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A B S T R A C T

The observation that the risk of developing Alzheimer’s disease is reduced in individuals with high premorbid 
cognitive functioning, higher educational attainment, and occupational status has led to the ‘cognitive reserve’ 
hypothesis. This hypothesis suggests that individuals with greater cognitive reserve can tolerate a more signif
icant burden of neuropathological changes before the onset of cognitive decline. The underpinnings of cognitive 
reserve remain poorly understood, although a shared genetic basis between measures of cognitive reserve and 
Alzheimer’s disease has been suggested. Using the largest samples to date and novel statistical tools, we aimed to 
investigate shared genetic variants between Alzheimer’s disease, and measures of cognitive reserve; cognition 
and educational attainment to identify molecular and neurobiological foundations. We applied the causal 
mixture model (MiXeR) to estimate the number of trait-influencing variants shared between Alzheimer’s disease, 
cognition, and educational attainment, and condFDR/conjFDR to identify shared loci. To provide biological 
insights loci were functionally characterized. Subsequently, we constructed a Structural Equation Model (SEM) to 
determine if the polygenic foundation of cognition has a direct impact on Alzheimer’s disease risk, or if its effect 
is mediated through established risk factors for the disease, using a case-control sample from the UK Biobank. 
Univariate MiXeR analysis (after excluding chromosome 19) revealed that Alzheimer’s disease was substantially 
less polygenic (450 trait-influencing variants) compared to cognition (11,100 trait-influencing variants), and 
educational attainment (12,700 trait-influencing variants). Bivariate MiXeR analysis estimated that Alzheimer’s 
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EDU, educational attainment; FUMA, Functional Mapping and Annotation; GWAS, genome-wide association studies; LD, linkage disequilibrium; LDSR, linkage 
disequilibrium score regression; MHC, major histocompatibility complex; MiXeR, causal mixture model; PGS, polygenic score; SEM, Structural Equation Model; 
WebCSEA, Web-based Cell-type-Specific Enrichment Analysis of Genes.
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disease shared approximately 70 % of trait-influencing variants with cognition, and approximately 40 % with 
educational attainment, with mixed effect directions. Using condFDR analysis, we identified 18 loci jointly 
associated with Alzheimer’s disease and cognition and 6 loci jointly associated with Alzheimer’s disease and 
educational attainment. Genes mapped to shared loci were associated with neurodevelopment, expressed in early 
life, and implicated the dendritic tree and phosphatidylinositol phosphate binding mechanisms. Spatiotemporal 
gene expression analysis of the identified genes showed that mapped genes were highly expressed during the 
mid-fetal period, further suggesting early neurodevelopmental stages as critical periods for establishing cognitive 
reserve which affect the risk of Alzheimer’s disease in old age. Furthermore, our SEM analysis showed that 
genetic variants influencing cognition had a direct effect on the risk of developing Alzheimer’s disease, providing 
evidence in support of the neurodevelopmental hypothesis of the disease.

1. Introduction

The risk of developing Alzheimer’s disease (AD) is reduced in in
dividuals with high premorbid cognitive functioning, higher educational 
attainment (EDU) and occupational status, as well as among those 
engaged in cognitively stimulating activities (Wilson et al., 2002; Scar
meas et al., 2001; Evans et al., 1997; Stern et al., 1994; Valenzuela and 
Sachdev, 2006). These observations led to the ‘cognitive reserve’ hy
pothesis, which argues that individuals with greater cognitive resources 
tolerate a greater burden of neuropathological changes before cognitive 
decline sets in, possibly reflecting the activation of preexisting or 
compensatory brain mechanisms (Stern, 2012).

Various proxies of cognitive reserve have been proposed, and pre
morbid general cognition (COG) and EDU are the most established in
dicators (Ko et al., 2022; Xu et al., 2015). Premorbid COG seems to 
moderate the relationship between AD-type brain hypometabolism (Ko 
et al., 2022), temporal tau deposits (Rentz et al., 2017), and precuneus 
amyloid β (Aβ) deposits (Rentz et al., 2010). Similarly, EDU moderates 
the relationship between AD-type brain hypometabolism (Ko et al., 
2022), Aβ plaques (Bennett et al., 2005) and cerebrospinal fluid Aβ 
(Yaffe et al., 2011) with COG. While the underpinnings of cognitive 
reserve remain poorly understood, processes associated with environ
mental enrichment (e.g., synaptic plasticity, neurogenesis), as well as 
brain resistance to withstand the effects of disease, repair responses to 
insults, and an atypical compensatory pattern of brain network activa
tion have been suggested (van Praag et al., 2000; Grady et al., 2003; 
Lesuis et al., 2018; Valenzuela and Sachdev, 2006; Xu et al., 2015). 
Recently, genetic variation has emerged as a promising instrument to 
study cognitive reserve in large population-based samples (Savage et al., 
2018; Okbay et al., 2016; Seyedsalehi et al., 2023; Thorp et al., 2022; 
Wang et al., 2023).

The recent large genome-wide association studies (GWAS) of AD, 
COG, and EDU have provided new opportunities to investigate their 
shared genetic underpinnings (Archer et al., 2023; Lahti et al., 2022; Gao 
et al., 2022). COG, EDU, and AD are known to be complex traits, with 
heritability estimated in twin studies to be 0.4–0.6 (Haworth et al., 
2010), 0.3–0.7 (Colodro-Conde et al., 2015), and 0.6–0.8 (Gatz et al., 
2006), respectively. Despite similar heritabilities, AD is substantially 
less polygenic than COG and EDU, and the APOE risk variants explain a 
large proportion of AD’s heritability (Bahrami et al., 2021; Fominykh 
et al., 2023; Hope et al., 2023). To identify shared genetic architecture, 
genetic overlap can be investigated in the entire genome or at individual 
genetic loci, genes, or genetic variants (Smeland et al., 2020; Frei et al., 
2019). At the genome-wide level, the genetic correlation of effect sizes 
across common variants after controlling for linkage disequilibrium (LD) 
can be estimated. There are negative genetic correlations between AD 
and COG (rg = − 0.27) (Savage et al., 2018), as well as between AD and 
EDU (rg = − 0.20) (Okbay et al., 2016). On the level of individual genetic 
loci, recent GWAS meta-analyses of verbal short-term memory and 
verbal learning in healthy adults have identified AD-linked genetic loci 
(Lahti et al., 2022; Archer et al., 2023). Moreover, the DCDC2 gene, 
which affects microtubule polymerization, has been implicated in both 
COG and long-term changes in memory functioning (Archer et al., 2023; 
Gao et al., 2022). Finally, mendelian randomization analysis, which 

tests for genetic evidence of causal relationships between two pheno
types, has suggested a protective effect of COG against AD (OR = 0.65) 
(Savage et al., 2018). Still, the shared genetic architecture underlying 
AD, COG, and EDU is yet to be fully characterized.

Applying an integrative study design, we combined genetic data, 
transcriptomic data, and novel statistical genetic approaches to gain 
molecular insights into the cognitive reserve model of AD (Fig. 1). To 
this end, we applied analyses to the largest pertinent GWAS of AD and 
the proxy measures of cognitive reserve, COG and EDU. First, we eval
uated genome-wide genetic overlap between AD, COG, and EDU beyond 
genetic correlations by applying the bivariate causal mixture model 
(MiXeR), which estimates the total number of shared genetic variants 
irrespective of the effect direction. MiXeR has revealed extensive genetic 
overlap even in scenarios of weak or absent genetic correlation (Frei 
et al., 2019). Next, we identified shared genetic loci using the 
conjunctional false discovery (conjFDR) approach and performed gene- 
set analyses for genes mapped to discovered loci (Andreassen et al., 
2013; Smeland et al., 2020). Finally, we investigated gene expression of 
putative shared genes across distinct neurodevelopmental periods and 
brain structures to characterize how variants jointly associated with AD 
and COG and EDU are linked to brain development.

2. Materials and methods

2.1. Samples

2.1.1. Genome-wide association studies
We used GWAS summary statistics results for AD, COG and EDU. We 

employed the latest GWAS summary statistics for AD from the Psychi
atric Genomics Consortium (PGC) (Jansen et al., 2019). To avoid sample 
overlap with the GWAS of COG and EDU, we excluded samples from the 
23andMe, UK Biobank, deCODE, and HUNT from the AD GWAS. Data on 
COG were based on 269,867 people from 14 cohorts, mostly from the UK 
Biobank (n = 195,653) (Savage et al., 2018). We also used GWAS 
summary statistics results for EDU including 293,723 individuals, and a 
replication study in an independent sample of 111,349 individuals from 
the UK Biobank (Okbay et al., 2016).

2.1.2. Case control sample
Our analysis was conducted on a sample of 269,362 (3188 AD cases, 

266,174 controls; Supplementary Fig. 1) unrelated (with a kinship co
efficient estimate below 0.05), white British participants, all aged 65 or 
over, from the UK Biobank (https://www.ukbiobank.ac.uk/; accession 
number 27412).

2.1.3. Consent statement
GWASs investigated in the study were approved by the ethics com

mittees, and informed consent was obtained from all participants. The 
UK Biobank study was approved by the North West Multi-Centre 
Research Ethics Committee and all participants provided written 
informed consent to participate in the UK Biobank study. The Regional 
Committee for Medical Research Ethics (REC) has approved the study. 
The use of individual data for the study of genetics of dementia and 
cognition is approved by REC (2014/631, 2009/2485) including the use 
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of UK Biobank data (accession number 27412). The REC evaluated the 
research protocol that only included GWAS summary statistics data and 
found that no additional institutional review board approval was 
necessary as no individual data were used. The HUSKment study was 
approved by the Regional Committee for Medical Research Ethics 
Western Norway (REK Vest 10279 (2018/915)).

2.2. Gaussian causal mixture modeling method (MiXeR) analysis

We estimated genetic correlations between AD, COG, and EDU using 
linkage disequilibrium score regression (LDSR) (Bulik-Sullivan et al., 
2015a, 2015b). Subsequently, we used MiXeR to estimate polygenic 
overlap between AD, COG, and EDU (Frei et al., 2019). MiXeR employs a 
univariate causal mixture model to estimate the proportion of non-null 
SNPs (polygenicity) and the variance of the effect size of non-null SNPs 
for each phenotype. Specifically, the model estimates two key parame
ters: the proportion of SNPs with non-zero effects (polygenicity) and the 
variance of effect sizes among these SNPs. For our analysis, we used 
default settings for these parameters, including the assumption of 
normality for the distribution of effect sizes and a grid search method to 
optimize the likelihood function.

Subsequently, a bivariate causal mixture model is used to estimate 
the total number of shared and specific trait-influencing variants be
tween two phenotypes. This model extends the univariate approach by 
simultaneously modeling two traits, estimating the overlap in poly
genicity and the degree of shared genetic architecture between them. 
The bivariate model also estimates the genetic correlation and provides 
the proportion of shared SNPs with non-zero effects between the traits.

To visualize the results, MiXeR presents a Venn diagram illustrating 
the unique and shared polygenic components across traits. For the 
visualization, the model outputs the estimated number of unique and 
shared variants for each pair of traits, which are then depicted in the 
diagram to highlight the genetic overlap and specificity between AD, 
COG, and EDU. We excluded the major histocompatibility complex 
(MHC) region due to its complex LD, as recommended (Fernandes et al., 
2023; Fominykh et al., 2023). Additionally, we followed the analytic 

setup from Holland et al. (Holland et al., 2020) and analyzed chromo
some 19 independently from the other chromosomes because of the 
large effect of the APOE region in AD (Fominykh et al., 2023; Holland 
et al., 2020).

2.3. Conditional and conjunctional false discovery rate (condFDR and 
conjFDR) analyses

We implemented the conditional and conjunctional false discovery 
rate (condFDR and conjFDR) analyses to improve the identification of 
common variants associated with AD, COG, and EDU (condFDR) and 
detect shared genomic loci (conjFDR) (Smeland et al., 2020; Andreassen 
et al., 2013). The condFDR analysis allows to control for false discov
eries more accurately by incorporating information from multiple traits 
and considering the pleiotropic effects of genetic variants on different 
phenotypes. Furthermore, we utilized the conjFDR method, which 
considers the joint FDR across two traits simultaneously to identify 
shared loci between two traits. Cross-trait enrichment of SNP associa
tions between AD and each of COG and EDU was visualized using con
ditional QQ plots. The condFDR value of each SNP was computed for AD 
conditional on COG and EDU and vice versa. We ran the analysis after 
omitting SNPs from the extended MHC (hg19 position chr 6:25119106- 
33854733), 8p23.1 (hg19 location chr 8:7242715-12483982) and AOPE 
(hg 19 position chr19:44000000-47000000) regions to prevent possible 
biases due to genomic regions with complex LD.

We attempted to validate the identified lead SNPs for AD using re
sults from an independent GWAS (Supplementary materials).

2.4. Genomic loci definition and functional annotation

We used the Functional Mapping and Annotation (FUMA) protocol to 
characterize identified genetic loci (Watanabe et al., 2017). In this step, 
we considered SNPs having a condFDR < 0.01 and at r2 < 0.6 with each 
other as independent significant SNPs and a fraction of independent 
significant SNPs in approximate linkage equilibrium with each other at 
r2 < 0.1 as lead SNPs. If two or more lead SNPs were located within one 

Alzheimer's disease GWAS

SEMLDSR + MiXeR

Cognitive reserve proxy GWAS

condFDR/conjFDR

Analysis of
direct and indirect 

effects A B

C
A B

Genetic correlation
and 

genetic overlap

Identification 
of gene sets

Pattern of 
spatiotemporal

gene expression
STR

CBC

MFC

STC

DFC

AMY

HIP

IPC

A1C

VFC

MD

ITC

OFC

V1C

M1C

S1C

Individual participant data 
from the UK Biobank

Identification
of shared loci

Fig. 1. Schematic overview of the study design. The linkage disequilibrium score regression (LDSR) and the causal mixture model (MiXeR) were applied to the results 
of the largest genome-wide association studies (GWAS) for cognitive reserve proxies (cognition and educational attainment) and Alzheimer’s disease (AD) to 
calculate genetic correlation and genetic overlap. Subsequently, the conditional/conjunctional false discovery rate (condFDR∕conjFDR) approach was applied to the 
same summary statistics to identify genomic loci shared between traits of interest, followed by the analysis of spatiotemporal expression and gene set identification 
for genes mapped to the shared loci. Finally, structural equation models (SEM) were applied to the UK Biobank data along with summary statistics for the traits of 
interest to analyze the direct and indirect effects of the polygenic architecture of cognitive reserve proxies on the diagnosis of AD.
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LD block (in 250 kb), we merged them into a single genomic risk locus. 
To accurately associate significant SNPs with their respective genes, we 
employed the variant-to-gene tool from Open Targets Genetics 
(Ghoussaini et al., 2021; Mountjoy et al., 2021). This tool prioritizes 
causal variants and identifies possible causative genes linked to a variety 
of phenotypes and diseases. The mapping of lead SNPs to their corre
sponding genes is performed by integrating data from several sources. 
Specifically, the tool utilizes positional information, such as the physical 
distance between the SNP and the canonical transcription start site (TSS) 
of genes, along with functional genomics data, including expression 
quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), 
and splicing QTLs. Additionally, it incorporates epigenomic data that 
reveal chromatin state and DNA accessibility, as well as computational 
functional predictions that assess the impact of variants on gene func
tion. By combining these diverse datasets, Open Targets Genetics sys
tematically identifies the most likely gene or genes associated with each 
locus, providing a robust framework for understanding the genetic basis 
of complex traits. After mapping SNPs to genes, we performed gene-set 
analysis based on the gene ontology classification system using FUMA. 
FUMA performs gene-set enrichment analysis using predefined biolog
ical pathways and gene sets. The analysis identifies pathways that are 
significantly overrepresented among the prioritized genes, highlighting 
potential biological processes involved in the trait under study. Using 
BrainSpan RNA sequencing data, we also created spatiotemporal heat 
maps of gene-expression levels across 11 brain tissues at 11 develop
mental time points using the R package cerebroViz (Miller et al., 2014; 
Bahl et al., 2017). Utilizing unsupervised hierarchical cluster analysis, 
expression was clustered across brain tissues. We utilized the WebCSEA 
(Web-based Cell-type-Specific Enrichment Analysis of Genes) tool to 
examine the context-specific expression of mapped genes shared be
tween COG, EDU and AD (Dai et al., 2022). WebCSEA is an online tool 
that comprises 1355 tissue-cell types from 111 scRNA-seq panels drawn 
from a variety of human tissues and organ systems. Additionally, we 
identified the cell-specific expression of each shared gene mapped 
independently in the human cerebral cortex, including neurons, foetal 
and adult astrocytes, oligodendrocytes, microglia/macrophages, and 
endothelial cells (Y. Zhang et al., 2016).

2.5. Structural Equation Model (SEM)

To determine if the polygenic foundation of COG has a direct impact 
on AD risk or if its effect is mediated through established risk factors for 
AD, which is essential for interpreting the primary outcomes of our 
study, we constructed a Structural Equation Model (SEM) using the R 
package lavaan (Rosseel, 2012) and analyzed the case-control sample 
from the UK Biobank.

First, we evaluated associations between previously identified risk 
factors for AD (Livingston et al., 2020) and polygenic score (PGS) for 
COG. To this end, we applied PRSice, version 2.3.3 (Choi and O’Reilly, 
2019) to calculate PGS (p-value thresholds = 5e-8, 1e-7, 1e-6, 1e-5, 1e-4, 
1e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1) for COG from a GWAS (Davies et al., 
2018). We extracted the first principal component for COG PGS across 
all p-value thresholds, following a widely applied method (Coombes 
et al., 2020). We employed logistic regression models with the hospital 
diagnosis of AD (field 41,280), and the specified risk factor, as a binary 
outcome variable, and PGS for cognition, as a predictor. Models 
included the first 10 genetic principal components, age, sex, and genetic 
array as covariates. We analyzed the following risk factors that were 
previously identified (Livingston et al., 2020) and are available in the 
UK Biobank: head injury (field 41,280: ICD-10 diagnosis of S02.0, S02.1, 
S02.7 - S02.9, S06, S07 or S09), alcohol use disorder (field 41,280: ICD- 
10 diagnosis of F10.1 - F10.4), smoking status (field 20,116), hearing 
loss (fields 2247 and 3393), high blood pressure (field 4080; systolic 
blood pressure equal or above 140 mmHg), BMI equal or above 30 (field 
21001), loneliness (field 2020), inactivity (field 904; if no vigorous 
physical activity in typical week).

Subsequently, we constructed a SEM mediation model to assess the 
direct effect of PGS for COG, as well as the indirect effect mediated by 
the risk factors identified in the previous step on AD diagnosis. In the 
proposed model, the presence of alcohol use disorder was coded as 
present only if an ICD-10 diagnosis within the range of F10.1 to F10.4 
had been assigned at least one year prior to the diagnosis of AD. Po
tential confounders included in the model were age, sex, genetic array, 
and the first 10 genetic principal components.

We also constructed a similar SEM on educational attainment (Sup
plementary materials).

3. Results

3.1. Quantifying trait-influencing variants and genetic overlap

Using LDSR, we found a significant negative genetic correlation be
tween AD and COG (rg = − 0.181, SE = 0.0635, p = 0.004) and a weak, 
non-significant genetic correlation between AD and EDU (rg = − 0.094, 
SE = 0.05, p = 0.06).

Using MiXeR, we found that AD was substantially less polygenic than 
EDU and COG, as previously reported (Bahrami et al., 2021; Fominykh 
et al., 2023; Hope et al., 2023). The number of trait-influencing variants 
was estimated to be approximately 12,700 (SD = 300) variants for EDU, 
11100 (SD = 300) for COG, and 450 (SD = 100) for AD (Fig. 2). Bivariate 
MiXeR analysis showed polygenic overlap after excluding chromosome 
19. The predicted number of shared trait-influencing variants between 
AD and COG (Fig. 2) was approximately 300 (SD = 50). The fraction of 
AD polygenicity shared with COG was estimated at 67.51 %. Similarly, 
the predicted number of shared trait-influencing variants between AD 
and EDU was approximately 200 (SD = 50). The fraction of AD poly
genicity shared with EDU was estimated at 41.61 %.

3.2. ConjFDR analysis identifies shared genomic loci between AD and 
COG and EDU

The conditional QQ plots demonstrate bidirectional cross-trait 
enrichment between AD and each of COG, EDU (Fig. 3). This is illus
trated by a consistent leftward deflection from the dashed line (repre
senting no enrichment) for subsets of variants with higher significance in 
the conditional trait.

Using condFDR analysis at FDR < 0.01, we identified 50, and 31 loci 
associated with AD conditionally on COG and EDU, respectively (Sup
plementary Tables 1 and 2).

ConjFDR analysis at FDR < 0.05 showed 18 and 6 shared loci be
tween AD and each of COG and EDU, respectively (Tables 1 and 2, 
Fig. 4). Two loci were identified across both analyses while they had 
different lead SNPs. Furthermore, 72 % of lead SNPs (13/18) had the 

Fig. 2. The bivariate MiXeR analysis after excluding chromosome 19. Venn 
diagrams illustrate the number of shared (dark blue) and trait-specific ‘causal’ 
variants in cognition (COG; purple), Alzheimer’s disease (AD; light blue), and 
educational attainment (EDU; green). The number of trait-specific and shared 
variants is expressed in thousands, with standard deviations in brackets. The 
circles’ size represents the traits’ polygenicity. The genome-wide genetic cor
relation of shared variants (rg) is depicted below. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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opposite effect direction on AD and COG compared to 50 % for AD and 
EDU (3/6), consistent with the negative genetic correlation between AD 
and COG and minimal negative genetic correlation between AD and 
EDU.

Validation results of the identified lead SNPs for AD using results 
from an independent GWAS are available in the Supplementary 
materials.

3.3. Functional annotation of identified genetic loci

We used FUMA to functionally annotate all SNPs within loci asso
ciated with AD and each of COG and EDU in LD (r2 ≥ 0.6) with a sig
nificant independent SNP and with conjFDR <0.1. We found 54 % and 
73 % of the SNPs jointly associated with AD and each of COG and EDU to 
be intronic, respectively. For more details see Supplementary Tables 3 
and 4.

Using the Open Targets Genetics portal, we mapped a total of 18 
genes to lead SNPs jointly associated with AD and COG (Supplementary 
Table 3) and 6 genes for AD and EDU (Supplementary Table 4). Three of 
the lead SNPs (rs11168036, rs9381037, and rs77804065) for the shared 
loci between AD and COG had a CADD score above 12.37, suggesting 
high deleteriousness. These SNPs were mapped to SRA1, APOBEC2, and 
MAPT genes respectively.

We conducted gene-set analyses using gene ontology terms on each 
set of mapped genes jointly associated with AD and each of COG and 
EDU. For genes mapped to AD and COG we identified two gene sets 
related to the molecular functions (“GO PHOSPHATIDYLINOSITOL 
BISPHOSPHATE BINDING”, “GO PHOSPHATIDYLINOSITOL PHOS
PHATE BINDING”), and for genes mapped to AD and EDU we identified 
one gene set related to cellular components (“GO DENDRITIC TREE”).

We also present spatiotemporal gene-expression analyses, using 
normalized BrainSpan RNA sequencing data (Fig. 5), for genes mapped 

A)

C)

B)

D)

Fig. 3. Conditional QQ plots illustrating cross-phenotype polygenic enrichment between (A-B) Alzheimer’s disease (AD) and cognition (COG), and (C–D) AD and 
educational attainment (EDU). The plots show the observed vs. expected − log10 p-values (corrected for inflation) for the trait of interest, below the standard genome- 
wide association study threshold of p < 5 × 10− 8, as a function of the significance of association with the conditional trait at levels of p ≤ 0.1 (red lines), p ≤ 0.01 
(orange lines), and p ≤ 0.001 (purple lines). The blue lines indicate all single nucleotide polymorphisms. The dashed lines indicate the null hypothesis. (A) AD is the 
trait of interest and is conditioned on COG. (B) COG is the trait of interest and is conditioned on AD. (C) AD is the trait of interest and is conditioned on EDU. (D) EDU 
is the trait of interest and is conditioned on AD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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using the Open targets data. Global expression of mapped genes for both 
AD and COG and AD and EDU were generally down regulated after early 
childhood.

Using WebCSEA, we found enrichment in the lymphatic system and 
the digestive system (Supplementary Fig. 2). The top enriched cell types 
were mostly related to the digestive and innate immune systems 
(epithelial cells and monocytes) (Supplementary Fig. 2).

We also found that the mapped genes expressed in the brain have 
cell-type-specific expression patterns in the main cell types of the human 
cerebral cortex (Supplementary Fig. 3).

3.4. Mediation analysis of direct and indirect effects of PGS for COG on 
the diagnosis of AD

Logistic regression analyses revealed negative associations between 
PGS for COG and BMI equal or above 30 (β = − 0.07; 95 %CI, − 0.08, 
− 0.06; p = 3.44 × 10− 58), smoking (β = − 0.06; 95 %CI, − 0.07, − 0.05; p 
= 7.92 × 10− 19), loneliness (β = − 0.05; 95 %CI, − 0.06, − 0.04; p = 2.32 
× 10− 18), alcohol use disorder (β = − 0.03; 95 %CI, − 0.06, − 0.005; p =
0.02), high blood pressure (β = − 0.03; 95 %CI, − 0.04, − 0.02; p = 9.02 
× 10− 13) (Supplementary Fig. 5).

The SEM model revealed a negative direct effect of PGS for COG on 
the diagnosis of AD (β = − 0.03; 95 %CI, − 0.044, − 0.015; p = 4.53 ×
10− 5) (Fig. 6). Moreover, our analysis revealed that the part of the as
sociation between COG and AD is mediated through loneliness (β =
− 0.001; p = 0.001).

The SEM model on EDU (Supplementary materials) similarly 
revealed a direct negative effect of PGS for EDU on the diagnosis of AD 
(β = − 0.022; 95 %CI, − 0.037, − 0.006; p = 0.007). Furthermore, as with 
COG, the analysis demonstrated that part of the association between 
EDU and AD is mediated through loneliness (β = 0.001; p = 0.021).

4. Discussion

We utilized large-scale genome-wide datasets and applied MiXeR, 
which revealed extensive shared genetic architecture between AD and 
both COG and EDU, two measures of cognitive reserve. We used 
conjFDR and identified a total of 24 shared genetic loci between AD and 
the cognitive reserve measures. Among mapped genes for shared loci, 
we identified UBE2F and PLEKHA1, both of which are involved in the 
development and plasticity of the nervous system. Gene sets analysis 
implicated phosphatidylinositol phosphate binding and the dendritic 
tree. Spatiotemporal gene expression analysis showed that mapped 
genes were highly expressed during the mid-fetal period, further 
implicating the role of neurodevelopment and supporting the neuro
developmental hypothesis of AD. Functional gene sets assessment 
showed involvement in processes that shape the structure and activity of 
neural networks. Finally, we used SEM which showed that genetic var
iants of COG appear to have mainly a direct effect on AD risk, while 
some is mediated through loneliness, but not any of the other tested 
modifiable risk factors. Taken together, we demonstrate that the genetic 
risk for AD is in part overlapping with the genetic underpinnings of COG 
and EDU, supporting the ‘cognitive reserve’ hypothesis. The putative 
causal genes and gene sets we identified indicate the direction for future 
research. Follow-up studies should clarify the role of the identified 
genes, their spatiotemporal expression, their common and rare genetic 
variants, as well as the fate of their protein products, including the sets 
they form and how they may interact with the environment, in the 
pathoetiology of AD. This can improve our understanding of the 
mechanisms involved in the protective effects of ‘cognitive reserve’ in 
AD. Our MiXeR analysis demonstrated that both COG and EDU are 
polygenic traits, while AD has substantially fewer trait-influencing 
variants.

Table 1 
Genomic loci jointly associated with Alzheimer’s disease (AD) and cognition (COG) at conjunctional FDR < 0.05.

Chr Lead SNP BP A1 A2 FDR Z value AD Z value COG Top gene by Open Targets

1 rs374827 200,874,327 C T 2.44E-02 2.71 − 4.15 INAVA
1 rs34386700 207,767,671 T C 2.86E-02 − 3.89 4.65 CR1
2 rs4663811 238,857,869 A G 3.25E-02 3.22 − 4.06 UBE2F
4 rs2269495 2,744,087 A G 5.22E-03 3.35 − 4.66 TNIP2
5 rs11168036 139,707,439 G T 2.50E-04 − 3.51 6.06 SRA1
6 rs204883 32,032,743 A G 1.35E-02 − 4.15 − 4.35 TNXB
6 rs9381037 41,073,638 A G 4.68E-02 − 4.77 3.92 APOBEC2
7 rs10264306 28,239,466 G A 3.36E-02 − 3.61 − 4.04 JAZF1
10 rs6586030 82,254,047 G A 9.02E-03 3.96 − 4.48 TSPAN14
10 rs2421017 124,148,167 G A 4.72E-02 − 4.54 4.46 PLEKHA1
11 rs11605348 47,606,483 A G 1.08E-04 − 4.79 − 5.74 MTCH2
12 rs4275659 123,447,928 T C 2.30E-02 − 2.04 5.88 MPHOSPH9
14 rs45441198 104,002,611 C T 1.45E-02 − 3.32 4.78 MARK3
16 rs55900782 70,737,892 G A 5.40E-03 − 2.11 4.64 MTSS2
17 rs77804065 43,810,896 T C 4.83E-04 − 4.35 − 5.35 MAPT
17 rs7208590 56,960,385 A G 5.01E-03 − 3.08 7.00 TEX14
17 rs9898829 60,554,275 G T 2.52E-02 − 1.53 4.14 MRC2
19 rs7260359 45,814,908 T C 2.51E-03 − 3.78 − 5.22 CKM

The most strongly associated SNPs in independent genomic loci shared between AD and COG at conjFDR <0.05. Chromosomal position (Chr), lead SNP, base pair 
position (BP). Z value for AD and COG from original summary statistics. The effect allele is A1.

Table 2 
Genomic loci jointly associated with Alzheimer’s disease (AD) and educational attainment (EDU) at conjunctional FDR < 0.05.

Chr Lead SNP BP A1 A2 FDR Z value AD Z value EDU Top gene by Open Targets

2 rs6757645 161,891,382 G A 1.78E-02 1.40 − 5.00 TANK
4 rs10004140 66,240,703 G A 3.42E-02 0.39 4.00 EPHA5
6 rs9274536 32,634,634 T C 8.31E-03 − 4.26 − 4.33 HLA-DQA1
11 rs7104832 12,786,489 G A 1.67E-02 1.93 − 4.33 TEAD1
15 rs3098205 50,742,977 T G 3.31E-02 − 4.14 − 5.00 USP8
17 rs113856644 43,932,277 A G 5.27E-03 − 4.31 − 5.67 MAPT

The most strongly associated SNPs in independent genomic loci shared between AD and EDU at conjFDR <0.05. Chromosomal position (Chr), lead SNP, base pair 
position (BP). Z value for AD and EDU from original summary statistics. The effect allele is A1.
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The use of MiXeR, which, unlike most currently used tools, estimates 
the total number of shared genetic variants irrespective of their effect 
direction, allowing the identification of genetic overlap even in the 
absence of genetic correlation. Our results extend previous observations 
from smaller samples (Fominykh et al., 2023). Furthermore, AD was 
found to share ~70 % of its trait-influencing variants with COG, despite 
a genome-wide genetic correlation estimated at − 0.12. Similarly, 72 % 
of SNPs shared between AD and COG had the opposite effect direction 
(Table 1). This indicates that most causal variants influencing AD also 
influence COG, and variants associated with increased COG tend to be 
associated with decreased risk for AD, consistent with the ‘cognitive 
reserve’ hypothesis. The proportion of AD variants shared with EDU is 
smaller (~40 %), with a smaller, non-significant negative genetic cor
relation and a balanced mixed effect direction of identified SNPs (Fig. 2, 
Table 2). Taken together, these observations indicate that the biological 
determinants of AD are related to the cognitive reserve measures COG 
and EDU, with somewhat bigger overlap with COG.

The analysis of spatiotemporal gene expression of the genes mapped 
in the conjFDR analysis revealed a pattern of higher expression in early 
life. Furthermore, among genes mapped to loci jointly associated with 
AD and each of COG and EDU, UBE2F, PLEKHA1, MTSS2, EPHA5, 
TEAD1, and USP8 all play roles in development. UBE2F is involved in 
neddylation, a posttranslational protein modification process, that has 
been linked with neurodevelopment, neuroplasticity (e.g. long-term 
potentiation), and neural apoptosis (D. T. Huang et al., 2009; He 
et al., 2022). Furthermore, previous studies indicated that dysfunctional 
neddylation associated with amyloid precursor protein-binding protein 
1, is involved in the pathogenesis of AD (Y. Chen et al., 2012). PLEKHA1 

encodes a plasma membrane protein involved in brain development and 
signal transduction (Yamada et al., 2012). Interestingly, whole-exome 
sequencing analysis has revealed an association between a de novo 
mutation within PLEKHA1 and autism accompanied by intellectual 
disability (W. X. Chen et al., 2022). It has been demonstrated that a 
variant of MTSS2 is associated with neurodevelopmental disorders 
characterized by intellectual disability (Y. Huang et al., 2022; Corona- 
Rivera et al., 2023). EPHA5 regulates embryonic and postnatal devel
opment, particularly of the central nervous system. Animal studies have 
shown that knockout of Epha5 results in disturbed axon guidance, 
aberrant morphology of spines, and distortion of spatial learning (Das 
et al., 2016). Moreover, EPHA5 has been identified as one of the genes 
associated with early-onset familial AD (Hooli et al., 2014). TEAD1 en
codes TEA domain transcription factor 1 (TEAD1) that plays a central 
role in the Hippo signaling pathway. A mutation within TEAD1 has been 
linked with Aicardi syndrome, a congenital neurodevelopmental disor
der (Schrauwen et al., 2015). Of note, TEAD1 has previously been 
identified in a GWAS of EDU (Okbay et al., 2016). USP8 encodes 
Ubiquitin specific peptidase 8 (USP8), an endosomal enzyme that reg
ulates the ubiquitination and lysosomal degradation. A germline 22-kb 
deletion within USP8 has been linked with severe developmental 
delay (Sakamoto et al., 2024). USP8 regulates the level of SHANK3 
protein, which has also been linked with a neurodevelopmental and 
intellectual disability (Campbell and Sheng, 2018). The depletion of 
USP8 reduces levels of BACE1, which is accompanied by a decrease in 
BACE1-mediated amyloid precursor protein cleavage and amyloid-β 
levels. Moreover, it has been suggested that enhancing BACE1 degra
dation could present a potential therapeutic avenue for AD, and BACE1 

Fig. 4. The “ConjFDR Manhattan plots” illustrate common genetic variants that are jointly associated with (A) Alzheimer’s disease (AD) and cognition (COG), and 
(B) AD and educational attainment (EDU) at conjunctional false discovery rate (conjFDR) < 0.05. The y-axis shows the − log10 transformed conjFDR. Chromosomal 
position is presented along the x-axis. The threshold for significant shared associations (conjFDR <0.05) is represented by the horizontal dotted line. Independent 
SNPs are indicated by a black perimeter.
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inhibitors are under investigation in clinical trials (Yeates, 2016).
Our observations align with previous studies that suggested a 

connection between genetics of development and neurodegeneration in 
AD and potentially provide a link between the neurodevelopmental 
hypothesis and the cognitive reserve hypothesis underlying the origins 
of AD (Shabani and Hassan, 2023; Rogers and Schor, 2010; L. Zhang 
et al., 2022). This requires further investigations not only in AD but also 

in neurodevelopmental disorders such as Rett syndrome, Aicardi syn
drome, and idiopathic intellectual disability. Specific genes, such as APP 
and PSEN1, APOE4 previously linked with AD pathogenesis, play a role 
in neurodevelopment (Shabani and Hassan, 2023; Rogers and Schor, 
2010; Myrum et al., 2017). The role of developmental genes in AD- 
associated brain circular RNA network has recently been identified by 
multi-layered transcriptomic analysis (Piergiorge et al., 2023). 
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(B)(A) AD and COG AD and EDU

Fig. 5. Spatiotemporal gene expression of all mapped genes. Dendrogram and heat map showing spatiotemporal gene expression of all mapped genes for (A) 
Alzheimer’s disease (AD) and cognition (COG) and (B) AD and educational attainment (EDU) using RNA sequencing data from BrainSpan over 11 developmental 
periods (columns) and 16 brain regions (rows). Gene expression is indicated from high (red) to low (blue); amygdala (AMY), cerebellum (CBC), dorsolateral pre
frontal cortex (DFC), hippocampus (HIP), inferior parietal cortex (IPC), medial prefrontal cortex (MFC), superior temporal cortex (STC), striatum (STR), auditory 
cortex (A1C), primary sensory (S1C), primary motor (M1C), primary visual (V1C), inferior temporal (ITC), ventrolateral prefrontal (VFC), orbitofrontal cortices 
(OFC), thalamus (THA). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

PGS for cognition 

High blood pressure

Alcohol use disorder

Loneliness 

Smoking

BMI ≥ 30

Alzheimer's disease
Estimate: -0.03; 95% CI: -0.044, -0.015; p <.001 

Estimate: -0.018;
95% CI: -0.023, -0.013; p <.001 

Estimate: -0.008;
95% CI: -0.02, 0.004; p =.2 

Estimate: -0.025;
95% CI: -0.031, -0.019; p <.001 

Estimate: -0.03;
95% CI: -0.037, -0.023; p <.001 

Estimate: -0.043;
95% CI: -0.048, -0.037; p <.001 

Estimate: -0.011;
95% CI: -0.032, 0.01; p =.3 

Estimate: 0.008;
95% CI: -0.024, 0.04; p =.6 

Estimate: 0.045;
95% CI: 0.021, 0.068; p <.001 

Estimate: 0.007;
95% CI: -0.042, 0.056; p =.8 

Estimate: 0.009;
95% CI: -0.011, 0.029; p =.4 

Fig. 6. Structural Equation Model for the direct and mediated effects of polygenic score (PGS) for cognition on Alzheimer’s disease diagnosis (2951 cases, 248,416 
controls). The figure illustrates the estimates (95 % CIs) of the structural equation model, representing the associations between the PGS for cognition, a BMI ≥ 30, 
smoking, loneliness, alcohol use disorder, high blood pressure, and the diagnosis of Alzheimer’s disease. All associations were adjusted for age, sex, the first ten 
genetic principal components, and the genetic array.
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Furthermore, the pattern of functional loss observed in AD closely 
mirrors, in reverse order, the sequential acquisition of central nervous 
system functions at subsequent stages of phylogenesis and ontogenesis 
(Arendt et al., 2017; Reisberg et al., 2002; Douaud et al., 2014). 
Intriguingly, by applying a data-driven methodological approach 
different from ours, specifically, carrying out a structural MRI exami
nation of the brains of people at different stages of life, a mirroring 
relationship between neurodevelopmental processes and brain aging 
was demonstrated (Douaud et al., 2014). Similarly, previous analysis of 
genetic variants within genes responsible for neurodevelopment has 
revealed their association with accelerated atrophy in specific areas of 
the brain (Vacher et al., 2021). The neurodevelopmental hypothesis of 
AD is further supported by the rare occurrence of neurofibrillary 
degeneration in non-primate animals and the localization of these 
changes principally within regions associated with the evolution of 
primates (Arendt et al., 2017). The involvement of the developmental 
period in the pathogenesis of AD has been further underscored by ob
servations that link winter and fall births with an increased risk of AD 
(Mooldijk et al., 2021).

Both networks of genes identified in the gene sets analysis, namely 
phosphatidylinositol bisphosphate binding and dendritic tree, are 
closely related with the connecting nodes being synaptic activity and 
structure, transmembrane transport, and actin dynamics (Kulkarni and 
Firestein, 2012; Mandal, 2020). The formation of intricately branched 
dendrites, which depends on synaptic stimulation and cytoskeletal ac
tivity, plays a key role in neuronal information transmission and pro
cessing (Kulkarni and Firestein, 2012). This contributes to the 
development of a brain that is capable of complex operations, including 
learning, memory processes, and social functioning (Kulkarni and 
Firestein, 2012). The occurrence of dendritic tree disorganizations has 
been thoroughly described for neurocognitive disorders such as mental 
retardation, Rett syndrome, and AD (Kulkarni and Firestein, 2012). 
Interestingly, in the previously mentioned brain structure study, the 
area in which a particularly strong mirror relationship between neuro
developmental and aging processes was observed in the transmodal 
cortex, characterized by the highest synaptic levels of bottom-up pro
cessing (Douaud et al., 2014).

In parallel, it has been hypothesized that the metabolism of phos
phoinositides may play a central role in the decrease of functional 
integrity of receptor-mediated signal transduction and the cellular pa
thology in AD (Fowler et al., 1990; Bothmer et al., 1994; Arancio, 2008). 
Phosphatidylinositol bisphosphate (PIP2), a major lipid messenger, 
regulates ion channels and vesicular transport across membranes 
(Arancio, 2008). Moreover, PIP2 influences actin dynamics, a process 
that plays a role in intracellular transport, cell migration and cellular 
force generation (Mandal, 2020). This mechanism has been associated 
with learning and memory (Rudy, 2015), as well as AD (Mandal, 2020). 
PIP2 interacts with the actin network via proteins that have been linked 
with AD and/or COG, such as cofilin, formin (Agís-Balboa et al., 2017), 
gelsolin (Feldt et al., 2019), and ezrin (Vega et al., 2018). The level of 
PIP2 is reduced in the brains of human ApoE3 carriers. Moreover, the 
restoration of PIP2 levels via genetic reduction of phosphoinositide 
phosphatase synaptojanin 1, a PIP2-degrading enzyme, restores cogni
tive function in animal models (Zhu et al., 2015). Although our findings 
indicate an association between phosphoinositides and AD, elucidating 
the potential role of phosphoinositides in the pathogenesis of the disease 
remains an area for future research.

Our SEM analysis indicates that genetic variants that influence COG 
can have a direct effect on the risk of developing AD, providing indirect 
evidence in support of the neurodevelopmental hypothesis. The over
arching concept that links developmental processes with the patho
genesis of AD encompasses two main hypotheses: the ‘two hits’ 
hypothesis, where one ‘hit’ happens early with a genetic or develop
mental basis and the second ‘hit’ occurs later with an environmental 
basis, and a second hypothesis suggesting that crucial neuro
developmental processes persist throughout life. Therefore, 

disturbances in these processes at later stages may lead to the devel
opment of AD (Rogers and Schor, 2010). The results of our study, which 
indicate that the expression of mapped genes predominantly occurs in 
the early phase of life, support the first hypothesis. Taken together, it 
may be posited that the foundation of cognitive reserve capacity is 
established early in life. Therefore, increasing our understanding of the 
development of brain reserve may help identifying individuals at risk of 
AD, as well as form the foundation for develop strategies to prevent 
neurodegeneration.

The results obtained from novel statistical analyses of the largest 
GWAS of AD and the proxy measures of cognitive reserve, COG and EDU, 
provided evidence supporting the genetic basis for the cognitive reserve 
hypothesis in AD. This was supported by findings from combining ge
netic data with transcriptomic data, and we provided putative molecular 
pathways underlying the cognitive reserve model of AD.

Moreover, our findings suggest that stratification of risk groups for 
developing AD may be possible based on specific risk factors related to 
cognitive reserve measures. However, while our findings suggest 
increased awareness of these subgroups, more specific measures should 
be applied, and the direction of the effect should be established before 
this can be implemented in the clinic. Furthermore, our results empha
size the need to evaluate the impact of the interplay between the map
ped genes and environmental factors on the risk of developing AD. Our 
SEM analysis highlights the importance of loneliness. However, 
currently available data do not allow for a detailed examination of gene- 
environment interplay.

4.1. Strengths and limitations

A strength of our study is the use of MiXeR and condFDR, which 
allow for exploration of genetic architecture beyond genetic correla
tions, unlike classical techniques. Secondly, we employed large GWAS 
studies, making them particularly suitable as proxies for cognitive 
reserve. A limitation of our study is that the analyses are restricted to 
individuals of European ancestry, which impedes the generalizability of 
the findings to populations with different ancestral backgrounds. We 
emphasize the need to promote genomic studies of non-European an
cestries as well as the development of analytical tools for trans-ancestry 
genomic analysis. One of the limitations in research on cognitive reserve 
is the lack of direct, accessible measures, that also applies to our study. 
We have applied a genetic approach, and our results can be followed up 
in future studies when samples with more direct measures are available. 
When interpreting the current results, the limitations of gene expression 
analysis tools (i.e. BrainSpan and WebCSEA) should be considered, 
particularly those arising from the lack of information on the medica
tions taken by the donors. Due to the potential sample overlap between 
the GWAS for EDU and the UK Biobank, we have included the results of 
SEM for Educational Attainment in the supplementary materials.

5. Conclusions

To conclude, we show that there is shared genetic architecture be
tween AD and the cognitive reserve proxy measures, COG and EDU. The 
shared genes implicate both neurodevelopmental and neuroplastic 
components in the pathoetiology of AD. These findings provide evidence 
in support of the cognitive reserve hypothesis in AD, suggesting early 
neurodevelopmental stages as critical periods for establishing cognitive 
reserve, which affect the risk of AD in old age. Moreover, the results of 
our study provide a basis for further examination of the possible role of 
the mapped genes and their products in the pathogenesis of AD, both 
from a developmental perspective and in terms of their interactions with 
environmental risk factors. The current results can guide future di
rections not only in AD but also in neurodevelopmental disorders.
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