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Abstract
Beyond bounded rationality: Reverse-engineering and enhancing human intelligence
by Falk Lieder
Doctor of Philosophy in Neuroscience
University of California, Berkeley

Professor Thomas L. Griffiths, Chair

Bad decisions can have devastating consequences, and there is a vast body of literature suggest-
ing that human judgment and decision-making are riddled with numerous systematic violations
of the rules of logic, probability theory, and expected utility theory. The discovery of these cogni-
tive biases in the 1970s challenged the concept of Homo sapiens as the rational animal and has pro-
foundly shaken the foundations of economics and rational models in the cognitive, neural, and so-
cial sciences. Four decades later, these disciplines still lack a rigorous theoretical foundation that can
account for people’s cognitive biases. Furthermore, designing effective interventions to remedy cog-
nitive biases and improve human judgment and decision-making is still an art rather than a science. I
address these two fundamental problems in the first and the second part of my thesis respectively.

To develop a theoretical framework that can account for cognitive biases, I start from the assump-
tion that human cognition is fundamentally constrained by limited time and the human brain’s
finite computational resources. Based on this assumption, I redefine human rationality as reasoning
and deciding according to cognitive strategies that make the best possible use of the mind’s limited
resources. I draw on the bounded optimality framework developed in the artificial intelligence liter-
ature to translate this definition into a mathematically precise theory of bounded rationality called
resource-rationality and a new paradigm for cognitive modeling called resonrce-rational analysis. Ap-
plying this methodology allowed me to derive resource-rational models of judgment and decision-
making that accurately capture a wide range of cognitive biases, including the anchoring bias and
the numerous availability biases in memory recall, judgment, and decision-making. By showing that
these phenomena and the heuristics that generate them are consistent with the rational use of lim-
ited resources, my analysis provides a rational reinterpretation of cognitive biases that were once
interpreted as hallmarks of human irrationality. This suggests that it is time to revisit the debate
about human rationality with the more realistic normative standard of resource-rationality. To en-
able a systematic assessment of the extent to which human cognition is resource-rational, I present
an automatic method for deriving resource-rational heuristics from a mathematical specification of
their function and the mind’s computational constraints. Applying this method to multi-alternative
risky-choice led to the discovery of a previously unknown heuristic that people appear to use very



frequently. Evaluating human decision-making against resource-rational heuristics suggested that,
on average, human decision-making is at most 88% as resource-rational as it could be.

Since people are equipped with multiple heuristics, a complete normative theory of bounded
rationality also has to answer the question of when each of these heuristics should be used. I address
this question with a rational theory of strategy selection. According to this theory, people gradually
learn to select the heuristic with the best possible speed-accuracy trade-off by building a predictive
model of its performance. Experiments testing this model confirmed that people gradually learn to
make increasingly more rational use of their finite time and bounded cognitive resources through a
metacognitive reinforcement learning mechanism.

Overall, these findings suggest that—contrary to the bleak picture painted by previous research on
heuristics and biases—human cognition is not fundamentally irrational, and can be understood as
making rational use of bounded cognitive resources. By reconciling rationality with cognitive biases
and bounded resources, this line of research addresses fundamental problems of previous rational
modeling frameworks, such as expected utility theory, logic, and probability theory. Resource-
rationality might thus come to replace classical notions of rationality as a theoretical foundation
for modeling human judgment and decision-making in economics, psychology, neuroscience, and
other cognitive and social sciences.

In the second part of my dissertation, I apply the principle of resource-rationality to develop tools
and interventions for improving the human mind. Early interventions educated people about cog-
nitive biases and taught them the normative principles of logic, probability theory, and expected
utility theory. The practical benefits of such interventions are limited because the computational
demands of applying them to the complex problems people face in everyday life far exceed individ-
uals’ cognitive capacities. Instead, the principle of resource-rationality suggests that people should
rely on simple, computationally efficient heuristics that are well adapted to the structure of their en-
vironments. Building on this idea, I leverage the automatic strategy discovery method and insights
into metacognitive learning from the first part of my dissertation to develop intelligent systems that
teach people resource-rational cognitive strategies. I illustrate this approach by developing and evalu-
ating a cognitive tutor that trains people to plan resource-rationally. My results show that practicing
with the cognitive tutor improves people’s planning strategies significantly more than does practic-
ing without feedback. Follow-up experiments demonstrate that this training effect transfers to more
difficult planning problems in novel and more complex environments, and that this transfer effect
is retained over time. This indicates that discovering and teaching resource-rational heuristics may
be a promising approach to improving human judgment and decision-making. While this approach
adapts people’s heuristics to the structure of their environment, the theory of resource-rationality
suggests that human decision-making can also be improved by adapting the structure of the envi-
ronment to the heuristics people already use. I illustrate this approach by developing a cognitive
prosthesis for goal achievement that helps people overcome procrastination, spring into action, and
achieve their goals on time.



By virtue of integrating rational principles with cognitive constraints, resource-rationality pro-
vides a realistic normative standard for human reasoning and decision-making. My findings about
human rationality and metacognitive learning are consistent with the view that evolution and learn-
ing adapt the mind to the structure of its environment and the constraints imposed by its limited
resources. These adaptive mechanisms appear to optimize for resource-rationality, and the benefits
of training with the cognitive tutor demonstrate that this adaptation can be accelerated with the
help of artificial intelligence. This makes resource-rationality a promising theoretical framework for
modeling and improving human cognition.
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General Introduction

The decisions we make determine our personal and collective destiny. Technological, scientific, so-
cial, and cultural advances have given us tremendous power over our lives, the lives of others, and
the future of humanity. The power of our choices comes with the responsibility to choose wisely.
Yet making good decisions is much easier said than done. We have all witnessed regrettable decisions,

unwarranted conclusions, and questionable arguments more often than we would like.

To address the problem of questionable arguments and unwarranted conclusions, Aristotle set
out to characterize what distinguishes valid inferences from fallacies (R. Smith, 2017). His efforts
laid the foundation of modern logic. This inspired the creation of artificial intelligence and became a
normative standard for human reasoning. While logic is a normative theory of deductive reasoning
under certainty, human reasoning often involves uncertainty and inferring unobservable principles
from limited data. Bayesian statistics holds that we should draw such inferences by updating our
beliefs according to the rules of probability theory (Bayes, 1763; Laplace & Simon, 19515 Savage, 1971).
Finally, expected utility theory (von Neumann & Morgenstern, 1944) prescribes that we should

always choose the course of action that maximizes our expected udility.

Over the past so years a substantial literature on heuristics and biases has documented that peo-
pastsoy p
ple’s judgments and decisions often violate these normative principles (Gilovich, Griffin, & Kahne-

man, 2002; Tversky & Kahneman, 1974; Wason, 1968). These systematic errors are known as cogni-



tive biases. As the resulting errors can have severe consequences, developing interventions to remedy
these biases has become a prominent research topic. In the following paragraphs, I briefly review the
main approaches that have been explored previously and identify their limitations, which motivate

the research of this dissertation.

Debiasing,the first approach, aims to eliminate or reduce cognitive biases through motivational,
cognitive, or technological interventions (Larrick, 2002). Motivational approaches to debiasing seek
to reduce cognitive biases by adding financial incentives for good performance or by holding people
accountable. Incentives and accountability generally increase effort, however, this does not necessar-
ily equate to increased performance (Camerer & Hogarth, 1999). The effectiveness of motivational
approaches appears to critically depend on whether people already possess effective cognitive strate-

gies (Camerer & Hogarth, 1999; Lerner & Tetlock, 1999).

Cognitive approaches to debiasing teach strategies that are consistent with normative princi-
ples or approximate them. It aims for strategies that are simple and memorable. Early cognitive
approaches taught people basic statistical principles (e.g., (a) the law of large numbers and (b) the
variability of small samples [Fong & Nisbett, 1991]) and simple implications of normative princi-
ples (e.g., (a) how to check whether an if-then statement is true [ Cheng, Holyoak, Nisbett, & Oliver,
1986] or (b) that sunk costs should be ignored [Larrick, Morgan, & Nisbett, 1990]).People learned
to apply those simple rules to simple problems. Moreover, some studies found transfer to simple
problems that are superficially different from the examples used during training (Fong & Nisbett,
1991, e.g., ). Another successful example of cognitive debiasing is teaching people to ask themselves
why their initial judgment or decision might be wrong. This strategy has been found to reduce over-
confidence, the anchoring bias, and the hindsight bias (Arkes, 1991; Mussweiler & Strack, 2000).
However, cognitive approaches to debiasing and their evaluation have been restricted to simple rules
for simple problems, and Larrick (2002) argued that it would be unsuitable for more complex nor-

mative strategies such as Bayes rule.

Technological approaches to debiasing include: (a) replacing human judgments by regression
models (Dawes, Faust, & Meehl, 1989), (b) performing decision analysis (Howard, 1988), and (c) de-
cision support systems (Power, Sharda, & Burstein, 2015). Decision analysis guides people to decom-
pose their decision problem, estimate its components, and then combine their estimates according
to expected utility theory. The effectiveness of these tools remains to be evaluated (Larrick, 2002).
Decision support systems carry out facets of the decision process for the decision-maker, to compen-
sate for their cognitive limitations. They can thus be interpreted as cognitive prostheses. Most deci-

sion support systems are highly specific to a particular domain, such as supply chain management



for a particular industry. There are more general decision support systems based on decision-analysis
(Edwards & Fasolo, 2001). Unfortunately, they inherit the issues arising from the inaccuracy and

biases of people’s probability judgments and utility estimates.

Despite their differences, all of these approaches to debiasing are based on two assumptions. First,
they assume that all cognitive biases reflect irrational heuristics and suboptimal cognitive perfor-
mance. Second, since this literature defines cognitive biases as deviations from the rules of logic,
probability theory, and expected utility theory, its interventions aim to bring people’s cognitive
strategies into closer alignment with those normative principles. In Part 1 of my dissertation, I argue
that the assumptions of debiasing are flawed because logic, probability theory, and expected utility
theory are unrealistically high normative standards that are oblivious to the computational con-
straints that people have to work with. Consequently, the traditional approach of debiasing might
not be the most effective way to improve human judgment and decision-making in complex real-life

situations.

Similar to debiasing, boosting (Hertwig & Griine-Yanoff, 2017) aims to increase people’s decision-
making competency. But in contrast to debiasing it does not define competency as adhering to the
rules of expected utility theory, logic, and probability theory. Instead, it views a competent decision-
maker as somebody who uses simple heuristics that are well adapted to the structure of their envi-
ronment. Boosting therefore aims to teach people simple rules of thumb that differ considerably
from the normative rules taught in classic debiasing interventions. Boosting also aims to change how
information is presented to match the presentation format that people’s heuristics are adapted to.
One successful example of this approach is to present conditional probabilities as natural frequen-
cies. This intervention has been shown to significantly improve people’s performance at Bayesian
reasoning (Gigerenzer & Hoftrage, 1995). For a more lasting effect, people can be taught to translate
conditional probabilities into natural frequencies by themselves (Sedlmeier & Gigerenzer, 200r1).
Despite these successes, the effectiveness of boosting is limited by our ability to discover effective
heuristics. It would be a coincidence if the heuristics people are currently taught were already opti-
mal. So there may still be a lot of room for improvement in the curriculum of boosting. But coming
up with better heuristics is very difficult. This dissertation addresses this challenge by developing a

principled method for deriving optimal heuristics automatically.

While debiasing and boosting target judgment and decision-making directly, cognitive training
targets the basic underlying cognitive capacities such as working memory (Klingberg, 2010), pro-
cessing speed (Ball, Edwards, & Ross, 2007; Nouchi et al., 2012, 2013), attention (Slagter et al., 2007;

Tang & Posner, 2009), and cognitive control (Anguera et al., 2013; Karbach & Kray, 2009; Nouchi



et al., 2012, 2013). Generally, cognitive training leads to reliable improvements on the trained task.
While these improvements frequently transfer to similar tasks, they rarely transfer to performance in
everyday life. Whether existing training programs, such as working memory training, achieve mean-
ingful transfer effects is the subject of a heated debate (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008;
Melby-Lervag & Hulme, 2013; Morrison & Chein, 2015; Owen et al., 2010; Redick et al., 2013; Ship-
stead, Redick, & Engle, 2012). Furthermore, the learning mechanisms underlying potentially gener-
alizable improvements in high-level cognition remain poorly understood. Furthermore, there is very
little theoretical guidance for designing effective training regimens; this might be a serious bottle-
neck to the development of effective cognitive training programs. To address this problem Chapters
s and 9 of my dissertation propose and evaluate a theoretical framework and computational tools for

developing a new kind of cognitive training program.

In contrast to debiasing, boosting, and cognitive training, nu«dging aims to exploit people’s cogni-
tive biases instead of trying to remedy them (Thaler & Sunstein, 2008). Nudging structures decision
environments in such a way that people’s biases favor a desirable decision without restricting their
freedom of choice. This methodology has been successfully used in public policy to promote organ
donation and saving for retirement. The most prominent example of nudging is to make the pre-
sumably better option (e.g., to save for retirement) the default, while allowing people to opt out.
There are many more examples of how the presentation of choices can be tweaked to improve peo-
ple’s decisions (Johnson et al., 2012). To date, nudging is primarily used in public policy. It allows
governments and organizations to gently nudge citizens and consumers towards pro-social and re-
sponsible behavior. But the widespread use of nudging raises concerns about manipulation and
unintended side effects, which remain unaddressed. Furthermore, nudges are typically only avail-
able for a very small fraction of the thousands of decisions we have to make every day. In actuality
there are very few tools that people can use to nudge themselves to perform a desired task. Chapter 7
of my dissertation addresses this problem by developing a theory-based approach to nudging and a

practical tool that individuals can use to nudge themselves towards their goals.

In summary, while there are at least four existing approaches to improving human judgment and
decision-making, all of them have serious limitations. Overcoming those limitations will require

significantly more research into their theoretical foundations.

My research is driven by the need for a solid theoretical and computational foundation for im-
proving human decision-making. To be useful, a theoretical framework for improving the human

mind should be able to answer the following questions:



1. How should we think and decide to make the best possible use of our limited time and cogni-
tive resources?

2. How does human cognition compare to this idea?
3. How do we learn to think more clearly and make better decisions?
4. What can be done to promote cognitive growth?

5. How can we help people overcome their cognitive limitations and achieve their goals?

This dissertation addresses each of these questions within the domains of judgment, decision-
making, and planning. The first part of my dissertation addresses questions 1-3 via a combination of
computational modeling and behavioral experiments. The second part of my dissertation addresses
questions 4 and 5. There, I leverage the theoretical framework developed in Part I to formulate in-
terventions for expanding the bounds of human rationality. These interventions take the form of a
cognitive tutor that teaches people optimal planning strategies, and a cognitive prosthesis that lets

people nudge themselves towards their goals.

My research on optimal reasoning and decision-making under limited resources sheds new light
on the debate about human rationality. It challenges the conclusion that people are fundamentally
irrational and provides more realistic normative standards for assessing human rationality. The the-
ory and computational tools I have developed for deriving optimal cognitive strategies provide a
useful methodology for cognitive modeling, one that lets researchers leverage the power of norma-
tive principles to develop precise mathematical models of cognitive mechanisms. Furthermore, my
model of strategy selection closes an important gap in theories of bounded rationality. Those the-
ories postulate that the mind is equipped with a toolbox of heuristics, and the model presented in
Chapter 4 completes them by specifying how people should decide when to use which heuristic. My
research on metacognitive learning leads to a nuanced, dynamic perspective on what it means to be
rational. According to this view, rationality entails gradually learning to make increasingly more ef-
fective use of fallible heuristics. This perspective reconciles people’s use of fallible heuristics with the
normative principles of rational decision-making and rational learning. Furthermore, it shifts the
focus from how people think and decide when they are tested to how their reasoning and decision-
making improve over time. According to this dynamic view, human rationality should be measured

by people’s ability to improve their reasoning and decision-making based on their experience.

In addition to these scientific contributions, the research presented in this dissertation is also a
step towards several practical applications for helping people make better decisions. First, the the-

ory of resource-rationality makes it possible to derive optimal cognitive strategies that might enable



people to make better decisions and think more clearly. Second, the theory and models of metacog-
nitive learning (Chapter 5) provide guidance for how to promote and accelerate cognitive growth.
To support this argument, I show that these principles can be used to design feedback mechanisms
that make cognitive training more effective (Chapter 9). Finally, my research on decision-support
(Chapter 8) provides a theoretical foundation for developing cognitive prostheses for goal achieve-
ment. The approach I have taken leverages artificial intelligence to enable people to effectively nudge
themselves towards their goals. As a proof-of-concept, I present a to-do list gamification app that

can help people overcome procrastination and achieve their goals on time.

This dissertation is structured into two parts: The six chapters of the Part 1 develop a method-
ology for deriving realistic normative models of human cognition. By taking into account people’s
finite time and bounded cognitive resources, these rational models can explain cognitive biases that
would otherwise appear irrational. Chapter 1 reviews the literature on rational models of reasoning
and decision-making with limited cognitive resources and identifies open problems. Chapter 2 devel-
ops a resource-rational model of a ubiquitous systematic error in human judgment: the anchoring
bias. Chapter 3 develops a resource-rational model of a wide range of availability biases in human
decision-making, judgment, and memory recall. These findings establish that at least some heuris-
tics can be understood as resource-rational cognitive strategies for specific problems. However, no
single heuristic is resource-rational for all problems. Thus, achieving resource-rationality requires
adaptively choosing between multiple heuristics. Chapter 4 formalizes this idea by a rational model
of strategy selection and tests its predictions in behavioral experiments. The findings suggest that
people can select heuristics adaptively because they have learned to predict how well each heuristic
will perform for different problems. Inspired by these results, Chapter s tests the hypothesis that
people gradually learn to make increasingly more rational use of their limited cognitive resources.
A series of experiments confirmed this prediction. Follow-up experiments suggested that these im-
provements may be driven by a metacognitive reinforcement learning mechanism. Finally, while
I derived the resource-rational models presented in Chapters 1-5 by hand, Chapter 6 presents and
evaluates a method for deriving resource-rational models automatically. The primary objective of
all of this research is to go beyond fuzzy, verbal theories of bounded rationality. This is achieved by
developing mathematically precise normative models of how people should think and decide; and

then leveraging those models to revisit the debate about human rationality.

Part 2 of this dissertation applies these advances to develop tools and interventions to push the
boundaries of human rationality farther outward. Concretely, Chapter 8 develops a cognitive pros-

thesis that augments the brain’s decision-making systems. Chapter 9 develops a cognitive tutor that



teaches people resource-rational planning strategies. Finally, I conclude by discussing the implica-

tions of these findings for understanding and improving human rationality.

Most chapters of my dissertation are based on previously published articles with several co-
authors. In these chapters, I will use the pronoun “we” when describing work that I or my collabora-
tors have done as part of this project. When collaborators have performed substantive components
of the presented work this is explicitly acknowledged in the footnote at the beginning of the corre-
sponding chapter. I will continue to use the pronoun “I” in the chapters and sections that are not
based on published collaborative work and also to express my personal opinion — which does not

necessarily reflect the views of my co-authors.



Part I

Bounded rationality revisited



Introduction to Part I

As laid out in the General Introduction, I believe that developing a precise normative theory of
bounded rationality will allow us to establish tools and interventions that will help people think
more clearly, and make better decisions. Here, I will argue that bounded optimality is a promising
theoretical framework for building such a theory. To illustrate the potential of this framework, I
apply it to derive bounded-optimal models of judgment and decision-making; which I will then

bring to bear on the debate about human rationality.

The first four chapters argue that human rationality should be understood in terms of the opti-
mal use of our finite time and limited cognitive resources. I formalize this idea within the framework
of bounded optimality, as established in the artificial intelligence literature (Russell & Subramanian,
1995), in Chapter 1. This leads to a new normative standard for human cognition called resoxrce-
rationality and a new methodology for cognitive modeling called resource-rational analysis. In the
subsequent chapters, I apply this methodology to derive resource-rational models of judgment
(Chapter 2), decision-making (Chapter 3), and strategy selection (Chapter 4). I'illustrate how such
models can contribute to a better understanding of human cognition, and I use them to revisit the
debate about human rationality. In order to make resource-rational analysis more easily applicable
to a wider range of phenomena, Chapter 6 develops an automatic method for deriving rational pro-
cess models from first principles. As a proof of concept, I apply this method to multi-alternative
risky choice and show that it yields new insights into the mechanisms of human decision-making.
This enables a quantitative assessment of human rationality against a realistic normative standard.
These case studies illustrate that resource-rational analysis is a promising paradigm for modeling

human cognition.

The analyses mentioned so far derived the optimal cognitive strategies for fixed cognitive archi-
tectures confronting known environments. Humans, however, often confront unknown environ-
ments with a changing brain. I believe that a complete theory of human rationality should take these
additional challenges into account by specifying bounded-optimal learning mechanisms that render
cognitive mechanisms increasingly more resource-rational by adapting them to cognitive constraints

and the structure of the environment. As a first step in this direction, I develop a theory of how peo-



ple learn when to use which heuristic, and outline how this approach could be expanded in order

to model how those strategies are learned in the first place (Chapter s). Based on these models, I
hypothesize that people generally learn to make increasingly more rational use of their limited cogni-
tive resources over time. I will argue that an understanding of human rationality which is based on
learning, and rooted in a realistic normative standard, can capture human performance far more ac-
curately than models derived from the unrealistically high normative standards of logic, probability

theory, and expected utility theory.
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Resource-Rationality*

1.I INTRODUCTION

What does it mean to be rational? How should we reason about what is true and how should we
decide what to do? Do the cognitive strategies that people already use come close to these ideals or
are they far off? Which strategies should we teach people to improve the quality of their reasoning

and decision-making?

This chapter introduces the theoretical framework used to answer these questions. Its central
idea is that people should make rational use of their finite time and limited cognitive resources. The
chapter starts by briefly summarizing and discussing previous theories of rationality and the de-
bate about human rationality. The open problems and limitations of previous work are pointed
out and the new theoretical framework of resource-rationality is introduced to address them. This
framework leads to a new methodology called resonrce-rational analysis that is the foundation for
the work presented in Part 1. To illustrate the utility of taking a resource-rational perspective for un-
derstanding human cognition, previous work that can be understood within the resource-rational

framework is also reviewed. The chapter closes with a preview of how the subsequent chapters will

"This chapter reuses material from Griffiths, Lieder, and Goodman (2015).
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build on and apply this overarching theoretical principle.

1.2 NOTIONS OF RATIONALITY

Existing definitions of rationality differ along four dimensions: The first distinction is whether ratio-
nality is defined in terms of beliefs (theoretical rationality) or actions (practical rationality; Harman,
2013). The second distinction is whether rationality is judged by the reasoning process (rule-based)
or its consequences (consequentialism; Sosis & Bishop, 2013). Third, some notions of rationality
take into account the agent’s computational capacity are bounded (bounded rationality) whereas
others do not (unbounded rationaliry; Lewis, Howes, & Singh, 2014; Russell, 1997). Fourth, ratio-
nality may be defined either by the agent’s performance on a specific task or by its average perfor-
mance in the natural environment (ecological rationality; Chater & Oaksford, 2000; Gigerenzer,

2008b; Lewis et al., 2014).

The most influential rule-based notion of rationality is logic. A logic is a formal system of infer-
ence rules for transforming one set of formula into another set such that the resulting formula (con-
clusion) will be true if the initial formula (premises) were true (Reichenbach, 1947). The most basic
form of logic is propositional logic where each formula comprises atomic statements, such as “Aris-
totle was a human.” that can be connected by AND, OR, IF ... THEN ..., and NOT. While logic
defines rational rules for reasoning from statements that are known to be true or false, probability
theory defines rational rules for reasoning under uncertainty. Concretely, Bayesian rationality holds
that people should reason according to the laws of Bayesian probability theory (Oaksford & Chater,
2007). This entails maintaining graded beliefs over alternative hypotheses 6 € ©. The degree of
belief P(#) in a hypothesis 6 is formalized as a probability such that P(6|K) = 0 if and only if the
hypothesis cannot possibly be true and P(0|K) = 1, if and only if, the hypothesis cannot possibly
be false given the agent’s knowledge K. The latter entails that the sum of the probabilities assigned
to all possible values a state of the world can take has to be equal to 1. Finally, the last critical ele-
ment of probability theory is the notion of conditional probability. Concretely, the conditional
probability of 0 given 02, which is written as P(61]602), specifies how strongly one should belief in
01 being true if 03 was true. Formally, the conditional probability of 8 given 05 is defined as

P(91 A 92)

P(01]02) = TPy

(r1)

where the proposition 61 A 62 defines the set of worlds in which both propositions (¢1 and ) are
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true simultaneously. The definition notion of conditional probability enforces that all of the agent’s
beliefs are coherent with each other. Furthermore, Bayesian rationality also demands that all beliefs
should be consistent with the agent’s observations 0. Concretely, probability theory entails that
when the agent makes a new observation o, then it should update its belief in each of its hypotheses
0 € O from p(#), which is known as the prior to P(6|o) which is known as the posterior. Con-
cretely, Bayes theorem (Bayes, 1763) holds that a rational agent’s posterior belief in hypothesis 0 after

having seen observation o should be

P(olf) - P(6)
P(9) - P(0]0) + P(=0) - P(o]-6)-’

P(flo) = (1.2)

where —0 is the negation of hypothesis 6. This means that observing o turns the odds of 6 being

P(0)

true versus false from - (~gy into

P0lo) _ P(0) P(olf) (13)
P(=0lo) ~ P(=0) P(o|-0) '

Intuitively, this means that an observation should increase your degree of belief in a hypothesis 0

proportionally to how much more likely that observation is to occur if 6 than if 6 was false.

By contrast to these process-based notions of rationality, consequentialist notions of rationality
evaluate human reasoning based on its outcomes (Sosis & Bishop, 2013). There are two main ver-
sions of consequentialist theoretical rationality: reliabilism and pragmatism. Reliabilism evaluates
reasoning strategies based on how reliably they yield correct conclusions across a wide range prob-
lems. By contrast, pragmatism evaluates the reasoning strategies according to the usefulness of the
resulting beliefs regardless of their factual accuracy. For instance, if a reasoning strategy leads us to
incorrectly conclude that filing our taxes will be fun that counts against its rationality from the re-
liabilist perspective. But from the pragmatist perspective a factually incorrect inference about how
enjoyable it is to file taxes could count as rational if it helps you avoid the negative consequences of
procrastinating on filing your taxes for too long. The most prominent version of consequentialism
is expected utility theory (von Neumann & Morgenstern, 1944). According to expected utility the-
ory, a rational decision-maker should always choose the action a* that maximizes the expected utility

of the resulting outcome O, that is
*
G = argmax IEP(O\s,a) [U(O)|S, a] ) (14)
a
where the agent’s utility function u defines how good or bad different outcomes are with respect to
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the agent’s goals and the outcome O includes both the immediate reward and the next state.

While process-based notions of rationality are conceptually very different from consequentialist
notions of rationality, and theoretical rationality is distinct from practical rationality, all of them
could, in principle, be attained simultaneously. This might be why the standard picture of ratio-
nality combines them by demanding that people reason according to the normative rules (Sosis &
Bishop, 2013) of logic and probability (which is a process-based notion of theoretical rationality) and
acting according to the maxim to maximize expected utility (which is a form of consequentialism).
In my view, the critical shortcoming of the standard picture of rationality are that it does not recog-
nize that to think and decide effectively in the world people and machines have to make efficient use
of their limited time and bounded computational resources. Incorporating cognitive constraints
into theories of rationality began with the foundational work of Herbert Simon who argued that
computational limitations place substantial constraints on human reasoning (Simon, 1972, 1982).
The following sections briefly summarize Simon’s work on bounded rationality and subsequent

extensions and refinements.

1.2.1 EARLY EXTENSIONS TO BOUNDED AGENTS

Simon pointed out that our finite computational capacities make it impossible for us to always find
the best course of action, because we cannot consider all possible consequences. He illustrated this
using the game of chess, where choosing the optimal move would require considering about 10120
possible continuations. Thus, Simon concluded, to adequately model human behavior, we need a
theory of rationality that takes our minds’ limitations into account. Simon called such an approach
bounded rationality, emphasizing that it depends on the structure of the environment (Simon, 1956)
and entails satisficing, that is accepting sub-optimal solutions that are good enough in place of striv-
ing for the very best solution possible. While he provided some formal examples of satisficing strate-

gies (Simon, 1955), Simon viewed bounded optimality as a principle rather than a formal framework.

Arguably, the question of what it means to be rational in the face of limited computational re-
sources is also fundamental to the endeavour of creating artificial intelligence (Russell, 1997). So, it
might come as no surprise that computer scientists have subsequently expanded Simon’s ideas on
bounded rationality into formal theories of computational rationality (for a review see Gershman,
Horvitz, & Tenenbaum, 2015). Two early notions of computational rationality were calculative ra-
tionality and Type 11 rationality. Calculative rationality refers to algorithms whose answers would,

eventually, converge to the optimal solution within the limits of infinite computation. These algo-
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rithms are commonly run for a much shorter length of time than would be necessary to guarantee
their convergence to the optimal solution but their asymptotic guarantees are seen as evidence that
they are at least approximating the right thing. Good (1983) defined Type II rationality as the maxi-
mization of expected utility taking into account the cost of deliberation. Intuitively, this means that
rational bounded agents optimally trade off the expected utility of the action that will be chosen
with the corresponding deliberation costs. But Good (1983) did not make this notion mathemati-

cally precise.

2.2 RATIONAL METAREASONING

Later work on rational metareasoning formalized Good’s ideas with mathematical precision (Horvitz,
1987; Russell & Wefald, 1991b). If reasoning seeks an answer to the question “what should I do?”,
metareasoning seeks an answer to the question “how should I decide what to do?”. The theory of
rational metareasoning (Russell & Subramanian, 199s; Russell & Wefald, 1991b) frames this problem
as selecting computations so as to maximize the sum of the rewards of resulting decisions minus the
costs of the computations involved. Concretely, one can formalize reasoning as a meta-level Markov
decision process (meta-level MDP) and metareasoning as solving that MDP (Hay et al., 2012). In
brief, a meta-level MDP

Mera = (B, A, Thetas Tmeta) (Ls)

is a Markov decision process (Puterman, 2014) where the actions A are computations, the states B
encode the agent’s beliefs, and the transition function Tiec, describes how the computations change
those beliefs. A includes computations C that update the beliefs, as well as, a special meta-level ac-
tion L that terminates deliberation and initiates acting on the current belief. A belief state b encodes
a probability distribution over parameters 6 of a model in the domain. The meta-level reward func-
tion T'mer, captures the cost of computation and the external reward r the agent expects to receive

from the environment.

This formulation makes rational metareasoning amenable to the wide range of methods that have
been developed to solve Markov decision processes including dynamic programming (Puterman,

2014) and reinforcement learning (Sutton & Barto, 1998).

I5



1.2.3 BOUNDED OPTIMALITY

Despite its precision and elegance, rational metareasoning does not take into account the delibera-
tion costs of determining the optimal trade-off between the costs and benefits of reasoning about
the world. This problem cannot be solved by applying the same thinking that created it because
metareasoning about efficient metareasoning would invite an infinite regress. Instead, Stuart Russell
and colleagues overcame this limitation by relaxing the standards of rationality from always selecting
the optimal computation to running a program that performs as well as or better than any other pro-
gram that the agent could execute (Russell, 1997; Russell & Subramanian, 1995; Russell & Wefald,
1991a). This standard is attainable by its very definition. It is conceivable that a bounded optimal
program for a particular problem would often select sub-optimal computations because the im-
provement that could be achieved by selecting optimal computations would be lower than the cost

of identifying them. This notion of rationality is known as bounded optimality.

Bounded optimality is a theoretical principle for designing intelligent programs that run on
performance-limited hardware and have to interact with their environment in real time (Russell
& Subramanian, 199s). Equation 1.6 defines bounded optimality as running a program program*
that when run on the agent’s hardware will generate world states through its decisions and whose
expected utility is at least as high as those generated by any other program that the agent’s hardware

can execute, that is

* .
program™ = arg max Ep(s,,-,57|So, Ay=program history, ) [u (h1storyT)] , (1.6)
programé€Programs(HW)
where Programs(HW) is the set of programs that the agent’s hardware can execute, and history, =
{So, -+, St} and program(history, ) is the action that program would choose when executed on
the hardware after having observed history,, and 7" is the number of time steps in the episode start-
ing with situation Sp. Finally, u is the utility function that the agent is designed to optimize under

the constraints of its hardware.

By solving the optimal program problem defined in Equation 1.6 it is sometimes possible to de-
rive optimal algorithms. For instance, Russell and Subramanian (1995) derived an optimal mail sort-
ing program. This suggests the intriguing possibility that it might also be possible to derive optimal

cognitive strategies for people.
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1.3 THE DEBATE ABOUT HUMAN RATIONALITY

The theories of rationality summarized above have had a fundamental impact on classic theories in
psychology, economics, philosophy, linguistics,neuroscience, and the social sciences (Braine, 1978;
Chater, Tenenbaum, & Yuille, 2006; Fodor, 1975; Frank & Goodman, 2012; Friedman & Savage,
1948; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Harman, 2013; Hedstrom & Stern,
2008; Knill & Pouget, 2004; Lohman, 2008; Mill, 1882; Newell, Shaw, & Simon, 1958; Oaksford &
Chater, 2007; von Neumann & Morgenstern, 1944). Whether and to what extent human reasoning
satisfies the premises of these rational models and what this entails for human rationality has been
intensely debated (Stanovich, 2009). More recently, the debate has shifted from “Are we rational?”
to “Is building rational models a useful methodology for understanding human cognition?” and
this is an important distinction (Bowers & Davis, 20125 Chater et al., 20115 Griffiths, Chater, Nor-
ris, & Pouget, 2012). This section briefly reviews both the debate about human rationality and the

merits and challenges of rational modeling as a methodology for understanding human cognition.

The assumption that people are rational became hotly debated when a series of experiments sug-
gested that people’s judgments systematically violate the laws of logic (Wason, 1968) and probability
theory (Tversky & Kahneman, 1974), and subsequent studies demonstrated that people’s decisions
systematically deviate from the prescriptions of expected utility theory (Kahneman & Tversky, 1979).
These systematic errors are known as cognitive biases. For instance, Tversky and Kahneman (1974)
demonstrated that when people are asked to compare the number of countries to a low versus high
number that was generated by spinning a wheel of fortune before they estimate its value, then their
estimates are systematically biased towards an irrelevant random number; this is known as the 47-
choring bias. Furthermore, people tend to dramatically overestimate the frequency of events that
come to mind easily; this is known as the availability bias. Moreover, when people are asked to judge
the probability of a sequence of coin tosses, they assign a higher probability to sequences that are less
regular and, hence, more representative of randomness, even though, all sequences are equally prob-
able; this is known as the representativeness heuristic. These are just three among dozens of cognitive

biases that have been identified in the last four decades (Gilovich et al., 2002).

According to Tversky and Kahneman (1974), cognitive biases result from people’s use of fast
but fallible cognitive strategies known as beuristics. The discovery of cognitive biases was highly
influential, because following the rules of logic and probability was assumed to be the essence of
rational thinking. Evidence that people deviate from these rules thus called human rationality into

question, and this doubt has shaken the foundations of economics, the social sciences, and rational
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models of cognition.

The debate about human rationality concerns the interpretation of these findings, and Stanovich
(2009) aptly summarized the positions taken in this debate in the following terms: Meliorists inter-
pret cognitive biases as evidence that human reasoning is not as good as it could be. Meliorists often
paint a bleak picture according to which people are profoundly irrational (Ariely, 2009; Marcus,
2009; Sutherland, 1992) but they are also optimistic that human reasoning can be improved (Nisbett,
1993). By contrast, Panglosians reject the interpretation that people are irrational by one of three ar-
guments: The first argument maintains that the principles of logic, probability theory, or expected
utility theory that were used as the yard stick of rationality have serious limitations (Gigerenzer &
Goldstein, 1996; Sosis & Bishop, 2013). The second argument maintains that the mind’s compu-
tational limitations are so severe that even rational people cannot be expected to conform to the
normative standards of logic, probability theory, and expected utility theory; proponents of this ar-
gument are called Apologists. The third argument maintains that many of the apparent violations
of rationality have been shown to be consistent with the rational solution to a reasonable alternative
construal of the task (Austerweil & Griffiths, 2011; Griffiths & Tenenbaum, 2001; Hahn & Oaks-
ford, 2007; Hahn & Warren, 2009; Oaksford & Chater, 1994, 2007; Tenenbaum, Griffiths, et al.,
2001). These rational explanations often draw on the methodology of rational analysis (Anderson,
1990; Chater & Oaksford, 1999) introduced in the following section. I believe that there is merit in
all three of these arguments, and Chapters 2—6 revisit the debate about human rationality with a

more appropriate notion of rationality that accounts for people’s cognitive constraints.

1.3.1 RATIONAL MODELS OF COGNITION AND MARR’S LEVELS OF ANALYSIS

The debate about human rationality also has implications for how we should model the human
mind. A long tradition of rational modeling has leveraged normative principles, such as Bayes theo-
rem and expected utility theory, to explain human behavior. As more and more violations of these
normative principles surfaced in the research on judgment and decision-making, the interpretation
of rational models has become increasingly constrained to what David Marr called the computational
level of analysis (Marr, 1982) which defines the function of a cognitive system in terms of the prob-
lem that it solves and the optimal solution to that problem. Marr distinguishes the computational
level of analysis from the algorithmic level of analysis that concerns the representations and cognitive
strategies that the system uses to approximate the optimal solution, and the implementation level

that concerns how those representations and computational mechanisms are bio-physically realized
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in the brain. While most rational models of human cognition are formulated at the computational
level of analysis, the remainder of this chapter and most of the subsequent chapters are dedicated to
showing that we can gainfully push normative principles down to the algorithmic level of analysis to

better understand people’s cognitive strategies and representations.

1.3.2 RATIONAL ANALYSIS

Contrary to the bleak picture painted by research on heuristics and biases, other studies have shown
that many aspects of human cognition can be understood as rational adaptations to the environ-

ment and the goals people pursue in it (Anderson, 1990; Chater & Oaksford, 1999). Rational analy-
sis leverages this assumption to derive models of human behavior from the structure of the environ-

ment.

Concretely, Anderson (1990, p. 29) laid out the six-step methodology for developing rational
models of cognition summarized in Figure r.1. Rational analysis derives models of human behavior
from the structure of the environment by assuming that cognitive mechanisms are near-optimally
adapted to achieving their goals in people’s natural environment. While cognitive psychology has
traditionally explained human behavior primarily in terms of the structure of the mind and its ca-
pacity limits, rational analysis explains human behavior primarily in terms of the structure of the
environment and makes only minimal assumptions about cognitive limitations. In the context of
the debate on human rationality, rational analysis has been used to provide rational explanations for
a wide range of cognitive biases including the confirmation bias (Austerweil & Griffiths, 2011; Oaks-
ford & Chater, 1994), the representativeness heuristic (Griffiths & Tenenbaum, 2001; Tenenbaum
et al., 2001), the gambler’s fallacy (Hahn & Warren, 2009), and fallacious argumentation (Hahn &
Oaksford, 2007).

1.3.3 RATIONAL PROCESS MODELS

The computational challenges posed by rationality are not just problems for human minds; they
are also faced by computer scientists and statisticians who work with complex probabilistic models.
These computer scientists and statisticians have developed a variety of strategies for approximating
the resulting computations, and those strategies provide a source of hypotheses about cognitive

processes that could be used to produce behavior that approximates a given rational model. The
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1. Precisely specify what are the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is
adapted.

3. Make the minimal assumptions about computational limitations.

4. Derive the optimal behavioral function given items 1 through 3.

5. Examine the empirical literature to see if the predictions of the behav-
ioral function are confirmed.

6. If the predictions are off, iterate.

Figure 1.1: The methodology of rational analysis.

result is what has been dubbed a “rational process model” (Griffiths, Vul, & Sanborn, 2012; Sanborn,
Griffiths, & Navarro, 20105 Shi, Griffiths, Feldman, & Sanborn, 2010).

For example, Sanborn et al. (2010) showed how two algorithms commonly used to perform prob-
abilistic inference — Markov chain Monte Carlo and particle filters — can be be reinterpreted as hy-
potheses about the psychological mechanisms of categorization. With a large sample, these algo-
rithms give a close approximation to the ideal rational model, but with a small sample, they deviate
from this ideal in systematic ways, producing biases (such as order effects) that are easy to compare
against human performance. Such comparisons yield clues about the computational constraints that

might be relevant for explaining human behavior.

Process models based on approximation algorithms (such as Monte Carlo methods) are ratio-
nal in that their answers converge to the optimal solution in the limit of infinite computational
resources. However, this is a weak form of rationality that corresponds to the notion of calculative
rationality introduced above. One of the contributions of this dissertation will be to bolster the ra-
tionality of rational process models by grounding them in the theory of bounded optimality. This
idea has led to the notion of resource-rationality and the methodology of resource-rational analysis

presented below.

1.4 REDEFINING HUMAN RATIONALITY AS THE RATIONAL USE OF FINITE TIME AND LIM-

ITED COGNITIVE RESOURCES

As reviewed above, research on human judgment and decision-making has established that peo-

ple do not obey to the norms of logic, probability theory, and expected utility theory. The brain’s
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finite computational power limits how rational people can possibly act and think. As a result of
this bounded rationality, the ideals of maximizing expected utility, reasoning according to the laws
of logic, and handling uncertainty according to the laws of probability are out of reach for people.
As Figure 1.2 illustrates, the realization that people’s cognitive limitations rule out that people are
optimal (according to the standard picture of rationality), is compatible with a large number of
ways how the mind might work instead. So how should we think and decide instead? In my view,
bounded optimality is the literature’s most principled, general answer to the question of what it
means to be rational. I will, therefore, instantiate this abstract notion as a concrete theory of human
rationality. Concretely, I propose that to be rational a person has to reason and decide according

to cognitive strategies that perform as well as or better than any other strategies that they could be

using instead. I will refer to this new normative standard as resource-rationality.

As illustrated in Figure 1.2, resource-rationality uniquely identifies the best biologically feasible
mind(s) out of the infinite set of bounded rational minds. Concretely, I define a resource-rational

mind m* for a brain B in an environment F with respect to the utility function u as

m* = argmax Epr .15 4,=m@,)) [v (1)], (17)
meMp
where the agent’s life history [; = (Sp, - - -, St) is the sequence of states it has experienced up until

time ¢, u(l7) measures how good this life was until it ended at time 7', Mp is the set of minds that
are biologically feasible given the biophysical constraints of its brain B, S is the state of the environ-
ment at time ¢, and A; = m(l;) is the action that the mind m chooses in state s if the previous
states were 50, - - -, S¢—1. L he cognitive limitations inherent in the biologically feasible minds Mg
include a limited set of elementary operations (e.g., counting and memory recall are available but
exact Bayesian inference is not), a limited processing speed (each operation takes a certain amount of
time), and potentially other constraints, such as limited working memory. Critically, the world state
St is constantly changing while the mind m deliberates. Thus, to perform well, the bounded opti-
mal mind m* does not only have to generate good decisions but it also has to generate them quickly.
Since each cognitive operation takes a certain amount of time, this entails that bounded optimality

often requires computational frugality.

Unfortunately, it might be intractable to compute the resource-rational mind defined by Equa-
tion 1.7 because it requires optimizing over an entire lifetime. To provide a more tractable definition
that can be used to derive predictions about which heuristic & a person should use to make a partic-

ular decision or inference, it will be assumed that life can be partitioned into a sequence of episodes
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Figure 1.2: Resource rationality and its relationship to optimality and bounded rationality.

each of which starts with a state s) = (wo, bp) that comprises the unknown state of the external
world wq and the person’s internal belief state by. Furthermore, let result(sp, i) denote the judg-
ment, decision, or belief update that results from applying heuristic & in the initial state s¢. In this
setting, we can decompose the value of having applied a particular strategy into the utility of its ter-
mination state 1 (s ) and the computational cost of its execution. The latter is critical because the
time and cognitive resources a person expends on any one decision or inference (current episode)
take away from their budget for other decisions and inferences (future episodes). To capture this,
let the random variable cost(ty,, p, A) denote the total opportunity cost of investing the cognitive
resources p used or blocked by the heuristic i for the duration ¢}, of its execution, when the agent’s
cognitive opportunity cost per quantum of cognitive resources and unit time is A. In this setting, I

define the resource-rational heuristic 2* for a brain B to use in the belief state by as

h*(b07 B7 E) = arhg II_IIIaX EP(result\so,h,E) [u (result)] - Et;L7p,)\|h,so,B,E [C05t<th7 Py A)] ) (1-8)
€l

where Hp is the set of heuristics the brain B can execute. The cost of thinking can be defined by

th
cost(d, p, \) = /0 o(t) - A(t) de. (1.9)

For simplicity, I will assume that the heuristic’s cognitive demands p and the agent’s opportunity
cost A are roughly constant while the heuristic / is being executed. In this case, the cost of thinking
can be approximated by cost(ts, p, A) = tp, - p - A. To further simplify this analysis, p - A can be

approximated by the agent’s reward rate in the environment Fj; this corresponds to the assumption
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that a) the agent cannot multitask and b) the current reward rate is an accurate estimate of the value
of the agent’s time. In brief, the essence of resource-rationality is that people’s cognitive mechanisms

should trade off accuracy versus opportunity cost in an adaptive, near-optimal manner.

This definition improves upon what Lewis et al. (2014) call ecological bounded optimality in at
least three major ways: First, it explicitly captures the opportunity costs of the time and computa-
tion that applying a strategy h to the current problem incurs at the expense of the agent’s ability to
solve other problems concurrently or in the future. Second, it weighs the states the environment
might be in according to the person’s belief state (bg) rather than their overall frequency in the envi-
ronment. This accounts for people’s ability to adapt their cognitive strategy to individual problems
based on their (imperfect) knowledge about the state of their environment (Payne, Bettman, &
Johnson, 1993). Third, the utility function is allowed to depend on the belief state b | that results
from reasoning according to h. This captures the potential benefits of belief updates achieved by

reflecting in the current episode for decisions made in future episodes.

Another way in which the resource-rational approach advances the methodology of computa-
tional rationality is that it leverages ideas from computer science to generate hypotheses about the
mind’s computational architecture and the space of heuristics that it might support. This gives rise
to a methodology for reverse-engineering the mind’s cognitive strategies known as resource-rational

analysis that will be presented in the following section.

Resource-rationality differs from the standard picture of rationality along three of the four di-
mensions: First, it evaluates reasoning by its utility for subsequent decisions rather than by its for-
mal correctness; this makes it an instance of pragmatism. Second, it agrees with Tversky and Kah-
neman’s approach (Tversky & Kahneman, 1974) in that resource-rationality is an attribute of the
process that generates conclusions and decisions. Third, it takes into account the cost of time and
the boundedness of people’s cognitive resources. Fourth, resource-rationality is defined with respect
to the distribution of problems in the environment rather than a set of arbitrary laboratory tasks.
Arguably, all three changes are necessary to obtain a normative, yet realistic, theory of human ratio-
nality. Unlike the decision theoretic and Bayesian accounts, resource-rationality is not defined by the
quality of the people’s actions or the truthfulness or coherence of their beliefs, but rather, in terms
of their cognitive strategies. Unlike logic and probability theory, it does not measure the quality of
these strategies by their adherence to rules that preserve truth or coherence, but rather, by its prac-
tical effects on the people’s actions and their consequences. Limited time and bounded cognitive
resources necessitate tradeoffs. This amplifies the effect of resource-rationality’s departures from

the standard picture of rationality by its pragmatic perspective on reasoning and its emphasis of per-
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1. Start with a computational-level (ie. functional) description of an aspect
of cognition, formulated as a problem and its solution.

2. Posit a class of algorithms for approximately solving this problem, a cost
to computational resources used by these algorithms, and a utility of
more accurately approximating the correct solution.

3. Find the algorithm in this class that optimally trades off resources and
approximation accuracy (Equation 1.8).

4. Refine by revising the model, algorithms, or costs (Steps 1, 2, or 3), or
by proceeding to the next level down: approximating the algorithms in
Step 2 to capture further resource constraints.

Figure 1.3: Recipe of resource-rational analysis.

formance in the real world over performance in the laboratory. The following chapters illustrate
that this allows resource-rationality to accommodate cognitive biases that were previously deemed

irrational.

1.5 RESOURCE-RATIONAL ANALYSIS

One of the principles of rational analysis is to make only minimal assumptions about cognitive
constraints (see Figure 1.1). But the constraints imposed by people’s cognitive limitations are often
substantial. Herbert Simon has famously argued that to understand people’s cognitive strategies,
we have to simultaneously consider people’s cognitive constraints and the structure of their envi-
ronment (Simon, 1956, 1982). To achieve this, resource-rational analysis (Griffiths, Lieder, & Good-
man, 2015) incorporates cognitive constraints into rational analysis. Concretely, it takes into account

which cognitive operations are available to people, how long they take, and how costly they are.

Resource-rational analysis is a four-step methodology (see Figure 1.3) that leverages the theory
of resource-rationality introduced above to derive process models of cognitive abilities from formal
definitions of their function and assumptions about the mind’s computational architecture. This
function-first approach starts at the computational level of analysis (Marr, 1982). When the problem
solved by the cognitive capacity under study has been formalized, resource-rational analysis postu-
lates an abstract computational architecture, that is a set of elementary operations and their costs,
with which the mind might solve this problem. Next, a resource-rational analysis derives the algo-

rithm that is optimal for solving the problem identified at the computational level with the abstract
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Figure 1.4: lllustration of how resource-rational analysis connects levels of analysis.

computational architecture (Equation 1.8). The resulting process model is used to predict people’s
responses and reaction times in a given experiment and those predictions are then tested against em-
pirical data. Based on this evaluation, the assumptions about the computational architecture and
the problems to be solved are revised and the analysis cycle is repeated (see Figure 1.5). The iterative
refinements of the assumed cognitive architecture proceeds from abstract, minimal assumptions to
an increasingly more realistic model of the underlying neuro-cognitive architecture (see Figure 1.4).

In this way, resource-rational analysis can be used to connect Marr’s levels of analysis (Marr, 1982).

By explicitly positing a class of possible algorithms and a cost to the resources used by these al-
gorithms, we can invoke an optimality principle to derive the algorithm that the mind should be

using. This makes resource-rational analysis a methodology for analyzing information-processing
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Figure 1.5: lllustration of the resource-rational analysis cycle.

systems at an intermediate level defined by an idealized family of computational mechanisms which
corresponds to a particular computational architecture. This method enables us to reverse-engineer
not only the problem that a system solves (computational level of analysis), but also, the system’s

computational architecture.

To identify a family of potential cognitive strategies and the corresponding cognitive architec-
ture (Step 2), resource-rational analysis draws on previous research in the computational sciences.
Concretely, having formulated the problem to be solved in precise mathematical terms allows us to
mine the literature of artificial intelligence, machine learning, operations research, and other areas of
the computer science and statistics for classes of algorithms that have been developed to efficiently
solve such problems. Such a literature search generally yields one or more parametric families of
algorithms. Different settings of algorithm’s parameters often produce qualitatively different behav-
iors and different speed-accuracy trade-offs. For instance, particle filtering is a general approach that
leads to specific algorithms varying in the number of particles, the re-sampling criteria, and so on
(Abbott & Griffiths, 2011). This results in an infinite collection of algorithms some of which have
qualitatively different properties (e.g., one particle vs. millions of particles). Steps 2 and 3 allow us
to find reasonable points within this space of algorithms, which can then be compared to human
behavior. To the degree that evolution, development, and learning have adapted the system to make
optimal use of its finite computational resources, resource-rational analysis can be used to derive the

system’s algorithm from assumptions about its computational architecture.
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1.6 RESOURCE-RATIONALITY AS AN ORGANIZING PRINCIPLE FOR UNDERSTANDING HU-

MAN COGNITION

The general principle that human cognition is optimal subject to computational constraints has
been successfully instantiated in previous models of decision-making, perception, memory, atten-
tion, reasoning, and cognitive control (Gershman et al., 2015; Lewis et al., 2014; Shenhav et al., 2017).
In this section, I review this literature to highlight the potential of resource-rational analysis and

opportunities for future work.

1.1 RESOURCE-RATIONAL MODELS OF DECISION-MAKING

Models of bounded-optimal decision-making differ widely in their assumptions about the nature,
costs, and limits of the cognitive operations they assume to be available to the decision-maker and in

which aspects of decision-making are assumed to be bounded-optimal.

COSTLY INFORMATION ACQUISITION. Ata minimum, the models reviewed here assume that it
is costly to acquire information while retaining the assumption that acquired information will be
processed optimally (Caplin, Dean, & Martin, 2o011; Colombo, Femminis, & Pavan, 2014; Gabaix,
Laibson, Moloche, & Weinberg, 2006; Lieder, Krueger, & Griffiths, 2017; Reis, 2006; Verrecchia,
1982). By leveraging the principle of bounded-optimality, these studies were able to show that pre-
viously proposed heuristics can be resource-rational: Caplin et al. (2011) derived a bounded-optimal
version of Herbert Simon’s classic satisficing heuristic (Simon, 1956). Similarly, Lieder, Krueger, and
Grifhiths (2017) found that the Take-The-Best heuristic might be bounded-optimal when the stakes
are low and one outcome is much more probable than all the others. Evaluating models of optimal
decision-making with information costs in experiments has revealed that human performance is
constrained by additional limitations, such as limited working memory (Sanjurjo, 2017) and limited
information about the statistics of the decision environment that necessitate exploration (Caplin et

al.,, 2011).

NEURAL NOISE.  Other studies have assumed that decision-making is constrained by neural noise
corrupting the fidelity of internal representations (Bhui & Gershman, 2017; Howes, Warren, Farmer,
El-Deredy, & Lewis, 2016; Khaw, Li, & Woodford, 2017; Summerfield & Tsetsos, 2015). Khaw et

al. (2017) that risk aversion follows from Bayesian inference of the gambles’ expected values from
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a psychophysically plausible noisy representation of their payoffs. Similarly, Howes et al. (2016)
showed that contextual preference reversals can be explained as the consequence of an optimal infer-
ence of value from a noisy representation of the alternatives’ attributes. Bhui and Gershman (2017)
point out that the neural noise assumed by these models can be understood as a consequence of
bounded-optimal neural coding under metabolic constraints. Assuming that the fidelity of neural
representations is constrained, how should value be represented? Bhui and Gershman (2017) present
an information theoretic argument for the idea that it is bounded-optimal for the brain to represent
utilities and probabilities by their smoothed rank. Their analysis provides a rational justification

for the core assumptions of the decision-by-sampling model (N. Stewart, 2009; N. Stewart, Chater,
& Brown, 2006) and extends it in a way that explains additional biases in decision-making (range

effects and certain context effects).

BOUNDED-OPTIMAL EVIDENCE ACCUMULATION. A large number of studies have applied
bounded-optimality to different components of the drift-diffusion model of decision-making
(Gold & Shadlen, 2007): the decision threshold (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Bogacz, Hu, Holmes, & Cohen, 2010; Fudenberg, Strack, & Strzalecki, 2018; Gabaix & Laibson,
200s; Tajima, Drugowitsch, & Pouget, 2016; Vul, Goodman, Griffiths, & Tenenbaum, 2014), ev-
idence generation (Dickhaut, Rustichini, & Smith, 2009; Woodford, 2014, 2016), and evidence
accumulation (Bogacz et al., 2006; Tsetsos et al., 2016). While these models were first fully devel-
oped for the domain of perceptual decision-making (Bogacz et al., 2006, 2010) they have also been
extended to value-based choice (Dickhaut et al., 2009; Fudenberg et al., 2018; Gabaix & Laibson,
200s; Tajima et al., 2016; Tsetsos et al., 2016; Woodford, 2014, 2016). The resulting models offer a
resource-rational reinterpretation for phenomena that were previously considered irrational, includ-
ing intransitive preferences (Tsetsos et al., 2016) and probability matching (Vul et al., 2014). Other
studies have found systematic deviations of human performance from the predictions of the opti-
mal drift-diffusion model of perceptual decision-making (Holmes & Cohen, 2014). For instance,
Bogacz et al. (2010) found that most people under-perform the optimal speed-accuracy tradeoft by
setting their decision threshold too high leading to a heightened accuracy at the expense of respond-
ing too slowly. This finding suggests that human performance is constrained by additional bounds
that limit the accuracy of their time estimates and that make it costly for them to adjust the decision

threshold through cognitive control (Holmes & Cohen, 2014).
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LiMITED ATTENTION.  Other studies have applied bounded optimality principles to model the ef-
fect of limited attention resources (Caplin & Dean, 2015; Caplin, Dean, & Leahy, 2017; Gabaix, 2014;
Lieder, Griffiths, & Hsu, 2017; C. A. Sims, 2003, 2006; Woodford, 2012). The starting point of this
line of inquiry was Sim’s theory of rational inattention (C. A. Sims, 2003, 2006). This theory models
people’s limited attention in terms of an information theoretic constraint on the mutual informa-
tion between the state of the environment and the bounded agent’s behavior. This model has been
able to successfully explain several apparent irrationalities in economic behavior, including the iner-

tia, randomness, and abruptness of the reactions of decision-makers to new financial information.

One limitation of the rational inattention model is that it discounts all information equally
whereas people tend to focus their attention on a small number of important pieces of informa-
tion while neglecting others completely. Gabaix (2014) addressed this limitation by deriving an op-
timal attention function that selects which variables the decision-maker should attend to and how
much attention each of the selected variables should receive. Gabaix (2014) argues that his sparsemax
model can be used as a more psychologically plausible foundation for elements of micro-economic
theory and shows that its predictions deviate from standard micro-economic theory which assumes
perfectly rational agents in similar ways as human behavior. A second limitation of the rational
inattention model is that it makes very specific assumptions about the cost of attention whose pre-
dictions where not borne out by subsequent experiments (Caplin & Dean, 2013; Caplin et al., 2017;
Dean & Neligh, 2017). Subsequent models addressed this problem by generalizing the attention cost
function in ways that make it possible to reconcile these deviations with bounded-optimal decision-
making under limited attention resources (Caplin & Dean, 20155 Caplin et al., 2017). This illustrates
that resource-rational analysis can be used to reverse-engineer what the cognitive constraints on
human decision-making might be. A third limitation of the rational inattention model is that it
abstracts away from the cognitive processes of decision-making. I will address this limitation by de-
veloping a resource-rational process model of decision-making with limited attention resources in

Chapter 3.

COMPUTATIONAL COMPLEXITY. The models discussed so far assumed that human decision-
making is bounded-optimal, subject to the constraints imposed by incomplete information, neural
noise, and limited attention. By contrast, Beck, Ma, Pitkow, Latham, and Pouget (2012) argue that
the relatively levels of neural noise measured neuro-physiologically are not nearly high enough to
fully explain the variability and suboptimality of human performance. They propose that instead

of making optimal use of noisy representations, the brain uses approximations that entail systematic
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biases. Such approximations appear to be warranted by the intractable computational complexity
of decision-making (Bossaerts & Murawski, 2017). The notions of Type II rationality and rational
metareasoning introduced above seek to address this problem by terminating deliberation as soon as
the expected improvement of decision quality that can be achieved by performing another compu-
tation drops below the cost of computation. Unfortunately, performing this cost-benefit analysis is
itself intractable. The directed cognition model by Gabaix and Laibson (2005); Gabaix et al. (2006)
addresses this concern by selecting computations according to a myopic cost-benefit analysis that
looks only a single step ahead. They show that their model predicts people’s decisions in certain sce-
narios more accurately than expected utility theory and predicts qualitative properties of how peo-
ple choose between multiple complex goods (Gabaix et al., 2006). However, there are many ways in
which people violate the prediction of this model (Sanjurjo, 2017; Yang, Toubia, & De Jong, 2015).
Resource-rational analysis might be able to address these limitations, and recent study found that

a bounded-optimal model of planning explained human performance significantly better than the

directed cognition model (Callaway et al., 2018).

Ideas of bounded optimality have been applied to model how people leverage their habits to
eschew or reduce the computational challenges of planning. Huys et al. (2015) employed an opti-
mal fragmentation model according to which people decompose sequential decision problems into
sub-problems so as to optimally trade-off savings in the cost of planning attained by reusing pre-
vious action sequences with the resulting decrease in decision quality. This model helped them to
gain insights into how people combine different heuristics to efficiently solve complex planning
problems. Recent work has provided additional empirical evidence for the view that people adap-
tively leverage their habit system to simplify planning (Keramati, Smittenaar, Dolan, & Dayan,
2016). Beyond that, there appears to be very little, if any, research that has applied the principle
of bounded-optimality to understand the simple heuristics people use to solve complex problems
(Gigerenzer, 2008a; Gigerenzer & Selten, 2002). While it is commonly assumed that a boundedly
rational decision-maker would rely on heuristics (Bossaerts & Murawski, 2017; Gigerenzer, 2008a;
Gigerenzer & Selten, 2002), there used to be no theory for deriving bounded-optimal heuristics. To
address this problem, I developed the theory of resource-rationality presented above (Equation 1.8).
Chapters 2-3 apply this framework to derive resource-rational heuristics, and Chapter 6 presents
a computational method for discovering rational heuristics automatically and applies it to multi-

alternative risky-choice and planning.
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1.6.2 RESOURCE-RATIONAL MODELS OF MEMORY

Human memory is fundamentally constrained by the fact that some cognitive resources which are
critical for human performance, such as working memory, are very limited (Miller, 1956). The com-
bination of limited resources and adaptive pressures suggests that resource-rational analysis might
be particularly useful for understanding the memory mechanisms. In addition to Anderson’s fa-
mous rational analysis of memory storage and retrieval (Anderson & Milson, 1989), recent work has
applied the principles of bounded optimality to understand the working memory mechanisms gov-
erning people how many items are committed to working memory (Howes et al., 2016), how those
items will be encoded (Orhan, Sims, Jacobs, & Knill, 2014; C. R. Sims, 2015, 2016; C. R. Sims, Jacobs,
& Knill, 2012; van den Berg & Ma, 2017), and how their memories will maintained (Suchow, 2014;
Suchow & Griffiths, 2016).

Anderson and Milson’s rational analysis of memory (Anderson & Milson, 1989) can be inter-
preted as the first application of the principle of bounded optimality to understanding the human
mind. It assumed that memory retrieval is bounded by the computational constraints of time and
effort and that retrieving relevant information from memory requires searching through a list of po-
tentially relevant memories until one either finds a relevant one or gives up the search. Given these
computational constraints, Anderson and Milson (1989) derived an optimal memory storage mech-
anism that exploits the statistical structure of the environment to sort the memories in the order
of the probability that they will be needed and a stopping rule that terminates the search when its
expected gain drops below its cost. The resulting bounded-optimal memory mechanisms correctly
predict the effects of frequency, recency, and spacing on the how accurate people were at recalling
information and how long it took them to do so. Anderson and Schooler (1991) followed up on this
analysis by showing that the frequency with which a previously encountered piece of information
will be needed again in people’s natural environment does indeed possess the statistical structure

that makes the empirically observed memory mechanisms bounded-optimal.

The work by C. R. Sims et al. (2012) and van den Berg and Ma (2017) illustrates that developing
and evaluating bounded-optimal models is a promising way to reverse-engineer the constraints that
limit people’s cognitive performance. The bounded optimality framework allowed C. R. Sims et
al. (2012) to derive the effects of different kinds of capacity limits and test the resulting predictions
against empirical data. This allowed them to infer that rather than being constrained to a fixed num-
ber of items, visual working memory is a more continuous resource that can be flexibly divided to

either maintain a small number of items with high fidelity or a larger number of items with lower
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fidelity. Furthermore, their bounded optimal model predicts that how information is encoded in
working memory should depend on the statistics of the input distribution, the nature of the task,
and the relative costs of different kinds of errors (C. R. Sims, 2016; C. R. Sims et al., 2012). This al-
lowed their model to correctly predict how the precision with which items are encoded in working
memory depends on task characteristics such as the number of items and the variability of their fea-
tures. These contingencies challenge the capacity limits inferred from previous working memory
studies that have used artificial stimuli and suggest that more naturalistic stimuli might reveal the
capacity of human working memory to be less limited than it seems (Orhan et al., 2014). Going
one step further, van den Berg and Ma (2017) challenged the ingrained assumption that working
memory always distributes a fixed amount of representational resources among the encoded items.
Instead, their model expresses the assumption that the total amount of working memory resources
invested at any given time is chosen according to a rational cost-benefit analysis that trades-off the
expected behavioral performance against the neural/metabolic cost of active memory maintenance.
They show that the resulting model provides a better and more principled explanation of how work-
ing memory performance depends on the number of items to be remembered. Finally, the work

by C. R. Sims (2015) illustrates that resource-rational analysis (see Figure 1.5) can be used to reverse-

engineer not only the capacity limitations of working memory, but also, its implicit goals.

1.6.3 RESOURCE-RATIONAL MODELS OF PERCEPTION AND NEURAL CODING

Many previous studies have successfully modeled perception as Bayesian inference (Kersten, Mamas-
sian, & Yuille, 2004; Knill & Pouget, 2004; Knill & Richards, 1996; Lee & Mumford, 2003; Marr,
1982; Yuille & Kersten, 2006).The observation that rational models have been most successful in the
domain of perception might reflect that our perceptual systems have been under direct evolutionary
pressure for a very long time and have been equipped with considerable neural resources. However,
perception is also an intractably difficult problem (Tsotsos, 1988). So, it would be very surprising if

it was not also shaped by computational constraints.

Recent work has shown that there are indeed systematic deviations of human perception from
Bayesian inference that can be understood in terms of bounded optimality (C. R. Sims, 2016; Stocker,
Simoncelli, & Hughes, 2006; Wei & Stocker, 2015, 2017). The principle of bounded optimality has
also been invoked to elucidate the underlying neural mechanisms (Lennie, 2003; Levy & Baxcter,

1996; Olshausen & Field, 2004; Z. Wang, Wei, Stocker, & Lee, 2016). Stocker et al. (2006) found

that the biases and variability of people’s judgments of the speed of visual motion were consistent
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with the Bayes-optimal use of a noisy internal representation of the sensory evidence. Wei and
Stocker (2015,2017) proposed that the limited fidelity of these representations arises from the ne-
cessity to distribute finite neural resources across all possible percepts. They proceed to show that
the optimal allocation of these limited resources according to natural image statistics can explain
why people’s orientation judgments are sometimes biased away from their prior expectation rather
than towards it. It also correctly predicted a lawful relationship between the perceptual discrimina-
tion of a particular stimulus value, say orientation, and the amount of bias in people’s perception
of it (Wei & Stocker, 2017). Another recent resource-rational analysis of perception (C. R. Sims,
2016) has emphasized that bounded-optimal perceptual representations are also shaped by the fact
that certain perceptual errors (e.g., confusing a poisonous mushroom for an edible one) are more
costly than others (e.g., confusing two poisonous mushrooms). One payoft of this approach is that
it makes it possible to infer people’s cost function (which can be interpreted as specifying the goal of

perception) from their perceptual performance.

Furthermore, the principle of bounded optimality can also be applied to the neural implemen-
tation of perceptual mechanisms. This approach makes it possible to ground the assumed capacity
limitations of resource-rational models in biophysical constraints that can be measured indepen-
dently. One of these constraints is metabolic energy. In fact, action potentials are so metabolically
expensive that at most 1% of all neurons in the brain can sustain substantial activity in parallel
(Lennie, 2003). This bound imposes serious constraints on neural coding and computation. In-
deed, many aspects of morphology, physiology, and wiring of neural circuits can be understood as
the adaptation to the evolutionary pressure to achieve a near-optimal trade-off between the compu-
tational efficacy and metabolic cost (Levy & Baxter, 1996, 2002; Niven & Laughlin, 2008; Sterling &
Laughlin, 2015). This principle can, in turn, be used to mathematically derive optimal neural codes
that respect biological constraints (Levy & Baxter, 1996). For instance, Z. Wang et al. (2016) derived
some of the visual system’s neural codes by maximizing the mutual information between the neural
representation and the sensory input subject to metabolic constraints and limited fidelity caused
by neural noise. Furthermore, the principle of sparse coding (Olshausen & Field, 1996), which has
been highly successful in explaining the receptive fields of sensory neurons (Olshausen & Field, 1997,
2004), can be interpreted as a bounded optimal solution to the problem of accurately representing
the environment subject to the constraint that only a very small fraction of all neurons can be active
simultaneously. Finally, the effects of metabolic constraints are not restricted to the details of the
neural implementation but propagate all the way up to high-level cognition by necessitating cogni-

tive mechanisms like selective attention (Lennie, 2003).

33



1.7 CONCLUSION AND OUTLOOK

The successes of resource-rational analysis summarized above suggest that resource-rationality is a
promising theoretical framework for understanding bounded rationality. As these examples illus-

trate, resource-rational analysis has a number of benefits:

1. The resource-rational perspective provides an overarching principle from which we can de-
rive models of human cognition that are both mathematically precise and psychologically

plausible.

2. Resource-rationality can, therefore, be used to develop a theoretical foundation for the eco-
nomic sciences that is substantially more realistic than expected utility theory.

3. Resource-rationality provides a unifying explanation for a wide range of seemingly unrelated
phenomena.

4. Resource-rational models allow us to make sense of cognitive biases.

5. Resource-rationality provides a realistic normative standard against which human behavior
can be evaluated to identify genuine sub-optimalities.

6. Resource-rational analysis can be used to reverse-engineer cognitive limitations and to infer a
cognitive system’s implicit goals from errors in its performance.

The fact that some “cognitive biases” were found to be compatible with the principles of bounded
optimality suggests that it is time to re-evaluate human rationality against this more realistic norma-
tive standard. Despite the considerable progress summarized above, many questions remain to be
answered. In particular, it remains unclear whether classic cognitive biases, such as anchoring and
availability, that have been instrumental to the conclusion that people are irrational are compatible
with the principles of resource-rational information processing or not. Furthermore, almost all of
the resource-rational analyses reported above were restricted to optimizing single parameters of cog-
nitive mechanisms, resource-allocation, or abstractly characterizing representations. But there is still
no principled way to derive resource-rational cognitive strategies, and it remains unclear whether
and under which conditions the heuristics advocated by proponents of ecological rationality are
resource-rational. Furthermore, while bounded optimality has already been applied to answer de-
scriptive and normative questions about the human mind, it has yet to be translated into useful
prescriptive theories that can be used to improve human cognition through training, instruction, or

technology.
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To address these gaps in our knowledge, the remaining chapters of Part 1 revisit the debate about
human rationality by applying resource-rational analysis to two cognitive biases that have been in-
strumental to the conclusion that people are fundamentally irrational: the anchoring bias (Chap-
ter 2) and the availability bias (Chapter 3). Furthermore, my dissertation illustrates how resource-
rationality can be leveraged to elucidate the cognitive mechanisms of judgment, decision-making,
planning, and strategy selection. To facilitate these efforts, Chapter 6 introduces a computational
method for deriving bounded-optimal strategies automatically (Step 3 of resource-rational analysis;
see Figure 1.3). In Part 2 T apply this method and insights into people’s bounded rationality towards
overcoming cognitive limitations and improving decision-making. As part of these efforts, I develop
a cognitive tutor for boosting people’s decision-making competence (Hertwig & Griine-Yanoft,

2017) with automatically discovered resource-rational heuristics.
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A resource-rational perspective on

anchoring—and—adjustment*

Achieving demanding goals in limited time requires balancing being quick and being accurate. We
regret the opportunities we miss when we fail to make up our mind on time, but we also regret

the errors we commit by jumping to conclusions. When we think too little our judgments can be
skewed by irrelevant information that we happened to see, hear, or think about a moment ago. This
phenomenon is known as anchoring. Anchoring is one of the cognitive biases discovered by Tver-
sky and Kahneman (1974) and played an important role in the debate about human rationality. It
impacts many important aspects of our lives including the outcome of salary negotiations (Galinsky
& Mussweiler, 2001), economic decisions (e.g., Simonson & Drolet, 2004), criminal sentences (En-
glich, Mussweiler, & Strack, 2006), and even our ability to understand other people (Epley, Keysar,

Van Boven, & Gilovich, 2004).

In their classic paper, Tversky and Kahneman (1974) showed that people’s judgments could be
systematically skewed by providing them with an arbitrary number before their judgment: The ex-

perimenter generated a random number by spinning a wheel of fortune, and then asked participants

"This chapter is based on Lieder, Griffiths, Huys, and Goodman (2018a), Lieder, Griffiths, Huys, and
Goodman (2018b), and Lieder, Griffiths, Huys, and Goodman (2017).
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to judge whether the percentage of African countries in the United Nations was smaller or larger
than that number. Participants were then asked to estimate this unknown quantity. Strikingly, the
participants’ estimates were biased towards the random number: their median estimate was larger
when the random number was high than when it was low. This appears to be a clear violation of
rationality. According to Tversky and Kahneman (1974) this violation occurs because people use a
two-stage process called anchoring-and-adjustment (see also Nisbett & Ross, 1980). In the first stage,
people generate a preliminary judgment called their anchor. In the second stage, they adjust that

judgment to incorporate additional information, but the adjustment is usually insufficient.

In Tversky and Kahneman’s experiment people appear to have anchored on the random number
provided by the experimenter and adjusted it insufficiently. Consequently, when the anchor was

low people’s judgments were too low, and when the anchor was high then their judgments were too

high.

At first sight, anchoring appears to be irrational, because it deviates from the standards of logic
and probability which are typically used to assess rationality. But it could also be a reasonable com-
promise between error in judgment and the cost of computation, and hence be resource-rational.
Anchoring-and-adjustment has two components that could be irrational: the generation of the
anchor and the process by which it is adjusted. Previous research found that when no anchor is pro-
vided, the anchors that people generate for themselves are relevant quantities that are reasonably
close to the correct value and can be generated quickly (Epley & Gilovich, 2006). Furthermore, re-
search on human communication suggests that in everyday life it is reasonable to assume that other
people are cooperative and provide relevant information (N. Schwarz, 2014). Applied to anchoring,
this means that if somebody asks you in real life whether a quantity you know very little about is
larger or smaller than a certain value, it would be rational to treat that question as a clue to its value
(Zhang & Schwarz, 2013). Thus, having the queried value in mind might make it rational to reuse it
as your anchor for estimating the unknown quantity. This suggests that the mechanism by which
people generate their anchors could be rational in the real world." If this is true, then the rationality
of anchoring-and-adjustment hinges on the question of whether adjustment is a rational process. To
answer this question, we investigate whether insufficient adjustment can be understood as a rational
tradeoff between time and accuracy. If so, then how much people adjust their initial estimate should
adapt rationally to the relative utility of being fast versus being accurate. To formalize this hypoth-
esis, we present a resource-rational analysis of numerical estimation. We then leverage the predic-

tions of this analysis to experimentally test our hypothesis that adjustment is rational. Our analysis

TWe will revisit this issue in more depth in the general discussion.
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suggested that the rational use of finite resources correctly predicts the anchoring bias and how it
changes with various experimental manipulations (see Table 2.1). Our rational account makes the
novel prediction that opportunity cost increases the anchoring bias and decreases reaction time re-
gardless of whether the anchor is provided or self-generated. We tested these predictions in two con-
trolled experiments where participants estimate numerical quantities under four different combina-
tions of time cost and error cost. The experiments confirmed our theory’s predictions and provided
strong support for our rational process model of adjustment over alternative, less rational models of

anchoring. All of these results support the conclusion that adjustment is resource-rational.

The remainder of this chapter begins with a brief survey of empirical findings on anchoring and
discusses the challenges that they pose to existing accounts of anchoring-and-adjustment. We then
present our resource-rational analysis of numerical estimation, a rational process model that can be
interpreted in terms of anchoring-and-adjustment, and a series of simulations demonstrating that
this model is sufficient to explain the reviewed phenomena. This motivates our two experiments,

which we present in turn. We close by discussing our findings and their implications.

2.1 EMPIRICAL FINDINGS ON THE ANCHORING BIAS

Anchoring is typically studied in numerical estimation tasks. Numerical estimation involves making
an informed guess of the value of an unknown numerical quantity. Since the first anchoring exper-
iment by Tversky and Kahneman (1974) a substantial number of studies have investigated when

anchoring occurs and what determines the magnitude of the anchoring bias (see Table 2.1).

The anchors that people use when forming estimates can be relevant to the quantity they are
estimating. For instance, Tversky and Kahneman (1974) found that people sometimes anchor on the
result of calculating 1 x 2 X 3 x 4 when the task is estimating 1 X 2 x 3 X 4 x - -- x 8. However,
people can also be misled, anchoring on numbers that are irrelevant to the subsequent judgment.
For instance, many anchoring experiments first ask their participants whether an unknown quantity
is larger or smaller than a given value and then proceed to have them estimate that quantity. Having
compared the unknown quantity to the value provided by the experimenter makes people re-use
that value as their anchor in the subsequent estimation task. Those numbers are therefore known
as provided anchors. Importantly this procedure works with irrelevant numbers such as the random
number that Tversky and Kahneman (1974) generated for their participants or one’s own social

security number (Ariely, Loewenstein, & Prelec, 2003).
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Although asking people to compare the quantity to a given number is particularly effective, the
anchoring bias also occurs when anchors are presented incidentally (Wilson, Houston, Etling, &
Brekke, 1996), although this effect is smaller and depends on particulars of the anchor and its presen-
tation (Brewer & Chapman, 2002). Furthermore, anchoring-and-adjustment can also occur without
an externally provided anchor: At least in some cases people appear to generate their own anchor
and adjust from it (Epley & Gilovich, 2004). For instance, when Americans are asked to estimate the
boiling point of water on Mount Everest they often recall 212°F (100°C) and adjust downwards to

accommodate the lower air pressure in higher altitudes.

Although people’s adjustments are usually insufficient, various factors influence their size and
consequently the magnitude of the anchoring bias. For instance, the anchoring bias is larger the
more uncertain people are about the quantity to be estimated (Jacowitz & Kahneman, 1995). Indeed,
Wilson et al. (1996) found that people knowledgeable about the quantity to be estimated were im-
mune to the anchoring bias whereas less knowledgeable people were susceptible to it. While familiar-
ity (Wright & Anderson, 1989) and expertise (Northcraft & Neale, 1987) do not abolish anchoring,
expertise appears to at least reduce it (Northcraft & Neale, 1987). Other experiments have system-
atically varied the distance from the anchor to the correct value. Their results suggested that the
magnitude of the anchoring bias initially increases with the distance from the anchor to the correct
value (Russo & Schoemaker, 1989). Yet this linear increase of the anchoring bias does not continue
indefinitely. Chapman and Johnson (1994) found that increasing an already unrealistically large

anchor increases the anchoring bias less than increasing a realistic anchor by the same amount.

Critically for the resource-rational account proposed here, the computational resources available
to people also seem to influence their answers. Time pressure, cognitive load, and alcohol decrease
the size of people’s adjustments and inter-individual differences in how much people adjust their
initial estimate correlate with relevant personality traits such as the need for cognition (Epley &
Gilovich, 2006). In addition to effects related to cognitive resources, adjustment also depends on in-
centives. Intuitively, accuracy motivation should increase the size of people’s adjustments and there-
fore decrease the anchoring bias. Interestingly, experiments have found that accuracy motivation de-
creases the anchoring bias only in some cases, but not in others (Epley & Gilovich, 2006; Simmons,
LeBoeuf, & Nelson, 2010). On questions where people generated their own anchors, financial incen-
tives increased adjustment and reduced the anchoring bias (Epley & Gilovich, 2006; Simmons et al.,
2010). But on questions with provided anchors, financial incentives have typically failed to eliminate
or reduce the anchoring bias (Ariely et al., 2003; Tversky & Kahneman, 1974) with some exceptions

(Wright & Anderson, 1989). A recent set of experiments by Simmons et al. (2010) suggested that
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accuracy motivation increases adjustment from provided and self-generated anchors if and only if
people know in which direction to adjust. Taken together, these findings suggests that the anchoring

bias depends on how much cognitive resources people are able to and willing to invest.

Before the experiments by Simmons et al. (2010) demonstrated that accuracy motivation can
increase adjustment from provided anchors, the bias towards provided anchors appeared immutable
by financial incentives (Chapman & Johnson, 2002; Tversky & Kahneman, 1974; Wilson et al., 1996),
forewarnings and time pressure (Mussweiler and Strack, 1999; but see Wright and Anderson, 1989).
Since incentives were assumed to increase adjustment and increased adjustment should reduce the
anchoring bias, the ineffectiveness of incentives led to the conclusion that the anchoring bias results
from a mechanism other than anchoring-and-adjustment, such as selective accessibility (Chapman
& Johnson, 2002; Epley, 2004; Mussweiler & Strack, 1999). Later experiments found that when
people generate the anchor themselves accuracy motivation and time pressure are effective (Epley &
Gilovich, 2005, 20065 Epley et al., 2004). This led Epley and Gilovich (2006) to conclude that people
use the anchoring-and-adjustment strategy only when they generated the anchor themselves whereas

provided anchors bias judgments through a different mechanism.

The wide range of empirical phenomena summarized in Table 2.1 have suggested a correspond-
ingly wide range of explanations, including the idea that anchoring and adjustment is not a simple,
unitary process. The remainder of the chapter explores an alternative account, showing that these
disparate and seemingly inconsistent phenomena can all be explained by a unifying principle: the
rational use of finite time and cognitive resources. From this principle we derive a resource-rational
anchoring-and-adjustment model and show that it is sufficient to explain the anchoring bias regard-

less of whether the anchor was provided or self-generated.

2.2 ANCHORING AND ADJUSTMENT AS RESOURCE-RATIONAL INFERENCE

In this section we formalize the problem people solve in anchoring experiments — numerical estima-
tion — and analyze how it can be efficiently solved in finite time with bounded cognitive resources.
We thereby derive a resource-rational model of anchoring-and-adjustment. We then use this model

to explain a wide range of anchoring phenomena.

Conceptually, our model assumes that adjustment proceeds by repeatedly considering small
changes to the current estimate. The proposed change is accepted or rejected probabilistically such

that the change is more likely to be made the more probable the new value is and the less probable
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the current one is (see Figure 2.1). After sufficiently many adjustments the estimate becomes cor-
rect on average and independent of the initial guess. However, each small adjustment costs a certain
amount of time. According to our model, the number of steps is chosen to minimize the expected
value of the time cost of adjustment plus the error cost of the resulting estimate. In the remainder
of this section, we derive our model from first principles, specify it in detail, and show that the opti-
mal number of adjustments is very small. As Figure 2.1 illustrates, this causes the final estimates to be

biased towards their respective anchors.

In contrast to previous theories of anchoring (Epley & Gilovich, 2006; Simmons et al., 2010),
our model precisely specifies the number, size, and direction of adjustments as a function of the
task’s incentives and the participant’s knowledge. In contrast, to the proposal by Epley and Gilovich
(2006) our model covers adjustments from provided anchors and self-generated anchors. Further-
more, while Epley and Gilovich (2006) assumed that the correct direction of adjustment is known,
our model does not make this assumption and allows the direction of adjustment to change from
one step to the next. The model by Simmons et al. (2010) also makes these conceptual assumptions.
However, it does not specify precisely how the direction and size of each adjustment are determined.
While their model predicts a deterministic back-and-forth in the face of uncertainty, our model as-
sumes that adjustments that improve the estimate are probabilistically preferred to adjustments
that do not. This enables our model to capture streaks of adjustments in the correct direction inter-
rupted by small steps in the wrong direction, whereas the model by Simmons et al. (2010) appears
to predict that the direction of adjustment should constantly alternate. Finally, while both previ-
ous models assumed that adjustment stops as soon as the current estimate is sufficiently plausible
(Epley & Gilovich, 2006; Simmons et al., 2010), we propose that the number of adjustments is pre-
determined adaptively to achieve an optimal speed-accuracy tradeoff on average. In the subsequent
section we apply the resulting model to explain the various anchoring phenomena summarized in
Table 2.1, and after that we will empirically test its predictions against the predictions of alternative
models of adjustment including the stopping rule assumed by Epley and Gilovich (2006) and Sim-

mons et al. (2010).

2.2.1 RESOURCE-RATIONAL ANALYSIS OF NUMERICAL ESTIMATION

Resource-rational analysis is a new approach to answering a classic question: how should we think

and decide given that our time and our minds are finite?

Having introduced the basic concepts of resource rationality in Chapter 1, we now apply resource-
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rational analysis to numerical estimation: We start by formalizing the problem solved by numerical
estimation. Next, we specify an abstract computational architecture. We then derive the optimal
solution to the numerical estimation problem afforded by the computational architecture. This
resource-rational strategy will then be evaluated against empirical data in the remainder of this chap-

ter.

FuncTIiON

In numerical estimation people have to make an informed guess about an unknown quantity X
based on their knowledge K. In general, people’s relevant knowledge K is incomplete and insufh-
cient to determine the quantity X with certainty. For instance, people asked to estimate the boiling
point of water on Mount Everest typically do not know its exact value, but they do know related
information, such as the boiling point of water at normal altitude, the freezing point of water, the
qualitative relationship between altitude, air pressure, and boiling point, and so on. We formalize
people’s uncertain belief about X by the probability distribution P (X | K') which assigns a plausi-
bility p(X = z|K) to each potential value z. According to Bayesian decision theory, the goal is
to report the estimate & with the highest expected utility I p( x| ) [u(%, x)]. This is equivalent to

finding the estimate with the lowest expected error cost
* . A
r* = arg ming 5 p( x| i) [cost(Z, 7)), (2.1)

where 2* is the optimal estimate, and cost(Z, ) is the error cost of the estimate & when the true

value is z.

MODEL OF MENTAL COMPUTATION

How the mind should solve the problem of numerical estimation (see Equation 2.1) depends on its
computational architecture. Thus, to derive predictions from the assumption of resource-rationality
we have to specify the mind’s elementary operations and their cost. To do so, we build on the resource-
rational analysis by Vul et al. (2014) which assumed that the mind’s elementary computation is sam-
pling. Sampling is widely used to solve inference problems in statistics, machine learning, and arti-
ficial intelligence (Gilks, Richardson, & Spiegelhalter, 1996). Several behavioral and neuroscientific
experiments suggest that the brain uses computational mechanisms similar to sampling for a wide

range of inference problems ranging from vision to causal learning (Bonawitz, Denison, Gopnik, &
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Grifhiths, 2014; Bonawitz, Denison, Griffiths, & Gopnik, 2014; Denison, Bonawitz, Gopnik, & Grif-
fiths, 2013; Fiser, Berkes, Orbédn, & Lengyel, 2010; Griffiths & Tenenbaum, 2006; N. Stewart et al.,
2006; Vul et al., 2014). One piece of evidence is that people’s estimates of everyday events are highly
variable even though the average of their predictions tends to be very close to the optimal estimate
prescribed by Bayesian decision theory (see Equation 2.1, Griffiths & Tenenbaum, 2006; 2011). Fur-
thermore, Vul et al. (2014) found that the relative frequency with which people report a certain value
as their estimate is roughly equal to its posterior probability, as if the mind was drawing one sample

from the posterior distribution.

Sampling stochastically simulates the outcome of an event or the value of a quantity such that, on
average, the relative frequency with which each value occurs is equal to its probability. According to
Vul et al. (2014), people may estimate the value of an unknown quantity X using only a single sam-
ple from the subjective probability distribution P(X|K) that expresses their beliefs. If the expected
error cost (Eq. 2.1) is approximated using a single sample Z, then that sample becomes the optimal
estimate. Thus, the observation that people report estimates with frequency proportional to their

probability is consistent with them approximating the optimal estimate using only a single sample.

However, for the complex inference problems that people face in everyday life generating even a
single perfect sample can be computationally intractable. Thus, while sampling is a first step from
computational level theories based on probabilistic inference towards cognitive mechanisms, a more
detailed process model is needed to explain how simple cognitive mechanisms can solve the complex
inference problems of everyday cognition. Here, we therefore explore a more fine-grained model
of mental computation whose elementary operations serve to approximate sampling. In statistics,
machine learning, and artificial intelligence sampling is often approximated by Markov chain Monte
Carlo (MCMC) methods (Gilks et al., 1996). MCMC algorithms allow the drawing of samples from
arbitrarily complex distributions using a stochastic sequence of approximate samples, each of which
depends only on the previous one. Such stochastic sequences are called Markov chains; hence the

name Markov chain Monte Carlo.

The remainder of the chapter explores the consequences of assuming that people answer numer-
ical estimation questions by engaging in a thought process similar to MCMC. We assume that the
mind’s computational architecture supports MCMC by two basic operations: The first operation
takes in the current estimate and stochastically modifies it to generate a new one. The second oper-
ation compares the posterior probability of the new estimate to that of the old one and accepts or
rejects the modification stochastically. Furthermore, we assume that the cost of computation is pro-

portional to how many such operations have been performed. These two basic operations are suf-
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ficient to execute an effective MCMC strategy for probabilistic inference known as the Metropolis-
Hastings algorithm (Hastings, 1970). This algorithm is the basis for our anchoring-and-adjustment

models as illustrated in Figure 2.1.

Probability

p(xlk)

500

Nr. Adjustments

250

optimal #adjustments

4
prop

Low Anchor High Anchor

Figure 2.1: The figure illustrates the resource-rational anchoring-and-adjustment. The three
jagged lines are examples of the stochastic sequences of estimates the adjustment process might
generate starting from a low, medium, and high anchor respectively. In each iteration a potential
adjustment is sampled from a proposal distribution pyop illustrated by the bell curves. Each pro-
posed adjustment is stochastically accepted or rejected such that over time the relative frequency
with which different estimates are considered ¢(Z;) becomes the target distribution p(z|k). The
top of the figure compares the empirical distribution of the samples collected over the second half
of the adjustments with the target distribution p(z|k). Importantly, this distribution is the same
for each of the three sequences. In fact, it is independent of the anchor, because the influence

of the anchor vanishes as the number of adjustments increases. Yet, when the number of adjust-
ments (iterations) is low (e.g., 25), the estimates are still biased towards their initial values. The
optimal number of iterations i* is very low as illustrated by the dotted line. Consequently, the re-
sulting estimates indicated by the red, yellow, and red cross are still biased towards their respective
anchors.

To be concrete, given an initial guess 2, which we will assume to be the anchor a (Z9 = a), this
algorithm performs a series of adjustments. In each step a potential adjustment ¢ is proposed by
sampling from a symmetric probability distribution Pyrop (6 ~ Pprops Porop(—06) = Pprop(9)).
The adjustment will either be accepted, thatis ;41 = Z¢ + 0, or rejected, thatis x¢11 = Zy.

If a proposed adjustment makes the estimate more probable (P(X = z; + 0|K) > P(X =

Z¢| K)), then it will always be accepted. Otherwise the adjustment will be made with probability
_ P(X=#:+6|K)

@ = TPR=#K)

unadjusted estimate. This strategy ensures that regardless of which initial value you start from, the

, that is according to the posterior probability of the adjusted relative to the
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frequency with which each value  has been considered will eventually equal to its subjective prob-
ability of being correct, thatis P(X = x|K). This is necessary to capture the finding that the dis-
tribution of people’s estimates is very similar to the posterior distribution P(X = z|K) (Griffiths
& Tenenbaum, 2006; Vul et al., 2014). More formally, we can say that as the number of adjustments
t increases, the distribution of estimates Q)(Z+) converges to the posterior distribution P(X |K).
This model of computation has the property that each adjustment decreases an upper bound on
the expected error by a constant multiple (Mengersen & Tweedie, 1996). This property is known as

geometric convergence and illustrated in Figure 2.2.

There are several good reasons to consider this computational architecture as a model of men-
tal computation in the domain of numerical estimation: First, the success of MCMC methods in
statistics, machine learning, and artificial intelligence suggests they are well suited for the complex
inference problems people face in everyday life. Second, MCMC can explain important aspects of
cognitive phenomena ranging from category learning (Sanborn et al., 2010) to the temporal dynam-
ics of multistable perception (Gershman, Vul, & Tenenbaum, 2012; Moreno-Bote, Knill, & Pouget,
2011), causal reasoning in children (Bonawitz, Denison, Gopnik, & Grifhiths, 2014), and develop-
mental changes in cognition (Bonawitz, Denison, Griffiths, & Gopnik, 2014). Third, MCMC s
biologically plausible in that it can be efficiently implemented in recurrent networks of biologically
plausible spiking neurons (Buesing, Bill, Nessler, & Maass, 2o11). Last but not least, process models
based on MCMC might be able to explain why people’s estimates are both highly variable (Vul et al.,
2014) and systematically biased (Tversky & Kahneman, 1974).

OPTIMAL RESOURCE-ALLOCATION

Resource-rational anchoring-and-adjustment makes three critical assumptions: First, the estimation
process is a sequence of adjustments such that after sufficiently many steps the estimate will be a
representative sample from the belief P (X |K) about the unknown quantity X given the knowl-
edge K. Second, each adjustment costs a fixed amount of time. Third, the number of adjustments
is chosen to achieve an optimal speed-accuracy tradeoff. It follows, that people should perform the

optimal number of adjustments, that is

t* = arg mtin EQ(fQ) [cost(x, Z¢) + 7 - t]}, (2.2)

45



= Anchor=5¢/
4.5 ¢ == Anchor=4/ 4
Anchor=30
4+ = Anchor=20] {
== Anchor=10]
351
3L
>
_g 25+
m
ol
151
1L
0.5¢
0t . N
0 5 10 15

Nr. Adjustments

Figure 2.2: In resource-rational anchoring-and-adjustment the bias of the estimate is bounded

by a geometrically decaying function of the number of adjustments. The plots shows the bias of
resource-rational anchoring-and-adjustment as a function of the number of adjustments for five dif-
ferent initial values located 1,---,5 posterior standard deviations (i.e., o) away from the posterior
mean. The standard normal distribution was used as both the posterior P(X|K) and the proposal
distribution Pprop(6).

where Q(X) is the distribution of the estimate after ¢ adjustments, & is its unknown true value, 4
is the estimate after performing ¢ adjustments, cost(z, &) is its error cost, and  is the time cost per

adjustment.

Figure 2.3 illustrates this equation showing how the expected error cost — which decays geometri-
cally with the number of adjustments—and the time cost — which increases linearly — determine the
optimal speed-accuracy tradeoff. We inspected the solution to Equation 2.2 when the belief and the
proposal distribution are standard normal distributions (i.e. P(X|K) = P(XP*P) = N(0,1))
for different anchors. We found that for a wide range of realistic time costs the optimal number of
adjustments (see Figure 2.4, top panel) is much smaller than the number of adjustments that would
be required to eliminate the bias towards the anchor. Consequently, the estimate obtained after the
optimal number of adjustments is still biased towards the anchor as shown in the bottom panel of
Figure 2.4. This is a consequence of the geometric convergence of the error (see Figure 2.2) which
leads to quickly diminishing returns for additional adjustments. This is a general property of this
rational model of adjustment that can be derived mathematically (Lieder, Griffiths, & Goodman,

2012).

The optimal speed-accuracy tradeoff weights the costs in different estimation problems according

to their prevalence in the agent’s environment; for more information please see Appendix A.
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Figure 2.3: The expected value of the error cost cost(x, Z,,) shown in green decays nearly geomet-
rically with the number of adjustments n. While the decrease of the error cost diminishes with the
number of adjustments, the time cost -y - £ shown in red continues to increase at the same rate.
Consequently, there is a point when further decreasing the expected error cost by additional ad-
justments no longer offsets their time cost so that the total cost shown in blue starts to increase.
That point is the optimal number of adjustments ¢*.
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Figure 2.4: Optimal number of adjustments (a) and the bias after optimal number of adjustments
(b) as a function of relative time cost and distance from the anchor.

2.2.2 RESOURCE-RATIONAL EXPLANATIONS OF ANCHORING PHENOMENA

Following the definition of the bias of an estimator in mathematical statistics, we quantify the an-

choring bias by By(x,a) = E|Z:|x, a] — x, where Z; is a participant’s estimate of a quantity x
g y ) P 1% q Y
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after 7 adjustments, and a denotes the anchor. Figure 2.5 illustrates this definition and four basic
ideas: First, the average estimate generated by anchoring-and-adjustment equals the anchor plus the
adjustment. Second, the adjustment equals the relative adjustment times the total distance from
the anchor to the posterior expectation. Third, adjustments tend to be insufficient, because the rela-
tive adjustment size is less than one. Therefore, the average estimate usually lies between the anchor
and the correct value. Fourth, because the relative adjustment is less than one, the anchoring bias

increases linearly with the distance from the anchor to the correct value.

More formally, the bias of resource-rational anchoring-and-adjustment cannot exceed a geometri-

cally decaying function of the number of adjustments as illustrated in Figure 2.2:
Bi(z,a) = Bl#y|z,a] — x < Bo(z,a) -7 = (a — z) - 7' (2.3)

where 7 is the rate of convergence to the distribution P (X |K') that formalizes people’s beliefs. Con-
sequently, assuming that the bound is tight, resource-rational anchoring-and-adjustment predicts

that, on average, people’s predictions £ are a linear function of the correct value x and the anchor a:
Eliz,al ~a-r" + (1 —1") -z (2.4)

Therefore the anchoring bias remaining after a fixed number of adjustments increases linearly with

the distance from the anchor to the correct value as illustrated in Figure 2.s.

The hypothesis that the mind performs probabilistic inference by sequential adjustment makes
the interesting, empirically testable prediction that the less time and computation a person invests
into generating an estimate, the more biased her estimate will be towards the anchor. As illustrated
in Figure 2.6a, the relative adjustment (see Figure 2.5) increases with the number of adjustments.
When the number of adjustments is zero, then the relative adjustment is zero and the prediction
is the anchor regardless of how far it is away from the correct value. However, as the number of
adjustments increases, the relative adjustment increases and the predictions become more informed
by the correct value. As the number of adjustments tends to infinity, the average guess generated by

anchoring-and-adjustment converges to the expected value of the posterior distribution.

Our analysis of optimal resource-allocation shows that, for a wide range of plausible costs of com-
putation, the resource-rational number of adjustments is much smaller than the number of adjust-
ments required for convergence to the posterior distribution. This might explain why people’s esti-

mates of unknown quantities are biased towards their anchor across a wide range of circumstances.
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Figure 2.5: If the relative adjustment is less than 100%, then the adjustment is less than the dis-
tance from the anchor and the prediction is biased (Panel a) and the magnitude of the anchoring
bias increases with the distance of the correct value from the anchor (Panel b).

Yet, optimal resource allocation also entails that the number of adjustments increases with the rel-
ative cost of error and decreases with the relative cost of time. Hence, our theory predicts that the
anchoring bias is smaller when errors are costly and larger when time is costly; Figure 2.6b illustrates

this prediction.

Although we derived the implications of making rational use of finite cognitive resources for
a specific computational mechanism based on sampling, the crucial property of diminishing re-
turns per additional computation is a universal feature of iterative inference mechanisms including
(stochastic) gradient descent, variational Bayes, predictive coding (Friston, 2009; Friston & Kiebel,
2009), and probabilistic computation in cortical microcircuits (Habenschuss, Jonke, & Maass, 2013).
Therefore the qualitative predictions shown in Figures 2.3—2.6 are not specific to the abstract com-
putational architecture that we chose to analyze but characterize bounded rationality for a more

general class of cognitive architectures.

In the following sections, we assess these and other predictions of our model through computer

simulation and behavioral experiments.
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Table 2.1: Anchoring phenomena and resource-rational explanations

Anchoring Effect Simulated Results Resource-Rational Explanation
Insufhcient adjustment from ~ Tversky and Kahneman Rational speed-accuracy tradeoft.
provided anchors (1974), Jacowitz and

Kahneman (1995)
Insufhicient adjustment from  Epley and Gilovich Rational speed-accuracy tradeoff.
self-generated anchors (2006), Study 1
Cognitive load, time pres- Epley, & Gilovich Increased cost of adjustment reduces the
sure, and alcohol reduce (2006), Study 2 resource-rational number of adjustments.

adjustment.

Anchoring bias increases
with anchor extremity.

Russo and Schoemaker
(1989)

Each adjustment reduces the bias by a
constant factor (Equation 2..3). Since the
resource-rational number of adjustments is
insufhicient, the bias is proportional to the
distance from anchor to correct value.

Uncertainty increases anchor-

Jacowitz and Kahne-

The expected change per adjustment is small

ing. man (1995) when nearby values have similar plausibility.
Knowledge can reduce the Wilson et al. (1996), High knowledge means low uncertainty.
anchoring bias. Study 1 Low uncertainty leads to high adjustment

(see above).

Accuracy motivation reduces
anchoring bias when the
anchor is self-generated but
not when it is provided.

Tversky and Kahne-
man (1974), Epley and
Gilovich (2005)

1. People are less uncertain about the
quantities for which they generate
their own anchors.

2. Accuracy motivation increases the
number of adjustments but change
per adjustment is lower when people
are uncertain.

Telling people whether
the correct value is larger
or smaller than the anchor
makes financial incentives
more effective.

Simmons et al. (2010),

Study 2

Being told the direction of adjustments
makes adjustments more effective, because
adjustments in the wrong direction will
almost always be rejected.

Financial incentives are more
effective when the anchor is
extreme.

Simmons et al. (2010),

Study 3
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Figure 2.6: The number of adjustments increases the relative size of adjustments (left panel). As
the relative cost of time increases, the number of adjustments decreases and so does the relative
size of the adjustment (right panel).

2.3 SIMULATION OF ANCHORING EFFECTS

Having derived a resource-rational model of anchoring-and-adjustment we performed computer
simulations to test whether this model is sufficient to explain the plethora of anchoring effects re-
viewed above. To capture our assumption that people make adjustments in discrete steps, we model
the size of adjustments using the Poisson distribution P(J) = Poisson(|d|; tiprop). The simulated
effects cover a wide range of different phenomena, and our goal is to account for all of these phe-

nomena with a single model.

2.3.1 SIMULATION METHODOLOGY

We simulated the anchoring experiments listed in Table 2.1 with the resource-rational anchoring-and-
adjustment model described above. The participants in each of these experiments were asked to esti-
mate the value of one or more quantities X; for instance Tversky and Kahneman (1974) asked their
participant to estimate the percentage of African countries in the United Nations. Our model’s pre-
diction of people’s estimates of a quantity X depends on their probabilistic belief P(X|K') based
on their knowledge K, the number of adjustments, the anchor, and the adjustment step-size. Thus,
before we could apply our model to simulate anchoring experiments, we had to measure people’s
probabilistic beliefs P(X | K') about the quantities used on the simulated experiments. Appendix A

describes our methodology and reports the estimates with obtained.
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To accommodate differences in the order of magnitude of the quantities to be estimated and the
effect of incentives for accuracy, we estimated two parameters for each experiment: the expected step-
size fiprop Of the proposal distribution P(0) = Poisson(|d]; fprop) and the relative iteration cost
7. These parameters were estimated by the ordinary least-squares method applied to the summary
statistics reported in the literature. For experiments comprising multiple conditions using the same
questions with different incentives for accuracy we estimated a single step-size parameter that is
expected to apply across all conditions and a distinct relative time cost parameter for each incentive

condition.

2.3.2 INSUFFICIENT ADJUSTMENT FROM PROVIDED AND SELF-GENERATED ANCHORS

Resource-rational anchoring-and-adjustment provides a theoretical explanation for insufficient
adjustment from provided and self-generated anchors in terms of a rational speed-accuracy tradeoft,
but how accurately does this describe empirical data? To answer this question, we fit our model to

two well-known anchoring experiments: one with provided and one with self-generated anchors.

PROVIDED ANCHORS

As an example of adjustment from provided anchors, we chose the study by Jacowitz and Kahne-
man (1995), because it rigorously quantifies the anchoring bias. Jacowitz and Kahneman (199s) asked
their participants two questions about each of several unknown quantities: First they asked whether
the quantity is larger or smaller than a certain value—the provided anchor. Next they asked the par-
ticipant to estimate that quantity. For the first half of the participants the anchor was a low value
(ie. the 15 percentile of estimates people make when no anchor is provided), and for the second
half of the participants the anchor was a high value (i.c. the 8st™h percentile). People’s estimates were
significantly higher when the anchor was high than when it was low. Jacowitz and Kahneman (199s)
quantified this effect by the anchoring index (AI), which is the percentage of the distance from the

low to the high anchor that is retained in people’s estimates:

Median Xi anchor) — Median X w anchor
Al = (Lbighsnchor) Kowandror) 197 (2:5)

high anchor — low anchor

Jacowitz and Kahneman (1995) found that the average anchoring index was about 50%. This means

that the difference between people’s estimates in the high versus the low anchor condition retained
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about half of the distance between the two anchors.

We determined the uncertainty o for each of the 15 quantities by the elicitation method described
above. Since Jacowitz and Kahneman (1995) measured people’s median estimates in the absence of
any anchor, we used those values as our estimates of the expected values 11, because their sample and

its median estimates were significantly different from ours.

Next, we estimated the adjustment step-size parameter and the relative time cost parameter by
minimizing the sum of squared errors between the predicted and the observed anchoring indices.
According to the estimated parameters, people performed 29 adjustments with an average step-size
of 22.4 units. With these two estimated parameters the model accurately captures the insufficient
adjustment from provided anchors reported by Jacowitz and Kahneman (1995): The model’s ad-
justments are insufficient (i.e. anchoring index > 0; see Equation 2.5) on all questions for which
this had been observed empirically but not for the question on which it had not been observed; see
Figure 2.7. Our model also captured the magnitude of the anchoring bias: the model’s average an-
choring index of 53.22% was very close to its empirical counterpart of 48.48%. Furthermore, our
model also captured for which questions the anchoring bias was high and for which it was low: the
correlation between the predicted and the empirical anchoring indices (r(13) = 0.62,p = 0.0135).

The simulated and empirical anchoring effects are shown in Figure 2.7.

SELF-GENERATED ANCHORS

As an example of adjustment from self-generated anchors we chose the studies reported in Epley and
Gilovich (2006). In each of these studies participants were asked to estimate one or more unknown
quantities such as the boiling point of water on Mount Everest for which many participants readily
retrieved a well-known related quantity such as 272°F (100°C). Afterwards participants were asked
whether they knew and had thought of each intended anchor while answering the corresponding
question. For each question, Epley and Gilovich (2006) computed the mean estimate of those par-
ticipants who had thought of the intended anchor while answering it. We combined the data from
all self-generated anchor questions without additional experimental manipulations for which Epley
and Gilovich (2006) reported people’s mean estimate, i.e. the first five question from Study 1a, the
first five questions from Study 1b, and the control conditions of Study 2b (2 questions) and the first

seven questions from Study 2¢.t We determined the means and uncertainties of the model’s beliefs

*The quantities were the year in which Washington was elected president, the boiling point on Mt. Ever-
est, the freezing point of vodka, the lowest body temperature, the highest body temperature, and the duration
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Figure 2.7: Simulation of the provided anchor experiment by Jacowitz and Kahneman (1995).

about all quantities used in Epley and Gilovich’s studies by the elicitation method described above.
The anchors were set to the intended self-generated anchors reported by Epley and Gilovich (2006).
We estimated the model’s time cost and adjustment step-size parameters by fitting the relative adjust-

ments reported for these studies using the ordinary least-squares method.

The estimated parameters suggest that people performed 8 adjustments with an average step-
size 0f 10.06 units. With these parameters the model adjusts its initial estimate by 80.62% of the
distance to the correct value; this is very close to the 80.95% relative adjustment that Epley and
Gilovich (2006) observed on average across the simulated studies. Our model captures that for
the majority of quantities (13 out of 19) people’s adjustments were insufficient. It also captures for
which questions people adjust more and for which questions they adjust less from their uncertain-
ties and anchors: as shown in Figure 2.8 our model’s predictions of the relative adjustments were
significantly correlated with the relative adjustments that Epley and Gilovich (2006) observed across
different questions (7(17) = 0.61,p = 0.0056). Comparing the parameter estimates between
the experiments with provided versus self-generated anchors suggests that people adjusted less when

they had generated the anchor themselves. This makes sense because self-generated anchors are typi-

of pregnancy in elephants. Some of these quantities were used in multiple studies.
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cally much closer to the correct value than provided anchors.
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Figure 2.8: Simulation of self-generated anchors experiment by Epley, & Gilovich (2006).

2.3.3 EFFECT OF COGNITIVE LOAD

In an experiment with self-generated anchors Epley and Gilovich (2006) found that people adjust
their estimate less when required to simultaneously memorize an eight-letter string. To investigate
whether resource-rational anchoring-and-adjustment can capture this effect, we fit our model simul-
taneously to participants’ relative adjustment with versus without cognitive load. Concretely, we
estimated a common step-size parameter and separate time cost parameters for each condition by
the least squares method. We included all items for which Epley and Gilovich (2006) reported peo-
ple’s estimates. The resulting parameter estimates captured the effect of cognitive load: when people
were cognitively busy, the estimated cost per adjustment was 4.58% of the error cost, but when
people were not cognitively busy then it was only 0.003% of the error cost. The estimated average
step-size per adjustment was pt = 11.69. According to these parameters participants performed only
14 adjustments when they were under cognitive load but 60 adjustments when they are not. With

these parameters our model captures the effect of cognitive load on relative adjustment: cognitive
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load reduced the simulated adjustments by 18.61% (83.45% under load and 102.06% without
load). These simulated effects are close to their empirical counterparts: people adjusted their esti-
mate 72.2% when under load and 101.4% without cognitive load (Epley & Gilovich, 2006). Fur-
thermore, the model accurately captured for which questions the effect of cognitive load was high
and for which it was low; see Figure 2.9. Concretely, our model explained 93.03% of the variance in

the effect of cognitive load on relative adjustments ((5) = 0.9645, p < 0.001).

2.3.4 THE ANCHORING BIAS INCREASES WITH ANCHOR EXTREMITY

Next we simulated the anchoring experiment by Russo and Schoemaker (1989). In this experiment
business students were first asked about the last three digits of their telephone number. Upon hear-
ing the number the experimenter announced he would add 400 to this number (providing an an-
chor) and proceeded to ask the participant whether the year in which Attila the Hun was defeated in
Europe was smaller or larger than that sum. When the participant indicated her judgment, she was
prompted to estimate the year in which Acttila had actually been defeated. Russo and Schoemaker
(1989) then compared the mean estimate between participants whose anchor had been 500 £ 100,
700 £ 100, - - -, 1300 =£ 100. They found that their participants’ mean estimates increased linearly

with the provided anchor even though the correct value was A.D. 4s1.

To simulate this experiment, we determined the values of 1 and o by the elicitation method de-
scribed above. Since the variability of people’s estimates and confidence intervals was very high, we
increased the sample size of this one experiment to 200. We set the model parameters to the values
estimated from the provided anchor experiments by Jacowitz and Kahneman (1995) (see above). As
Figure 2.10 shows, our model correctly predicted that people’s estimates increase linearly with the
provided anchor (Russo & Schoemaker, 1989). To determine whether the quantitative differences
between the model predictions and the data reported by Russo and Schoemaker (1989) were due
to differences between business students in 1989 and people working on Mechanical Turk in 2014,
we ran an online replication of their experiment on Mechanical Turk with 300 participants. There
appeared to be no significant difference between the estimates of the two populations. However,
people’s estimates were highly variable. Consequently, the error bars on the mean estimates are very

large.

Taking into account the high variance in people’s judgments, our simulation results are largely
consistent with the empirical data. In particular, both Russo and Shoemaker’s data and our replica-

tion confirm our model’s qualitative prediction that the magnitude of the anchoring bias increases
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Figure 2.9: Simulated versus observed effect of cognitive load on the size of people’s adjustments.

linearly with the anchor, although our model’s prediction for the highest anchor was more extreme

than the average judgment.
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Figure 2.10: Simulated effect of the anchor on people’s estimates of the year of Atilla's defeat
and empirical data from Russo & Shoemaker (1989).

2.3.5 THE EFFECTS OF UNCERTAINTY AND KNOWLEDGE

Several experiments have found that the anchoring bias is larger the more uncertain people are about
the quantity to be estimated (Jacowitz & Kahneman, 1995; Wilson et al., 1996). To assess whether
and how well our theory can explain this effect, we re-analyzed our simulation of the experiment

by Jacowitz and Kahneman (1995) reported above. Concretely, we computed the correlation be-
tween the uncertainties o of the modeled beliefs about the 15 quantities and the predicted anchoring
indices. We found that resource-rational anchoring-and-adjustment predicted that adjustments
decrease with uncertainty. Concretely, the anchoring index that our model predicted for each quan-
tity X was significantly correlated with the assumed uncertainty (standard deviation o) about it
(Spearman’s p = 0.5857,p = 0.0243). This is a direct consequence of our model’s probabilis-

tic acceptance or rejection of proposed adjustments on a flat (high uncertainty) versus sloped (low
uncertainty) belief distribution P(X |K) = N (, o). Our model thereby explains the negative cor-
relation (r(13) = —0.68) that Jacowitz and Kahneman (1995) observed between confidence ratings

and anchoring indices.

Uncertainty reflects the lack of relevant knowledge. Thus people who are knowledgeable about
a quantity should be less uncertain and consequently less susceptible to anchoring. Wilson et al.
(1996) conducted an anchoring experiment in which people first compared the number of countries

in the United Nations (UN) to an anchor, then estimated how many countries there are in the UN,
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and finally rated how much they know about this quantity. They found that people who perceived
themselves as more knowledgeable were resistant to the anchoring bias whereas people who per-
ceived themselves as less knowledgeable were susceptible to it. Here, we asked whether our model
can explain this effect by smaller adjustments due to higher uncertainty. To answer this question, we
recruited 6o participants on Mechanical Turk, asked them how much they knew about the number
of nations in the UN on a scale from o (“nothing”) to 9 (“everything”) and elicited their beliefs by
the method described in Appendix A. We then partitioned our participants into a more knowledge-
able and a less knowledgeable group by a median split as in Wilson et al. (1996). We model the beliefs

elicited from the two groups by two separate normal distributions (Appendix A).

We found that the high-knowledge participants were less uncertain than the low-knowledgeable
participants (Ohigh = 35.1vs. 0o, = 45.18). Furthermore, their median estimate was much closer
to the true value of 193 (pnigh = 185 vs. fiiow = 46.25). We fit the relative adjustments from the
anchor provided in Wilson et al.’s experiment (1930) by the least-squares method as above. With the
estimated parameters (17 adjustments, step-size 488.2) the model’s predictions captured the effect
of knowledge: For the low-knowledge group the model predicted that providing the high anchor
would raise their average estimate from 45.18 to 252.1. By contrast, for the high-knowledgeable
group our model predicted that providing a high anchor would fail to increase people’s estimates
(185 without anchor, 163 with high anchor).

2.3.6 DIFFERENTIAL EFFECTS OF ACCURACY MOTIVATION

People tend to invest more mental effort when they are motivated to be accurate. To motivate par-
ticipants to be accurate some experiments employ financial incentives for accuracy, while others
warn their participants about potential errors that should be avoided (forewarnings). Consistent
with the effect of motivation, resource-rational anchoring-and-adjustment predicts that the number
of adjustments increases with the relative cost of error. Yet, financial incentives for accuracy reduce
the anchoring bias only in some circumstances but not in others: First, the effect of incentives ap-
peared to be absent when anchors were provided but present when they were self-generated (Epley
& Gilovich, 2005; Tversky & Kahneman, 1974). Second, the effect of incentives was found to be
larger when people were told rather than asked whether the correct value is smaller or larger than the
anchor (Simmons et al., 2010). Here, we explore whether and how these interaction effects can be

reconciled with resource-rational anchoring-and-adjustment.
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SMALLER INCENTIVE EFFECTS FOR PROVIDED THAN SELF-GENERATED ANCHORS

Epley and Gilovich (2005) found that financial incentives and forewarnings decreased the anchoring
bias when the anchor was self-generated but not when it was provided by the experimenter. From
this finding Epley and Gilovich (2005) concluded that people use anchoring-and-adjustment only
when the anchor is self-generated but not when it is provided. By contrast, Simmons et al. (2010)
suggested that this difference may be mediated by people’s uncertainty about whether the correct
answer is larger or smaller than the anchor. They found that people are often uncertain in which
direction they should adjust in questions used in experiments with provided anchors; so this may
be why incentives for accuracy failed to reduce the anchoring bias in those experiments. Here we
show that resource-rational anchoring-and-adjustment can capture the differential effectiveness

of financial incentives in experiments with provided versus self-generated anchors. First, we show
through simulation that given the amount of uncertainty that people have about the quantities to
be estimated our model predicts a larger effect of accuracy motivation for the self-generated anchor
experiments by Epley and Gilovich (2005) than for the provided anchor experiments by Tversky and
Kahneman (1974) and Epley and Gilovich (2005).

First, we analyze people’s beliefs about the quantities used in experiments with provided versus
self-generated anchors with respect to their uncertainty. We estimated the mean y and standard
deviation o of people’s beliefs about each quantity X by the elicitation method described above.
Because the quantities’ values differ by several orders of magnitude, it would be misleading to com-
pare the standard deviations directly. For example, for the population of Chicago (about 2, 700, 000
people) a standard deviation of 1, 000 would express near-certainty, whereas for the percentage
of countries in the UN the same standard deviation would express complete ignorance. To over-
come this problem, the standard deviation has to be evaluated relative to the mean. We therefore
compare uncertainties in terms of the signal-to-noise ratio (SNR). We estimated the SNR by the
median of the signal-to-noise ratios of our participants’ beliefs SNRs = 12 /02). We found that
people tended to be much more certain about the quantities Epley and Gilovich (2005) used in
their self-generated anchors experiments (median SNR: 21.03) than about those for which they
provided anchors (median SNR: 4.58). A Mann-Whitney U-test confirmed that the SNR was sig-
nificantly higher for self-generated anchoring questions than for questions with provided anchors

(U(18) = 74.0, p = 0.0341).

Given that people were more uncertain about the quantities used in the experiments with pro-

vided anchors, we investigated how this difference in uncertainty affects the effect of financial incen-
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tives on the anchoring bias predicted by our resource-rational model. To do so, we simulated Study 1
from Epley and Gilovich (2005), in which they compared the effects of financial incentives between
questions with self-generated versus provided anchors, and the provided anchors experiment by
Tversky and Kahneman (1974). To assess whether our model can explain why the effect of motiva-
tion differs between questions with provided versus self-generated anchors, we evaluated the effects
of motivation as follows: First, we fit our model to the data from the condition with self-generated
anchors. Second, we use the estimated numbers of adjustments to simulate responses in the condi-
tion with provided anchors. Third, for each question, we measured the effect of motivation by the
relative adjustment with incentives minus the relative adjustment without incentives. Fourth, we
averaged the effects of motivation separately for all questions with self-generated versus provided

anchors and compared the results.

We fit the relative adjustments on the questions with self-generated anchors with one step-size
parameter and two relative time-cost parameters: The estimated step-size was 17.97. The estimated
number of adjustments was 5 for the condition without incentives and 9 for the condition with
incentives. According to these parameters, motivation increased the relative adjustment from self-
generated anchors by 12.74% from 65.62% to 78.35%. This is consistent with the significant ef-
fect of 33.01% more adjustment that Epley and Gilovich (2005) observed for questions with self-
generated anchors. For the condition with provided anchors Epley and Gilovich (2005) used four
questions from the experiment by Jacowitz and Kahneman (1995) simulated above and the same in-
centives as in the questions with self-generated anchors. We therefore simulated people’s responses
to questions with provided anchors using the step-size estimated from the data by Jacowitz and
Kahneman (1995) and the number of adjustments estimated from questions with self-generated an-
chors. Our simulation correctly predicted that incentives for accuracy fail to increase adjustment
from provided anchors. Concretely, our simulation predicted 44.09% adjustment with incentives
and 44.48% without. Thus, as illustrated in Figure 2.11, our model captures that financial incentives
increased adjustment from self-generated anchors but not from provided anchors. According to our
model, this difference is just an artifact of the confound that people know more about the quantities
used in experiments with self-generated anchors than about the quantities used in experiments with

provided anchors.

Finally, we simulated Study 2 from Epley and Gilovich (2005) in which they compared the ef-
fect of warning participants about the anchoring bias between questions with provided versus
self-generated anchors. This study had 2 (self-generated anchors vs. provided anchors) x 2 (fore-

warnings vs. no forewarnings) conditions. Epley and Gilovich (2005) found that in the conditions
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with self-generated anchors forewarnings increased adjustment, but in the conditions with provided
anchors they did not. As before, we set the model’s beliefs about the quantities used in this experi-
ment using the elicitation method described above. We fit our model to the relative adjustments in
the conditions with self-generated anchors. Concretely, we used the least-squares method to fit one
step-size parameter and two time cost parameters: one for the condition with forewarnings and one
for the condition without forewarnings. With these parameters, we simulated people’s estimates

in the conditions with self-generated anchors (to which the parameters were fit) and predicted the

responses in the provided anchor conditions that we had 7ot used for parameter estimation.
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Figure 2.11: Simulation of Study 1 from Epley and Gilovich (2005): Predicted effects of financial
incentives on the adjustment from provided versus self-generated anchors.

According to the estimated parameters, forewarnings increased the number of adjustments from
8 to 28. We therefore simulated the responses in both conditions with forewarnings (provided and
self-generated anchor questions) with 8 adjustments and all responses in the two conditions without
forewarnings (provided and self-generated anchor questions) with 28 adjustments. For the ques-
tions with self-generated anchors, forewarnings increased the simulated adjustments by 30% from
insufficient 81% to overshooting 111% of the total distance from the anchor to the correct value.®
By contrast, for questions with provided anchors forewarnings increased the simulated adjustments
by only 12.5% from 6.9% to 19.4%. Thus, assuming that forewarnings increase the number of
adjustments from provided anchors by the same number as they increase adjustments from self-
generated anchors our model predicts that their effect on people’s estimates would be less than one

third of the effect for self-generated anchors; see Figure 2.12. According to our model, the reason is

$Overshooting is possible, because the expected value of the estimated belief P(X|K) = N (p,0) can
be farther away from the anchor than the correct value.
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that people’s uncertainty about the quantities for which anchors were provided is so high that the
effect of additional adjustments is much smaller than in the questions for which people can read-
ily generate their own anchors. Our results are consistent with the interpretation that the absence
of a statistically significant effect of forewarnings on the bias towards the provided anchors in the
small sample of Epley and Gilovich (2005) does not imply that the number of adjustments did not

increase. Therefore adjustment from provided anchors cannot be ruled out.
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Figure 2.12: Simulation of Study 2 from Epley and Gilovich (2005): Predicted effects of forewarn-
ings for questions from experiments with provided versus self-generated anchors.

DIRECTION UNCERTAINTY MASKS THE EFFECT OF INCENTIVES

Simmons et al. (2010) found that accuracy motivation decreases anchoring if people are confident
about whether the quantity is larger or smaller than the anchor but not when they are very uncer-
tain. Simmons et al. (2010) showed that even when the anchor is provided, incentives for accuracy
can reduce the anchoring bias provided that people are confident about the correct direction of
adjustment. Concretely, Simmons et al.’s second study unmasked the effect of incentives on adjust-
ment from provided anchors by telling instead of asking their participants whether the true value
is larger or smaller than the anchor. Similarly, in their third study Simmons et al. (2010) found that
the effect of incentives is larger when the provided anchor is implausibly extreme than when it is

plausible. Here we report simulations of both of these effects.

First, we show that our model can capture that the effect of incentives increases when people
are told the correct direction of adjustment. Simmons et al.’s second study measured the effect of

accuracy motivation on the anchoring index as a function of whether people were asked or told if
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the correct value is larger or smaller than the anchor. We modeled the effect of being told that the
quantity X is smaller or larger than the anchor a by Bayesian updating of the model’s belief about
X from P(X|K)to P(X|K,X < a)and P(X|K,X > a) respectively. The original beliefs
P(X|K) were determined by the elicitation method described in Appendix A. We fit the model
simultaneously to all anchoring indices by ordinary least squares to estimate one step-size parameter
and one number of adjustments for each incentive condition. According to the estimated param-
eters, incentives increased the number of adjustments from 5 to 1000 and the average adjustment
step-size was 11.6 units. For both incentive conditions, our model captured the variability of ad-
justments across trials: For trials with incentives for accuracy the correlation between simulated and
measured anchoring indices was 7(18) = 0.77 (p = 0.0001), and for trials without incentives this
correlation was 7(18) = 0.61 (p = 0.004). Our model also captured the overall reduction of an-
choring with incentives for accuracy observed by Simmons et al. (2010), although the predicted 42%
reduction of anchoring with incentives for accuracy was quantitatively larger than the empirical
effect of 8%. Most importantly, our model predicted the effects of direction uncertainty on adjust-
ment and its interaction with accuracy motivation: First, our model predicted that adjustments are
larger if people are told whether the correct value is larger or smaller than the anchor. The predicted
13.7% reduction in the anchoring index was close to the empirically observed reduction by 18.8%.
Second, our model predicted that the effect of accuracy motivation will be 6.3% larger when people
are told the direction of adjustment. The predicted effect of direction uncertainty is smaller than the
21% increase reported by Simmons et al. (2010) but qualitatively consistent. Therefore, our model
can explain why telling people whether the correct value is larger or smaller than the anchor increases
the effect of accuracy motivation. According to our model, financial incentives increase the number
adjustments in both cases, but knowing the correct direction makes adjustment more eftective by

eliminating adjustments in the wrong direction.

Second, we simulated Study 3b of Simmons et al. (2010) in which they showed that financial in-
centives increase adjustments away from implausible anchors. Concretely, this study compared the
effect of accuracy motivation on adjustments between plausible versus implausible provided an-
chors. As before, we determined the model’s beliefs by the procedure described above and estimated
the number of adjustments with and without incentives (781 and 188) and the adjustment step-size
(0.01) by fitting the reported relative adjustments by ordinary-least squares.Y With this single set

of parameters we simulated adjustments from plausible versus implausible provided anchors. The

9The reason that the estimated step-size is so small appears to be that all quantities and distances in
this experiment are small compared to those in other experiments such as Study 2 by the same authors. The
increase in the number of adjustments appears to compensate for the reduced step-size.
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predicted adjustments captured a statistically significant proportion of the effects of anchor type,
motivation, and quantity on the size of people’s adjustments: p(22) = 0.72,p < 0.0001. Most
importantly, our simulations predicted no statistically significant effect of accuracy motivation on
absolute adjustment (mean effect: 0.76 units; 95% CI: [—0.42; 1.94]) when the anchor was plau-
sible but a substantially larger and statistically significant effect when the anchor was implausible
(17.8 units; 95% CI: [9.76; 25.91]); see Figure 2.13. This prediction results from the fact that large
adjustments away from plausible anchors will often be rejected because they decrease the estimate’s
plausibility and small adjustments in the wrong direction are almost as likely to be accepted as ad-
justment in the correction direction because values on either side of the plausible anchor are almost
equally plausible if the distribution is symmetric around its mode. Thus the expected change per

adjustment is rather small.

25

n
[=) o =]

Effect of Motivation

S}

Plausible Anchors Implausible Anchors

Figure 2.13: Simulation of Experiment 3 from Simmons et al. (2010): Predicted effect of accu-
racy motivation on adjustments from plausible versus implausible provided anchors.

In conclusion, resource-rational anchoring-and-adjustment can explain why motivating partici-
pants to be accurate reduces the anchoring bias in some circumstances but not in others. In a nut-
shell, our model predicts that incentives for accuracy have little effect when adjustments in either
direction hardly change the estimate’s plausibility. The simulations reported above demonstrate
that this principle is sufficient to explain the differential effect of accuracy motivation on adjust-
ments from provided versus self-generated anchors. Therefore, a single process — resource-rational
anchoring-and-adjustment — may be sufficient to explain anchoring on provided and self-generated

anchors.
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2.3.7 SUMMARY

Our resource-rational analysis of numerical estimation showed that under-adjusting an initial esti-
mate can be a rational use of computational resources. The resulting model can explain ten different
anchoring phenomena: insufficient adjustments from both provided and self-generated anchors,

the effects of cognitive load, anchor extremity, uncertainty, and knowledge, as well as the differen-
tial effects of forewarnings and financial incentives depending on anchor type (provided vs. self-
generated), anchor plausibility, and being asked versus being told whether the quantity is smaller or
larger than the anchor (see Table 2.1). None of the previous models (Epley & Gilovich, 2006; Sim-
mons et al., 2010) was precise enough to make quantitative predictions about any of these phenom-
ena let alone precisely predict all of them simultaneously. The close match between our simulation
results and human behavior suggests that resource-rational anchoring-and-adjustment provides a
unifying explanation for a wide range of disparate and apparently incompatible phenomena in the
anchoring literature. Our model was able to reconcile these effects by capturing how the effect of ad-
justment depends on the location and shape of the posterior distribution describing the participants’
belief about the quantity to be estimated. For instance, our model reconciles the apparent ineffec-
tiveness of financial incentives at reducing the bias towards provided anchors (Tversky & Kahneman,
1974) with their apparent effectiveness at reducing bias when the anchor is self-generated (Epley &
Gilovich, 2005). To resolve this apparent contradiction, we did not have to postulate additional pro-
cesses that operate only when the anchor is provided—unlike Epley and Gilovich (2006). Instead, our
computational model directly predicted this difference from people’s higher uncertainty about the
quantities used in experiments with provided anchors, because when the uncertainty is high then ad-
justments in the wrong direction are more likely to be accepted. Our model thereby provides a more
parsimonious explanation of these effects than the proposal by Epley and Gilovich (2006). While
Simmons et al. (2010) offered a conceptual explanation along similar lines, our model predicted the

exact sizes of these effects a priori.

The parameter estimates we obtained differed significantly across the simulated phenomena.
This is partly due differences in the incentives and other experimental manipulations. Additional
reasons for the variability in the parameter estimates are somewhat arbitrary differences in the res-
olution of the hypothesis spaces across different quantities and the interdependence between the
average change per adjustment and the number of adjustments: the same amount of adjustment
can be explained either by a small number of large steps or a large number of small steps. For some
experiments maximum likelihood estimation chose the former interpretation and for others it chose

the latter. But because a larger step size can compensate for a smaller number of adjustments, it is
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quite possible that the model could have explained all of the findings with a very similar step size and
number of adjustment parameters if we knew the structure and resolution of people’s hypothesis
spaces for the quantities used in each experiment. Although the model’s parameters were unknown
and had to be estimated to make quantitative predictions, all of the qualitative phenomena we sim-
ulated logically follow from the structure of the model itself. In this sense, our model did not just
capture the simulated phenomena but predicted them. Most importantly, our theory reconciles the
apparently irrational effects of potentially irrelevant numbers with people’s impressive capacity to
efficiently handle a large number of complex problems full of uncertainty in a short amount of time.
To further test the proposed cognitive mechanism, the following section test its novel empirical pre-
dictions against the predictions of alternative mechanisms including the stopping rule assumed by

Epley and Gilovich (2006) and Simmons et al. (2010).

2.4 EXPERIMENTAL TESTS OF THE MODEL’S NOVEL PREDICTIONS

Having established that resource-rational anchoring-and-adjustment can explain a wide range of
anchoring phenomena, we will now test its assumption that the number of adjustments is chosen to
rationally tradeoft speed versus accuracy and test its novel predictions in two experiments. Here, we

derive empirical predictions from this assumption that will be tested in the following two sections.

Recall that the number of adjustments determines how rapidly the anchoring bias increases with
the distance of the correct value from the anchor, because the the slope of the anchoring bias is one
minus the relative adjustment (Figure 2.5). We can therefore test our theory’s predictions about the
number of adjustments by measuring the slope of the anchoring bias in people’s predictions. In
the theory section, we derived an upper bound on the anchoring bias (Equation 2.3). This bound
decays geometrically with the number of adjustments. If the bound is tight, then people’s average
prediction after a fixed number of adjustments should be a linear function of the distance from the

anchor to the correct value (Equation 2.4). We can therefore rearrange Equation 2.4 into a linear
. . . . . E[X|z]—
regression model that allows us to estimate people’s anchor a, their relative adjustments (%),

and the resulting anchoring bias Bias;(, a) by regressing their estimates X on the correct value x:

X=a+p8-z+4¢, e~N(0,02) (2.6)
]E[X|x]—a_ o«
ﬁ_ﬂ’a_l—ﬁ (2.7)
Bias;(z,a) =a— (1 —-0) -z (2.8)
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Optimal resource allocation implies that the relative adjustment decreases with the relative cost of
time (Figure 2.6). Therefore the slope of the anchoring bias should be highest when time cost is high
and error cost is low; see Figure 2.6. Conversely, the slope of the anchoring bias should be the shal-
lowest when error cost is high and time cost is low. Lastly, when time cost and error cost are both
high or both low, then the slope should be intermediate. Figure 2.14 illustrates these predictions.
The following two sections report two experiments testing these predictions for self-generated and
provided anchors respectively. Contrary to Epley and Gilovich (2006) our model assumes that peo-
ple adjust not only with self-generated anchors but also from provided anchors. If this assumption
is correct, then error cost should decrease and time cost should increase the anchoring bias regardless
of whether anchors are self-generated (Experiment 1) or provided (Experiment 2). While previous
studies have investigated the effect of financial incentives or deadlines (Epley & Gilovich, 2006), we
are not aware of any study that has explicitly manipulated people’s opportunity cost. Our opportu-
nity cost manipulation is a more realistic model of the time constraint on judgment in the real world
than imposing a deadline, because it allows participants to invest as much or as little of their valuable
time as they like. This difference is critical because it allows us to study whether people rationally
allocate their time and limited cognitive resources as predicted by our model. To measure time al-
location we recorded our participants’ reaction times. Another innovation of our experiments is
to measure potential interactions between opportunity cost and error cost and to control people’s

uncertainty about the quantities to be estimated.
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Figure 2.14: Resource-rational anchoring-and-adjustment predicts that the negative anchoring
bias increases linearly with the distance from the anchor to the true value.
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2.5 EXPERIMENT 1: SELF-GENERATED ANCHORS

In the experiments simulated above the biases in people’s judgments result not only from anchor-
ing but also from the discrepancy between the truth and what people actually know. To avoid this
confound we designed a prediction task in which we can control both the prior and the likelihood
function. To test if people adapt the number of adjustments to the relative cost of time we manipu-

lated both the cost of time and the cost of error within subjects.

2.5.1 METHOD
PARTICIPANTS

We recruited 30 participants (14 male, 15 female, 1 unreported) on Amazon Mechanical Turk. Our
participants were between 19 and 65 years old, and their level of education ranged from high school
to graduate degrees. Participants were paid $1.05 for participation and could earn a bonus of up to
$0.80 for points earned in the experiment. Six participants were excluded because they incorrectly

answered questions designed to test their understanding of the task (see Procedure).

MATERIALS

The experiment was presented as a website programmed in HTML and JavaScript. Participants
predicted when a person would get on a bus given when he had arrived at the bus stop based on
the bus’s timetable and examples of previous departure times. Figure 2.15 shows a screenshot from
one of the trials. The timeline at the top of the screen was used to present the relevant informa-
tion and record our participants’ predictions. At the beginning of each trial the bus’s timetable
(orange bars) and the person’s arrival at the bus stop (blue bars) were highlighted on the timeline.
Participants indicated their prediction by clicking on the corresponding point on the timeline.
When participants were incentivized to respond quickly, a falling red bar indicated the passage

of time and its cost in the bottom right corner of the screen, and the costs of error and time were
conveyed in the bottom left corner; see Figure 2.15. Feedback was provided by highlighting the ac-
tual departure time on the number line (green bar) and a pop-up window informed participants
about how many points they had earned. The complete experiment can be inspected online at

http://cocosci.berkeley.edu/mrurk/falk/PredictionExperimenti/experiment.html. We chose this
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task to induce a bimodal posterior distribution (bus missed vs. not missed) because this might am-

plify the difference between sufficient versus insufficient adjustment.

Day 11

Today Will arrived at the bus stop at 7:26:40 AM. I predict that he
will board a bus at
Bus #1
7:26 AM I I I I 7:56 AM
Will arrived W. departed
You have predicted that Will will wait 12.7 minutes.

Next Prediction

100 points - -
090 points - -
080 points - -
070 points - -

060 points - -
Time Cost: 30 points/second potits

o o o H HFE N NN Ww W
O W N o W N o W o W
(4]

(1)

Q

. . 050 points - -
Error Cost: 10 pomts/mm. )
040 points - - sec
error
030 points - - sec
explain number line 020 points - - sec
. 010 points - - sec
Remind me of the examples )
000 points - - 0.0 sec
Points Left Time Left

Figure 2.15: Screenshot of a prediction trial from Experiment 1 with time cost and error cost.
The number line on the top conveys the bus schedule and when the person arrived at the bus stop.
The cost of error and time are shown in the bottom left corner, and the red bar in the bottom
right corner shows the passage of time and the cost associated with it.

PROCEDURE

After completing the consent form, each person participated in four scenarios corresponding to

the four conditions of a 2 x 2 within-subject design. The independent variables were time cost (o
vs. 30 points/sec) and error cost (o vs. 10 points/unit error). The order of the four conditions was
randomized between subjects. At the end of the experiment participants received a bonus payment
proportional to the number of points they had earned in the experiment. The conversion rate was 1

cent per 100 points, and participants could earn up to 100 points per trial.
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Each scenario comprised a cover story, instructions, 10 examples, 5 practice trials, 5 attention check
questions, 20 prediction trials, 3 test questions, and one demographic question. Each cover story was
about a person repeatedly taking the same bus route in the morning, for example “Jacob commutes
to work with bus #22. On average, the first bus departs at 8:01 AM, and the second bus departs at
8:21 AM but departure times vary. On some days Jacob misses the first bus and takes the second
bus.” In each scenario both the person and the bus route were different. The task instructions in-
formed participants about the cost of time and error and encouraged them to attentively study the
examples and practice trials so that they would learn to make accurate predictions. After the cover
story, participants were shown when the bus had arrived on the ten workdays of the two preceding

weeks (10 examples); see Figure 2.16. Next participants made s practice predictions with feedback.

Week 1

If you study the following examples closely, you will earn more points
by guessing more accurately. Each example is presented as points on a
timeline: the (i.e. when the bus is supposed
to arrived), and

Day next example| explain number line
Friday:
Thursday: ;.50 8:26AM
Wednesday: ;.50 40 8:26AM
Tuesday:  ;56aMm 8:26AM
Monday:  756aMm 8:26AM

Figure 2.16: Screenshot of the first examples screen of Experiment 1.

The ensuing attention check questions verified the participants’ understanding of the time line and
the costs of time and error. Participants were allowed to go back and look up this information if

necessary. Participants who made at least one error were required to retake this test until they got
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all questions correct. Once they had answered all questions correctly, participants proceeded to 20
predictions trials with feedback. In both the practice trials and the prediction trials the feedback
comprised the correct departure time, the incurred error cost, the incurred time cost, and the result-
ing number of points for the trial. The times at which the fictitious person arrived at the bus stop
were chosen such that the probability that he had missed the first bus approximately covered the full
range from o to 1 in equal increments. In the 15t,30d L. ond Jage prediction trial the person arrived
early and the bus was on time. The purpose of these odd-numbered trials was to set the anchor on
the even-numbered trials to a low value. After each scenario’s prediction trials we tested our par-
ticipants’ understanding of the number line, the cost of time, and the cost of error once again. We
excluded six participants, because their answers to these questions revealed that they had misunder-
stood the number line, the cost of time, or the cost of error in at least one condition. After this they
reported one piece of demographic information: age, gender, level of education, and employment
status respectively. On the last page of each block, participants were informed about the bonus they

had earned in the scenario.

To pose a different prediction problem on every trial of each block despite the limited number of
meaningfully different arrival times, we varied the distribution of the bus’s delays between blocks.
There were four delay distributions in total. All of them were Pearson distributions that differed
only in their variance. Their mean, skewness, and kurtosis were based on the bus lateness statistics
from Great Britain.l The order of the delay distributions was randomized between participants in-
dependently of the incentives. The 10 examples of bus departure times were chosen such that their
mean, variance, and skewness reflected the block’s delay distribution as accurately as possible. For
each trial, a “correct” departure time = was sampled from the conditional distribution of departure
times given that the fictitious person departs after his arrival at the bus stop. Our participants’ re-

sponses were scored according the condition’s cost of time ¢; and cost of error ¢, according to

points = max{0, 100 — ¢, - PE — ¢; - RT}, (2.9)
PE = | — z, (2.10)

where PE is the absolute prediction error between the estimate £ and the true value x, and RT is the
response time. The bottom part of Figure 2.15 shows how time cost and error cost were conveyed
to the participants during the trials. The red bar on the right moved downward and its position

indicates how much time has passed and how many points have consequently been lost.

IBus Punctuality Statistics GB 2007 report; http://estebanmoro.org/2009/01/waiting-for-the-bus/
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2.5.2  REsSULTS

The aim of this experiment was to test our theory’s novel predictions. Before assessing these pre-
dictions, we verified our assumptions that a) people’s predictions are biased, and b) the negative
anchoring bias increases approximately /inearly with the distance from the anchor to the correct

value (Equation 2..3).

DATA ANALYSIS  Statistical analyses were performed using the Matlab statistics toolbox. Analysis
of variance (ANOVA), regression, and t-tests were performed using the functions anovan, regress,
and rzest respectively. Repeated measures ANOVAs were performed by including the participant

number as a random effects factor.

ANCHORING BIAS AND LINEAR EFFECT OF DISTANCE  To assess whether our participants’ pre-
dictions were systematically biased, we inspected their average prediction for a range of true bus
delays. The true bus delays were sampled from a distribution, of which subjects had seen 10 samples.
We binned participants’ average predictions when the true bus delay was 0.5 £ 2.5min, 5.5 &+
2.5min, ..., or 35.5 & 2.5min. Participants showed a systematic bias, overestimating the delay
when its true value was less than 3 minutes (#(815) = 16.0,p < 107'°), but underestimating it

when its true value was larger than 7 minutes (all p < 0.0011; see Figure 2.17).

Visual inspection suggested that the bias was approximately proportional to the correct value
(cf. Equations 2.3-2.4). Fitting the linear regression model derived from our theory (Equations 2..6-
2.8)confirmed that the linear correlation between correct value and bias was significantly different
from zero (P(slope € [—0.6148, —0.5596]) = 0.95). This replicates the finding by (Russo &
Schoemaker, 1989) predicted by our theory (Equation 2.3) and simulations (Figure 2.10). As shown
in Figure 2.17, the bias was positive when the delay was greater than 7.5min and negative for greater
delays. Our participants thus appeared to anchor around 7.5min and adjust their initial estimate
by about 41.3% of the total distance to the true value (95%-CI: [38.52%), 44.04%)]). Another, and
perhaps more rational, strategy for choosing the anchor would be to re-use the estimate from the
previous trial as the initial guess on the current trial. If so, then the estimate X; on trial # might be

generated according to

Xi=d1+8- (2 — 24-1) +€, €~ N(Ovag)a (2.11)
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where ;1 was the participant’s estimate on the previous trial and z; is the true value on the current
trial. To determine which of the two regression models better explains our data, we performed a
model comparison using the Bayesian Information Criterion (BIC; Kass & Raftery, 1995). Our data
provided very strong evidence for our original model with a fixed unknown anchor (BIC: 12 394)
over the alternative model (BIC: 12 770). Hence, our participants did not appear to anchor on their
previous estimate.™ Critically, the anchoring effect we observed is more than a simple regression to

a mean because its magnitude increased with the cost of time and decreased with the cost of error as

shown in the following section.

10
95%-confidence band on bias
SN ——— bias estimated by regression
5 N ¢ bias estimated by binning
W\ ——no bias
S
0 ¢
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Figure 2.17: In Experiment 1 the magnitude of the anchoring bias grew linearly with the correct
value. The error bars indicate 95% confidence intervals on the average bias, that is +1.96 standard
errors of the mean.

EFFECTS OF TIME AND ERROR COST  Since the data showed standard anchoring effects, we can
now proceed to testing its novel predictions. First, we investigated whether people adjust their pre-
diction strategy to the incentives for speed and accuracy. To get a first impression we performed two

repeated measures ANOVAs of the absolute error and the log-transformed reaction time in terms of

" According to the slope estimated using the alternative model, participants adjusted their estimate
65.76% of the distance to the correct value (95% CI: [63.49%; 68.03%]). Thus, regardless of which model is

used to analyze our data, the results suggest that people’s adjustments were insufficient.
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time cost and error cost. The ANOVA models included the main effects of time cost and error cost
and their interaction (fixed effects) as well as the main effect of participant number (random effect).
The results suggest that participants traded accuracy for speed according to the experiment’s incen-
tives (see Figure 2?): When errors were costly people took more time (F'(1,1894) = 28.73,p <
0.0001) and were more accurate (F'(1,1824) = 15.52,p < 0.0003) than when there was no error
cost. Conversely, when time was costly people took less time (F'(1,1824) = 73.51,p < 107%)
and were less accurate (F'(1,1824) = 12.07,p = 0.0011) than when there was no time cost. The
interaction between time cost and error cost was significant for log reaction time (F'(1,1824) =
7.17,p = 0.0075) but not for accuracy (F'(1,1824) = 0.13, p = 0.72).
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Figure 2.18: Mean absolute errors and reaction times as a function of time cost and error cost
indicate an adaptive speed-accuracy tradeoff.

Given that our participants appeared to be sensitive to incentives for speed and accuracy, we
asked whether time cost decreased and error cost increased our participants’” anchoring biases. To
answer this question we performed a repeated-measures ANOVA of our participants’ relative adjust-
ments as a function of time cost and error cost. To be precise, we first estimated each participant’s
relative adjustment separately for each of the four conditions using our linear regression model of

anchoring and adjustment (Equation 2.6). We then performed an ANOVA on the estimated relative
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adjustments with the factors time cost and error cost (fixed-effects) as well as participant number
(random effect) and the interaction effect of time cost and error cost; see Table 2.2. We found that
time cost significantly reduced relative adjustment from 50.7% to 31.0% (£'(1,69) = 21.86,p <
0.0001) whereas error cost significantly increased it from 31.6% to 50.1% (F'(1,69) = 19.49,p <
0.0001) and the interaction was non-significant. The mean relative adjustments of each condition
are shown in Table 2.3. Consequently, as predicted by our theory (Figure 2.14), the anchoring bias in-
creased more rapidly with the true delay when time cost was high or error cost was low (Figure 2.19).
This is consistent with the hypothesis that people rationally adapt the number of adjustments to the

relative cost of time.T"

Table 2.2: ANOVA of relative adjustment as a function time cost and error cost.

Source d.f. SumSq. Mean Sq. F p
error cost I 0.82461 0.82461 19.49 3.6€-05
time cost I 0.92484 0.92484 21.86 1.4€-5
€rror cost x time cost I 0.04483  0.04483 1.06 0.3069
subject 23 1.77458 0.07716 1.82 0.0293
Error 69 2.91871 0.042.3

Total 95 6.48757

Table 2.3: Relative size of our participants’ adjustments of their initial guesses towards the cor-
rect answer by incentive condition with 95% confidence intervals.

No Error Cost  High Error Cost
No Time Cost  43.6 £11.2% 57.8+4.8%
High Time Cost  19.6 &+ 9.0% 42.5+9.8%

The effects of time cost and error cost on our participants’ adjustments were also evident from
how often their adjustments were insufficient. For this analysis, we only considered trials in which
the arrival time suggested that the bus had been missed, that is when the probability of having
missed the bus was larger than o.s. For those trials, adjustments were considered sufficient when
the prediction was larger than the expected departure of the second bus minus 2 standard deviations
of the delay distributions. We found that the proportion of sufficient adjustments changed substan-

tially with the cost of error and the cost of time (see Figure 2.20). Error cost significantly increased

TTEStimating relative adjustment under the assumption that people anchor on their previous estimate led
to the same conclusions.
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Figure 2.19: Anchoring bias in Experiment 1 by time cost and error cost confirms our theoretical
prediction; compare Figure 2.14. The shaded areas are 95% confidence bands. The slope of a line
equals one minus the relative adjustment.

the proportion of complete adjustments by 21% =+ 4% from 56% to 77% (p < 107°), whereas
time cost significantly decreased it by 28.6% =+ 4% from 80.3% t0 51.7% (p = 4 - 10712).

2.5.3 COMPUTATIONAL MODELS OF ANCHORING-AND-ADJUSTMENT

To test competing theories of the anchoring bias, we formalized four theories using eight probabilis-
tic models of numerical estimation. Appendix A describes these models in detail; in this section we
will give only a brief conceptual overview. The theories range from unbounded Bayesian rationality
(theory 1) to random guessing (theory 4) with theories 2 and 3 formalizing intermediate levels of ra-
tionality: the sampling hypothesis (theory 3; Vul et al., 2014) and four models of the anchoring-and-
adjustment heuristic that range from resource-rational anchoring-and-adjustment to less rational
anchoring heuristics like the ones proposed by Epley and Gilovich (2006) and Simmons et al. (2010).
By formally comparing these models using Bayesian model selection, we will be able to titrate exactly

how rational our participants’ estimation strategy was.

According to the first theory, people draw Bayes-optimal inferences and the observed biases
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Figure 2.20: This plot shows the relative frequency of complete adjustments as a function of time
cost and error cost. The length of the error bars is 1.96 standard errors.

merely reflect a regression towards their prior expectation. We formalized this explanation in terms
of Bayesian decision theory (mppr; Equations A.2-A.s). To connect the deterministic predictions
of Bayesian decision theory to people’s variable responses, measurement and response errors are
included in the model. According to the second theory, people approximate optimal inference by
drawing a single sample from the posterior distribution (posterior probability matching, Vul et al.,
2014, MppM, Equations A.6-A.8). However, generating even a single perfect sample can require an
intractable number of computations. Therefore, according to the third theory, the mind approxi-
mates sampling from the posterior by anchoring-and-adjustment (Lieder et al., 2012). We modeled
adjustment using the probabilistic mechanisms illustrated in Figure 2.1. We modified the stopping
criterion to model several variants of anchoring-and-adjustment. Existing theories of anchoring-and-

adjustments commonly assume that people adjust their estimate until it is sufficiently plausible (Ep-
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ley & Gilovich, 2006; Simmons et al., 2010). Our first anchoring-and-adjustment model formalizes
this assumption by terminating adjustment as soon as the estimate’s posterior probability exceeds a
certain plausibility threshold (mag as, Equations A.9-A.17). The plausibility threshold and the aver-
age size of the adjustment are free parameters. According to the second anchoring-and-adjustment
model, people make a fixed number of adjustments to their initial guess and report the result as their
estimate (Mg A, Equations A.18-A.25). Here the number of adjustments replaces the plausibility-
threshold as the model’s second parameter. According to the third anchoring-and-adjustment
model, people adapt the number of adjustments and the adjustment step size to optimize their
speed-accuracy tradeoff (m,as.a, Equations A.26-A.37; Lieder, Griffiths, & Goodman, 2013). The
optimal speed-accuracy tradeoff depends on the unknown time T,gjusment it takes to perform an ad-
justment, so this time constant is a free-parameter. The fourth anchoring-and-adjustment model ex-
tends the third one by assuming that there is an intrinsic error cost in addition to the extrinsic error
cost imposed by the experimenter, and this intrinsic cost is an additional model parameter (172,44,
Equations A.38-A.39). All anchoring models assumed that the anchor in Experiment 1 was the esti-
mate reported in the previous section, that is 7.5 minutes. Finally, we also included a fourth theory.
According to this “null hypothesis”, our participants chose randomly among all possible responses

(mrandom; Equation A.40),

Except for the null model, the response distributions predicted by our models are a mixture of
two components: the distribution of responses expected if people perform the task and the distribu-
tion of responses expected when they do not. The relative contributions of these two components
are determined by an additional model parameter: the percentage of trials P in which participants
fail to perform the task. Not performing the task is modeled as random choice according to the null
model. Performing the task is modeled according to the assumed estimation strategies described
above. For a precise definition and comprehensive explanation of the each model, please consult

Appendix A.

2.5.4 MODEL SELECTION

To formally test the four theories—anchoring-and-adjustment, posterior probability matching,
Bayesian decision theory, and random choice—and which of the seven models that instantiate
them against each other, we performed random-effects Bayesian model selection at the group level
(Stephan, Penny, Daunizeau, Moran, & Friston, 2009) and family-level Bayesian model selection

(Penny et al., 2010) as implemented in SPM8. For each model we separately approximated the log-
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probability of each participant’s predictions using the Laplace approximation (Tierney & Kadane,
1986) when applicable, that is when the likelihood function is differentiable with respect to the pa-
rameters, and numerical integration of the joint density otherwise. Numerical integration was nec-
essary for discrete-valued parameters such as the number of adjustments. Numerical integration
was also necessary for continuous parameters that affect the resource-rational number of adjust-
ments. This is because the likelihood function changes abruptly by a non-differential step when
the resource-rational number of adjustments jumps from one number to another. Numerical in-
tegration with respect to continuous parameters was performed using the functions integral and

integralz available in Matlab 2013b.

According to Bayesian model selection, adaptive anchoring-and-adjustment with intrinsic error
cost (MmqA ;) explained our participants’ predictions better than any of the alternative models: we
can be 99.99% confident that the adaptive anchoring-and-adjustment with intrinsic error is the
best model for a larger percentage of people (64.4%) than any of the alternative models; see Fig-
ure 2.21, top panel. In addition to this random-effects analysis we also performed a Bayesian fixed
effects analysis by computing the group Bayes factor for each pair of models. Reassuringly, this anal-
ysis led to the same conclusion: according to the posterior odds ratios, the adaptive anchoring-and-
adjustment with intrinsic error cost was at least exp(220) times as likely as any of the other models
we considered. Next, we applied family level inference to determine which theory best explains our
data; see Figure 2.21, bottom left panel. According to this method, we can be 99.99% confident that
anchoring-and-adjustment is the most probable explanation for a significantly larger proportion
of participants (78.2%) than either posterior probability matching (11.0%), Bayesian decision the-
ory (7.2%), or random choice (3.6%). Finally, we compared adaptive to non-adaptive models; see
Figure 2.21, bottom right panel. According to the result, we can be 99.86% confident that for the
majority of people (79.2%) our adaptive models’ predictions are more accurate than the predictions

of their non-adaptive counterparts.

VALIDATION OF THE ADAPTIVE CONTROL OF THE NUMBER OF ADJUSTMENTS

To validate that people perform more adjustments when errors are costly and fewer adjustments
when time is costly, as assumed by the adaptive resource-rational model, we computed the maximum-
a-posteriori estimates of the parameters of the second anchoring-and-adjustment model (11244) sep-
arately for each of the four incentive conditions. Figure 2.22 shows the estimated number of adjust-

ments as a function of the incentives for speed and accuracy. For five of the six pairs of conditions,
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we can be more than 96.9% confident that the number adjustments differ in the indicated direc-
tion, and for the sixth pair we can be more than 92% confident that this is the case. Therefore, this
analysis supports the conclusion that our participants adapted the number of adjustments to the
cost of time and error. To determine whether this pattern is consistent with choosing the number
of adjustments adaptively we fit the parameters determining the rational number of adjustments to
these estimates. We found that rational resource allocation predicts a qualitatively similar pattern of
adjustments for reasonable parameter values (convergence rate: 0.71, time per adjustment: 27ms,

assumed initial bias: 6.25min).

2.5.5 DISCUSSION

We observed a bias in people’s predictions under uncertainty that increases with time cost and de-
creases with error cost. This phenomenon is consistent with the interpretation that people use
anchoring-and-adjustment to make predictions under uncertainty. Our results suggested that
anchoring-and-adjustment is used adaptively: When errors were costly, people invested more time
and were more accurate. Their adjustments were larger and their anchoring bias was smaller. By con-
trast, when time was costly then our participants were faster and less accurate. Their adjustments
appeared to be smaller and their anchoring bias was larger. This is consistent with the interpretation
that people rationally choose the number of adjustments to optimize their speed-accuracy tradeoft.
In fact, the experiment confirmed the predictions of optimal resource-allocation, and the data were
best explained by a resource-rational anchoring-and-adjustment model. The anchoring bias may
therefore be a consequence of resource-rational computation rather than a sign of human irrational-
ity.

While our results demonstrate that people adaptively tradeoft being biased for being fast, our
analysis had to postulate and estimate people’s self-generated anchors. Therefore, we cannot be sure
whether people really self-generated and adjusted anchors, or whether their responses merely look as
if they did so. If people’s predictions in Experiment 1 were generated by anchoring-and-adjustment,

then we should be able to shift the biases shown in Figure 2.17 by providing different anchors; we

tested this prediction in Experiment 2.
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2.6 EXPERIMENT 2: PROVIDED ANCHORS

To test whether the biases observed in Experiment 1 resulted from anchoring and to evaluate whether
the effects of time cost and error cost also hold for provided anchors, we ran a second experiment in
which anchors were provided by asking participants to compare the to-be-predicted delay to a low
versus a high number before every prediction. Concretely, this experiment tested two predictions:
Our first prediction was that people’s anchor will be higher when the number is high than when it is
low. Our second prediction was that the bias towards the provided anchor decreases with error cost

but increases with time cost.

2.6.1 METHOD

The materials, procedures, models, and data analysis tools used in Experiment 2 were identical to

those used in Experiment 1 unless stated otherwise.

PARTICIPANTS

We recruited 6o participants (31 male, 29 female) on Amazon Mechanical Turk. They were between
18 and 60 years old, and their level of education ranged from high school diploma to PhD. Partici-
pants were paid $1.25 for participation and could earn a bonus of up to $2.20 for the points they

earned in the experiment.

MATERIALS

Experiment 2 was presented as a website programmed in HTML and JavaScript. Experiment 2 was
mostly identical to Experiment 1. The relevant changes are summarized below. The complete exper-
iment can be inspected online at http://cocosci.berkeley.edu/mturk/falk/PredictionExperiment2/

experiment.html.

PROCEDURE

Experiment 2 proceeded like Experiment 1 except for three changes: First, each prediction was pre-

ceded by the question “Do you think he will depart before or after X am?”, where X is the an-
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chor. This question was presented between the sentence reporting the time the person reached

the bus stop and the number line. Participants were required to answer this question by selecting
“before” or “after”. This is the standard procedure for providing anchors (Jacowitz & Kahneman,
1995; Russo & Schoemaker, 1989; Tversky & Kahneman, 1974). In the two conditions with time
cost, participants were given 3 seconds to answer this question before the timer started. Participants
were not allowed to make a prediction until they had answered. We incentivized them to take this
question serious by awarding +10 points for correct answers and -100 points for incorrect ones. For
each participant the anchor was high in half of the trials of each condition and low in the other half.
The low anchor was 3 minutes past the scheduled departure of the first bus, and the high anchor was
3 minutes past the scheduled departure of the second bus. The list of anchors was shuffled separately

th... , 20d a5t trial were no longer needed, be-

for each block and participant. Second, the 1, 3rd, 5
cause they merely served to set the anchor on the even numbered trials of Experiment 1 to a small
value. We therefore replaced those trials by 10 trials whose query times tighten the grid of those in
the even-numbered trials. Thus for each participant, each block includes ten prediction trials with
low anchors and ten prediction trials with high anchors. Third, we increased the base payment and
the bonus payment, because Experiment 2 takes longer than Experiment 1. The conversion of points
into bonuses remained linear but was scaled up accordingly. The instructions were updated to re-

flect the changes.

We excluded one participant due to incomplete data, and 16 participants because their answers to
our test questions indicated they had misunderstood the time line used to present information and

record predictions, or the cost of time or error in at least one condition.*

2.6.2 RESULTS

Our participants answered the anchoring questions correctly in 74.8% of the trials. As in Experi-
ment 1, people’s predictions were systematically biased: Our participants significantly overestimated
delays smaller than 8 min (allp < 10~")and significantly underestimated delays larger than 13 min
(all p < 107%); see Figure 2.23. Furthermore, the biases were shifted upwards when the anchor was
high compared to when the anchor waslow (z = 7.26,p < 107125 see Figure 2.23). This effect
was also evident in our participants’ average predictions: when the anchor was high, then partici-

pants predicted significantly later departures than when the anchor was low: 12.06 £ 0.29 min

This exclusion rate would be high in a laboratory experiment, but it is not unusual for long online
experiments run on Amazon Mechanical Turk.
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versus 10.03 = 0.15 min (£(3438) = 6.16,p < 107!°). To estimate our participants’ anchors
and quantify their adjustments, we applied the linear regression model described above (Equation
2.6). Overall, our participants’ apparent anchor was significantly higher in the high anchor con-
dition (12.69 min) than in the low anchor condition (9.74 min, p < 107!5). Our participants’
adjustments away from the anchor tended to be small: on average, our participants adjusted their
estimate only 29.86% of the distance from the anchor to the correct value when the anchor was
low (95% CI: [26.38%; 30.85%]) and 27.25% of this distance when the anchor was high (95% CI:
[24.00%; 30.50%]). Thus the relative adjustments were significantly smaller than in Experiment 1
(95% CI: [38.52%), 44.04%)]) and they did not differ between the high and low anchor condition
(z = 1.16;p = 0.12). Thus the linear relationship between the bias and the true delay and differ-
ence between the biases for the high versus the low anchor (Figure 2.23) may result from insufficient
adjustment away from different anchors. This also explains why the average predictions were higher

in the high anchor condition than in the low anchor condition.

Next, we investigated whether people adapted their prediction strategy to the experiment’s incen-
tives for speed and accuracy. To get a first impression, we performed a 2-factorial, repeated-measures
ANOVA of the prediction errors’ absolute values, and the ANOVA models included only the main
effects of time cost and error cost and their interaction (fixed effects) and the main effect of partic-
ipant number (random effect). This analysis confirmed that error cost made our participants’ esti-
mates significantly more accurate (F'(1,3391) = 12.33,p < 0.0001), but the effect of time cost
was not statistically significant (F'(1,3391) = 1.81,p = 0.185) and neither was its interaction
with the effect of error cost (F'(1,3391) = 0.0027,p = 0.9583). % Next we assessed whether the
amount by which participants adjusted their initial estimate increased with error cost and decreased
with time cost. To answer this question we performed a repeated-measures ANOVA of relative ad-
justment as a function of time cost and error cost. To be precise, we first estimated each participant’s
relative adjustment separately for each of the four conditions and the two anchors using our linear
regression model of anchoring and adjustment (Equation 2.6). We then performed an ANOVA on
the estimated relative adjustments with the factors time cost, error cost, and high vs. low anchor
(fixed-effects) as well as participant number (random effect) and the interaction effect of time cost
and error cost; see Table 2.4. We found that time cost significantly reduced relative adjustment from
37.2% t0 28.2% (F'(1,297) = 15.5, p = 0.0001) whereas error cost significantly increased it from
31.2% to 34.2% (F'(1,297) = 10.39, p = 0.0014), and the interaction was non-significant. These

$Unfortunately, we cannot report an analysis of the reaction times, because they were not measured in
the conditions without time cost due to programming error.
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findings are consistent with the prediction of our resource-rational theory that the number of ad-
justments decreases with time cost but increases with error cost regardless of the anchor. The mean
relative adjustments of each condition are shown in Table 2.5. Figure 2.24 shows the effects of incen-
tives for speed and accuracy on the anchoring bias in the provided anchors experiment; note that the
slope of each line is 1 minus the relative size of the adjustments in the corresponding condition. As
predicted by our theory (cf. Figure 2.14) and observed for self-generated anchors (cf. Figure 2.19), the
slope of the anchoring bias was largest when time cost was high and errors were not penalized. Table

2.5 summarizes the relative adjustments sizes in the four incentive conditions.

Table 2.4: ANOVA of relative adjustment as a function of time cost and error cost.

Source d.f. SumSq. Mean Sq. F p
error cost 1 1.0318 1.03178 15.5 0.0001
time cost 1 0.6912  0.69115 10.39 0.0014
subject 42 11.3544 027034 4.06 10712
anchor (high vs. low) I  0.0774 0.07739 I1.16 0.2817
error cost X time cost I 0.1066  0.10659 1.6 0.2066
Error 297 19.7643 0.06655

Total 343  33.0256

Table 2.5: Relative size of our participants’ adjustments of their initial guess towards the correct
answer by incentive condition in the experiment with provided anchors with 95% confidence inter-
vals.

No Error Cost  High Error Cost
No Time Cost 30.0 + 7.4% 44.4 + 8.4%
High Time Cost  24.5 £ 6.5% 32.0+9.1%

2.6.3 TESTING MODELS OF THE ANCHORING BIAS

Consistent with the biases and the effects of time cost and error cost, we found that the two adap-
tive anchoring-and-adjustment models explained our participants’ predictions significantly bet-
ter than any of the alternative models; see Figure 2.25, top panel. Concretely, the first adaptive
anchoring-and-adjustment model (1144 4) was the best explanation for 36.9% of our participants,
and the adaptive anchoring-and-adjustment model with an additional intrinsic error cost parame-

ter (Mg 4i) was the best explanation for another 24.8% of our participants. Thus for the majority
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of our participants, responses were best explained by adaptive anchoring-and-adjustment. Further-
more, we can be 85.9% confident that the first adaptive anchoring-and-adjustment is the best model
for a larger percentage of people than any of the alternative models. In addition to this random
effects analysis, we also ran a Bayesian fixed-effects analysis by computing the group Bayes factors.
This analysis confirmed that the two adaptive anchoring-and-adjustment models explain the data
substantially better than any of the alternatives, but among these two models it strongly favored the
more complex model with intrinsic error cost: According to the posterior-odds ratios this model is

at least 1039

times as likely as any other model we considered. In conclusion, we found that most
participants performed adaptive anchoring-and-adjustment (74,4 4 and 1M, 4 4;) and while the con-
tribution of the intrinsic error cost is negligible in many participants it is crucial in others. Next, we
asked which theory best explains our participants’ responses; see Figure 2.25, bottom left panel. Ac-
cording to family-level Bayesian model selection, we can be 99.99% confident that anchoring-and-
adjustment is the most probable explanation for a significantly larger proportion of people (76.9%)
than either posterior probability matching (10.6%), Bayesian decision theory (10.4%), or random
choice (2.1%). Furthermore, we can be 98.5% confident that for the majority of people (67.6%)

our adaptive models’ predictions are more accurate than the predictions of their non-adaptive coun-

terparts; see Figure 2.25, bottom right panel.

2.6.4 DiscussioN

Our participants’ predictions were significantly biased towards the provided anchors. When the
anchor was high, their predictions and biases were shifted upwards compared to when it was low.
This bias increased linearly with the distance from the anchor to the correct value. Furthermore,
this experiment also confirmed our second prediction: the bias towards the provided anchor de-
creased with error cost but increased with time cost (compare Figures 2.14 and 2.24). Thus the bias
towards the provided anchors and the effects of time cost and error cost were qualitatively the same
as with self-generated anchors (Figure 2.19). Contrary to the claims by Epley and Gilovich (2006),
our results suggest that anchoring-and-adjustment is sufficient to explain the anchoring bias towards

provided as well as self-generated anchors.

While time cost had an effect on the imputed number of adjustments, the effect of time cost on
absolute error was not statistically significant. This might have been because the timer started three
seconds after the anchoring question and the number line were presented. Our rationale was to en-

sure that our participants encode the anchor before predicting the departure time and we found that
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it takes about three seconds to read, think about, and answer the anchoring question. However, this
change might have reduced the time pressure experienced by our participants and thereby dimin-

ished the effect of time cost on accuracy relative to Experiment 1.

Interestingly, our model-based analysis suggested that our participants’ effective anchors were
less extreme than the values we provided. One possible reason is that people after sometimes discard
the provided anchor and generate their own anchor instead after having stated that the provided
anchor is too high or too low. Having stated the direction in which the correct value deviates from
the anchor could potentially also increase people’s propensity to make adjustments consistent with
this judgment. Since our participants’ direction judgments were mostly correct, this effect would
increase adjustment, but adjustments were smaller than in Experiment 1. However, it is also conceiv-

able that our analysis picked up this omnipresent additional adjustment as a shift in the anchor.

Despite the qualitative commonalities between the results of our two experiments with self-
generated versus provided anchors, there were quantitative differences: In three of the four condi-
tions, our participants’ adjustments were significantly smaller for provided anchors than for self-
generated anchors. There are at least two possible complementary explanations: First, self-generated
anchors are probably much more variable than the initial guesses elicited by provided anchors, and
the anchoring biases towards high versus low self-generated anchors might cancel each other out.
Second, people probably treat provided anchors not only as initial guesses but also as conversational
hints that the correct value is close to the provided anchor (Y. C. Zhang & Schwarz, 2013). Based on
this hint people may either strategically decrease the number of adjustments or assign a higher plausi-
bility to estimates close to the provided anchor. The latter could be modeled as a Bayesian inference
from the hint on the to-be-predicted value, but this rational inference alone would be insufficient to
account for our data because the effect of the anchor type disappeared when time cost was high and

error cost was zero (cf. Table 2.3 with Table 2.5).

Thus, resource-rational anchoring-and-adjustment is a promising process model of numerical
estimation. It can explain the plethora of anchoring effects summarized in Table 2.1 from empirically
supported first principles: probabilistic inference by an iterative (sampling) algorithm and optimal
resource-allocation. The resulting models enable new insights into old and new empirical phenom-

€na.
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2.7 GENERAL Discussion

Anchoring and adjustment is one of the classic heuristics reported by Tversky and Kahneman (1974)
and it seems hard to reconcile with rational behavior. In this article, we have argued that this heuris-
tic can be understood as a signature of resource-rational information processing rather than a sign of
human irrationality. We have supported this conclusion by a resource-rational analysis of numerical
estimation, simulations of anchoring phenomena with a resource-rational process model, two novel
experiments that confirmed the predictions of our rational account of anchoring, and quantitative
model comparisons against alternative explanations of anchoring. We showed that anchoring-and-
adjustment can be interpreted as a Markov chain Monte Carlo algorithm-a rational approximation
to rational inference. We found that across many problems the optimal speed-accuracy tradeoff of
this algorithm entails performing so few adjustments that the resulting estimate is biased towards
the anchor. Our simulations demonstrated that resource-rational anchoring-and-adjustment, which
adaptively chooses the number of adjustments to maximize performance net the cost of computa-
tion, provides a unifying explanation for ten different anchoring phenomena (see Table 2.1). Finally,
our experiments confirmed that people rationally adapt the number of adjustments to the relative

cost of time.

Although we explored the implications of limited time and finite cognitive resources assuming
an abstract computational architecture based on sampling, the results of our mathematical analysis
are more general and the algorithms we derived illustrate general properties of resource-rational in-
formation processing. Other iterative inference mechanisms such as (stochastic) gradient descent,
variational Bayes, predictive coding (Friston, 2009; Friston & Kiebel, 2009), and probabilistic com-
putation in cortical microcircuits (Habenschuss et al., 2013) also have the property of diminishing
returns for additional computation. Therefore the qualitative predictions shown in Figures 2.3-2.6
are valid now only for the abstract computational architecture that we chose to analyze but charac-
terize bounded rationality for a more general class of cognitive architectures. Therefore, our results
support the adaptive allocation of finite computational resources and the resource-rationality of bias

regardless of the specific cognitive mechanism that people use to draw inferences.

We discuss the implications of our results for general theoretical questions. We start with the
conclusion that people use anchoring-and-adjustment more widely than previously assumed, that is
they adjust not only from self-generated anchors but also from provided anchors. Next, we discuss
how our model is related to previous theories of anchoring and how they can be integrated into our

resource-rational framework. We then turn to two questions about rationality: First, we discuss
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existing evidence for the hypothesis that anchors are chosen resource-rationally and how it can be
tested in future experiments. Second, we argue that resource-rationality, the general theory we have
applied to explain the anchoring bias, provides a more adequate normative framework for cognitive

strategies than classical notions of rationality. We close with directions for future research.

2.7.1 PeorLE ADJUST FROM PROVIDED AND SELF-GENERATED ANCHORS

In contrast to most heuristics, anchoring-and-adjustment is a very flexible strategy. It can be quick
and biased by performing only a few adjustments, or accurate and slow by performing many adjust-
ments. Intuitively, people should perform more adjustments and be less biased when they are mo-
tivated to be accurate. Therefore, the reduction of the bias with financial incentives has been used
to operationalize anchoring-and-adjustment: Epley and Gilovich (2005) found no evidence that

the bias towards a provided anchor decreases with financial incentives and concluded that therefore
people use anchoring-and-adjustment only with self-generated but not with provided anchors. By
contrast, in our experiments financial incentives increased the number of adjustments regardless of
whether the anchor was self-generated (Experiment 1; Figure 2.19) or provided (Experiment 2; Figure
2.24). How is this finding compatible with previous studies in which financial incentives failed to
reduce the anchoring bias in Epley and Gilovich (2005); Tversky and Kahneman (1974)? According
to our simulations and empirical data, the reason is that people know much less about the quantities
for which Epley and Gilovich (2005) decided to provide anchors than for those for which people
were found to generate their own anchors. In our experiments with self-generated versus provided
anchors we eliminated the confounding effect of uncertainty by having people estimate the same
quantities with and without being provided an anchor. Consistent with Simmons et al. (2010), we
found that the anchoring bias decreased with financial incentives regardless of whether we provided
an anchor or not. Thus our results suggest that resource-rational anchoring-and-adjustment is a uni-
tying mechanisms for the anchoring biases observed for self-generated as well as provided anchors.
Our simulations show that this conclusion is compatible with the results reviewed by Epley and
Gilovich (2006), because the effect of financial incentives declines with the uncertainty about the
quantity to be estimated. This explanation is similar to the argument by Simmons et al. (2010), but
our formal model does not need to assume that people reason about the direction of their adjust-
ments. Last but not least, our findings suggest that incentives are more effective at debiasing than

previously thought as long as people are sufficiently knowledgable.
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2.7.2 RELATION TO PREVIOUS THEORIES OF ANCHORING AND ADJUSTMENT

Previous models of anchoring-and-adjustment (Epley & Gilovich, 2006; Simmons et al., 2010) as-
sumed that adjustment terminates when the plausibility of the current estimate exceeds a threshold.
Here we formalized this idea by the anchoring-and-adjustment model with a simple stopping rule
(maas, Equations A.9-A.12). Importantly, this model was not supported by our experimental data;
see Figures 2.21 and 2.25. Instead, our data supported adaptive anchoring-and-adjustment according
to which the number of adjustments is chosen in advance such as to optimize the strategy’s expected
speed-accuracy tradeoff. From an information processing perspective the limitation of models postu-
lating that adjustment stops when plausibility exceeds a threshold is that there is no single threshold
that works well across all estimation problems. Depending on the level of uncertainty successful
estimation requires different thresholds. A threshold that is appropriate for low uncertainty will
result in never-ending adjustment in a problem with high uncertainty. Conversely, a threshold that
is appropriate for a problem with high uncertainty would be too liberal when the uncertainty is low.
In addition, Simmons et al. (2010) postulate that people reason about the direction of their adjust-
ment whereas resource-rational anchoring-and-adjustment does not. It would be interesting to see
whether an extension of our model that incorporates directional information would perform better
in numerical estimation and better predict human behavior. We will return to this idea when we

discuss directions for future research.

According to the selective-accessibility theory of anchoring (Strack & Mussweiler, 1997), com-
paring an unknown quantity to the provided anchor increases the accessibility of anchor-consistent
knowledge and the heightened availability of anchor-consistent information biases people’s esti-
mates. There is no quantitative mathematical model of selective accessibility that could be tested
against our resource-rational anchoring-and-adjustment model using the data we have collected.
The evidence that some anchoring biases result from selective accessibility (Strack & Mussweiler,
1997) does not undermine our analysis, because the existence of selective accessibility would not
rule out the existence of anchoring-and-adjustment and vice versa. In fact, from the perspective of
resource-rational probabilistic inference a mechanism similar to selective accessibility is likely to co-
exist with anchoring-and-adjustment. Concretely, we have formalized the problem of numerical
estimation of some quantity X as minimizing the expected error cost of the estimate & with respect
to the posterior distribution P (X |K') where K is the entirety of the person’s relevant knowledge.
This problem can be decomposed into two sub-problems: conditioning on relevant knowledge to
evaluate (relative) plausibility and searching for an estimate with high plausibility. It appears un-

likely that the mind can solve the first problem by simultaneously retrieving and instantly incorpo-
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rating each and every piece of knowledge relevant to estimating X . Instead, the mind might have

to sequentially recall and incorporate pieces K1), K(2) K3) ... of its knowledge to refine P(X)
to P(X|KM)to P(X|KW, K@) 1o P(X|KW, K®) K®)), and so forth. This process could
be modeled as bounded using a sequential Monte Carlo algorithm (Doucet, De Freitas, & Gordon,

2001) and bounded conditioning (Horvitz, Suermondt, & Cooper, 1989).

Furthermore, it would be wasteful not to consider the knowledge that has been retrieved to an-
swer the comparison question in the estimation task and impossible to retrieve all of the remaining
knowledge. Selective accessibility may therefore result from the first process. Yet, regardless of how
the first problem is solved, the mind still needs to search for an estimate & with high posterior prob-
ability, and this search process might be implemented by something like anchoring-and-adjustment.
Furthermore, the knowledge retrieved in the first step might also guide the generation of an anchor.
Importantly, both processes are required to generate an estimate. Therefore, we agree with (Sim-
mons et al., 2010) that selective accessibility and anchoring-and-adjustment might coexist and both

of them might contribute to the anchoring bias.

In summary, our resource-rational analysis of estimation sheds new light on classic notions of
anchoring-and-adjustment (Epley & Gilovich, 2006; Tversky & Kahneman, 1974), explaining why
they work and why people use them. Furthermore, our framework is sufficiently general to incor-
porate and evaluate the extensions proposed by Simmons et al. (2010) and Strack and Mussweiler

(1997) and many others. Exploring these extensions is an interesting direction for future work.

2.7.3 ARE ANCHORS CHOSEN RATIONALLY?

Anchoring-and-adjustment has two components: generating an anchor and adjusting from it. Our
experiments and simulations supported the conclusion that adjustment is resource-rational. Thus, a

natural next question is whether anchors are also generated resource-rationally.

Self-generated anchors are usually close to the correct value, but provided anchors can be far oft.
For instance, it appears irrational that people can be anchored on their social security number when
they estimate how much they would be willing to pay for a commodity (Ariely et al., 2003). Yet, the
strategy failing people in this specific instance may nevertheless be resource-rational overall for at
least four reasons: First, it is sensible to assume that the experimenter is reasonable and cooperative.
Therefore her utterances should follow the Gricean maxims. Specifically, according to Grice’s maxim

of relation the stated anchor should be relevant (Y. C. Zhang & Schwarz, 2013). Furthermore, as a
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rational information-seeking agent the experimenter should ask the question whose answer will

be most informative. The most informative anchor to compare the true value to would be at the
center of the experimenter’s belief distribution. This too suggests that it is reasonable to treat the
provided anchor as a starting point. Second, subsequent thoughts and questions are usually related.
So it is reasonable to use the answer to a preceding question as the starting point for next thought.
This holds for sequences of arithmetic operations suchas8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 for
which people anchor on their intermediate results when they are forced to respond early (Tversky &
Kahneman, 1974) and in many other cases too. Third, when the provided anchor is the only number
available in working memory, then using it may be faster and require less effort than generating
anew one. Last but not least, one’s beliefs may be wrong and the anchor may be more accurate.
This was the case in Russo and Shoemaker’s experiment: People overestimated the year in which
Attila the Hun was defeated in Europe so much that the anchor was usually closer to the correct
value (A.D. 451) than the mean of their unbiased estimates (A.D. 953.5). For these reasons, the
observation that people anchor on irrelevant values provided in psychological experiments does

not imply that anchors are selected irrationally. Anchor selection could be well adapted to the real-
world. Consequently, anchoring biases in everyday reasoning would be much more benign than
those observed in the laboratory. This is probably true, because most anchoring experiments violate
people’s expectation that the experimenter will provide relevant information, provide negligible

incentives for accuracy, and ask people to estimate quantities about which they know very little.

There also is empirical evidence suggesting that people do not always use the provided value as
their anchor. For instance, our model-based analysis of Experiment 2 suggested that people’s effec-
tive anchors were less extreme than the provided values. This suggests that our participants did not
always use the provided number as their anchor. Furthermore, in the experiment by Strack and
Mussweiler (1997) the provided anchor influenced the participants’ estimates only when it was se-
mantically related to the quantity to be estimated. Pohl (1998) found that the anchoring bias was
absent when the anchor was perceived as implausible, and Hardt and Pohl (2003) found that the
bias was smaller on trials where the anchor’ judged plausibility was below the median plausibility
judgment. Thus, at least under some circumstances, people appear to discard the provided value

when it appears irrelevant or misleading.

However, realizing that the provided anchor is implausible and generating a better anchor require
knowledge, effort, and time. Therefore, when people are asked to estimate a quantity they know
almost nothing about, it may be resource-rational for them to anchor on whatever the experimenter

suggested. This seems applicable to most anchoring experiments, because participants are usually
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so uncertain that they do not even know in which direction to adjust from the provided anchor
(Simmons et al., 2010). If you cannot even tell whether the correct value is larger or smaller than the
anchor, how could you generate a better one? The effect of the anchor is largest in people with little
knowledge and high uncertainty about the quantity to be estimated (Jacowitz & Kahneman, 1995;
Wilson et al., 1996). These people would benefit from a better anchor, but they cannot easily gener-
ate one, because they lack the relevant knowledge. Conversely, our simulation of the effect of knowl-
edge suggested that people knowledgeable enough to generate good anchors, will perform well even
if they start from a highly implausible anchor. Although this argument is speculative and has yet to
be made precise it suggests that, at least in some situations, self-generating an anchor might not be

worth the effort regardless of one’s knowledge.

In conclusion, existing data are not necessarily inconsistent with the idea that anchors are chosen
resource-rationally. Thus, whether anchors are chosen rationally is still an open question. Experi-
mental and theoretical approaches to this question are an interesting avenue for future research that

we will discuss below.

The experiments reported in this chapter provide further support for resource-rationality as a
descriptive theory of human cognition. Previous experiments supported the prediction of resource-
rationality that mental algorithms tolerate bias in exchange for speed when accuracy is not crucial
(Lieder, Goodman, & Griffiths, 2013; Lieder et al., 2012). Here we went one step further and tested
whether the human mind rationally allocates its computational resources according to the utility
of being accurate and the cost of time. Our empirical data confirmed this prediction. This is in line
with the finding of near-optimal speed-accuracy tradeofts in perceptual decision-making (Bogacz
et al., 2010). The key difference is that we studied the control of reasoning whereas Bogacz et al.
(2010) studied the collection of sensory information. Resource-rationality is a general framework
applicable to all cognitive abilities. Even though resource-rationality is a very recent approach, it has
already shed some light on a wide range of cognitive abilities and provides a unifying framework
for the study of intelligence in psychology, neuroscience, and artificial intelligence (Gershman et al.,
2015). For example, we have recently applied the resource-rational framework to decision-making
(Lieder, Hsu, & Griffiths, 2014), planning (Lieder, Goodman, & Huys, 2013), and strategy selection
(Lieder & Griffiths, 20155 Lieder, Plunkett, et al., 2014). In conclusion, resource-rationality appears

to be a promising framework for normative and descriptive theories of human cognition.

93



2.7.4 DIRECTIONS FOR FUTURE RESEARCH

The question to which extent anchors are chosen resource-rationally is one interesting avenue for
future research. The hypothesis that anchors are chosen rationally predicts that if everything else is
equal people will choose a relevant anchor over an irrelevant one. This could be probed by provid-
ing people with two anchors rather than just one. Alternatively, one could manipulate the ease of
self-generating a good anchor and test whether this ease decreases the bias towards an implausible
provided anchor. To analyze such experiments, the models developed could be used to infer which

anchor people were using from the pattern of their responses.

Future studies could also leverage people’s reaction times to further test whether the number of
iterations is predetermined before adjustment begins against the alternative hypothesis that people
decide whether or not to make another adjustment based on the plausibility of the current estimate
as assumed by earlier theories (Epley & Gilovich, 2006; Simmons et al., 2010). Our model also pre-
dicts a multiplicative interaction between opportunity cost and error cost such that the anchoring
bias is proportional to the ratio of time cost over error cost. Qualitatively, this means that the ef-
fect of error cost should increase with opportunity cost and the effect of opportunity cost should
increase with time cost. However, when both are increased or decreased by the same factor, then the

anchoring bias should remain constant.

An additional direction for future work is to extend the adaptive anchoring-and-adjustment
model. This could be done in several ways. First, the model could be extended by mechanisms for
choosing and generating anchors. Second, the model could be extended by specifying how the mind
approximates optimal resource allocation. A third extension of our models might incorporate di-
rectional information into the proposal distribution as in the Hamiltonian Monte Carlo algorithm
(Neal, 2011) to better capture the effects of direction uncertainty discovered by Simmons et al. (2010).
A fourth extension might capture the sequential incorporation of relevant knowledge by iterative
conditioning and explore its connection to the selective accessibility theory of the anchoring bias
(Strack & Mussweiler, 1997). A fifth frontier is to make resource-rational anchoring-and-adjustment
more adaptive: How can the proposal distribution and a mechanism for choosing the number of
adjustments be learned from experience? Can better performance be achieved by adapting the pro-
posal distribution from one adjustment to the next? Finally, our resource-rational anchoring-and-
adjustment only uses a single sample, but it can be generalized to using multiple samples. Each of
these extensions might improve the performance of the estimation strategy and it is an interesting

question of whether or not those improvements would bring its predictions closer to human behav-
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ior. Future studies might also evaluate additional alternatives to our model, such as an anchoring
model with adaptive plausibility threshold or algorithms that directly approximate the most proba-

ble estimate rather than a sample from the posterior distribution.

Most previous models of heuristics are formulated for the domain in which the corresponding
bias was discovered. For instance, previous models of anchoring-and-adjustment were specific to
numerical estimation (Epley & Gilovich, 2006; Simmons et al., 2010). Yet, everyday reasoning is
not restricted to numerical estimation and anchoring also occurs in very different domains such as
social cognition (Epley et al., 2004). This highlights the challenge that models of cognition should
be able to explain not only what people do in the laboratory but also their performance in the real-
world. Heuristics should therefore be able to operate on the complex, high-dimensional semantic
representations people use in everyday reasoning. Resource-rational anchoring-and-adjustment
lives up to this challenge, because Markov-chain Monte Carlo methods are as applicable to semantic
networks (Abbott, Austerweil, & Griffiths, 2012) as they are to single numbers. In fact, resource-
rational anchoring-and-adjustment is a very general mechanism that can operate over arbitrarily
complex representations and might be deployed not only for numerical estimation but also in many
other cognitive faculties such as memory retrieval, language understanding, social cognition, and
creativity. For instance, resource-rational anchoring-and-adjustment may be able to explain the hind-
sight bias in memory recall (Hardt & Pohl, 2003; Pohl, 1998), primacy effects in sequential learning
(Abbott & Griffiths, 2011), and the dynamics of memory retrieval (Abbott et al., 2012; Bourgin, Ab-
bott, Griffiths, Smith, & Vul, 2014).

2.7.5 CONCLUSION

Resource-rational anchoring-and-adjustment provides a unifying, parsimonious, and principled
explanation for a plethora of anchoring effects including some that were previously assumed to be
incompatible with anchoring-and-adjustment. Interestingly, we discovered this cognitive strategy
purely by applying resource-rational analysis to estimation under uncertainty. It is remarkable that
the resulting model is so similar to the anchoring-and-adjustment heuristic. Our experiments con-
firmed that people rationally adapt the number of adjustments to the environment’s incentives for
speed and accuracy. Resource-rational anchoring-and-adjustment thereby reconciles the anchoring-
bias with people’s adaptive intelligence and Bayesian models of reasoning under uncertainty. Con-
cretely, the anchoring bias may reflect the optimal speed-accuracy tradeoft when errors are benign,

which is true of most, if not all, laboratory tasks. Yet, when accuracy is important and speed is not
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crucial, then people perform more adjustments and the anchoring bias decreases. In conclusion, the
anchoring bias may be a window on resource-rational computation rather than a sign of human irra-
tionality. Being biased can be resource-rational, and heuristics can be discovered by resource-rational

analysis.
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Figure 2.21: Results of Bayesian model selection given the data from Experiment 1. The top
panel shows the posterior probabilities of individual models. The bottom left panel shows the pos-
terior probabilities of the four theories (BDT: Bayesian decision theory, PPM: posterior probability
matching, AA: anchoring-and-adjustment, random: predictions are chosen randomly). The bottom
right panel shows the posterior probabilities of adaptive versus non-adaptive models.
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Figure 2.22: Estimated (left panel) and predicted (right panel) number of adjustments.
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Figure 2.23: Biases when the provided anchor was high versus low. Solid lines show the results
of linear regression. Shaded areas are 95% confidence bands, the diamonds with error bars are
the average biases within a five minute window and their 95% confidence intervals; that is £1.96
SEM.
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our theory's prediction; cf. Figure 2.14.

99



go®

WMot et pps R Mph Dl g

0.8 0.7

0.7

= =
%0.4 g
o
0.3F
0.3
0.2 0.2f
0.1 0.1
0 = N
® " "
®0 e\ N (@0 “me“ﬁNe @y““we
0!

Theories

Figure 2.25: Model selection results for Experiment 2. The top panel shows the posterior model
probabilities. The bottom panel shows the results of Bayesian inference on the level of model fami-
lies.

I00



A resource-rational perspective on

availability biases”

In addition to the anchoring bias analyzed in the previous chapter, Tversky and Kahneman’s ground-
breaking paper “Judgment under uncertainty: heuristics and biases” (Tversky & Kahneman, 1974)
reported another way in which human judgment violates the laws of probability theory: The avail-
ability bias is the phenomenon that people overestimate the probability of events that come to mind
easily (Tversky & Kahneman, 1973). It leads people to overestimate the frequency of extreme events
(Lichtenstein, Slovic, Fischhoft, Layman, & Combs, 1978) which in turn contributes to overreac-
tions to the risk of terrorism (Sunstein & Zeckhauser, 2011) and other threats (Lichtenstein et al.,
1978; Rothman, Klein, & Weinstein, 1996). Such availability biases result from the fact that not all
memories are created equal: while most unremarkable events are quickly forgotten, the strength of
a memory increases with the magnitude of its positive or negative emotional valence (Cruciani, Be-
rardi, Cabib, & Conversi, 2011). This may be why memories of extreme events, such as a traumatic
car accident (Brown & Kulik, 1977; Christianson & Loftus, 1987) or a big win in the casino, come

to mind much more easily (Madan, Ludvig, & Spetch, 2014) and affect people’s decisions more

strongly (Ludvig, Madan, & Spetch, 2014) than moderate events, such as the 2476™ time you drove

"This chapter is based on Lieder, Griffiths, and Hsu (2017).
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home safely and the 1739™ time a gambler lost $1 (Thaler & Johnson, 1990).

The availability bias is commonly assumed to be irrational, but here we propose that it might
reflect the rational use of finite time and limited cognitive resources (Griffiths et al., 2015). This
chapter explores the implications of these bounded resources within the resource-rational frame-
work introduced in Chapter 1. According to our mathematical analysis, the availability bias could
serve to help decision-makers focus their limited resources on the most important eventualities. In
other words, we argue that the overweighting of extreme events ensures that the most important
possible outcomes (i.c., those with extreme utilities) are always taken into account even when only
a tiny fraction of all possible outcomes can be considered. Concretely, we show that maximizing
decision quality under time constraints requires biases compatible with those observed in human
memory, judgment, and decision-making. Without those biases the decision-maker’s expected utility
estimates would be so much more variable that her decisions would be significantly worse. This fol-
lows directly from a statistical principle known as the bias-variance tradeoff (Hastie, Tibshirani, &

Friedman, 2009).

Starting from this principle, we derive a rational process model of memory encoding, judgment,
and decision making that we call uzility-weighted learning (UWL). Concretely, we assume that the
mind achieves a near-optimal bias-variance tradeoff by approximating the optimal importance sam-
pling algorithm (Geweke, 1989; Hammersley & Handscomb, 1964) from computational statistics.
This algorithm estimates the expected value of a function (e.g., a utility function) by a weighted
average of its values for a small number of possible outcomes. To ensure that important potential
outcomes are taken into account, optimal importance sampling optimally prioritizes outcomes
according to their probability and the extremity of their function value. The resulting estimate is
biased towards extreme outcomes but its reduced variance makes it more accurate. To develop our
model, we apply optimal importance sampling to estimating expected utilities. We find that this
enables better decisions under constrained resources. The intuitive reason for this benefit is that
overweighting extreme events ensures that the most important possible outcomes (e.g., a catastrophe
that has to be avoided or an epic opportunity that should be seized) are always taken into account

even when only a tiny fraction of all possible outcomes can be considered.

According to our model, each experience o creates a memory trace whose strength w is propor-
tional to the extremity of the event’s utility u(0) (i.e., w = |u(o) — u| where % is a reference point
established by past experience). This means that when a person experiences an extremely bad event
(e.g., a traumatic accident) or an extremely good event (e.g., winning the jackpot) the resulting mem-

ory trace will be much stronger than when the utility of the event was close to zero (e.g., lying in bed
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and looking at the ceiling). Here, we refer to events such as winning the jackpot and traumatic car
accidents as ‘extreme’ not because they are rare or because their utility is far from zero but because
they engender a large positive or large negative difference in utility between one choice (e.g., to play

the slots) versus another (e.g., to leave the casino).

In subsequent decisions (e.g., whether to continue gambling or call it a day), the model proba-
bilistically recalls past outcomes of the considered action (e.g., the amounts won and lost in previous
rounds of gambling) according to the strengths of their memory traces. As a result, the frequency
with which each outcome is recalled is biased by its utility even though the recall mechanism is obliv-

ious to the content of each memory.

Concretely, the probability that the first recalled outcome is an instance of losing $1 would be
proportional to the sum of its memory traces’ strengths. Although this event might have occurred
very frequently, each of its memory traces would be very weak. For instance, while there might be
1345 memory traces their strengths would be small (e.g., |u(—$1) — u| with @ close to u(—$1)).
Thus, the experience of losing $1 in the gamble would be only moderately available in the gambler’s
memory (total memory strength 1345 - |u(—$1) — /). Therefore, the one time when the gambler
won $1000 might have a similarly high probability of coming to mind because its memory trace is
significantly stronger (e.g., one memory trace of strength |1 ($1000) — @|). According to our model,
this probabilistic retrieval mechanism will sample a few possible outcomes from memory. These
simulated outcomes (e.g., 01 = $1000, 02 = $ — 1, -+, 05 = $1000) are then used to estimate the
expected utility of the considered action by a weighted sum of their utilities where the theoretically
derived weights partly correct for the utility-weighting of the memory traces (i.e., U = 3°; w; - u(0;)

with w; = it ). Finally, the considered action is chosen if and only if the resulting estimate of

1
0i)—1l
the expected utility gain is positive.

Our model explains why extreme events come to mind more easily, why people overestimate their
frequency, and why they are overweighted in decision-making. It captures published findings on bi-
ases in memory recall, frequency estimation, and decisions from experience (Erev et al., 2010; Ludvig
et al., 2014; Madan et al,, 2014) as well as three classic violations of expected utility theory in decisions
from description. Our model is competitive with the best existing models of decisions from expe-
rience and correctly predicted the previously unobserved correlation between events’ perceived ex-
tremity and the overestimation of their frequencies. The empirical evidence that we present strongly
supports the model’s assumption that the stronger memory encoding of events with extreme utili-
ties causes biases in memory recall that in turn lead to biases in frequency estimation and decision-

making. Concretely, people remember extreme events more frequently than equally frequent events
g Yy, peop q y qually freq
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of moderate utility, overestimate their frequency, and overweight them in decision-making (Ludvig
etal., 2014). Furthermore, the magnitude of overweighting increases significantly with the magni-
tude of the memory bias (Madan et al., 2014), and we found that the extent to which people overes-
timate an event’s frequency correlates significantly with its extremity. The theoretical significance
of our analysis is twofold: it provides a unifying mechanistic and teleological explanation for a wide
range of seemingly disparate cognitive biases and it suggests that at least some heuristics and biases

might reflect the rational use of finite time and limited cognitive resources (Griftiths et al., 2015).

The remainder of this chapter proceeds as follows: We start by deriving a novel decision mecha-
nism as the rational use of finite time under reasonable, abstract assumptions about the mind’s com-
putational architecture. We show that the derived mechanism captures people’s availability biases in
frequency judgment and memory recall. Next, we demonstrate that the same mechanism can also ac-
count for three classic violations of expected utility theory and evaluate it against alternative models
of decisions from description. We proceed to show that our model can also capture the heightened
availability, overestimation, and overweighting of extreme events in decisions from experience. Fi-
nally, we show that utility-weighted sampling can emerge from a biologically-plausible learning
mechanism that captures the temporal evolution of people’s risk preferences in decisions from ex-
perience and evaluate it against alternative models of decisions from experience. We conclude with

implications for the debate on human rationality and directions for future research.

3.1 RESOURCE-RATIONAL DECISION-MAKING BY UTILITY-WEIGHTED SAMPLING

According to expected utility theory (von Neumann & Morgenstern, 1944), decision-makers should
evaluate each potential action a by integrating the probabilities P(0|A = a) of its possible out-
comes o with their utilities u(0) into the action’s expected utility Ep, 0| a—q) [u(O)]. Unlike simple
laboratory tasks where each choice can yield only a small number of possible payofts, many real-life
decisions have infinitely many possible outcomes.” Asa consequence, the expected utility of action

a becomes an integral:

E, (oA [u(0)] = / p(ola) - u(o) do. (3.1)

TPeople often cope with this complexity by partitioning possible outcomes into chunks like “stock goes
up” vs. “stock goes down”. We do not consider this approximation to be an inherent component of the
problem itself, but rather as useful component of many heuristic strategies.
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In the general case, this integral is intractable to compute. Below we investigate how the brain might

approximate the solution to this intractable problem.

3.1.1 SAMPLING AS A DECISION STRATEGY

To explore the implications of resource constraints on decision-making under uncertainty, we model
the cognitive resources available for decision-making within a formal computational framework that
has been successfully used to develop rational process models of human cognition and can capture
the variability of human performance, namely sampling (Griffiths, Vul, & Sanborn, 2012). Sampling
methods can provide an efficient approximation to integrals such as the expected utility in Equa-
tion 3.1 (Hammersley & Handscomb, 1964), and mental simulations of a decision’s potential conse-
quences can be thought of as samples. The idea that the mind handles uncertainty by sampling is
consistent with neural variability in perception (Fiser et al., 2010) and the variability of people’s judg-
ments (Denison et al., 2013; Griffiths & Tenenbaum, 2006; Vul et al., 2014). For instance, people’s
predictions of an uncertain quantity X given partial information y are roughly distributed accord-
ing to its posterior distribution p(X|y) as if they were sampled from it (Griffiths & Tenenbaum,
2006; Vul et al., 2014). Such variability has also been observed in decision-making: in repeated bi-
nary choices from experience animals chose each option stochastically with a frequency roughly pro-
portional to the probability that it will be rewarded (Herrnstein & Loveland, 1975). This pattern of
choice variability, called probability matching, is consistent with the hypothesis that animals perform
a single simulation and chose the simulated action whenever its simulated outcome is positive. Peo-
ple also exhibit probability matching when the stakes are low, but as the stakes increase their choices
transition from probability matching to maximization (Vulkan, 2000). This transition might arise
from people gradually increasing the number of samples they generate to maximize the amount of
reward they receive per unit time (Vul et al., 2014). Decision mechanisms based on sampling from
memory can explain a wide range of phenomena (N. Stewart et al., 2006). Concordant with recent
drift-diffusion models (Shadlen & Shohamy, 2016) and query theory (Johnson, Hiubl, & Keinan,
2007; Weber et al., 2007), this approach assumes that preferences are constructed (Payne, Bettman,

& Johnson, 1992) through a sequential, memory-based cognitive process.

Assuming that people make decisions by sampling, we can express time and resource-constraints
as a limit on the number of samples, where each sample is a simulated outcome: According to our
theory, the decision-maker’s primary cognitive resource is a probabilistic simulator of the environ-

ment. The decision-maker can use this resource to anticipate some of the many potential futures
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that could result from taking one action versus another, but each simulation takes a non-negligible
amount of time. Since time is valuable and the simulator can perform only one simulation at a time,

the cost of using this cognitive resource is thus proportional to the number of simulations (i.e. sam-

ples).

If a decision has to be based on only a small number of simulated outcomes, what is the optimal
way to generate them? Intuitively, the rational way to decide whether to take action a is to simulate
its consequences 0 according to one’s best knowledge of the probability p that they will occur and
average the resulting gain in utility Au(0) to obtain an estimate of AURS (@) of the expected gain or

loss in utility for taking action a over not taking it, that is
1 S
ATI(@) = 5 3 Au(o).  on100 ~p(O) 62)
P

This decision strategy, which we call representative sampling (RS), generates an unbiased utility esti-
mate. Yet — surprisingly — representative sampling is insufficient for making good decisions with
very few samples. Consider, for instance, the choice between accepting versus declining a game

of Russian roulette with the standard issue six-round NGant M189s revolver. Playing the game

will most likely, i.e. with probability p1 = %, reward you with a thrill and save you some ridicule
(Au(o1) = 1) buckill you otherwise (po = %, Au(02) = —10%). Ensuring that representative
sampling declines a game of Russian roulette at least 99.99% of the time, would require 51 samples

— potentially a very time-consuming computation.

Like Russian roulette, many real-life decisions are complicated by an inverse relationship between
the magnitude of the outcome and its probability (Pleskac & Hertwig, 2014). Many of these prob-
lems are much more challenging than declining a game of Russian roulette, because their probability
of disaster is orders of magnitude smaller than % and it may or may not be large enough to warrant
caution. Examples include risky driving, medical decisions, diplomacy, the stock market, and air
travel. For some of these choices (e.g., riding a motor cycle without wearing a helmet) there may be a

one in a million chance of disaster while all other outcomes have negligible utilities:
Au(og) = —10%,p(og) = 107°%, Vi # d : |Au(o;)|< 1. (33)

If people decided based on n representative samples, they would completely ignore the potential dis-
aster with probability 1 — (1 — 1075)™. Thus to have at least a 50% chance of taking the potential

disaster into account they would have to generate almost 700000 samples. This is clearly infeasible;
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thus one would almost always take this risk even though the expected utility gain is about —1000.
In conclusion, representative sampling is insufficient for resource-bounded decision-making when
some of the outcomes are highly improbable but so extreme that they are nevertheless important.

Therefore, the robustness of human decision-making suggests that our brains use a more sophisti-

cated sampling algorithm—such as importance sampling.

Importance sampling is a popular sampling algorithm in computer science and statistics (Geweke,
1989; Hammersley & Handscomb, 1964) with connections to both neural networks (Shi & Griffiths,
2009) and psychological process models (Shi et al., 2010). It estimates a function’s expected value
with respect to a probability distribution p by sampling from an importance distribution ¢ and
correcting for the difference between p and g by down-weighting samples that are less likely under

p than under q and up-weighting samples that are more likely under p than under g. Concretely,

self-normalized importance sampling (Robert & Casella, 2009) draws s samples 21, - - -, 25 from a
distribution ¢, weights the function’ value f(x;) at each point x; by the weight w; = Iq) Ei’ ; and
J
then normalizes its estimate by the sum of the weights:
px;
Xh...,XSNq’ w; = ( J) (34)
q(z;)
. 1 >
Eplf (X)) = Epy = s D wj - f(xy). (3)

Ej:l wj

With finitely many samples, this estimate is generally biased. Following Zabaras (2010), we approxi-

mate its bias and variance by

~ T 2
Bl ~ 1 [ B0 (Blf)] - fo)da 66)
T 2
Var[EL,] ~ % / Z((w) (f(x) — Ey[X])* da. (3.7)

We hypothesize that the brain uses a strategy similar to importance sampling to approximate the
expected utility gain I8, 0] a4—a) [Au(O)] of taking action a and approximate the optimal decision
a* = arg max, 0| a=q) [Au(O)] by

x ——IS —IS

@* = arg max AU, 4(a), AU, 4(a) = Eyo)q)[Au(o)] (3.8)

——IS 1 -

AU s(a):si wAu<O>7 01, +,0s ~ (. (3-9)
¢ Zj:l wj ; ! ’
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Note that importance sampling is a family of algorithms: each importance distribution ¢ yields a
different estimator, and two estimators may recommend opposite decisions. This leads us to investi-

gate which distribution g yields the best decisions.

3.1.2 WHICH DISTRIBUTION SHOULD WE SAMPLE FROM?

Representative sampling is a special case of importance sampling in which the simulation distribu-
tion ¢ is equal to the outcome probabilities p. Representative sampling fails when it neglects crucial
eventualities. Neglecting some eventualities is necessary, but particular eventualities are more impor-
tant than others. Intuitively, the importance of potential outcome o; is determined by |p(0;) - u(0;)|
because neglecting 0; amounts to dropping the addend p(0;) - u(0;) from the expected-utility inte-
gral (Equation 3.1). Thus, intuitively, the problem of representative sampling can be overcome by
considering outcomes whose importance (|p(0;) - u(0;)|) is high and ignoring those whose impor-

tance is low.

Formally, the agent’s goal is to maximize the expected utility gain of a decision made from only s
samples. The utility foregone by choosing a sub-optimal action can be upper-bounded by the error
in a rational agent’s utility estimate. Therefore the agent should minimize the expected squared error
of its estimate of the expected utility gain IE [AU], which is the sum of its squared bias and variance
,thatis E [(TU;%S —-E [AU])2] = Bias [TU;S’S} ’ + Var [AAU;S’S} (Hastie et al., 2009). As the
number of samples s increases, the estimate’s squared bias decays much faster (O(s~2)) than its vari-
ance (O(s™1)); see Equations 3.6-3.7. Therefore, as the number of samples s increases, minimizing

the estimator’s variance becomes a good approximation to minimizing its expected squared error.

According to variational calculus the importance distribution
g™ (0) x p(0) - [Au(o) — E,[AU]| (3.10)

minimizes the variance (Equation 3.7) of the utility estimate in Equation 3.9 (Geweke, 1998; Zabaras,
2010; see Appendix B). This means that the optimal way to simulate outcomes in the service of esti-
mating an action’s expected utility gain is to over-represent outcomes whose utility is much smaller
or much larger than the action’s expected utility gain. Each outcome’s probability is weighted by
how disappointing (I, [AU] — Au(0)) or elating (Au(o) — IE,[AU]) it would be to a decision-
maker anticipating to receive the gamble’s expected utility gain (IE,[AU]). But unlike in disap-

pointment theory (Bell, 1985; Loomes & Sugden, 1984, 1986), the disappointment or elation is not
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added to the decision-maker’s utility function but increases the event’s subjective probability by
prompting the decision-maker to simulate that event more frequently. Unlike in previous theories,
this distortion was ot introduced to describe human behavior but derived from first principles of
resource-rational information processing: Importance sampling over-simulates extreme outcomes to
minimize the mean-squared error of its estimate of the action’s expected utility gain. It tolerates the

resulting bias because it is more important to shrink the estimate’s variance.

Unfortunately, importance sampling with ¢"" is intractable, because it presupposes the expected
utility gain IE,,[AU] that importance sampling is supposed to approximate. However, the average
utility Au of the outcomes of previous decisions made in a similar context could be used as a proxy
for the expected utility gain IE, [AU]. That quantity has been shown to be automatically estimated
by model-free reinforcement learning in the midbrain (Schultz, Dayan, & Montague, 1997). There-

fore, people should be able to sample from the approximate importance distribution
q(0) o< p(0) - |Au(0) — Aul. (3.11)

This distribution weights each outcome’s probability by the extremity of its utility. Thus, on aver-
age, extreme events will be simulated more often than equiprobable outcomes of moderate utility.
We therefore refer to simulating potential outcomes by sampling from this distribution as #ziliry-

weighted sampling.

3.1.3 UTILITY-WEIGHTED SAMPLING

Having derived the optim