contingenciesas if their strategy choices were based on a cost-benefit analysis. Yet, under most
circumstances, performing a complete cost-benefit analysis would take substantially longer than ex-
ecuting the most accurate strategy. In order to be beneficial, people’s strategy selection mechanism
has to be efficient. Furthermore, it has to avoid the infinite regress that could potentially result from
reasoning about reasoning. These considerations have led researchers to abandon the idea that strate-
gies are selected by a metacognitive cost-benefit analysis in favor of simpler models that select strate-
gies by learning directly from experience (Erev & Barron, 2005; Rieskamp & Otto, 2006; Shrager
& Siegler, 1998; Siegler, 1988; Siegler & Jeff, 1984). Consistent with this emphasis on learning, mul-
tiple experiments have found that people’s strategy choices become more adaptive with experience
(Bröder, 2003; Payne et al., 1988; Rieskamp & Otto, 2006).

Previous learning-based accounts of strategy selection were based on simple associative learn-
ing (Shrager & Siegler, 1998) and learning from feedback (Erev & Barron, 2005; Rieskamp & Otto,
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2006). These mechanisms can be interpreted as a form of model-free metacognitive reinforcement
learning in the sense they update the decision-maker’s propensity to choose a strategy directly with-
out building a model of what will happen when the strategy is selected†. According to the SSL
(Rieskamp & Otto, 2006) and RELACS (Erev & Barron, 2005) models (defined in detail in Ap-
pendix C.1), people solve the strategy selection problem by learning which strategy works best on
average in a given environment. This learning mechanism does not exploit the fact that every prob-
lem has distinct characteristics that determine the strategies’ effectiveness.

According to the SCADS model (Shrager & Siegler, 1998), people learn to associate strategies
with problem types. Every time a strategy is applied to a problem the association between the prob-
lem’s type and the strategy is strengthened, and this strengthening is strongest when the strategy was
successful. Using the same mechanism, the SCADS model also learns a global association between
each strategy and problems in general. When presented with a problem the SCADS model chooses
the strategy for which the product of the problem type specific association strengths and the global
association strength is highest. This learning mechanism presupposes that each problem has been
identified as an instance of one or more problem types. If each problem belongs to exactly one cat-
egory, then the SCADS model learns to use the same strategy for all problems of a given type, but
each problem can belong to multiple categories.

In his rational analysis of problem solving (Anderson, 1990) developed a more sophisticated strat-
egy selection mechanism according to which people probabilistically select strategies (productions)
that yield a high value of P̂ · G − Ĉ whereG is the value of achieving the goal and P̂ and Ĉ are
Bayesian estimates of the success probability and the cost of achieving the goal. This mechanism has
been implemented in ACT-R to simulate strategy selection learning in problem solving (Gunzel-
mann & Anderson, 2003). However, like the model-free reinforcement learning mechanisms of SSL
and RELACS (Erev & Barron, 2005; Rieskamp & Otto, 2006) the learning mechanism of ACT-R
does not exploit the fat that some problems are more similar than others.

The cognitive niche theory (Marewski & Schooler, 2011) complements theories points out that
people need only choose between those strategies that are applicable in a given situation. It empha-
sizes that the affordances of most situations severely limit the number of applicable strategies, for
instance because the information required by many strategies is unavailable or cannot be recalled.

Recent work in computational neuroscience has modeled how the brain arbitrates between the

†From a different perspective, all theories of strategy selection learning can be seen as model-based be-
cause each strategy corresponds to a certain model of the environment (Gluth, Rieskamp, & Büchel, 2013).
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model-free (habitual) and the model-based (goal-directed) decision system as meta-decision-making
using ideas from reinforcement learning (Boureau et al., 2015; Daw et al., 2005; Keramati et al., 2011).
This approach is promising and the reinforcement-learning framework is very powerful. However,
it has yet to be extended to the complexities of the more general problem of strategy selection. In
the following section, we pursue this idea to provide a new rational analysis of strategy selection that
overcomes the limitations of previous theories.

4.2 Strategy selection learning as metacognitive reinforcement learning

In this section we provide a computational-level theory (Marr, 1982) of the strategy selection prob-
lem and propose a learning and a selection mechanism through which people might solve this prob-
lem. The key idea is that people learn to predict the accuracy and execution time of each strategy
from features of individual problems and choose the strategy with the best predicted speed-accuracy
tradeoff.

4.2.1 The strategy selection problem

Each environmentE can be characterized by the relative frequency PE with which different kinds
of problems occur in it. In most environments, these problems are so diverse that none of people’s
strategies can achieve the optimal speed-accuracy tradeoff on all of them. Optimal performance in
such environments requires selecting different strategies for different types of problems. One way
to achieve this would be to learn the optimal strategy for each problem separately through trial and
error. This approach is unlikely to succeed in complex environments where no problem is exactly
the same as any of the previous ones. Hence, in many real-world environments, learning about
each problem separately would leave the agent completely unprepared for problems it has never
seen before. This can be avoided by exploiting the fact that each problem has perceivable features
f1, . . . , fK that can be used to predict the performance of candidate strategies from their perfor-
mance on previous problems. For instance, the features of a risky choice may include the number of
options, the spread of the outcome probabilities, and the range of possible payoffs.

How good it is to apply strategy s to problem(i) depends not only on the expected reward but
also on the expected cost of executing the strategy. Building on the theory of rational metareasoning
developed in artificial intelligence research (Russell & Wefald, 1991b), this can be quantified by the
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value of computation (VOC):

VOC(s, problem(i)) = E[U(s(problem(i)); problem(i))− cost(s, problem(i))],

where s(problem(i)) is the action the potentially stochastic strategy s selects on problem(i), U(A)

denotes the utility of taking actionA, and cost(s, problem(i)) is the computational cost of executing
strategy s on that problem. In the following we will assume that the computational cost is driven
primarily by the (cognitive) opportunity cost of the strategy’s execution time T (s, problem(i)), that
is

cost(s, problem(i)) = γ · T (s, problem(i)).

The problem of optimal strategy selection can be defined as finding a mappingm : F 7→ S
from feature vectors (f (i) = (f1(problem(i)), . . . , fK(problem(i))) ∈ F) to strategies (s ∈ S)
that maximizes the expected VOC of the selected strategy across all problems the environment might
present. Hence, we can define the strategy selection problem as

argmax
m

∑
problem∈P

PE(problem) · VOC(m(f(problem)), problem),

whereP is the set of problems that can occur.

Critically, the VOC of each strategy depends on the problem, but the strategy has to be chosen en-
tirely based on the perceivable features f and the strategy selection mapping m has to be learned
from experience. In machine learning, these kinds of problems are known as contextual multi-
armed bandits (May, Korda, Lee, & Leslie, 2012). Two critical features of this class of problems are
that they impose an exploration-exploitation tradeoff and require generalization. In the next section,
we will leverage these insights to derive a rational strategy selection learning mechanism.

The experience gained from applying a strategy s to a problem with perceivable features f and ob-
serving an outcome with utility u after executing the strategy for t units of time can be summarized
by the tuple (f , s, u, t). Hence, people’s experience after the first n problems can be summarized by
the history

hn = ((f (1), s(1), u(1), t(1)), . . . , (f (n), s(n), u(n), t(n))),

where f (i), s(i), u(i), t(i) are the feature vector of the ith problem, the strategy that was applied to
it, and the resulting utility and execution time respectively. Strategy selection learning induces a se-
quencem(1),m(2), . . . ,m(N) of strategy selection mappings that depends on the agent’s experience
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(hn) and its strategy selection learning mechanism l : H 7→ MwhereH is the set of possible his-
tories andM is the set of possible strategy selection mechanisms. With this notation, we can express
the agent’s performance on the nth problem by

VOC(m(n)(f (n)), problem(n)),

wherem(n)(f (n)) is the strategy the agent selects for the nth problem, and the strategy selection
mappingm(n) is l(h(n−1)). Since the problem is sampled at random, the expected performance at
time step n is

Vn(l) = EPE
[VOC(m(n)(f (n)), problem(n)) | m(n) = l(h(n−1))].

If the agent solvesN problems before it runs out of time, its total performance is

Vtotal(l) = E
[ N∑
n=1

Vn(l)

]
.

Using this notation, we can define the optimal strategy selection learning mechanism l∗ as the one
that maximizes the agent’s total expected value of computation across all possible sequences of prob-
lems, that is

l∗ = argmax
l

Vtotal(l).

This concludes our computational-level analysis of strategy selection and strategy selection learning.
We will now use this analysis as a starting point for deriving a rational strategy selection learning
mechanism.

4.2.2 A rational process model of strategy selection

Our computational-level analysis identified that a general strategy selection learning mechanism
should be able to transfer knowledge gained from solving one problem to new problems that are
similar. In the reinforcement learning literature generalization is typically achieved by parametric
function approximation (Sutton & Barto, 1998). The simplest version of this approach is to learn
the coefficients of a linear function predicting the value of a state from its features. Such linear ap-
proximations require minimal effort to evaluate and can be learned very efficiently. We therefore
propose that people learn an internal predictive model that approximates the value of applying a
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strategy s to a problem by a weighted average of the problem’s features f1(problem), . . . , fn(problem):

VOC(s, problem) ≈
n∑

k=1

wk,s · fk(problem). (4.1)

This approximation is easy to evaluate, but it is not clear how it can be learned given that the VOC
cannot be observed directly. However, when the strategy s generates a decision, then the VOC can
be decomposed into the utility of the decision’s outcome and the cost of executing the strategy. As-
suming that the cost of executing the strategy is proportional to its execution time, the VOC can be
approximated by

VOC(s, problem) ≈ E[U | problem, s]− γ · E[T | problem, s], (4.2)

whereU is the utility of the outcome obtained by following strategy s, γ is the agent’s opportunity
cost per unit time andE[T | problem, s] is the expected execution time of the strategy swhen
applied to the problem.

Approximating the VOC thus becomes a matter of estimating three quantities: the expected util-
ity of relying on the strategy, the opportunity cost per unit time, and the expected time required
to execute the strategy. The agent can learn its opportunity cost γ by estimating its reward rate
(Boureau et al., 2015; Niv, Daw, Joel, & Dayan, 2007), and the utility of applying the strategy and
its execution time T can be observed. Therefore, when the reward is continuous, then it is possible
to learn an efficient approximation to the VOC by learning linear predictive models of the utility of
its decisions and its execution time and combining them according to

VOC(s, problem) ≈
n∑

k=1

w
(R)
k,s · fk(problem)− γ̂ ·

n∑
k=1

w
(T )
k,s · fk(problem).

This equation is a special case of the general approach specified in Equation 4.1. When the outcome
is binary, then the predictive model of the reward takes the form

P (O = 1 | s, problem) =
1

1 + exp (−
∑n

k=1w
(R)
k,s · fk(problem))

.

We model the agent’s estimate of its opportunity cost γ by the posterior mean E[r | ttotal, rtotal]
of its reward rate r given the sum of rewards rtotal that the agent has experienced and the time since
the beginning of the experiment (ttotal). To do so, we assume that both the prior and the likelihood
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function are Gaussian, that is

P (rtotal/ttotal | r) = N (µ = r, τ = ttotal · 1/60s),

P (r) = N (1, 1).

In this model, the weight of the agent’s experience increases linearly with its time spent in the envi-
ronment, and the prior corresponds to 60 sec worth of experience.

Our theory covers learning and strategy selection. To simulate learning, the agent’s belief about
the reward rate and the feature weights in the predictive model of a strategy’s accuracy and execution
time are updated by Bayesian learning every time it has been executed: The belief about the reward
rate r is updated to P (r | rtotal, ttotal) as described in Section C.1.2 of Appendix C.1. The weights
of the execution time model are updated by Bayesian linear regression (see Section C.1.3 of Appendix
C.1). The weights of the reward model are updated by Bayesian logistic regression (see Section C.1.4
of Appendix C.1) if the reward is binary (i.e., correct vs. incorrect), or by Bayesian linear regression
(see Section C.1.3 of Appendix C.1) when the reward is continuous (e.g., monetary). Lastly, our
model learns which features are relevant for predicting the most recent strategy’s execution time and
reward by performing Bayesian model selection as described in Section C.1.5 of Appendix C.1.

The second component of our model is strategy selection. Given the learned predictive models
of execution time and reward, the agent could predict the expected VOC of each available strategy
and select the strategy with the highest expected VOC. While this approach works well when the
agent has already learned a good approximation to the VOC of each strategy, it ignores the value of
learning about strategies whose performance is still uncertain. Hence, always using the strategy that
appears best could prevent the agent from discovering that other strategies work even better. Yet, on
average, strategies that appear sub-optimal will choose worse actions than the strategy that appears
best. This problem recapitulates the well-known exploration-exploitation dilemma in reinforcement
learning. To solve this problem our model selects strategies by Thompson sampling (May et al.,
2012): For each strategy s, our model samples estimates w̃ = (w̃

(T )
k,s , w̃

(R)
k,s ) of the weightsw =

(w
(T )
k,s , w

(R)
k,s ) of the predictive models of execution time and reward from their respective posterior

distributions, that is

w̃
(T )
k,s ∼ P (w

(T )
k,s | ht−1,s),

w̃
(R)
k,s ∼ P (w

(R)
k,s | ht−1,s),
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where ht−1,s is the agent’s past experience with strategy s at the beginning of trial t. From these
weights w̃, our model predicts the VOC values of all strategies s by

V̂t(s, problem) =
n∑

k=1

w̃
(R)
k,s · fk(problem)− E[γ̂ | ht] ·

n∑
k=1

w̃
(T )
k,s · fk(problem),

whereE[γ̂ | ht] is the posterior expectation of the agent’s reward rate given its past experience.
Finally, our model selects the strategy s∗t with the highest predicted VOC,

s∗t = argmax
s

V̂t(s, problem).

This concludes the description of our model.

Our proposal is similar to model-based reinforcement learning (Dolan & Dayan, 2013; Gläscher,
Daw, Dayan, & O’Doherty, 2010) in that it learns a predictive model. However, both the predictors
and the predicted variables are different. While model-based reinforcement learning aims to predict
the next state and reward from the agent’s action (e.g., “Go left!”), our model learns to predict the
costs and benefits of the agent’s deliberation from the agent’s cognitive strategy (e.g., planning four
steps ahead vs. planning only one step ahead). While model-based reinforcement learning is about
the control of behavior, our model is about the control of mental activities that may have no direct
effect on behavior. In brief, the main difference is that we have modeled metacognitive learning
instead of stimulus-response learning. Despite this difference in semantics, the proposed learning
mechanism is structurally similar to the semi-gradient SARSA algorithm from the reinforcement
learning literature (Sutton & Barto, 1998).

As illustrated in Figure 4.1, our model’s prediction mechanism could be approximated by a simple
feed-forward neural network: The first layer represents the input to the strategy selection network.
The subsequent hidden layers extract features that are predictive of the strategy’s execution time and
accuracy. The second last layer computes a linear combination of those features to predict the execu-
tion time and external reward of applying the strategy, and the final layer combines these predictions
into an estimate of the VOC of applying the strategy in the current state. The weights of this net-
work could be learned by a basic error-driven learning mechanism, and the features might emerge
from applying the same error-driven learning mechanism to connections between the hidden layers
(Mnih et al., 2015). With one such network per strategy a simple winner-take-all network (Maass,
2000) could read out the strategy with the highest VOC. This neural network formulation suggests
that a single forward pass through a small number of layers may be sufficient to compute each strat-
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egy’s VOC. The action potentials and synaptic transmission required to propagate neural activity
from one layer to the next happens in milliseconds. The winner-take-all mechanism for reading
out the strategy with the highest VOC can be performed in less than one tenth of a second (Oster,
Douglas, & Liu, 2009). Hence, the brain might be able to execute the proposed strategy selection
mechanism within fractions of a second.

4.2.3 Summary

We have derived a rational process model of strategy selection as an efficient approximation to the
optimal solution prescribed by rational metareasoning. In contrast to previous accounts of strategy
selection, our model postulates a more sophisticated, feature-based representation of the problem
to be solved and a learning mechanism that achieves generalization. Instead of just learning about
the reward that each strategy obtains on average our model learns to predict each strategy’s execution
time and expected reward on each individual problem. Hence, while previous models learned which
strategy works best on average, our model learns to predict which strategy is best for each individual
problem. Whereas previous theories of strategy selection (Erev & Barron, 2005; Rieskamp & Otto,
2006; Siegler, 1988; Siegler & Jeff, 1984; Siegler & Shipley, 1995) rejected the ideal of a cost-benefit
analysis as intractable, we propose that people learn to approximate it efficiently. Note, however,
that the consideration of the cost of thinking (Shugan, 1980) is not the distinguishing feature of our
model because costs can be incorporated into the reward functions of previous theories of strategy
selection. Rather, the main innovation of our theory is that strategies are chosen based on the fea-
tures of the problem to be solved. The remainder of this chapter shows that this allows our model to
capture aspects of human cognition that were left unexplained by previous theories.

4.3 Experiment 1: Evaluating the model with sorting strategies

To test whether our rational model of strategy selection leaning can better account for how people’s
strategy choices change with experience than traditional context-free accounts, like RELACS, SSL
and SCADS, we designed an experiment in which feature-based versus context-free strategy selec-
tion learning make qualitatively different predictions‡. To differentiate between these two accounts
we chose a domain in which the performance of alternative strategies is well understood and differs
dramatically depending on easily detectable features of the problem. Furthermore, we were looking

‡A preliminary version of this study appeared in Lieder, Plunkett, et al. (2014).
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Figure 4.1: Our rational process model of strategy selection learning could be implemented in a
simple feed-forward neural network

for a domain in which we could directly observe people’s strategy choices. These considerations led
us to study how people learn to choose between two alternative strategies for sorting a list of num-
bers: cocktail sort andmerge sort (Knuth, 1998). We chose these two sorting strategies because they
have opposite strengths and weaknesses. Cocktail sort is very fast for short and nearly-sorted lists,
but in the worst case its runtime increases quadratically with the length of the list (O(n2)). Thus.
for long, unsorted, or reversely sorted lists cocktail sort is extremely inefficient. By contrast, the ex-
ecution time of merge sort does not depend on the degree to which the list is correctly or reversely
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sorted and its execution time increases only log-linearly with the length of the list (O(n · log(n))).
In the following we will assume that the task is to sort a list of numbers in ascending order.

To apply our theory to model how people learn to select between these two sorting strategies, we
have to specify the features by which sorting problems are represented. For simplicity, we assume
that the basic features are the length | L | of the listL = (e1, e2, . . . , e|L|) and a measure of its
presortedness:

f1 =| L |,

f2 = |{m : em > em+1}|,

where | A | denotes the number of elements in the set or listA. The second feature estimates the
number of pairs of elements that would have to be swapped in order to sort the list in ascending
order from the number of times one element is larger than the next. Since it is well known that the
runtimes of sorting algorithms are polynomials in the length of the list and its logarithm, we assume
that the feature vector f includes all terms of the form

fk11 · log(f1)k2 · fk32 · log(f2)k4 ,

where k1, k2, k3, k4 ∈ {0, 1, 2} and
∑

i ki ≤ 2. As described above, our model will select a subset
of these features and use them to predict the execution time and success probability of each sorting
strategy.

4.3.1 Pilot studies and simulations

To ensure that our experiment would be able to discriminate between rational metareasoning, SSL,
RELACS, and SCADS, we simulated a number of candidate experiments. These simulations re-
quired a model of each strategy’s performance. To obtain this execution time model, we conducted
two pilot experiments in which we measured the execution time characteristics of cocktail sort (Pilot
Experiment 1) and merge sort (Pilot Experiment 2) on different types of lists. The results of these pi-
lot experiments will also allow us to determine when each strategy should be used to achieve optimal
performance.

We recruited 200 participants on Amazon Mechanical Turk: 100 for each pilot experiment. Each
participant was paid 75 cents for about 15 minutes of work. In Pilot Experiment 1 participants were
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required to follow the step-by-step instructions of the cocktail sort strategy (see Figure 4.2a). In Pilot
Experiment 2 participants were required to follow the step-by-step instructions of the merge sort
strategy (see Figure 4.2b). Participants were given detailed written instructions that precisely speci-
fied the strategy they had to execute. Furthermore, at each step the interface allowed only the correct
next move of the required strategy and participants received feedback when they attempted an incor-
rect move. After completing four practice trials, participants were randomly assigned to sort a series
of lists of varying lengths and presortedness. The lists were randomly generated so that each list was
equally likely to be nearly sorted (1-20% inversions), unsorted (21-80% inversions), or nearly inversely
sorted (81-100% inversions). Each list was equally likely to be very short (3-8 elements), short (9-16
elements), long (17-32 elements), or very long (33-56 elements). These lists were distributed across
participants such that the total anticipated sorting time was between 10 and 20 minutes.

Figure 4.2: Interfaces used in Experiment 1 to train participants to perform (a) cocktail sort and
(b) merge sort.

We used the measured sorting times to estimate how long comparisons and moves take for each
strategy. For each list, we regressed the sorting times of each strategy on the number of comparisons
and the number of moves that it performed on that list. The resulting model for the execution time
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TCS of cocktail sort (CS) was

TCS = t̂CS + ϵCS ,

t̂CS = 19.59 + 0.19 · ncomparisons + 0.31 · nmoves,

ϵCS ∼ N (0, 0.21 · t̂2CS),

(4.3)

where t̂CS is the expected execution time, ϵCS is the noise, ncomparisons is the number of compar-
isons and nmoves is the number of moves. For merge sort (MS) our data showed that both compar-
isons and moves took substantially longer:

TMS = t̂MS + ϵMS ,

t̂MS = 13.98 + 1.10 · ncomparisons + 0.52 · nmoves,

ϵMS ∼ N (0, 0.15 · t̂2MS).

(4.4)

According to these execution time models (Equations 3-4) and the number of comparisons and
moves required by these sorting strategies, people should choose merge sort for long and nearly
inversely sorted lists and cocktail sort for lists that are either nearly-sorted or short. We will therefore
classify people’s strategy choices as adaptive when they conform to these rules and as non-adaptive
when they violate them.

The execution time models of the two strategies also allowed us to simulate 104 candidate exper-
iments according to rational metareasoning, SSL, RELACS, and SCADS. To apply SSL, RELACS,
and SCADS to sorting strategies, we had to specify the reward function. We evaluated three notions
of reward: i) correctness (r ∈ {−0.1,+0.1}§, ii) correctness minus time cost (r − γ · t, where t is
the execution time and γ = 1 is the opportunity cost), and iii) reward rate (r/t). Each of the three
theories (SSL, RELACS, and SCADS) was combined with each of these three notions of reward
leading to 9 alternative models in total. Since the SCADS model presupposes that each problem
is characterized by a collection of binary features we designed the following categories: short lists
(length ≤ 16), long lists (length ≥ 32), nearly sorted lists (less than 10% inversions), and random
lists (more than 25% inversions). According to the SCADS model, each problem can belong to mul-
tiple categories or none at all. To obtain an upper bound on how well the SCADS model can select
sorting strategies, we also considered three SCADS models with categories that were optimized for
this experiment. These categories were short-and-presorted, long-and-presorted, short-and-inverted,

§These specific values were taken from the SCADS model (Shrager & Siegler, 1998).

175



long-and-inverted, short-and-inverted, long-and-disordered, and short-and-disordered. Each of
these categories is the conjunction of one attribute based on length (short means≤ 25 and long
means> 25) and one attribute based on presortedness (presorted means less than 25% inversions, in-
verted means more than 75% inversions, and disordered means 25–75% inversions). All associations
between strategies and categories were initialized with a strength equivalent to one successful appli-
cation, and the global strategy-reward associations were initialized in the same way. For consistency,
the time cost parameter γ of the rational metareasoning model was also set to 1.¶

Our simulations identified several candidate experiments for which rational metareasoning made
qualitatively different predictions than SSL, RELACS, and SCADS. We selected the experimental
design shown in Table 4.1 because it achieved the best tradeoff between discriminability and dura-
tion. For this experimental design, rational metareasoning predicted that the choices of more than
70% of our participants would demonstrate adaptive strategy selection, whereas the SSL, RELACS,
and SCADS models all predicted that people would consistently fail to select their sorting strategy
adaptively (see Figure 4.4).

4.3.2 Method

We recruited 100 participants on Amazon Mechanical Turk. Each participant was paid $1.25 for
about 20 minutes of work. The experiment comprised three blocks: the training block, the choice
block, and the execution block.

In the training block, each participant was taught the cocktail sort strategy and the merge sort
strategy. In each of the 11 training trials summarized in Table 4.1 participants were instructed which
strategy to use. The interface shown in Figure 4.2 enforced that each of its step was executed cor-
rectly. Participants first practiced cocktail sort for five trials. Next, they practiced merge sort for
four trials. These practice trials comprised nearly-reversely sorted lists of lengths 4, 8, and 16 and
nearly-sorted lists of length 16 and 32. The nearly-sorted lists were created from ascending lists by in-
serting a randomly selected element at a random location. Nearly inversely sorted lists were created
by applying the same procedure to a descending list. Finally, the last two trials contrasted the two
strategies on two long, nearly-sorted lists (see Table 4.1).

¶The precise weighting of time cost versus error cost was irrelevant in these simulations because each
sorting strategy was guaranteed to always generate a correct solution. Thus, there was no need to simulate
how people estimate the time cost from experience.

176



Table 4.1: Design of Experiment 1

Training Block Choice Block

Trial Strategy Sequence Inversions Trial Sequence Inversions
Nr. Length Nr. Length

1 Cocktail Sort 4 3 1 64 63
2 Cocktail Sort 8 7 2 61 60
3 Cocktail Sort 16 15 3 58 57
4 Cocktail Sort 16 1 4 55 54
5 Cocktail Sort 32 31 5 52 51
6 Merge Sort 4 3 6 49 48
7 Merge Sort 8 7 7 64 1
8 Merge Sort 16 15 8 61 1
9 Merge Sort 16 15 9 58 1
10 Cocktail Sort 32 1 10 55 1
11 Merge Sort 32 1 11 52 1

12 49 1
13 24 1
14 21 1
15 18 1
16 15 1
17 12 1

In the choice block, participants were shown 18 test lists and asked to choose which strategy (cock-
tail sort or merge sort) they would use if they had to sort it. To incentivize participants to choose the
more efficient strategy, the instructions announced that in the following block one of their choices
would be selected at random and they would have to execute it. The 18 test lists comprised six exam-
ples of each of three types of lists: long and nearly inversely sorted, long and nearly-sorted, and short
and nearly-sorted (see Table 4.1). The order of these lists was randomized across participants.

In the execution block, one of the 12 short lists from the choice block was selected at random, and
the participant had to sort it using the strategy they had selected for it.
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4.3.3 Results

Our participants completed the experiment in 24.7 ± 6.7minutes (mean± standard deviation).
In the training phase, the median number of errors per list was 2.45, and 95% of our participants
made between 0.73 and 12.55 errors per list. The most important outcome was the relative fre-
quency of adaptive strategy choices: On average, our participants chose merge sort for 4.9 of the 6
long and nearly inversely sorted lists for which it was optimal, that is 81.67% of the time. To quan-
tify our uncertainty about this and subsequent frequency estimates we computed credible intervals
based on a uniform prior (Edwards, Lindman, & Savage, 1963). According to this analysis, we can
be 95% confident that the frequency with which people used merge sort on long nearly inversely
sorted lists lies between 77.8% and 93.0%. By contrast, our participants chose merge sort for only
1.79 of the 6 nearly-sorted long lists for which it was inferior to cocktail sort (29.83% of the time,
95% credible interval: [12.9%, 32.4%]), and for only 1.62 of the 6 nearly-sorted short lists for
which it was also inferior (27.00% of the time, 95% credible interval: [16.7%, 40.4%]); see Fig-
ure 4.3A. Thus, our participants chose merge sort significantly more often than cocktail sort when
it was superior (p < 10−10; Cohen’sw = 6.12). But, when merge sort was inferior, they chose
it significantly less often than cocktail sort (p < 10−7, Cohen’sw = 6.33). Overall, 83% of our
participants chose merge sort more often when it was the superior strategy than when cocktail sort
was the superior strategy and vice versa (95% credible interval: [74.9%; 89.4%]; see Figure 4.3). The
high frequency of this adaptive strategy choice pattern provides strong evidence for the hypothesis
that people’s strategy choices are informed by features of the problem to be solved, because it would
be extremely unlikely otherwise (p < 10−11, Cohen’sw = 6.60). This finding was predicted by
our rational metareasoning model of strategy selection which achieved adaptive strategy selection
in 70.5% of the simulations (p < 10−14) and the SCADS model with optimized categories and
the VOC-based reward function (performance minus time cost) which achieved adaptive strategy
selection in 59.0% of the simulations (p < 10−5) but not by any of the other SCADS, RELACS,
and SSL models (all p ≥ 0.17). Figure 4.3A compares the proportion of participants who chose
their sorting strategy adaptively with the models’ predictions. The non-overlapping credible inter-
vals suggest that we can be at least 95% confident that people’s strategy choices were more adaptive
than predicted by SSL, RELACS, or SCADS and a series of t-tests confirmed this interpretation (all
p < 0.001). While the frequency of adaptive strategy choices predicted by rational metareasoning
(70.5 ± 3.2%) was also significantly higher than for any of the alternative models (all p < 0.01),
our participants chose their strategies even more adaptively than our rational metareasoning model
predicted (83.0% vs. 70.5%, t(298) = 2.34, p = 0.01). Like people, rational metareasoning se-
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lected merge sort for significantly more than half of the lists that were long and inverted (p < 10−6)
but for significantly less than half of the lists that were long and presorted (p < 10−15) or short
and presorted (p < 10−15). As shown in Figure 4.3B, none of the alternative models captured this
pattern.

Our model has four components: i) choosing strategies based on their VOC by trading off ex-
pected performance versus expected cost, ii) learning to predict the performance of strategies from
features of individual problems, iii) learning separate predictive models of computational effort and
reward, and iv) meta-cognitive exploration by Thompson sampling. To determine which compo-
nents of our model are critical to its ability to choose strategies adaptively, we created additional
models by removing each of the four components in turn. This resulted in five additional models:
one rational metareasoning model without features, one rational metareasoning model without ex-
ploration, two models that choose strategies based on criteria other than the VOC, and one model
that approximated the VOC directly without learning to predict execution time and reward sepa-
rately. The last three models use the same reward functions as the three instantiations of each of the
previous theories of strategy selection learning: reward only, reward rate, and reward minus time
cost; while the first two models choose strategies based on a criterion other than the VOC, the last
model learns a model-free approximation to the VOC without learning to predict either deliberation
time or accuracy.

To evaluate these “lesioned” models, we simulated the sorting experiment according to each of
them and measured how often the resulting strategy choices were adaptive (see Figure 4.8 in the
Appendix C). We found that the features and the VOC-based strategy selection mechanism were
necessary to capture human performance. Exploration and learning separate predictive models for
execution time and accuracy were not necessary to capture human performance in the sorting task,
but they were necessary to capture human performance in the experiments simulated below; de-
tailed statistical analyses are provided in the Appendix C.

4.3.4 Discussion

We evaluated rational metareasoning against three existing theories of human strategy selection. We
found that the predictions of rational metareasoning were qualitatively correct and that its choices
came close to human performance. By contrast, the nine alternative models instantiating previ-
ous theories completely failed to predict people’s adaptive strategy choices in our experiment: The
RELACS and SSL models do not represent problem features and thus cannot account for people’s
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Figure 4.3: Pattern of strategy choices in Experiment 1. A: Percentage of participants who chose
merge sort more often when it was superior than when it was not. Error bars indicate 95% credible
intervals. The results for SCADS, SSL, and RELACS correspond to the version of the respective
model that achieved the highest frequency of adaptive strategy selection. B: Relative frequency
with which humans and models chose merge sort by list type.
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ability to learn how those features affect each strategy’s performance. The basic associative learning
mechanism assumed by SSL and RELACS was maladaptive in Experiment 1 because cocktail sort
was faster for most training lists but substantially slower for the long, nearly inversely sorted test
lists.

The primary advantage allowing our model to perform better than SSL and RELACS is that it
leverages problem features that distinguish the lists for which cocktail sort is superior from the lists
for which merge sort is superior. If SSL and RELACS were applied two either set of lists separately,
they would learn to identify the correct strategy for each of them. However, in the real world, prob-
lems rarely come with a single label that identifies the correct strategy. Instead, the correct strategy
has to be inferred from a combination of multiple features (e.g., length and presortedness) none of
which is sufficient to choose correct strategy on its own. Our rational metareasoning model handles
this challenge but SSL and RELACS do not address it yet.

The SCADS model failed mainly because its associative learning mechanism was fooled by the
imbalance between the training examples for cocktail sort and merge sort. Furthermore, the strategy
selection component of the SCADS model can neither extrapolate nor capture the non-additive
interaction between length and presortedness.

Our findings suggest that people leverage the features of individual problems to learn how to se-
lect strategies adaptively. The success of the rational metareasoning model and its evaluation against
lesioned metareasoning models suggests that our hypothesis that people learn to predict the VOC of
alternative strategies from the features of individual problems may be able to account for the adap-
tive flexibility of human strategy selection.

In contrast to the sorting strategies in Experiment 1, most cognitive strategies operate on internal
representations. In principle, strategies that operate on internal representations could be selected
by a different mechanism than strategies that operate on external representations. However, there
are two reasons to expect our conclusions to transfer: First, people routinely apply strategies that
they have applied to external objects to their internal representations of those objects. For instance,
mental arithmetic is based on calculating with fingers. Thus, the strategies people use to order things
mentally might also be based on the strategies they use to sort physical objects. Second, strategy
selection can be seen as an instance of metacognitive control, and metacognitive processes tend to
be domain general. In the following sections, we show that our conclusions do indeed transfer to
cognitive strategies that operate on internal representations.

181



4.4 Cognitive flexibility in complex decision environments

People are known to use a wide repertoire of different heuristics to make decisions under risk (Payne
et al., 1993). These strategies include fast-and-frugal heuristics which, as the name suggests, per-
form very few computations and use only a small subset of the available information (Gigerenzer
& Gaissmaier, 2011). For instance, the lexicographic heuristic (LEX) focuses exclusively on the most
probable outcome that distinguishes between the available options and ignores all other possible
outcomes. Another fast-and-frugal heuristic that people might sometimes use is Elimination-By-
Aspects (Tversky, 1972, EBA;). Here, we used the deterministic version of EBA described by (Payne
et al., 1988). This heuristic starts by eliminating options whose payoff for the most probable out-
come falls below a certain threshold. If more than one option remains, EBA repeats the elimination
process with the second most probable outcome. This process repeats until only one option remains
or all outcomes have been processed. After the elimination step EBA chooses one of the remain-
ing outcomes at random. In addition to fast-and-frugal heuristics, people’s repertoire also includes
more time consuming but potentially more accurate strategies such as the weighted-additive strategy
(WADD). WADD first computes each option’s expected value, and then chooses the option whose
expected value is highest.

In addition to gradually adapting their strategy choices to the structure of the environment
(Rieskamp & Otto, 2006) people can also flexibly switch their strategy as soon as a different prob-
lem is presented. (Payne et al., 1988) provided a compelling demonstration of this phenomenon in
risky choice: Participants chose between multiple gambles described by their possible payoffs and
their respective probabilities. There was a fixed set of possible outcomes that occurred with known
probabilities and the gambles differed in the payoffs they assigned to these outcomes. Participants
were presented with four types of decision problems that were defined by the presence or absence
of a time constraint (15 seconds vs. none) and the dispersion of the outcomes’ probabilities (low vs.
high); high dispersion means that some outcomes are much more probable than others, whereas
low dispersion means that all outcomes are almost equally likely. Ten instances of each of the four
problem types were intermixed in random order. The outcomes’ payoffs ranged from $0 to $9.99,
and their values and probabilities were stated numerically. (Payne et al., 1988) used process tracing
to infer which strategies their participants were using: The payoffs and their probabilities were re-
vealed only when the participant clicked on the corresponding cell of the payoff matrix displayed on
the screen, and all mouse clicks were recorded. This allowed Payne and colleagues to measure how
often people used the fast-and-frugal heuristics (LEX and EBA) for different types of problems by
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the percentage of time people spent on the options’ payoffs for the most probable outcome. For the
expected-value strategy WADD this proportion is only 25%, but for the fast-and-frugal heuristics
LEX and EBA it can be up to 100%. The experiment revealed that people adaptively switch deci-
sion strategies in the absence of feedback: When the dispersion of outcome probabilities was high,
people focused more on the most probable outcome than when all outcomes were almost equally
probable. Time pressure also increased people’s propensity for such selective and attribute-based
processing; see Figure 4.4. Thus, participants appeared to use fast-and-frugal heuristics more fre-
quently when they had to be fast and when all but one or two outcomes were extremely improbable.
This makes sense because the fast-and-frugal heuristics LEX and EBA are fast precisely because they
focus on the most predictive attributes instead of integrating all attributes.

We investigated whether rational metareasoning can account for people’s adaptive flexibility in
this experiment. To do so, we simulated the experiment by applying our model to the selection
between the ten decision strategies considered by (Payne et al., 1988) including WADD and fast-
and-frugal heuristics such as LEX and EBA. To simulate each strategy’s execution time we counted
how many elementary operations (Johnson & Payne, 1985) it would perform on a given problem
and assumed that each of them takes one second. This allowed us to simulate the effect of the time
limit on a strategy’s performance by having each strategy return its current best guess when it exceeds
the time limit (Payne et al., 1988). For the purpose of strategy selection learning, our model repre-
sented each decision problem by five simple and easily computed features: the number of possible
outcomes, the number of options, the number of inputs per available computation, the highest out-
come probability, and the difference between the highest and the lowest payoff. Our model used
these features to learn a predictive model of each strategy’s relative reward

rrel(s; o) =
V (s(D), o)

max
a

V (a, o)
,

where s(D) is the gamble that strategy s chooses in decision problemD,V (c, o) is the payoff of
choice c if the outcome is o, and the denominator is the highest payoff the agent could have achieved
given that the outcome was o. To choose a strategy, the predicted relative reward r̂rel is translated
into the predicted absolute reward r̂ by the transformation

r̂ = min{rmin + (rmax − rmin) · r̂rel, rmax},

where rmin and rmax are the smallest and the largest possible payoff of the current gamble respec-
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tively. The model then integrates the predicted absolute reward and the predicted time cost into a
prediction of the strategy’s VOC according to Equation 4.2 and chooses the strategy with the highest
VOC as usual. The priors on all feature weights of the score and execution time models were stan-
dard normal distributions. The simulation assumed that people knew their opportunity cost and
did not have to learn it from experience. Rather than requiring the model to learn the time cost as
outlined above, the opportunity cost was set to $7 per hour and normalized by the maximum payoff
($10) to make it commensurable with the normalized rewards.

To compare people’s strategy choices to rational metareasoning, we performed 1000 simulations
of people’s strategy choices in this experiment. In each simulation, we modeled people’s prior knowl-
edge about risky choice strategies by letting our model learn from ten randomly generated instances
of each of the 144 types of decision problems considered by Payne et al. (1988). We then applied
rational metareasoning with the learned model of the strategies’ execution time and expected re-
ward to a simulation of Experiment 1 from Payne et al. (1988). On each simulated trial, we randomly
picked one of the four instances and generated the payoffs and outcome probabilities according to
the problem type: Outcome distributions with low dispersion were generated by sampling outcome
probabilities independently from the standard uniform distribution and dividing them by their
sum. Outcome distributions with high dispersion were generated by sampling the outcome proba-
bilities sequentially such that the second largest probability was at most 25% of the largest one, the
third largest probability was at most 25% of the second largest one, and so on. Since the participants
in this experiment received no feedback, our simulation assumed no learning during the experiment.

To evaluate our theory against alternative hypotheses, we also ran 1000 simulations according
to SCADS. To evaluate our theory against alternative hypotheses, we also ran 1000 simulations ac-
cording to the SCADS model. We did not evaluate SSL or RELACS because these theories do not
distinguish different kinds of problems and hence cannot account for the phenomena observed by
Payne et al. (1988).

The SCADS model was equipped with nine categories (time pressure, no time pressure, many
options (> 3), few options (≤ 3), many possible outcomes (> 3), few possible outcomes (≤ 3),
high stakes (range of payoffs≥ 50% of highest payoff), low-stakes (range of payoffs≤ 10% of high-
est payoff), and non-compensatory (largest outcome probability> 0.5)). As before, we considered
three instances of SCADS whose reward functions were either the relative payoff, the relative payoff
minus the opportunity cost of the strategy’s execution time, or the reward rate. The SCADS model’s
category-specific and global strategy-reward associations were initialized with strengths equivalent to
one observation per strategy.

184



We found that rational metareasoning correctly predicted that time-pressure and probability
dispersion increase people’s propensity to use the fast-and-frugal heuristics LEX and EBA; see Fig-
ure 4.4. Time pressure increased the predicted frequency of fast, attribute-based processing by
29.69%(t(1998) = 9.70, p < 10−15), and high dispersion of the outcome probabilities increased
the predicted frequency of fast, attribute-based processing by 44.11%(t(1998) = 14.41, p <

10−15). Furthermore, their strategy choices only change in response to reward or punishment but
the experiment provided neither. The SCADS model can choose strategies adaptively in principle,
but in our simulations its strategy choices were dominated by the global, problem-independent as-
sociations. Consequently, our SCADS models always converged onto a single strategy during the
training phase and continued to do so in the test trials. Hence, the predicted effects of time pressure
(−0.1 to 0%, all p ≥ 0.4955) and dispersion (0% to 0.05%, all p ≥ 0.4978) were not signifi-
cantly different from zero. In conclusion, rational metareasoning can account for adaptive flexibility
in decision-making under risk but SSL, RELACS, and SCADS cannot. These results suggest that
rational metareasoning can capture the adaptive flexibility of people’s strategy choices not only for
behavioral strategies that manipulate external representations but also for cognitive strategies that
operate on internal representations.

To evaluate which components of rational metareasoning are critical to capture people’s adaptive
decision-making, we lesioned our model by separately removing each of its four components. We
found that the feature-based problem representations and exploration were critical to the model’s
adaptive strategy choices but learning separate models of the costs and benefits and choosing strate-
gies based on the VOC was not; for more detail see Appendix C. Although learning about the time
cost was not necessary to perform well in the experiment by Payne et al. (1988), there are other sce-
narios, such as the sorting experiment, where this is critical.

Having evaluated our rational theory of strategy selection learning in the domain of decision-
making, we now illustrate its generality by showing that it can also capture how people learn to solve
complex problems and the development of mental arithmetic skills in children.

4.5 Learning to use the right strategy in problem solving

To solve complex problems, people employ some general and many domain-specific cognitive strate-
gies. Hence, learning when to use which problem-solving strategy may be an important component
of learning how to solve challenging problems. Our models of strategy selection learning may thus
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Figure 4.4: Rational metareasoning predicts the increase in selective attribute-based processing
with dispersion and time pressure observed by (Payne et al., 1988).
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be useful for answering this important question and finding better ways to teach problem-solving.

Previous experiments suggest that people choose problem-solving strategies adaptively depending
on task and context (Fum & Del Missier, 2001). This ability to choose problem-appropriate strate-
gies appears to be learned from experience. Gunzelmann and Anderson (2001, 2003) found that
people learn to solve Tower of Hanoi problems in increasingly fewer steps by transitioning from in-
effective guessing strategies to increasingly more effective planning strategies. In the classic Tower of
Hanoi task the participant is presented with a large disk, a medium disk, and a small disk that are dis-
tributed over three pegs. Their task is to move the disks from their initial configuration into a target
configuration under the constraints that they can move only one disk at a time and that a larger disk
must not be placed on top of a smaller disk.

In this section, we investigate whether our rational metareasoning model can explain how people
learn that they can solve problems more effectively by planning more. To do so, we simulate the ex-
periment by Gunzelmann and Anderson (2001) that posed people problems that were structurally
equivalent to the Tower of Hanoi task. Each participant solved a series of 12 problems in which both
the initial configuration and the target configuration were flat states – configurations in which each
of the three disks is on a different peg. The target state was always five moves away from the starting
state. They found that each of their participants’ moves followed one of three strategies: the subgoal
strategy, the flat-to-flat strategy, or the guessing strategy. The subgoal strategy solves the problem in
three steps: Its first subgoal is to moves the large disk to its target location. If this cannot be accom-
plished in a single move, then it adds subgoals to vacate the target peg and/or free the large disk. If
one of these sub-tasks cannot be achieved by a single move, it adds another subgoal to make enable
it. Once the largest disk is in the correct place, the subgoal to move the medium disk to its target
location will be pursued, and so on. The flat-to-flat strategy transforms one flat state into another
by swapping the small disk with either the large disk or the medium disk depending on which of
the resulting flat states is closer to the goal. Finally, the guessing strategy chooses a legal move at ran-
dom. The process of choosing a strategy, executing it, and updating the model is repeated until the
problem is solved.

The experiment by Gunzelmann and Anderson (2001) comprised two blocks of planning prob-
lems separated by a filler task. There were 2× 2 conditions defined by the difficulty of the problems
in the first block (easy vs. difficult) and the difficulty of the problems in the second block (easy vs.
difficult). In the hard problems moving the large disk to its target location requires two nested sub-
goals: the subgoal to remove the medium disk from the target location and the sub-subgoal to vacate
the peg to which the medium disk should be moved. In the easy problems, by contrast, the target
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location of the large disk can be vacated directly without setting a sub-subgoal. The sequences of
moves taken by the participants were analyzed to diagnose which of the three strategies were used on
each trial. These analyses revealed that the frequency of the random-strategy and the flat-to-flat strat-
egy decreased over time while the frequency of the subgoal strategy increased. These effects occurred
in all four conditions of the experiment. The decrease in the frequency of the random strategy in-
dicates that people learned to plan more, and the increase in the frequency of the subgoal strategy
relative to the flat-to-flat strategy indicates that people learned to plan more effectively. According
to the ACT-R model by Gunzelmann and Anderson (2001)(Gunzelmann & Anderson, 2001), these
adaptive changes result from people learning that planning is more effective than initially assumed
whereas guessing is less effective than initially assumed.

Next, we investigate whether our rational metareasoning model can explain these phenomena
as well as the ACT-R model by Gunzelmann and Anderson (2001) and which components of our
model are necessary to capture them.

4.5.1 Model and Methods

To simulate the experiment by Gunzelmann and Anderson (2001), we applied our model to selec-
tion between the three strategies defined above: the guessing strategy, the flat-to-flat strategy, and
the subgoal strategy. Our simulation assumed that feedback is binary: the reward is one if the strat-
egy reached the target state and zero otherwise. According to our model, people learn to predict the
performance of each strategy from three simple features of Tower-of-Hanoi problems: the number
of disks that are in the wrong position, whether or not the current state is flat, and the height of the
tallest tower. In addition, the Bayesian regression models of the strategies’ performance and execu-
tion time included a constant term that captures all features that do not vary between three-disk,
flat-to-flat Tower of Hanoi problems. The model’s parameters specified how long it takes to execute
a move (τmove), the time required for planning how to place a disk in the right place measured in
moves (τplan), the expected performance of guessing (ρguess), the expected performance of planning
(ρplan), and the precision of the prior distributions of the execution time models and the reward
models (πprior).

The prior on the coefficients of the predictive models of the strategies’ execution time and reward
were set to P (β(s)T ) = N (µ

(s)
T ,Π−1

T )andP (β
(s)
R ) = N (µ

(s)
R ,Π−1

R ) respectively where s ∈
{guess,flat-to-flat,subgoal} indexes the strategy:
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(µ
(guess)
T µ

(flat-to-flat)
T µ

(subgoal)
T = τmove ·


0 τplan τplan

0 −1 0

0 1 0

1 0 0

 ,

(µ
(guess)
R µ

(flat-to-flat)
R µ

(subgoal)
R =


0 0 0

0 0 0

0 0 0

ρguess ρplan ρplan

 ,

ΠT = ΠR = π ·


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

The rows of the matrices above correspond to features listed above and columns correspond to
strategies (guessing, flat-to-flat, subgoal strategy). The prior on the error variance of the execution
time model was Gamma(1,1).

Following Gunzelmann and Anderson (2001), we assumed that executing a move takes 4 seconds
τmove = 4. Gunzelmann and Anderson (2001, 2003) also assumed that the relative cost of time is
such that achieving the goal is worth 50 seconds. We therefore fixed the agent’s estimate of its op-
portunity cost to 1

50sec and set the reward of achieving the goal to 1. We modeled the time taken by
the random strategy as the time per move times number of random moves. The subgoal strategy
and the flat-to-flat-strategy are associated with an additional time cost of planning. We modeled the
cost of planning by the number of subgoals times the time it takes to set a subgoal and plan how to
achieve it (i.e. τsubgoal). Our model thereby captures that executing the subgoal strategy takes longer
on problems that require more subgoals (difficult problems) than on problems that require fewer
subgoals (easy problems). For the flat-to-flat strategy the planning time was set to τsubgoal to reflect an
intermediate amount of planning.

To determine which components of our model are supported by the data, we also evaluated the
five lesioned metareasoning models described above and three SCADS models with the reward func-
tions described above (i.e., r = correctness , r = correctnesscost, and r = correctness/cost
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respectively). The SCADS models were equipped with four categories. The first category encoded
whether the task was a flat-to-flat problem. The three remaining categories encoded whether the
large disk was on the correct peg, whether the medium disk was on the correct peg, and whether the
small disk was on the correct peg respectively. Each SCADS model had four free parameters. The
first two parameters encoded the relative strengths of the initial associations between the categories
and the three problem solving strategies. The third parameter encoded the total strength of the ini-
tial associations, and the fourth parameter encoded the subgoaling time.

The model parameters were estimated by maximum-likelihood estimation from the average num-
ber of exploratory moves by problem number, the average length of the final path by problem num-
ber, and the strategy choice frequencies for the subgoal strategy and the flat-to-flat strategy in the
experiment by Gunzelmann and Anderson (2001). Our likelihood model assumed that the stan-
dard error of the number of moves was 1. We maximized the likelihood functions using a state-of-
the art Bayesian optimization algorithm known as Infinite Metric Gaussian Process Optimization
(IMGPO)(Kawaguchi, Kaelbling, & Lozano-Pérez, 2015). Since the likelihood function was not
available analytically, we estimated the likelihoods of the data given each set of parameters consid-
ered by IMGPO by simulating the experiment 500 times and smoothing the simulated strategy
choice frequencies according to Equation 5. The optimization algorithm was run for about 48 hours
per model which corresponded to about 64 iterations; this was probably sufficient to find decent
parameter estimates because IMGPO converges exponentially fast.

4.5.2 Results

The parameter estimates for the rational metareasoning model were τplan = 3.39, ρplan = 0.56,
ρguess = 0, πprior = 10.5, and τsubgoal = 8.5. According to these estimates, people initially
assume that planning is more effective than guessing but takes much longer. The strength of this
initial belief corresponds to 5-6 observations per strategy and problem type, and that setting a sub-
goal and planning how to achieve it takes about as much time as executing 8.5 moves, that is 34 sec-
onds. Thus, according to our model, people initially believe that the planning strategy would take at
least 108 seconds whereas achieving the goal is worth only 50 seconds. Based on this, it appears that
people learn to plan more by realizing that planning takes less time and is more effective than they
thought whereas guessing is less effective than they thought.

Rational metareasoning achieved a very good fit to people’s strategy choices. Our model cap-
tured that people learn to plan more with practice: it correctly predicted people’s increasing use of
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planning strategies from the first block to the second block (see Figure 4.1) and the decreases in the
number of exploratory moves before people launch into a planned-out solution (Figure 4.6). As
shown in Figure 4.1, our model explained 96% of the variance in the frequency with which peo-
ple chose the sub-goal strategy or the flat-to-flat strategy in the different blocks of the experiment
(r(14) = 0.9818, p < 0.001). This is very close to the 97% explained by Gunzelman and An-
derson’s model (r(14) = 0.9869, p < 0.001) even though their model had at least twice as many
parameters as ours. This includes the difference in the frequencies of the sub-goal strategy versus the
flat-to-flat strategy and the variability of each strategy’s usage frequency across blocks and conditions.
Our model explained about 52% of the variance in the average frequency with which people chose
the subgoal strategy (r(6) = 0.7244, p = 0.04) and about 66% of the variance in the average
frequency with which they chose the flat-to-flat strategy (r(6) = 0.8145, p = 0.01). Hence, our
model explained the use of the subgoal strategy equally well as the model by Gunzelmann and An-
derson (r(6) = 0.88, p = 0.004, R2 = 0.78) and predicted the use of the flat-to-flat strategy more
accurately than their model (r(6) = 0.67, p = 0.07, R2 = 0.45).

The average number of moves that rational metareasoning predicts as a function of time, diffi-
culty, and condition was highly correlated with the number of moves in people’s solutions (r(14) =
0.8791, p < 0.001; see Figure 4.7). Our model’s fit (R2 = 0.77)was not as good as that of the
ACT-R model by Gunzelmann and Anderson (r(14) = 0.95, R2 = 0.91)which was specifically
designed for this task. The moves that participants made comprised an initial exploratory phase and
a final solution phase. As shown in Figure 4.6, our model captures that the number of exploratory
moves decreases substantially (r(10) = 0.7855, p = 0.003)whereas the observed and predicted
lengths of the final paths decreased very little. Finally, our model also captures the differential effects
of hard versus easy problems (see Figure 4.7). When people were presented problems that required
fewer subgoals in the first block (“easy problems”) and problems that required more subgoals in the
second block (“hard problems”), then the average number of moves decreased initially but increased
again in the second block. According to theory, the subgoal strategy requires more planning time for
hard problems than for easy problems. Thus, when people encounter hard problems their estimate
of the execution time of the planning strategy increases. Consequently, they choose the subgoal
strategy less often and will more often choose the flat-to-flat strategy that requires more moves but
less planning time.

Bayesian model comparisons revealed that the learning effects reported by Gunzelmann and An-
derson (2001) provide strong evidence for the full rational metareasoning model (BIC = 213.4)

over the lesioned metareasoning model without exploration (BIC ≥ 221.1) and very strong
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evidence for the full rational metareasoning model over all other lesioned metareasoning models
(BIC ≥ 292.4) and all SCADS models (BIC ≥ 293.2). This suggests that feature-based learning,
exploration, and model-based strategy selection are necessary to capture people’s capacity to learn
how to solve problems; Figure 4.8 provides a more detailed summary of these results.

4.5.3 Discussion

In this section, we have shown that our rational metareasoning model of strategy selection learning
can capture how people’s choice of problem solving strategies changes as they practice the Tower
of Hanoi task (Gunzelmann & Anderson, 2001, 2003). Concretely, our model captures that people
learn to plan more (Figure 4.5) and come to solve the Tower of Hanoi task in fewer and fewer moves
by avoiding unsystematic, exploratory moves (Figure 4.6). According to our model, these changes
occur because people learn that planning takes less time and is more accurate than initially assumed
whereas guessing performs worse than initially expected. This might be the case because people’s
prior beliefs about the effort of planning and its benefits reflect the difficulty of the much more
complex problems they face in their everyday life where planning takes longer and plans often do not
work out as expected. Alternatively, planning and setting subgoals might be rather time consuming
initially but become faster and more efficient with practice in the task. Figure 4.5 shows that our
model also captures that as people practice they come to prefer the more effective but more effortful
subgoal strategy over the easier but less effective flat-to-flat strategy. Finally, our model also captured
the differential effects of practicing on easy versus difficult Tower of Hanoi problems (Figure 4.7).

The ACT-R model by Gunzelmann and Anderson (2001, 2003) achieved a slightly better fit to
the participants’ numbers of moves but our model predicted the use of the flat-to-flat strategy more
accurately. Hence, a simple application of our general rational metareasoning framework yielded a
model that explains Gunzelmann and Anderson’s data about as well as the model that they tailored
to this data set.

The main advantage of our theory over the model by Gunzelmann and Anderson is its ability
to explain a much wider range of phenomena, as the other sections of this chapter illustrate. For in-
stance, the strategy selection learning mechanism of the ACT-R model (Gunzelmann & Anderson,
2001, 2003) presupposes that rewards are binary (goal achieved vs. not achieved) whereas rational
metareasoning is also applicable when the feedback is a continuous reward signal such as a payoff. In
addition, our theory can explain people’s adaptive flexibility in strategy selection and the transfer of
strategy selection learning effects between different types of problems. The ACT-R model by Gun-
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Figure 4.7: Strategy selection learning according to rational metareasoning (RM) captures how
the length of people’s solutions of Tower of Hanoi problems changes with experience.
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zelmann and Anderson (2001, 2003) cannot capture these phenomena, because its learning mecha-
nism does not consider the context in which the strategy was applied. Therefore, it cannot achieve
graded or selective generalization. It can only learn the value of applying a rule that is associated with
certain conditions. By contrast, our rational metareasoning model learns about the relationship be-
tween features of individual problems and expected performance, and this allows it to account for
graded and selective transfer to similar versus dissimilar problems. This difference does not manifest
in scenarios with only a single type of task, namely flat-to-flat Tower-of-Hanoi problems with three
disks and three pegs that require five moves to be solved. Yet, this difference might become visible if
we simulated how people learn to solve different kinds of problems that required different strategies.
Designing and running such experiments to discriminate between the ACT-R model of strategy
selection and our rational metareasoning model is an interesting direction for future research.

Interestingly, the strategy selection mechanism of ACT-R applies not only to entire strategies
but also to their sub-strategies and elementary operations. Thus, ACT-R models could, in principle,
learn to chain multiple strategies none of which would be able to solve the problem on its own. To
capture such phenomena rational metareasoning models will be extended from learning about the
immediate reward and cost of executing a strategy to learning to predict the sum of immediate and
future returns according to Q-learning (Watkins & Dayan, 1992). We will revisit this idea in the
General Discussion.

4.6 Strategy selection and cognitive development

So far, we have found that adults’ strategy choices in sorting, decision-making, and planning become
increasingly more rational through learning within minutes. Since learning is an important driving
force of cognitive change our theory predicts similar phenomena should also occur on the much
longer time-scales of cognitive development.

A substantial literature on the development of children’s arithmetic competencies suggests that
cognitive development does not proceed in a sequence of discrete stages characterized by a progres-
sion of beliefs, representations, and cognitive strategies as proposed by Piaget (Piaget, 1952) but
rather as a gradual shift in the frequency with which children use each of multiple coexisting cog-
nitive strategies (Siegler & Shipley, 1995). According to Siegler’s overlapping waves theory of cognitive
development (Siegler, 1996, see Figure 4.9A) children of every age use a variety of strategies, and over
time strategies that are both effective and efficient come to be used more frequently.
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To give just one example of such strategic development (Siegler, 1999) we consider the develop-
ment of children’s strategies for mental addition shown in Figure 4.9B. (Svenson & Sjöberg, 1983)
found that the Retrieval strategy becomes increasingly more prominent as children get older, while
the frequency of not providing an answer drops rapidly. The frequency of the Sum strategy rises
initially making it the most common strategy at the beginning of second grade, but afterwards its
frequency drops again. The frequency of theMin strategy rises initially, and then it stays roughly
constant until the Min strategy is overtaken by the Retrieval strategy.

Children’s strategic development raises the question of how they learn to use effective strategies
more and less effective strategies less. Learning to use effective strategies is complicated by the fact
that each strategy’s effectiveness differs from one problem to the next: a strategy that works excel-
lently for one type of problem may fail miserably on a different kind of problem. According to the
SCADS model by Shrager and Siegler (1998), children solve this problem by gradually strengthen-
ing the association between the type of the problem solved and the strategy used after every correct
answer. However, this model presupposes that children already know how to categorize problems
in such a way that problems within the same category require the same strategies. Furthermore, the
SCADS model presumes that learning is driven solely by whether or not the strategy produced the
correct answer. This ignores the effort and time required to execute the strategy, and the mechanism
is difficult to apply when performance feedback is continuous, as in economic decisions, rather than
binary. Furthermore, even when those limitations are overcome the specific learning mechanism
of the SCADS model appears to fail in some situations in which humans succeed (Lieder, Hsu, &
Griffiths, 2014).

Our rational metareasoning model overcomes these limitations of the SCADS model. It could
thus be used to model strategic development in domains that do not comply with the assumptions
of the SCADS model. However, the applicability of our model to cognitive development remains
to be evaluated. In this section we provide a proof of concept that our model can capture the devel-
opmental progression of children’s cognitive strategies in the domain of mental arithmetic. To do so,
we simulate the development of children’s strategies for mental addition (Svenson & Sjöberg, 1983)
according to rational metareasoning.

We recreated Shrager and Siegler’s simulation of the development of children’s strategy use for
single-digit addition problems in which both summands lie between 1 and 5 (Shrager & Siegler, 1998;
Svenson & Sjöberg, 1983) with our strategy selection model. To make the model predictions as com-
parable as possible, we retained all of the assumptions that Shrager and Siegler made about children’s
strategies. Concretely, we assumed that children use the following four strategies for mental addi-
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tion (illustrating them for the example of calculating 3 + 5):

1. Retrieval: retrieve the answer from memory (“8”).

2. Sum: First, use the fingers of one hand to count up to the first summand (“1-2-3”). Then use
the fingers of the other hand to count up the second summand (“1-2-3-4-5”). Finally, count
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the total number of raised fingers on either hand (“1-2-3-4-5-6-7-8”).

3. Shortcut Sum: First, use the fingers of one hand to count up to the first summand (“1-2-3”).
Then continue counting from the first summand while raising the fingers of the second hand
one-by-one until it shows the second summand (“4-5-6-7-8”).

4. Min: Start counting upwards from the larger summand (“6-7-8”).

These four strategies differ in how many counting operations they require to solve any given
problem. To account for the discovery of the Shortcut Sum strategy and the Min strategy, our
metareasoning models start out with only the Retrieval strategy and the sum strategy. The Short-
cut Sum strategy and the Min strategy are added after 90 and 95 trials respectively because this is
how long it took children to discover those strategies in a study by Siegler and Jenkins (1989). To
simulate reaction times, we assumed that each counting operation takes about half a second as in-
dicated by the findings of Geary, Brown, and Samaranayake (1991). Following Shrager and Siegler
(1998), errors were modeled by assuming that each counting step is incorrectly executed with prob-
ability perror = 0.04. We generated the number of incorrectly executed steps by drawing from the
binomial distribution Binomial (#steps,perror). The effect of each error was to either omit a count-
ing operation, for example “3,3” instead of “3,4”, or to skip a number, for example “3,5” rather than
“3,4”.

To model the Retrieval strategy, we modeled children’s memory for arithmetic facts by the as-
sociative memory model used in the SCADS model (Shrager & Siegler, 1998; Siegler & Jeff, 1984;
Siegler & Shipley, 1995) with the same set of parameters. This model characterizes memory for arith-
metic facts by how strongly each possible answer a is associated with each problem x + y. The state
of a child’s long-term memory for arithmetic facts can therefore be described by a three-dimensional
matrixA(a, x, y) of associative strengths. For the most familiar addition problems whose first or
second summand was 1 the associative strength was initialized with 0.05. For all other addition prob-
lems, the associative strengths were initialized by 1/(10 ·#values). Each time a strategy produced an
answer the strength of the association between the answer and the pair of summands was increased
by 0.06 if the answer was correct or by 0.03 when the answer was wrong. Each time the Retrieval
strategy is used it samples a confidence criterion between 0 and 1 uniformly at random. The prob-
ability that a potential answer will be sampled is its associative strength divided by the sum of the
associative strengths of all possible answers. If the associative strength of the sampled answer exceeds
the confidence criterion, then the answer is reported. Otherwise the sampling process is repeated.
If no answer’s associative strength exceeded the confidence threshold after 10 attempts, then the
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Retrieval strategy fails to answer the question. The execution time of the Retrieval strategy was mod-
eled as 0.5 seconds times the number of retrieved answers.

To apply our rational strategy selection learning model to mental addition, we have to specify
how problems are represented, the form of the meta-level model, and children’s prior knowledge
about the performance of addition strategies. We assume that children represent the addition prob-
lem x+ y =? by three simple features

f = (f1, f2, f3) = (s1, s2,max
a
A(a, x, y)),

where the third feature is the associative strength of the answer that is most strongly associated
with the problem in memory. Since the feedback that children receive in mental addition is binary
(“right” or “wrong”), the meta-level model is

P (R = 1 | f, S = i) =
1

1 + exp(βi +
∑3

k=1 α
(R)
k,i · fk)

,

where the bias term bi captures influences on the strategy’s performance that are not captured by the
features of the problem to be solved. We model children’s prior knowledge about the performance
of addition strategies by the model’s prior on the bias weights. The simulations by Shrager and
Siegler (1998) and Siegler and Shipley (1995) assumed that children initially know only the Retrieval
strategy and the Sum strategy but have to discover the more efficient strategies on their own, since
parents teach the Sum strategy first and memory retrieval is a domain general capacity that precedes
knowledge of arithmetic. To capture these assumptions our simulations assume that children’s prior
expectation about the strategies’ performance is positive for the Sum strategy (P (b2) = N (5, 1)),
neutral for the familiar Retrieval strategy (P (b2) = N (0, 1)), but negative for the other strategies
that are still unfamiliar (P (b3) = P (b4) = P (b5) = N (−5, 1)). As in all previous applications of
our model, the meta-level model uses Bayesian linear regression to predict each strategy’s execution
time from each problem’s features. The relative cost of time was set such that finding the correct
answer was worth 100 seconds. Since this corresponds to each child’s subjective utility of being cor-
rect, this simulation assumed that the opportunity cost is known and does not have to be learned.
To determine the predictions of our rational metareasoning model, we simulated the 200 virtual
participants’ choices of addition strategies across 100 blocks of 10 addition problems each. Addition
problems were independently generated by randomly sampling the first and the second summand
from two independent uniform distributions over their possible values, that is 1, 2, 3, 4, or 5.
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The simulation results shown in Figure 4.10 suggest that our rational theory of strategy selection
learning can capture the qualitative changes in children’s use of addition strategies observed by Sven-
son and Sjöberg (1983): Our simulation captures the transient rise and fall of accurate but effortful
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addition strategies, the shift toward the more efficient Min strategy, and the eventual transition to-
wards the predominant use of the Retrieval strategy. Comparing the predictions of our model with
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those of the SCADS model (Figure 4.10) suggests that both models capture the same developmental
trends about equally well. Furthermore, like the SCADS model, rational metareasoning also cap-
tures the gradual increase in children’s performance (see Figure 4.11A) and the transfer from simple
addition problems with summands ranging from 1 to 5 to more challenging addition problems with
one addend above 20 and the other addend below 5. As shown in Figure 4.11B, rational metareason-
ing predominantly selected the most accurate and the most efficient approach, namely theMin strat-
egy, to solve the challenge problems even though it had never encountered any of those problems
before.

Like the SCADS model, our model captures the increasingly adaptive strategy choices that chil-
dren make: our model learned to use the Retrieval strategy more often for easy problems than
for hard problems. This is adaptive because the Retrieval strategy is less accurate on hard prob-
lems because, due to past mistakes, hard problems are more strongly associated with wrong an-
swers than easy problems. In our simulation, the correlation between a participant’s average per-
formance on a problem and the frequency with which they used the Retrieval strategy increased
from r(4998) = −0.11 (p < 0.001) in the first 500 problems to r(4998) = 0.28 (p < 0.001)

in problems 501 to 1000. In addition, our model learned to choose theMin strategy over less effi-
cient and more error-prone addition strategies when the Retrieval strategy appeared inapplicable.
Furthermore, the model learned to choose theMin strategy adaptively: The advantage of theMin
strategy over alternative addition strategies increases with the sum and the difference between the
addends. Across all simulated trials, the model’s choice of theMin strategywas significantly corre-
lated with the sum (r(141609) = 0.30, p < 0.001) and the absolute value of the difference
between the addends (r(141609) = 0.24, p < 0.001). Furthermore, the correlation with
the sum or the difference was stronger than the correlation with other factors such as the product
(r(141609) = 0.20, p < 0.001). In addition, the model’s choices of theMin strategy became more
adaptive: Shortly after the discovery of the Min strategy (trials 100-150 to be precise) its use was less
well predicted by the difference between the two summands (r(4998) = 0.17, p < 0.001) than by
their product (r(4998) = 0.32, p < 0.001), but ten blocks later the difference between the two
summands predicted the choice of theMin strategy (r(4998) = 0.23, p < 0.001) better than their
product (r(4998) = 0.09, p < 0.001) as in Siegler and Shipley (1995).

As shown in Figure 4.11B, the proportion of applications of the Min strategy out of all addition
strategies increased steadily from 37.2% in the first 50 trials after its discovery towards 100%. The
learning curve shows that the process by which the Min strategy is generalized from one problem
on which it worked well to all other problems is gradual and takes more than 1000 examples. This
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is consistent with the empirical finding that children are slow to generalize the Min strategy to other
problems upon its discovery. Siegler and Jenkins (1989) found that the generalization of the Min
strategy proceeds much more rapidly when children who have recently discovered the Min strategy
are posed challenge problems such as 4 + 25. Shrager and Siegler (1998) modeled the experiment
by Siegler and Jenkins (1989) by replacing the 50 simple problems presented after the discovery of
the Min strategy by 50 challenge problems in which one of the addends is larger than 20 and the
other addend is smaller than 5. We performed the equivalent simulation with our rational metarea-
soning model by replacing the 50 problems following the first five blocks by 50 challenge problems.
As shown in Figure 4.11B, feature-based strategy selection learning captures the empirical finding
that challenge problems boost children’s transfer of the Min strategy to challenging as well as sim-
ple problems (Siegler & Jenkins, 1989). To test if the observed differences were significant, we per-
formed one t-test for each of the 20 simulated blocks of 50 problems with the Bonferroni-corrected
significance level of 0.05/20 = 0.0025. We found that the average adaptivity was not significantly
different before the challenge problems (all p ≥ 0.20) but became highly significant once the chal-
lenge problems were introduced (p < 0.001) and remained statistically significant until block 19
(allp ≤ 0.02) after which the performance of both groups reached its asymptote (all p ≥ 0.50).

To determine which components of our model were critical to capture the development of chil-
dren’s choice of addition strategies, we reran the simulation with the five lesioned metareasoning
models. We found that exploration is necessary for strategic development, because without explo-
ration the rational metareasoning model never discovered the Shortcut Sum strategy or the Min
strategy, and it failed to switch to the Retrieval strategy even after it had plenty of experience to rely
on (Figure C.6). Feature-based strategy selection was also critical, because the metareasoning model
without features predicted that children would transition directly from the Sum Strategy to the Re-
trieval strategy without using the Shortcut Sum or the Min strategy in between (Figure C.7). This
might be because the features are necessary to learn that the Retrieval strategy works only when the
problem is familiar whereas the Min Strategy is superior for unfamiliar problems where one of the
addends is small. Likewise, the lesioned metareasoning model that maximized accuracy regardless of
time cost never discovered the Min strategy or the Shortcut Sum strategy but transitioned directly
from the standard Sum strategy to memory retrieval (Figure C.8). Model-free metacognitive rein-
forcement learning of the VOC (r = reward-cost) predicted that the Sum strategy would fade much
faster than it has been observed in children and failed to predict children’s eventual transition to the
Retrieval strategy (cf. Figure 4.9B vs. Figure C.9) Finally, model-free learning of the reward rates
predicted an almost instantaneous shift to the Min strategy and also failed to predict the subsequent

205



transition to the Retrieval strategy (see Figure C.10). These findings suggest that maintaining sepa-
rate representations of execution time, opportunity cost, and expected reward enables faster learning
and adaptation to changes in the strategies’ performance or the reward rate.

In this section, we have demonstrated that rational metareasoning can explain several qualitative
features of the shifts in children’s choice of addition strategies. Most importantly, feature-based strat-
egy selection learning formalizes the overlapping waves theory of cognitive development (Siegler,
1996) by a powerful, general learning mechanism. This suggests that our model should be able
to capture similar phenomena in other domains of cognitive development as well. However, the
change in children’s strategy choices explained by our model is only one of three parts of strategic de-
velopment, which also includes the discovery of new strategies and the change of existing strategies.
To overcome this limitation, future work should combine our model of strategy selection learning
with models of strategy discovery and strategy change. We will revisit this future direction in the
General Discussion.

Feature-based strategy selection learning is more widely applicable than the basic SCADS model.
Unlike the SCADS model our model can also learn from continuous feedback, as well as execution
time or mental effort, and it does not presuppose that problems can be categorized appropriately.
On the other hand, the SCADS model captures an important mechanism that is not yet included in
our resource-rational account of strategic development: strategy discovery. Both mechanisms play
an important role in strategic development. Therefore, our contributions are more complementary
than they are in competition. Formalizing the computational mechanisms of strategy discovery and
the formation of mental habits within the rational metareasoning framework is a promising direc-
tion for future research. To apply rational metareasoning to the strategy discovery problem, future
research might combine learning to predict the VOC of individual computations from features of
the current mental state with techniques from hierarchical reinforcement learning (Barto & Ma-
hadevan, 2003; Barto, Singh, & Chentanez, 2004; Botvinick, Niv, & Barto, 2009; Sutton, Precup, &
Singh, 1999).

4.7 General Discussion

How do we know when to think fast and when to think slow? Do we use our heuristics rationally or
irrationally? How good are we at selecting the right strategy for the right problem? To answer these
questions, we derived a rational solution to the strategy selection problem and evaluated it against
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human behavior and previous theories of strategy selection.

The results presented in this chapter support the conclusion that people gradually learn to use
their cognitive strategies increasingly more rationally. According to our rational metareasoning
model, these adaptive changes result from a rational metacognitive learning mechanism that builds a
predictive model of each strategy’s execution time and accuracy.

Jointly, the experiments, simulations, and model comparisons reported in this chapter provided
very strong evidence for all four components of our model: strategy selection based on an approxi-
mate cost-benefit analysis, feature-based metacognitive reinforcement learning, separate predictive
models of accuracy and execution time, and the exploration of alternative strategies.

Our model’s predictions captured the variability, contingency, and change of people’s strategy
choices in domains ranging from sorting to decision-making, and mental arithmetic as well as prob-
lem solving. Our model provides a unifying explanation for a number of phenomena that were
previously explained by different models. Overall, the dependence of people’s strategy choices on
task and context variables was consistent with a rational strategy selection mechanism that exploits
the features of each problem to achieve an optimal cost-benefit tradeoff. Likewise, the change in peo-
ple’s strategy choices over time was consistent with rational learning of a predictive model of each
strategy’s performance and choosing strategies rationally with respect to the model learned so far.
This learning mechanism simultaneously accounts for the developmental progression of children’s
arithmetic competence on a time scale of years and the adaptions of adults’ decision strategies on a
time scale of minutes. The remaining variability of people’s strategy choices was consistent with the
near-optimal exploration-exploitation tradeoff of Thompson sampling.

Critically, our new experiments and simulations showed that our model captures people’s capac-
ity to adapt to heterogeneous environments where each problem is unique and may require a differ-
ent strategy than the previous one. Previous theories were unable to account for this adaptive flexi-
bility but our rational account of strategy selection does. When we consider all of these phenomena
jointly, our findings support the view that people choose cognitive strategies rationally subject to
the constraints imposed by their finite time, limited information, and bounded cognitive resources.
Its rational cost-benefit analysis allows our model to capture that people allocate their time and cog-
nitive resources strategically so as to maximize their expected reward rate across multiple decisions
rather than just their immediate reward on the current problem.
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4.7.1 Implications for the debate about human rationality

Our theory reconciles the two poles of the debate about human rationality by suggesting that peo-
ple gradually learn to make increasingly more rational use of fallible heuristics. Our emphasis on
metacognitive learning provides a fresh alternative to previous accounts that viewed rationality as a
fixed, static ideal, and irrationality as a pervasive trait. Instead, our theory suggests that we are con-
stantly learning to think, learn, and decide more resource-rationally with respect to the problems,
rewards, and costs we experience. Hence, if we engage seriously with the environments we want to
master, then metacognitive learning should propel us towards bounded rationality as we learn to
choose the strategies that achieve the best possible cost-benefit tradeoff. Thus, although we might
never reach the ideals of (bounded) rationality, we can become a little more resource-rational every
time we use a cognitive strategy. Whether these improvements depend on deliberate reflection is an
interesting question for future research.

The strategy selection problem is a critical missing piece in the puzzle of what it means to be
boundedly rational. Our proposal for a rational solution to the strategy selection problem might
therefore be an important step towards a unifying theory of bounded rationality. Indeed, recent
work suggests that rationally choosing among a small number of cognitive strategies is optimal for
bounded agents (Milli, Lieder, & Griffiths, 2017, 2018). Our model solves the riddle how a bounded
agent can possibly optimize the use of its limited resources by investing some of them into solving
the computationally intractable and potentially recursive problem of optimizing the use of its lim-
ited resources. We have proposed that the mind side-steps the computational complexity and infi-
nite regress of this problem by learning–rather than computing–the value of investing time and cog-
nitive resources into one strategy versus another. We show that good strategies can be selected very
efficiently once an approximation to the value of computation has been learned and that the learn-
ing process can be implemented very efficiently as well (see Figure 4.1). Despite its simplicity this
mechanism can adaptively choose between complex and extremely time- and resource-consuming
strategies. It may thereby enable the mind to save a substantial amount of cognitive resources and
find good approximate solutions to intractable problems. Our model can therefore be used to com-
plete dual-process theories of bounded rationality (Evans, 2003; Evans & Stanovich, 2013; Kahne-
man, 2011) by a rational, yet tractable, mechanism for determining when to employ which system.
Our strategy selection mechanism could be integrated into dual-process theories to predict exactly
when people think fast and when they think slow. Likewise, our mechanism could also be integrated
into adaptive toolbox theories of bounded rationality (Todd & Brighton, 2015; Todd & Gigeren-
zer, 2012) to predict exactly which heuristic people will use in a given situation. This line of research
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would lead to mathematically precise, falsifiable theories of bounded rationality that could be quan-
titatively evaluated against empirical data and each other.

Our perspective emphasizes the importance of metacognitive values for human rationality. This
emphasis is consistent with the view that individual differences in rationality reflect people’s dispo-
sitions towards different cognitive styles (“the reflective mind”) rather than their cognitive abilities
per se (Stanovich, 2011, “the algorithmic mind”). Our theory suggests that the disposition towards
rational versus heuristic thinking is not fixed and innate but malleable and learned from experience.
Yet, our theory also suggests that a person’s propensity for rational thinking can be highly situational
because the mind estimates the value of deliberation from contextual features.

4.7.2 Future directions

Future work should extend the proposed model to capture additional aspects of human cognition.
One such extension could be a more realistic model of the cost of strategy execution which captures
that some strategies are more effortful than others. This could be achieved by modeling how much
cognitive resources, such as working memory, each strategy consumes at each point in time. With
this extension, the total cost of executing a strategy could be derived by adding up the opportunity
costs of its consumed resources over the time course of its execution.

While our model comparisons show that strategy selection learning requires some form of ex-
ploration, it is silent about how this exploration is accomplished. The Thompson sampling mech-
anism evaluated here is one of the best solutions to the exploration-exploitation tradeoff known to
date (Chapelle & Li, 2011; Kaufmann, Korda, & Munos, 2012), but many alternative exploration
mechanisms have been proposed in the reinforcement learning literature. These proposals range
from simple mechanisms like epsilon-greedy action selection and the soft-max decision rule (Sutton
& Barto, 1998) to more sophisticated mechanisms including upper-confidence bound algorithms
(Auer, 2002) and other exploration bonuses (Brafman & Tennenholtz, 2002). At this point, each of
these algorithms is a viable hypothesis about human strategy selection, and designing experiments to
test them is an important direction for future research.

While our simulations and model comparisons favored learning separate predictive models of
execution time and accuracy over learning the VOC directly, this advantage might reflect specific,
auxiliary assumptions of our model. A more definitive answer will require experiments that system-
atically disambiguate these two learning mechanisms. Based on how model-free and model-based
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control over behavior are usually disambiguated (Dickinson, 1985), strategy selection experiments
that devaluate speed or accuracy (but not both) after people have learned to achieve the optimal
speed-accuracy tradeoff might be a fruitful direction for future research.

Since our model is agnostic about the set of strategies people choose from, future work should
determine which strategies are available to people. This could be done by comparing rational metar-
easoning models with different sets of strategies using Bayesian model selection (Scheibehenne,
Rieskamp, & Wagenmakers, 2013).

People’s decision mechanisms likely include strategies with continuous parameters, such as se-
quential sampling models with decision thresholds and attentional biases (P. L. Smith & Ratcliff,
2004), satisficing strategies with aspiration levels (Simon, 1955), and simulation-based decision mech-
anisms that can perform varying numbers of simulations (e.g., Lieder, Griffiths, & Hsu, 2017).
Furthermore, the proposed process model only learns about a small subset of all possible cognitive
strategies. To select among all possible sequences of elementary information processing operations,
our process model has to be extended to learning the VOC of individual computations instead of
only learning the VOC of complete strategies that always generate an action yielding reward. Cur-
rent work is extending the proposed model to overcome these limitations (Krueger, Lieder, & Grif-
fiths, 2017; Lieder, Krueger, & Griffiths, 2017; Lieder, Shenhav, Musslick, & Griffiths, 2018).

To capture people’s ability to plan sequences of cognitive operations, future work might add
predictive models for features of the agent’s future internal states alongside the predictive models
of the expected reward and execution time. This extension would correspond to learning option
models (Sutton et al., 1999)–a form of model-based hierarchical reinforcement learning (Barto &
Mahadevan, 2003; Sutton et al., 1999) that holds promise for explaining the complex hierarchical
structure of human behavior (Botvinick & Weinstein, 2014). Both extensions could be combined
with ideas from hierarchical reinforcement learning to capture how people discover novel, more
effective strategies by flexibly combining elementary operations with partial.

The third major limitation of the current model is that it presupposes domain-specific problem
features. A complete account of strategy selection would have to specify where those representations
come from. To provide such an account, our model could be implemented as a hierarchical neural
network with several layers in-between the perceptual input and the representation of the features
as illustrated in Figure 4.1. In such a network the features could emerge from the same error-driven
learning mechanism used to learn the weights between the feature layer and the layers representing
the network’s predictions (Mnih et al., 2015).
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Future experiments might also investigate whether the proposed feature-based strategy-selection
mechanism coexists with a more basic, automatic strategy selection mechanisms based on context-
free RL. If so, then our framework could be used to model the arbitration between them as rational
meta-strategy-selection.

One important open theoretical question is under which, if any, conditions the proposed strategy
selection mechanism is boundedly optimal (Russell & Subramanian, 1995). While it is possible to
prove the optimality of a program for a particular computational architecture, such proofs have yet
to be attempted for computational models of the human mind.
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5
People gradually learn to make increasingly

more rational use of their cognitive
resources*

Chapter 4 presented a model according to which people’s ability to adaptively select between alter-
native cognitive strategies is acquired through metacognitive learning. This chapter presents two
series of experiments that investigate the implications of the proposed learning mechanism. The
first section tests the model’s prediction that resource-rationality increases with learning. The sec-
ond section investigates how the rate of this improvement depends on the reward structure of the
environment and how such learning can be accelerated.

5.1 Rational strategy selection is learned from experience

According to the rational metareasoning model presented in Chapter 4, people acquire their capac-
ity for adaptive strategy selection by learning an internal predictive model of each strategy’s perfor-

*This chapter is based on Lieder and Griffiths (2017) and Krueger et al. (2017).
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mance. This model predicts that people should gradually learn to perform more valuable computa-
tions and fewer computations whose costs outweigh their benefits. In other words, people should
learn to make increasingly more rational use of their finite time and computational resources. This
hypothesis makes four predictions:

1. People learn to perform fewer computations whose time cost outweighs the resulting gain in
decision quality.

2. People learn to perform more computations whose expected gain in decision quality out-
weighs their time cost.

3. Ecological rationality increases with learning: people gradually learn to adapt their strategy
choices to the structure of their environment.

4. Adaptive flexibility increases with learning: people learn to use different strategies for differ-
ent kinds of problems.

The following four sections test each of these four predictions in turn.

5.1.1 Experiment 1: When people think too much they learn to think less

The goal of Experiment 1 was to test our model’s prediction that people will learn to deliberate less
and decide more quickly when they are placed in an environment where the cost of deliberation
outweighs its benefits.

Methods

We recruited 100 adult participants on Amazon Mechanical Turk. Participants were paid $0.75 for
15 minutes of work and could earn a bonus of up to $2 for their performance on the task; the average
bonus was $1.15 and its standard deviation was $0.73. The experiment was structured into three
blocks: a pretest block, a training block, and a posttest block. Participants received feedback about
the outcomes of their choices in the training block but not in pretest or the posttest block. Each
block lasted four minutes, and the participants’ task was to win as many points as they could.

Figure 5.1 shows a screenshot of an example trial in the pretest phase. In each trial, participants
were shown a number of gambles. They could either choose one of the gambles or skip the decision
and move on to the next trial without receiving a payoff. As soon as the participant responded the

213



Figure 5.1: Screenshot of example trial in the pretest phase of Experiment 1.

next trial was shown. The number of trials was solely determined by how quickly the participant
responded on each trial. On each trial, the decision problem was equally likely to belong to either
of the four types summarized in Table 5.1. The four problem types differed primarily in the range
of possible payoffs (low stakes, vs. high stakes, vs. all positive, vs. all negative), and on each trial this
range was shown as a cue (see Figure 5.1). Critically, as shown in Table 5.1, the problem types and
their frequencies were chosen such that the best approach was to skip trials where all outcomes were
negative, choose randomly on trials where all outcomes were positive, and minimize the time spent
on the high-stakes and the low-stakes problems by choosing randomly or skipping them altogether.

The number of outcomes was 3, 4, or 5with probability 0.25, 0.50, and 0.25 respectively. The
number of gambles was either 4 or 5with equal probability. Given the number of outcomes and
gambles, the payoffs were sampled uniformly from the problem type’s range of payoffs given in
Table 5.1. The outcome probabilities were sampled independently from the payoffs. Concretely, if
there were k outcomes, then the first k − 1 outcome probabilities were sampled by a stick-breaking
process where the relative length of each new stick was sampled from a uniform distribution. The
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Table 5.1: Frequency and properties of the four types of decision problems used in Experiment 1.

Problem Type Frequency Worst Best Optimal Strategy
Outcome Outcome

All great 25% 990 1010 random choice
All bad 25% -1010 -1000 Disengagement
High Stakes 25% -1000 1000 Disengagement
Low Stakes 25% -10 10 Disengagement
Note: All gambles were compensatory.

probability of the k-th outcome was set to 1 minus the sum of the first k − 1 probabilities.

Model Predictions. To simulate people’s choice of decision strategies and how it changes with
learning, we combined our rational process model of strategy selection learning with the 10 deci-
sion strategies considered by Payne et al. (1988): the weighted-additive strategy, the equal weight
strategy, satisficing, choosing at random, the majority of confirming dimensions strategy, the lexi-
cographic heuristic (take-the-best), the semi-lexicographic heuristic, elimination-by-aspects, as well
as two hybrid strategies that combine elimination-by-aspects with the weighted-additive strategy
and the majority of confirming dimensions strategy respectively. Two additional strategies allowed
the decision-maker to choose at random and skip the trial without deliberation respectively. The
model’s prior on the reward rate was a normal distribution with a mean of 1 point per second and a
precision equivalent to 1 minute’s worth of experience in the task. The priors on the regression coef-
ficients and the error variance of the agent’s predictive model of the strategies’ performance were the
same as in the simulations of the experiment by Payne et al. (1988). The features of the agent’s predic-
tive model combined those used to simulate the experiment by Payne et al. (1988) with four indica-
tor variables signaling the presence or absence of the cues associated with the four types of gambles.
Using these parameters, we ran 200 simulations of the experiment according to each model.

As shown in Figure 5.2A, our rational model predicted that participants should learn to decide
more quickly and thereby win increasingly more points per second by engaging in deliberation less
often and acquiring fewer pieces of information. Since the simulated decision-maker estimates its re-
ward rate by Bayesian inference as defined above, it gradually realizes that its opportunity cost is very
high. In addition, the simulated decision-maker learns that deliberate strategies are slow, and that
the random strategy performs about as well as deliberation when all outcomes are similar. Hence,

215



A

B

Pretest Training Posttest
0

100

200

R
ew
ar
d
R
at
e

(p
ts
/s
e
c)

Pretest Training Posttest
0

5

10
#A
cq
ui
si
tio
ns

Pretest Training Posttest
0

20

40

60

E
ng
ag
em
en
ti
n
%

Block
0

20

40

60

80

100

120

140

160

180

R
ew
ar
d
R
at
e
(p
ts
/s
ec
)

Block
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

#A
cq
u
is
iti
on
s/
C
h
oi
ce

Block
0

5

10

15

20

25

30

35

40

45

50

E
ng
ag
em
en
t(
%
)

Pretest
Training
Posttest

Figure 5.2: Experiment 1: Learning when not to engage in effortful decision-making. A: Pre-
dictions of rational metareasoning for Experiment 1. B: The empirical findings of Experiment 1
confirmed the three qualitative model predictions.
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the simulated decision-maker eventually learns to avoid deliberating, to skip problems with negative
payoffs, and to apply the random strategy when all outcomes are great.

Results

To test our hypothesis that people learn to deliberate less, we classified the participants’ response
patterns into three categories: The response strategy on a trial was categorized as random choice if
the participant chose one of the gambles without inspecting any of the outcomes. If the participant
chose ”No thanks!” without inspecting the outcomes, then the response strategy was classified as
disengaged. Finally, if the participant clicked on at least one of the outcome boxes, then the response
was categorized as engaged. We measured our participants’ performance on the task by three metrics:
engagement, reward rate, and adaptive randomness. Engagement was defined as the proportion of tri-
als on which participants were engaged; the reward rate is the number of points earned per second;
and adaptive randomness was measured by the frequency of random choice in problem type 1 (all
great) minus the frequency of random choice on problems of types 2 (all bad) and 3 (high stakes);
see Table 5.1. Our model predicted that participants’ reward rate and adaptive randomness would
increase significantly from the pretest to the posttest while their engagement decreases.

As shown in Figure 5.2B, we found that the learning induced changes in our participants’ strategy
choices were consistent with our theory’s predictions. There was a significant increase in the partici-
pants’ average reward rate (t(99) = 9.98, p < 10−15; Cohen’s d = 1.00) as they learned to process
less information (t(99) = −4.80, p < 10−5; Cohen’s d = −0.48) and their engagement decreased
significantly (t(98) = −7.89, p < 10−11; Cohen’s d = −0.79). Even though participants ac-
quired increasingly less information, their average reward per decision did not change significantly
from the first block to the last block (t(98) = 0.69, p = 0.49; Cohen’s d = 0.07).

To examine whether the effect of learning on the number of computations performed by our
participants depended on the problem type we ran a 2x2 mixed-effects, repeated-measures ANOVA
with the average number of information acquisitions for a given problem type in a given block as
the dependent variable and the problem type and the block number as independent variables. The
main effect of the problem type was significant (F (3, 1184) = 23.01, p < 10−13) suggesting
that participants’ information acquisition strategies differed significantly between the four types of
decision problems (see Figure 5.3A): In high-stakes decisions, participants inspected 2.95± 0.55 out-
comes on average, but on the trials where all outcomes were equally bad they inspected only about
0.5 potential payoffs (Cohen’s d = 1.96). For low-stakes decisions and decisions in which all pos-
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sible outcomes were great participants inspected an intermediate number of outcomes (about 1.5
inspected outcomes on average, Cohen’s d = 1.21 and d = 1.18 respectively). The number of infor-
mation acquisitions changed significantly across the three blocks of the experiment (F (1, 1184) =
23.64, p < 10−5). Concretely, information acquisition decreased by 1.4 pieces of information per
block (t(1184) = −4.86, p < 10−6; Cohen’s d = −0.14). There was a statistically significant
interaction between problem type and block number (F (3, 1184) = 4.74, p = 0.003) indicat-
ing that the number of information acquisitions decreased more strongly for some problem types
than for others. This decrease was statistically significant for problems in which all outcomes are
great (t(99) = −3.30, p < 0.001, Cohen’s d = −0.33), problems in which all outcomes are
bad (t(99) = −5.15, p < 10−6, Cohen’s d = −0.52), and the high-stakes decision problems
(t(99) = −5.06, p < 10−6, Cohen’s d = −0.51). But for the low-stakes problems the decrease
was weaker and not statistically significant (t(99) = −1.50, p = 0.07, Cohen’s d = −0.15).

The observed decrease in the number of information acquisitions was partly driven by a decrease
in the frequency with which people engaged with the decision problems by inspecting at least one
of their payoffs. As shown in Figure 5.3A, the proportion of decision problems in which people
inspected at least one of the payoffs dropped from 37% in the pretest to 19% in the posttest. To test
whether learning decreased the number of computations that people perform above and beyond the
effect of disengagement, we repeated the analysis of variance described above for only those trials on
which people engaged with the decision problem (see Figure 5.3B). We found that the main effect
of the block number was still highly significant (F (1, 659) = 8.08, p = 0.005). The estimated
decrease in information acquisition on trials on which people engaged with the decision problem
was 1.1 pieces of information per block (95% CI: [−1.80,−0.33], t(659) = −2.84, p = 0.005,
Cohen’s d = −0.11) and this value was not significantly different from the average decrease across
all trials (1.4 acquisitions/block, 95% CI: [−1.60,−0.68]). There was also a significant interaction
between the block number and problem type (F (3, 659) = 2.61, p = 0.05).

Furthermore, we found a significant increase in adaptive randomness (t(97) = 7.21, p < 10−10,
Cohen’s d = 0.73). This means that our participants learned to selectively apply the random choice
strategy to the all great problems (see Figure 5.3C). Consistent with this finding, the frequency of
random choice increased on the all great trials (t(97) = 6.61, p < 10−8, Cohen’s d = 0.67) but
decreased on all other trial types (t(98) = −2.77, p = 0.003, Cohen’s d = −0.28).

Finally, we investigated whether people learn to prioritize the most probable outcome over less
probable outcomes. To do so, we recorded the rank of the probability of the outcome participants
inspected first and averaged it by block. The rank of the most probable outcome is one, the rank

218



of the second most probable outcome is two, etc. On average, people inspected the second most
probable outcome first. This is consistent with the interpretation that our participants sometimes
used strategies that prioritize the most probable outcomes and sometimes used strategies that do not.
There was a very small and almost statistically significant decrease in the rank of the probability of
the outcome inspected first from 2.33± 0.05 in the pretest to 2.15± 0.08 in the posttest (t(59) =
−1.67, p = 0.05; Cohen’s d = 0.22).

In summary, Experiment 1 placed participants in an environment where maximizing the reward
rate required choosing without deliberation, and the participants learned to reap increasingly higher
reward rates by acquiring increasingly fewer pieces of information, choosing at random when all
outcomes were great and to skipping all other problems. There was also a trend towards learning
to prioritize the most probable outcome. All of these effects are consistent with the hypothesis that
people learn to make increasingly more rational use of their finite time and computational resources.

Model Comparisons. While our findings were qualitatively consistent with the model predic-
tions there were quantitative differences: People tended to outperform the model in terms of the
reward rate in the pretest block, and their average number of acquisitions and frequency of engag-
ing in deliberation changed less than predicted by rational metareasoning (compare Figure 5.2A vs.
Figure 5.2B, and see the Appendix C for a more detailed comparison).

To evaluate our rational metareasoning model against the 14 alternative models described above,
we ran 200 simulations of Experiment 1 according to each of the models. For each model, we per-
formed six one-sample t-tests to determine whether it captured the increase in reward rate, the de-
crease in the number of acquisitions, and the decrease in the frequency of engagement from block
1 to block 2 and from block 2 to block 3, and one t-test to evaluate whether the model captured that
people acquired more pieces of information on high-stakes problems than on other kinds of prob-
lems. We found that while our rational metareasoning model captured all of these effects, none of
the SCADS, RELACS, or SSL models were able to capture all four effects simultaneously. The only
component of the metareasoning model that was not necessary to capture human performance in
Experiment 1 were the features. The reason why the lesioned metareasoning model without features
could perform well is that the explicitly stated payoff ranges were sufficient for choosing strategies
adaptively. Critically, none of the other lesioned metareasoning models were able to capture hu-
man performance. This suggests that all other components of our rational metareasoning model–
choosing strategies based on the VOC, exploration, and learning separate predictive models of execu-
tion time and reward–are necessary to capture people’s ability to adapt to the decision environment
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Figure 5.3: Adaptive disengagement in Experiment 1. A: Average number of information acquisi-
tions by block and problem type. B: Number of information acquisitions when engaged. C: Adap-
tive randomness increased as participants learned to apply the random choice strategy more often
to problems where all outcomes were great and less often to other problems.
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of Experiment 1. For a more detailed summary of these simulation results, please see Appendix C.

Discussion

The observation that sometimes people are cognitive misers poses a challenge to most rational mod-
els, but our model predicted it correctly. According to our model, people become faster and less
accurate at a challenging task when the difference between the rewards for good versus bad perfor-
mance is small compared to how much time it would take to perform better. The observation that
over time participants came to engage less with all four types of problems could also be interpreted
as a general disengagement from the experiment rather than a rational adaptation to the structure of
the decision environment. To disambiguate rational adaptation from disengagement we designed an
additional experiment in which our theory predicts that people should learn to invest increasingly
more time and effort.

5.1.2 Experiment 2: Learning to deliberate more

The goal of Experiment 2 was to test our model’s prediction that people learn to deliberate more
when they initially think too little. To create a situation where people think too little, we first put
them in an environment whose reward rate was so high that deliberating on low-stakes problems
was a waste of time and then changed the environment so that low-stakes problems became the only
opportunity to earn money.

Method

We recruited 201 adult participants on Amazon Mechanical Turk. Participants were paid $0.75
for participation and could earn a performance-dependent bonus of up to $2. After performing
the task participants completed an attention check that required them to estimate the highest pos-
sible payoffs of the different types of games they played in the experiment. Participants were ex-
cluded if they reported a positive number for the gamble that had only negative outcomes, if their
estimate for the high-stakes gamble (±100) was less than twice their estimate for the low-stakes
gamble (±10), or if any of their estimates was larger than 500. Based on these criteria, we had to ex-
clude 57 participants (28.36%). In the experiment, participants visited a virtual casino that offered
three different kinds of games: In Blue Mountain Games the stakes were high (±100). In Purple
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Sun Games the stakes were low (±10), and inOrange Diamond games all outcomes were negative
([−100;−90]). Each type of game was associated with a logo. The instructions informed partici-
pants that there were three kinds of games and what their payoffs were. In contrast to Experiment 1,
the range of possible outcomes was not stated explicitly on every trial; instead they had to be inferred
from the game’s logo. Figure 5.4 shows a screenshot from Experiment 2.

Figure 5.4: Screenshot from Experiment 2.

The experiment was structured into five blocks lasting 2.5 minutes each. The first and the sec-
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ond block had a high reward rate. They comprised 50% high-stakes problems and 50% low-stakes
problems. Blocks 3-5 were the pretest, the training, and the posttest block respectively, and they all
had the same structure. In each of these blocks, the first four trials were low-stakes problems (±10

points) and the remaining trials comprised 75% trials with only negative outcomes ([−100,−90])
and 25% low-stakes problems. Hence, starting with the pretest block, low-stakes decisions became
the only opportunity to win points and the opportunity cost for engaging in them became negligi-
ble. In all decision problems presented in Experiment 2, identifying the optimal choice required in-
tegrating multiple attributes. The number of gambles was always five, and the number of outcomes
was always four. The payoffs were sampled uniformly from the range associated with the problem
and their probabilities were determined as in Experiment 1. In contrast to Experiment 1, participants
could not skip trials but always had to choose a gamble to advance.

We ran 200 simulations of this experiment using the same strategies and parameters as for Experi-
ment 1 except that the agent did not have the option to skip trials. Rational metareasoning predicted
that starting from the pretest (block 3), participants will learn to reap increasingly higher reward
rates by engaging more often in the now worthwhile low-stakes problems and acquire increasingly
more information to make those choices (see Figure 5.5).

Results and Discussion

First, we quantified learning by the change in our participants’ average reward rate from the pretest
to the posttest. The increase in people’s average reward rate from−2.00 ± 0.24 in the pretest to
−1.16 ± 0.23 in the posttest was statistically significant according to a one-sided t-test (t(143) =

2.87, p = 0.002; Cohen’s d = 0.26). The reward rate depends on two factors: the reward
per decision and the number of decisions per minute. To determine which of the two factors was
responsible for the increase, we analyzed the learning induced changes in each factor separately.
First, we analyzed how the reward per decision changed from the pretest to the posttest. For low-
stakes problems the reward increased significantly from about 1.93 points per decision to about
2.42 points per decision (t(143) = 1.92, p = 0.03; Cohen’s d = 0.16). By contrast, for
problems on which all outcomes were negative the average reward did not change significantly
(−14.43vs. − 14.22, t(96) = 1.08, p = 0.14; Cohen’s d = 0.11). Next, we analyzed poten-
tial changes in the second factor: the number of decisions per unit time. We found that participants
slowed down significantly from 12.86 ± 1.42 decisions per minute in the pretest to 8.32 ± 1.45

decisions per minute in the posttest (t(143) = 2.99, p = 0.003; Cohen’s d = 0.25). Hence,
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Figure 5.5: Rational metareasoning predictions of strategy selection learning in Experiment 2. A:
Rational metareasoning predicted a significant increase in the reward rate from the pretest (block
3) to the posttest (block 5). B: Rational metareasoning predicted a significant increase in the num-
ber of information acquisitions on the worthwhile low-stakes problems. C: Rational metareasoning
predicted a significant increase in people’s engagement with the worthwhile low-stakes problems.

participants learned to reap a higher reward rate by deliberating more to make better decisions.

To test the hypothesis that deliberation increased with learning more rigorously, we analyzed
the number of information acquisitions as a proxy for the number of computations performed by
our participants. Concretely, we tested our model’s prediction that people should learn to invest
more computation into low-stakes decisions. As shown in Figure 5.6A, participants learned to allo-
cate their time adaptively. Starting from the pretest (block 3)–where low-stakes problems became
worthwhile solving–there was a significant increase in the number of information acquisitions on
the low-stakes problems from 4.97 ± 0.34 to 6.42 ± 0.43 (t(2798) = 5.19, p < 0.001; Cohen’s
d = 0.10). This increase was specific to the low-stakes problems: It did not occur for problems with
only negative outcomes. To the contrary, on problems with only negative outcomes the number of
information acquisitions decreased from 2.95±0.24 to 2.51±0.26 (t(5112) = −2.38, p = 0.02;

Cohen’s d = 0.03). This suggests that people learned to allocate their computation more adaptively
from the pretest to the posttest. The number of information acquisitions was particularly high on
the first four trials of the three last blocks: the number of information acquisitions increased from
8.19 ± 0.51 in the pretest to 9.27 ± 0.50 in the posttest (t(143) = 2.14, p = 0.02; Cohen’s
d = 0.18).
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Figure 5.6: Empirical results of Experiment 2. A: Reward rate by block. Error bars denote plus
and minus one SEM. B: Average number of information acquisitions. C: Engagement in low-stakes
decisions.
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The observed increase in the number of information acquisitions on low-stakes problems might
be caused by an increase in the frequency with which people engaged with them, an increase in the
number of computations they invested into solving those they engaged with, or both. We found
that the increase in the number of information acquisitions per problem was mostly driven by an
increase in the frequency with which people engaged in effortful decision making on low-stakes
problems (see Figure 5.6B): the frequency of engagement in low-stakes problems increased from
only 49.1 ± 0.2% in the pretest to 58.95 ± 2.8% in the posttest (χ2(2) = 26.9, p < 0.001;

Cohen’sw = 5.19). This increase was accompanied by a decrease in the frequency with which
participants chose randomly which was the only way to avoid engaging with the problem. Impor-
tantly, we also found that the number of inspected outcomes increased even on the low-stakes
problems that participants engaged with (10.14 in the pretest versus 10.89 acquisitions in posttest,
t(1490) = 2.07, p = 0.04; Cohen’s d = 0.05). On the problems with only negative out-
comes, by contrast, there was a significant decrease in the number of information acquisitions
(t(1291) = −8.52, p < 0.001; Cohen’s d = −0.24). In conclusion, the increase in the num-
ber of information acquisitions on low-stakes problems was driven by both factors: our participants
learned to engage in low-stakes decisions more frequently and to deliberate more when engaged.
Both changes are consistent with learning to become more resource-rational. Finally, we also found
that people gradually learn to prioritize the most probable outcomes. The average rank of the out-
come that participants inspected first significantly decreased from 2.36 ± 0.07 in the first block to
2.18 ± 0.11 in the last block (t(133) = 3.96, p < 0.001; Cohen’s d = 0.34). This learning
process occurred even though identifying the optimal decision always required inspecting multiple
outcomes.

As for Experiment 1, the predictions of our rational model were qualitatively correct, but the
observed learning effects were slightly smaller than expected. The model achieved a slightly higher
reward rate than people (cf. Figure 5.5A vs. Figure 5.6A), acquired about 0.5–3 additional pieces of
information (cf. Figure 5.5B vs. Figure 5.6B), and engaged in 20%–30% more problems than people
(cf. Figure 5.5C vs. Figure 5.6C). In summary, we found that people learn to deliberate more and
gather more information when the reward structure of their environment calls for it. This result
complements the finding from Experiment 1 where people learned to invest less computation be-
cause the return on investing deliberation was less than their opportunity cost. In conclusion, our
results suggest that strategy selection learning makes people more resource-rational by tuning strat-
egy choices towards the optimal speed-accuracy tradeoff.
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Model Comparisons. For the purpose of model comparison, we ran 200 simulations of Ex-
periment 2 according to each of the 14 alternative models described above. For each model, we per-
formed six one-sample t-tests to determine whether it correctly predicted the increases in reward
rate, information acquisitions, and the frequency of engagement that occurred from block 3 to
block 4 and from block 4 to block 5, as well as one t-test to evaluate whether the model captured
that people gathered more information on high-stakes problems than on other kinds of problems.
We found that while our rational metareasoning model captured all of these effects, none of the
SCADS, RELACS, or SSL models was able to capture these four effects simultaneously. Among the
lesioned metareasoning models, only the one approximating the VOC by model-free reinforcement
learning from the difference between reward and time cost captured all four phenomena. Critically,
none of the other lesioned metareasoning models were able to do so. This suggests that choosing
strategies based on the VOC, exploration, and feature-based learning are necessary to capture the
adaptive strategy selection learning our participants demonstrated in Experiment 2. Hence, only
the full rational metareasoning model can capture the findings from Experiments 2 and 3 simultane-
ously. For a more detailed summary of these simulation results, please see Appendix C.

According to our rational theory of strategy selection, the reason why some people are cognitive
misers in certain tasks (Toplak, West, & Stanovich, 2013) is that their metacognitive model predicts
that the reward for normative performance is just not worth the effort it would require. The results
of Experiment 2 suggest that cognitive misers will often learn to deliberate more when the returns of
deliberation justify its cost.

5.1.3 Ecological rationality increases with learning

The third prediction of our model is that people adapt their strategy choices to the structure of their
environment. To evaluate this prediction, we examined a concrete example where people can use
two different strategies to choose between two options with multiple attributes† the comprehen-
sive Weighted-Additive-Strategy (WADD) versus the fast-and-frugal heuristic Take-The-Best (TTB).
There are different variants of the WADD strategy. Since we will be modeling a multi-attribute bi-
nary choice task, we use the version of WADD that sums up the weighted differences between the
first option’s rating and the second option’s rating across all attributes (Tversky, 1969). For each at-
tribute this strategy compares the two ratings (1 operation). If the attribute values disagree, then
it reads and adds or subtracts the attribute’s validity (2 operations). Finally, it chooses the first at-

†A preliminary version of these simulations appeared in (Lieder & Griffiths, 2015).
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tribute if the sum is positive or the second attribute if the sum is negative (1 operation). TTB is the
equivalent of the lexicographic heuristic for multi-attribute decisions: it chooses the option that is
best on the most predictive attribute that distinguishes between the options and ignores all other
attributes. Our implementation of Take-The-Best first searches for the most predictive attribute by
sequentially reading the validities of unused attributes (1 operation per attribute), comparing them
to the highest validity found so far (1 operation per attribute), and memorizes the new validity if it
exceeds the previous maximum (1 operation). Once the most predictive attribute has been identified,
TTB compares the options’ ratings on that attribute (1 operation), and then either makes a choice (1
operation), or continues with the next most predictive attribute.

TTB works best when the attributes’ predictive validities fall off so quickly that the recommen-
dation of the most predictive attribute cannot be overturned by rationally incorporating additional
attributes; environments with this property are called non-compensatory. By contrast, TTB can fail
miserably when no single attribute reliably identifies the best choice by itself; and environments
with this property are called compensatory. Thus, to adapt rationally to the structure of their envi-
ronment, that is to be ecologically rational, people should select TTB in non-compensatory environ-
ments and avoid it in compensatory environments.

Bröder (2003) found that people use TTB more frequently when their decision environment
is non-compensatory. Rieskamp and Otto (2006) found that this adaptation might result from
reinforcement learning. In their experiment participants made 168 multi-attribute decisions with
feedback. In the first condition, all decision problems were compensatory, whereas in the second
condition all decision problems were non-compensatory. To measure people’s strategy use over time,
Rieskamp and Otto (2006) analyzed their participants’ choices on trials where TTB and WADD
made opposite decisions. Participants in the non-compensatory environment learned to choose in
accordance with TTB increasinglymore often, whereas participants in the compensatory environ-
ment learned to do so increasingly less often.

These findings raise the question of how people learn when to use TTB. One hypothesis is that
people learn how well TTB works on average, as postulated by the SSL model (Rieskamp & Otto,
2006). Our alternative hypothesis is that people learn to predict how fast and how accurate TTB
and alternative strategies will be on individual problems based on problem features, as postulated by
rational metareasoning. To test these two hypotheses against each other, we simulated Experiment 1
from Rieskamp and Otto (2006) according to rational metareasoning and SSL and compared how
well the models’ predictions explained the data. The experiment was divided into seven blocks. Each
block comprised 24 trials, and each trial presented a choice between two investment options with
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five binary attributes. The attributes’ predictive validities were constant and explicitly stated. Both
models assumed that participants in this experiment always choose between Take-The-Best (s1 =

TTB) and the weighted-additive strategy (s2 = WADD). Our rational metareasoning model of this
paradigm assumed that strategy selection in binary multi-attribute decisions relies on three features
f = (f1, f2, f3): the predictive validity of the most reliable attribute that discriminates between
the two options (f1), the gap between the validity of the most reliable attribute favoring the first
option and the most reliable attribute favoring the second option (f2), and the absolute difference
between the number of attributes favoring the first option and the second option respectively (f3).
Our model assumes that people first inspect the validities of all cues and extract the three features
f1, . . . , f3 from them, then select a strategy based on these features, and finally execute that strategy
to reach a decision.‡

The probability that a strategy s makes the correct decision (R = 1) was modeled by

P (R = 1 | s, f) = 1

1 + exp(−(bs +
∑

iws,i · fi))
.

We modeled people’s knowledge about the feature weightsws by the prior distribution

P (ws) = N

µ =

0

0

0

 , σ−1 = τ ·

1 0 0

0 1 0

0 0 1


 ,

P (bs),= N (µ = b(0)s , σ−2 = τ),

where the expected value of the offset bs (i.e., b(s)s ) and the strength τ of the prior belief are free
parameters.

To simulate the first experiment from Rieskamp and Otto (2006), we created a compensatory
environment and a non-compensatory environment. In the compensatory environment, WADD
always makes the Bayes-optimal decision and TTB disagrees half of the time. Conversely, in the non-
compensatory environment TTB always makes the Bayes-optimal decision and WADD disagrees
half of the time. To determine the optimal choices, we computed the probability that option A is

‡This entails that all cue validities are inspected on all trials even when a fast-and-frugal heuristic like
TTB is chosen. This makes the number of information acquisitions on trials where TTB is used more similar
to the number of information acquisitions on trials where WADD is used. This diminishes the relative num-
ber of information acquisitions saved by TTB. However, this does not affect the number of inspected cue
values.
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superior to option B given their ratings by Bayesian inference under the assumption that positive
and negative ratings are equally common. First, we randomly generated a set of candidate decision
problems. For each of these problems, we computed the posterior probability that the first option
is superior to the second option given their attributes’ values and their validities. We then used these
posterior probabilities to select which candidate decision problems to present in the compensatory
environment and which to present in the non-compensatory environment. To match the reward
probabilities of Experiment 1 by Rieskamp and Otto (2006), the feedback was determined solely
based on the environment and the chosen strategy: the probability of positive feedback was 92%
whenever the strategy matched the structure of the environment (e.g., WADD in the compensatory
environment) and only 58% when it did not (e.g., TTB in the compensatory environment). Positive
feedback meant winning $0.15 whereas negative feedback meant losing $0.15.

To simulate the experiment, we let our rational metareasoning models learn the agent’s oppor-
tunity cost from experience; the prior mean of the opportunity cost was initialized with $7/h and
the prior precision corresponded to one minute’s worth of experience. For simplicity, we assumed
that people perform one step of TTB or WADD per second. To estimate which strategy people
considered more effective a priori, we set the prior expectation of the problem-independent perfor-
mance of TTB (b0TTB) to zero and fit the model’s prior expectation of the problem independent
performance of WADD (b

(0)
WADD) and the strength of the agent’s prior beliefs about the strategies’

performance and execution time (τ) to the data. Specifically, we determined these parameters by
maximum-likelihood estimation from the frequencies with which Rieskamp and Otto’s participants
used TTB in each block using grid search. The likelihood function was estimated by running at least
10 simulations of the experiment for each point on the grid of potential parameter values. Rieskamp
and Otto (2006) estimated that participants made accidental errors in about 5% of the trials. To
capture these errors and avoid numerical problems, we modelled people’s apparent strategy choice
frequencies by

θ̂
(b)
strategy =

0.9 · n(b)strategy + 0.1 · 0.5 · n(b)total

n
(b)
total

(5.1)

where strategy is a placeholder for either TTB or WADD and n(b)total = n
(b)
TTB + n

(b)
WADD is the total

number of trials in block b.§

§This assumption is not a model of the underlying psychological processes. Instead, it serves as a place-
holder for all unknown and known influences on strategy selection that the model does not capture. The fre-
quency of trials in which the strategy is chosen at random was selected so as to generate 5% of trials in which
the chosen strategy disagrees with the one prescribed by the model. We assumed random choice because it is
the weakest assumption we could make.
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The resulting parameter estimates captured that people initially preferred WADD to TTB (b̂
(0)
WADD =

+0.32) and required many decisions’ worth of experience to revise their beliefs (τ̂ = 88.59). Our
simulation showed that rational metareasoning can explain people’s ability to adapt their strategy
choices to the structure of their environment (see Figure 5.7): When the decision environment was
non-compensatory, then our model learned to use TTB and avoid WADD. But when the decision
environment was non-compensatory, then our model learned to use WADD and avoid TTB. In
addition, rational metareasoning captured that people adapt their strategy choices gradually.

We also estimated the parameters of the SSL model and the three SCADS models introduced
above. The SCADS models were equipped with two categories for compensatory versus non-compensatory
problems respectively. The free parameters of the SCADS models determined the initial associations
between each category and the two strategies. The first parameter was the sum of the two strategies’
association strengths, and the second parameter was the relative strength of the association with the
WADD strategy. The global association strengths were the sums of the category-specific associations.
For the SSL model, we estimated the relative reward expectancy of the WADD strategy (βWADD)

and the strength of the initial reward expectancy (w) by the simulation-based maximum-likelihood
method described above (Equation 5.1).

The maximum-likelihood estimates of the SSL model’s parameters were βWADD = 0.35 and
ŵ = 30. The mean squared error of the fit achieved by the SSL model was about half the MSE of
the rational metareasoning model (0.0018 vs. 0.0043); see Figure 5.7. Consequently, the Bayesian in-
formation criterion provided strong evidence for the SSL model over the full rational metareasoning
model (Kass & Raftery, 1995, BICSSL = 60.70 vs. BICRM = 68.94;) and all lesioned metarea-
soning models (BIC ≥ 70.52). The BIC of the full rational metareasoning model was slightly
higher than the BIC for the lesioned metareasoning model without features (BIC = 70.52), and
the data provided strong or very strong evidence for the full metareasoning model over all other
lesioned metareasoning models (BIC ≥ 75.94). The fit of the SCADS models was compara-
ble to the fit of the SSL model and significantly better than the fits of the metareasoning models
(BICSCADS1 = 61.09, BICSCADS2 = 62.38, and BICSCADS3 = 62.01). Finally, we repeated our
model comparison for both environments separately. Consistent with the original model compar-
ison results, we found that SSL provided a better explanation for the data from the compensatory
environment (BICSSL = 32.64 vs. BICRM = 34.29) and the data from noncompensatory environ-
ment (BICSSL = 36.22 vs. BICRM = 37.81) than the rational metareasoning models. The perfor-
mance of the SCADS models was close to the performance of the SSL models (BICSCADS = 32.72

for the compensatory environment and BICSCADS = 36.35 for the noncompensatory environ-
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Figure 5.7: Fit of rational metareasoning model and SSL to the empirical data by (Rieskamp &
Otto, 2006).

ment).

The quantitative differences between the model fits should be taken with a grain of salt because
they depend on the auxiliary assumption that people use the exact TTB and WADD strategies avail-
able to the models and no other strategies. This assumption is questionable for at least two reasons:
First, TTB and WADD are merely placeholders for the class of non-compensatory strategies and the
class of compensatory strategies respectively (Rieskamp & Otto, 2006). Second, previous work sug-
gests that the human mind is equipped with a much larger repertoire of decision strategies (Payne
et al., 1988). If the rational metareasoning model was also equipped with a larger repertoire of strate-
gies, then it would learn more gradually and probably achieve a better fit to the human data. Due
to these caveats, we focus on the models’ qualitative predictions because they are less sensitive to
different auxiliary assumptions.
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The feature-based learning mechanism of the SCADS model and the context-free learning mecha-
nism of the SSL model captured the human data equally well (BICSSL − BICSCADS1 = 0.04 ≪ 2),
and the feature-based learning mechanism of the rational metareasoning model also captured the
qualitative changes in people’s strategy choices. Since the data by Rieskamp and Otto (2006) can
be explained by either feature-based or context-free strategy selection learning, we designed a new
experiment to determine which mechanism is responsible for people’s adaptive strategy choices.

5.1.4 Experiment 3: Adaptive flexibility increases with learning

The fourth prediction of our model is that people learn to flexibly switch their strategies on a trial-
by-trial basis to exploit the structure of individual problems. An alternative hypothesis embodied
by SSL and RELACS is that strategy selection learning serves to identify the one strategy that works
best on average across all problems in a given environment. To design an experiment that can dis-
criminate these hypotheses, we evaluated the performance of context-free versus feature-based strat-
egy selection learning in 11 environments with 0%, 10%, 20%, . . . ,100% compensatory problems
and 100%, 90%, 80%, . . . ,0% non-compensatory problems respectively. Critically, all compensatory
problems were designed such that TTB fails to choose the better option and WADD succeeds, and
all non-compensatory problems were designed such that TTB succeeds and WADD fails. For each
of the 11 decision environments, we compared the average performance predicted by rational metar-
easoning with the parameters b(0)WADD = 0 and τ = 1, against the predictions of the five lesioned
metareasoning models with the same parameters, SSL with parameters β1 = β2 = 0.5 andw = 1,
RELACS with parameters α = 0.1 and λ = 1, and the three SCADS models with an associa-
tion strength of 0.5 between each strategy and two categories corresponding to compensatory and
non-compensatory problems respectively.¶

Our simulations revealed that feature-based and context-free strategy selection learning predict
qualitatively different effects of the relative frequency of compensatory versus non-compensatory
decision problems; see Figure 5.9A. Concretely, the performance of model-free strategy selection
learning drops rapidly as the decision environment becomes more heterogeneous: As the ratio of
compensatory to non-compensatory problems approaches 50/50 the performance of context-free
strategy selection learning (SSL, RELACS, and the lesioned metareasoning model without features)

¶These parameters were chosen to give each model a weak, initial bias towards using both strategies
equally often. The exact value of this bias is not critical because it is quickly overwritten by experience.
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and SCADS‖ drops to the level of chance. By contrast, the performance of feature-based strategy
selection learning (rational metareasoning) is much less susceptible to this heterogeneity and stays
above 60%. The reason is that rational metareasoning learns to use TTB for non-compensatory
problems and WADD for compensatory problems, whereas SSL and RELACS learn to always use
the same strategy. We can therefore determine whether people rely on context-free or feature-based
strategy selection with the following experiments that puts participants in a heterogeneous environ-
ment.

Figure 5.8: Interface of Experiment 3: Strategy selection in multi-attribute decision-making.

‖The problem preventing the SCADS model from choosing the best strategy for each category is that the
category-specific association strengths are multiplied by a category-unspecific association strength.
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Methods

We recruited 100 participants on Amazon Mechanical Turk. The experiment lasted about 25-30
min, and participants were paid $1.25 plus a performance-dependent bonus of up to $1.25. The ex-
periment instantiated the decision environment with 50% compensatory problems and 50% non-
compensatory problems from the simulations above. Participants played a banker deciding between
giving a loan to company A versus company B based on their ratings on multiple attributes with
explicitly stated predictive validities (see Figure 5.8). There were 12 attributes in total. Half of these
attributes were reliable (predictive validity≥ 85%) whereas the other half was unreliable (predictive
validity≤ 63%). Concretely, the attributes Financial Flexibility, Efficiency, Capital Structure,Man-
agement,Own Financial Resources, and Qualifications of Employees had predictive validities of 95%,
93%, 90%, 87%, 85%, and 83% respectively, whereas the attributes Investment Policy, Business His-
tory, Real Estate, Industry, Reputation, and Location had predictive validities of 63%, 60%, 57%, 55%,
53%, and 51% respectively. Each trial presented either 3, 4, 5, or 6 attributes with equal probability.
On non-compensatory trials, exactly one of the attributes was reliable and all other attributes were
unreliable. By contrast, on compensatory trials all attributes were reliable or all attributes were un-
reliable. Reliable and unreliable attributes were selected randomly and their order was randomized.
The two options always had opposite ratings on the most predictive attribute, and 75% of the ratings
on other attributes were opposite to the rating on the most predictive attribute while 25% agreed
with it. After choosing Company A or Company B, participants received stochastic binary feedback:
$ + 50, 000 versus $ − 50, 000. On compensatory trials, the probability of positive feedback was
95% when the participant’s choice agreed with the choice of WADD and 5% when it disagreed with
WADD. On non-compensatory trials the probability of positive feedback was 95% when their choice
agreed with TTB and 5% otherwise.

Each participant made 100 binary choices, earning a bonus of 1.25 cents for each correct deci-
sion and losing 1.25 cents for each incorrect decision. Critically, the ratio of compensatory to non-
compensatory problems was 50/50: The problems were chosen such that TTB and WADD make
opposite decisions on every trial. In half of the trials, the decision of TTB was correct and in the
other half WADD was correct. Therefore, always using TTB, always using WADD, choosing one of
these two strategies at random, or context-free strategy selection would perform at chance level; see
Figure 5.9A.
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Results and Discussion

To determine the quality of people’s strategy choices, we compared their decisions on each trial to
those of the strategy appropriate for the problem presented on that trial. For compensatory trials,
we evaluated people’s choices against those of WADD and for non-compensatory trials we evalu-
ated them against TTB. People’s decisions agreed with those of the appropriate strategy on 76.2%
of the trials (see Figure 5.9A). To quantify our uncertainty about this estimate, we computed its
credible interval assuming a uniform prior (Edwards et al., 1963). We found that the 99% highest-
posterior density interval ranged from 75.1% to 77.3%. We can thus be 99% confident that people’s
average performance in the mixed decision environment was at least 75% and conclude that they
performed significantly better than chance (p < 0.001, Cohen’sw = 52.36). As shown in Fig-
ure 5.9B, people’s performance increased significantly from 70.4% in the first ten trials to 80.4%
in the last ten trials (ξ1(1) = 26.96, p < 0.001, Cohen’sw = 5.19). To gain a better under-
standing of this effect, we performed a logistic regression of the agreement between people’s choices
and those of the appropriate strategy; the regressors were the trial number, a constant, and the de-
cision’s compensatoriness. We found that people’s performance increased significantly over trials
(t(9996) = 9.46, p < 0.001). Consistent with the finding that people initially prefer compen-
satory strategies (Rieskamp & Otto, 2006), people performed better on compensatory trials than
on non-compensatory trials overall (t(9996) = 9.46, p < 0.001) and this effect dissipated over
time (t(9996) = −7.20, p < 0.001). Analyzing compensatory and non-compensatory trials
separately with logistic regression revealed that our participants’ performance on non-compensatory
trials improved significantly over time (t(4998) = 9.46, p < 0.001)while their performance on
compensatory trials remained constant (t(4998) = −0.92, p = 0.36). Interestingly, people per-
formed significantly above chance already on the first trial (73% correct; p < 0.001). This suggests
that people either entered the experiment with applicable expertise in when to use compensatory
versus non-compensatory decision strategies, as suggested by the results of Payne et al. (1988) or pos-
sess general purpose strategies that work well on both kinds of problems. Both factors might also
explain why people performed systematically better than all of our models (Figure 5.9A).

This level of performance could not have been achieved by context-free strategy selection, which
performed at chance, but it is qualitatively consistent with feature-based strategy selection which
performed significantly better than chance; see Figure 5.9A. We also simulated the experiment with
three SCADS models that were equipped with two categories corresponding to compensatory
versus non-compensatory problems and differed in their reward function (r = correctness, vs.
r = correctness − cost, vs. r = correctness/time). We found that the performance of the SCADS
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models was very similar to the performance of the SSL model. Most importantly, its performance
dropped to the chance level as the environment became increasingly more heterogeneous. This
happened because the global association strength interfered with category-specific strategy choices.
Additional simulations with the five lesioned metareasoning models revealed that feature-based
learning was indispensable to capture human performance. For more information, see Figure C.5 in
Appendix C.

These results should be taken with a grain of salt because the model comparisons presuppose
that TTB and WADD are the only decision strategies that people are equipped with even though
people’s repertoire most likely includes many additional strategies. It is conceivable that participants
succeeded in Experiment 3 by relying on a single strategy that succeeds on both compensatory and
non-compensatory problems. Because of this possibility, Experiment 3 does not provide definite
evidence for feature-based strategy selection. However, Experiment 1, Experiment 2, and the sim-
ulations of mental arithmetic presented in the following sections also support feature-based strat-
egy selection. Taken together these experiments and simulations provide very strong evidence for
feature-based strategy selection learning.

5.1.5 Conclusion

The experiments presented in this section confirmed the predictions of our resource-rational the-
ory of strategy selection learning: The first experiment showed that people learn to think less when
they think too much. The second experiment showed that people learn to think more when they
think too little. Thirdly, we showed that people learn to adapt not only how much they think but
also how they think to the structure of the environment. Finally, Experiment 3 demonstrated that
adaptive flexibility also increases with learning, and this enables people’s strategy choices to exploit
the structure of individual problems. Most importantly, in all four cases, the underlying learning
mechanisms made people’s strategy choices increasingly more resource-rational. Hence, the empir-
ical evidence presented in this section supports our hypothesis that the human brain is equipped
with learning mechanisms that make it more resource-rational over time. Even though people may
not be resource-rational when they first enter a new environment, the way in which they process
information appears to converge to the rational use of their finite time and bounded computational
resources. This perspective replaces the static view that people are either rational or irrational with
a dynamic view according to which people can become more rational over time. According to this
dynamic view human rationality should be measured by people’s ability to improve their reasoning
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Figure 5.9: Model predictions and findings of Experiment 3. A: People and rational metareason-
ing perform significantly above chance in heterogeneous environments but context-free strategy
selection mechanisms do not. B: People’s performance increased with experience. The trial-by-trial
frequencies were smoothed by a moving average over 20 trials. The error bars enclose 95% confi-
dence intervals.

and decision-making based on their experience.

In addition to its contributions to the debate about human rationality and its utility for future
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basic research, our model of strategy selection learning might also have potential practical applica-
tions in education and cognitive training. In terms of education, our model could be used to op-
timize the problem sets used to teach students when to use which approach–for instance in math-
ematical problem solving or high school algebra. In terms of cognitive training, our model could
be used to investigate which training regimens increase cognitive flexibility by promoting adaptive
strategy selection. According to our theory, people’s ability to (learn to) represent problems by gen-
eral features that are predictive of the differential efficacy of alternative strategies would be a critical
prerequisite for such training to succeed.

In conclusion, our findings paint an optimistic picture of the human mind by highlighting
metacognitive learning and the resulting cognitive growth. This perspective highlights that our ra-
tionality is not fixed but malleable and constantly improving. We hope that specifying what people’s
metacognitive learning mechanisms might be, our model will give us a handle on how to leverage
them to promote cognitive growth.

5.2 Enhancing metacognitive reinforcement learning with reward structures
and feedback**

The results presented in the previous section suggest that our metacognitive reinforcement learning
model of strategy selection learning captures at least one of the mechanisms through which people
can learn to make better decisions. This section explores the potential implications of this theory
for brain training (Anguera et al., 2013; Bavelier, Green, Pouget, & Schrater, 2012; C. S. Green &
Bavelier, 2008; Morrison & Chein, 2011; Owen et al., 2010) and promoting cognitive growth more
generally. Concretely, if cognitive plasticity is driven by metacognitive reinforcement learning then
it might be possible to leverage methods for accelerating reinforcement learning in robots (Ng et al.,
1999) to design feedback structures for cognitive training in humans.

This section evaluates this approach in the domain of planning. As a first step, we developed a
metacognitive reinforcement learning model of how people learn how many steps to plan ahead in
sequential decision problems, and we test its predictions empirically. The results of a first experi-
ment suggested that the model can discern which reward structures are more conducive to metacog-
nitive learning. A second experiment found that feedback structures designed based on the metacog-

**This section is based on Krueger, Lieder, and Griffiths (2017). Paul Krueger conducted the experiments
reported in this section, analyzed the data, and contributed to writing and experimental design.
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nitive reinforcement learning model can accelerate learning to plan.

5.2.1 Background: Planning and reinforcement learning

We will model each sequential decision problem we pose to our participants as a Markov decision
process (MDP)

M = (S,A, T, γ, r, P0) , (5.2)

where the states S correspond to locations, the actionsA correspond to moves, T (s, a, s′) is the
probability of the next location s′ given the previous location s if the participant takes action a,
0 ≤ γ ≤ 1 is the discount factor on future rewards, r(s, a, s′) is the reward generated by this
transition, and P0 is the probability distribution of the initial location S0 (Sutton & Barto, 1998).
We can thus describe the participant’s strategy for solving the task as a policy π : S 7→ A that
specifies which action to take in each of the locations. The expected sum of discounted rewards that
a policy π will generate in the MDPM starting from a state s is known as its value function

V π
M (s) = E

[ ∞∑
t=0

γt · r (St, π(St), St+1)

]
. (5.3)

The optimal policy π⋆M maximizes the expected sum of discounted rewards, that is

π⋆M = argmax
π

E

[ ∞∑
t=0

γt · r (St, π(St), St+1)

]
. (5.4)

Solving large planning problems is often intractable because the number of possible action se-
quences grows exponentially with the number of steps one plans ahead. When the state space S is
discrete and relatively small, dynamic programming can be used to find optimal plans in polyno-
mial time (Littman, Dean, & Kaelbling, 1995). But the high-dimensional, continuous state spaces
people have to plan with in real life are too large for these methods. Instead, people seem to rely on
approximate planning strategies (Huys et al., 2015) and often decide primarily based on immediate
and proximal outcomes while neglecting the long-term consequences of their actions (Myerson &
Green, 1995). Despite its fallibility, looking only a few steps ahead can drastically simplify the plan-
ning problem, and this may often be a necessity for bounded agents with imperfect knowledge of
the environment (Jiang, Kulesza, Singh, & Lewis, 2015). Since cutting corners in the decision process
is both necessary and problematic, good decision-making requires knowing when that is admissi-
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ble and when it is not. Knowing how much to plan is therefore an important metacognitive skill to
learn.

The results presented in Chapter 4 suggest that this metacognitive skill can be learned through
trial and error. Learning through trial and error can be understood in terms of reinforcement learn-
ing (Sutton & Barto, 1998). While certain reinforcement learning algorithms can, in principle, learn
to solve arbitrarily complex problems, reinforcement learning can also be very slow—especially
when rewards are sparse and the optimal policy is far from the learner’s initial strategy. A common
approach to remedy this problem is to give the algorithm pseudo-rewards for actions that do not
achieve the goal but lead in the right direction (Ng et al., 1999).While previous work has developed
this idea to accelerate learning a direct mapping from states to actions, the work presented here lever-
ages it to accelerate learning how to plan.

5.2.2 Deciding how to decide

People can use many different decision strategies. This poses the problem of deciding how to decide
(Boureau et al., 2015). Here, we will formalize this problem within the framework of rational metar-
easoning (Russell & Wefald, 1991b) introduced in Chapter 1. Previous research on meta-decision-
making has focused on the arbitration between habits versus planning (Dolan & Dayan, 2013; Kera-
mati et al., 2011). While this is an important meta-control problem, it is only one part of the puzzle
because people are equipped with more than one goal-directed decision-mechanism. Hence, when
the model-based system is in charge, it has to be determined how many steps it should plan ahead.
Ideally, the chosen planning horizon should achieve the optimal tradeoff between expected decision
quality versus decision time (Vul et al., 2014) and mental effort (Shenhav et al., 2017).

Here, we make the simplifying assumption that people always choose the action that maximizes
their sum of expected rewards over the next h steps, for some value of h that differs across decisions.
A planning horizon of h = 1 entails looking only at the immediate outcome of each action (myopic
one-step planning) whereas a planning horizon larger than one entails solving a sequential decision
problem to form a multi-step plan. Under this assumption, the meta-decision problem is to select a
planning horizon h from a setH = {1, 2, · · · , }, execute the plan, select a new planning horizon,
and so on. More formally, this problem can be formalized as a meta-level MDP (Hay et al., 2012). In
our task, the meta-level MDP is

Mmeta = (Smeta,H, Tmeta, rmeta) , (5.5)
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where the meta-level statem ∈ Smeta = {0, 1, 2, 3, 4} encodes the number of remaining moves,
and the meta-level action h ∈ H = {1, 2, 3, 4} is the planning horizon used to make a decision.
The meta-level reward function rmeta integrates the cost of planning with the return of the resulting
action:

rmeta(mk, hk) = −cost(hk) +
h∑

t=1

r(st, plan
(k,hk)
t ), (5.6)

where plan(k,h)t is the tth action of the plan formed by looking h steps ahead in the meta-level state
mk. The meta-decision-maker receives this reward after the plan has been executed in its entirety. If
the meta-decision-maker selects short planning horizons there can be multiple plan-act-reward-learn
cycles within a single trial. The cost of planning cost(hk) is determined by the branching factor b of
the decision tree according to

cost(hk) = λ · bhk · hk, (5.7)

where bhk is the number of plans, hk is the number of steps per plan, and λ is the cost per planning
step.††

5.2.3 Metacognitive reinforcement learning

Solving the problem of deciding how to decide optimally is computationally intractable but the
optimal solution can be approximated through learning (Russell & Wefald, 1991b). We propose that
people use reinforcement learning (Sutton & Barto, 1998) to approximate the optimal solution to
the meta-decision problem formulated in Equation 5.5.

Model

Our model of metacognitive reinforcement learning builds on the semi-gradient SARSA algorithm
(Sutton & Barto, 1998) that was develop to approximately solve MDPs with large or continuous
state spaces. Specifically, we assume that people learn a linear approximation to the meta-level Q-
function

Qmeta(mk, hk) ≈
7∑

j=1

wj · fj(mk, hk), (5.8)

††This equation assumes a constant branching factor and an upper bound on the complexity of plan-
ning. People’s planning time likely increases less than exponentially fast with the planning horizon but our
approximation may be sufficient for small problems.
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whose features f comprise one indicator variable for each possible planning horizon h (f1 = 1(h =

1), · · · , f4 = 1(h = 4)), one indicator variable for whether or not the agent planned all l
steps until the end of the task (f5 = 1(h = l)), the number of steps that were left unplanned
(f6 = max{0, l − h}), and the number of steps the agent planned too far (f7 = max{0, h − l}).
The semi-gradient SARSA algorithm learns the weights of these features by gradient descent. To
bring it closer to human performance, our model replaces its gradient descent updates by Bayesian
learning. Concretely, the weightsw are learned by Bayesian linear regression of the bootstrap esti-
mate Q̂(mk, hk) of the meta-level value function onto the features f . The bootstrap estimator

Q̂(mk, hk) = rmeta(mk, hk) + ⟨µt, f(m′, h′)⟩ (5.9)

is the sum of the immediate meta-level reward and the predicted value of the next meta-level state
m′. The predicted value ofm′ is the scalar product of the the posterior mean µt of the weightsw
given the observations from the first t actions (where t =

∑k
n=1 hn) and the features f(m′, c′) of

m′ and the planning horizon h′ that will be selected in that state.

We assume that the prior on the feature weights reflects that it is beneficial to plan until the end
(P (f5) = N (µ = 1, σ = 0.1)), although planning is costly (P (f1) = P (f2) = P (f3) =

P (f4) = N (µ = −1, σ = 0.1)), and that planning too much is more costly than planning too
little (P (f7) = N (µ = −1, σ = 0.1) and P (f6) = N (µ = 0, σ = 0.1)).

Given the posterior on the feature weightsw, the planning horizon h is selected by Thompson
sampling. Specifically, to make the kth meta-decision, a weight vector w̃ is sampled from the poste-
rior distribution of the weights given the series of meta-level states, selected planning horizons, and
resulting value estimates experienced so far. That is,

w̃k ∼ P (w|Ek), (5.10)

where the set Ek = {e1, · · · , ek} contains the meta-decision-maker’s experience from the first k
meta-decisions; to be precise, each meta-level experience ej ∈ Ek is a tuple

(
mj , hj , Q̂(mj , cj ;µj)

)
containing a meta-level state, the computation selected in it, and the bootstrap estimates of its Q-
value. The sampled weight vector w̃ is then used to predict the Q-values of each possible planning
horizon h ∈ H according to Equation 5.8. Finally, the planning horizon with the highest predicted
Q-value is used for decision-making.

By proposing metacognitive reinforcement learning as a mechanism of cognitive plasticity, our
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model suggests that reward and feedback are critical for cognitive growth. Conceptualizing metacog-
nitive reinforcement learning as a regression problem suggests that learning how to best think about
a problem should require less practice the stronger the correlation between the features f(m, c) (i.e.,
the predictors) and the resulting reward net the cost of thinking (i.e., the criterion; Green, 1991).
Here, we apply our model to predict how quickly people can learn that more planning leads to bet-
ter results from the reward structure of the practice problems. According to the model, learning
should be fastest when the reward increases deterministically with the planning horizon both within
and across problems. By contrast, learning should be slower when this relationship is degraded by
additional variability in the rewards that is unrelated to planning. The following experiments test
this prediction and illustrate the model’s utility for designing feedback structures that promote
metacognitive learning.

5.2.4 Experiment 4: Reward structures can help or hinder learning to plan

Methods

We recruited 304 adult participants from Amazon Mechanical Turk. The task took about 25 min-
utes, and participants were paid $2.50 plus a performance-dependent bonus of up to $2.00. Partici-
pants played a series of flight planning games. The environment consisted of six different cities, each
connected to two other cities (Figure 5.10). Participants began each trial at a given city, and were
tasked with planning a specified number of flights. Each flight was associated with a known gain or
loss of money, displayed onscreen. Thus, the participants’ task was to plan a route that would max-
imize their earnings or minimize their losses, based on the number of planning steps required for
that game.

The experiment comprised thirteen trials total: a sequence of three practice problems which
required planning 2, 3, and 3 steps ahead, respectively, followed by ten 4-step problems, with a break
after trial eight. The order of the two 3-step problems was randomized, and the order of the ten 4-
step problems was randomized across the last ten trials of the experiment. Participants were assigned
randomly to one of two conditions: environments with reward structures designed to promote
learning (“diagnostic rewards”), or environments with reward structures designed to hinder learning
(“non-diagnostic rewards”).

The problems of the diagnostic rewards condition were automatically generated to exhibit four
characteristics:
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1. For each l-step problem, planning h < l steps ahead generates l − h suboptimal moves. In
other words, each myopic planner makes the maximum possible number of mistakes.

2. When the number of moves is l, then planning l steps ahead yields a positive return, but
planning h < l steps ahead yields a negative return.

3. The return increases monotonically with the planning horizon from 1 to the total number of
moves.

4. Each starting position occurs at least once.

Figure 5.10: Screenshot of a problem from Experiment 4.

The reward structures used for the non-diagnostic rewards condition were created by shifting the
diagnostic reward structures so as to degrade the correlation between planning horizon and reward.
Concretely, for half of the problems all rewards were shifted down such that no amount of plan-
ning could achieve a return better than−$10. Since the original problems were such that the 1-step
planner always performed worst, the shift was −r1+X

l where r1 is the return of the 1-step planner,
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l is the number of steps in the planning problem, andX is a random number between 10 and 20
that differed across problems (X ∼ Uniform([10, 20])). For the other half of the problems, all
rewards were shifted up by− r1+X

l such that all planners achieve a return of at least+$10. These re-
ward structures make it extremely difficult for metacognitive reinforcement learning to discover that
planning is valuable, because the random shifts greatly diminish the correlation between planning
horizon and reward.

Results

Both model simulations and human behavior demonstrated enhanced learning in environments
with diagnostic rewards. Figure 5.11 shows the mean performance of the metacognitive reinforce-
ment learning model, and the mean performance of human participants. Here, performance is mea-
sured as relative reward

Rrel = (R−Rmin)/(Rmax −Rmin), (5.11)

whereR is the total reward received during the trial, andRmin andRmax are the highest and lowest
possible total reward on that trial, respectively.

To measure the effects of condition and trial number on performance in human participants, we
ran a repeated-measures ANOVA. This revealed a significant effect of both trial number (F (9, 2989) =
3.44, p < 0.001) and condition (F (9, 3029) = 15.26, p < 0.0001), such that participants im-
proved over time, and participants with diagnostic feedback performed better than those without.
To measure learning in each group, we ran a simple linear regression of the relative reward on the
trial number. This revealed a significant regression equation for participants who received diagnos-
tic rewards (F (2, 302) = 11.28, p < 0.01), with anR2 of 0.59, but not for participants who
received non-diagnostic rewards (F (2, 302) = 3.51, p > 0.05), with anR2 of 0.31, suggesting that
improvement in performance occurred with diagnostic rewards, but not without.

To analyze the frequency with which participants chose the optimal route, we performed a
multinomial logistic regression of whether or not each participant chose the optimal route on
trial number and group. This revealed significant effects of trial number (p < 10−6) and group
(p < 0.0001).

In addition, we found that participants interacting with a diagnostic reward structure learned
to plan significantly further ahead than participants interacting with the non-diagnostic reward
structure. When there were four steps left, the average planning horizon was 2.96with diagnostic
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Figure 5.11: Model predictions and human performance in Experiment 4. Error bars indicate the
standard error of the mean. Model predictions were averaged over 500 simulations.

rewards compared to 2.65with non-diagnostic rewards (t(596) = 2.94, p < 0.01). When the
rewards were diagnostic of good planning, participants’ choices in the first step of the 4-step prob-
lems accorded 10.3%more frequently with 4-step planning (t(302) = 3.57, p < 0.001). For 3
remaining steps there was a significant increase in choices according with optimal 1-step (p < 0.01),
2-step (p < 0.01) and 4-step planning (p < 0.01). For 2 remaining steps, there was a significant
increase in choices according with optimal 1-step planning (p < 0.0001) without a decrease in
agreement with other planning horizons. Finally, on the last move participants’ choices in the envi-
ronment with diagnostic rewards corresponded 5.8%more frequently with optimal 1-step planning
(t(302) = 3.71, p < 0.001), and significantly less frequently with 2-step and 3-step planning
(p < 0.01 and p < 0.001). In summary, diagnostic rewards led to better agreement between the
planning horizon and the number of remaining steps.

5.2.5 Experiment 5: Using feedback to promote learning to plan

When one has control over the reward structure of an environment, creating rewards tailored to
faster learning may be feasible. However, often environmental rewards are fixed. In Experiment
5, we tested whether providing feedback may be an effective alternative approach to accelerating
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learning. When participants do not plan enough to find the optimal route, this could be because the
time cost of planning an optimal route outweighs its benefits. To change that, we provided feedback
in the form of timeout penalties for short-sighted decisions.

Methods

We recruited 324 adult participants on Amazon Mechanical Turk. The task took about 30 minutes,
and participants were paid $3.00 plus a performance-dependent bonus of up to $2.00. Participants
played twenty trials of the flight planning game described above. These trials were divided into a
training block and a testing block. The training block consisted of six trials requiring 2-step plan-
ning, followed by ten trials requiring 3-step planning. The testing block consisted of four additional
3-step trials. The order of the 2-step trials and the order of the 3-step trials were randomized across
subjects. Participants were randomly assigned to either the feedback condition or the control condi-
tion.

In the training block, participants in the feedback condition were told their apparent planning
horizon at the end of every trial and penalized with a timeout that reflected the amount of plan-
ning they had eschewed. Concretely, we set the durations of the timeouts such that the cost of
short-sighted decisions was proportional to the amount of necessary planning the participant had
eschewed. Specifically, the forgone cost of planning was estimated by cost = 2l−ĥ, where l is the
number of moves for that trial, ĥ is the participant’s apparent planning horizon, and 2 is the branch-
ing factor since each step entailed a binary decision. The participant’s planning horizon was esti-
mated by the number of consecutive moves consistent with the optimal policy, beginning with the
last move, followed by the second-to-last, etc. At the end of each trial of the first block, participants
in the feedback group were penalized with a timeout delay for sub-optimal routes. The delay was
calculated as 7 · (cost − 1) seconds. During this period, participants were unable to proceed to the
next trial. If participants performed the optimal route, they were able to proceed immediately to the
next trial.

The control group received no feedback and had to wait a fixed amount of time at the end of ev-
ery trial in block 1, regardless of their performance. This fixed period was set to 8 seconds, to match
the mean timeout period for participants in the feedback group (7.9 seconds). Neither group re-
ceived feedback or delays in the test block.

The planning problems presented in this experiment were created in two steps. In the first step,
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we created 2- and 3-step problems with maximally diagnostic reward structures (according to the
criteria used in Experiment 4) subject to the constraint that the first move with the highest imme-
diate reward was optimal for exactly half of those problems. In the second step, we modified these
problems so as to deteriorate the correlation between planning horizon and reward using the same
method we employed to create the non-diagnostic reward structures used in Experiment 4.

Model Predictions

We applied the metacognitive reinforcement learning model described above to the problem of
learning how many steps one should plan ahead. We simulated a run of the experiment described
above with 1000 participants in each condition. The simulations predicted a gradual increase in
the relative return from the first 3-step problem to the last one (see Figure 5.12). With feedback, the
relative return increased faster and reached a higher level than without feedback.

Results

To quantify the effects of condition and trial number on performance (measured as relative reward),
we ran a mixed-design repeated-measures ANOVA on participant performance during the 3-step
trials. This revealed a significant effect of feedback (F (9, 4521) = 8.54, p < 0.01) and trial
number (F (9, 4521) = 1.85, p < 0.05) on relative reward. To measure learning in each group,
we performed a simple linear regression of relative reward on trial number for the 3-step trials in
the training block (i.e., when participants in the feedback group received feedback). This revealed a
significant regression equation for the feedback group (F (2, 322) = 5.28, p = 0.05), with anR2

of 0.40 but not for the control group (F (2, 322) = 1.57, p > 0.05), with anR2 of 0.16. This
suggests that participants who received feedback improved during the training block but the control
group did not.

Feedback increased the model’s average performance in both the training block and the transfer
block. We next tested whether the enhanced learning of the feedback group during training resulted
in better performance in the transfer block (trials 17-20) where they no longer received any feedback.
A two-sample t-test revealed that the feedback group’s advantage in the testing block was nearly
significant (t(1294) = 1.53, p = 0.063). Figure 5.12 compares our participants’ performance to the
model predictions.
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Figure 5.12: Results of Experiment 5. The metacognitive RL model predicts that feedback accel-
erate learning to plan. Human behavior shows a similar pattern of results.
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As predicted by our model, a multinomial logistic regression of whether or not each participant
chose the optimal route on trial number and feedback, revealed significant effects of trial number
(p < 0.0001) and feedback (p < 0.01).

Feedback appeared to increase people’s planning horizons: when there were two remaining
moves, the choices of the feedback group accorded 4% less often with myopic choice (t(1398) =

−2.17, p < 0.05), 7%more often with optimal 2-step planning (t(1398) = 3.44, p < 0.001), and
4%more often with optimal 3-step planning (t(1398) = 2.43, p < 0.05).

5.2.6 Discussion

This section introduced a computational model of how people learn to decide better. Its central
idea is that learning how to think can be understood as metacognitive reinforcement learning. The
metacognitive reinforcement learning model presented in this section extends the strategy selection
learning model introduced in Chapter 4 by capturing that choosing cognitive operations is a sequen-
tial decision problem with potentially delayed rewards rather than a one-shot decision. The new
model correctly predicted the effects of reward structure and feedback on learning to plan: Experi-
ment 4 suggested that our model captures the effect of reward structures on the speed of metacog-
nitive learning. We then applied our theory to design feedback for people’s performance in envi-
ronments whose reward structure is not diagnostic of good planning. Experiment 5 confirmed the
model’s prediction that this intervention would be effective.

The results suggest two pragmatic approaches to promoting cognitive growth: the first approach
is to design reward structures that are diagnostic of the quality of reasoning, planning, and decision-
making; the second approach is to provide feedback on the process by which a decision was made.
In Experiment 5 we followed the latter approach by designing feedback based on the cost of plan-
ning; but other types of feedback may also be useful. If cognitive plasticity is based on model-free
reinforcement learning as assumed by our theory, then its speed should critically depend on how
well the feedback people receive upon performing cognitive operations reflects their value. There-
fore, feedback structures that align immediate feedback with long-term value should be maximally
effective at promoting cognitive plasticity and learning to make better decisions. This idea for de-
signing feedback structures can be implemented using the optimal gamification method introduced
by Lieder and Griffiths (2016). Feedback designed using optimal gamification could be especially
beneficial because the underlying method of reward shaping is designed to accelerate model-free re-
inforcement learning (Ng et al., 1999). Critically, to promote learning how to decide, people should
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decide without any assistance and only receive feedback after their choice.

The theory of metacognitive reinforcement learning presented in this section is a step towards
establishing a scientific foundation for designing feedback for cognitive training and other inter-
ventions for promoting cognitive growth. Future work will evaluate alternative forms of feedback,
address the problem of transfer and retention, and design more effective training paradigms where
the feedback people receive is maximally informative about how people think and decide. As a first
step in this direction, Chapter 7 applies the findings of this section to develop a cognitive tutor that
gives people metacognitive feedback to teach them optimal planning strategies.
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6
An automatic method for strategy

discovery*

6.1 Introduction

The idea that people use simple heuristics is central to a substantial body of work on bounded ra-
tionality, and the school of ecological rationality assumes that people’s simple heuristics are rational
Gigerenzer (2008a); Todd and Gigerenzer (2012). To the extent that this is true, discovering ratio-
nal heuristics will give us insights into how people think and decide. Conversely, to the extent that

*This chapter is based on Lieder, Callaway, Gul, Krueger, and Griffiths (2017) and Lieder, Krueger, and
Griffiths (2017). Fred Callaway, Sayan Gul, Paul Krueger, and Tom Griffiths contributed to writing these
manuscripts and conceiving the research. Frederick Callaway contributed substantially to the development,
implementation, and evaluation of the method presented in this chapter. Sayan Gul contributed substan-
tially to the evaluation of this method. Section 6.4 is based on a collaborative project with Sayan Gul, Fred
Callaway, Paul Krueger, and Tom Griffiths whose results are yet unpublished. Paul Krueger programmed and
ran the the experiment reported in Section 6.4.4, identified people’s strategies, and contributed the analysis
of reaction times. Sayan Gul computed the LC policies multi-alternative risky choice. Sayan Gul and Fred
Callaway performed the model comparison against the Directed Cognition model, and Fred Callaway gener-
ated Figure 6.8. I conceived and directed this research, formulated the mathematical model of meta-decision
making, characterized the model predictions, analyzed the human data, and did all of the writing.
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people’s cognitive strategies deviate from those rational heuristics it should be possible to improve
human judgment and decision-making by teaching people to use such heuristics. Unfortunately,
there is no principled way to discover rational heuristics and most known heuristics lack any nor-
mative justification. To overcome these problems, this chapter develops an automatic method for
discovering rational heuristics.

The results presented in Chapter 5 suggest that people might be discovering cognitive strategies
via metacognitive reinforcement learning. Inspired by this finding, this chapter translates the idea of
metacognitive reinforcement learning into a computational method for discovering rational heuris-
tics.

The first two sections present and evaluate a computational method for deriving near-optimal
cognitive strategies from first principles. The third section applies this method to discover ratio-
nal heuristics for multi-alternative risky-choice. We find that our method automatically rediscovers
known heuristics and also uncovers a novel heuristic. An experiment confirmed that people do in-
deed use each of the discovered heuristics under the conditions for which our method reveals it to
be resource-rational. The chapter concludes with a discussion of these findings and directions for
future research.

6.2 Defining optimal cognitive strategies

The key idea of this chapter is that optimal cognitive strategies can be defined and computed as the
solution to a meta-level MDP (see Figure 6.1). To recap from Chapter 1, a metalevel MDP

Mmeta = (B,A, Tmeta, rmeta) (6.1)
is a Markov decision process (Puterman, 2014) where the actionsA are cognitive operations, the
states B encode the agent’s beliefs, and the transition function Tmeta describes how cognitive opera-
tions change the beliefs. A includes computations C that update the belief, as well as a special met-
alevel action⊥ that terminates deliberation and initiates acting on the current belief. A belief state
b encodes a probability distribution over parameters θ of a model of the domain. The parameters θ
determine the utility of acting according to a policy π, that isU (θ)

π . For one-shot decisions,U (θ)
π is

the expected reward of a taking a single action. In sequential decision-problems,U (θ)
π = V

(θ)
π (s) is

the expected sum of rewards the agent will obtain by acting according to policy π if the environment
has the characteristics encoded by θ. Since b encodes the agent’s belief about θ, its subjective utility
Û

(b)
π of acting according to π isEθ∼b[U

(θ)
π ].

254



Figure 6.1: Illustration of the strategy discovery method developed in this chapter.

The metalevel reward function rmeta captures the cost of thinking (Shugan, 1980) and the ex-
ternal reward r the agent expects to receive from the environment. The computations C have no
external effects, thus they always incur a negative reward rmeta(b, c) = −cost(c). In the problems
studied below, all computations that deliberate have the same cost, that is cost(c) = λ for all c ∈ C
whereas cost(⊥) = 0. An external reward is received only when the agent terminates deliberation
and makes a decision based on the current belief state b. To reduce the variance of this reward signal,
the metalevel reward of terminating deliberation is defined as the expectation of the external reward,
that is

rmeta(b,⊥) = max
π

Û (b)
π = max

π
Eθ∼b

[
U (θ)
π

]
. (6.2)

Early work on rational metareasoning (Russell & Wefald, 1991b) defined the optimal way to select
computations as maximizing the value of computation (VOC), that is

argmax
c

VOC(c, b), (6.3)
where VOC(c, b) is the expected improvement in decision quality that can achieved by performing
computation c in belief state b and continuing optimally minus the cost of the optimal sequence
of computations (Russell & Wefald, 1991b). When no computation has positive value, the policy
terminates computation and executes the best object-level action, thus VOC(⊥, b) = 0. Using the
formalism of metalevel MDPs (Hay et al., 2012), this definition can be rewritten as

VOC(c, b) = Q⋆
meta(b, c)− rmeta(b,⊥), (6.4)

and the optimal selection of computations can be expressed as the optimal metalevel policy π⋆meta(b) =

argmaxcQ
⋆
meta(b, c).
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6.3 Computing optimal cognitive strategies through meta-level reinforce-
ment learning

6.3.1 Approximations to rational metareasoning

Previous work (C. H. Lin, Kolobov, Kamar, & Horvitz, 2015; Russell & Wefald, 1991b) has approxi-
mated rational metareasoning by the meta-greedy policy

πgreedy(b) = argmax
c

VOC1(b, c), (6.5)
where

VOC1(c, bt) = E [rmeta(Bt+1,⊥)|bt, ct] + rmeta(bt, c)− rmeta(bt,⊥), (6.6)

is the myopic value of computation (Russell & Wefald, 1991b). This is optimal when the improve-
ment from each additional computation is less than that from the previous one but deliberates too
little when this assumption is violated.

Hay et al. (2012) approximated rational metareasoning by combining the solutions to smaller
metalevel MDPs that formalize the problem of deciding how to decide between one object-level
action and the expected return of its best alternative. While this blinkered approximation is more
accurate than the meta-greedy policy, it is also significantly less scalable and not directly applicable to
metareasoning about planning.

It has been proposed that people approximate optimally selecting individual computations by
metareasoning over a small subset of all possible sequences of computations (Milli et al., 2017). The
solution to this simplified problem can be approximated efficiently (Lieder & Griffiths, 2017), but
this approximation neglects the sequential nature of selecting individual computations.

To our knowledge these are the main approximations to rational metareasoning. Hence, to date,
there appears to be no accurate and scalable method for solving general metalevel MDPs.

6.3.2 Metalevel reinforcement learning

It has been proposed that metareasoning can be made tractable by learning an approximation to the
value of computation (Russell & Wefald, 1991b). However, despite some preliminary steps in this
direction (Harada & Russell, 1998; Lieder, Krueger, & Griffiths, 2017; Lieder, Plunkett, et al., 2014)
and related work on meta-learning (Schaul & Schmidhuber, 2010; Smith-Miles, 2009; Thornton,
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Hutter, Hoos, & Leyton-Brown, 2013; J. X. Wang et al., 2017), learning to approximate bounded
optimal information processing remains an unsolved problem in artificial intelligence.

Previous research in cognitive science suggests that people circumvent the intractability of metar-
easoning by learning a metalevel policy from experience (Cushman & Morris, 2015; Krueger et al.,
2017; Lieder & Griffiths, 2017). At least in some cases, the underlying mechanism appears to be
model-free reinforcement learning (RL) (Cushman & Morris, 2015; Krueger et al., 2017; J. X. Wang
et al., 2017).This suggests that model-free reinforcement learning might be a promising approach
to solving metalevel MDPs. To our knowledge, this approach is yet to be explored in artificial in-
telligence. Here, we present a proof-of-concept that near-optimal metalevel policies can be learned
through metalevel RL.

Figure 6.2: Expected performance in metareasoning about how to choose between three actions
increases monotonically with the number of computations, asymptoting at the value of perfect
information (VPI). Consequently, the value of executing a single computation must lie between the
myopic value of information (VOI1) and the VPI.

6.3.3 A metalevel RL algorithm for selecting computations

According to rational metareasoning, one should continue to reason until none of the available com-
putations has a positive VOC. Until then, one should always choose the computation that confers
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the highest improvement in decision-quality net its cost. While the improvement in decision quality
contributed by a computation c under the optimal continuation is generally intractable to compute,
it can be bounded. Figure 6.2 illustrates that if the expected decision quality improves monotoni-
cally with the number of computations, then the improvement achieved by the optimal sequence of
computations should lie between the advantage of deciding immediately after the first computation
over making a decision without it (Russell & Wefald, 1991) and the benefit of obtaining perfect infor-
mation about all actions (Howard, 1966). The former is given by the myopic value of information†,
that is

VOI1(c, bt) = EBt+1|bt,c

[
max
π

Û (Bt+1)
π

]
−max

π
Û (b)
π . (6.7)

The latter is given by the value of perfect information about all actions, that is
VPIall(b) = Eθ∼b

[
max
π

U (θ)
π

]
−max

π
Û (b)
π . (6.8)

In problems with many possible actions, this upper bound can be very loose, and the VOC may
be closer to the value of knowing the value functions of the policiesΠc about whose returns the
computation c is informative, that is

VPIA(b, c) = Eθ∼b

[
max

(
U (θ)
c ∪ Û (b)

¬c

)]
− rmeta(b,⊥), (6.9)

where U (θ)
c = {U (θ)

π :π ∈ Πc} are the unknown utilities of the policies that computation c is
informative about, and Û (b)

¬c = {Û (b)
π :π /∈ Πc} is the set of the expected utilities of all policies

that c is not informative about. This definition generalizes the value of perfect information about a
single action (Dearden, Friedman, & Russell, 1998) to policies.

Critically, the myopic value of information (VOI1), the VPI about all actions, and the VPIA can
all be computed efficiently or efficiently approximated by Monte-Carlo integration (Hammersley &
Handscomb, 1964). Our method thus approximates the expected improvement in decision quality
gained by a computation by linearly interpolating between its myopic VOI and the value of perfect
information, that is

VOC(c, b) ≈ w1 · VOI1(c, b) + w2 · VPIall(b) + w3 · VPIA(b, c)− w4 · cost(c), (6.10)
with the constraints thatw1, w2, w3 ∈ [0, 1],w1 + w2 + w3 = 1, andw4 ∈ [1, h]where h
is an upper bound on how many computations can be performed. Below we propose an algorithm
through which the agent can learn these weights from experience.

Since the VOC defines the optimal metalevel policy (Equation 6.3), we can approximate the opti-

†The VOI1 defined here is equal to the myopic VOC defined by Russell and Wefald (1991) plus the cost
of the computation.
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mal policy by plugging in our VOC approximation (Eq. 6.10) into Equation 6.3. This yields
πmeta(b;w) = argmax

c
w1 · VOI1(c, b)+w2 · VPIall(b)+w3 · VPIA(b, c)−w4 · cost(c). (6.11)

The parametersw of this policy are estimated by maximizing the expected return

E

[∑
t

rmeta(bt, πmeta(bt;w))

]
.

Together with the constraints on the weights stated above, this effectively reduces the intractable
problem of solving metalevel MDPs to a simple 3-dimensional optimization problem. There are
many ways this optimization problem could be solved. Since estimating the expected return for a
given weight vector can be expensive, we use Bayesian optimization (BO) (Mockus, 2012) to opti-
mize the weights in a sample efficient manner.

The novelty of our approach lies in leveraging rational metareasoning and machine learning to
discover optimal cognitive strategies. In the following sections, we validate the assumptions of our
approach, evaluate its performance on increasingly complex metareasoning problems, compare it to
existing methods, and apply it to discover rational heuristics for risky choice.

6.3.4 Evaluation of the method in simulations

We evaluate how accurately our method can approximate rational metareasoning against two state-
of-the-art approximations–the meta-greedy policy and the blinkered approximation–on three in-
creasingly difficult metareasoning problems: deciding when to stop thinking, deciding how to de-
cide, and deciding how to plan.

1. Metareasoning about when to stop deliberating

How long should an agent deliberate before answering a question? Our evaluation mimics this
problem for a binary prediction task (e.g., “Will the price of the stock go up or down?”). Every delib-
eration incurs a cost and provides probabilistic evidenceXt ∼ Bernoulli(p) in favor of one outcome
or the other. At any point the agent can stop deliberating and predict the outcome supported by the
majority of its deliberations so far. The agent receives a reward of+1 if its prediction is correct, or
incurs a loss of−1 if it is incorrect. The goal is to maximize the expected reward of this one predic-
tion minus the cost of computation.
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Figure 6.3: Results of performance evaluation on the problem of metareasoning about when to
terminate deliberation.

Metalevel MDP: We formalize the problem of deciding when to stop thinking as a metalevel
MDPMmeta = (B,A, Tmeta, rmeta)where each belief state (α, β) ∈ B defines a beta distribution
over the probability p of the first outcome. The metalevel actionsA are {c1,⊥}where c1 refines
the belief by sampling, and⊥ terminates deliberation and predicts the outcome that is most likely
according to the current belief. The transition probabilities for sampling are defined by the agent’s
belief state, that is Tmeta((α, β), c1, (α + 1, β)) = α

α+β and Tmeta((α, β), c1, (α, β + 1)) = β
α+β .

Predicting (executing⊥) always transitions to a terminal state. The reward function rmeta reflects
the cost of computation ( rmeta(b, c1) = −λ) and the probability of making the correct prediction
(rmeta(b,⊥) = +1·pcorrect(α, β)−1·(1−pcorrect(α, β))) where pcorrect(α, β) = max{ α

α+β ,
β

α+β}).
We set the horizon to h = 30, meaning that the agent can perform at most 30 computations before
making a prediction.

Since there is only one object-level action (i.e., to predict the outcome that appears most likely)
the VPI about all actions is identical to the VPI for a single action. When reporting on this problem,
we will thus not distinguish between them and use the term VPI instead. For the same reason, the
blinkered approximation is equivalent to solving the problem exactly.
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Evaluation procedure: We evaluated the potential of our method in two steps: First, we
performed a regression analysis to evaluate whether the proposed features are sufficient to capture
the value of computation. Second, we tested whether the proposed features are sufficient to learn a
near-optimal metalevel policy. The metalevel RL agent learns the weightsw of the policy defined
in Equation 6.11 that maximize expected return through Gaussian process Bayesian optimization.
We ran 500 iterations of optimization, estimating the expected return of the policy entailed by the
probed weight vector by its average return across 2500 episodes. The performance of learned policy
was evaluated on an independent test set of 3000 episodes.

To perform these evaluations, we first established the ground truth by solving the metalevel MDP
with backward induction (Puterman, 2014).

Results: First, linear regression analyses confirmed that three simple features (VOI1(c, b),
VPI(c, b), and cost(c)) are sufficient to capture between 90.8% and 100.0% of the variance in the
value of computation for performing a simulation (VOC(b, c1)) across different states b depending
on the cost of computation. Concretely, as the cost of computation increased from 0.001 to 0.1 the
regression weights shifted from 0.76 · VPI + 0.46 · VOI1 − 4.5 · cost to 0.00 · VPI + 1.00 ·
VOI1 − 1.00 · cost and the explained variance increased from 90.8% to 100.0%. The explained
variance and the weights remained the same for costs greater than 0.1. Figure 6.4a) illustrates this fit
for λ = 0.02.

Second, we found that the VOI1 and the VPI features are sufficient to learn a near-optimal met-
alevel policy. As shown in Figure 6.3, the performance of metalevel RL policy was at most 5.19%
lower than the performance of the optimal metalevel policy across all costs. The difference in perfor-
mance was largest for the lowest cost λ = 0.001 (t(2999) = 3.75, p = 0.0002) and decreased
with increasing cost so that there was no statistically significant performance difference between our
method and the optimal metalevel policy for costs greater than λ = 0.0025 (all p > 0.15). The
policy learned with BO performed between 6.78% and 35.8% better than the meta-greedy policy
across all costs where the optimal policy made more than one observation (all p < 0.0001) and
20.3% better on average (t(44999) = 42.4, p < 10−15).
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a) b)

Figure 6.4: a) Linear fit of the true value of computation in terms of the the myopic VOI, the
value of perfect information, and the cost of computation. b) Example of a convergence plot of
meta-level reinforcement learning method.

2. Metareasoning about decision-making

How should an agent allocate its limited decision-time across estimating the expected utilities of
multiple alternatives? To evaluate how well our method can solve this kind of problem, we evaluate
it on the Bernoulli metalevel probability model introduced by Hay et al. (2012). This problem dif-
fers from the previous one in two ways. First, instead of having only a single object-level action (i.e.,
make a prediction), there are now k ≥ 2 object-level actions. Second, instead of making a predic-
tion and being rewarded for its accuracy, the agent chooses an action ai and receives a payoff that
is sampled from its outcome distribution, that is r(s, ai) ∼ Bernoulli(θi)where θi is the action’s
unknown reward probability. This problem differs from the standard multi-armed bandit problem
in two ways: First, the agent takes only a single object-level action and thus receives only one external
reward. Second, the agent is equipped with a simulator that it can use to estimate the reward prob-
abilities θ1, · · · , θk via sampling; simulated outcomes do not count towards the agent’s reward, but
each simulation has a cost.

Metalevel MDP: The Bernoulli metalevel probability model is a metalevel MDPMmeta =

(B,A, Tmeta, rmeta, h)where each belief state b defines k Beta distributions over the reward proba-
bilities θ1, · · · , θk of the k possible actions. Thus b can be represented by ((α1, β1), . . . , (αk, βk))

where b(θi) = Beta(θi;αi, βi) for all 1 ≤ i ≤ K . For the initial belief state b0 these parame-
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ters are αi = βi = 1 for all 1 ≤ i ≤ k. The metalevel actionsA are {c1, . . . , ck,⊥}where ci
simulates action ai and⊥ terminates deliberation and executes the action with the highest expected
return, that is action argmaxi

αi
αi+βi

. The metalevel transition probabilities (Tmeta(bt, ci, bt+1))
encode that performing computation ci increments αi with probability αi

αi+βi
and increments βi

with probability βi

αi+βi
. The metalevel reward function rmeta(b, c) is−λ for c ∈ {c1, · · · , ck} and

rmeta(b,⊥) = maxi
αi

αi+βi
. Finally, the horizon h is the maximum number of metalevel actions

that can be performed and the last metalevel action has to be to terminate deliberation and take ac-
tion (⊥).

Evaluation procedure: We evaluated our method on Bernoulli metalevel probability prob-
lems with k ∈ {2, · · · , 5} object-level actions, a horizon of h = 25, and computational costs
ranging from 10−4 to 10−1. We evaluated the performance of metalevel RL against the optimal
metalevel policy and three alternative approximations: the meta-greedy heuristic (Russell & We-
fald, 1991b), the blinkered approximation (Hay et al., 2012), and the metalevel policy that always
deliberates as much as possible. We trained the metalevel RL policy with Bayesian optimization as
described above, but with 100 iterations of 1000 episodes each. To combat the possibility of over-
fitting, we evaluated the average returns of the five best weight vectors over 5000more episodes
and selected the one that performed best. The optimal metalevel policy and the blinkered policy
were computed using backward induction (Puterman, 2014). We evaluated the performance of each
policy by its average return across 2000 episodes for each combination of computational cost and
number of object-level actions.

Results: An analysis of variance confirmed that these four methods differed significantly in their
performance (F (4, 279932) = 123078.5, p < 10−15). We found that the policy obtained by
metalevel RL attained 99.2% of optimal performance (0.6540 vs. 0.6596, t(1998) = −6.98, p <

0.0001) and significantly outperformed the meta-greedy heuristic (0.60, t(1998) = 86.9, p <

10−15) and the full-deliberation policy (0.20, t(1998) = 475.2, p < 10−15). The performance of
our method (0.6540) and the blinkered approximation (0.6559) differed by only 0.29%.

Figure 6.5b shows the metareasoning performance of each method as a function of the number of
options. We found that our method’s performance scaled well with the size of the decision problem.
For each number of options, the relative performance of the different methods was consistent with
the results reported above.
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Figure 6.5: (a) Metareasoning performance as a function of the cost of computation. Error bars
enclose 95% confidence intervals. (b) Metareasoning performance (i.e. expected reward of chosen
option minus cost of the decision process) of alternative methods on the Bernoulli metalevel proba-
bility model as a function of the number of actions. Error bars enclose 95% confidence intervals.

Figure 6.5a shows the methods’ average performance as a function of the cost of computation.
An ANOVA confirmed that the effect of the metareasoning method differed across different costs
of computation (F (24, 279932) = 64401.4, p < 10−15). Our method outperformed the meta-
greedy heuristic for costs smaller than 0.03 (all p < 10−15), and the full-deliberation policy for
costs greater than 0.0003 (all p < 0.005). For costs below 0.0003, the blinkered policy performed
slightly better than our method (all p < 0.0005). For all other costs both methods performed
at the same level (all p > 0.1), with the exception of the cost λ = 0.01, for which our method
outperformed the blinkered approximation (t(1998) = 3.2, p = 0.001). Additionally, for costs
larger than 0.01, our method’s performance becomes indistinguishable from the optimal policy’s
performance (all p > 0.24).

Finally, as illustrated in Figure 6.4b), we found that our metalevel RL algorithm learned surpris-
ingly quickly, usually discovering near-optimal policies in less than 10 iterations.

3. Metareasoning about planning

Having evaluated our method on problems of metareasoning about how to make a one-shot deci-
sion, we now evaluate its performance at deciding how to plan. To do so, we define the Bernoulli
metalevel tree, which generalizes the Bernoulli metalevel probability model by replacing the one-shot
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decision between k options by a tree-structured sequential decision problem that we will refer to as
the object-level MDP. The transitions of the object-level MDP are deterministic and known to the
agent. The reward associated with each ofK = 2h+1 − 1 states in the tree is deterministic, but
initially unknown; r(s, a, sk) = θk ∈ {−1, 1}. The agent can uncover these rewards through rea-
soning at a cost of−λ per reward. When the agent terminates deliberation, it executes a policy with
maximal expected utilty. Unlike in the previous domains, this policy entails a sequence of actions
rather than a single action.

Metalevel MDP: The Bernoulli metalevel tree is a metalevel MDPMmeta = (B,A, Tmeta, rmeta)

where each belief state b encodes one Bernoulli distribution for each transition’s reward. Thus, b can
be represented as (p1, · · · , pK) such that b(θk = 1) = pk and b(θk = −1) = 1 − pk. The
initial belief b0 has pk = 0.5 for all k.u The metalevel actions are definedA = {c1, · · · , cK ,⊥}
where ck reveals the reward at state k and⊥ selects the path with highest expected sum of rewards
according to the current belief state. The transition probabilities Tmeta(bt, ck, bt+1) encode that
performing computation ck sets pk to 1 or 0with equal probability (unless pk has already been up-
dated, in which case ck has no effect). The metalevel reward function is defined rmeta(b, c) = −λ
for c ∈ {c1, · · · , cK}, and rmeta ((p1, · · · , pk),⊥) = maxt∈T

∑
k∈tE [θk | pk]where T is the set

of possible trajectories t through the environment, andE [θk|pk] = 2pk − 1 is the expected reward
attained at state sk.

The recursively blinkered policy The blinkered policy of Hay et al. (2012) was defined
for problems where each computation informs the value of only one action. This assumption of
“independent actions” is crucial to the efficiency of the blinkered approximation because it allows
the problem to be decomposed into one independent subproblem for each action. When there are
few computations associated with each action, each subproblem can be efficiently solved.

Critically, the Bernoulli metalevel tree violates the assumption of independent actions. This is
because here “actions” are policies, and the reward at each state affects the values of all policies vis-
iting that state. One can still apply the blinkered policy in this case, approximating the value of a
computation ck by assuming that future computations will be limited to Eck , the set of compu-
tations that are informative about any of the policies the initial computation is relevant to. How-
ever, for large trees, this only modestly reduces the size of the initial problem. This suggests a re-
cursive generalization: Rather than applying the blinkered approximation once and solving the
resulting subproblem exactly, we recursively apply the approximation to the resulting subproblems.
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Finally, to ensure that the subproblems decrease in size monotonically, we remove from Eck the
computations about rewards on the path from the agent’s current state to the state sk inspected
by computation ck and call the resulting set E ′

ck
. Thus, we define the recursively blinkered policy as

πRB(b) = argmaxcQ
RB(b, c)withQRB(bt,⊥) = rmeta(bt,⊥) and

QRB(bt, ct) = E

[
rmeta(bt, ct) + max

ct+1∈E ′
ct

QRB(Bt+1, ct+1)

]
. (6.12)

Evaluation procedure: We evaluated each method’s performance by its average return over
5000 episodes for each combination of tree-height h ∈ {2, · · · , 6} and computational cost λ ∈
{2−7, · · · , 20}. To facilitate comparisons across planning problems with different numbers of steps,
we measured the performance of meta-level policies by their expected return divided by the tree-
height.

We trained the metalevel RL policy with Bayesian optimization as described above, but with
100 iterations of 1000 episodes each. To combat the possibility of overfitting, we evaluated the
average returns of the three best weight vectors over 2000more episodes and selected the one that
performed best.

For metareasoning about how to plan in trees of height 2 and 3, we were able to compute the op-
timal metalevel policy using dynamic programming. But for larger trees, computing the optimal
metalevel policy would have taken significantly longer than 6 hours and was therefore not under-
taken.

Results: We first compared our method with the optimal policy for h ∈ {2, 3}, finding that it
attained 98.4% of optimal performance (0.367 vs. 0.373, t(159998) = −2.87p < 10−15). An
ANOVA of the performance of the approximate policies confirmed that the metareasoning perfor-
mance differed significantly across the four methods we evaluated (F (3, 799840) = 4625010; p <

10−15), and that the magnitude of this effect depends on the height of the tree (F (12, 799840) =

1110179, p < 10−15) and the cost of computation (F (21, 799840) = 1266582, p < 10−15).

Across all heights and costs, our method achieved a metareasoning performance of 0.392 units of
reward per object-level action, thereby outperforming the meta-greedy heuristic (0.307, t(399998) =
72.84, p < 10−15), the recursively blinkered policy (0.368, t(399998) = 20.77, p < 10−15), and
the full-deliberation policy (−1.740, t(399998) = 231.18, p < 10−15).
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Figure 6.6: (a) Metareasoning performance as a function of computation cost on a Bernoulli tree
of height three. Metareasoning performance is the average reward earned per object-level state
visited. (b) Metareasoning performance as a function of tree height. The optimal policy is only
shown for heights at which it can be computed in under six hours. The full observation policy is
not shown because its performance is negative for all heights.

As shown in Figure 6.6a, our method performed near-optimally across all computational costs,
and its advantage over the meta-greedy heuristic and the tree-blinkered approximation was largest
when the cost of computation was low, whereas its benefit over the full-deliberation policy increased
with increasing cost of computation. Finally, Figure 6.6b shows that the performance of our method
scaled very well with the size of the planning problem, and that its advantage over the meta-greedy
heuristic increased with the height of the tree.

6.3.5 Discussion

This section has introduced the first computational method for discovering resource-rational cog-
nitive strategies. Its basic idea is to learn a near-optimal mapping from belief states to cognitive op-
erations. We have validated this approach by showing that it learns near-optimal meta-level policies
and outperforms the state-of-the-art methods for approximate metareasoning that could have been
used instead. Since our method approximates the value of computation as a linear combination
of the myopic VOI and the value of perfect information, it can be seen as a generalization of the
meta-greedy approximation (C. H. Lin et al., 2015; Russell & Wefald, 1991a). It is the combination
of multiple tractable features that capture different aspects of the value of computation with RL
that makes our method tractable and powerful. Metalevel RL works well across a wider range of
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problems than previous approximations because it reduces arbitrarily complex metalevel MDPs to
low-dimensional optimization problems.

While we illustrated this approach using a policy search algorithm based on Bayesian optimiza-
tion, there are many other RL algorithms that could be used instead, including policy gradient algo-
rithms, actor-critic methods, and temporal difference learning with function approximation (e.g.,
Lieder, Krueger, & Griffiths, 2017).

Critically, our method can be used to derive the optimal cognitive strategy that people should use
in a particular situation from assumptions about the mind’s cognitive architecture and the nature of
the problems to be solved (see Figure 6.1). To demonstrate this, the following section shows that it
can be used to discover rational heuristics for multi-alternative risky choice.

6.4 Discovering rational heuristics for risky choice

The human mind appears to be equipped with multiple different decision strategies (Gigerenzer
& Selten, 2002; Payne et al., 1988). This toolbox is assumed to include fast-and-frugal heuristics
(Gigerenzer & Goldstein, 1996) as well as slower and more effortful strategies. Examples of fast-and-
frugal heuristics are Take-The-Best (TTB), which chooses the alternative that is favored by the most
predictive attribute and ignores all other attributes, satisficing (SAT) (Simon, 1956), which chooses
the first alternative whose expected value exceeds some threshold, and random choice. In addition
to fast-and-frugal heuristics people also also appear to use strategies that trade more mental effort for
higher accuracy across a wider range of problems, such as the Weighted-Additive Strategy (WADD),
which computes all gambles’ expected values based on all possible payoffs. Work on risky choice sug-
gests that people adaptively switch between multiple different strategies depending on how much
time is available and whether one of the outcomes is much more likely than the others (Payne et al.,
1988). Uncovering the strategies that people use to make decisions in everyday life is the subject of
ongoing research, and it remains unclear whether and under which conditions it is rational for peo-
ple to use them. There is currently no systematic to discover which strategies people should use in a
given environment or to prove that a discovered strategy is indeed optimal. The closest the field has
come to a model of optimal decision strategies in the Mouselab paradigm is the Directed Cognition
model (Gabaix et al., 2006). This model assumes that people select decision operations according
to a myopic cost-benefit analysis that approximates the VOC of a decision operation by how much
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better the myopic value of computation and introduces a family of macro-operators
(Og,n)1≤g≤nr. gambles,1≤n≤nr. outcomes, (6.13)

that are defined such thatOg,n inspect the nmost informative payoffs of gamble g. The directed
cognition model captures some adaptive aspects of human decision-making. But its predictions are
neither normative nor do they perfectly capture people’s strategies.

To address these problems, we apply the automatic strategy discovery method described above
to derive resource-rational heuristics for multi-alternative risky choice, measure how people’s deci-
sion mechanisms compare to those rational strategies, and formally test our resource-rational theory
against the Directed Cognition model. To reveal people’s decision strategies in a way that makes
them comparable to the rational strategies discovered by our method, we employ the Mouselab
paradigm that is widely used to study multi-alternative risky choice (Johnson, Payne, Bettman, &
Schkade, 1989). In this paradigm the alternatives are gambles and the attributes of each gamble are
its payoffs in the event of different outcomes. As illustrated in Figure 6.7, the Mouselab paradigm
traces people’s decision process by recording the order in which they inspect different pieces of infor-
mation. Concretely, participants are presented with a payoff matrix where the columns correspond
to the alternatives they are choosing between and the rows corresponding to different outcomes.
Each cell in the payoff matrix specifies how much the alternative corresponding to its column would
pay if the event of corresponding to its row was to occur. Critically, all of the payoffs are initially
occluded and the participant has to click on a cell to reveal its entry. The probabilities of the differ-
ent outcomes are known to the participant. Each click comes at a cost, and participants are free to
inspect as many or as few cells as they would like.

Our method rediscovered two known heuristics, TTB and random choice, as resource-rational
strategies. TTB emerged as the resource-rational strategy for the majority of high-stakes decisions
where one outcome is much more probable than any other outcome, whereas random choice emerged
as the resource-rational strategy for the majority of low-stakes decisions in an environment where al-
most all outcomes are equally probable. In addition, our computational method discovered a novel
heuristic that combines TTB with satisficing. Our experiment demonstrated that people do indeed
use the newly discovered heuristic and confirmed our rational model’s predictions of when peo-
ple use which strategy: people used simple heuristics more frequently when the stakes were low,
employed fast-and-frugal heuristics more often when one outcome was much more likely than
any other outcome, and invested more time and effort when the stakes were high. This is the first
demonstration that the principle of resource-rationality can be leveraged to discover people’s cogni-
tive strategies automatically.
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6.4.1 Optimal decision-making

To model the meta-decision problem posed by the Mouselab task, we characterize the decision-
maker’s belief state bt by probability distributions on the expected values e1 = E[vO,g1 ], · · · en =

E[vO,gn ] of the n available gambles g1, · · · , gn. Furthermore, we assume that for each element vo,g
of the payoff matrix V there is one computation co,g that inspects the payoff vo,g and updates the
agent’s belief about the expected value of the inspected gamble according to Bayesian inference.
Since the entries of the payoff matrix are drawn from the normal distributionN (v̄, σ2v), the re-
sulting posterior distributions are also Gaussian. Hence, the decision-maker’s belief state bt can be
represented by bt = (bt,1, · · · , bt,n)with

bt,g =
(
b
(µ)
t,g , b

(σ2)
t,g

)
, (6.14)

where b(µ)t,g and b(σ
2)

t,g are the mean and the variance of the probability distribution on the expected
value of gamble g of the belief state bt.

Given the setOt of the indices (k(1)o , k
(1)
g ), · · · , (k(t)o , k

(t)
g ) of the t observations made so far, the

means and variances characterizing the decision-maker’s beliefs are given by
b
(µ)
t,g =

∑
(o,g)∈O

p(o) · vo,g +
∑

(o,g)/∈O

p(o) · v̄ (6.15)

b
(σ2)
t,g =

∑
(o,g)/∈O

p(o)2 · σ2v . (6.16)

The meta-level transition function T (bt, co,g, bt+1) encodes the probability distribution on what
the updated means and variances will be given the observation of a payoff value Vo,g sampled from
N (v̄, σ2v). The meta-level reward for performing the computation co,g ∈ C encodes that acquiring
and processing an additional piece of information is costly. We assume that the cost of all such com-
putations is an unknown constant λ. The meta-level reward for terminating deliberation and taking
action is rmeta(bt,⊥) = maxg b

(µ)
t (g).

6.4.2 Decision environments

To investigate how the structure of the environment affects optimal and human decision-making,
we looked at how optimal and human decision strategies depend on the stakes of the decision, and
we also looked at how they differ between scenarios where one outcome is much more likely than all
other outcomes (high dispersion of outcome probabilities) versus scenarios where all outcomes are
almost equally likely (low dispersion of outcome probabilities). Concretely, we applied our method
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separately to a low-stakes environment where the payoffs range from $0.01 to $0.25 and a high-
stakes environment where the payoffs range from $0.01 to $9.99. In each of these environments
50% of the problems have outcome probabilities with high-dispersion and the other 50% have out-
come probabilities with low dispersion. For simplicity, the number of alternatives is always 7, the
number of outcomes is always 4, and the cost of computation corresponds to $0.01 per processed
payoff. In the low-stakes environment each payoff is independently drawn from a truncated normal
distribution over the range [$0.01, $0.25]with mean 13 cents and standard deviation of 0.7 cents
(N ($0.13, $0.07)). In the high-stakes environment the payoffs are independently drawn from a
truncated normal distribution over the range [$0.01, $9.99]with mean $5 and standard deviation
of $3 (N ($5, $3)). For low-dispersion problems each outcome probability lies between 0.1 and 0.4.
For the high-dispersion problems one of the outcome probabilities is at least 0.85.

6.4.3 Model predictions

Computing the optimal policy for the meta-level MDP defined above is intractable, but it can be
approximated with the method introduced above. To do so, we applied our meta-level reinforce-
ment learning method separately to each of the four types of environments: high stakes and high
dispersion, high stakes and low dispersion, low stakes and high dispersion, and low stakes and low
dispersion. For each environment our metalevel RL algorithm was run for 30 iterations with 1000
episodes per iterations.

The meta-level MDP described above formalizes the costs and benefits of acquiring and process-
ing information: acquiring additional information can improve the decision that will be taken later
on but also incurs an immediate cost. The optimal decision strategy thus has to tradeoff decision
quality versus decision time and mental effort. This tradeoff depends on the stakes of the decision
such that higher stakes usually warrant more deliberation. Likewise, since processing probable out-
comes is more likely to improve the quality of the resulting decision than processing improbable
outcomes, we expect our model to prioritize probable outcomes over less probable outcomes—
especially when one outcome is much more likely than all other outcomes.

Our computational method automatically discovered two strategies that people are known to
use in the Mouselab paradigm: TTB and random choice. It revealed TTB to be resource-rational
primarily for high-stakes decisions where one outcome is substantially more probable than all other
outcomes; and it revealed random choice to be resource-rational primarily for low-stakes decisions
where all outcomes are almost equally likely. Most importantly, it also discovered a novel hybrid
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Figure 6.7: The Mouselab paradigm, showing an example sequence of clicks generated by the
SAT-TTB strategy, which was discovered through approximate rational metareasoning.

strategy that combines TTB with satisficing (SAT-TTB). Like TTB, SAT-TTB inspects only the
payoffs for the most probable outcome. But unlike TTB and like SAT, SAT-TTB terminates as
soon as it finds a gamble whose payoff for the most probable outcome is high enough. We estimated
the satisficing level of SAT-TTB by the lowest subjective expected value at a time when SAT-TTB
stopped prior to having inspected all alternatives on a high-dispersion trial. For the low-stakes con-
dition with high dispersion, where SAT-TTB was resource-rational, this value was $0.16 (i.e., 0.40
standard deviations above the average payoff) . Our resource-rational analysis revealed SAT-TTB to
be resource-rational for all decisions with low-stakes and high dispersion and for 27% of the low-
stakes decisions with low-dispersion. Note that SAT-TTB generates the click sequence of TTB
when it does not encounter any payoff that exceeds its aspiration level prior to inspecting the last
alternative. This suggests that when people’s click sequence accords with TTB they might actually
be using SAT-TTB. Alternatively, we can interpret TTB as an extreme version of SAT-TTB that has
a high aspiration level. Figure 6.7 illustrates this strategy.

Furthermore, our model makes intuitive predictions about the contingency of people’s choice
processes on the stakes and outcome probabilities. First, our model predicts that people should use
the one-reason decision rules TTB and SAT-TTB more frequently on high-dispersion trials (i.e.,
for 90.0% of their decisions) than on low-dispersion trials (i.e., 0% of their decisions). This is intu-
itively rational because high dispersion means that one outcome is much more likely than all others
and one-reason decision-making ignores all outcomes except for the most probable one (assuming
that there are no ties). Within the high-dispersion environments, TTB is resource-rational more
frequently than SAT-TTB when the stakes are high (80% vs. 0%), but when the stakes are low then
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SAT-TTB is resource-rational more frequently than TTB (87% vs. 13%).

Second, our resource-rational analysis predicts that unless one outcome is much more likely
than all other outcomes, people should use the simple heuristics (i.e., TTB, SAT-TTB, and ran-
dom choice) primarily when the stakes are low. Random choice was resource-rational for 100% of
the low-stakes problems with low dispersion, but for none of the high-stakes problems with low-
dispersion. This too is intuitively rational because fast-and-frugal heuristics tend to be faster but
less accurate than more effortful strategies. Thus, when the stakes are high and the dispersion is low,
then it becomes resource-rational to inspect multiple outcomes (4/4 outcomes in 58% of the de-
cisions and 3/4 outcomes in 34% of the decisions) and more alternative-outcome pairs (14.0/28
compared to 0/28 for low-stakes problems with low-dispersion). In this environment, the resource-
rational strategies TTB+, which starts like TTB but then continues to inspect additional payoffs,
SAT-TTB3, which only inspects some payoffs of the three most probable outcomes and ignores the
least probable outcome, and SAT-TTB2, which inspects some payoffs of the two most probable
outcomes but no payoffs of the two less probable outcomes; see Figure 6.8.

Third, our resource-rational analysis predicts that when the stakes are high, people should in-
vest more time and effort (8.8 clicks per trial vs. 3.7 clicks per trial) to reap a higher fraction of the
highest possible expected payoff (96.9% vs. 76.1%). This is also consistent with the rational speed-
accuracy tradeoff inherent in the theory of resource-rationality Note that even when the resource-
rational strategy achieved near-optimal performance in the high-stakes conditions it was always sub-
stantially more efficient than the WADD strategy (8.8 clicks per trial vs. 28 clicks per trial).

Figure 6.8 shows a detailed breakdown of the how frequently each strategy is resource-rational
for each of the four types of decision-problems. As this figure shows, our resource-rational analysis
almost perfectly predicted which strategy people use most frequently in each of the four types of
environments. However, this figure also shows that people’s strategy choices were less concentrated
on the modal strategy as they should be. Instead, people’s strategy choices were more spread out
and differed less sharply between the four types of environments than would be resource-rational
according to our analysis. This suggests that while people’s strategy choices reflect the structure of
the environment they do not always fully exploit the structure of each individual decision.
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Figure 6.8: Strategy use frequencies of the resource-rational model versus people for different
stakes and the outcome probabilities.
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6.4.4 Experimental test of novel predictions

To test the predictions of our model, we conducted a new Mouselab experiment that manipulated
the stakes of the decision and the dispersion of the outcome probabilities within subjects. Con-
cretely, this experiment put people in the exact same environments whose optimal decision strate-
gies are characterized above.

Methods

Participants We recruited 100 participants on Amazon Mechanical Turk. Participants received
a base pay of $0.25 for about 15minutes of work (average duration 13.5min) plus a performance-
dependent bonus of up to $5.12 (average bonus $3.39).

Experimental design The experiment used a 2 × 2within-subjects design, and was struc-
tured into two blocks of 10 trials each. Within each block, all decisions had either low-stakes or
high-stakes, and the order of the high-stakes block and the low-stakes block was randomly coun-
terbalanced across participants. In low-stakes decisions, the possible payoffs ranged from $0.01 to
$0.25, whereas in the high-stakes decisions the payoffs ranged from $0.01 to $9.99. All payoffs
were drawn from a truncated normal distribution with mean rmax+rmin

2 and standard deviation
0.3 · (rmax − rmin). Within each block, there were five low-dispersion trials and five high-dispersion
trials, ordered randomly. In low-dispersion trials, the probability of each of the four outcomes
ranged from 0.1 to 0.4, whereas in high-dispersion trials, the probability of the most likely outcome
ranged from 0.85 to 0.97.

Procedure Following the instructions and a comprehension check, participants performed a
variation of the Mouselab task (Payne et al., 1988). Participants played a series of 20 games divided
into two blocks. Figure 6.7 shows a screenshot of one game. Every game began with a 4 × 7 grid of
occluded payoffs: there were seven gambles to choose from (columns) and four possible outcomes
(rows). The occluded value in each cell specified how much the gamble indicated by its column
would pay if the outcome indicated by its row occurred. The outcome probabilities were described
by the number of balls of a given color in a bin of 100 balls, from which the outcome would be
drawn. For each trial, participants were free to inspect any number of cells before selecting a gam-
ble. Clicking on a cell revealed its payoff and participants were charged $0.01 per click. The value
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of each inspected cell remained visible onscreen for the duration of the trial. There was no upper
limit on how much time participants could spend on a trial but they were required to spend at least
30 seconds collecting information and/or waiting before they could choose a gamble. This restric-
tion served to eliminate the opportunity cost of the participant’s time so that the cost of deliberation
was virtually reduced to the price they were charged were acquiring a piece of information. When a
gamble was chosen the sum of the click costs was subtracted from its payoff, and participants were
informed about which outcome had occurred, the resulting payoff of their chosen gamble, and their
net earnings (payoff minus click costs). After the last trial, 1 of the 10 high-stakes trials and 1 of 10
low-stakes trials were selected at random and each participant received the average of their net earn-
ings on those two trials as a bonus.

The instructions explained the task by walking the participant through the demonstration of a
trial with step-by-step explanations. These explanations covered the cost of clicking and the way that
their payoff was determined. The instructions also conveyed the range of payoffs in the high-stakes
block and in the low-stakes block. Participants were alerted that on some trials there would be many
more balls of a certain color than of other colors. After these instructions, participants were given
a quiz that assessed their understanding of all critical information conveyed in the instructions in-
cluding that they could inspect as many or as few payoffs as they want, the meaning of the number
of balls of a given color, the fact that payoffs change from trial to trial, the fact that on some trials
one outcome would be much more likely than all other outcomes, the range of payoffs for the high-
stakes problems and low-stakes problems, and the fact that the outcome probabilities would be dif-
ferent on every trial. If a participant answered one or more questions incorrectly they were required
to re-read the instructions and retake the quiz until they answered all questions correctly.

Strategy identification We interpreted the click sequence of people and the optimal strat-
egy in terms of six different decision strategies. A click sequence was identified as TTB when it in-
spected all cells in the row corresponding to the most probable outcome and nothing else. A click
sequence was interpreted as SAT when one gamble’s payoffs were inspected for all four outcomes
consecutively, potentially followed by the inspection of all outcomes of another gamble, and so on,
but leaving at least one gamble unexamined. The hybrid strategy SAT-TTB was defined as inspect-
ing the payoffs of 1 to 6 gambles for the most probable outcome and not inspecting payoffs for any
other outcome. Any click sequence that started like TTB but continued with at least one additional
click was classified as TTB+. Any click sequence that a) inspected at least one payoff of each of the
two most probable outcomes, b) inspected no payoffs of any other outcome, and c) did not inspect

276



all payoffs of the two most probable outcomes was classified as SAT-TTB2. Likewise, any strategy
that a) inspected at least one payoff of each of the three most probable outcomes, b) inspected no
payoffs for the least probable outcome, and c) did not inspect all payoffs of the three most proba-
ble outcomes was classified as SAT-TTB3. WADD was defined as inspecting all 28 cells column by
column.The random strategy was defined as choosing an alternative without collecting any informa-
tion. Click sequences that did not match any of these definitions were classified as “Other”.

Results

Decision strategies Figure 6.8 compares how often each participants used each of the six
strategies introduced above for each of the four types of decision problems to the predictions of our
resource-rational analysis. Our process-tracing confirmed the existence of the previously unnoticed
SAT-TTB heuristic discovered by our method. Overall, people used SAT-TTB more frequently
than any other heuristic; just as our resource-rational analysis had predicted. Concretely, participants
used SAT-TTB for 41.5% of all decision-problems, chose randomly on 23.8% of the problems,
used TTB 15.2% of the time, and rarely used WADD (1%), or SAT (0.7%). Together, the strategies
reported in Figure 6.8 account for people’s decision strategies on about 81.1% of all trials and for
about 70.1% of all resource-rational decision mechanisms observed in this paradigm.

Our resource-rational analysis accurately predicted the relative frequency with which people used
each heuristic and how it depends on the stakes of the decision and the dispersion of its outcome
probabilities (see Figure 6.8). This is remarkable given that our automatic strategy discovery method
did not even know that any of these strategies existed. People’s strategy preferences generally agreed
with the predictions of our resource-rational analysis but tended to be less extreme. This let to some
discrepancies. The most pronounced discrepancy occurred for low-stakes decisions with high dis-
persion. Here, resource-rational analysis predicted that people should always use SAT-TTB. While
people did use SAT-TTB for the majority of these decisions (69%), they also used random choice
and TTB for a minority of those decisions. The second most noticeable discrepancy is that while
both people and our resource-rational model used unidentified decision strategies in the high-stakes
decisions with low dispersion, people also used SAT-TTB or random choice for about one fifth of
them.

Consistent with our model’s first prediction, people used the fast-and-frugal heuristics TTB and
SAT-TTB more frequently when one outcome was much more probable than all other outcomes
compared to when all outcomes were almost equally probable (39% vs. 74%; χ2(1) = 21.86,
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p =< 0.0001). Concretely, high-dispersion increased people’s reliance on TTB from 3% to 27.3%
(χ2(1) = 229.7, p =< 0.0001), and increased their reliance on SAT-TTB from 36.3% to 46.6%
(χ2(1) = 21.9, p =< 0.0001).

Consistent with the second prediction, participants switched to more effortful and more accu-
rate strategies as the stakes increased. When the stakes were high, people considered a larger number
of possible outcomes (9.8 ± 7.9 vs. 2.9 ± 3.1, t(1998) = 25.4, p < 0.0001). This increase
in deliberation was reflected by a decreased reliance on simple heuristics: Overall, the frequency
with which people relied on fast-and-frugal heuristics (TTB, SAT-TTB, SAT, or random choice)
decreased significantly from 73.1% on low-stakes problems to 40.1% on high-stakes problems
(χ2(1) = 116.9, p < 0.0001). Concretely, the frequency of random choice—the simplest
heuristic—decreased significantly from 36.4% on low-stakes problems to 11.2% on high-stakes
problems (χ2(1) = 175.1, p < 0.0001), and so did the frequency of the second simplest heuris-
tic, SAT-TTB (61.4% vs. 21.5%, χ2(1) = 328.0, p < 0.0001). These substantial decreases
in the frequency of the most frugal heuristics were not nearly offset by slight increases in the fre-
quencies of TTB (11.7% vs. 18.6%, χ2(1) = 18.5, p < 0.0001) and SAT (0.2% vs. 1.2%,
χ2(1) = 7.2, p = 0.0073). Finally, the data also confirmed the predicted switch from SAT-TTB
to TTB: Increasing the stakes in the high-dispersion environment increased the proportion of SAT-
TTB click sequences that were TTB sequences by 34% (95% CI: [29%, 40%]) from 24% to 58%.

Decision styles To investigate the effects of stakes and dispersion on people’s decision-processes
without having to restrict the analysis to trials were people’s strategy fell into one of the predefined
categories, we quantified people’s decision style by four metrics introduced by Payne et al. (1988):
the number of inspected cells (acquisitions), the proportion of those inspections that pertained
to the most probable outcome (prioritization), the degree to which subsequent acquisitions in-
spected the payoffs of different gambles (alternatives) for the same outcome (attribute) versus the
payoffs of the same alternative (gamble) for different attributes (outcomes) (attribute-based process-
ing: nsame attribute−nsame alternative

nsame attribute+nsame alternative
), and the average ratio of the expected value of the chosen gamble

over the expected value of the optimal choice (relative performance). To further test our model’s
predictions, we ran a 2-way mixed-effects ANOVA for each of these four metrics.

As shown in Figure 6.9, the effects of the stakes and outcome probabilities on the four metrics
confirmed the predictions of our resource-rational analysis. Our model’s first prediction that high
dispersion promotes the use of fast-and-frugal heuristics was confirmed by a decrease in the number
of acquisitions (F (1, 1898) = 21.97, p < 0.0001) in conjunction with an increases in attribute-
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Low Dispersion High Dispersion

Low Stakes People: 2.7
RRA: 0.0

People: 3.1
RRA: 3.6

High Stakes People: 11.0
RRA: 14.0

People: 8.6
RRA: 7.4

Table 6.1: Number of information acquisitions (clicks) by people compared to the predictions of
resource-rational analysis (RRA) by experimental condition.

based processing (F (1, 1252) = 403.5, p < 0.0001) and prioritization (F (1, 1425) = 812.2, p <

0.0001). The increase in prioritization was especially striking: while only 49.4% of participants’
clicks inspected the most probable outcome when dispersion was low, 84.8% of them focused on
the most probable outcome when the dispersion was high.

The second prediction that higher stakes should decrease people’s reliance on fast-and-frugal
heuristics was confirmed by a significant increases in the number of acquisitions (F (1, 1898) =

974.6, p < 0.0001) which was accompanied by a slight decrease in prioritization (67.0% vs.
63.7%, F (1, 1425) = 73.0, p < 0.0001) and an increase in relative performance (F (1, 1898) =
127.2, p < 0.0001).

The third prediction that higher stakes make people think harder and perform better was con-
firmed by the finding that higher stakes significantly increased the number of acquisitions (F (1, 1898) =
974.6, p < 0.0001) and relative performance (F (1, 1898) = 127.2, p < 0.0001) while reducing
attribute-based processing (F (1, 1252) = 60.4, p < 0.0001). In quantitative terms, We found
that the empirical effects of raising the stakes on the number of information acquisitions were simi-
lar to the predictions of our resource-rational analysis: 6.9 clicks (2.9 for low stakes vs. 9.8 for high
stakes) for people versus 8.9 clicks for the resource-rational strategy (1.8 for low-stakes and 10.7 for
high stakes); see Table 6.1. The main discrepancy was that people appeared to collected too much
information in the low-stakes condition with low-dispersion.

Resource-rationality To assess the degree to which people’s decision-strategies are resource-
rational, we evaluated their net-performance (payoff of the chosen alternative minus decision cost)
against the net-performance of resource-rational decision-making. This analysis revealed that, on
average, the net-performance of our participants’ decision-strategies was about 88.8% of the net-
performance of resource-rational decision-making. This metric can be interpreted as a rational-
ity quotient. Since our method only provides a lower bound on the performance of the resource-
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Figure 6.9: People’s decision style as a function of the stakes of the decision and the dispersion of
the outcome probabilities.
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Low dispersion High dispersion

Low stakes $0.11
$0.13

= 84.6% $0.14
$0.16

= 87.5%

High stakes $5.78
$6.42

= 90.0% $7.22
$7.77

= 92.9%

Table 6.2: Relative net-performance of people (numerator), resource-rational decision-making
(denominator), and their ratio (right hand side) by stakes (rows) and dispersion (columns).

rational strategy, the observed rationality quotient means that, on average, our participants were at
most 88% as resource-rational as they could be. Overall, the degree to which participants’ decision
strategies are resource-rational was similar across all four experimental conditions – ranging from
84.6% for low-stakes trials with low-dispersion to 92.9% for high-stakes trials with high dispersion.
Interestingly, their relative net-performance tended to be slightly higher for high-dispersion trials
compared to low-dispersion trials (90.2% vs. 86.5%) and for high-stakes trials relative to low-stakes
trials (90.7% vs. 86.1%) but these differences were not statistically significant (all p ≥ 0.0861). For
a more detailed breakdown of people’s relative net-performance by condition see Table 6.2.

Model comparisons To formally test our model against the Directed Cognition model, we
translated each of them into a likelihood model of our participants’ click sequences. The likelihood
models’ basic assumption is that people select a click that is compatible with their strategy with prob-
ability 1 − ε or randomly deviate from their strategy and select one of the available decision oper-
ations uniformly at random with probability 1 − ε, where 0 ≤ ε ≤ 0.5 is a free parameter. In
addition, we consider a null model according to which all decision operations are selected uniformly
at random.

A formal model comparison using the Bayesian Information Criterion (G. Schwarz, 1978, BIC,
) and the Akaike Information Criterion (Akaike, 1974, AIC, ) showed that, overall, the resource-
rational model explained participants’ click sequences significantly better than the Directed Cog-
nition model and a null model that selects computations at random (BICRR = 79360.88 <

BICDC = 81606.35 < BICrandom = 89172.66;AICRR = 78785.03 < AICDC = 81030.51 <

AICrandom = 89172.66). Furthermore, the data provided strong evidence for the resource-rational
model over its alternatives for a majority of our participants: according to both the BIC and the AIC
the click sequences of 64/100 participants were best explained by the resource-rational model, com-
pared to only 22/100 for the Directed Cognition model and 14/100 for the null model.
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Discussion

In summary, our resource-rational analysis of multi-alternative risky choice predicted some of the
main strategies people use in the Mouselab paradigm and the conditions under which they are used.
In addition to automatically discovering known strategies and contingencies, our computational
approach also discovered a novel, previously unknown heuristic that integrates TTB with satisficing
(SAT-TTB), and our experiment confirmed that people do indeed use SAT-TTB on the majority of
the risky choice problems we examined — especially when the stakes are low. Comparing people’s
decision processes against the near-optimal decision mechanisms discovered by our method sug-
gested that people’s heuristics for multi-alternative risky choice are about 85% as resource-rational
as they could be. Building on this finding, Chapter 9 explores whether it is possible to bring people
even closer to resource-rationality by teaching them bounded-optimal decision strategies. Future
work will provide a more precise characterization of the resource-rational strategy for high-stakes en-
vironment with low dispersion and perform an in-depth analysis of how people’s decision strategies
deviate from resource-rational decision-making at the level of individual decision-operations (clicks).

The application of our meta-level reinforcement learning method to discovering resource-rational
decision mechanisms extends the previous approaches reviewed in Chapter 1, including the ap-
proach to solve a meta-level MDP to derive optimal stopping rules for drift-diffusion models (Tajima
et al., 2016), to substantially larger spaces of more sophisticated sequential decision strategies. Our
approach is can be seen as an extension of the myopic cost-benefit analysis of the directed cognition
model (Gabaix et al., 2006) to looking multiple cognitive operations ahead. Concretely, while the
directed cognition model approximated the value of computation by the VOI1 minus the cost of
computation, our method additionally incorporates two variants of the value of perfect informa-
tion.

6.5 General Discussion

An important step in resource-rational analysis is to derive the bounded-optimal cognitive strategy
from assumptions about the problem to be solved and the cognitive resources available to solve it
(see Figure 1.3). Deriving the optimal strategy analytically is challenging and often requires restrict-
ing the space of possible strategies so that the optimal strategy can be found by optimizing a per-
formance metric with respect to a few parameters (Lewis et al., 2014; Lieder, Griffiths, et al., 2018a)
or a distribution (Lieder, Griffiths, & Hsu, 2017). This chapter presented an automatic computa-
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tional method that can be used to optimize over a much richer class of cognitive strategies involving
sequences of cognitive operations. We have validated this method by showing that it can compute
near-optimal policies for simple metareasoning problems and outperforms previously proposed
methods for approximate metareasoning in meta-level MDPs that are too complex to be solved ex-
actly. We have then applied this method to discover resource-rational decision strategies for different
multi-alternative risky choice environments. Our method rediscovered previously proposed heuris-
tics and discovered a previously unknown heuristic (SAT-TTB). An experiment confirmed that peo-
ple do indeed use the discovered heuristics in the environments for which they are resource-rational.

These findings support the conclusion that people’s decision strategies are qualitatively consis-
tent with the rational use of finite time and limited cognitive resources. Quantiatively speaking, we
found that people’s heuristics for multi-alternative risky-choice are about 85% as resource-rational as
they could be. This supports a more nuanced perspective on human rationality according to which
people are neither hopelessly irrational as previous work on heuristics and biases might suggest
(Ariely, 2009; Marcus, 2009; Sutherland, 1992) nor optimal as a superficial reading of the literature
on rational models of perception, cognition, and motor control might suggest (Griffiths & Tenen-
baum, 2006; Knill & Pouget, 2004; Knill & Richards, 1996; Körding & Wolpert, 2004; Todorov,
2004; Wolpert & Ghahramani, 2000). Instead, it appears that while people generally make good use
of their limited time and bounded cognitive resources, there is still room for improvement. There-
fore, it might be possible to leverage our automatic strategy discovery method to enhance human
judgment and decision-making by teaching people resource-rational cognitive strategies as illustrated
in Chapter 9.

6.5.1 Limitations and future directions

The main limitation of the method introduced here is that it approximates bounded optimality by
rational metareasoning. It optimizes a tradeoff between cognitive performance and computational
cost over all mappings from belief state to computations, but some of these mappings might be in-
feasible for the human mind to implement. Additionally, our method ignores the computational
cost of selecting computations. Thus, mappings that select inferior computations could be prefer-
able to the optimal mapping approximated by our method if they can be implemented with less
expensive metareasoning (Milli et al., 2017, 2018). These limitations may be less severe than they
sound because the human brain might select computations through an associative mapping from
features of belief states to computations similar to the one in the meta-level reinforcement learning
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method proposed here (see also Lieder, Shenhav, et al., 2018, and Section 5.2). Concretely, if the
mapping from belief states to computations was implemented in a feed-forward neural network,
then all mappings require the same amount of computation. Furthermore, a sufficiently expressive
neural network would be able to approximate most mappings from belief states to computations
fairly accurately. While this proposal addresses both concerns in principle, whether the brain does
in fact select computations in this way remains to be demonstrated. Future work will also develop
efficient methods for directly computing the optimal heuristic defined in Equation 1.8. This will re-
quire explicitly postulating which cognitive strategies the mind can and cannot implement whereas
the current approach was able to abstract away from the fine details of how the mind would select
the optimal sequence of computations prescribed by the method presented above.

Future work might continue the resource-rational analysis cycle (see Figure 1.5) begun in the pre-
vious section by refining its assumptions about the problem to be solved and the cognitive archi-
tecture available to solve them. The problem formulation could be improved by capturing that in
everyday life people are not given the outcome probabilities but have to estimate them through rea-
soning and information gathering. This could be addressed by augmenting the meta-level MDP
with computations that inspect or estimate the outcome probabilities. Furthermore, a more realistic
model of people’s cognitive architecture should not assume that each piece of acquired information
is always integrated Bayes optimally. Instead, alternative ways of integrating information, such as
pairwise comparisons and counting should be included in the set of computations. Furthermore,
a recent study found that people’s strategies for multi-alternative risky choice are also shaped by
memory constraints (Sanjurjo, 2017). Memory constraints could be incorporated into our meta-level
MDP using a model similar to the one proposed by Yang et al. (2015).

Future work will also test an improved version of our resource-rational process model of multi-
alternative risky choice against alternative models, including established heuristics (Payne et al., 1993),
stochastic cumulative prospect theory (Erev et al., 2010), the directed cognition model (Gabaix et
al., 2006), and the strategy selection model developed in Chapter 4. Future work will also provide a
more fine-grained evaluation of the extent to which people’s multi-alternative risky choice strategies
are resource-rational.

Furthermore, the automatic strategy discovery method introduced in this chapter can also be
used to derive rational heuristics for other cognitive domains, such as reasoning, memory, and prob-
lem solving. Our recent work on planning (Callaway et al., 2018) is just one example, and there are
many more to come.Its generality and versatility make resource-rational analysis a promising model-
ing paradigm for all of cognitive psychology. I am therefore optimistic that resource-rational analysis
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with automatic strategy discovery will enable significant advances in our understanding of the cogni-
tive mechanisms that give rise to human intelligence and cognitive biases.

6.5.2 Conclusion

Overall, the findings presented in this chapter suggest that formulating the problem of making opti-
mal use of finite time and limited cognitive resources as a meta-level MDP is a promising approach
to discovering cognitive strategies. Automatic strategy discovery expands the scope of resource-
rational analysis by enabling it to optimize over a large space of cognitive strategies, such as Take-
The-Best, that proceed in a step-by-step manner. This makes it possible to discover both simple
and complex rational strategies automatically; which makes it a promising starting point for un-
covering people’s cognitive strategies. Comparing people’s heuristics against the realistic normative
standard of resource-rationality will not only shed new light on the debate about human rational-
ity, but it can also help us reverse-engineer the computational principles of human intelligence, and
discover new ways to improve human judgment and decision-making. To the extent that people’s
heuristics are resource-rational strategies, resource-rational analysis will allow us to uncover them
and reverse-engineer the cognitive and functional constraints that make them rational. And in cases
where people’s heuristics are not resource-rational, resource-rational analysis can help us identify
genuine sub-optimalities in human reasoning and generate simple heuristics that people can use to
perform better.

In the long term, our approach could be used to generate the curriculum for a course on how to
make good decisions and reason effectively in the real-world. This approach would refine the idea
to translate ideas from computer science into decision strategies that people can use in everyday life
(Christian & Griffiths, 2016) by incorporating additional insights about the nature of the human
mind. Resource-rational analysis might enable us to find out which strategies people should use
in situations where their performance is genuinely poor. This might give us a much better handle
on improving human reasoning and decision-making than the traditional approach of debiasing.
This is because resource-rational strategies are designed to be tractable solutions to complex prob-
lems whereas the prescription to be logical, Bayesian, and maximizes expected utility is intractable
given the limited resources that people have to work with. I therefore believe that leveraging the
method presented in this chapter to discover optimal cognitive strategies and teach them to people
is a promising new avenue for improving human judgment and decision-making, and the findings
presented in Chapter 9 support this conclusion.
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7
Conclusion of Part I

7.1 Resource-rational analysis of heuristics and biases

Despite their seemingly irrational cognitive biases, people have the ability to efficiently solve prob-
lems that defy artificial intelligence. Resolving this paradox is a fundamental open problem. Ideally,
we would discover unifying theoretical principles that account for both people’s strengths and their
weaknesses. However, it is unclear whether a unifying explanation of our numerous heuristics and
disparate cognitive biases is even possible. In order to tackle these problems, I have developed the
theoretical framework of resource-rationality. I employ it to derive heuristics that make optimal use
of people’s finite cognitive resources, and to establish a rational mechanism for choosing when to use
which heuristic.

The findings presented in Chapters 1-3 and 6 show that the principle of resource-rationality can
explain classic biases in judgment and decision-making, while revealing the heuristics that generate
them. For instance, the resource-rational process models derived in Chapters 2 and 3 provided a uni-
fying explanation for a wide range of anchoring biases in numerical estimation, and accounted for
an even wider range of availability biases in memory recall, frequency estimation, decisions from ex-
perience, and decisions from description. These rational models do more than simply list deviations
from the standard picture of rationality: they explain many seemingly disparate and irrational biases
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using a single rational principle. The principle of resource-rationality provides valuable constraints
on the otherwise ill-posed problem of inferring people’s heuristics from a limited number of deci-
sions and judgments. This makes it possible to predict people’s judgments and decisions in novel
circumstances from their performance on related tasks in the laboratory. Looking forward, resource-
rational analysis could be used to provide mechanistic explanations of the many seemingly unrelated
and irrational cognitive biases documented in the literatures on judgment and decision-making
(Gilovich et al., 2002) and behavioral economics (Ariely, 2009). Taking this approach a step fur-
ther, Chapter 6 shows that we can employ the principle of resource-rationality to identify rational
heuristics automatically. This is a significant advance over the haphazard theorizing predominant in
research on heuristics and biases. The introduced method can be applied across all domains of hu-
man cognition including perception, problem solving, social cognition, decision-making, learning,
and reasoning. I am therefore optimistic that it will allow us to uncover the principles and mecha-
nisms responsible for both our most impressive cognitive achievements, and our most embarrassing
errors.

Chapters 1–3 and 6 showed that resource-rationality can help us uncover and understand peo-
ple’s many heuristics, while Chapters 4 and 5 provided a resource-rational account of how people
learn when to use which heuristic. Concretely, the rational metareasoning model of strategy selec-
tion offers a principled explanation for the variability, contingency, and change of people’s strategy
choices across multiple domains, ranging from sorting to decision-making, mental arithmetic, and
problem solving. By addressing the problems of both strategy discovery and strategy selection, the
resource-rational framework developed in this dissertation adds two critical missing pieces to our
understanding of bounded rationality.

7.2 Redefining rationality

The anchoring bias can cause people’s judgments to violate the rules of logic and probability theory.
Similarly, the availability bias often leads to choices which violate the maxims of expected utility
theory. These and many other cognitive biases could be interpreted as signs of human irrational-
ity. However, as I have argued in Chapter 1, adherence to the rules of logic, probability theory, and
expected utility theory is a flawed notion of rationality, because it ignores people’s computational
limitations. What then is to blame for people’s violations of those normative principles? Is it the
limitations of the human mind, or rather, the limitations of our theories of rationality? To answer
this question, I have developed a realistic standard of human rationality which grants that people
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have only limited cognitive resources and finite time to tackle the many millions of big and small
decisions they have to make throughout life. Redefining rationality as the optimal use of finite time
and limited cognitive resources has allowed me to revisit past interpretations of cognitive biases as
signatures of human irrationality. My findings suggest that far from being irrational, the anchoring
bias and the numerous availability biases in memory recall, judgment, and decision-making could
reflect the rational use of limited resources.

Heuristics and rational models are often seen as opposites, but once the cost of computation is
taken into account, heuristics can be resource-rational. This shows that resource-rational analysis
has the potential to reconcile cognitive biases with the fascinating capacities of human intelligence.
In addition, resource-rational analysis can be used to build bridges between rational theories, such as
Bayesian models of cognition, and heuristics and other psychological process models (Griffiths et al.,
2015).

Redefining rationality has profound implications not only for the interpretation of classic heuris-
tics and biases which have shaped the debate about human rationality, but also for our approaches
to cognitive modeling and our efforts to improve human judgment and decision-making. I discuss
these implications in the remainder of this chapter. Then, the research presented in Part 2 will il-
lustrate how the theory of resource-rationality can be leveraged to develop more effective tools and
interventions for improving the human mind.

7.3 The debate about human rationality needs to be revisited

The standard picture of rationality posits that people should reason according to the rules of logic
and probability theory and act so as to maximize their expected utility. This account was the founda-
tion of Kahneman and Tversky’s highly influential research program on heuristics and biases. Their
discovery that human judgment and decision-making violate the traditional account of human ratio-
nality sparked an ongoing debate. The standard picture of human rationality was a fire waiting to
happen; and the idea that people reason by applying the rules of logic and probability theory, and
make calculated decisions that maximize expected utility, has since been reduced to ashes.

In Part I of my dissertation, I have identified and addressed several key limitations of the standard
picture of rationality. In its place, I have proposed a qualitatively different view of what it means to
be rational. This new perspective challenges the pervasive interpretation that violating the rules of
logic, probability theory, and expected utility theory is a sign of irrationality. My proposal thereby

288



insulates the question of human rationality from the empirical demonstrations that first set the stan-
dard picture of rationality on fire. This means that there is still hope for human rationality, since the
real question of the ways in which, and the extents to which people are (ir)rational remains unan-
swered. From this, I conclude that the debate about human rationality should be revisited, with
resource-rationality as the gold standard for human judgment and decision-making. Redefining
human rationality in this way calls for the reinterpretation of“cognitive bias“ as the systematic sub-
optimal use of finite time and limited cognitive resources; this could manifest as thinking too much,
thinking too little, or thinking ineffectively. Many violations of the standard picture of rationality
will likely turn out not to to be cognitive biases when analysed from the resource-rational perspec-
tive. This means that the implications of virtually all previous findings on heuristics and biases will
have to be re-evaluated.

One can revisit the rationality debate by going through the list of demonstrated violations of
logic, probability theory, and expected utility and determine which of them are (in)compatible with
resource-rationality. I have begun this endeavour in Chapters 1-3. Another approach, which I have
taken in Chapters 5-6, is be to derive and test qualitative predictions of resource-rationality, and then
evaluate them in human experiments. This could be seen as rebooting the research program of Tver-
sky and Kahneman using a more accurate standard of human rationality. I believe that there is great
value in identifying systematic violations of resource-rationality, because they would be genuine irra-
tionalities that could promising targets for interventions aimed at improving human judgment and
decision-making.

My findings suggest that violations of logic, probability, and expected utility theory may not be
signs of irrationality but a window on resource-rational information processing and the computa-
tional constraints faced by the human mind. Overall, the findings of my dissertation paint a brighter
and more nuanced picture of human rationality. According to my resource-rational perspective,
people learn to make more rational use of their finite time and limited cognitive resources through-
out life. My initial findings are merely the starting point of what I hope will be a widely adopted,
fruitful, and long-lived research program..

7.4 Implications for cognitive modeling

Normative principles are commonly used to constrain models of human behavior and cognition.
But many researchers have criticized the methodological assumption of rationality as being unreal-
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istic. These criticisms arise from the observation that people often appear to violate the normative
principles that we use to model their behaviors. This problem has become most evident for the ra-
tional actor models used in economics and the social sciences (Kahneman & Tversky, 1979) though
Bayesian models of cognition have not gone unchallenged either (Jones & Love, 2011). The findings
presented in Chapters 2-3 and the studies reviewed in Chapter 1 suggest that resource-rationality
might enable us to overcome these challenges, since it reconciles the methodological assumption
that people are optimal with the empirical observations that their judgments are often biased, and
that their decisions often fail to maximize expected utility. It thereby enables us to develop computa-
tional models of human cognition that combine the generalizability and predictive power of rational
principles with the accuracy of descriptive theories derived from empirical observations. This leaves
me optimistic that resource-rationality may fill a theoretical void left by the demolition of expected
utility theory, and other classical theories based on the standard picture of rationality.

While the standard picture of rationality provided constraints modeling behavior, resource-
rationality is a methodology for modeling cognitive mechanisms themselves. This makes valuable
headway in the transition from using rational principles to formalize the functions of cognitive sys-
tems, to using resource-rational principles to reveal the underlying cognitive mechanisms (Griffiths
et al., 2015). Early rational process models were constrained by the relatively weak requirement that
their outputs should lead to an optimal solution in the limit of infinite computation. Resource-
rationality provides a much stronger constraint that can uniquely identify optimal, yet realistic,
cognitive mechanisms. This makes it possible to automatically derive rational process models of
cognitive mechanisms from a mathematical specification of their function and the cognitive architec-
ture that executes them (see Figure 1.4).

7.5 Implications for improving human judgment and decision-making

Redefining rationality as the optimal use of limited cognitive resources has important implications
for improving judgment and decision-making. One such implication is that the classic approach
of debiasing might be misguided, specifically when it aims to remove ‘cognitive biases‘ that arise
from people’s use of resource-rational heuristics. Another implication is that teaching people the
rules of logic, probability theory, and expected utility theory might be ineffective or even harmful,
since those strategies are not optimal for people because they neither have infinite time nor unlim-
ited computational resources. In fact, it would seem irrational for people to apply the rules of logic,
probability theory and expected utility theory to solve complex problems in limited time, because
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this would likely lead to decision paralysis. Even in benign cases, using these strategies would likely
cause people to invest too much time into a decision that should be made more quickly, or to make
errors because the strategy requires more working memory or time than people can afford it.

Resource-rationality offers four alternative approaches to improving judgment and decision-
making. Its first two proposals are well aligned with the philosophy of boosting (Hertwig & Grüne-
Yanoff, 2017). First, it suggests that in order to make the best decisions possible, people should rely
on efficient heuristics that are well adapted to both their cognitive capacities and the problem they
are trying to solve. Resource-rationality enhances this idea with concrete mathematical and compu-
tational tools for discovering the rational heuristics that people should use (Chapter 1 and Chapter
6). Second, resource-rationality allows for the possibility that people’s heuristics are already optimal
even when the resulting judgments and decisions are sub-optimal. In these cases, resource-rationality
suggests that we simplify or reformulate the problem at hand, so as to reduce its computational com-
plexity. Reducing the number of options that people have to choose between is a simple example
of this approach. Reformulating Bayesian reasoning problems in terms of natural frequencies is an-
other example (Sedlmeier & Gigerenzer, 2001). Second, resource-rationality seconds the proposal of
ecological rationality that we should restructure our environment so as to meet the implicit assump-
tions of people’s heuristics. The two other implications of resource-rationality are better aligned
with the philosophy of cognitive training. First, by identifying how limited cognitive resources
constrain rational performance, resource-rationality can be used to identify which basic cognitive
capacity, such as working memory or processing speed, should be trained to remedy a particular cog-
nitive bias. Second, the view that people learn to make increasingly more rational use of their limited
cognitive resources over time implies that reasoning and decision-making can be improved through
practice. The observation that this metacognitive learning is at least partly driven by reinforcement
suggests that giving people feedback on the quality of their cognitive strategies might be a promising
way to help them discover resource-rational heuristics. In Part II, I build on these ideas to establish
resource-rational approaches to improving human decision-making.

291



Part II

Expanding the bounds on human
rationality
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Introduction to Part II

I hope that the chapters of Part I have convinced you that resource-rationality is a promising method-
ological framework for modeling the mechanisms of human cognition and revisiting the debate
about human rationality.

The thesis behind Part II of my dissertation is that we can leverage both the theory of resource-
rationality developed in Part I and empirical and insights into bounded rationality to improve and
augment the human mind using technology.

Chapter 8 argues that insights into people’s cognitive limitations can guide the design of intelli-
gent systems that enable people to overcome their cognitive biases. As a proof-of-concept, we trans-
late insights about the bounded rationality of human decision-making into a cognitive prosthesis
that restructures decision problems so that people’s heuristics lead to better decisions. We find that
this cognitive prosthesis helped people avoid making short-sighted decisions, overcome procrastina-
tion, and achieve their goals on time.

Chapter 9 illustrates the utility of the resource-rational framework for improving how people
think and decide. In brief, the approach is to leverage the automatic strategy discovery method pre-
sented in Chapter 6 and to develop a cognitive tutor that teaches them to people. This intelligent
tutoring system gives people feedback on how they plan so as to maximally accelerate the metacog-
nitive learning mechanism identified in Chapter 5. This illustrates that the resource-rational frame-
work can inform both the curriculum and the pedagogy of interventions for improving human
judgment and decision-making. An empirical evaluation suggests that the cognitive tutor is highly
effective at improving people’s planning strategies, and follow-up experiments show that this im-
provement transfers to more difficult planning problems in more complex environments and these
benefits persist for at least 24 hours.
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8
Cognitive Prostheses for Goal

Achievement*

While artificial intelligence (AI) is progressing steadily and the computing power of
our electronic devices continues to grow, the computing power of the human brain does not. Our
bounded cognitive resources continue to constrain our decision-making and often lead to simple
heuristics. Previous research has shown that these heuristics can fail miserably in certain scenarios
(Ariely, 2009; Gilovich et al., 2002; Tversky & Kahneman, 1974) but perform very well in the envi-
ronments they evolved for (Chater & Oaksford, 1999; Griffiths et al., 2015; Oaksford & Chater, 1994;
Todd & Gigerenzer, 2007, 2012). These two observations suggest that in the future the human mind
could be augmented with cognitive prostheses that use AI to automatically restructure problems on
which people’s heuristics perform poorly into problems on which those heuristics perform very well.

In line with this vision, previous work has found that human judgment and decision-making

*This chapter is based on Lieder, Chen, and Griffiths (2018). Owen Xi Chen did most of the work of
programming the to-do list gamification app used in Experiment 3 and proofread the manuscript. Jim Ruther
Nill and Eric Q. Zhang also contributed to developing the to-do list gamification app. Tom Griffiths con-
tributed to writing the manuscript and designing the research.

294



can be significantly improved by restructuring how information is presented to people (Gigerenzer
& Edwards, 2003; Gigerenzer & Hoffrage, 1995; Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000;
Johnson et al., 2012; Thaler & Sunstein, 2008), and parallel work in operations research and com-
puter science has developed decision-support systems (Aronson, Liang, & Turban, 2004; Power
et al., 2015) that use planning algorithms to solve complex, sequential decision-problems for peo-
ple (Aviv & Pazgal, 2005; Bhatnagar, Fernández-Gaucherand, Fu, He, & Marcus, 1999; Gadomski,
Bologna, Costanzo, Perini, & Schaerf, 2001; Nunes, de Carvalho, & Rodrigues, 2009; Song, Liu,
Lawarrée, & Dahlgren, 2000). However, to the best of our knowledge, these two approaches have
rarely been combined to help people overcome motivational obstacles and achieve their personal
long-term goals.

One class of decision problems in which people underperform systematically involves choices
whose proximal rewards are misaligned with their long-term value (e.g., persevering on a frustrating
challenge versus getting drunk and watching TV). In situations like these, people’s heuristics tend
to reach short-sighted decisions (Ainslie & Haslam, 1992; Huys et al., 2012; Myerson & Green, 1995)
that can manifest in procrastination (Steel, 2007) and impulsivity (Mischel, Shoda, & Rodriguez,
1989). This apparently myopic nature of human decision-making suggests that decision environ-
ments can be repaired by aligning each action’s immediate reward with the value of its long-term
consequences.

While it is generally difficult to change how people experience the actions necessary to achieve
their goals (e.g., dieting, debugging, or filing taxes) relative to actions that do not (e.g., eating choco-
late or watching TV), it is possible to incentivize those actions with game elements such as points,
levels, and badges. This approach is known as gamification (Deterding, Dixon, Khaled, & Nacke,
2011). Previous research has found that gamification can have positive effects on motivation, engage-
ment, behavior, and learning outcomes (Hamari, Koivisto, & Sarsa, 2014). Yet, determining which
actions should be incentivized and by how much is still an art rather than a science and misspecified
incentives can have devastating consequences (Callan, Bauer, & Landers, 2015; Devers & Gurung,
2015).

Here, we leverage ideas from artificial intelligence to develop a principled theory defining optimal
incentives for helping people make better decisions. The resulting system can be interpreted as a
cognitive prosthesis that uses artificial intelligence to solve people’s complex sequential decision
problems and uses gamification to restructure them in such a way that people can easily identify the
course of action that is best for them in the long-run. This approach offloads the computational
challenges of long-term planning into the reward structure of the environment, and the underlying
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theory ensures that the added game elements will never incentivize counter-productive behavior.

8.1 An optimal gamification method for decision-support

The first step of our approach to optimal gamification is to model the decision environment as a
Markov Decision Process (MDP; see Section 5.2.1). As a refresher, please recall that the expected sum
of discounted rewards that a policy π will generate in the MDPM starting from a state s is known
as its value function

V π
M (s) = E

[ ∞∑
t=0

γt · r (St, π(St), St+1)

]
. (8.1)

The optimal policy π⋆M maximizes the expected sum of discounted rewards, that is

π⋆M = argmax
π

E

[ ∞∑
t=0

γt · r (St, π(St), St+1)

]
, (8.2)

and its value function satisfies the Bellman equation
V ⋆
M (st) = max

a
E [r (st, a, St+1) + γ · V ⋆

M (St+1)]. (8.3)

We can therefore rewrite the optimal policy as
π⋆M (s) = argmax

a
E [r(st, a, St+1) + γ · V ⋆

M (St+1)] , (8.4)
which reveals that it is myopic with respect to the sum of the immediate reward and the discounted
value of the next state.

Here, we leverage the MDP framework to model game elements such as points and badges as
pseudo-rewards f(s, a, s′) that are added to the reward function r(s, a, s′) of a decision environ-
mentM to create a modified environmentM ′ = (S,A, T, γ, r′, P0)with a more benign reward
function r′(s, a, s′) = r(s, a, s′) + f(s, a, s′). From this perspective, the problem with misspec-
ified incentives is that they change the optimal policy π⋆M of the original decision problemM into
a different policy π⋆M ′ that is optimal for the gamified environmentM ′ but not for the original en-
vironmentM . To avoid this problem we have to ensure that each optimal policy ofM ′ is also an
optimal policy ofM .

Research on machine learning has identified which conditions pseudo-rewards must satisfy to
achieve this: according to the shaping theorem (Ng et al., 1999) adding pseudo-rewards retains the
optimal policies of any original MDP if and only if the pseudo-reward function f is potential-based,
that is if there exists a potential functionΦ : S 7→ R such that

f(s, a, s′) = γ · Φ(s′)− Φ(s), (8.5)
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for all states s, actions a, and successor states s′. Furthermore, the resulting pseudo-rewards f can be
shifted and scaled without changing the optimal policy, because linear transformations of potential-
based pseudo-rewards are also potential-based, that is

a · f(s, a, s′) + b = γ · Φ′(s′)− Φ′(s), (8.6)

forΦ′(s) = a · Φ(s)− b

1− γ
. (8.7)

If gamification is to help people achieve their goals, then the pseudo-rewards added in the form
of points or badges must not divert people from the best of course of action but make its path easier
to follow. Otherwise, gamification would lead people astray instead of guiding them to their goals.
Hence, the practical significance of the shaping theorem is that it gives the architects of incentive
structures a method to rule out incentivizing counter-productive behaviors:

1. Model the decision environment as an MDP.

2. Define a potential functionΦ that specifies the value of each state of the MDP.

3. Assign points according to Equation 8.5.

This method could thus be used to avoid some of the dark sides of gamification (Callan et al.,
2015; Devers & Gurung, 2015).

While the shaping theorem constrains pseudo-rewards to be potential-based there are infinitely
many potential functions one could choose. Given that people’s cognitive limitations prevent them
from fully incorporating distant rewards (Huys et al., 2012; Myerson & Green, 1995), the modified
reward structure r′(s, a, s′) should be such that the best action yields the highest immediate reward,
that is

π⋆M (s) = argmax
a

r′(s, a, s′). (8.8)

Here, we show that this can be achieved with our method by setting the potential functionΦ to the
optimal value function V ⋆

M of the decision environmentM , that is
Φ⋆(s) = V ⋆

M (s) = max
π

V π
M (s). (8.9)

First, note that the resulting pseudo-rewards are
f(s, a, s′) = γ · V ⋆

M (s′)− V ⋆
M (s), (8.10)

which leads to the modified reward function
r′(s, a, s′) = r(s, a, s′) + γ · V ⋆

M (s′)− V ⋆
M (s). (8.11)
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Hence, if the agent was myopic its policy would be

(8.12)π(s) = argmax
a

E
[
r(s, a, s′) + γ · V ⋆

M (s′)− V ⋆
M (s)

]
= argmax

a
E
[
r(s, a, s′) + γ · V ⋆

M (s′)
]
.

According to Equation 8.4, this is the optimal policy π⋆M for the original decision environmentM .
Thus, people would act optimally even if they were completely myopic. And they should perform
equally well if they do optimal long-term planning to fully exploit the gamified environmentM ′

or learn its optimal policy π⋆M ′ through trial-and-error, because the shaping theorem (Eq. 8.5) guar-
antees that the gamified environmentM ′ has the same optimal policy, that is π⋆M ′ = π⋆M . This
suggests that potential-based pseudo-rewards derived from V ⋆

M should allow even the most myopic
agent that only considers the immediate reward to perform optimally. In this sense, the pseudo-
rewards defined in Equation 8.10 can be considered optimal. In addition, the optimal pseudo-
rewards accelerate learning as long as the agent’s initial estimate of the value function is close to 0
(Ng et al., 1999).

Computing the optimal pseudo-rewards requires perfect knowledge of the decision environment
and the decision-maker’s preferences. This information may be unavailable in practice. Yet, even
when the optimal value function V ⋆

M cannot be computed, it is often possible to approximate it. If
so, the approximate value function V̂M can be used to approximate the optimal pseudo-rewards (Eq.
8.10) by

f̂(s, a, s′) = γ · V̂M (s′)− V̂M (s). (8.13)

For instance, one can estimate the value of a state s from its approximate distance to a goal (Ng et al.,
1999).

Here, we develop and evaluate a novel approach to helping people make better decisions. The
basic idea is to automatically restructure decision-environments in such a way that people can iden-
tify the optimal course of action even if they can look only a single step ahead. To achieve this,
our method leverages artificial intelligence to compute optimal pseudo-rewards and delivers them
through game elements. Based on previous simulations (Ng et al., 1999), we predict that adding
approximate pseudo-rewards (Eq. 8.13) improves people’s decisions and that adding optimal pseudo-
rewards is even more beneficial. We test these predictions in three behavioral experiments.
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8.2 Experiment 1: Optimal reward structures

To determine which incentive structures are most conducive to good decisions, Experiment 1 applied
optimal gamification to a difficult sequential decision-making task (Figure 8.2A).

8.2.1 Methods

We recruited 250 adult participants on Amazon Mechanical Turk. Participants received $0.50 and
a performance-dependent bonus of up to $2 for playing 24 rounds of the game shown in Figure
8.2. In this game, the player receives points for routing an airplane along profitable routes between
six cities. In each round, the initial location of the airplane is chosen at random. Participants then
choose which of two possible destinations to fly to, receive the profit or loss of that flight, and
choose the next flight until the game ends. Concretely, after each flight there was a 1 in 6 chance
that the trial would end. Participants were instructed to score as high as possible, and their financial
bonus was proportional to the rank of their score among all participants in their condition. This
game is based on the planning task developed by Huys et al. (2012) and is isomorphic to a MDP with
six states, two actions, deterministic transitions, and a discount factor of γ = 1− 1/6. The locations
correspond to the states of the MDP, the two actions correspond to flying to the first or the second
destination available from the current location, the routes correspond to state-transitions, and the
points participants received for flying those routes are the rewards. The current state was indicated
by the position of the aircraft and was updated according to the flight chosen by the participant.

Participants were randomly assigned to one of four conditions (Table D.1 and Figure D.1): In the
control condition, participants were shown the true transition and reward structure of this task, and
their incentives were identical to the task’s reward function r(s, a, s′) (Figure 8.2). This task was
such that finding the optimal path required planning 4 steps ahead. By contrast, in the experimental
conditions, the incentives shown to the participants (r′(s, a, s′)) differed from the task’s true reward
function by the addition of pseudo-rewards f(s, a, s′), that is

r′(s, a, s′) = r(s, a, s′) + f(s, a, s′). (8.14)
We evaluated three different kinds of pseudo-rewards: In the first experimental condition, the
pseudo-rewards were derived from the optimal value function according to the shaping theorem
(Eq. 8.10), rewarding or punishing each move according to how much it increases or decreases the
expected long-term reward respectively. In this condition, looking only 1 step ahead was sufficient
to find the optimal path. The second experimental condition used the approximate potential-based
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pseudo-rewards based on the distance-based heuristic value function

V̂M (s) = V̂M (s⋆) ·
(
1− distance(s, s⋆)

maxs distance(s, s⋆)

)
, (8.15)

where the goal state s⋆ was Smithsville, V̂M (s⋆) = 140was the highest immediate reward that
can be achieved from there, and distance(a, b) is the minimum number of moves required to get
from state a to state b. The resulting pseudo-rewards simplified planning but not as much as the
optimal pseudo-rewards. Finding the optimal path required planning 2-3 steps ahead and the im-
mediate losses were smaller. In the third experimental condition, the pseudo-rewards violated the
shaping theorem: the pseudo-reward was+50 for each transition that reduced the distance to the
most valuable state (i.e. Smithsville) but there was no penalty for moving away from it. These incen-
tives deviate from the optimal pseudo-rewards in two important ways: 1) they do not punish moves
that lead away from the goal, and 2) they ignore that some paths are more costly than others. Since
the experimental manipulation only affected the flights’ payoffs, participants were unaware of the
pseudo-rewards in Experiment 1.

In all three experimental conditions, the pseudo-rewards were mean-centered by subtracting their
average to keep the average reward constant; since mean-centering is a linear transformation this
retained the guarantees of the shaping theorem (see Eq. D.2). The mean-centered pseudo-rewards
were added to the rewards of the control condition (see Figure D.1A) yielding the modified rewards
shown in Figure D.1B-D and Table D.1, and the flight map was updated accordingly.

Regardless of the incentives shown to the participants, we measured their performance according
to the reward function r(s′, a, s′) of the original task. The complete experiment can be inspected at
http://cocosci.dreamhosters.com/mturk/falk/FlightPlanning/.

Condition Smiths- Jones- Williams- Browns- Clarks- Bakers-
No PR 140 30 −30 −70 −30 −70 −30 30 −30 −70 −30 −70
Optimal PR 2 −76 2 −5 −12 2 −4 2 2 0 2 −42
Approx. PR 8 −102 −22 −4 −22 −4 36 38 −34 −16 24 −32
Non-Potential-
Based PR

119 9 −51 −41 −51 −41 −1 9 −51 41 −1 9

Table 8.1: Rewards in Experiment 1. The first entry of each cell is the (modified) reward of the
counter-clockwise move and the second one is the (modified) reward of the other move.

Inclusion criteria. The average completion time of the experiment was 13:37 min, and the
median response time was 1.3 sec per choice. The relative score (i.e. (R−rmin)/(rmax−rmin) whereR is
the sum total of the player’s points) was 79%. We excluded 3 participants who invested less than one
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Figure 8.1: Conditions of Experiment 1. A: Control condition. B: Embedded pseudo-rewards. C:
Separate pseudo-rewards. D: Integrated pseudo-rewards.
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third of the median response time of their condition and 11 participants who scored lower than 95%

of all participants in their condition. This led to the exclusion of 11 additional participants (5.5%),
leading to a total exclusion rate of 7% (14/200).

8.2.2 Results

A Kruskal-Wallis ANOVA revealed that the type of pseudo-rewards added to the reward function
significantly affected people’s performance in the original MDP (H(3) = 40.35, p < 10−8;
see Figure 8.2B). As expected, the unaided participants in the control condition performed very
poorly attaining a median loss of 18.75 points per trial. Aiding participants with optimal pseudo-
rewards led to significantly better performance (Z = 4.76, p < 10−5) enabling them to achieve
a median gain of+5.00 points/trial. Potential-based pseudo-rewards derived from an approximate
value function also improved people’s performance (Z = 2.86, p = 0.0042) but not as much as
optimal pseudo-rewards (Z = 2.68, p = 0.0074). By contrast, the non-potential-based pseudo-
rewards failed to improve people’s performance (Z = 0.72, p = 0.47). In addition, optimal
pseudo-rewards also accelerated the decision process (Figure D.3 ) supporting the conclusion that
optimal gamification simplifies decision problems. Inspecting the four groups’ choices frequencies
revealed that the optimal pseudo-rewards significantly changed the choice frequencies in each of the
six states and successfully nudged participants to follow the optimal cycle Smithsville→ Jonesville→
Williamsville→ Bakersville→ Smithsville (see Figure D.4).

Reaction times. A Kruskal-Wallis ANOVA revealed that the type of pseudo-rewards added
to the reward function significantly affected people’s reaction times (H(3) = 29.96, p < 10−5).
Given that the pseudo-reward type had a significant effect, we performed pairwise Wilcoxon rank
sum tests to compare the medians of the four conditions (see Figure D.3). Optimal pseudo-rewards
decreased the median response time from 1.72 to 1.14 sec. per decision (Z = −4.19, p < 0.0001),
and non-potential-based pseudo-rewards decreased it to 1.12 sec. per decision (Z = −3.38, p =

0.0007). People in the condition with approximate potential-based pseudo-rewards took about the
same amount of time as people in the control condition (1.65 sec.;Z = −0.28, p = 0.78).

Effect of pseudo-rewards on choice frequencies. The optimal strategy for this exper-
iment was to take the counter-clockwise moves around the circle in all states exceptWilliamsville
and Brownsville (see Figure D.1A). Importantly, atWilliamsville the optimal policy incurs a large
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Figure 8.2: A: Task in Experiment 1: Control condition without pseudo-rewards. B: Median per-
formance in Experiment 1 with 95% confidence intervals.
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Figure 8.3: A: Median reaction times in Experiment 1 with 95% confidence intervals.

immediate loss, and no other policy achieves a positive reward rate. The optimal pseudo-rewards
significantly changed the choice frequencies in each of the six states and successfully nudged par-
ticipants to follow the optimal cycle Smithsville→ Jonesville→Williamsville→ Bakersville→
Smithsville (see Figure D.1A). Their strongest effect was to eliminate the problem that most peo-
ple would avoid the large loss associated with the correct move fromWilliamsville to Bakersville
(χ2(2) = 1393.8, p < 10−15). The optimal pseudo-rewards also increased the frequency
of all other correct choices along the optimal cycle, that is the decisions to fly from Bakersville to
Smithsville (χ2(2) = 326.5, p < 10−15), from Smithsville to Jonesville (χ2(2) = 7.9, p = 0.0191),
and from Jonesville toWilliamsville (χ2(2) = 299.8, p < 10−15). In addition, the optimal pseudo-
rewards increased the frequency of the correct move from Clarksville to Bakersville (χ2(2) =

92.0, p < 10−15). The only negative effect of the optimal pseudo-rewards was to slightly increase
the frequency of the suboptimal move from Brownsville to Clarksville (χ2(2) = 13.2, p = 0.0013).
By contrast, the non-potential-based pseudo-rewards misled our participants to follow the unprof-
itable cycle Jonesville→ Clarksville→ Smithsville→ Jonesville by raising the frequency of the reck-
less moves from Jonesville to Clarksville (χ2(2) = 1578.6, p < 10−15) and from Clarksville to
Smithsville (χ2(2) = 813.7, p < 10−15). The effect of the approximate pseudo-rewards was
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Figure 8.4: Choice frequencies in each state of Experiment 1 by condition. Error bars enclose
95% confidence intervals.

beneficial in Smithsville,Williamsville, and Bakersville, but negative in Jonesville, Brownsville, and
Clarksville (see Figure D.4). This explains why only potential-based pseudo-rewards had a positive
net-effect on performance (Figure 1B in the Main Text).

8.3 Experiment 2: Conveying incentives with game elements

Given that optimal pseudo-rewards can significantly improve people’s performance, we asked how
they should be presented. In Experiment 1 pseudo-rewards were embedded directly into the reward
structure of the decision environment, but this may be impossible to implement in the real world.
Instead, a real-world application could convey pseudo-rewards through game elements. To evalu-
ate the effectiveness of this presentation format, we augmented the task from Experiment 1 with
game mechanics that conveyed the pseudo-rewards through stars and badges (see Figure 8.6A and
Appendix D).
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Figure 8.5: Conditions of Experiment 2. A: Control condition. B: Embedded pseudo-rewards. C:
Separate pseudo-rewards. D: Integrated pseudo-rewards.

8.3.1 Methods

We recruited 400 participants on Amazon Mechanical Turk and paid them $2.50 for about 20-25
minutes of work plus a performance dependent bonus of up to $2. The average value of the bonus
was $1. The median completion time of the experiment was 21.2minutes.

The task was equivalent to the one used in Experiment 1 except that all rewards were scaled
down by a factor of 10 to keep the arithmetic operations required to solve the task simple. Opti-
mal pseudo-rewards were computed according to Equation 8.10 and shifted by the expected return
of the optimal policy. This ensured that, on average, the sum of the immediate reward and pseudo-
reward for the optimal action was equal to the expected long-run reward of the optimal strategy.
This is appealing because it predicts exactly how much money the player will earn in the long-run if
they act optimally. In the control condition pseudo-rewards were not presented at all (Figure D.2A).
Three experimental conditions presented the optimal pseudo-rewards in three different formats: In
the first experimental condition, the pseudo-rewards were embedded into the decision environment
by adding them directly onto the flights profits and losses (Figure D.2B). In the second experimental
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condition, the pseudo-rewards were presented separately from the monetary rewards in the form
of stars (Figure D.2B). In the third experimental condition the number of stars communicated the
sum of the shifted optimal pseudo-reward and the immediate reward. In all conditions, each flight’s
payoff and number of stars were rounded to one significant digit. In the conditions with stars par-
ticipants were informed that the stars were designed to help the pilots make better, less short-sighted
decisions. The instructions explained the meaning of the stars: In the second experimental condi-
tion, participants were told that the difference in the number of stars awarded for flying to desti-
nationA versusB predicts the difference in the amount of money that can be earned from there
onward in the long run. In addition, these participants were given the tip that the flight with the
highest sum of stars plus dollars is most profitable in the long run. In the third experimental con-
dition participants were told that the difference between the number of stars awarded for flying to
destinationA versusB predicted the difference in how much profit they were going to make in the
long run if they chose destinationA over destinationB. Participants in this condition were given
the tip that they could earn the most by always flying the route with the larger number of stars. The
stars had no monetary value, but they determined the player’s level in the game.

Game mechanics. The character played by the participant could rise from Trainee toATP
senior captain via 15 intermediate levels. The number of points required to reach the next level in-
creased according to the difficult curve proposed by Bostan and Öğüt (2009). Whenever the player
reach the next level a congratulatory message was shown. In addition, participants were told how
many stars and dollars were required to reach the next level in the game. To make the levels salient
the pilot’s shoulder badge was shown in the top right corner of the screen, and a feedback message
was shown whenever the character was promoted and earned a badge or was demoted and lost a
badge. The player started the game with+$50 so that their balance would remain positive as they
learned to play the game.

The complete Experiment can be inspected at http://cocosci.berkeley.edu/mturk/falk/PNASExp2/
index.html

Attention checks and inclusion criteria. To start the experiment participants had to
pass a quiz comprising three questions on how their financial bonus would be determined and three
questions testing their understanding of the mechanics of the task. Out of the 400 participants, 335
had not participated in any of our previous flight planning experiments and were included for in
this study. Out of those 335 participants, we excluded subjects whose median response time was less
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than one third of the median response time across all included subjects. In addition, we excluded
the 5% of participants with the lowest scores of each group. This led to the exclusion of 19 out
of the 335 included participants (5.7%), leaving 316 participants with about 80 participants per
condition: 80 in the control condition, 81 in the condition with embedded pseudo-rewards, 81
in the condition with separate pseudo-rewards, and 74 in the condition with integrated pseudo-
rewards.

8.3.2 Results

The results of this experiment replicated the finding that pseudo-rewards significantly improve peo-
ple’s performance (Z = 3.43, p = 0.0006). Furthermore, the results suggested that presenting
integrated pseudo-rewards in the form of stars could be just as effective as directly modifying the
reward structure of the environment: Integrated pseudo-rewards significantly increased people’s per-
formance from−0.73 dollars/trial to+0.17 dollars/trial (Z = 3.69, p = 0.0002) which was not
significantly lower than the performance of the group presented embedded pseudo-rewards (0.42
dollars/trial,Z = 0.52, p = 0.62). Presenting pseudo-rewards in this integrated format was critical
to their effectiveness, since presenting them separately failed to significantly increase people’s perfor-
mance (median performance: −0.5 dollars/trial;Z = 0.22, p = 0.83). Inspecting participants’
choice frequencies revealed that the three presentation formats had significantly different effects on
people’s decisions (see Appendix D and Figure D.5 ). In summary, incentivizing good decisions with
game elements can be as effective as redesigning the decision environment, and this approach is most
effective when the game elements make it very easy for people to identify the best course of action.

Effect of presentation format on response times and choice frequencies. Partic-
ipants were significantly faster when pseudo-rewards were embedded in the decision environment
than when they were presented separately (Z = −4.06, p < 0.0001) or in the integrated format
(Z = −2.78, p = 0.0053). Figure D.5 shows people’s choice frequencies for each state depend-
ing on the experimental condition. Compared to separately presented pseudo-rewards, embedded
pseudo-rewards were significantly more beneficial in all 6 states (all p ≤ 0.0218) as were integrated
pseudo-rewards (all p ≤ 0.0023) but separately presented pseudo-rewards were never advantageous
to either embedded or integrated pseudo-rewards. Embedded pseudo-rewards were more beneficial
than integrated pseudo-rewards in 2 states (all p ≤ 0.0001); conversely integrated pseudo-rewards
were more beneficial than embedded pseudo-rewards in 1 state (p < 10−9).
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Figure 8.6: A: Pilot game with separately presented pseudo-rewards. B: Median performance in
Experiment 2 by condition with 95% confidence intervals.

309



Figure 8.7: Choice frequencies in each state of Experiment 2 by condition. Error bars enclose
95% confidence intervals.
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Figure 8.8: Median reaction times in Experiment 2 with 95% confidence intervals.
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Follow-up experiment. The integrated pseudo-rewards differ from the separately presented
pseudo-rewards in two respects: First, they simplify the decision process by allowing people to base
their decision on a single signal. Second, they shift the pseudo-rewards such that the pseudo-reward
for the optimal action is always positive. To tease apart the contributions of these two factors, we
ran a follow-up experiment in which the separately presented pseudo-rewards were shifted such that
the minimum pseudo-reward for an optimal action was the expected return of the optimal policy as
it was for the integrated pseudo-rewards.

We recruited 339 participants on Amazon Mechanical Turk. Each participant was randomly
assigned them to one of three conditions: no pseudo-rewards, shifted separately presented pseudo-
rewards, and integrated pseudo-rewards. Condition 1 and 3 were identical to the equivalent condi-
tions in Experiment 2. In the second condition, the optimal pseudo-rewards were shifted such that
the minimum pseudo-reward for taking an optimal action was the expected reward rate of the op-
timal policy, that is 0.9. In all other regards, this follow-up experiment was identical to Experiment
2.

The median completion time was 23.35minutes. We excluded 24 participants who had par-
ticipated in previous flight planning experiments and 15 participants who performed worse or re-
sponded faster than 95% of the participants in their condition. Out of the remaining 290 partic-
ipants 102were in the condition without pseudo-rewards, 91were in the condition with shifted
separately presented pseudo-rewards, and 97were in the condition with integrated pseudo-rewards.

We found that the shifted separately presented pseudo-rewards were significantly less effective
than the integrated pseudo-rewards (Z = −2.38, p = 0.0172) and did not significantly improve
people’s performance relative to the control condition (Z = 0.17, p = 0.8617; median loss: $11
vs. $11 in the control condition; see Figure D.7). By contrast, participants in the condition with
integrated pseudo-rewards performed significantly better than participants in the condition without
pseudo-rewards (Z = 2.46, p = 0.0140; median loss: $0 vs. $14.50). Therefore, the primary
benefit of the integrated pseudo-rewards appears to be that they simplify the decision process by
offloading the computation of adding rewards and pseudo-rewards from the participants.

8.4 Experiment 3: To-do list gamification

Given that optimal gamification enabled people to act more farsightedly in the laboratory tasks of
Experiments 1 and 2, we hypothesized that it could be used to help people overcome the myopic
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Figure 8.9: Performance in Experiment 2b by condition. Error bars enclose 95% confidence inter-
vals.
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biases that give rise to procrastination in everyday life. To test this hypothesis, we designed a third
experiment where participants could earn a $20 bonus by completing six daunting writing assign-
ments by a distant deadline.

8.4.1 Methods

Pilot study and task selection. To select a suitable set of tasks for Experiment 3 we ran
a pilot study that acquired subjective ratings of 21 candidate tasks. 100 participants recruited on
Amazon Mechanical Turk evaluated 5 tasks each and were paid $0.50 in return. For each task, they
estimated the fair price that should be paid for the task on Amazon Mechanical Turk and its dura-
tion. In addition, they rated the task’s difficulty, their willingness to complete it for the price they
had indicated, its enjoyableness compared to a typical MTurk HIT, its relative unpleasantness com-
pared to a typical HIT an MTurk, and how likely they would be to postpone it on nine point Likert
scales with appropriate anchors. We selected the 4 tasks that participants said they would be most
likely to postpone and the task they said they were least likely to postpone. This procedure led to the
selection of the following five writing assignments shown in Table D.2. Each assignment required
that participants write at least 100 words (assignments 1-4) or at least 50 words (assignment 5).

Participants and Procedure For the main experiment, we recruited 120 participants by post-
ing a sign-up form on Amazon Mechanical Turk. The sign-up form told potential participants that
the study would comprise the five writing assignments shown in Table D.2. The sign-up form was
posted on Monday, April 24 2017 and the deadline was at midnight on Wednesday of the following
week (i.e., May 3rd 2017). The sign-up form can be inspected at cocosci.berkeley.edu/mturk/falk/ToDoListStudyPart1WritingTasks/.
We informed potential participants that they could earn a bonus of $20 by completing all five assign-
ments by a deadline 10 days later whereas missing the deadline would yield only $3 for each hour’s
worth of completed tasks. Potential participants could choose to either sign-up for the experiment
and receive an immediate compensation of $0.05 or forego the opportunity to participate and re-
ceive $0.15. If they chose to sign-up for the second part of the study they were shown the link to the
website hosting the to-do list experiment and asked to create an account or bookmark it.

The main experiment presented participants with a to-do list of five writing assignments (see
Figure 8.10). Participants typed their answer into a text box on the to-do list website†. To tempt

†https://todo-list-study.herokuapp.com/
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Writing Assignment Fair
Price

Duration propensity
to postpone

Minimum
Length

How has North Korea’s economic
policy changed since the 1950s?
What are the reasons and implica-
tions of these changes?

$3 15min 6.6/9 100words

Please analyze the causes and implica-
tions of the British exit referendum
in June 2016.

$3.25 25min 6.3/9 100words

Describe with examples the impor-
tance of recognizing and responding
to concerns about children and
young people’s development.

$2.25 20min 6.2/9 100words

Write an essay about how society
should assign value to human life.

$3 27.5min 6.1/9 100words

What is your favorite TV show and
why?

$1 7min 2.8/9 50words

Table 8.2: Writing assignments and their ratings

Figure 8.10: Screenshot from Experiment 3.
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participants to procrastinate, the to-do list website displayed a series of distracting links to Youtube
videos, Reddit articles, news stories, or the game of Tetris.

Upon creating an account on the to-do list website, each participant was assigned to one of four
conditions: In the first experimental condition, the incentives for completing each assignment were
conveyed as points (see Figure 8.10), and the participant’s total number of points determined their
level in the game. The second experimental condition was like the first one except that the optimal
pseudorewards were displayed as dollars rather than points. The first control group received no
incentives, and in the second control condition the number of points was constant across all tasks.
The incentives were saliently displayed next to each entry of the participant’s to-do list, and the level
and current number of points were saliently displayed above the current task (see Figure 8.10). The
optimal pseudo-rewards were computed by applying the optimal gamification method described
above to a finite-horizon MDP model of the experiment. This model comprised one action for each
task and an additional action for taking a break. The reward function was set up such that each task-
action incurred a cost that reflected the task’s fair wage as determined in the pilot study described
above. Finishing the experiment earns an additional reward of $20. In the MDP model of the ex-
periment, taking a break earns a reward equivalent to $0.50 but also comes with a 2.5% chance of
forgetting about the tasks. The benefit of finishing the experiment sooner rather than later was cap-
tured by a discount factor of γ = 0.95.

When a participant completed all tasks, they were shown a bonus code. After the deadline, we
posted a reimbursement HIT on Amazon Mechanical Turk that included an exit survey. The exit
survey asked participants to rate their motivation to complete the tasks and how rewarding it felt
to complete the second task on 9-point Likert scales. In addition, the exit survey also recorded age
and self-identified gender and inquired if the participant had used any strategies to stay engaged, and
which components of the website they found helpful. We posted a separate reimbursement HIT for
participants who decided to quit the experiment was posted on the first day of the experiment, and
it also included an exit survey.

8.4.2 Results

As shown in Figure 8.11, optimal pseudo-rewards significantly increased the completion rate from
56.1% in the control conditions to 85.2% in the experimental conditions with optimal pseudore-
wards (χ2(1) = 11.20, p = 0.0008). This benefit cannot be explained by the mere presence of
incentives or game elements because adding constant point values failed to increase the completion
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rate (53.6%with constant points vs. 58.6%without points, χ2(1) = 0.15, p = .70). Framing op-
timal PRs in terms of money led to a completion rate of 92.3%while presenting them as points
led to a completion rate of 78.6% but this difference was not statistically significant (χ2(1) =

2.01, p = 0.16). Along with the increase in the completion rate, the average number of com-
pleted assignments increased from 2.61 out of 5without optimal gamification to 4.37 out of 5
(χ2(1) = 17.99, p < 0.0001), and the average total number of words written by each participant
increased from 408.25± 55.54 to 765.46± 71.45 (χ2(1) = 16.19, p < 0.0001).

Of the 40 participants who did not complete all tasks (33.9%), only 1 filled out the exit survey.
We therefore cannot evaluate the effect of the pseudo-rewards on motivation and perceived reward
per se. However, we can analyze its effect on participants who completed all tasks. The following
analyses are therefore restricted to this biased subset of participants. Due to this selection bias the
results have to be interpreted with caution. For the participants who completed all tasks neither
motivation (χ2(1) = 0.04, p = 0.84) nor experienced reward (χ2(1) = 0.14, p = 0.71)
were significantly affected by optimal gamification. Among these participants, optimal gamifica-
tion also did not affect how long it took them to complete the tasks (χ2(1) = 0.07, p = 0.79)
or the number of times they aborted a task (F (76) = 0.27, p = 0.61). While optimal gam-
ification slightly increased the number of words written per assignment from 155 to 175, this
difference was not statistically significant (F (1, 81) = 1.33, p = 0.25). Optimal gamifica-
tion also had no statistically significant effect on the total length of the breaks that these partici-
pants took between tasks (F (1) = 0.42, p = 0.52) or the number of times that they played
Tetris (F (1, 76) = 0.16, p = 0.69). Optimal gamification also did not affect how long it took
them to submit their first assignment (χ2(1) = 3.26, p = 0.07), when they started work-
ing on it (χ2(1) = 2.35, p = 0.13), or the delay until the first time they opened an assign-
ment (χ2(1) = 2.18, p = 0.14). These negative results suggest that the main effect of opti-
mal gamification was to increase the probability that participants would start working on the first
task from 59.65% to 87.04% (χ2(1) = 11.01, p = 0.0009), because regardless of gamifi-
cation 95.1% of all participants who completed the first task went on to complete all of the tasks
(χ2(1) = 0.69, p = 0.41) and their motivation and behavior appeared to be unaffected.

8.5 Discussion

The results of Experiments 1-3 suggest that optimal gamification can help people make better de-
cisions, act more farsightedly, get started on daunting tasks, and become more productive. Our
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Figure 8.11: Results of Experiment 3: Proportion of participants who completed all assignments
by the deadline with error bars showing ±1 standard error of the mean.
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method achieves this by leveraging artificial intelligence to solve sequential decision problems that
are challenging for people and translating the solutions into incentives that align each action’s im-
mediate reward with its long-term value. The resulting incentive structures are implemented using
game elements such as points and levels that motivate people to do what is best for them in the long
run.

More generally, our results illustrate that AI can be used to automatically restructure decision
problems in such a way that people’s heuristics work well. This approach is in line with an extensive
literature on bounded rationality that emphasizes that decision quality depends on the fit between
people’s heuristics and the structure of their environment (Chater & Oaksford, 1999; Griffiths et al.,
2015; Oaksford & Chater, 1994; Todd & Gigerenzer, 2007, 2012).

There are already many decision support systems that solve Markov decision processes to com-
pute optimal decisions and advise people to execute them (Aviv & Pazgal, 2005; Bhatnagar et al.,
1999; Gadomski et al., 2001; Nunes et al., 2009; Song et al., 2000). However, research in psychology
suggests that this approach to decision-support would likely undermine people’s intrinsic motiva-
tion because it runs counter the fundamental human need for self-determination and autonomy
(Gagné & Deci, 2005). Optimal gamification, by contrast, gives people complete freedom over what
to do and can be applied to help people motivate themselves to take action towards their own goals.
While using game elements to boost motivation is not a new idea, optimal gamification is unique
in being based on a rigorous mathematical theory for determining which actions should be incen-
tivized and by how much. This theory guarantees that optimal gamification will never incentivize
counterproductive behavior (Ng et al., 1999). This avoids the perils of less principled approaches to
motivating people with incentives and game elements (Callan et al., 2015; Devers & Gurung, 2015).

The results of Experiment 3 illustrate that optimal gamification can indeed help people to align
their actions (e.g, whether or not to work on a writing assignment) with their long-term goal (e.g.,
to complete their tasks before the deadline to earn a financial bonus). The primary problem that
optimal gamification solved in this setting was to help people overcome the motivational barriers of
immediate effort that would only be rewarded much later. This suggests that optimal gamification
might be useful for helping people overcome the myopic biases affecting their motivation (Steel &
König, 2006), avoid self-control failure, and support the pursuit of long-term goals.

Beyond motivational issues, many decision problems that arise in the pursuit of long-term goals
are simply too large and too complex for people to solve them optimally. Our approach could be
used to overcome such challenges by augmenting people’s bounded cognitive resources with the
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power of computing and leveraging planning algorithms developed in artificial intelligence (Put-
erman, 2014) to build the solution of complex decision problems into the reward structure of the
environment. Future work will investigate these hypotheses and explore optimal gamification as an
interface between artificial and human intelligence. By integrating the power of computing with
psychological insight into human motivation and decision-making, this line of research could lead
to a new generation of cognitive prostheses that might significantly enhance human productivity
and self-mastery. Our approach illustrates how advances in artificial intelligence can be leveraged to
enhance human intelligence and overcome the cognitive limitations that hold people back from real-
izing their full potential. In this way, the continuing progress in artificial intelligence could enable a
parallel growth in human intelligence.
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9
Developing an intelligent system that

teaches people optimal cognitive strategies*

The to-do list gamification app presented in Chapter 8 improved the people’s decisions by adding
incentives in such a way that their short-sighted decision mechanisms led to better choices. This
approach combines the idea of nudging (Thaler & Sunstein, 2008), that is to restructure the envi-
ronment in such a way that people’s heuristics lead to better choices, with the idea of compensating
for cognitive limitations by augmenting the human mind with external computational resources. In
this chapter, we explore a third approach to expanding the bounds on human rationality: teaching
people to think and decide as well as they possibly could. This is a form of boosting (Hertwig &
Grüne-Yanoff, 2017).

Previous attempts to mitigate people’s cognitive biases through education have been mostly un-
successful (Larrick, 2002). I postulate that the main reason for these failures was that the curriculum
was based on the unrealistically high standards of probability theory, logic, and expected utility

*The research reported in this chapter is joint work with Fred Callaway, Paul Krueger, Priyam Das, and
Sayan Gul. Fred Callaway contributed to the implementation and development of the cognitive tutor. Fred
Callaway, Paul Krueger, Priyam Das, and Sayan contributed to designing, implementing, or analyzing the
experiments conducted to evaluate its efficacy.
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theory. As the research presented in Chapters 1-3 and Chapter 6 shows, adopting a more realistic
normative standard that takes people’s cognitive limitations into account leads to radically different
prescriptions. In fact, as Chapters 2-3 show, rational heuristics often generate the very biases that pre-
vious approaches to improving judgment and decision-making sought to eliminate (Larrick, 2002).
The strategy discovery method presented in Chapter 6 can be used to develop a more appropriate
curriculum of strategies for good thinking and decision-making. I postulate that interventions based
on this refined curriculum would be much more effective than interventions based on the standard
picture of rationality. As a proof-of-concept, we derived a resource-rational planning strategy and
evaluated the effectiveness of teaching it to people.

I believe that teaching people how to think can be accomplished without one-on-one instruction
from a human teacher. Instead, we might be able to deliver high-quality training and instruction
in rational thinking and decision-making via a fully-automated machine teaching system that is
freely available via the internet. As a first step in this direction, we developed a web-based intelligent
tutoring system for teaching people near-optimal planning strategies. The remainder of this chapter
describes the underlying theoretical principles, the implementation of the system, and a series of
experiments that assess the resulting learning gains as well as their transfer and retention.

9.1 Theoretical approach

In Chapter 5, we found that people can learn to make more rational use of their limited cognitive
resources via metacognitive reinforcement learning. Specifically, the findings presented in the sec-
ond section of Chapter 5 suggested that people learn the value of alternative cognitive operations
according to a model-free reinforcement learning mechanism. Viewing cognitive growth as a form
of model-free reinforcement learning suggests that methods developed to accelerate model-free rein-
forcement learning in robots can be leveraged to accelerate metacognitive learning in humans. One
such method is reward shaping (Ng et al., 1999). The basic idea of reward-shaping is to align each ac-
tion’s immediate reward more closely to its true long-term value. To accomplish this reward shaping
adds additional rewards–called pseudo-rewards–on top of the rewards provided by the task environ-
ment. Critically, the pseudo-rewards should to be designed in such a way that the optimal policy
does not change. Historically, designing good pseudorewards was a tricky problem, because intu-
itive incentive schemes can often be gamed by counterproductive behavior. For instance, rewarding
a robot to touch the ball seems to be a sensible approach to help it learn to dribble. Unfortunately,
it changes the optimal policy so that it becomes optimal for the robot to fall down on the ball and
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Figure 9.1: Illustration of the general idea behind the cognitive tutor presented in this chapter.

vibrate rapidly. Ng et al. (1999) proved that this problem can be avoided by first assigning a value
Φ(s) to each state s and then computing each pseudo-reward as the difference between the potential
Φ(st+1) of the new state and the potentialΦ(st) of the old state, that is

PR(st, at, st+1) = γ · Φ(st+1)− Φ(st), (9.1)
where γ is the discount factor of the MDP to be solved. For more details on the shaping theorem,
see Chapter 8.

The cognitive training method developed in this chapter applies the shaping theorem (Ng et
al., 1999) to design an optimal feedback mechanisms for cognitive training. The general idea is to
provide immediate rewards that accurately communicate the long-term value of each cognitive op-
eration. Such feedback would steer the metacognitive reinforcement learning mechanism identified
in Chapter 5 towards the optimal cognitive strategy as quickly as possible. To assist people in how to
change their strategy, the feedback should additionally include messages explaining what the opti-
mal policy would have done instead. Figure 9.1 illustrates this pedagogical principle.

This line of thinking led me to develop the following approach to cognitive training:

1. Model the cognitive function to be improved (e.g., planning) and the available cognitive
operations (e.g., simulating the outcome of taking a certain action in a certain state) and their
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costs as a meta-level MDPMmeta.

2. Compute the values of the computations people might perform in different states (i.e.,
Qmeta(b, c)) by solving the meta-level MDP either exactly or approximately.

3. Let people practice the cognitive function to be improved and infer their computations from
process tracing data.

4. Score people’s inferred computations by

score(b, c) = Q̂meta(b, c)−max
c
Q̂meta(b, c). (9.2)

5. Translate score into reinforcement and a feedback message.

The resulting reinforcement signal rewards people according to the expected sum of the imme-
diate and long-term benefits of their actions minus the value of the previous belief state under the
optimal strategy, that is

PRopt(bt, ct) = E [V ⋆
meta(Bt+1) + rmeta(bt, ct, Bt+1)|Bt = bt, Ct = ct]− V ⋆

meta(bt). (9.3)
Adding these pseudo-rewards to the meta-level MPD retains the optimal meta-level policy according
to the shaping theorem (Ng et al., 1999). This is because the expected difference in the state-value
is the expected value of a potential-based pseudo-reward (Ng et al., 1999) and the addition of the
expected immediate reward merely scales the expected rewards of all transitions by a factor of two.

In many cases solving the meta-level MDP exactly is intractable. In these cases, we can approxi-
mate the meta-level Q-function using the following four-step procedure:

1. Apply the strategy discovery method presented in Chapter 6 to compute a near-optimal
meta-level policy πLC.

2. Collect process tracing data from human participants solving the task without feedback.

3. Start the optimal strategy πLC from all pairs (b, c) of a participant’s information state b and
the computation c they performed in that state.

4. Record the optimal strategy’s meta-level returnR from each of these starting points.

5. Use the resulting data set {(b, c)t, Rt}1≤t≤T to compute the maximum-likelihood estimate
β̂ML of the parameters β of the regression model

(9.4)QπLC(b, c) = β0 · rmeta(b,⊥) + β1 · VOI1(b, c) + β2

· VPIall(b, c) + β3 · VPIa(b, c) + β4 · cost(c) + ε,
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where the first regressor is the expected return of acting without further deliberation in the
current state and the subsequent three features are defined in Chapter 6, and ε is a normally
distributed error term. We can then use the maximum likelihood estimate β̂ML to approxi-
mateQπLC by

(9.5)Q̂πLC = β0 · rmeta(b,⊥) + β̂ML
1 · VOI1(b, c) + βML

2

· VPIall(b, c) + βML
3 · VPIa(b, c) + βML

4 · cost(c).

9.2 A cognitive tutor for planning

The metacognitive feedback method presented above is very general and widely applicable. Here,
we applied it to teaching people effective planning strategies via metacognitive feedback. Planning,
like all of cognition, is a mental process that cannot be observed directly. Thus, to give people feed-
back on their planning strategy, we first have to make it observable. To do so, we developed a pro-
cess tracing paradigm for the study of planning (Callaway, Lieder, Krueger, & Griffiths, 2017). Our
Mouselab-MDP paradigm is inspired by the Mouselab paradigm (Payne et al., 1993) that traces how
people choose between multiple risky gambles (see Chapter 6). The basic idea is to externalize peo-
ple’s mental simulations of alternative action sequences. To do so, the Mouselab-MDP paradigm
presents participants with a route planning problem where each move earns or loses an initially un-
known amount of money. The participant’s goal is to choose a route in such as way that they earn
as much money as possible. To find out how much money a move would yield, the participant has
to click on it and pay a fee. Each click is recorded and the recorded sequence of clicks reveals which
paths participants mentally simulated and in which order. As a proof-of-concept, this chapter de-
velops a cognitive tutor that teaches people to plan backward from potential goals using the 3-step
planning task shown in Figure 9.2.

To develop a cognitive tutor for planning, we applied Steps 1-5 of the methodology summarized
above to the Mouselab-MDP paradigm.

In Step 1, we model the problem of deciding how to plan by the meta-level MDP
Mmeta = (B,A, T , rmeta), (9.6)

where each belief state b encodes one Normal distribution for each transition’s reward. Thus, the be-
lief state b(t) at time t can be represented as ((µ(t)1 , σ

(t)
1 ), · · · , (µ(t)K , σ

(t)
K )) such that b(t)(θk = x) =

N (x;µ
(t)
k , σ

(t)
k

2
). The initial belief state b(0) encodes the joint distributionN

(
x; (µ

(R)
1 , · · · , µ(R)

K ),Σ(R)
)
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Figure 9.2: Illustration of the Mouselab-MDP paradigm.

that the rewards are sampled from. The metalevel actions areA = {c1, · · · , cK ,⊥}where ck re-
veals the reward at location k and⊥ terminates planning and selects the path with highest expected
sum of rewards according to the current belief state. The transition probabilities Tmeta(b

(t), ck, b
(t+1))

encode that performing computation ck sets (µ(t+1)
k , σ

(t+1)
k ) to (x, 0)with probability density

ϕ(x;µ
(t)
k , σ

(t)
k )where ϕ is the density function of the normal distribution. The metalevel reward

function is rmeta(b, c) = −λ for c ∈ {c1, · · · , cK}, and rmeta ((µ1, σ1), · · · , (µK , σK)),⊥) =

maxt∈T
∑

k∈t µk where T is the set of possible trajectories t through the environment.

For the second step, we solved this meta-level MDP exactly through backward induction (Put-
erman, 2014) with hashing. Using the Mouselab-MDP paradigm allows the cognitive tutor to au-
tomatically infer the participants’ computations from their clicks by assuming that participants
immediately update their belief state upon uncovering a new piece of information (Step 3). After
each click a participant makes, the cognitive tutor scores the corresponding computation according
to Equations 9.2 and 9.5 (Step 4).

In the final step, this score is translated into a penalty delay of round(2 − score(bt, ct)) seconds,
and the cognitive tutor displays a feedback message. If the participant made an error, then the feed-
back message informs them what they should have done differently (see Figure 9.3). Concretely, if
the optimal action(s) involved clicking, then all optimal clicks are highlighted in blue. And when
it is optimal to move without further deliberation, then the feedback message informs participants
that the optimal strategy would not have performed any more clicks. When the participant’s plan-
ning operation was optimal, then the feedback message says “Good job!” and they are allowed to
proceed immediately.
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The participant’s score is updated after every click (by subtracting the cost per click) and move
(by adding the collected reward). A timer enforces that each participant spends at least a required
minimum amount of time on each trial. This serves to eliminate the opportunity cost of time, and
as a result the cost of planning is entirely determined by the price of each click.

The following sections evaluate this cognitive tutor in a series of experiments: Experiment 1 as-
sesses whether training with the cognitive tutor accelerates learning how to plan better compared
to practicing without feedback. Experiment 2 tests whether the benefits of this training transfer to
more difficult problems in more complex environments, and Experiment 3 tests whether those trans-
ferable benefits are retained over time.

9.3 Experiment 1: Metacognitive feedback accelerates learning to plan

To assess whether the cognitive tutor accelerates learning to plan, We employed a pre-post design
where the intervening training block either gave participants the cognitive tutor’s feedback or no
feedback at all.

9.3.1 Methods

We recruited 119 participants on Amazon Mechanical Turk (average age 34.7±9.8 years, range: 20–
68 years). Participants received a base pay of $0.75 plus a performance dependent bonus of 1 cent
for every $5 they earned in the test block (average bonus $1.34± 0.57). The average duration of the
experiment was 13.4±3.5minutes. For the first six participants the condition was not recorded due
to a technical error; these participants were therefore excluded from all subsequent analyses.

Each participant was assigned to be in either the experimental condition where participants prac-
ticed with feedback or the control condition where participants practiced without feedback. Coun-
terbalancing the assignments to the two groups yielded 56 participants in the feedback group and 57
in the control group. The experiment was structured into instructions, a pretest, a training block, a
post-test block, a quiz, and questions about the participant’s strategies. The pretest block comprised
1 trial, the training block comprised 10 trials, and the post-test block comprised 20 trials.

Each trial presented participants with a 3-step planning problem with 3 choices in the first step,
1 choice in the second step, and 2 choices in the final step (see Figure 9.2). The participant’s goal
was to earn as much money as possible. Critically, the range of the attainable rewards increased
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from the first step to the third step. Concretely, in the first condition the reward distributions were
Uniform({−4,−2,+2,+4}), Uniform({−8,−4,+4,+8}), and Uniform({−48,−24,+24,+48})
for nodes reachable in one, two, and three steps, respectively. To operationalize the opportunity cost
of planning, we charged participants $1 per click. To eliminate the time cost of engaging in planning
compared to speeding through the experiment, participants who spend less than 7 seconds on plan-
ning (e.g., only 3 seconds) were required to wait for the remaining time after executing their moves
(e.g., for 4 seconds).

The instructions informed participants about how to move, how to collect information, the
cost of information, the minimum time of 7 seconds per trial, the structure of the experiment, and
the bonus. The quiz queried participants about the range of rewards in the first step, the range of
rewards in the last step, the cost per click, and how the bonus would be calculated. Additional ques-
tions asked participants about how they decided where to click and where not to click, where they
usually clicked first, their general strategy, what they had learned, and whether they found anything
confusing.

In the post-test block participants were informed that they would receive a bonus of 1 cents for
every $5 they make in the game, and they received an endowment of 50 virtual dollars, which was
worth 10 cents.

9.3.2 Results

As shown in Figure 9.4, the cognitive tutor’s feedback significantly accelerated people’s learning.
Concretely, a linear regression analysis confirmed that the feedback significantly increased the slope
of participants’ learning curve from 0.7710 $/trial to 2.0994 $/trial (t(1305) = 2.461, p = 0.014).
Participants in the feedback condition improved significantly more from the pretest to the last trial
of the training block than participants in the control condition (+22.6 $/trial vs. +4.81 $/trial,
t(111) = 2.22, p = 0.0281). Consequently, participants who received feedback performed
significantly better in the post-test than participants who practiced without feedback (36.2 $/trial vs.
24.6 $/trial, t(2258) = 10.7, p < 0.0001; see Figure 9.5).

To elucidate the source of these improvements, we compared participants’ planning strategies
in the post-test between the feedback condition and the control condition. As shown in Figure 9.6,
we found that the proportion of trials on which participants started by inspecting a potential goal
state was significantly higher in the feedback condition (98.6% of all first clicks) than in the control
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Figure 9.3: Examples of feedback messages used by the cognitive tutor.
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Figure 9.4: Optimal feedback accelerates learning. The error bars are 95% confidence intervals
based on bootstrapping.

Figure 9.5: Optimal feedback increased performance in the test block. The error bars are 95%
confidence intervals based on bootstrapping.
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Figure 9.6: Effect of feedback on planning strategies. Compared to the control condition (a),
participants who were trained with feedback engaged more often in backward planning and less
often in forward planning.

condition (78.6% of all first clicks,Z = 14.6, p < 0.0001). Conversely, participants who had
practiced with the cognitive tutor were less likely to start by inspecting immediate outcomes than
the control conditoin (0.9% vs. 20.1% of all first clicks,Z = −14.5, p < 0.0001) or intermediate
outcomes (0.46% vs. 1.25% of first clicks,Z = −1.96, p = 0.0496). Furthermore, 97% of the
participants in the feedback group engaged in planning compared to only 76% of participants in the
control group (Z = 14.6, p < 0.0001), and the feedback group also performed more planning
overall (3.7± 3.0 vs. 2.4± 2.8 clicks on average, t(2258) = 6.3, p < 0.0001).

9.3.3 Discussion

The results of Experiment 1 suggested that training paradigm developed in this chapter could poten-
tially to lead to effective cognitive training programs, because it accelerated learning to plan back-
wards. However, the critical question is whether training benefits achieved with the cognitive tutor
would transfer to planning and decision-making in the real world. As a first step towards answer-
ing that question, we designed a follow-up experiment with a transfer task that assesses people’s
performance in a more complex environment. This mimics the scenario in which people engage in
cognitive training with relatively simple tasks in hopes of improving their decision-making skills in
everyday life.
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9.4 Experiment 2: Do the training benefits transfer to other planning tasks?

To assess whether the training effects observed in Experiment 1 transfer to more complex environ-
ments, we modified Experiment 1 such that the test block uses a different and more complex task
that requires planning five steps ahead.

9.4.1 Methods

We recruited 118 participants on Amazon Mechanical Turk. Each participant was paid $0.80 plus a
performance-dependent bonus. The average bonus was $1.50 ± 0.59 and the average completion
time was 16.3 ± 5.7minutes. Exactly half of the participants were assigned to the experimental
condition and the remaining half was assigned to the control condition.

The experiment was structured into instructions, a pretest block (1 trial), a training block (10
trials), a post-test block (20 trials), and an exit survey. The instructions explained how to move, how
to collect information, the cost of information, and the minimum time of 7 seconds per trial.

The pre-test and the post-test presented participants with the complex 5-step planning task
shown in Figure 9.7. In this task participants move a money-loving spider across a web of cash; they
can choose between three directions in the first step, have no choice in the second and third step,
have two choices in the fourth step, and three choices in the fifth step. The rewards of nodes at step
i ∈ {1, 2, 3, 4, }were drawn from a normal distributions with mean zero and standard deviation
σi = 2i−1, and the rewards at the last step (i = 5) were drawn fromN (µ = 0, σ5 = 25). All
sampled rewards were rounded to the nearest integer.

In the training block, participants solved a different planning problem that was simpler and
had a different cover story (see Figure 9.8). This task was structurally identical to the training task
used in Experiment 1. But it used a different cover story about navigating an airplane across a net-
work of airports, and the icon of the spider was replaced by the icon of an airplane. To recap, this
task required participants to solve a 3-step planning problem with three choices in the first step,
no choice in the second step, and two choices in the third step. As in previous experiment, the
reward distributions were Uniform({−4,−2,+2,+4}), Uniform({−8,−4,+4,+8}), and
Uniform({−48,−24,+24,+48}) for nodes reachable in one, two, and three steps, respectively.

Each participant was randomly assigned to one of two conditions: Participants in the experimen-
tal group received optimal feedback in the training block. By contrast, participants in the control
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Figure 9.7: Transfer task of Experiment 2.

Figure 9.8: Training task of Experiment 2.
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Figure 9.9: Replication of the effect of optimal feedback on the rate of learning in the training
block. The error bars are 95% confidence intervals based on bootstrapping.

group received no feedback in the training block. In the post-test block, participants received an
endowment of 20 cents ($100 in the game’s currency) and were informed that they would receive a
bonus of 20 cents for every $100 they made in the game.

9.4.2 Results

The results replicated the finding that the cognitive tutor accelerates learning (see Figure 9.9). Con-
cretely, a linear regression analysis confirmed that the feedback significantly increased the slope of
participants’ learning curve from 1.21 $/trial to 2.40 $/trial (t(1294) = 2.33, p = 0.020).

Most importantly, we found that the benefits of practicing 3-step planning with the cognitive
tutor in the simple environment shown in Figure 9.8 transferred to the more difficult five-step plan-
ning problem in the more complex environment shown in Figure 9.7. Participants who trained with
the cognitive tutor improved significantly more on the transfer task from the pretest to the post-test
(+30.7 $/trial) than participants who practiced the training task without feedback (+15.6 $/trial,
t(116) = 2.53, p = 0.0127). Consequently, the experimental group performed much better on
the post-test than the control group (37.4 $/trial vs. 27.4 $/trial, t(2358) = 8.8, p < 0.0001; see
Figure 9.10a). As shown in Figure 9.10b) the cognitive tutor appears to have shifted many people’s
performance from negative and low positive scores to moderately high positive scores.

The transfer effect appears to stem from at least two improvements in people’s planning strate-
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Figure 9.10: Performance in the transfer task. a) Average performance by group. b) Distribution
of scores in the transfer task in $ per trial.

gies. First, participants who had practiced with the cognitive tutor employed backward planning
more frequently in the transfer task than participants who had practiced on their own (see Figure
9.11): their first clicks fell more frequently on one of the possible final destinations than those of the
control group (91.4% vs. 83.1%,Z = 3.43, p = 0.0006) and less frequently on one of the rewards
in the first step (2.21% vs. 14.8%,Z = −6.33, p < 0.0001). Interestingly, having trained with
the cognitive tutor made participants slightly more likely to start by inspecting a node at the third
step (4.41% vs. 1.51%,Z = 2.26, p = 0.0239). Second, training with the cognitive tutor also
increased people’s propensity to engage in any planning at all: the proportion of trials on which par-
ticipants inspected at least one location increased from 73% to 96.9% (Z = 16.1, p < 0.0001).
Finally, practicing with the cognitive tutor also increased the amount of planning participants did
on the transfer task, where it increased the average number of clicks from 6.9 ± 7.8 to 9.5 ± 7.5

(t(2358) = 6.6, p < 0.0001).

9.4.3 Discussion

While learning-driven improvements in task performance are ubiquitous, those improvements tend
to be highly specific to the trained task (C. S. Green & Bavelier, 2008). This specificity of learning
is the primary obstacle to improving the human mind through cognitive training (C. S. Green &
Bavelier, 2008). The present experiment was designed to test whether the training effects conferred
by the cognitive tutor might transfer to the kinds of planning problems people face in everyday life.
Those problems differ from the simple 3-step planning task used by the cognitive tutor in several
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Figure 9.11: Effect of feedback on planning strategies in the transfer task. Participants who were
trained with feedback (b) engaged in less forward planning and more backward planning than par-
ticipants who practiced without feedback (a).

ways. Three key differences are that they typically require planning more than three steps ahead,
allow people to choose between many more than six courses of action, and rarely involve flight plan-
ning. The transfer task differed from the training task in all three of these regards. The fact that the
benefits of the planning training transferred to a more complex problem with a longer planning
horizon and a larger number of potential scenarios suggests that transfer from simplified training
problems to the more complex problems they were designed to mimic is possible, at least in princi-
ple. One of the reasons why the cognitive tutor might have a better chance at conferring transferable
benefits than conventional cognitive training is that it explicitly teaches general cognitive strategies.
The explicit click-by-click feedback guides people to carry out the target strategy multiple times and
it rewards them for doing so. Critically, the training environment was designed such that the cor-
responding optimal strategy (i.e., identifying a potential goal state and planning backward from it)
would also be beneficial in many real-world scenarios (Park, Lu, & Hedgcock, 2017).

How complex, varied, and realistic the tasks used in the planning training have to be to achieve
transfer to planning in everyday life is an open question for future research. Next, we turn to a an-
other challenge cognitive training programs have to meet to be useful for improving people’s perfor-
mance in everyday life: the training benefits have to be retained over time.
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9.5 Experiment 3: Are the training benefits retained over time?

To test whether the transfer effect observed in Experiment 2 persists over time, we designed a follow-
up experiment with an approximately 24 h delay between the training block and the transfer block.

9.5.1 Methods

We recruited a total of 100 adult participants on Amazon Mechanical Turk. We excluded the data
from one participant who reported technical problems that caused them to participate twice. Par-
ticipants were paid a base pay of $2.00 or $2.10 plus a performance-dependent bonus for about
16.3± 5.4minutes of work. The average bonus was $2.29± 0.87.

The experimental design was equivalent to the near-transfer experiment (Experiment 2): partic-
ipants were assigned to either the experimental condition that trained with the cognitive tutor or
the control condition that practiced without feedback. Of the 99 remaining participants, 50were in
experimental condition and 49were in the control condition. Most participants who participated in
Stage 1 returned for Stage 2: in the experimental condition 43 of the 50 participants returned and in
the control condition 36 of the 49 participants returned.

The experiment was structured into two parts that were separated by a delay of approximately
24 h. This was accomplished by posting separate HITs such that the HIT for Part 1 was available
from the morning to the late afternoon of the first day and the HIT for Part 2 became available in
the morning of the subsequent day and was only accessible to workers who had completed Part 1 on
the previous day. The data was collected in two waves. The first wave took place from March 7 (Part
1) to March 8 2018 (Part 2), and the second wave took place on March 9 (Part 1) to March 10 2018
(Part 2).

The first HIT asked workers to only partake in the first part if they were certain they would also
participate in the second part. The monetary incentives were set up to discourage participating only
in the first part: The base pay of the first HIT was only $0.10 (first wave of recruitment) or $0.20
(second wave of recruitment). Participants could earn a performance-dependent bonus in part 1 but
that bonus would only be paid out if they also completed part 2. Part 2 provided a base pay of $1.90
and an additional performance-dependent bonus. Furthermore, participants could sign up for an
email reminder that was sent the following day after the HIT for Part 2 had been posted.
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a) b)

Figure 9.12: Performance in the transfer task after a 24 h delay. a) Average performance by
group. b) Distribution of scores in the transfer task in $ per trial.

This experiment employed the pretest block, training block, and transfer from the near-transfer
experiment (Experiment 2), but we added additional instructions and a bonus for participants’ per-
formance in the training block. The first HIT comprised instructions, the pretest block, and a train-
ing block. The second HIT comprised instructions that reminded participants of how the game
works, the transfer block, where participants were posed 20 five-step planning problems (see Figure
9.7), and the same closing survey that was used in Experiments 1 and 2.

9.5.2 Results

As shown in Figure 9.12, the results suggested that the transferable benefits of training with the cog-
nitive tutor were retained over time. Concretely, we found that even after the 24 h delay, partici-
pants who had received feedback in the training block still performed significantly better on the
transfer task than participants who had practiced without feedback (39.9 $/trial vs. 39.1 $/trial,
t(1578) = 7.8, p < 0.0001). The retained benefit of 11.77 ± 1.88 $/trial was about 97.4% of
the immediate benefit of 12.1 ± 3.55 $/trial; these findings are consistent with the null hypothesis
that the transfer benefits are fully retained for at least 24 h (Z = 0.06, p = 0.48). The benefit of
practicing with the cognitive tutor was also visible in participants’ improvement from the pre-test
to the post-test (+33.9 $/trial vs. +23.9 $/trial) but due to the high variability of the pretest scores
this difference was only borderline-significant (t(77) = 1.83, p = 0.0684).

Figure 9.13 suggests that the improved performance of participants who had practiced planning
with the cognitive tutor reflects their increased use of the backward-planning strategy in the transfer
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a) b)

Figure 9.13: Distribution of participants’ first clicks in the transfer block over levels. Level 0
means no click, level 1 ≤ l ≤ means clicking on a node that can be reached in l moves. a) Click
distribution of the control condition. b) Click distribution of the experimental condition.

task 24 h after the training. Concretely, their first clicks fell more frequently on one of the possible
final destinations than those of the control group (94.5% vs. 71.3%,Z = 12.1, p < 0.0001) and
less frequently on one of the rewards in the first step (2.4% vs. 25.5%,Z = −13.3, p < 0.0001).
Furthermore, the increased propensity for planning we observed in the near-transfer experiment was
also retained after the 24 h delay: The experimental group inspected at least one node on 97.6% of
the trials compared to only 82% in the control condition (Z = 10.4, p < 0.0001). This increased
propensity for planning also manifested in an increased number of clicks (12.7 ± 7.3 vs. 7.8 ± 6.6,
t(1578) = 14.8, p < 0.0001).

9.5.3 Discussion

These findings suggest that the transferable benefits of training planning with the cognitive tutor
are retained for at least 24 hours after the training with very little to no reduction in its magnitude.
Having practiced with the cognitive tutor increased people’s propensity for planning and taught
them to plan backward. Both of these changes could likely help people make better decisions in ev-
eryday life. Furthermore the results of this experiment suggest that if the training benefits transfer
to decision-making in everyday life, then practicing in the evening would lead to persistent improve-
ments throughout the following day.
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9.6 Experiment 4: Benefits over pure instruction

The traditional paradigm of education is premised on the assumption that people can learn cogni-
tive skills not only from experience but also through instruction. This raises the question of whether
and under which conditions having people practice with the cognitive tutor is more effective than
simply instructing them about the optimal strategy. To answer this question, Experiment 4 com-
pared the effectiveness of instruction plus practice with the cognitive tutor versus pure instruction
and instruction plus demonstration.

9.6.1 Methods

We recruited 152 participants on Amazon Mechanical Turk.

Participants were paid a base pay of $2.10 plus a performance-dependent bonus. The average
duration of the experiment was about 14.6± 9.9minutes, and the average bonus was $2.12± 0.57.

The experiment used a between-subjects design with three conditions and two stages that were
separated by a 12 h–24 h delay that were posted as two separate HITs on Amazon Mechanical Turk.
The first HIT taught participants the optimal decision-making strategy for the 3-step planning task
with outwardly increasing variance introduced above. Participants in the control were taught this
strategy via the instructions shown in Figure 9.14. After having seen this principle, participants were
then asked to summarize it in their own words, and then they were shown it again. Participants
in the two experimental conditions received the same instructions as participants in the control
condition, but afterward they either practiced applying this strategy with the cognitive tutor for 10
trials (Figure 9.8; cognitive tutor condition), or were shown 10 video demonstrations of the optimal
strategy applied in this task (demonstration condition).

On the next day, we posted a second HIT in which participants of all three conditions completed
20 trials of the 5-step transfer task introduced in Experiment 2 (see Figure 9.7). In addition, the sec-
ond HIT included instructions explaining the transfer task a closing survey that included the ques-
tions from Experiments 1-3 and also asked people whether they had applied the goal setting principle
in their everyday life. This HIT was only accessible to workers who had completed the first part of
the experiment. The first HIT asked workers to only partake in the first part if they were certain
they would also participate in the second part. The monetary incentives were set up to discourage
participating only in the first part: The base pay of the first HIT was only $0.20. Furthermore, the
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As we go through our lives we are often drawn to immediate pleasures and
avoid doing things that are unpleasant. For instance, we watch a Youtube
video because it promises immediate fun, but we put off filing our taxes be-
cause that feels difficult.
Highly successful people, like Elon Musk, make their decisions very differ-
ently: They first think about all the things they could achieve in the long-term,
pick one of them as their goal, and then do what it takes to get there – even if
they are painful in the short-run.
You too can apply this goal-setting principle to make better decisions. Here is
how:

1. Imagine what your life could be like in the future.
2. Choose which of those futures you want to create.
3. Set yourself the goal to make that happen.
4. Plan how to achieve the goal and act accordingly.

Figure 9.14: Instructions about the goal-setting principle shown in Experiment 4.

$0.55 bonus participants earned in the first part was only be paid out if they also completed Part 2.
Part 2 provided a base pay of $1.90 and an additional performance-dependent bonus. Participants
could sign up for an email reminder that was sent the following day after the HIT for Part 2 had
been posted. About 81% of the participants from Part 1 returned for Part 2, and the retention rate
was relatively even across the three conditions (43/50 in the control condition, 42/51 in the feedback
condition, and 38/51 in the demonstration).

9.6.2 Results

We found that participants who had practiced with the cognitive tutor performed significantly bet-
ter on the transfer task than participants who were only told about the principle (38.0 $/trial vs.
24.2 $/trial, t(83) = 10.5, p = 0.0000; Figure 9.15). Participants who had seen a demonstration
of the optimal strategy performed at the same level as participants who had practiced with the cog-
nitive tutor (38.8 $/trial vs. 38.0 $/trial, t(78) = −0.7, p = 0.49; Figure 9.15). Furthermore, the
performance of participants in the condition with instructions only was similar to the performance
of participants who had practiced the training task without feedback in Experiment 2 (24.2 vs. 27.4
$/trial).
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Figure 9.15: Transfer task performance in Experiment 4 by group.

Figure 9.16: Transfer task strategies in Experiment 4 by condition.

As shown in Figure 9.16 the difference in performance between the three experimental conditions
arose because participants who had trained with the cognitive tutor appeared to use the backward
planning strategy significantly more frequently than participants who had received instructions
only: Participants in the cognitive tutor condition started significantly more often by inspecting
one of the potential final destinations than participants in the instructions only condition (92% vs.
47%,Z = 20.3, p < 0.0001). Conversely, participants who had been instructed about the optimal
planning strategy only were significantly more likely to start by inspecting an immediate outcome
(26% vs. 2.4%,Z = +14.2, p < 0.0001) or an outcome that was only 1 step away from their
initial location (17% vs. 1.7%,Z = +11.0, p < 0.0001).

9.6.3 Discussion

These results suggest that supplementing instruction by practice with a cognitive tutor or demon-
strations has transferable benefits that are retained over time. These benefits might arise because
the both practice and demonstration translate the abstract principle into a concrete decision strat-
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egy. Furthermore, practice and demonstrations might help people internalize the abstract principles
of good decision-making so that they become more likely to use them. Overall, the findings of this
experiment suggest that our computational approach to strategy discovery enables training interven-
tions that are significantly more effective than pure instruction.

9.7 Summary and Conclusion

This chapter brought together the theory of resource-rationality (Chapter 1), a computational ap-
proach to discovering rational heuristics (Chapter 6), and insights into how people learn how to
think and decide (Chapter 5) to develop a cognitive tutor that assists people in learning a resource-
rational planning strategy. The success of this approach illustrates that having a normative theory
of bounded rationality and model of metacognitive learning make it possible to improve the human
mind in ways that eluded previous attempts to improve judgment and decision-making, such as
debiasing and cognitive training.

Unlike classical approaches to cognitive training that seek to strengthen basic cognitive capacities,
such as working memory, the approach presented here teaches people to make clever use of the cog-
nitive resources they already have. In other words, while most approaches to cognitive training are
like running or weightlifting, this cognitive tutor is more like a karate instructor. In this sense, the
approach presented here is similar to boosting and debiasing interventions that seek to teach people
normative decision strategies. However, there are at least three critical differences: First, the cogni-
tive tutor teaches resource-rational strategies. Second, classic approaches relied on verbalizing the
strategy to be taught, but most of human expertise is very difficult or impossible to verbalize, and
optimal strategies might not have a succinct and memorable verbal description. The cognitive tutor
can teach arbitrary cognitive strategies via feedback without having to compromise the quality of the
strategy for succinctness and memorability. Third, the cognitive tutor’s pedagogy is rooted in the
principle of learning by doing. Participants solve the cognitive task on their own and receive immedi-
ate, high-quality feedback that is designed to guide their metacognitive learning towards the optimal
strategy as quickly as possible.

To summarize the approach, we have developed the cognitive tutor starting from a mathematical
model of the kinds of sequential decision problems people face in everyday life. We then compute
the bounded-optimal strategy for making such decisions. The optimal decision strategy is then
taught to people by a cognitive training program that gives them optimal metacognitive feedback
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on how they plan in a process tracing paradigm. we have instantiated this approach in a cognitive
tutor that teaches people to plan backward.

Experiments 1-3 have shown that a) this approach significantly improves people’s planning strate-
gies in the training task compared to practicing without feedback, b) those benefits transfer to a
more challenging planning task in a more complex environment, and c) those transfer effects are
retained over time. Taken together, these findings encourage the interpretation that the approach
developed here has the potential to improve people’s decision-making in everyday life. However, pre-
vious research on cognitive training has consistently found that most transfer effects tend to be nar-
row (C. S. Green & Bavelier, 2008). Therefore, future experiments will test whether the benefits of
practicing with the cognitive tutor also transfer to superficially dissimilar tasks where performance
benefits from backward planning. It will be informative to determine under which conditions such
far-transfer effects can be attained. If it turns out that far-transfer can be achieved with (a potentially
modified version of) the cognitive tutor presented in this chapter, then subsequent work will investi-
gate transfer to decision-making in everyday life.

Given that the benefits of training with the cognitive tutor will be limited to situations where the
taught strategy is advantageous, practical applications of the cognitive tutoring approach presented
here should be based on realistic models of decision-problems people face in everyday life. Modeling
the choices people face in everyday life and deriving optimal strategies for making them is an impor-
tant direction for future research. A cognitive tutor based on the resulting strategies might be able
to teach people practical life skills that have been neglected by traditional approaches to education.
I believe that one of the critical obstacles to teaching students how to think and decide well is that
experts can rarely articulate their cognitive strategies. For instance, most mathematicians cannot
verbalize their general strategies for mathematical problem solving.I hope that my approach to dis-
covering and teaching resource-rational cognitive strategies will alleviate this bottleneck to learning
sophisticated cognitive strategies.

In contrast to conventional cognitive training that targets basic cognitive capacities, such as work-
ing memory or processing speed, the approach devised in this chapter teaches people to more effec-
tively use the cognitive capacities they already have. The underlying assumption is that being taught
a rational heuristic will be more beneficial than conventional cognitive training for people who al-
ready have the cognitive capacities to execute that heuristic but do not already know it. I believe that
in most situations the bottleneck to success is not that we lack basic cognitive capacities but that we
have yet to learn how to use them effectively. For instance, if somebody’s programming skills need
to be improved, then pointing them to a programming class or tutorial is generally a much more
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appropriate intervention than working memory training. I believe that the same argument applies
to improving reasoning, decision-making, and problem solving more generally. Most people may
already possess the cognitive capacities to perform well in most situations but may still lack effective
cognitive strategies for at least some of them. This highlights the potential of cognitive tutors that
teach effective cognitive strategies.

The approach to improving human cognition presented in this chapter is very general. While we
have instantiated it to teach people to plan backward, it could also be applied to discover and teach
optimal strategies for solving algebra problems, or to improve the executive functions of people
struggling with attention deficit disorder. It can, in fact, be applied to virtually any cognitive ability,
and it can be tailored to specific populations and task environments. This suggests a broad spectrum
of potential future applications ranging from psychiatry and cognitive rehabilitation to education
and cognitive enhancement. The line of research begun in this chapter might give rise to innovative
approaches to teaching cognitive skills that might eventually revolutionize how mental disorders
are treated, how seniors keep themselves mentally fit, and how cognitive skills are taught in schools.
Beyond providing new tools for existing applications, the cognitive tutoring approach presented
here might also give rise to entirely new applications, such as accelerating cognitive development and
the cognitive enhancement of healthy young adults. These novel applications might enable us to
push the boundaries of human rationality and reach unprecedented levels of cognitive performance.
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10
Conclusion

My dissertation work took us beyond bounded rationality in two ways: In Part I, I developed a
mathematically precise and very general theoretical framework for understanding human cogni-
tion that surpasses the vague notion of “bounded rationality”. In Part II, I devised a cognitive tutor
and a cognitive prosthesis which have the potential to extend the boundaries of human rationality.
The cognitive tutor teaches people resource-rational planning strategies, enabling them to use their
limited cognitive resources more effectively. By contrast, the cognitive prosthesis automatically re-
structures the environment, so that the heuristics people already employ lead to better decisions.
These two complementary approaches correspond to the two blades of Herbert Simon’s ‘scissors’ of
bounded rationality (Simon, 1972, 1982).

By sharpening the blades of Simon’s scissors of bounded rationality, the research presented in
Part I has enabled a more clear-cut understanding of what it means to be rational, allowing us to
identify the heuristics people use with mathematical precision. Resource-rationality reconciles nor-
mative principles that can account for mind’s most impressive feats with people’s most embarassing
errors and cognitive biases. The resource-rational framework integrates the strengths of modeling
approaches based on general principles with the descriptive accuracy of theories derived from empir-
ical observations. I hope that the resource-rational framework will find widespread applications in
cognitive modeling, since its methodology is relevant to all domains of human cognition. Resource-
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rational analysis brings the methodological benefits of rational modeling to the algorithmic level
of analysis that is of crucial interest to cognitive psychology. Furthermore, it connects the algorith-
mic level of analysis to the computational level of analysis so that computational level theories can
constrain process models and vice versa. I am optimistic that these advances will enable significant
progress in cognitive modeling. The literature reviewed in Chapter 1 and the findings presented in
Chapters 2-6 are a testament to its potential.

Taken together, the findings of Part I and Part II suggest that resource-rationality is a promising
theoretical framework for understanding and improving human cognition.

10.1 Resource-rationality as a scientific foundation for improving the hu-
man mind

The cognitive tutor and cognitive prosthesis presented in Part II illustrate that both ‘blades’ of
bounded rationality can be forged so as to increase people’s rationality overall. These successes sug-
gest that resource-rationality has the potential to provide a scientific foundation for improving the
human mind. Resource rationality can support this endeavour in at least three qualitatively differ-
ent ways: First, it can be used to derive prescriptions for clearer thinking and better decision-making.
This could, for instance, mean applying the method developed in Chapter 6 to discover optimal
heuristics for decision-making in everyday life. These strategies could then be taught to people
through verbal instruction or via a cognitive tutor. Second, resource-rational models of heuristics
and biases can be used to reason about how we should restructure the environment to make good
decision-making easier for people. Third, resource-rationality can be used as a normative standard
to identify genuine sub-optimalities in human cognition; those can then be addressed, so as to help
people avoid costly mistakes. It is remarkable that resource-rationality can serve all three of these
functions, given that normative, descriptive, and prescriptive theories have historically been only
loosely connected.

I am optimistic that by tackling the problem of improving the human mind from a resource-
rational perspective, we will develop strategies, tools, and interventions significantly more effective
than those we have so far. The cognitive prosthesis presented in Chapter 8 is a proof-of-concept that
we can translate our understanding of people’s bounded-rational decision-mechanisms into software
tools that can help them overcome their cognitive limitations. Last but not least, the cognitive tutor
presented in Chapter 9 serves as a proof-of-concept, demonstrating that we can improve human de-
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cision making by defining and teaching resource-rational heuristics. The way in which the cognitive
tutor teaches these strategies is informed by our preliminary model of how people learn to become
increasingly more resource rational (Chapter 5). Future work will build on these foundations to de-
fine rational heuristics for progressively more realistic problems, devise increasingly more effective
ways of teaching those heuristics, and develop more advanced cognitive prostheses.

Furthermore, comparing human performance against the metric of resource-rationality can be
used as a principled way to identify which interventions are most appropriate in any particular sit-
uation. For instance, teaching people a resource-rational cognitive strategy (Chapter 9) appears
most appropriate in situations where their original heuristics are vastly sub-optimal. In other situ-
ations, people might already be using resource-rational strategies, but the complexity of the problem
might exceed their computational capacities. In cases like this, one might restructure the environ-
ment to simplify the computational problems it poses (Chapter 8), or augment people’s cognitive
capacities. One example of the former is to re-frame probabilistic reasoning problems in terms of
natural frequencies rather than conditional probabilities (Gigerenzer & Hoffrage, 1995; Sedlmeier &
Gigerenzer, 2001). Alternatively, resource constraints could be addressed through cognitive training
or cognitive prostheses, like the one developed in Chapter 8. Resource-rational analysis could also
be used to inform the prescription of cognitive training programs. For instance, a resource-rational
analysis of a person’s performance in various tests might reveal that their performance is mainly lim-
ited by their verbal working memory. In that case, working memory training using the verbal n-back
task might be effective. In further situations, people’s inferences or decisions might be fully rational,
given their reasonable assumptions about the structure of the environment. But errors may arise
because the current situation violates those assumptions. This appears to be the case for several cog-
nitive biases that have been successfully explained through rational analysis. In these cases, it might
be reasonable to accept these inferences as optimal, or to align the presentation of those particular
problems with the implicit assumptions of the strategies that people use to solve them.

I am optimistic that this line of research will enable us to push the limits of human rationality
in synergy with answering fundamental questions about bounded rationality and metacognitive
learning.
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Resource-Rational
Anchoring-and-Adjustment

A.1 Notation

X : numerical quantity to be estimated
X̂ : people’s estimates of quantityX
n: number of adjustments
X̂n: people’s estimates of quantityX after n adjustments
K or y: knowledge or information aboutX
P (X|K), P (X|y): posterior belief aboutX
P (R|y): distribution of people’s responses to observation y
m: probabilistic model of participants’ responses
cost(x̂, x): error cost of reporting estimate x̂when the true value is x
n⋆: resource-rational number of adjustments
γ: relative time cost per iteration
ce, ct: cost of time, cost of error
ε: measurement error
σε: standard deviation of the measurement error ε
Q: approximate posterior belief
H: hypothesis space
ψ: stopping criterion
µprop: average size of proposed adjustments
µ⋆prop: resource-rational step-size of proposed adjustments
a: anchor
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A.2 Generalization of optimal speed-accuracy tradeoff from problems to
environments

Together, a person’s knowledgeK about a quantityX , the cost function cost(x̂, x), and the correct
value x define an estimation problem. However, in most environments people are faced with many
different estimation problems rather than just a single one, and the true values are unknown. We
therefore define a task environmentE by the relative frequency P (X,K, cost|E)with which differ-
ent estimation problems occur in it. Within each of the experiments that we are going to simulate,
the utilities, and the participant’s knowledge are constant. Thus, those task environments are fully
characterized by P (X,K|E) and cost(x̂, x).

The optimal speed-accuracy tradeoff weights the costs in different estimation problems according
to their prevalence in the agent’s environment. Formally, the agent should minimize the expected
error cost in Equation 2.2 with respect to the distribution of estimation problems P (X,K|E) in its
environmentE:

t⋆ = argmax
t

EP (X,K|E)

[
EQ(x̂t|K) [u(x, x̂t)− γ · t]

]
. (A.1)

Thus, the number of adjustments is chosen to optimize the agent’s average reward rate across the
problem distribution of the task environment (cf. Lewis et al., 2014). If the task environment is an
experiment with multiple questions, then the expected value is the average across those questions.

A.3 Estimating beliefs

For each simulated experiment we conducted one short online survey for each quantityX that its
participants were asked to estimate. For each survey we recruited 30 participants on Amazon Me-
chanical Turk and asked the four questions Speirs-Bridge et al. (2010) advocate for the elicitation
of subjective confidence intervals: “Realistically, what do you think is the lowest value that the ...
could be?”, “Realistically, what do you think is the highest value that the ... could be?”, “Realisti-
cally, what is your best guess (i.e. most likely estimate) of the ... ?”, and “How confident are you that
your interval from the lowest to the highest value could contain the true value o the ... ? Please enter
a number between 0 and 100%.”. These questions elicit a lower bound (ls) and an upper bound (hs)
on the value ofX , an estimate (ms), and the subjective probability ps thatX lies between the lower
and the upper bound (P (X ∈ [ls, hs]|K) respectively, for each participant s. To estimate peo-
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ple’s knowledge about each quantity from the reported confidence intervals, we modeled their belief
P (X|K) by a normal distributionN (µs, σs). We used the empirical estimatems as µs, and set σs
to hs−ls

Φ−1((1+ps)/2)−Φ−1(1−(ps+1)/2)
, whereΦ is the cumulative distribution function of the standard

normal distribution. Finally, we took the medians of these estimates as the values of µ and σ used in
our simulations. We applied this procedure separately for each quantity from each experiment that
will be simulated below. The quantities and the estimated beliefs are summarized in Appendix C.

The hypothesis spaceH for each quantity was assumed to contain all evenly spaced values (interval =
σ
20 ) in the range spanned by the 0.5th and the 99.5th percentile of the belief distribution P (X|K)

and the anchor(s) plus or minus one standard deviation. We simulated the adjustments people con-
sider by samples from a Poisson distribution, that is P (δ = hk − hj) = Poisson(|k − j|;µprop),
where hk and hj are the kth and the jth value in the hypothesis spaceH, and µprop is the expected
step-size of the proposal distribution P (δ). This captures the intuition that people consider only a
finite number of discrete hypotheses and that the adjustments a person will consider have a charac-
teristic size that depends on the resolution of her hypothesis space.

The following tables summarize our estimates of people’s beliefs about the quantities used in the
simulated anchoring experiments. Since the estimated probabilistic beliefs are normal distributions,
we summarize each of them by a mean µ and a standard deviation σ.
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Table A.1: Estimated Beliefs: Insufficient adjustment from provided anchors

Study Quantity µ σ Correct
Tversky, & Kahneman (1974) African countries in UN (in%) 22.5 11.12 28
Jacowitz, & Kahneman (1995) length of Mississippi River (in miles) 1,525 770 2,320
Jacowitz, & Kahneman (1995) height of mount Everest (in feet) 27,500 3,902 29,029
Jacowitz, & Kahneman (1995) amount of meet eaten by average

American (in pounds)
238 210 220

Jacowitz, & Kahneman (1995) distance from San Francisco to New
York (in miles)

3000 718 2,900

Jacowitz, & Kahneman (1995) height of tallest redwood tree (in feet) 325 278 379.3
Jacowitz, & Kahneman (1995) number of United Nations members 111 46 193
Jacowitz, & Kahneman (1995) number of female professors at the

University of California, Berkeley
83 251 805

Jacowitz, & Kahneman (1995) population of Chicago (in millions) 5 3 2.715
Jacowitz, & Kahneman (1995) year telephone was invented 1885 35 1876
Jacowitz, & Kahneman (1995) average number of babies born per day

in the United States
8,750 15,916 3,952,841

Jacowitz, & Kahneman (1995) maximum speed of house cat (in mph) 17 10 29.8
Jacowitz, & Kahneman (1995) amount of gas used per month by

average American (in gallons)
55 84 35.2

Jacowitz, & Kahneman (1995) number of bars in Berkeley, CA 43 55 101
Jacowitz, & Kahneman (1995) number of state colleges and universi-

ties in California
57 112 248

Jacowitz, & Kahneman (1995) number of Lincoln’s presidency 6 2 16
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Table A.2: Estimated beliefs: Insufficient Adjustment from self-generated anchors

Study by Epley, &
Gilovich (2006)

Quantity Mean SD Correct

Study 1a Washington’s election year 1786.5 7.69 1789
Study 1a Boiling Point on Mount Everest in F 158.8 36.82 160
Study 1a Freezing Point of vodka in F 3.7 17.052 -20
Study 1a lowest recorded human body tempera-

ture in F
86 14.83 55.4

Study 1a highest recorded human body tempera-
ture in F

108 3.39 115.7

Study 1b Washington’s election year 1786.5 7.69 1789
Study 1b Boiling point in Denver in F 201.3 9.93 203
Study 1b Number of US states in 1880 33.5 8.52 38
Study 1b year 2nd European explorer reached

West Indies
1533.3 33.93 1501

Study 1b Freezing point of vodka in F 3.7 17.05 -20

Table A.3: Estimated beliefs: Effect of cognitive load

Study by Epley, &
Gilovich (2006)

Quantity Mean SD Correct

Study 2b Washington’s election year 1786.5 7.69 1789
Study 2b second explorer 1533.3 33.93 1501
Study 2c Washington’s election year 1786.5 7.69 1789
Study 2c second explorer 1533.3 33.93 1501
Study 2c Highest body temperature 108 3.39 115.7
Study 2c boiling point on Mt. Everest 158.8 36.82 160
Study 2c Lowest body temperature 86 14.83 55.4
Study 2c freezing point of vodka 3.7 17.05 -20
Study 2c number of U.S. states in 1880 33.5 8.52 38
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Table A.4: Estimated beliefs: effects of distance and knowledge

Study Quantity Mean SD Correct
Russo, & Shoemaker
(1989)

year of Atilla’s defeat 953.5 398.42 451

Wilson et al. (1996); less
knowledgeable group

Number of countries in the world 46.25 45.18 196

Wilson et al. (1996); knowl-
edgeable group

Number of countries in the world 185 35.11 196

Table A.5: Estimated beliefs: Anchor type moderates effect of accuracy motivation; Abbrevia-
tions: EG– Epley & Gilovich (2005), TK– Tversky & Kahneman (1974)

Study Quantity Mean SD Correct
EG, Study 1 population of Chicago 5,000,000 2,995,797.04 2,719,000
EG, Study 1 height of tallest redwood tree 200 76.58 379.3
EG, Study 1 length of Mississippi river (in miles) 1875 594.88 2,320
EG, Study 1 height of Mt. Everest (in feet) 15400 4657.90 29,029
EG, Study 1 Washington’s election year 1788 6.77 1789
EG, Study 1 year the 2nd explorer after Columbus

reached the West Indies
1507.75 34.34 1501

EG, Study 1 boiling point on Everest (in F) 150.25 36.82 160
EG, Study 1 freezing point of vodka (in F) -1.25 14.73 -20
EG, Study 2 Washington election year 1788 6.77 1789
EG, Study 2 2nd explorer 1507.75 34.34 1501
EG, Study 2 boiling point on Mt. Everest (in F) 150.25 36.82 160
EG, Study 2 number of US states in 1880 33.5 8.52 38
EG, Study 2 freezing point of vodka (in F) -1.25 14.73 -20
EG, Study 2 population of Chicago 3000000 1257981.51 2,719,000
EG, Study 2 height of tallest redwood tree (in feet) 200 76.58 379.3
EG, Study 2 length of Mississippi river (in miles) 1875 594.88 2320
EG, Study 2 height of Mt. Everest 15400 4657.90 29,029
EG, Study 2 invention of telephone 1870 54.48 1876
EG, Study 2 babies born in US per day 7875 8118.58 3,952,841
TK African countries in UN 22.5 11.12 28
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Table A.6: Estimated beliefs: effects of direction uncertainty

Simmons et al.
(2010), ...

Quantity Mean SD Correct

Study 2 length of Mississippi river (in miles) 1625 752.3 2,320
Study 2 average annual rainfall in Philadelphia

(in inches)
36.5 23.80 41

Study 2 Polk’s election year 1857.5 45.42 1845
Study 2 Maximum speed of a house cat (miles

per hour)
16 9.40 30

Study 2 Avg. annual temperature in Phoenix
(in F)

82.75 13.82 73

Study 2 Population of Chicago 2,700,000 1,560,608 2,719,000
Study 2 Height of Mount Everest (in feet) 23,750 7,519.70 29,032
Study 2 Avg. lifespan of a bullfrog (in years) 5.75 6.68 16
Study 2 Number of countries in the world 216.25 77.21 192
Study 2 Distance between San Francisco and

Kansas city (in miles)
1,425 547.86 1,800

Study 3b Year Seinfeld first aired 1991 2.23 1989
Study 3b Average temperature in Boston in

January
26.5 14.86 36

Study 3b Year JFK began his term as U.S. presi-
dent

1961.25 2.26 1961

Study 3b Avg. temperature in Phoenix in Aug. 96 10.21 105
Study 3b Year Back to the Future appeared in

theaters
1985 1.54 1985

Study 3b Avg. temperature in NY in Sept. 70 10.51 74
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A.4 Mathematical models of anchoring-and-adjustment

We developed six probabilistic models of how people estimate numerical quantities. Each model
consists of two parts: the hypothesized mechanism and an error distribution.

A.4.1 Bayes-optimal estimation

The first model (mBDT) formalizes the hypothesis that people’s estimates are Bayes optimal. Accord-
ing to Bayesian decision theory, the optimal estimate of a quantityX given observation y is

x̂ = argmin
x̂

E[cost(X, x̂) | y]. (A.2)

The error distribution accounts for both errors in reporting the intended estimate as well as trials
in which people do not comply with the task and guess randomly. The model combines these two
types of errors with the Bayes-optimal estimate as follows:

R =

x̂+ ε, x̂ = argminx̂E [cost(x, x̂)|y] , ε ∼ N (0, σε), with prob.1− pcost

R ∼ Uniform(H), with prob. pcost
, (A.3)

whereR denotes people’s responses based on y, pcost is the probability that people guess randomly,
H is their hypothesis space, and ε is people’s error in reporting their intended estimate. This model
has two free parameters: the probability pcost that people guess randomly on a given trial and the
standard deviation of the response error σε. The model’s prior distributions on these parameters are

p(σε) = U([0, max
hi,hj∈H

|hi − hj |]) (A.4)

pcost ∼ Uniform([0, 1]). (A.5)

A.4.2 Posterior probability matching

Posterior probability matching (mPPM ) assumes that people approximate Bayes-optimal estima-
tion by drawing one sample from the posterior distribution P (X|y):

X̂y ∼ P (X|y). (A.6)
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The error model assumes that with probability pcost people guess at random on given trial:

P (R = x) = (1− pcost) · P (X = x|y) + pcost ·
1

|H|
(A.7)

This model has only one free parameter: the error probability pcost. The prior on this parameter is
the standard uniform distribution:

pcost ∼ U([0, 1]). (A.8)

A.4.3 Anchoring-and-Adjustment with a simple stopping rule

The anchoring-and-adjustment model with a simple stopping rule (mAAs) starts from an anchor a
and adjusts the estimate until its plausibility (i.e. posterior probability) reaches a threshold ψ. We
model adjustment as a Markov chain that converges the posterior distribution P (X|y). Conse-
quently, the estimate X̂n becomes a random variable whose distribution changesQ(X̂n) depends
on the number of adjustments n. The initial distribution assigns all of its probability mass to the
anchor a: Q0(x) = δ(x − a). The probability P (X̂n = hl|X̂i−1 = hk) of adjusting esti-
mate X̂n = hk to estimate X̂i+1 = hl is defined as the probability that this adjustment is pro-
posed (P (Xprop

n |X̂n−1)) times the probability that it will be accepted according to the Metropolis-
Hastings algorithm (Hastings, 1970):

P (X̂n = hl|X̂n−1 = hk) = P (X
prop
n = hl|X̂n−1 = hk) ·min

{
1,
p(X = hl|y)
p(X = hk|y

}
(A.9)

P (X
prop
n = hk|X̂n−1 = hl) ∝ Poisson(|k − l|; µprop), (A.10)

where µprop is the expected step-size of a proposed adjustment. If the current estimate’s plausibility
is above the threshold ψ then adjustment terminates. The set of states in which adjustment would
terminate is

S = {h ∈ H : P (X = h|y) > ψ} . (A.11)

If the current estimate is not in this set, then adjustment continues. Consequently, the number of
adjustments is a random variable and we have to sum over its realizations to computed the distribu-
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tion of the estimate X̂ :

QAAs(X̂ = h) =
∑
n

QAAs(X̂n ∈ S ∧ ∀m < n : X̂m /∈ S) ·QAAs(X̂n = h|X̂n ∈ S)

(A.12)

QAAs(X̂n = x) =

|H|∑
k=1

QAAs(X̂n−1 = hk|X̂n−1 /∈ S) · P (X̂n = x|X̂n−1 = hk). (A.13)

As in the posterior probability matching model the response distribution combines takes into
account that people guess randomly on some of the trials:

P (R = x) = (1− pcost) ·QAAs(X̂ = x) + pcost ·
1

|H|
(A.14)

The prior distributions on the models’ free parameters are given below:

p(ψ) = exp(−ψ) (A.15)

p(µprop) = U([ min
hi,hj∈H

|i− j|, max
hi,hj∈H

|i− j|]) (A.16)

pcost ∼ Uniform([0, 1]) (A.17)

A.4.4 Anchoring-and-adjustment with a fixed number of adjustments

The anchoring-and-adjustment model with a fixed number of adjustments (mAA) differs from the
previous model in that adjustment stops after a fixed, but unknown, number of adjustments (N )
regardless of the plausibility of the current estimate:

QAA(X̂) = QAA(X̂n) (A.18)

QAA(X̂0 = x) = δ(x− a) (A.19)

QAA(X̂n = hl|X̂n−1 = hk) = P (X
prop
n = hl|X̂i−1 = hk) ·min

{
1,
P (X = hl|y)
P (X = hk|y)

}
(A.20)

P (X
prop
n = hl|X̂i−1 = hk) ∝ Poisson(|l − k|;µprop) (A.21)
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The error model is the same as before:

P (R = x) = (1− pcost) ·QAA(X̂ = x) + pcost ·
1

|H|
(A.22)

The prior distributions on the model parameters are given below:

P (N) = U({0, 100}) (A.23)

p(µprop) = U([ min
hi,hj∈H

|i− j|, max
hi,hj∈H

|i− j|]) (A.24)

pcost ∼ Uniform([0, 1]) (A.25)

A.4.5 Adaptive Anchoring-and-Adjustment

According to the adaptive anchoring-and-adjustment model (maAA), the mind adapts the expected
step-size of its adjustments µprop and the number of adjustments n. Concretely, the model chooses
the optimal combination (n⋆, µ⋆prop) of adjustments and the step-size such as to minimize the ex-
pected sum of time cost and error cost given given the relative time cost per adjustment γ and the
posterior variance σ:

QaAA(X̂ = x) = QaAA(X̂n⋆ = x) (A.26)

(n⋆, µ⋆prop) = arg min
n,µprop

EP (µ),P (σ)

[
EN (X̃;µ,σ)

[
EQ̃(X̂n;µ,σ)

[
cost(X̃, X̂)

]]]
+ γ · n, (A.27)

where Q̃(X̂n|X̂i−1) is the probability to transition from one estimate to the next, if the posterior
distribution is a normal distribution with mean µ and standard deviation σ:

Q̃(X̂n = hl|X̂i−1 = hk;µ, σ) = P (X
prop
n = hl|X̂i−1 = hk) ·min

{
1,

N (hl;µ, σ)

N (hk;µ, σ)

}
(A.28)

P (µ) = P (X), P (σ) = U
(
σ;min

y

√
Var(X|y),max

y

√
Var(X|y)

)
. (A.29)

The relative iteration cost γ is determined by the time cost ct, the error cost ce, and the time τadjustment

it takes to perform one adjustment

γ =
τadjustment · ct

ce
. (A.30)
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Note that the choice of the number of iterations and the step-size of the proposal distribution is not
informed by the distance from the anchor to the posterior mean since this would presume that the
answer was already known. Instead, the model minimizes the expected value of the cost under the
assumption that the posterior mean will be drawn from the prior distribution. The model also does
not presume the shape of the posterior distribution was known a priori; instead it makes a Gaussian
approximation with matching mean and variance. Given the number of adjustment and the step-
size of the proposal distribution, the adjustment process and response generation work as in the
previous model:

P (R = x|y) = (1− pcost) ·QaAA(X̂n⋆ = x) + pcost ·
1

|H|
(A.31)

QaAA(X̂0 = x) = δ(x− a) (A.32)

QaAA(X̂n = hl|X̂i−1 = hk) = P (X
prop
n = hl|X̂i−1 = hk) ·min

{
1,
P (X = hl|y)
P (X = hk|y)

}
(A.33)

P (X
prop
n = hl|X̂i−1 = hk) ∝ Poisson(|l − k|; µ⋆prop) (A.34)

The prior distributions on the model’s parameters are given below:

p(τadjustment) = Exp(τadjustment;µ = 50ms) (A.35)

p(σε) = U([0, max
hi,hj∈H

|hi − hj |]) (A.36)

pcost ∼ Uniform([0, 1]) (A.37)

A.4.6 Adaptive Anchoring-and-Adjustment with intrinsic error cost

The adaptive anchoring-and-adjustment model with intrinsic error cost (maAAi) extends the adap-
tive modelmaAA by one parameter: a constant cintrinsic that is added to the error cost:

γ =
τadjustment · ct
ce + cintrinsic

(A.38)

The prior over cintrinsic was

p(cintrinsic) = Uniform([0, 100]) (A.39)
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A.4.7 Random Choice

According to the random choice model, people’s responses are independent of the task and uni-
formly distributed over the range of all possible responses:

R ∼ Uniform(H) (A.40)
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B
Utility-Weighted Sampling

B.1 Derivation of the optimal importance distribution for self-normalized
importance sampling

One way to derive the optimal importance distribution q for estimating the expected value of f
with respect to p, that isEp [f(x)], is to minimize the asymptotic variance (Equation 3.7) of the self-
normalized importance sampling estimator (Equation 3.5) subject to the constraints that

∫
q(x) dx =

1 and q(x) > 0 for all x using variational calculus (Gelfand & Fomin, 2000). To solve this con-
strained optimization problem we minimize its Lagrangian

L(q) =
1

s
·
∫
p(x)2

q(x)
· (f(x)− Ep[X])2 dx− λ ·

∫
q(x) dx, (B.1)

where λ is the Lagrange multiplier. To minimize the LagrangianL(q)we compute its functional
derivative

δ

δq
L(q) =

1

s

p(x)2

q(x)2
· (f(x)− Ep[X])2 − λ, (B.2)
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and set it to zero. Solving that equation for q yields

q(x) =
1

λ · s
· p(x) · |f(x)− Ep[X]|. (B.3)

Therefore, the optimal importance distribution for self-normalized importance sampling is propor-
tional to p(x) · |f(x)− Ep[X]|.

B.2 Worked Example of UWS applied to binary decisions from description

Here we provide a worked example of how UWS makes the decision whether or not to accept a
gamble. We consider the choice between a gamble with a 90% chance of losing $1 (o1 = −1) and a
10% chance of winning $99 (o2 = 99) versus $1 for sure. Thus, the largest and the smallest possible
outcome are omax = 99 and omin = −1. For the sake of illustration, let’s assume that the utility
function is like the one defined in Equation 3.16, but deterministic:

u(o) =
o

omax − omin
. (B.4)

Hence, the utility of the sure gain is u(1) = 0.01, the probability of the gamble’s likely loss is
u(−1) = −0.01 and utility of the gamble’s unlikely gain is u(99) = 0.99.

If the gamble is chosen, then its first outcome o1 = −1 has a differential utility of∆U(o1) =

u(−1) − u(1) = −0.02whereas its second outcome has a large positive differential utility of
∆U(o2) = u(99) − u(1) = 0.98. Given these differential utilities, we can now compute the
distribution the decision-maker should sample from to decide whether or not to take the sure gain
by applying Equation 3.20:

q̃(∆U = −0.02) ∝ p(o1) · |∆u(o1)|= 0.9 · 0.02 = 0.018 (B.5)

q̃(∆U = +0.98) ∝ p(o2) · |∆u(o2)|= 0.1 · 0.98 = 0.098. (B.6)

To normalize this probability distribution we divide each value by their sum. This yields

q̃(o1) =
p(o1) · |∆u(o1)|

p(o1) · |∆u(o1)|+p(o2) · |∆u(o2)|
= 0.1552 ≈ 0.16 (B.7)

q̃(o2) =
p(o2) · |∆u(o2)|

p(o1) · |∆u(o1)|+p(o2) · |∆u(o2)|
= 0.8448 ≈ 0.84. (B.8)
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Table B.1: UWS applied to the decision between a gamble with a 90% chance of losing $1 and a
10% chance of winning $99 versus a sure gain of $1.

Simulated
Outcomes

Utilities Count Decision Frequency

(o1, o1) (−0.02,−0.02) −2 decline gamble 0.1552 · 0.1552 = 2.41%
(o1, o2) (−0.02,+0.98) 0 accept with prob. 0.5 0.1552 · 0.8448 = 13.11%
(o2, o1) (+0.98,−0.02) 0 accept with prob. 0.5 0.8448 · 0.1552 = 13.11%
(o2, o2) (+0.98,+0.98) +2 accept gamble 0.8448 · 0.8448 = 71.37%
P (choose gamble) 84.48%

This means that UWS would simulate the possibility of losing out on the $99 prize more than 80%

of the time even though its probability is only 10%. If the decision-maker generates two samples,
then there are four possible simulations results: (o1, o1), (o1, o2), (o2, o1), (o2, o2). After the out-
comes have been simulated, the UWS heuristic for binary decisions from description determines
their utilities and tallies how often the utility is positive minus how often it is negative. If the re-
sulting count is positive, then UWS accepts the gamble. If the count is negative, then it declines the
gamble, and if the count is zero, then UWS has no preference and chooses at random. All possible
outcomes of this process and their respective probabilities are summarized in Table B.1. Summing
up the probability of the simulations that lead UWS to accept the gamble reveals that it predicts that
about 84.48% of people who are offered the gamble should accept it. This illustrates that UWS can
identify the correct decision with high probability using only two simulations.

B.3 Detailed explanation of how UWS explains the fourfold pattern of risk
preferences

In this appendix we explain how UWS chooses between a two-outcome gamble and its expected
value and show how this gives rise to the fourfold-pattern of risk preferences. These decisions can be
formalized as the choice between a p · 100% chance of winning $x and winning nothing otherwise
versus the gamble’s expected value p · x dollars for sure. As a first step towards explaining UWS we
assume that each outcome’s utility was equal to its monetary value, that is u(x) = x.* In this case,
the differential utility of choosing a gamble that yields xwith probability p over its expected value

*We will soon return to the stochastic, normalized utility function we used for the simulations reported
in Chapter 3.
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p · x is

∆U =

x− p · x with probability p

−p · x with probability 1− p
. (B.9)

Thus, the utility-weighted sampling distribution q̃ becomes

q̃(x− p · x) ∝ p · |x− p · x|=p · (1− p) · |x| (B.10)

q̃(0− p · x) ∝ (1− p) · |−p · x|=(1− p) · p · |x|. (B.11)

Note that the two terms are equal. Therefore, if we normalize the distribution we find that

q̃(x− p · x) = q̃(0− p · x) = 0.5. (B.12)

As our first concrete example, let’s consider the choice between a 1% chance of winning $100
versus $1 for sure. In this case, the differential utility of winning is $99 and the differential utility
of losing is−$1. Hence, the differential utility of winning the gamble is 99 times as extreme as the
differential utility of losing the gamble. Thus, we would intuitively expect UWS to over-simulate
winning relative to losing. This is indeed the case since UWS will simulate winning and losing as if
they were equally probable (Equation B.12). In this example UWS over-simulates winning because
the differential utility of winning ($99 dollars) is more extreme than the disutility of losing (−$1).
As our second concrete example, let’s consider the choice between a 99% chance of winning $100
versus $99 for sure. Now the differential utility of winning is $1whereas the differential utility of
losing is minus $99. The sampling distribution is still 50/50. Thus, now UWS over-simulates losing
the gamble because the differential utility of losing is 99 times as extreme as the utility of winning.
This illustrates that UWS always over-simulates the event whose differential utility is most extreme.

Next, let’s work through how the simulations are translated into decisions. For simplicity, let’s
assume that the decision-maker generates only two samples. In our examples there are two possible
outcomes of each of the two simulations. So there are four possibilities in total. Intuitively, these
possibilities correspond to (lose, lose), (lose, win), (win, lose), and (win, win). In the first case, the
decision-maker would decline the gamble and choose the sure outcome instead. In the second and
the third case the decision-maker would not have a systematic preference and their decision would
be determined by noise. In the fourth case, that is (win,win), the decision-maker would choose the
gamble. Critically, these four simulation results occur with different probabilities. These probabili-
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ties depend on the simulation distribution q̃, which in turn depends on the probability p of winning
the gamble. Concretely, the probability that UWS will choose the gamble over the sure payoff is
the probability of sampling (win,win) plus one half of the probability of sampling (win,lose) or
(lose,win).

Table B.2 summarizes the probabilities of the four possible outcomes and the resulting choice fre-
quencies for the general case and the two examples. As this table shows, the probabilities of the four
scenarios add up such that the probability of choosing the gamble based on two simulations is equal
to the probability to simulate winning the gamble. Consequently, when offered the choice between
a 1% chance of winning $100 versus $1 for sure, UWS is risk neutral because it chooses the gam-
ble 50% of the time. When offered the choice between a 99% chance of winning $100 versus $99
for sure, UWS is also risk neutral and chooses the gamble only 50% of the time. However, when
the utility function is non-linear or noisy then the resulting judgments appear to be risk-seeking or
risk-averse depending on the problem posed to the decision-maker.

To illustrate this, let’s see what happens when we take into account that the brain’s representation
of value is noisy so that u(x) = x

xmax−xmin
+εwhere ε ∼ N (0, 0.17). The utility affects two stages

of the decision-process: It biases the probability distribution according to which different outcomes
will be simulated (q̃) and it is used to judge the value of the simulated outcomes. Since the utility
is noisy, both stages are subject to noise. In this example the noise has no systematic effect on the
simulation frequencies becauseE[q̃(u(x)−u(p ·x))] = q̃(x− p ·x) andE[q̃(u(0)−u(p ·x))] =
q̃(−p · x). However, the noise in the utility function does systematically bias how the simulated
outcomes are translated into a decision. The reason is that the noise ε is more likely to flip the sign
of values that are close to zero than the sign of values that are far from zero.

Concretely, for p = 0.01, the differential payoff of winning is $99whereas the differential payoff
for losing is only−$1. The utility function u divides these differential payoffs by the range of pos-
sible payoffs (xmax − xmin = 100). This transforms these two differential payoffs into+0.99 and
−0.01 respectively. Next, the noise ε is sampled from a normal distribution with mean zero and
standard deviation σ = 0.17. Thus, for each simulation of losing there is a roughly 48% chance
that the sign of its differential utility will be flipped from negative to positive, but the probability
that the sign will flip for a simulated win is less than 2 in one billion. This means that if losing is sim-
ulated k times, then the probability that the sign will be flipped for at least one of those simulations
is 1− (1− 0.48)k.

From the Technion data set we estimated that the number of samples is s = 10. Winning and los-
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ing are simulated with equal probability. So a typical value for k would be 5, and when 5 losses are
simulated then there is a 96% chance that the sign flips for at least one of them. When this happens
in the example where the person simulated 5 wins and 5 losses, then there will be more simulations
in favor of the gamble than against it. So the UWS heuristic for binary decisions from description
will choose the gamble. This induces risk seeking in the domain of gains when p < .5.

By contrast, when the probability of winning is 99% the differential payoff for winning (i.e. $1)
is closer to zero than the differential payoff for losing (i.e. −$99). Therefore, now the noise has
exactly the opposite effect, and this induces risk-aversion. Thus, like people, UWS is risk-seeking
for improbable gains but risk averse for probable gains. These effects become less extreme as the
probability of winning approaches 50% but they do persist. For instance, for the choice between
a 30% chance of winning $100 versus $30 for sure, the normalized differential payoff for losing is
−0.3, which is still less than two standard deviations of the noise. Consequently, there is an almost
4% chance that its sign will be flipped for a single simulation of losing. This probability is small but
its cumulative effect is non-negligible: it entails that when 5 losses are simulated then there is an 18%

chance that the sign will be flipped for at least one of them, and this could be enough to make the
decision-maker prefer the risky gamble.

Next, let’s see how UWS makes decisions in the domain of losses. Let’s start by considering the
choice between the 1% risk to lose $100 and losing $1 for sure. In this case, the differential utilities
for choosing the gamble are−$99when the loss occurs versus $ + 1when the loss does not occur.
The corresponding normalized differential payoffs are+0.01 and−0.99. Thus, it is very likely that
the addition of noise will flip the sign of the positive outcome into a minus but very unlikely that it
would flip the sign of the negative outcome. Therefore, the noise tilts the balance towards negative
outcomes and thereby induces risk aversion. Conversely, if we were choosing between a 99% risk
of loosing $100 and a sure loss of $99, then the normalized differential payoffs would be−0.01

for the big loss and 0.99 for its absence. Hence, the noise would be very likely to flip the sign of
the negative outcome into a plus, but it would almost never flip the sign of the positive outcome.
This tilts the balance towards positive outcomes, and thereby induces risk-seeking. Thus, as for
people, the risk preferences of UWS flip when the outcomes are framed in terms of losses instead of
gains. These examples illustrate that UWS correctly predicts the fourfold pattern of risk preferences.
Note that while the noise in the utility function is necessary to get these effects, none of them would
occur if the outcomes were simulated according to their actual frequencies. Therefore, the over-
simulation of extreme outcomes plays an important role in utility weighted sampling’s explanation
of the fourfold pattern of risk preferences.
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Table B.2: Two worked examples of UWS applied to the choice between a gamble ($x with prob-
ability p) versus its expected value (p · x dollars for sure) for a linear utility function without noise.
These predictions change significantly when UWS takes into account that outcome valuation is
noisy, as discussed in the text.

Samples Decision Frequency Freq. if p = 0.01 Freq. if p = 0.99
(win,win) gamble q̃(x− p · x)2 0.5 · 0.5 = 0.25 0.5 · 0.5 = 0.25
(lose, lose) sure option q̃(0− p · x)2 0.5 · 0.5 = 0.25 0.5 · 0.5 = 0.25
(win, lose) choose randomly q̃(x− p · x) · q̃(−p · x) 0.5 · 0.5 = 0.25 0.5 · 0.5 = 0.25
(lose,win) choose randomly q̃(−p · x) · q̃(x− p · x) 0.5 · 0.5 = 0.25 0.5 · 0.5 = 0.25
P (choose gamble) : q̃(x− p · x) 0.5 0.5

Furthermore, our model makes the counterintuitive prediction that for choices between a gamble
and its expected value the inconsistencies in people’s risk preferences increase with the number of
simulations. Thus, although increased stakes seem to increase the number of simulations, our model
predicts that this will exacerbate people’s inconsistent risk preferences rather than ameliorate them.
Therefore, in this particular case incentives should increase ‘irrationality’ instead of reducing it. This
is very counterintuitive because it means that people should become more irrational the more they
think, and the way to make them more rational would be to encourage them to think less. Testing
this prediction is an interesting direction for future research.

B.4 Deal or No Deal: Overweighting of extreme events in real-life high-stakes
economic decisions

In Chapter 3, we found that people overweight extreme outcomes in judgment tasks and hypotheti-
cal and low-stakes decisions in the laboratory. Is this cognitive bias restricted to artificial laboratory
tasks or does it also pervade the high-stakes economic decisions we make in real life? To answer this
question, we analyze the high-stakes decisions of contestants in a popular TV game show called
“Deal or No Deal” (Post et al., 2008).

In this gameshow, the contestant is presented with up to 26 briefcases that contain prizes be-
tween $0.01 and up to $5, 000, 000. Knowing which prizes are available but not knowing which
briefcase contains which prize, the contestant chooses one of the briefcases. In the first round, six
of the remaining briefcases are opened and their contents are revealed. This narrows down the prize
that might be in the contestant’s briefcase to the 20 remaining prizes. Next, the contestant receives
a call from a banker offering to buy the contestant’s briefcase for a certain amount of money. If
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the contestant accepts the offer (“Deal”) the game is over and they receive the banker’s offer. If the
participant rejects the offer (“No Deal”), then the second round begins. In the second round, five
additional briefcases are opened and the participant receives a new offer that reflects the change
in the expected value of their chosen briefcase brought about by the new information. Whenever
the contestant rejects the offer the game proceeds to the next round and the process repeats. In the
subsequent four rounds the number of briefcases opened is four, three, two, and one respectively.
From there onward one briefcase will be opened on all subsequent rounds. The contestant’s chosen
briefcase will be opened last, and when it is opened then the participant receives the prize contained
therein and the game ends.

Post et al. (2008) extracted the round-by-round options and decisions of 151 contestants from the
Netherlands, Germany, and the United States who were on the show between 2002 and 2007. Here,
we reanalyze their data set to determine whether contestants overweighted extremely high prizes,
such as $5, 000, 000, and extremely low prizes, such as $0.01, as predicted by utility-weighted sam-
pling. To answer this question, we performed a formal model comparison between models that do
versus models that do not overweight extreme outcomes. The results by Post et al. (2008) indicated
that contestants evaluated prizes relative to a reference point that is adjusted gradually. They for-
malized this insight in a model called dynamic prospect theory (DPT). We therefore compared two
dynamic reference point models with versus without utility-weighted sampling. In addition, we
considered three models without dynamic reference points: a simple baseline model, a basic utility-
weighted sampling model, and a basic representative sampling model. All of these models assume
that contestants choose between the banker’s offer or and their unknown prize X̃ based on which
prizes x(r) = {x(r)1 , x

(r)
1 , · · ·}were still available in round r.

B.4.1 Models

The baseline model (mRandom) has one free parameter paccept. It accepts the bank’s offer or with
probability paccept and rejects it with probability 1− paccept, that is

P (A = 1|or, x(r),mRandom, paccept) = paccept. (B.13)
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The static representative sampling model (mRS) accepts the offer or with probability

P (A = 1|or, x(r),mRS) = Φ

E
[
∆Û(or, x

(r))
]

σ∆Û(or,x(r))

 , (B.14)

whereE
[
∆Û(or, x

(r))
]
is the expected value of the decision-maker’s estimate of the difference

between the utility of the offer and the utility of the unknown prize, that is

E
[
∆Û(or, x

(r))
]
=

1

#x(r)
·

∑
x
(r)
i ∈x(r)

(
u(o)− u(x

(r)
i )

)
, (B.15)

where#x(r) denotes the number of elements in the set x(r). σ∆Û(or,x(r)) is the standard deviation
of this estimate, that is

σ∆Û(or,x(r)) =

√√√√ 1

#x(r)
·

∑
x
(r)
i ∈x(r)

(u(o)− u(xk))2. (B.16)

As above, we assume that the utility-function normalizes each payoff by the range of possible out-
comes according to efficient coding (Summerfield & Tsetsos, 2015):

u(o) =
o

max{x(r)1 , · · · , x(r)k } −min{x(r)1 , · · · , x(r)k }
+ ε; ε ∼ N (0, σε). (B.17)

The static utility-weighted sampling model (mUWS) is an analytic likelihood model that approx-
imates the utility-weighted sampling model for decisions from description. It captures the central
assumption that people approximate the expected utility difference in a stochastic fashion that over-
weights extreme outcomes:

∆ÛUWS(or, x
(r)) =

∑
x
(r)
i ∈x(r)

wi ·
(
u(o)− u(x

(r)
i )

)
, (B.18)

where the weightwi of the ith potential value of the contestant’s prize is defined by

wi ∝ P
(
X̃ = x

(r)
i

)
·
∣∣∣u(ot)− u(x

(r)
i )

∣∣∣γ . (B.19)

This formulation reflects that UWS over-simulates extreme outcomes and only partially corrects for
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it. How strongly UWS corrects for the bias of the sampling distribution depends on the number
of samples and is captured by the parameter γ. As before, the utility function u(o) normalizes out-
comes by the range of the outcomes and adds normally distributed noise (Equation 3.16 in Chapter
3). In order to obtain an analytic expression for the likelihood function we approximate the distribu-
tion of∆ÛUWS(or, x

(r)) by a Gaussian with meanE
[
∆ÛUWS(or, x

(r))
]
and variance

σ2
∆ÛUWS(or,x(r))

=
1

s
· E

[(
∆ÛUWS(or, x

(r))− E
[
∆ÛUWS(or, x

(r))
])2

]
, (B.20)

where s is a free parameter that approximately corresponds to the number of samples. Therefore,
the likelihood function is given by

P (A = 1 | ot, x(r),mUWS) = Φ

E
[
∆ÛUWS(or, x

(r))
]

σ∆ÛUWS(or,x(r))

 . (B.21)

The dynamic prospect theory model by Post et al. (2008) extends the utility-function of prospect
theory, that is

uRP(o) =

(o− RP)α, if o ≥ RP

−λ · (RP − o)α, else
, (B.22)

by a dynamic model of its reference point (RP). According to this model, people gradually adjust
their reference point RP to reflect the expected value of the possible payoffs in the current round,
that is x̄(r) = 1

#x(r) ·
∑

x
(r)
i ∈x(r) xi. Because the adjustment is gradual, the reference point in round

r is still influenced by the expected outcomes of earlier rounds:

RP = B(x(r)) · (θ1 + θ2 · d(t−2)
t + θ3 · d(0)t ), (B.23)

where d(k)i is the relative difference between the average payoff in round i and the average payoff in
round k, i.e. d(k)i = x̄(i)−x̄(k)

x̄(k) . Furthermore, the reference point is thresholded from below by the
smallest possible payoff in the current round, and from above by the largest possible payoff in the
current round. According to this model, the probability that the contestant will accept the deal is

P (A = 1|or, x(r), x(r−1), x(0),mDPT) = Φ

uRP(or)− E
[
uRP(X̃) | X̃ ∈ x(r)

]
σ ·

√
Var

[
uRP(X̃) | X̃ ∈ x(r)

]
 , (B.24)

412



where σ is a free parameter that determines the choice variability.

The hybrid modelmUWS+DPT extends utility-weighted sampling by the utility function with a
dynamic reference point postulated by dynamic prospect theory. This model is a conceptual ana-
logue of the utility-weighted learning model for decisions from description: The utility-weighted
learning model gradually adjusts its estimate of the reward expectancy ū(t) (Equation 3.36 of Chap-
ter 3) which could be interpreted as the reference point of a utility function ũ(o) = r(o) − ū(t).
In utility-weighted learning, it is the absolute value of ũwith its dynamic reference ū(t) that deter-
mines the probability weighting according to q̃(o) = p(o) · |ũ(o)| just like in the hybrid model. The
hybrid model’s decision variable is

∆ÛUWS+DPT(or, x
(r)) =

∑
x
(r)
i ∈x(r)

wi ·
(
uRP(o)− uRP

(
x
(r)
i

))
, (B.25)

where the weightwi of the ith possible prize is defined by

wi ∝ P (X̃ = x
(r)
i ) ·

∣∣∣uRP(or)− uRP(x
(r)
i )

∣∣∣γ . (B.26)

The model’s choice probability is thus given by

P (A = 1 | or, x(r), x(r−1), x(0),mUWS+DPT) = Φ

E
[
∆ÛUWS+DPT(or, x

(r))
]

σUWS+DPT

 , (B.27)

where σUWS+DPT = 1
s ·

√
Var

[
∆ÛUWS+DPT(or, x(r))

]
.

B.4.2 Priors distributions on parameters of the models of the Deal No Deal
dataset

For parameters that occurred in multiple models, the prior was always the same across all models.

For the random choice model the prior on the choice probability was the standard uniform distri-
bution over the interval [0, 1]:

p(paccept) =

1, if 0 ≤ paccept ≤ 1,

0, else
. (B.28)
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For the representative sampling model the prior on the noise parameter σε of the stochastic util-
ity function was a standard uniform distribution over the range [0, 1] because 0 corresponds to no
noise whereas 1would entails that the magnitude of the noise is as high as the highest possible ex-
pected utility gain. The prior on the number of samples swas a uniform distribution over the range
[1, 1000] because the minimum number of samples is 1 and 1000would be more than sufficient to
estimate the expected utility gain accurate.

For the basic utility-weighted sampling model the prior on the utility-weighting parameter γ was
a standard uniform distribution over the range [0, 1] because 0 corresponds to no bias and 1 corre-
spond to drawing only a single sample. The priors on the variability parameter σ and the number of
samples swere the same as for the representative sampling model.

For the dynamic prospect theory models, the prior distribution on the exponent α of the utility
was the uniform distribution over this parameters admissible range [0, 1], because the utility func-
tion is concave if and only if 0 ≤ α < 1 and linear for α = 1. The prior distribution on the
slope in the domain of losses λwas defined to be uniform distribution over the range [0, 5] because
it cannot be negative and the estimates obtained by Nilsson, Rieskamp, and Wagenmakers (2011)
suggested that it is always smaller than five. The prior on the weights θ = (θ1, θ2, θ3) determining
the updates of the reference point was a multivariate standard normal distribution:

p(θ) = N

θ;µ =

0

0

0

 ,Σ =

1 0 0

0 1 0

0 0 1


 . (B.29)

The prior on the noise parameter σ was an exponential distribution with mean 1 to express that the
expected variability is the variance that is multiplied by σ and that less noise is more likely than more
noise:

p(σ) = exp (−σ). (B.30)

For the combined model integrating UWS with dynamic prospect theory the priors on its param-
eters were the same as those reported above: The priors on the parameters of the utility function
(α, λ, θ) were the same as for the DPT model and the priors on the utility weighting parameter (γ)
and the choice variability parameter σ were the same as those in the basic UWS model.
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B.4.3 Results

We estimated the model parameters from all choices of the 151 contestants from the Netherlands,
Germany, and the US using the maximum-a-posteriori method with the priors specified in Ap-
pendix D. To find these estimates we used a global optimization algorithm known as infinite-metric
Gaussian process optimization (Kawaguchi et al., 2015). For all models this optimization algorithm
was run for 1000 iterations. We then use the global maximum found by this derivative-free algo-
rithm as the starting point for the gradient-based quasi-Newton algorithm (fminunc in Matlab
2015b) which was run until convergence. To find out which of these five models best explains peo-
ple’s choices in this high-stakes game show, we performed Bayesian model selection (Kass & Raftery,
1995) with a uniform prior over the five models. This method measures the goodness of each model
by the marginal likelihood of the data given that model, which integrates over all possible settings of
the model’s parameters. The marginal likelihood thereby penalizes each model’s fit by a complexity
penalty that accurately reflects the model’s flexibility and not just its number of parameters. Here,
we estimate the marginal likelihood of each model using the Laplace approximation (Tierney &
Kadane, 1986). Bayesian model selection then compares pairs of models by computing their Bayes
factor (BF), which is the ratio of their posterior probabilities given the data.

Figure B.1 shows the results of the model comparison. Consistent with the results of Post et
al. (2008) we found that models with a dynamic reference point explained the contestants’ deci-
sions better than models with a fixed utility function. Most importantly, utility-weighted sam-
pling performed better than unweighted decision mechanisms for either type of utility function:
For models with the static, normalized stochastic utility function (Equation 3.16 of Chapter 3),
we found that our basic utility-weighted sampling model explained the contestants’ choices sub-
stantially better than random choice (BFUWS, random = 3.7 · 1050) or representative sampling
(BFUWS, RS = 2.3 · 1018). Among the models with dynamic utility functions, utility-weighted
sampling with a dynamic reference point explained the contestants’ choices substantially better than
the unweighted decision mechanism of dynamic prospect theory (BFDPT+UWS, DPT = 1.1 · 107).
In both cases, the data provided decisive evidence for utility-weighted sampling, because the Bayes
factors are larger than 100 (Kass & Raftery, 1995). Furthermore, the models with the dynamic utility
function captured the data significantly better than their counterparts with the static utility func-
tion (BFDPT+UWS, UWS = 1.4 · 1016, BFDPT, RS = 5.6 · 1030). Post et al. (2008) used a different
task analysis according to which contestants choose between the current offer and anticipated next
offer. To evaluate this alternative perspective, we adapted all models to their alternative task analysis
and recomputed the model evidence scores. Quantitative model comparisons provided very strong
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Figure B.1: Model comparison for “Deal No Deal” data set. Better models have a higher log-
model evidence.

evidence for our task analysis over the one by Post et al. (2008).

Our analyses support the hybrid model (mUWS+DPT) that combines utility-weighted sampling
with a utility function with a gradually adjusting reference point. For this model, the estimated
utility-weighting coefficient γ̂ was significantly larger than zero (γ̂ = 0.5721, 95% CI: [0.5668; 0.5774]).
This is consistent with the hypothesis that contestants performed utility-weighted sampling with an
intermediate number of samples. Furthermore, fixing the probability-weighting parameter to 0,
which yields the DPT model, led to a significantly worse fit that is not offset by the corresponding
gain in parsimony. The estimated value of the number of samples was s ≈ 1

σ2 = 11.88 suggesting
that contestants simulated their potential prize about 12 times on average. Note that in UWS some
of these imagined outcomes would have been identical so that the number of considered prizes can
be smaller. Note also, that s only approximately corresponds to the number of samples, because the
number of samples is also reflected by the value of γ. The maximum-a-posteriori estimates for the
remaining parameters were α̂ = 0.6721, λ̂ = 1.1346, and θ̂ = (1.0049,−0.0070,−0.0313).
For these parameter values, the hybrid model correctly predicts 87.1% of the contestants choices,
meaning that 87.1% of the time the predicted probability of the contestant’s choice was greater than
0.5.
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B.4.4 Discussion

In conclusion, we found that people overweight extreme potential outcomes not only in hypothet-
ical and low-stakes laboratory tasks but also in high-stakes real-life decisions whose outcomes do
count. This finding is consistent with utility-weighted sampling. In fact utility-weighted sampling
predicts that the overweighting of extreme outcomes is larger for high-stakes decisions than for low-
stakes decisions, because their highest possible outcomes are more extreme. However, we cannot
conclude that the contestants’ choices were resource-rational because the normative status of the
dynamic reference point of the winning model’s utility function is unclear. On the one hand, the ref-
erence point can be seen as an estimate of the expected utility gainE[∆U ]. Therefore, the difference
between what would otherwise be the outcome’s utility and the reference point can be interpreted as
an approximation to the term u(o)− Ep[∆U ] used in optimal importance sampling (Equation 3.10
in Chapter 3). Hence, the model’s use of the absolute value of the reference-point-dependent utility
to weight the probabilities of the corresponding outcomes can be interpreted as an approximation
to optimal importance sampling (Equation 3.10 in Chapter 3). Since the reference point is an esti-
mate of the expected utility gain, it is rational to update it when additional outcomes are observed.
The update equation for the dynamic reference point emphasizes recent outcomes. This is consis-
tent with estimating the expected utility gain of decisions in dynamic environments like Deal No
Deal where the expected utility gain of future decisions changes every time an outcome is observed.
Therefore, the winning model could be a rational extension of UWS to dynamic decision environ-
ments. However, this rational interpretation has to be taken with a grain of salt, because the update
rule for the dynamic reference point was not derived from first principles, and the normative status
of other aspects of the utility function is also unclear. Deriving a fully-principled form of UWS for
dynamic environments and testing it against the models examined here is a possible direction for
future work.

Interestingly, the estimated number of samples (s) was substantially higher for the high-stakes
decisions inDeal or No Deal than for the low-stakes decisions in the Technion choice prediction
competition. This finding is consistent with the hypothesis that people make rational use of their
finite time and limited computational resources: Raising the stakes increases the expected gain in
reward for performing an additional simulation but its time cost remains the same. Once the ex-
pected gain in reward exceeds the time cost, it becomes resource-rational to perform an additional
simulation.
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B.5 Payoff-variability effects in decisions with very many possible outcomes

The decisions from experience simulated above were very simple in that each option had only two
possible outcomes, but in the real world a choice can have very many outcomes. To investigate
whether utility-weighted sampling can capture these more complex decisions from experience, we
simulated Experiment 1 by Barron and Erev (2003) where outcomes were sampled from normal
distributions with different means and variances. Participants were instructed to maximize their
earnings by repeatedly choosing between two buttons but received no further information about
the task other than that the experiment would last for about 30minutes. After each decision an
outcome was sampled from the chosen option’s payoff distribution and shown to the participant.
There were three groups who made 200 choices each: In the first condition the outcome of the first
option was sampled from a normal distribution with mean 25 and standard deviation 17.7, and
the outcomes of the second option were sampled from a normal distribution with mean 100 and
standard deviation 354. The second condition was like the first, except that both means were shifted
upwards by 1000. The third condition was like the second one except that the standard deviation
of the second option was reduced to 17.7. Barron and Erev (2003) found that the high variability of
the payoffs in the first and second condition interfered with people’s ability to discover that the first
option was better than the second option. This is known as the payoff-variability effect.

We simulated the experiment with the parameters estimated from the experiment by Madan et
al. (2014). The largest and the smallest possible outcome (ocmax and ocmax in Equation 3.16 of Chap-
ter 3) were initialized by±10 and continuously updated to always equal the largest and smallest
outcome observed so far respectively. We conducted 1000 simulations for each of the 3 conditions.
Figure B.2 shows the average frequency with which our model choose the option with the higher
expected value as a function of time in the experiment. To evaluate the effect of learning we com-
pared the average choice frequencies between the first 5 trials and the last 100 trials. We found that
the model captures the outcome variability effect (see Figure B.2): When the payoff variability of the
better option was large compared to the expected values and their difference (Condition 1), then par-
ticipants came to avoid the better option as their choice frequency dropped from 51.3% to 43.3%
(χ2(1) = 123.17, p < 10−15). When the means were increased to be substantially higher than
the payoff variability (Condition 2), then the frequency of the maximizing choice increased slightly
to 49.37% (χ2(1) = 740.4, p < 10−15) but remained below chance level (p < .0001), and their
choice frequency did not change significantly over time (χ2(1) = 3.07, p = 0.08). But when
the payoff variability was reduced (Condition 3), then people learned to choose the better option:
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Figure B.2: Simulation of Experiment 1 by Barron and Erev (2003) according to the utility-
weighted learning model. Each line represents the frequency of choosing the first option in each
of the 20 blocks averaged across 1000 simulations. The error bars indicated standard errors of the
mean.

the predicted frequency of choosing the better option rose significantly from 51.5% in the first five
trials to 60.8% in the last 100 trials (χ2(1) = 174.5, p < 10−15) and surpassed the chance level
(p < 10−15). Thus, our utility-weighted learning model correctly predicted the detrimental effects
of payoff variability on decisions from experience.

This illustrates that utility-weighted sampling can capture people’s ability to make decisions with
(infinitely) many possible outcomes as well as people’s biases in the face of high payoff variability.
According to utility-weighted sampling, people’s apparently irrational aversion to choices with supe-
rior expected value but higher payoff variability in decisions from experience arises because people
overweight the salient memories of large losses.
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B.6 Comparison of the risk preferences of UWL to people’s risk preferences
in the Technion choice prediction tournament

We found that the average risky-choice frequency of the UWL model was 41.6 ± 2.0%whereas the
average risky-choice frequency of people was 38.1 ± 2.2%. This shared overall preference for the
safe option suggests that utility-weighted learning captures that people underweight rare gains in
classic decisions-from-experience paradigms. However, according to a paired t-test, the predictions
of UWL were significantly less risk averse than people (−3.5 ± 1.4%,t(59) = 2.59, p = 0.01).
This apparent bias towards risk seeking does, at least in part, result from a regression towards the
“mean” frequency of 50%. Consistent with this interpretation, UWS was less risk averse than peo-
ple primarily when they chose the risky option less than half of the time (36.47% vs. 31.05%;
t(46) = 3.68, p < .0006), but when they chose it more than 50% of the time, then UWL was
less risk-seeking than people (60.14% vs. 63.58%†). For this particular data set, regression to the
mean increased the overall frequency of choosing the risky option because people were risk averse in
47 of the 60 problems, and chose the risky option only 38% of the time on average.

To understand why the UWL model’s risk preferences were less extreme than human risk pref-
erences, we inspected the decision problems on which UWL was much more risk-seeking than peo-
ple. We found that the two problems where the bias was largest were the only problems in which
the risky option was dominated by the safe option. In these problems the outcome of the safe op-
tion was slightly higher than the best possible outcome of the risky option that occurred with a
frequency of 97%. Here, people chose the dominated risky option only about 15% of the time,
whereas UWL chose it 40% of the time. The choice frequency of UWL was closer to 50% because
the difference between the safe outcome and the high outcome of the risky option was small relative
to the noise of its utility function.

Examining these results, it seems that people can exploit obvious dominance better than UWL.
For instance, when people recognize dominance they can switch to a different decision strategy
(Lieder & Griffiths, 2015, 2017). People’s advantage on problems with obvious dominance con-
tributed to the apparent bias of UWL, because the safe option dominated the risky option twice
as often as vice versa. When the three problems with dominance were excluded, the bias decreased
to 2.9% but remained statistically significant (t(56) = −2.29, p = 0.0257). We therefore also
inspected the problem where UWL had the third largest bias towards risk seeking. In this problem

†This difference was not statistically significant (t(12) = −1.37, p = 0.20), but the test was highly un-
derpowered because people were risk-seeking for only 13 of the 60 problems.
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the probability of the high payoff was very low (phigh = 0.06), and the low payoff (olow) differed
from the sure payoff (osure) by less than 2% of its value (−20.5 vs. −20.3). For this problem many
participants may thus never have sampled the high payoff. This would again create the dominance
scenario in which the noisy utility function of UWL induces more random choices, and hence more
risk-seeking, than the heuristic that people appear to use for problems with dominance. When we
additionally removed the six problems where the safe option was very likely to slightly dominate the
risky option according to the sampled outcomes (phigh < 0.1 and 0 < osure−olow

max{|osure|,|ohigh|}
< 0.025),

then the average difference in the frequency of risk-seeking dropped to 1.5% and was no longer
statistically significant (t(49) = −1.0, p = 0.32).

Taking these results into account, it appears that the risk-seeking bias we observed in the predic-
tions of the UWL model may arise from situations where the safe option dominates the risky one ac-
cording to their observed outcomes. On those trials UWL does not capture people’s choices frequen-
cies. One possible reason for this is that the model’s assumptions about the normalized, stochastic
utility function are invalid when the difference between the observed outcomes is very small rela-
tive to the range of possible outcomes. Another possible reason is that people switch to a specialized
heuristic when they encounter dominance. Investigating these possibilities is an interesting direction
for future research.

B.7 UWS captures that people’s performance approaches optimality as the
options become more different

Resource-rationality predicts that as the stakes increase people should become increasingly more
accurate. Consistent with this prediction, Jarvstad, Hahn, Rushton, and Warren (2013) found that
as the difference between two gambles’ expected values increases people’s decision quality increases
gradually. To test whether UWS can capture this effect, we simulated the decisions from description
experiment from Jarvstad et al. (2013) according to our binary choice model with the parameters
estimated from the Technion tournament for decisions from description. As shown in Figure B.3,
our model captures that people err primarily when the options’ expected values are very close but
come to choose the optimal action almost 100% of the time as the difference in expected value in-
creases (Jarvstad et al., 2013). These findings suggest that the biases and suboptimalities that classic
laboratory experiments have demonstrated for choices between options with very similar expected
values are not representative of decision-making in the real world where the (relative and absolute)
difference in the options’ expected values tends to be larger. Instead, the fact that the difference in
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Figure B.3: UWS captures that people reach (near) optimal performance as the difference be-
tween the options’ expected values increases. The human data was taken from Jarvstad, et al.
(2013). Error bars enclose 95% confidence intervals.

expected value has to be small to elicit biases and sub-optimalities in people is consistent with the ra-
tional use of limited cognitive resources. Indeed, it is resource-rational to save time and mental effort
when the return for investing additional cognitive resources is less than their cost.

B.8 Comparison to previous theories of memory, judgment, and decision-making

Comparison to previous theories of memory and frequency judgment Anderson’s
rational analysis of memory demonstrated that the availability of a memory rationally reflects how
likely it is going to be needed according to its frequency and recency of occurrence (Anderson, 1990,
1991). Here, we have demonstrated another rational aspect of availability: eventualities that are more
important for making a decision are more available in memory than their equally probable coun-
terparts. We have shown that the rational availability of extreme events can account for the mem-
ory biases observed by Madan et al. (2014). Our model of frequency judgments is consistent with
the availability-by-recall model (Hertwig et al., 2005; Pachur et al., 2012) of the availability heuristic
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(Tversky & Kahneman, 1973), but it goes one step further by predicting how many instances of each
event people will recall from memory and how this number depends on the event’s frequency and
extremity. This allowed our model to correctly predict that people overestimate the frequency of ex-
treme events regardless of whether they are rare as in Experiment 1 or frequent as in the Experiment
by Madan et al. (2014). Our theory thereby reconciles seemingly irrational availability biases with
Anderson’s rational analysis of memory, and our results resolved the open question whether biases
in frequency estimation are due to availability or regression to the mean (Hertwig et al., 2005) in
favor of a rational version of availability.

Comparison to previous theories of decisions from experience Which events are
retrieved from memory is critical to people’s decisions from experience. Several models of experi-
ence based choice assume that memory recall rationally reflects past experience (Lejarraga et al., 2012;
N. Stewart et al., 2006) and this is also true of the exploratory sampler with recency that won the
Technion choice prediction competition (Erev et al., 2010). Concretely, instance-based learning the-
ory (C. Gonzalez & Dutt, 2011; C. Gonzalez, Lerch, & Lebiere, 2003; Lejarraga et al., 2012) assumes
that previous instances of similar past decisions are recalled with a probability that reflects their fre-
quency and recency according to Anderson’s rational analysis of memory (Anderson, 1990, 1991).
Our analysis suggests that these models’ assumption of rational memory recall implies that events
with extreme utilities should be recalled more frequently than would be warranted by how often
they have been encountered in the past, whereas equally frequent events with unremarkable utilities
should be recalled less often. Other models of decisions from experience emphasize that people’s
memory is fallible (Hawkins, Camilleri, Heathcote, Newell, & Brown, 2014; Marchiori, Di Guida, &
Erev, 2015). The Technion choice prediction tournament also included reinforcement learning mod-
els and an ACT-R model of instance-based learning, and Plonsky et al. (2015) have proposed a new
model according to which people’s decision mechanisms are tuned to dynamic environments. Yet,
as far as we know, no previous model of decisions from experience captures the over-weighting of
events with extreme utilities. We now compare our utility-weighted learning model to each of these
theories in turn

Decision-by-sampling assumes that outcomes are sampled from memory in a manner that reflects
the structure of the environment but is also subject to availability biases (N. Stewart et al., 2006).
This view is consistent with our model but decision-by-sampling does not explain why some past ex-
periences are more available than others. The explorative sampler with recency (Erev et al., 2010; pp.
29-31) stochastically chooses to explore or to exploit. When it explores, it chooses at random. When
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it exploits, it estimates each option’s value and chooses the option with the highest value estimate.
To estimate an alternative’s value the sampler retrieves a randomly generated number of past experi-
ences with that alternative from memory. The retrieved experiences always include the most recent
outcome and all earlier experiences are retrieved with equal probability. The retrieved outcomes are
regressed towards the mean outcome and passed through a concave utility function. In the Tech-
nion choice prediction competition, the performance of the exploratory sampler with recency was
not significantly higher, and its lower mean-squared deviation might reflect that it captures that
people face an exploration-exploitation dilemma and assume that the environment is changing. In-
corporating this idea into the UWL model might lead to even better predictions.

The exemplar-confusion model by Hawkins et al. (2014) assumes that people store a new mem-
ory trace every time they experience an outcome. Every time a new memory trace is added to the
store of the chosen lottery, every stored memory trace has a small probability that its outcome will
be confused. It this happens, then that memory’s outcome will be replaced by a value that is sampled
uniformly at random from the set of values that have been observed for that lottery so far regard-
less of how often each value has been observed. This model predicts both choices and probability
judgments by assuming that people average over all of their memory traces. When evaluated on
the Technion choice prediction tournament for repeated decisions from experience, the exemplar-
confusion model’s risk preferences agreed with people’s risk preferences slightly less often than the
risk preferences of our utility-weighted learning model (83.3% vs. 90% agreement). While the ex-
emplar confusion model focuses on errors during encoding, the noisy retrieval models focus on
errors during retrieval (Marchiori et al., 2015). Concretely, noisy retrieval models assume that people
retrieve only a very small number of experienced outcomes and erroneously recall outcomes of un-
related decisions and use them as if they pertained to the current choice. These models reconcile the
under-weighting of rare events in repeated decisions from experience with their being over-weighted
in one-shot decisions under risk, and the overestimation of their probabilities. However, none of
these models captures the effect of extremity on memory recall, frequency judgments, and choice.
Furthermore, in contrast to these theories, UWS is based on a rational model of memory.

The basic reinforcement learning model from the Technion choice prediction tournament (Erev
et al., 2010) probabilistically chooses the option with the higher recency-weighted average payoff,
and the normalized reinforcement learning model normalizes the options’ weighted average val-
ues by the variability of their payoffs. The value assessment model by Barron and Erev (2003) and
the model by Shteingart, Neiman, and Loewenstein (2013) are similar to the basic reinforcement
learning model. The main difference in the model by Shteingart et al. (2013) is that it gives special
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weight to the first outcome of each action, and the model by Barron and Erev (2003) includes a
separate exploration mechanism and a utility function that captures loss aversion. These models
differ from UWL in that they do not simulate potential outcomes and do not overweight extreme
outcomes relative to moderate outcomes. As reported above, our model achieved a significantly
lower mean-squared deviation than the basic reinforcement learning model. While the normalized
reinforcement learning model was about as accurate as our UWL model by assuming that payoff
variability has a deterring effect, our model provides a mechanistic explanation for why this was the
case for many problems in the choice prediction competition. As reported above, the instance-based
learning model by Lejarraga et al. (2012) predicted decisions in the Technion choice prediction tour-
nament significantly better than our UWL model. This might be because it incorporates additional
psychological insights such as people’s optimism in the face of uncertainty and the implicit assump-
tion that the environment is changing. Incorporating these assumptions into the UWL model or
incorporating the heightened availability of extreme events into the instance-based learning model
might lead to even better predictions. The ACT-R model of instance-based learning (T. C. Stewart
et al., 2009) was very similar to the model by Lejarraga et al. (2012). The main difference was that the
ACT-R model learned separately about the contexts established by the history of previous choices
and outcomes. Concretely, the model by T. C. Stewart et al. (2009) recalls only those previous out-
comes that followed the sequence of choices and outcomes observed in the preceding k trials. Like,
the ACT-R model of instance-based learning, the contingent average and trend (CAT) model by
Plonsky et al. (2015) postulates that people assume that the same choice will lead to different out-
comes depending on the outcomes that preceded it. Concretely, this model assumes that people
learn a separate reward expectation for every possible sequence of the k preceding outcomes. In ad-
dition, the model probabilistically responds to trends: If the last three outcomes suggest an increase
or decrease in an action’s average payoff, then the CAT model estimates the expected value of that
action by its most recent payoff with some probability. This model captures people’s sensitivity to
patterns, the underweighting of rare events, and the non-monotonic effect of recency on the weight
of previous outcomes (Plonsky et al., 2015). The CAT model is complementary to UWS in the sense
that it describes how people learn when they assume that the environment is dynamic whereas UWL
describes how people learn when they assume that the environment is static. The two theories could
be combined into an integrated model of utility-weighted learning in dynamic environments. Over-
all, comparing UWL to models of decisions from experience highlights that extending our model to
dynamic environments is an important direction for future work.

425



Comparison to previous theories of decisions from description Most descriptive
theories of decisions from description modify expected utility theory in order to account for some
of the ways in which people deviate from its predictions (Starmer, 2000). Some of these theories
postulate that people’s choices optimize not only the expected utility of their payoffs but also ad-
ditional experiential qualities like regret (Loomes & Sugden, 1982) or disappointment (Bell, 1985;
Loomes & Sugden, 1984, 1986), or assume that people have additional preferences about the vari-
ance (Allais, 1979) and skewness (Hagen, 1979) of a prospect’s outcome distribution. Other theories
maintain that people maximize their subjective expected utility with respected to weighted proba-
bilities (Edwards, 1962; R. Gonzalez & Wu, 1999; Quiggin, 1982). By contrast to all of these theories,
utility-weighted sampling is derived from the assumption that people are striving to maximize the
expected utility of their outcomes but are constrained by their finite time and limited cognitive re-
sources. Hence, unlike these earlier theories, UWS does not propose that people behave as if they
were optimizing a certain preference function. Instead, UWS is a procedural theory. Like prospect
theory (Kahneman & Tversky, 1979), cumulative prospect theory (Tversky & Kahneman, 1992), dy-
namic prospect theory (Post et al., 2008), rational inattention theory (C. A. Sims, 2003), and salience
theory (Bordalo et al., 2012), it is informed by people’s limited cognitive resources, but it goes be-
yond these theories by providing a decision strategy that is optimal given the constraints imposed
by those limited resources under certain assumptions. There is a profound structural similarity be-
tween the application of UWS to binary decisions from description and salience theory that causes
both theories to always agree on which option should be chosen most frequently (Woodford, 2017).
However, the stochastic component of UWS allows it to additionally explain the effect of choice
difficulty on how often the better option is chosen. Most importantly, salience theory is a theory of
decisions from description only‡ whereas UWS also applies to memory recall, judgment, and deci-
sions from experience. While rational inattention (C. A. Sims, 2003) prescribes how much time and
attention a decision-maker should allocate to each of their choices, but it does not specify how that
decision should be made. Utility-weighted sampling complements rational inattention by specifying
a decision strategy that makes the best possible use of the limited amount of attention that has been
allocated to a choice. Conversely, rational inattention complements UWS by specifying how many
samples it should generate.

What sets UWS apart from all of theories mentioned above, is that it provides a process model.

‡While Bordalo, Gennaioli, and Shleifer (2017) developed a model that combines salience theory with
memory retrieval, salience plays no role in the assumed memory mechanism. Rather than explaining memory
biases, their model uses a standard memory mechanism to explain where the reference point of the utility
function that drives salience comes from.
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Process models of decisions from description that are similar to UWS include the priority heuristic
(Brandstätter et al., 2006), decision-by-sampling (N. Stewart et al., 2006), the exemplar-confusion
model (D. Lin, Donkin, & Newell, 2015), query theory (Johnson et al., 2007; Weber et al., 2007), se-
lective integration (Tsetsos et al., 2016), drift-diffusion models of value-based choice (Krajbich, Armel,
& Rangel, 2010; Krajbich & Rangel, 2011; Shadlen & Shohamy, 2016), and the associative accumula-
tion model (Bhatia, 2013). We now discuss the similarities and differences between these models and
UWS.

The priority heuristic (Brandstätter et al., 2006) is a fast-and-frugal heuristic for binary decisions
from description. It sequentially compares the two alternatives on a list of criteria and stops after
comparing the options on the first criterion on which they are sufficiently different. In the domain
of gains, the priority heuristic first considers the minimum gain. If that does not lead to a decision,
then it considers the probability of the minimum gain, and the remaining criteria are the maximum
gain and its probability. UWS is similar to the priority heuristic in that it prioritizes important infor-
mation. On the other hand, the two theories are very different in that UWS uses the probabilities to
simulate outcomes whereas the priority heuristic treats the probabilities as just another attribute.
Furthermore, the prioritization of UWS is stochastic allowing it to predict choice probabilities.
While both the priority heuristic and UWS qualitatively capture the violations of expected utility
theory in decisions from description, we found that UWS outperformed the priority heuristic on
the Technion choice prediction tournament. Unlike the priority heuristic, UWS was derived from
first principles and is more widely applicable.

The heuristic we derived by applying utility-weighted sampling to binary choices from descrip-
tion is similar to decision-by-sampling (N. Stewart et al., 2006) in that both mechanisms rely on
drawing samples, comparing them, and counting how often the comparison favored the option
to be evaluated. Although the decision-by-sampling model was originally proposed as a model of
magnitude judgments, it has since been extended to predict choice probabilities (Noguchi & Stew-
art, in press; L. Stewart, Overath, Warren, Foxton, & Griffiths, 2008; N. Stewart, 2009; N. Stewart,
Reimers, & Harris, 2015). Decision by sampling is consistent with the over-weighting of extreme
events predicted by UWS because it assumes that the samples are drawn from memory and thus are
subject to the availability bias in memory retrieval (N. Stewart et al., 2006; Tversky & Kahneman,
1973), but unlike UWS it does not specify why extreme events are more available than mundane
events and how strong their availability should be.

Like UWS, the exemplar confusion model of decisions from description (D. Lin et al., 2015) as-
sumes that people mentally simulate the outcomes of choosing either option. But unlike UWS, it
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simulates outcomes representatively according to their true stated probabilities and for each sim-
ulated outcome there is a small chance that its value will be confused. When a confusion occurs a
value is chosen uniformly at random from the set of possible values and the sampled value replaces
the value of the simulated outcome. This model captures that small probabilities tend to be over-
weighted whereas large probabilities tend to be underweighted in decisions from description. How-
ever, unlike UWS, the exemplar confusion model does not capture that overweighting depends on
extremity.

UWS is similar to query theory (Johnson et al., 2007; Weber et al., 2007) in that both assume
that preferences are constructed by the sequential consideration of a limited number of aspects or
possible outcomes. Both accounts agree that cognitive constraints lead decision-makers to give more
weight to the desiderata that are processed first. The main advance of UWS is to provide a rational
process model of the order and frequency with which potential outcomes are queried and how the
considered outcomes are translated into a decision. The similarity between UWS and query theory
suggests that the process tracing methods that provided support for query theory could also be used
to test UWS.

The strengths of UWS are complementary to early drift-diffusion models of value-based choice
(Krajbich et al., 2010; Krajbich & Rangel, 2011). Both models sequentially accumulate evidence. But
while the focus of UWS is on which outcomes should be generated to generate the most informative
evidence, the focus of drift-diffusion models is on when the process of evidence generation should
be terminated. Furthermore, while most applications of the drift-diffusion model focus on evidence
that is generated by the environment, UWS focuses on evidence that is internally generated by mem-
ory recall or mental simulation. Recent work has applied to the drift-diffusion model to decisions
from memory (Shadlen & Shohamy, 2016) to capture the relationship between response times and
choice frequency. Our model is complementary in that it offers a quantitative account of which po-
tential outcomes are sampled from memory. Combining UWS with the drift-diffusion model is one
of the directions for future research we will discuss below.

Utility-weighted sampling is similar to selective integration (Tsetsos et al., 2016) in that both pro-
vide a rational explanation for violations of expected utility theory. However, the mechanism of
utility-weighted sampling is different: In binary choice, utility-weighted sampling overweights at-
tributes on which the alternatives differ by a large amount relative to attributes on which their val-
ues are similar. By contrast, selective integration always underweights the weaker attribute value by
the same factor regardless of how much larger the stronger attribute value is. Furthermore, while the
normative explanation of selective integration emphasizes noise in the decision stage, the normative
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justification of utility-weighted sampling is that most real-life decisions have to be made from a small
subset of the available information because time is valuable. Our article complements the normative
explanation of intransitivity by Tsetsos et al. (2016) by explaining a different set of cognitive biases
that might result from a different mechanism.

Utility-weighted sampling is also related to the associative accumulation model by Bhatia (2013)
according to which an attribute of a choice alternative will be sampled more frequently if its value is
high. This is similar to our model except that in our model the sampling frequency would increases
with the extremity of the attribute value’s utility instead of its value per se. Utility-weighted sam-
pling provides a strong rational explanation for the importance of extremity whereas the alternative
assumption of the associative accumulation model appears to be less principled.

A critical feature of UWS is that it overweights the probability of extreme events. While prospect
theory (Kahneman & Tversky, 1979) assumed that the overweighting of outcomes depends only on
their probability, utility-weighted sampling predicted that overweighting is driven by the outcome’s
utility, and the results reported here support this assumption very strongly. Rank-dependent ex-
pected utility theories (Quiggin, 1982) like cumulative prospect theory (Tversky & Kahneman, 1992)
accommodate the effect of utility on probability weighting by applying the weighting function to
the cumulative outcome distribution (P (O ≤ o)). This captures that the probabilities of the worst
and the best outcomes tend to be overweighted. Utility-weighted sampling adds to cumulative
prospect theory by identifying cognitive mechanisms that might give rise to this effect. Furthermore,
while Kahneman and Tversky (1979) assumed that the overweighting of outcome probabilities in
decision-making was independent of the overestimation of event frequencies they attributed to the
availability heuristic, we have argued that both originate from the same utility-weighted sampling
mechanism.

In addition, utility weighted sampling predicts the distribution of people’s choices whereas cu-
mulative prospect theory was created to predict their modal response. This difference allowed
utility-weighted sampling to capture people’s choice frequencies in the Technion choice predic-
tion competition more accurately than cumulative prospect theory. Our model performed on par
with a stochastic extension of cumulative prospect theory that predicts choice distributions (Erev et
al., 2010) and other probabilistic extensions of cumulative prospect theory (Rieskamp, 2008; Stott,
2006) might perform similarly. Furthermore, in cumulative prospect theory overweighting only
depends on the rank of the outcome’s utility. Thus, if the largest outcome is very close to all other
outcomes, then it should be overweighted just as much as when it is orders of magnitudes larger
than all other outcomes. By contrast, according to utility-weighted sampling, the largest outcome
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should be overweighted more heavily in the latter case than in the former.

Previous descriptive theories of choice, including disappointment theory (Bell, 1985; Loomes &
Sugden, 1984, 1986), regret theory (Loomes & Sugden, 1982), and salience theory (Bordalo et al.,
2012) also assert that people overweight extreme events. Our resource-rational analysis provides a
rational justification for this assumption. Despite this commonality, UWS is qualitatively different
from all of these previous theories. While all three previous theories are descriptive theories that
predict what people will choose, utility-weighted sampling and utility-weighted learning are process
models that specify the mechanism of how people decide and how this mechanism changes with
learning. Unlike any of the previous theories, these mechanisms predict that people’s memory recall
and frequency estimates should be biased to overrepresent extreme events and both predictions
were confirmed in the experiments reported above. We now discuss the similarities and differences
between UWS and each of these three theories in turn.

Our UWS models of frequency estimation and decisions from experience bear a surprising simi-
larity to disappointment theory (Bell, 1985; Loomes & Sugden, 1984, 1986) in that the optimal sam-
pling distribution (Equation 3.10 in Chapter 3) is proportional to the absolute value of the disap-
pointment or elation that the decision maker would experience about the outcome, and according
to the UWL model, the absolute value of the disappointment or elation that the decision-maker ex-
periences determines how much the association between an action and its outcome is strengthened.
Likewise, our model of binary choice from description is similar to regret theory and salience the-
ory in that it amplifies the impact of large utility differences. Like regret theory and salience theory,
this model assumes that decision-makers reason about the difference between the outcomes of the
two actions instead of evaluating each action separately. Due to this commonality, our model of
binary decisions from description shares some of the strengths and weaknesses of regret theory. On
the positive side, this assumption allows all three theories to explain the Allais paradox, the fourfold
pattern of risk preferences, and preference reversals. Furthermore, this shared property also predicts
violations of weak stochastic transitivity (Tversky, 1969) for some triplets of gambles. For instance,
with the parameters estimated from the Technion choice prediction tournament our UWS model of
binary choice prefers a 50% chance of $38 to a 35% chance of $58 (p2≻1 = 51.1%), prefers a 70%
chance of $30 over the 50% chance of $38 (p3≻2 = 51.7%), and yet prefers the 35% chance of $58
over the 70% chance of $30 (p1≻3 = 52.1%). On the negative side, this commonality entails that,
unlike disappointment theory, neither UWS nor regret theory can capture the common-ratio effects
in problems that control for regret (Starmer & Sugden, 1989). Nor can UWS capture the specific
intransitivity of people’s preferences demonstrated by Tversky (1969).
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Despite the commonality, the mechanism by which UWS overweights extreme events deviates
from regret theory. Specifically, while regret theory and disappointment theory amplify the subjec-
tive utility of extreme events, UWS postulates that extremity increases the decision-maker’s propen-
sity to consider an outcome and thereby increases its subjective probability without affecting its
utility. This entails a non-linear, non-monotonic interaction between probability and extremity:
For unlikely outcomes the effect of extremity increases with their probability but for likely outcomes
the effect of extremity decreases with their probability because subjective probabilities cannot be
larger than 1. Furthermore, in UWS the overweighting of a large difference also depends on the mag-
nitude of the utility differences between other pairs of outcomes. Depending on the magnitude of
the differences of those other pairs, UWS can underweight the same pair of outcomes in one context
and overweight it in a different context. By contrast, in regret theory, the same difference is always
amplified to the same extent and its weight increases linearly with the event’s probability. These
differences did manifest in our simulations of the common-ratio effects reported by Starmer and
Sugden (1989). Concretely, we found that UWS with the parameters estimated from the Technion
choice prediction tournament for decisions from description failed to predict the common ratio ef-
fects that regret theory did capture (Starmer & Sugden, 1989). Furthermore, disappointment theory
and regret theory make the very intuitive prediction that expectations and counterfactual outcomes
modulate the satisfaction that people experience when they attain a certain outcome. This too, is
not captured by UWS. On the other hand, UWS correctly predicted that extreme events come to
mind first and that people overestimate their frequency. Taken together, these findings suggest that
extremity affects both subjective utilities and subjective probabilities. UWS thus appears to be com-
plementary to disappointment theory and regret theory because it captures different effects and
explains them at a different level of analysis.

Although salience theory and UWS both assume that the subjective probability of extreme events
is inflated, our account offers three advances over salience theory. First, we do not only describe the
effect of utility on probability-weighting, but we also model the cognitive strategy that generates it.
Second, our theory reconciles this seemingly irrational effect with rational information processing.
Concretely, the resource-rational basis of the salience of a utility difference∆U = u(O1)−u(O2) is
the relative frequency with which it should be simulated, i.e. the importance distribution q̃ (∆u) ∝
p (∆u) · |∆u|.§ This provides a resource-rational justification for salience and a mechanistic account
of its effect on decision-making. Third, since our explanation instantiates a more general theoretical
framework – resource-rationality – it can also capture many additional phenomena such as decisions

§This definition satisfies two of Bordalo et al.’s (2012) three axioms of salience.
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from experience, memory biases, and biases in frequency estimation.

B.9 Counterintuitive Model Prediction: Inconsistency increases with men-
tal effort

Concretely, the gap between the UWS heuristic’s risk seeking in choices between a small chance of
winning a lottery versus the lottery’s expected value (e.g., a 1% chance of winning $100 vs. $1 for
sure) and its risk aversion for choices between a small chance of losing a gamble versus losing its ex-
pected value for sure (e.g., a 1% chance of losing $100 vs. losing $1 for sure) widens with the num-
ber of simulated outcomes due to the compounding of random errors in the evaluation of the utility
of the simulated outcomes (see Figure B.4). This entails that, in this very particular situation, manip-
ulations that reduce mental effort, such as time pressure, should make people appear more rational
in these decisions, whereas manipulations that increase mental effort should make them appear less
rational.¶ This counter-intuitive relationship could also be used to test whether people allocate their
cognitive resources rationally: While incentives for high performance should increase measures of
mental effort (Mulder, 1986) on most tasks, people should always exert the minimal amount of cog-
nitive effort on decisions problems where effort fails to improve performance. Regardless of how
much mental effort a person exerts on these tasks they should always be biased at least as much as a
person who simulates the outcome only once.

¶This prediction is very specific to the particular decisions described here, the normalized, stochastic
utility function, and the estimated noise level but not representative of UWS in general.
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Figure B.4: Counterintuitive prediction of UWS: Investing more mental effort can increase the
inconsistency of people’s risk preferences in choices between gambles and their expected values.
Each line shows the frequency with which the UWS heuristic for binary decisions from description
chose the risky option, averaged across 50000 simulations.
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C
Strategy Selection

C.1 Technical Details About the Models

C.1.1 SSL and RELACS

According to the SSL model Rieskamp and Otto (2006) the probability that strategy iwill be cho-
sen (P (St = i)) in trial t is proportional to its reward expectancy qi:

P (St = i) ∝ qt(i),

where qt(k) is the sum of the rewards obtained when strategy k was chosen prior to trial t plus the
initial reward expectancy

q0(k) = rmax · w · bk,

where rmax is the highest possible reward,w is the strength of the initial reward expectancy, and
b1, . . . , bN ∈ [0; 1] are the agent’s initial relative reward expectancies for strategies 1, . . . , N and
sum to one.

The RELACS model Erev and Barron (2005) chooses strategies according to their recency-weighted
average payoffs

434



α · rt + (1− α) · wt(k) if St = k

wt else

P (St = k) ∝ e
λ·wt(k)

vt ,

where the parameters α and λ determine the agent’s learning rate and decision noise respectively,
and Vt is the agent’s current estimate of the payoff variability.

C.1.2 Conjugate update equations for the posterior distribution of a Gaus-
sian likelihood and a Gaussian prior

The prior on the reward rate is a normal distribution and the likelihood of the ratio of observed
total reward over total time is a standard normal distribution, that is

P (r) = N (1, 1),

P

(
rtotal
ttotal

∣∣∣∣ r) = N
(
r,
ttotal
60sec

)
.

Consequently, the posterior distribution of the reward rate is

P (r|rtotal, ttotal) = N (µpost, τpost),

with

τpost = τprior + τlikelihood = 1 +
ttotal
60sec

µpost =
τprior · µprior + τlikelihood ·

rtotal
ttotal

τprior + τlikelihood
=

1 +
rtotal
60sec

1 +
ttotal
60sec

.

C.1.3 Bayesian Regression

For continuous outcomes (i.e., execution time and reward) we performed exact Bayesian inference in
a linear regression model Kunz (2009); Lindley and Smith (1972). For binary outcomes (i.e., correct
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vs. incorrect) we use Bayesian logistic regression with the Laplace approximation Lieder and Grif-
fiths (2015); Lieder, Hsu, and Griffiths (2014). This approach learns a probability distribution over
the amount of time that will pass and the amount of reward that will be obtained.

The Bayesian linear regression Kunz (2009); Lindley and Smith (1972) model for the execution
time T was defined as

P (T |f , s, w(T ), σ2T ) = N (µ =
∑
i

w
(T )
k,s · fi, σ2T ),

P (w(T )
:,s ) = N (µ = 0,Σ = Id),

P (σ2T ) = InvGamma(α0, β0),

whereN stands for the normal distribution, InvGamma stands for the inverse gamma distribu-
tion,w(T )

:,s is the vector of the the weights of all features on the expected execution time of strategy
s, and Id stands for the identity matrix. Given observed rewards r(1,...,t) = (r1, . . . , rt) in tri-
als 1, . . . ,t when the strategy was applied to a problem with features f (1,...,t) = (f (1), . . . , f (t)),
i.e. P (α(s)|r, f (1,...,t)) the model’s prior distributions on the regression coefficient and the variance
were updated to the respective posterior distributions P (α(T )|r(1,...,t), f (1,...,t)) and P (σ2T |r(1,...,t), f (1,...,t)).
Since the priors are conjugate to the likelihood function, the posterior distributions are in the same
family as the prior distributions and their parameters can be computed by the standard update equa-
tions for the normal-normal and normal-gamma models Kunz (2009); Lindley and Smith (1972).
When the reward was continuous, then the same model was used for learning to predict the reward.
But if the reward was binary then we used Bayesian logistic regression with the Laplace approxima-
tion (see Section 4.3).

The model’s priors on the error variance and the precision of the prior on regression coefficients
were set to convey weak domain knowledge. In the sorting simulations, the prior expectation on
the variance of the noise was 10 for the execution time in seconds (α0 = 1, β0 = 10) and 0.1 for
the binary reward (α0 = 10, β0 = 1), and the standard deviation of the prior on the regression
coefficients was 10 for the execution time and 1 for the binary score. These priors reflect that the
execution times in this simulation were one to two orders of magnitude larger than the rewards.

In the simulations of the decision-making experiments by Payne et al. (1988)Payne et al. (1988),
the prior expectation of the variance in the execution time was 1 (α0 = β0 = 1), and the variance of
the prior on the coefficients predicting the execution time was 1 as well. Since the relative reward was
confined to the interval [−1, 1] the prior expectation of its error variance was 0.1 (α0 = 1, β0 =
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0.1); the precision of the prior on the regression coefficients was 1.

The simulations of the Mouselab experiments assumed a time cost of $7/h at a rate of 1 com-
putation/sec. The prior on the reward rate corresponded to 1 minute’s worth of experience in an
environment with a reward rate of $7/h. The prior distributions on the strategies expected rewards
and execution times were a normal distribution with mean zero and precision 0.1. The priors on the
error variances of execution time and expected reward were Gamma(1,1).

In the simulations of the Rieskamp experiments the precision of the Gaussian prior on the coeffi-
cients of the reward model and the execution time model were estimated according to the maximum
likelihood method. The prior on the error variance of the score model was Gamma(1,0.1) and the
prior on the error variance of the execution time was Gamma(1,1).

In the simulations of mental arithmetic, the variance of the prior on the regression coefficients
was 1 for both the execution time model and the model of accuracy, because the score was binary
and single-digit addition takes only a few seconds. The prior on the error variance of the execution
time was Gamma(1,1) because the execution time variability of addition strategies is in the order of
seconds.

C.1.4 Laplace Approximation to Bayesian Logistic Regression

When the reward is binary (e.g., correct versus incorrect) rather than continuous, then linear regres-
sion would be ill-suited to predict it. Hence, in this case our model uses Bayesian logistic regression
to predict that probability that the response will be correct (R = 1). According the Bayesian logistic
regression model, the probability that a strategy s will generate a reward is given by

P (R = 1|s, f , α) = 1

1 + exp(−
∑

k w
(R)
k,s · fk)

,

P (α(s)) = N (¯ = 0,œ = 0.01 · I)

The posterior distribution on the regression coefficientsw(R)
:,s for the expected reward of strategy s

given observed rewards r(1,...,t) = (r1, . . . , rt) in trials 1, . . . ,t when the strategy was applied to
a problem with features f (1,...,t) = (f (1), . . . , f (t)), i.e. P (w(R)

:,s |r, f (1,...,t)), does no longer have
a simply analytic solution. Therefore, we approximate by a normal distribution whose mean is the
mode of the posterior distribution and whose precision matrix is the negative Hessian (which is the
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matrix of second partial derivatives) of the log-posterior at its mode:

P (w(R)
:,s |r(1,...,t), f (1,...,t)) ≈ Q(w(R)

:,s |r(1,...,t), f (1,...,t))

= N (µ = wmax,Σ
−1 = −H(αmax)),

wmax = argmax
α

p(w
(R)
k,s = w|r, f)

Hi,j =
∂2 log p(w

(R)
:,s |r, f)

∂α
(s)
i ∂α

(s)
j

.

This is known as the Laplace approximation. It can be derived as a second-order Taylor series expan-
sion of the log-posterior. The posterior mode was determined by numerical optimization using the
function fminunc from the Matlab 2014b optimization toolbox and the gradients and Hessian were
computed analytically.

C.1.5 Feature Selection by Bayesian Model Selection

To model how people discover which features are relevant for predicting a strategy’s execution time
or reward, our model includes a feature selection mechanism. According to our model, features are
selected by Bayesian model selection Kass and Raftery (1995). Concretely, we consider one model for
each possible subset of the features and determine the model with the highest posterior probability
given the observations. To efficiently compute Bayes factors, we exploit that all models are nested
within the full model that includes all of the features by computing Savage-Dickey ratios Penny and
Ridgway (2013).

C.2 Quantitative comparison of human performance in Experiment 2 against
model prediction

In the pretest, people achieved a reward rate of 62 ± 10.9 points/sec and by the posttest block their
reward rate had increased to 156.8± 22.9 points/sec. By contrast, the model’s reward rate increased
from 12.6 points/sec to 142 points/sec. Perhaps the main reason for these differences is that even
though people did not receive any feedback in the pretest block, they could already avoid effortful
deliberation in favor of skipping decision problems with low expected value about 60.4 ± 5.7% of
the time. By contrast, our model started out deliberating on 62.5% of the problems presented in
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the pretest block. This suggests that people adapt their strategies not only based on the experienced
outcomes of their choices but also based on predicted outcomes. However, once feedback was pre-
sented in the training block our model quickly learned to be as fast and frugal as our participants
and achieved an even higher level of adaptive frugality in the posttest. Furthermore, while the model
predicted a decrease from about 7.7 to about 0 acquisitions, people’s average number of informa-
tion acquisitions decreased from 3.8± 0.8 to 1.6± 0.5 acquisitions per trial. When people engaged
in effortful decision-making they acquired about 8.3 ± 0.57 pieces of information in the pretest
and only 6.4 ± 0.48 pieces of information in the posttest, whereas the predicted number of acquisi-
tions dropped from 13.0 to 5.4. Hence, the changes in people’s strategy choices tended to be more
moderate than predicted.

C.3 Additional Model Comparisons and related analyses

This section reports the additional model comparisons mentioned in the main text in more detail.

Comparing the lesioned metareasoning models against the full metareasoning model on peo-
ple’s strategy choices in the sorting task of Experiment 1 suggested that feature-based learning and
choosing strategies based on their predicted VOC were necessary to capture human performance;
see Supplementary Figure C.1. When the features were removed from the rational metareasoning
model, adaptive strategy selection was abolished: the frequency of adaptive strategy choice dropped
significantly to 4.5%(t(398) = −18.63, p < 10−15). Likewise, the models that chose strate-
gies by a criterion other than the VOC were unable to choose strategies adaptively: When the re-
ward function ignored the cost of time, then the frequency of adaptive strategy selection dropped
to 23.5 ± 3.0%(t(398) = −10.67, p < 10−15). When the reward function was the reward
rate, then the performance dropped to 39.0 ± 3.5%(t(398) = −6.67, p < 10−10). Learning
a model-free approximation to the VOC by estimating reward minus cost directly achieved adap-
tive strategy choice patterns in 68.0 ± 3.3% of the simulations; this frequency was significantly
above chance (p < 10−7) and not significantly lower than the frequency achieved by the full ra-
tional metareasoning model that learns separate models for predicting execution time and reward
(t(398) = −0.54, p = 0.2941). These results suggest that both strategy selection based on the
predicted VOC and feature-based learning are important to capture the adaptiveness of people’s
strategy choices. By contrast, when the exploration component of the model was removed, the fre-
quency of adaptive strategy selection remained at 63.0 ± 3.4%which is significantly above chance
(p < 10−7) and not significantly different from the performance of the RM model with explo-
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ration (t(398) = −1.60, p = 0.0555). This was expected because in the present experiment there
was nothing to be gained from exploration since participants had no choice over their strategy on
the training trials and did not receive any feedback about the performance of the strategies that they
selected in the test trials. Finally, we compared all model’s frequencies of adaptive strategy choice
against chance level with the Bonferroni correction for multiple comparisons. We found that only
the full rational metareasoning model (p < 10−14), the lesioned metareasoning model without
exploration (p < 10−7), and the lesioned metareasoning model that learned to predict reward mi-
nus computational cost (p < 10−11) chose strategies adaptively significantly more often than what
could be expected by chance.

Our simulations of the first experiment by Payne et al. (1988) showed that only the full rational
metareasoning model, the lesioned metareasoning model ignoring the cost of time, and the lesioned
metareasoning model that approximated the VOC through model-free metacognitive RL were able
to capture that people choose fast-and-frugal heuristics more frequently when some outcomes are
much more probable than others (Supplementary Figure C.2, panel A) and when their decision time
is limited (Supplementary Figure C.2, panel B). The feature-based representation and exploration
were necessary to capture people’s adaptive strategy choices in this experiment: When the feature-
based representation was removed the model no longer preferred fast, attribute-based heuristics on
problems with high time pressure versus low time pressure (t(1998) = 0, p = 0.50), and it also
would not choose them more frequently on non-compensatory problems than on compensatory
problems (t(1998) = 0, p = 0.50). When the exploration mechanism was removed, the model
never tried any of the fast, attribute-based heuristics on any type of decision problem. This illus-
trates the importance of exploration for strategy selection learning when the number of strategies is
large. By contrast, two of the models that did not distinguish between reward and computational
cost retained the adaptive strategy choice pattern of the original rational metareasoning model. The
model that ignored time costs learned to choose fast, attribute-based heuristics 40.20%more fre-
quently under time pressure (t(1998) = 14.11, p < 10−15) and 36.98%more frequently when
the dispersion of the outcome probabilities was high (t(1998) = 12.98, p < 10−15); the model
whose reward function was the difference between payoff and opportunity cost chose fast, attribute-
based processing 32.94%more frequently under time pressure (t(1998) = 10.94, p < 10−15) and
43.35%more frequently under high dispersion (t(1998) = 14.39, p < 10−15). By contrast, the
model that learned to predict the reward-rate directly failed to adapt strategy choices to time pres-
sure (t(1998) = 0, p = 0.50) and dispersion (t(1998) = 0, p = 0.50). The reason may be that
the reward rate was determined primarily by the execution time (because the relative reward is con-
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strained to lie between 0 and 1) whereas adaptive strategy selection in this task required optimizing
accuracy.

Comparing the lesioned metareasoning models against the full rational metareasoning model on
Experiment 2 and Experiment 3 suggested that all components of the rational metareasoning model
are necessary to capture people’s capacity to adapt how much they think to the reward structure of
their environment. Supplementary Figure C.3 shows each model’s predictions for the reward rate,
the average number of acquisitions, and the frequency of engagement in Experiment 2. Supple-
mentary Figure C.4 summarizes the equivalent predictions for Experiment 3. Only the full rational
metareasoning model and the lesioned model without features captured the increase in people’s
reward rate and the decrease in the number of acquisitions and the frequency of engagement in Ex-
periment 2. Similarly, only the full rational metareasoning model and the model-free metareasoning
model whose reward function was r=reward-cost were able to capture the increase in people’s re-
ward rate, number of acquisitions, and frequency of engagement in Experiment 3. Hence, only the
full rational metareasoning model can capture human performance in both experiments jointly.

Supplementary Figure C.1 summarizes the BIC values of the model comparison for the first exper-
iment from Rieskamp and Otto (2006). The model comparison provided strong evidence for SSL
and SCADS over the rational metareasoning model and the lesioned metareasoning models. The
BIC of the rational metareasoning model was larger than the BICs of the lesioned metareasoning
models, and the comparisons between the rational metareasoning model and the lesioned metarea-
soning model provided strong evidence for exploration and model-based strategy selection.

Supplementary Figure C.5 shows the performance of each model in the mixed multi-attribute de-
cision environment with 50% compensatory problems and 50% non-compensatory problems. The
rational metareasoning model predicted that the average performance across the 168 trials would be
61.1% for the rational metareasoning model, 57.9% for the lesioned metareasoning model without
exploration, and 62.9% for the lesioned metareasoning model that ignoring time cost. By contrast,
the lesioned metareasoning model without features, and the lesioned metareasoning model that
performed model-free reinforcement learning from the reward rate, as well as the SCADS models,
and the SSL and RELACS models performed at or below chance. This highlights that feature-based
strategy selection learning is critical to capture people’s adaptive flexibility in heterogeneous environ-
ments.

As shown in Supplementary Figure C.3, the learning effects in problem solving reported by
Gunzelmann and Anderson provided strong evidence for the full rational metareasoning model
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(BIC = 213.42) over the lesioned metareasoning model without exploration (BIC ≥ 221.1). Fur-
thermore, there was very strong evidence for the full rational metareasoning model over the lesioned
metareasoning models without features or model-based learning (BIC ≤ 221.1) and all SCADS
models (BIC ≥ 293.2). This suggests that feature-based learning, exploration, and model-based
strategy selection are all necessary to capture people’s capacity to learn how to solve problems.

When simulating children’s strategic development in the domain of mental arithmetic, we found
that exploration and feature-based learning are critical to capture the overlapping waves of different
strategies documented by Svenson et al. (1983)Svenson and Sjöberg (1983): Without exploration the
model does not try out the Short-Cut sum strategy, the Min strategy, or the Retrieval strategy often
enough to learn that they are superior to the Sum strategy (see Supplementary Figure C.6). With-
out features, the model transitions directly from the sum strategy to the Retrieval strategy because it
cannot learn that the Min strategy is more effective than the Retrieval strategy when experience with
the problem is limited and one of the addends is small (see Supplementary Figure C.7). Similarly,
the lesioned metareasoning model that ignores the time cost of strategy execution fails to switch to
the Min strategy, because it is insensitive to the time saved by the Min strategy (see Supplementary
Figure C.8). Interestingly, model-free metacognitive reinforcement learning of the VOC failed to
switch to the Retrieval strategy (see Supplementary Figure C.9). Finally, model-free metacognitive
reinforcement learning based on the reward rate transitioned abruptly to the Min strategy once it
had been discovered and failed to transition to the Retrieval strategy afterwards (see Supplemen-
tary Figure C.10). These findings suggest that maintaining separate representations of execution
time, opportunity cost, and expected reward enables faster learning and adaptation to changes in the
strategies’ performance or the reward rate.
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Figure C.1: Evaluation of the full rational metareasoning model of people’s choice of sorting
strategies in Experiment 1 against sub-models without one of its four components.
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Figure C.2: Simulation of the first experiment from Payne et al. (1988) with lesioned metarea-
soning models and SCADS models. A: Effect of dispersion on the predicted usage frequency of
fast-and-frugal heuristics. B: Effect of time pressure on the predicted usage frequency of fast-and-
frugal heuristics.
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Figure C.3: Model predictions for Experiment 2. Error bars are plus/minus 1 SEM.
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Figure C.4: Predicted reward rates for Experiment 3 Error bars are plus/minus 1 SEM.
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Table C.1: Model Comparison on Experiment 1 from Rieskamp and Otto (2006).

Model BIC Model BIC Model BIC Model BIC

RM 68.9 RM. No cost 94.9 SCADS 1 61.1 SSL 60.6
RM, no
exploration

111.7 RM, r =
reward− cost

75.3 SCADS 2 62.4

RM, no
features

70.5 RM, r =
reward/cost

127.8 SCADS 3 62.0
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Figure C.5: Performance of model-based versus model-free strategy selection learning mechanisms
in a heterogeneous decision environment where 50% of the problems required TTB and 50% re-
quired WADD. The error bars denote 95% confidence intervals.
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Figure C.6: The lesioned metareasoning model without exploration fails to capture children’s
strategic development in mental arithmetic.
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Figure C.7: The lesioned metareasoning model without features fails to capture children’s strate-
gic development in mental arithmetic.
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Figure C.8: The lesioned metareasoning model ignoring the cost of time fails to capture children’s
strategic development.
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Figure C.9: Model-free metacognitive RL of the VOC (r = rewardcost) predicts that the sum-
strategy should fade much earlier than it does in children.
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Figure C.10: Model-free metacognitive RL driven by the reward rate converges on the Min strat-
egy much faster than children and fails to transition to the Retrieval strategy.
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D
Cognitive prostheses for goal achievement

D.1 Supplementary Methods

D.1.1 Optimal Gamification

Pseudo-rewards can be shifted and scaled without changing the optimal policy, because linear trans-
formations of potential-based pseudo-rewards are also potential-based, that is

a · f(s, a, s′) + b = γ · Φ′(s′)− Φ′(s), (D.1)

forΦ′(s) = a · Φ(s)− b

1− γ
. (D.2)

D.1.2 Experiment 1

The complete experiment can be inspected at http://cocosci.dreamhosters.com/mturk/falk/FlightPlanning/.

MDP model of the planning task. The sequential decision-making task of Experiment 1 is
isomorphic to a MDP with six states, two actions, deterministic transitions, and a discount factor of
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Figure D.1: Conditions of Experiment 1. A: Control condition. B: Embedded pseudo-rewards. C:
Separate pseudo-rewards. D: Integrated pseudo-rewards.

γ = 1 − 1/6. The locations correspond to the states of the MDP, the two actions correspond to fly-
ing to the first or the second destination available from the current location, the routes correspond
to state-transitions, and the points participants received for flying those routes are the rewards. The
current state was indicated by the position of the aircraft and was updated according to the flight
chosen by the participant.

Reward transformations. In all three experimental conditions, the pseudo-rewards were
mean-centered by subtracting their average to keep the average reward constant; since mean-centering
is a linear transformation this retained the guarantees of the shaping theorem (see Eq. D.2). The
mean-centered pseudo-rewards were added to the rewards of the control condition (see Figure D.1A)
yielding the modified rewards shown in Figure D.1B-D and Table D.1, and the flight map was up-
dated accordingly.

The value function used to compute the approximate, shaping-based pseudo-rewards was

V̂M (s) = V̂M (s⋆) ·
(
1− distance(s, s⋆)

maxs distance(s, s⋆)

)
, (D.3)

where the goal state s⋆ was Smithsville, V̂M (s⋆) = 140was the highest immediate reward that can
be achieved from there, and distance(a, b) is the minimum number of moves required to get from
state a to state b.

Experiment 1 was approved by the institutional review board of the University of California,
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Berkeley under protocol number 2015-05-7551, study title “Decision Making”, and informed consent
was obtained from all participants.

D.1.3 Experiment 2

The complete Experiment can be inspected at http://cocosci.berkeley.edu/mturk/falk/PNASExp2/
index.html.

Game mechanics. The character played by the participant could rise from Trainee toATP
senior captain via 15 intermediate levels. The number of points required to reach the next level in-
creased according to the difficult curve proposed by Bostan and Öğüt (2009). Whenever the player
reach the next level a congratulatory message was shown. In addition, participants were told how
many stars and dollars were required to reach the next level in the game. To make the levels salient
the pilot’s shoulder badge was shown in the top right corner of the screen, and a feedback message
was shown whenever the character was promoted and earned a badge or was demoted and lost a
badge. The player started the game with+$50 so that their balance would remain positive as they
learned to play the game.

Experiment 2 was approved by the institutional review board of the University of California,
Berkeley under protocol number 2015-05-7551, study title “Decision Making”, and all participants
gave informed consent.

D.1.4 Experiment 3

Pilot study and task selection. To select a suitable set of tasks for Experiment 3 we ran
a pilot study that acquired subjective ratings of 21 candidate tasks. 100 participants recruited on

Condition Smiths- Jones- Williams- Browns- Clarks- Bakers-
No PR 140 30 −30 −70 −30 −70 −30 30 −30 −70 −30 −70
Optimal PR 2 −76 2 −5 −12 2 −4 2 2 0 2 −42
Approx. PR 8 −102 −22 −4 −22 −4 36 38 −34 −16 24 −32
Non-Potential-
Based PR

119 9 −51 −41 −51 −41 −1 9 −51 41 −1 9

Table D.1: Rewards in Experiment 1. The first entry of each cell is the (modified) reward of the
counter-clockwise move and the second one is the (modified) reward of the other move.
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Figure D.2: Conditions of Experiment 2. A: Control condition. B: Embedded pseudo-rewards. C:
Separate pseudo-rewards. D: Integrated pseudo-rewards.

Amazon Mechanical Turk evaluated 5 tasks each and were paid $0.50 in return. For each task, they
estimated the fair price that should be paid for the task on Amazon Mechanical Turk and its dura-
tion. In addition, they rated the task’s difficulty, their willingness to complete it for the price they
had indicated, its enjoyableness compared to a typical MTurk HIT, its relative unpleasantness com-
pared to a typical HIT an MTurk, and how likely they would be to postpone it on nine point Likert
scales with appropriate anchors. We selected the 4 tasks that participants said they would be most
likely to postpone and the task they said they were least likely to postpone. This procedure led to the
selection of the following five writing assignments shown in Table D.2. Each assignment required
that participants write at least 100 words (assignments 1-4) or at least 50 words (assignment 5).

Recruitment. The sign-up form was posted on Monday, April 24 2017 and the deadline was
at midnight on Wednesday of the following week (i.e., May 3rd 2017). The sign-up form can be
inspected at cocosci.berkeley.edu/mturk/falk/ToDoListStudyPart1WritingTasks/. The to-do list
website used in this experiment can be inspected at https://todo-list-study.herokuapp.com/.

Optimal gamification. To compute the optimal incentive for completing each of the tasks
we first modelled the experiment as a Markov decision process with one action for each task and
an additional action for taking a break. The reward function was set up such that each task-action
incurred a cost that reflected the task’s fair wage as determined in the pilot study described above.
Finishing the experiment earns an additional reward of $20. In the MDP model of the experiment,
taking a break earns a reward equivalent to $0.50 but also comes with a 2.5% chance of forgetting
about the tasks. The benefit of finishing the experiment sooner rather than later was captured by a

456

https://todo-list-study.herokuapp.com/


Writing Assignment Fair
Price

Duration propensity
to postpone

Minimum
Length

How has North Korea’s economic
policy changed since the 1950s?
What are the reasons and implica-
tions of these changes?

$3 15min 6.6/9 100words

Please analyze the causes and implica-
tions of the British exit referendum
in June 2016.

$3.25 25min 6.3/9 100words

Describe with examples the impor-
tance of recognizing and responding
to concerns about children and
young people’s development.

$2.25 20min 6.2/9 100words

Write an essay about how society
should assign value to human life.

$3 27.5min 6.1/9 100words

What is your favorite TV show and
why?

$1 7min 2.8/9 50words

Table D.2: Writing assignments and their ratings

discount factor of γ = 0.95.

Methodological details. To tempt participants to procrastinate, the to-do list website dis-
played a series of distracting links to Youtube videos, Reddit articles, news stories, or the game of
Tetris.

In addition to measuring participants’ motivation and subjective reward of completing a task, the
exit survey also recorded age and self-identified gender and inquired if the participant had used any
strategies to stay engaged, and which components of the website they found helpful.

We posted a separate reimbursement HIT for participants who decided to quit the experiment
was posted on the first day of the experiment, and it also included an exit survey.

Experiment 3 was approved by the institutional review board of the University of California,
Berkeley under protocol number 2016-02-8359, study title “To-Do-List Gamification”, and all partic-
ipants gave informed consent.
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Figure D.3: A: Median reaction times in Experiment 1 with 95% confidence intervals.

D.2 Supplementary Results

Experiment 1

Reaction times. A Kruskal-Wallis ANOVA revealed that the type of pseudo-rewards added
to the reward function significantly affected people’s reaction times (H(3) = 29.96, p < 10−5).
Given that the pseudo-reward type had a significant effect, we performed pairwise Wilcoxon rank
sum tests to compare the medians of the four conditions (see Figure D.3). Optimal pseudo-rewards
decreased the median response time from 1.72 to 1.14 sec. per decision (Z = −4.19, p < 0.0001),
and non-potential-based pseudo-rewards decreased it to 1.12 sec. per decision (Z = −3.38, p =

0.0007). People in the condition with approximate potential-based pseudo-rewards took about the
same amount of time as people in the control condition (1.65 sec.;Z = −0.28, p = 0.78).

Effect of pseudo-rewards on choice frequencies. The optimal strategy for this exper-
iment was to take the counter-clockwise moves around the circle in all states exceptWilliamsville
and Brownsville (see Figure D.1A). Importantly, atWilliamsville the optimal policy incurs a large
immediate loss, and no other policy achieves a positive reward rate. The optimal pseudo-rewards
significantly changed the choice frequencies in each of the six states and successfully nudged par-
ticipants to follow the optimal cycle Smithsville→ Jonesville→Williamsville→ Bakersville→
Smithsville (see Figure D.1A). Their strongest effect was to eliminate the problem that most peo-
ple would avoid the large loss associated with the correct move fromWilliamsville to Bakersville
(χ2(2) = 1393.8, p < 10−15). The optimal pseudo-rewards also increased the frequency
of all other correct choices along the optimal cycle, that is the decisions to fly from Bakersville to
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Figure D.4: Choice frequencies in each state of Experiment 1 by condition. Error bars enclose
95% confidence intervals.

Smithsville (χ2(2) = 326.5, p < 10−15), from Smithsville to Jonesville (χ2(2) = 7.9, p = 0.0191),
and from Jonesville toWilliamsville (χ2(2) = 299.8, p < 10−15). In addition, the optimal pseudo-
rewards increased the frequency of the correct move from Clarksville to Bakersville (χ2(2) =

92.0, p < 10−15). The only negative effect of the optimal pseudo-rewards was to slightly increase
the frequency of the suboptimal move from Brownsville to Clarksville (χ2(2) = 13.2, p = 0.0013).
By contrast, the non-potential-based pseudo-rewards misled our participants to follow the unprof-
itable cycle Jonesville→ Clarksville→ Smithsville→ Jonesville by raising the frequency of the reck-
less moves from Jonesville to Clarksville (χ2(2) = 1578.6, p < 10−15) and from Clarksville to
Smithsville (χ2(2) = 813.7, p < 10−15). The effect of the approximate pseudo-rewards was
beneficial in Smithsville,Williamsville, and Bakersville, but negative in Jonesville, Brownsville, and
Clarksville (see Figure D.4). This explains why only potential-based pseudo-rewards had a positive
net-effect on performance (Figure 1B in the Main Text).

Experiment 2

Effect of presentation format on response times and choice frequencies. Partic-
ipants were significantly faster when pseudo-rewards were embedded in the decision environment
than when they were presented separately (Z = −4.06, p < 0.0001) or in the integrated format
(Z = −2.78, p = 0.0053). Figure D.5 shows people’s choice frequencies for each state depend-
ing on the experimental condition. Compared to separately presented pseudo-rewards, embedded
pseudo-rewards were significantly more beneficial in all 6 states (all p ≤ 0.0218) as were integrated
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Figure D.5: Choice frequencies in each state of Experiment 2 by condition. Error bars enclose
95% confidence intervals.

Figure D.6: Median reaction times in Experiment 2 with 95% confidence intervals.

pseudo-rewards (all p ≤ 0.0023) but separately presented pseudo-rewards were never advantageous
to either embedded or integrated pseudo-rewards. Embedded pseudo-rewards were more beneficial
than integrated pseudo-rewards in 2 states (all p ≤ 0.0001); conversely integrated pseudo-rewards
were more beneficial than embedded pseudo-rewards in 1 state (p < 10−9).

Follow-up experiment. The integrated pseudo-rewards differ from the separately presented
pseudo-rewards in two respects: First, they simplify the decision process by allowing people to base
their decision on a single signal. Second, they shift the pseudo-rewards such that the pseudo-reward
for the optimal action is always positive. To tease apart the contributions of these two factors, we
ran a follow-up experiment in which the separately presented pseudo-rewards were shifted such that
the minimum pseudo-reward for an optimal action was the expected return of the optimal policy as
it was for the integrated pseudo-rewards.
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Figure D.7: Performance in Experiment 2b by condition. Error bars enclose 95% confidence inter-
vals.

We recruited 339 participants on Amazon Mechanical Turk. Each participant was randomly
assigned them to one of three conditions: no pseudo-rewards, shifted separately presented pseudo-
rewards, and integrated pseudo-rewards. Condition 1 and 3 were identical to the equivalent condi-
tions in Experiment 2. In the second condition, the optimal pseudo-rewards were shifted such that
the minimum pseudo-reward for taking an optimal action was the expected reward rate of the op-
timal policy, that is 0.9. In all other regards, this follow-up experiment was identical to Experiment
2.

The median completion time was 23.35minutes. We excluded 24 participants who had par-
ticipated in previous flight planning experiments and 15 participants who performed worse or re-
sponded faster than 95% of the participants in their condition. Out of the remaining 290 partic-
ipants 102were in the condition without pseudo-rewards, 91were in the condition with shifted
separately presented pseudo-rewards, and 97were in the condition with integrated pseudo-rewards.

We found that the shifted separately presented pseudo-rewards were significantly less effective
than the integrated pseudo-rewards (Z = −2.38, p = 0.0172) and did not significantly improve
people’s performance relative to the control condition (Z = 0.17, p = 0.8617; median loss: $11 vs.
$11 in the control condition; see Figures D.7-D.8). By contrast, participants in the condition with
integrated pseudo-rewards performed significantly better than participants in the condition without
pseudo-rewards (Z = 2.46, p = 0.0140; median loss: $0 vs. $14.50). Therefore, the primary
benefit of the integrated pseudo-rewards appears to be that they simplify the decision process by
offloading the computation of adding rewards and pseudo-rewards from the participants.
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Figure D.8: Choice frequencies in Experiment 2b by condition. Error bars enclose 95% confidence
intervals.

Experiment 3

Of the 40 participants who did not complete all tasks (33.9%), only 1 filled out the exit survey. We
therefore cannot evaluate the effect of the pseudo-rewards on motivation and perceived reward per
se. However, we can analyze its effect on participants who completed all tasks. The following analy-
ses are therefore restricted to this biased subset of participants. Due to this selection bias the results
have to be interpreted with caution. For the participants who completed all tasks neither motivation
(χ2(1) = 0.04, p = 0.84) nor experienced reward (χ2(1) = 0.14, p = 0.71) were significantly
affected by optimal gamification. Among these participants, optimal gamification also did not affect
how long it took them to complete the tasks (χ2(1) = 0.07, p = 0.79) or the number of times they
aborted a task (F (76) = 0.27, p = 0.61). While optimal gamification slightly increased the num-
ber of words written per assignment from 155 to 175, this difference was not statistically significant
(F (1, 81) = 1.33, p = 0.25). Optimal gamification also had no statistically significant effect on the
total length of the breaks that these participants took between tasks (F (1) = 0.42, p = 0.52) or the
number of times that they played Tetris (F (1, 76) = 0.16, p = 0.69). Optimal gamification also
did not affect how long it took them to submit their first assignment (χ2(1) = 3.26, p = 0.07),
when they started working on it (χ2(1) = 2.35, p = 0.13), or the delay until the first time they
opened an assignment (χ2(1) = 2.18, p = 0.14).

These negative results suggest that the main effect of optimal gamification was to increase the
probability that participants would start working on one of the assignments.
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