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Abstract

Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 

20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, 

occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest 

that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic 

aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl 

hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and 
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increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and 

mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM 

levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that 

ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion 

of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced 

mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development 

caused by air pollution focusing on the tumor promoting properties including metabolism, immune 

system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, 

tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed 

between smoking and outdoor air PM2.5 represent the two ends of a dose–response continuum 

of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the 

driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity 

in the central airways becomes increasingly more important at the higher combustion PM levels 

encountered through smoking and occupational exposure.

Keywords

Air pollution; Diesel exhaust; Smoking; Occupational exposure; Carcinogenesis; Genotoxicity; 
Inflammation; Tumor promotion; Tumor microenvironment; Tumor metastasis

1. Introduction

Lung cancer has long been recognized as one of the leading causes of cancer‑associated 

mortality [1–3]. It is a complex process which develops slowly over time, and consequently, 

most people diagnosed with lung cancer are 65 or older [4]. Central steps in the development 

include tumor initiation, tumor formation and progression, matrix remodeling, intravasation, 

extravasation and metastasis [5]. Each step is determined by genetic predispositions and 

mutations acquired over an individual’s lifetime due to endogenous processes, lifestyle 

factors and/or environmental exposures.

Although smoking remains the biggest risk factor for lung cancer, about 25% of the cases 

are not attributable to tobacco [6]. The Global Burden of Disease (GBD) Project has 

estimated that 19% of lung cancer deaths are associated with exposure to air pollution 

making it the second largest risk factor [7]. The majority of this is mainly attributed to 

fine particulate matter, PM2.5 (with particle aerodynamic diameter of less than 2.5 μm), 

derived from combustion sources such as traffic exhaust, coal and biomass burning, and 

industrial activities [7]. Outdoor air PM and diesel exhaust particles (DEP) have been 

classified as Group 1 known human carcinogens by the International Agency for Research 

on Cancer [8,9]. Other combustion PM sources such as cigarette smoke [10,11] and indoor 

combustion of coal [12] have also been classified as Group 1 human carcinogens, while 

emissions from the burning of biomass/wood have been classified as a Group 2A (probable) 

human carcinogen [12]. Epidemiological studies indicate that PM2.5 exposure may increase 

both the incidence and mortality rates associated with lung cancer [13], and also decrease 

the survival time of patients with lung cancer [14]. Several studies have also reported an 

increased association between living near busy roadways and lung cancer incidence and 
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mortality in Asia, Europe and North-America, pointing towards a central role of direct 

exposure to combustion emissions from road vehicles such as ultrafine particles and/or 

volatile/semi-volatile organic compounds [15–19].

The causal links between combustion PM exposure and lung cancer development are further 

supported by both in vitro and in vivo studies [8,9,20,21]. Combined epidemiological and 

experimental studies have provided essential information on cancer acquisition hallmarks 

including genetic instability, sustained proliferative signaling, insensitivity to antigrowth 

signals, resistance to cell death, replicative immortality, replicative immortality, dysregulated 

metabolism, tumor promoting inflammation, angiogenesis, tissue invasion and metastasis 

[5,22]. Thus, modifications of a variety of biological processes seem to contribute to the 

carcinogenic effects of PM2.5.

Combustion-derived PM typically consists of aggregates of smaller carbon particles 

with mixtures of organic chemicals adhered to their surface [23]. Their carcinogenic 

properties have largely been attributed to extractable organic material (EOM) and the 

content of polycyclic aromatic hydrocarbons (PAHs) [24]. PAHs are a highly diverse 

group of chemicals originating from combustion of organic materials. Numerous PAHs 

are considered important air pollutants and particle toxicants. Some of them are classified 

either as carcinogenic or probably carcinogenic to human respiratory organ [8,9,25–27]. 

Other effects that have been linked to PAHs exposure via PM2.5 inhalation are impairment 

of respiratory functions, exacerbation of asthma and increased morbidity/mortality of 

obstructive lung diseases [28].

Several PAHs are considered complete carcinogens contributing to both tumor initiation and 

promotion [5,25,29]. Nevertheless, the carcinogenicity of PAHs is most often linked to their 

metabolism and genotoxicity: the formation of reactive electrophilic metabolites forming 

covalent DNA adducts leading to mutations in oncogenes and tumor suppressor genes [30]. 

Importantly, the mutagenic signatures of EOM of cigarette smoke, combustion PM and 

air pollution PM resemble the mutation pattern of benzo[a]pyrene (B[a]P), and the same 

mutations are also found in lung cancers from smokers and people exposed to high levels of 

combustion aerosols from indoor use of smoky coal or in occupational settings [24].

The metabolism and genotoxicity of PAHs are largely regulated by the aryl hydrocarbon 

receptor (AhR) through transcriptional control of xenobiotic metabolizing enzymes [31]. 

The AhR, which is the main cellular sensor of PAHs and other aromatic compounds, is 

a basic helix-loop-helix PAS transcription factor, expressed in almost all tissues including 

a number of lung cell types such as bronchial epithelial cells, alveolar type II cells, club 

(Clara) cells, endothelial cells and macrophages [32,33]. The prototypic genes regulated by 

AhR are the cytochrome P450 (CYP) family 1 members CYP1A1 and CYP1B1. While the 

CYP enzymes are generally considered to be important detoxification enzymes, CYP1A1 

and CYP1B1are also involved in the metabolic activation of chemicals such as B[a]P into its 

ultimate carcinogen B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) [34]. In line with this, the 

AhR appears to be essential for the carcinogenic effects of B[a]P [35,36].
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While PAH-induced genotoxicity may be central to lung cancer development in smokers, 

it has become increasingly clear that the pattern of mutations and lung cancer subtypes 

in never-smokers are distinctly different [6,24,37]. Lung cancer in never-smokers rather 

appears to derive from naturally occurring mutations [37]. As PM2.5 is regarded as the 

main cause of lung cancer in never-smokers, it is possible that the carcinogenic effects 

of air pollution differ from those of smoking and that PAH-induced genotoxicity is of 

lesser importance. In support of this, a recent study suggests that tumor promotion is the 

main driver of air pollution-induced lung cancers [38]. However, this does not exclude 

other roles of PAHs and AhR in cancer development, which extends far beyond metabolic 

activation and genotoxic effects of PAHs. One of the best described roles of AhR is the 

tumor promoting action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [39–42]. In fact, 

AhR appears to be involved in all of the major stages in cancer development, including 

cancer initiation, promotion, progression, invasion, and metastasis. It has thus emerged as 

a regulator of malignant cell progression and immune evasion associated with poor cancer 

outcomes [43,44].

In light of the emerging evidence suggesting that lung cancer development from air pollution 

differs from what is seen in smokers [6,37,38], this review aims to address the many-faceted 

roles of PAHs and AhR in cancer development associated with combustion particle exposure 

(Fig. 1). We will discuss their potential involvement in all stages of carcinogenesis, from 

DNA damage to promotion, progression, invasion, and metastasis, and whether some of the 

differences observed between smoking and urban air PM2.5 may rather be a matter of the 

dose.

2. PM2.5, sources, and PAH characteristics

Potential mediators/modulators of the carcinogenic effects of PM2.5 and combustion-derived 

PM include the particle shape and size, surface reactivity (charge and presence of 

reactive groups including redox-active transition metals) and adherence of various organic 

components (PAHs, PAH-quinones and bacterial endotoxins) [45]. While the levels of 

organic chemicals are often found to be in the range 20–30% of total particle mass, 

it may reach as much as 90% [46]. The specific composition and the relative amount 

of chemicals attached to PM2.5 are highly dependent on sources, including combustion 

technology and fuel burned. Traditionally, diesel engine particles (DEP) have received most 

attention, and DEP emissions can be distinguished from gasoline emissions and wood 

smoke particles (WSP) by a high level of unresolved alkanes [47,48]. DEP also contained 

higher levels of alkylated and nitrated PAHs (alkyl-PAHs and nitro-PAHs) compared to 

other combustion PM [25,47]. By contrast, WSP may contain somewhat higher levels of 

oxygenated and hydroxylated PAHs (oxy-PAHs and hydroxy-PAHs), as compared to traffic 

emissions [47,49].

The relative contribution of different sources to PAHs measured on PM2.5 is changing 

as combustion technologies develop. The introduction of ever improved emission 

aftertreatment, such as EURO-classified diesel particulate filter (DPF) has considerably 

reduced both PM and PAH emissions from modern diesel vehicles, and today light-duty 

gasoline vehicles represent the dominating PAH source from traffic [50]. Notably, exhaust 
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from modern gasoline vehicles contains very low levels of PM, and the majority of 

organic chemicals emitted occur in the gas phase, and then condenses to form secondary 

aerosols in the atmosphere [51,52]. Nevertheless, traffic emissions remain a major source 

of increased urban air PAH levels. Recent studies of road tunnels PM suggested that PAHs 

on traffic PM2.5 were primarily attached to aggregates of ultrafine PM originating from 

the combustion of transportation fuel [53,54]. More US EPA PAHs have been found in the 

ultrafine and fine PM (PM2.5) samples than in the coarse PM, which to a large degree seem 

to originate from non-combustion sources such as bitumen and tires [54]. Phenanthrene 

> pyrene > fluoranthrene were the most abundant species. However, high amounts of 

PAHs with 4 rings (benz[a]anthracene, chrysene) and 5 rings (B[a]P, benzo[e]pyrene, 

benzo[k]fluoranthene, benzo[j]fluoranthene, dibenz[a,h]anthracene), as well as the strong 

mutagen cyclopenta[c,d]pyrene were also found in these combustion PM samples [54]. In 

addition to PAHs, oxygenated (oxy-PAHs; 9H-fluoren-9-one and anthracene-9,10-dione) 

and nitrated (nitro-PAHs; 1-nitronaphtalene, 9-nitroanthracene and 1-nitropyrene) PAH 

derivatives from diesel engine emissions are found both in ultrafine and fine PM [9,54,55].

In general, specific profiles of PAHs associated with PM of various origin can lead to 

distinct toxic and carcinogenic potencies being linked with PM exposure. These may include 

both genotoxic and non-genotoxic modes of action, as discussed further in sections to 

follow. Airborne PM usually contain relatively high levels of carcinogenic priority PAHs 

(chrysene, benzo[b]fluoranthene, benzo[k[fluoranthene, B[a]P and indeno[1,2,3-cd]pyrene). 

Mixtures of PAHs associated with DEP have significantly higher total sum of PAHs in 

comparison to airborne PM samples; specifically, they contain higher levels of fluoranthene, 

pyrene, chrysene, benzo[j]fluoranthene, benzochrysenes and monomethylated anthracenes, 

phenanthrenes, pyrenes and benz[a]anthracenes [56]. DEP also contains high concentrations 

of nitro-PAHs formed through electrophilic substitution in the presence of NO2 [57]. Some 

nitro-PAHs such as 1-nitropyrene (1-NP) are formed mainly during the combustion process 

and have been suggested as a marker of DEP exposure, while others are formed through 

atmospheric processes between NO2 and gas-phase PAHs [57,58].

The PAHs composition in urban air PM2.5 does not depend only on the combustion sources, 

but it is largely affected by the environmental conditions. Volatility is reduced by size; 

therefore, smaller PAHs (four or fewer aromatic rings) are to a greater extent found in the 

gas phase, while high-molecular weight PAHs (five or more aromatic rings) are mainly 

detected on the particle [25]. However, as low-molecular weight PAHs are usually formed to 

a much greater extent than the larger PAHs, they also tend to be the dominating PAHs bound 

to PM. Accordingly, levels of e.g., phenanthrene and pyrene on DEP and urban air PM2.5 

exceed the level of B[a]P [25,59]. The amount and type of PAHs being present on PM2.5 are 

further modified by ambient air temperature and photooxidation processes. As condensation 

and evaporation processes are directly regulated by temperature, higher levels of PAHs 

condense onto ambient particulates at low temperatures. The total PAH content in urban air 

PM2.5 can therefore be an order of magnitude higher in winter as compared to summer, and 

the relative amount of different PAH species may also change due to seasonal variation in 

sources, such as residential heating and forest fires [60–63]. Furthermore, photooxidation 

leads to formation of oxy-PAHs which contributes to SOA formation by reducing the vapor 

pressure compared to their parent PAHs and increasing the condensation process [64,65]. 
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Importantly, while photooxidation of PAHs may increase their redox and direct mutagenic 

activities, it also leads to a reduced affinity towards AhR [66–68]. However, photo-oxidation 

also increases water solubility, which has been suggested to limit the bioavailability of 

oxy-PAHs [69].

3. Lung cancer

There are two main histopathological lung cancer groups: non-small cell lung cancer 

(NSCLC) [70] and small-cell lung cancer (SCLC) [71]. NSCLC accounts for 80% of the 

lung cancer in humans [72]. The majority of NSCLC are adenocarcinomas (ADC), the 

other histopathological NSCLC subtypes are squamous cell carcinoma (SCC) and large cell 

carcinoma. Although the cellular origin(s) of lung cancer remain largely unknown it has 

been speculated that different histopathological subtypes arise from distinct cells localized in 

defined microenvironments [73]. Due to their proximal-to-distal distribution pattern, SCC is 

often thought to arise from the proximal airway and ADC from more distal locations [74].

Lung cancers develop through a process involving multiple genetic and epigenetic 

alterations in the cells of origin(s). Examples of genes that have been linked to lung 

carcinogenesis are oncogenes/growth promoting proteins (e.g., v-Ki-ras2 Kirsten rat 

sarcoma viral oncogene homolog [KRAS], epidermal growth factor receptor [EGFR], 

tyrosine protein kinase c-Src, B-Raf proto-oncogene [BRAF], mitogen activated protein/

extracellular regulated kinase [MEK-1], human epidermal growth factor receptor 2 

[HER2], hepatocyte growth factor receptor [MET], anaplastic lymphoma kinase [ALK], 

and rearranged during transfection [RET]). Lung carcinogenesis also typically involves 

inactivation of tumor suppressor genes/proteins (e.g., TP53/p53, phosphatase with tensin 

homology [PTEN], and liver kinase B1 [LKB-1]) [30,75]. Mutations in the TP53 gene are 

frequent in almost all types of cancers [76], and they are present in approximately 50% of 

all NSCLC cases [77]. A frequent transversion, G:C to T:A, is correlated with exposure to 

carcinogens found in tobacco [78]. At several TP53 mutational hotspots, such as codons 248 

and 273, a large fraction of the mutations is G to T events in overall lung cancers, while 

almost exclusively G to A transitions are found in non-tobacco-related cancers [6]. There 

seems to be a strong coincidence of G to T transversion hotspots in lung cancers and sites of 

preferential formation of PAH adducts along the TP53 gene [24,78].

EGFR and KRAS are two other frequently mutated genes in lung cancer. The EGFR 

receptor regulates cell survival and proliferation, and it is overexpressed in 50% of lung 

cancers. KRAS belongs to the Ras family of small GTPases which regulates downstream 

signaling of EGFR to the extracellular regulated kinases (ERK1/2), which is central for the 

cell growth and proliferation [6]. The EGFR-Ras-ERK1/2 pathway also regulates several 

proinflammatory genes which may affect the tumor microenvironment as discussed later. 

KRAS mutations are frequent in smokers but occur in only 5 to 10% of lung cancers 

in never- or light-smokers [79–81]. The KRAS mutations are often generated by G to T 

transversions associated with tobacco use and PAH exposure, and they lead to loss of the 

GTPase activity which is necessary for the inactivation of Ras in the GDP-bound form 

leaving the protein constitutively active [6]. EGFR mutations, on the other hand, are present 

in 15 to 50% of NSCLC patients from never-smokers, and the mutational pattern seems to 
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be dominated by transition mutations (G to A) [80–82]. Deletion in exon 19 and the single 

amin acid substitution L858R in exon 21 (replacing leucin with arginine in codon 858) 

of the EGFR gene account for about 85% of observed EGFR mutations in NSCLC. This 

destabilizes the inactive form of the receptor leading to increased dimerization and activation 

compared to wildtype EGFR [83]. As EGFR and Ras are part of the same signaling pathway, 

both mutations target the peripheral airways and give rise to ADC [6]. However, while lung 

cancer in never smokers with EGFR driver mutations may be sensitive to EGFR tyrosine 

kinase inhibitor (EGFR TKI) treatment, lung cancers in smokers with KRAS mutations are 

often resistant to EGFR TKI treatment underscoring that upstream activation of EGFR is 

not necessary for the Ras activity in these patients [6]. Furthermore, while smoking tends 

to induce SCLC and SCC in the central airways, ADC in the peripheral regions is the most 

prevalent lung cancer type in never-smokers [6]. Thus, both the mutation pattern and lung 

cancer subtypes seem to be distinctly different in smokers and never-smokers.

Tissue stem cells are attractive candidates for cellular origin of cancer, as their long lifespan 

allows them to accumulate genetic mutations essential for cancer development [84]. A 

subtype of lung adenocarcinoma with KRAS mutations has been suggested to evolve from 

airway epithelium, having a distinct differentiation pattern with suppression of ciliated and 

exocrine bronchiolar cell (Clara cell)-related genes [85]. Based on histological observations 

and studies with genetically engineered mouse models, alveolar type 2 (AT2) cells have been 

hypothesized to be the cells of origin of another subpopulation of lung adenocarcinoma [86].

More recently, high-resolution mutational profiles of lung epithelial cells exposed to 

individual tobacco smoke chemicals support a role for PAHs like B[a]P [87]. Such studies 

have revealed that lung cancer with metastasis is a process not only linked to lung 

cancer stem cells transformation and epithelial-mesenchymal transition (EMT), but also to 

modifications of the tumor microenvironment of lung cancer [88,89] and mechanisms linked 

to angiogenesis and lymph angiogenesis [90]. Central influencing factors of lung cancer also 

include many noncoding RNAs (ncRNAs, miRNA) [91].

4. Lung cancer induced by combustion PM/PAHs

PM2.5 exposure from polluted air is the main risk factor for lung cancer in never-smokers, 

which predominately develops as ADC with EGFR driver-mutations in the peripheral lung 

[6]. A genomic analysis found that most of these tumors appeared to originate from natural 

mutations accumulating with age [37]. This implies that mutagens and genotoxic effects 

may not be the main drivers of air pollution induced lung cancer. While the frequency 

of EGFR-driven lung cancers seems to increase with increasing PM2.5 exposure, there are 

no changes in the accompanying EGFR mutation pattern, indicating that PM2.5 primarily 

induces ADC through promotion [38]. Studies in mouse models and in vitro support 

and extend this hypothesis by suggesting that macrophages exposed to PM2.5 induced a 

progenitor-like state in AT2 cells containing natural acquired mutated EGFR (L858R). 

Furthermore, interleukin (IL)-1β seems to be required for the promotion phase [38]. This 

aligns with earlier findings by Riva et al (2020) reporting that only 3 out of 20 tested 

suspected human carcinogens induced carcinogen-specific mutations in mice [92]. These 

authors therefore hypothesized that “key driver mutations are likely to be acquired through 
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endogenous mutagenic processes rather than by the direct action of chemical exposures on 
the genome” and further speculated that inflammation could be a driving factor for tumor 

promotion [92].

Notably, IL-1β release and inflammation are also considered the driving force in silica- 

and asbestos-induced lung cancer [93,94], but EGFR mutations appear to be less frequent 

in never-smokers occupationally exposed to such mineral particles [95]. By contrast, never-

smokers occupationally exposed to diesel exhaust particles and PAHs had equal or higher 

frequency of EGFR mutations compared to controls [95]. This indicates that additional 

mechanisms and properties associated with combustion particle exposure such as PAHs, may 

be necessary to promote EGFR-driven lung cancers. In line with this, an important role of 

IL-1β has been identified in inflammation-induced and AhR-dependent tumor promotion of 

lymphoma in mice [96].

Based on the differences in lung cancer subtypes and mutation spectra found in smokers 

versus never-smokers, it has been proposed that lung cancer in never-smokers is “a different 

disease” than lung cancer in smokers [6]. However, 8% of lung cancers in smokers lack 

evidence of smoking-induced mutagenesis, suggesting that also smoking may promote 

cancer through non-genotoxic mechanisms [97]. The marked reduction in risk of lung 

cancer following smoke cessation further points to a major role for tumor promotion also 

in smoking-induced cancers [24]. Moreover, lung cancer development from secondhand 

smoke (SHS) resembles never smokers in that ADC also seem to be the predominant 

cancer subtype and tobacco-induced mutations are lacking [37,98].The differences observed 

between smoking versus air pollution and SHS may rather be a matter of exposure dose. 

In further support of this, a meta-analysis of 16,000 lung cancer cases concluded that 

occupational exposure to diesel exhaust were associated with all lung cancer types, but 

the dose-dependency were much stronger for SCC than for ADC [99]. In other words, 

the ratio of SCC:ADC increased at higher DEP exposure levels. In line with this, the 

SCC:ADC ratio has been reported to be almost 3:1 in smokers who are exposed to very 

high PM doses, but inversed (more than 1:3) in never-smokers only exposed to low PM 

concentrations through ambient air [6]. Indoor exposure to smoky coal, which is considered 

to be 100-fold more carcinogenic than cigarette smoke and represents a high-dose exposure 

to combustion particles compared to outdoor air PM2.5 levels, has also been reported to 

cause an overrepresentation of G to T transversions in the TP53 gene similar to what 

is found in smokers and PAH exposed workers [6,12,24]. A systematic review of indoor 

exposure to coal and biomass smoke also concluded that the odds ratio (OR) of developing 

SCC was higher than the OR for developing ADC (3.58 vs. 2.33), again pointing towards a 

pattern of lung cancer subtypes more in the direction of smoking [100].

Occupational exposure to diesel exhaust and indoor exposure to solid fuel smoke represents 

much higher combustion PM exposures levels than those that are normally encountered 

in outdoor environments. Thus, low dose exposure to combustion particles appears mainly 

to induce ADC in the peripheral lung regions, but as concentrations increase, the risk of 

SCC development in the central airways increases much more than ADC, and becomes the 

dominant cancer type [99]. This apparent dose-dependent shift in lung cancer subtypes 

associated with various combustion PM exposures could likely be related to a dose-
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dependent increase in cilia dysfunction and impairment of particle clearance, as observed 

with tobacco smoking [101,102]. Thus, increased inhalation of combustion PM may 

exponentially increase the effective PM dose on bronchial epithelial cells by impairing the 

mucociliary clearance of deposited particles. This could explain the increased risk of SCC 

development from smoking, occupational diesel exposure and indoor air solid fuel smoke, 

compared to ADC [99].

At higher exposure doses, combustion PM-induced genotoxicity also appears to become 

more important. A number of experimental studies in rodents have proven the carcinogenic 

potency of PM and/or extractable organic matter (EOM) from a variety of combustion 

and urban air PM (primarily PM2.5) [8,9,12,103,104]. In a recent review, the carcinogenic 

potency of EOM on Sencar mouse skin from a variety of combustion emissions, coal tar, 

and B[a]P were presented [24]. B[a]P was found to have the highest carcinogenic potential. 

Most interestingly, the carcinogenic potency of EOM of urban air pollution as well as 

diesel and gasoline exhaust could be at least two orders of magnitude higher than EOM 

for tobacco smoke. EOM of ambient air PM, various combustion particles and cigarette 

smoke predominately induced G to T transversion in the Salmonella (Ames) mutagenicity 

assay [24]. The mutation spectra observed in experimental studies therefore provide further 

support for the suggestion that air pollution and tobacco smoking could lead to comparable 

patterns of lung cancer development given exposure to comparable dose levels.

Based on the above, we hypothesize that the discrepancies in mutation patterns and cancer 

subtypes induced by smoking and air pollution (never smokers) reflect the two ends of a 

combustion PM dose–response continuum. We further suggest that the tumor promoting 

effects of combustion PM are most important for lung cancer development in the lower 

dose-range, but that their mutagenic effects become increasingly more important as the 

exposure dose increases. Accordingly, a series of in vitro studies performed in rat liver 

epithelial cells showed that only a few environmental PAHs and methylated PAHs elicit 

major genotoxic effects, determined as formation of stable DNA adduct production and/or 

p53 activation [105–109]. Dibenzo[a,l]pyrene (dibenzo[def,p]chrysene) has been observed 

to be the most potent genotoxin, while several PAHs, including benzo[g]chrysene, B[a]P, 

5-methylchrysene, 1- and 3-methylbenzo[a]pyrene exhibited significant genotoxic potencies. 

Other PAHs and methyl-PAHs, including benz[a] anthracene, chrysene, benzo[b]- and 

benzo[k]fluoranthene and dibenzo [a,h]anthracene, induced only a moderate DNA adduct 

production in rat liver epithelial cells, and numerous other PAHs or monomethylated PAHs 

showed only a minimal or no genotoxicity potencies.

In line with this, the AhR-dependent proliferation of rat liver epithelial cells (WB-F344) 

exposed to EOM of urban dust PM (SRM1649a) has been reported to occur at an order 

of magnitude lower doses than DNA damage [110]. It was therefore suggested that non-

genotoxic effects of AhR activation could be an important determinant of the effects 

of complex PAH mixtures from PM [110]. Transcriptional activation of AhR appears to 

be among the most sensitive, if not the most sensitive, endpoint induced in vitro by 

combustion PM in airway epithelial cells [111,112]. As discussed in this review, the role 

of AhR in lung cancer development extends far beyond the regulation of PAH metabolism, 

adduct formation, and genotoxicity. AhR plays a central role in cancer promotion pointing 
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towards the non-genotoxic properties of PAHs. For instance, the AhR may directly regulate 

inflammatory responses and immune cells in the tumor microenvironment [113]. Moreover, 

nuclear AhR translocation, a hallmark of AhR activation, appears to be more common in 

female non-smokers with ADC, and it is associated with EGFR mutations [114–116]. At the 

same time, it seems that AhR may suppress KRAS-driven ADC [117]. These observations 

are in coherence with the suggested role of inflammation and tumor promotion in air 

pollution-induced lung cancer, as well as the long-recognized role of genotoxicity and 

mutagenesis in tobacco smoke-induced lung cancer.

It is pertinent to emphasize that the differences discussed here represent the main trends 

and patterns seen in lung cancer development. Some never-smokers also develop SCC and 

express KRAS-mutations and G to T transversion, while some smokers develop ADC and 

express EGFR mutations and G to A transversion [6,97]. Indeed, exposure to ambient air 

pollution and traffic emissions appear to be consistently associated with elevated urinary 

excreted PAH metabolites and biomarkers of genotoxicity, and also smoking may promote 

cancer development by increasing selection of cells with naturally acquired mutations 

[97,118,119]. In the following sections, we will discuss the potential involvement of AhR 

and PAHs at different stages of cancer development and progression.

5. Canonical AhR signaling and PAH metabolism

In the absence of a ligand, AhR resides in the cytosol as part of a multiprotein complex 

consisting of AhR-interacting protein (ARA9 or XAP2), a heat shock protein 90 dimer 

(Hsp90) and co-chaperone p23. In its major signaling route, the so-called canonical or 

classical AhR pathway, ligand-activated AhR dissociates from the multiprotein complex and 

translocates to the nucleus, where it dimerizes with the AhR nuclear translocator (Arnt). 

The AhR/Arnt heterodimer then binds to the so-called xenobiotic response elements (XREs), 

also known as dioxin response elements (DREs), in regulatory regions of target phase I and 

phase II genes (Fig. 1).

Several studies have revealed that PM2.5, more specifically the organic fractions of 

PM2.5/DEP may, through cell specific mechanism, form reactive metabolites and display 

CYP1A1 activation [21,22,120,121]. The AhR-dependent induction of CYP1A1 expression 

seems to represent a particular sensitive biomarker of DEP-exposure [111]. PAHs are 

among the most likely candidates contributing to such effects on combustion PM. Due 

to their lipophilic nature, PAHs may detach from the particle and diffuse across the plasma 

membrane into the cell. Highly depending on cell type, the PAHs may be metabolized to 

reactive electrophilic metabolites and/or give rise to a canonical AhR-response modifying 

PAH-metabolism. In the following we briefly summarize the main metabolic steps of PAHs 

using B[a]P as an example.

There are three major pathways for PAH/B[a]P metabolism, which are characterized 

by specific sets of enzymes: i) the cytochrome P450 (CYP)1A1/CYP1B1 and epoxide 

hydrolase, ii) aldo–keto reductase and iii) the CYP peroxidase enzyme [31,122]. i) In 

the CYP1A1/CYP1B1 and epoxide hydrolase pathway, PAHs/ B[a]P are first oxidized 

by the CYP1 enzymes to epoxides, which next are hydrolyzed by epoxide hydrolase to 
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PAH dihydrodiols/B[a]P-7,8-dihydrodiol. A second CYP1-catalyzed oxidation at the double 

bond adjacent to the diol forming stereospecific PAH dihydrodiol-epoxides/B[a]P-7,8-

dihydroxy-9,10-epoxide. Some of these are highly reactive electrophilic metabolites which 

can form stable DNA adducts or promote depurination at damaged nucleotide sites [123]. 

ii) In the aldo–keto reductase pathway, the PAHs are first metabolized by CYP1A1/CYP1B1 

followed by epoxide hydrolase. However, here the PAH dihydrodiols/B[a]P-7,8-dihydrodiol 

can be further oxidized by aldo–keto reductases to a PAH dione/B[a]P-7,8-dione. Several 

human aldo–keto reductases have been implicated in this pathway, which may generate ROS 

and oxidative DNA damage via redox cycling of PAH o-quinones. iii) PAHs can also be 

metabolized by peroxidase reactions to reactive radical cations, which in the case of B[a] P 

will occur in the C6 position. The one-electron oxidations mediated by peroxidases or other 

enzymes resulting in PAH radical cations and ROS mainly result in unstable DNA adducts 

subjected to depurinations [124].

The AhR regulates the induction of CYP1-enzymes including CYP1A1, CYP1A2, CYP1B1 

and phase II enzymes NADPH:quinone oxidoreductase (NQO1), glutathione S-transferase 

(GST) A2, and UDP-glucuronosyltransferase (UGT)1A1 and UGT1A6 [31]. The AhR can 

also directly or indirectly regulate expression of several aldo–keto reductases, together with 

Nrf2 [27,125]. Many of these AhR-regulated enzymes are central to the total metabolism 

of PAHs and directly participate in production of reactive PAH metabolites. NSCLC 

samples are found to express increased levels of AhR mRNA wich correlates positively 

with CYP1A1 expression in cases of ADC [126]. Also, polymorphisms in CYP1A1 and 

CYP1B1 have been linked to increased lung cancer risk [127–129]. Notably, most studies 

on the molecular mechanisms illustrating various steps to be involved in the carcinogenicity 

of PAHs were based on studies of a single compound, typically B[a]P. In real life, we are 

exposed to mixtures which may contain hundreds of different PAHs and other compounds 

likely to interfere with the metabolic activation/detoxication processes [27]. Although 

many factors are important determinators for the toxicity, the central role of AhR-induced 

upregulation of CYP1 enzymes in the bioactivation of PAHs is further illustrated by other 

associations found between tissue specific AhR-dependent aryl hydrocarbon hydroxylase 

induction/CYP1 isoforms and rates of cancer, mutagenesis, DNA adducts and toxicity of 

PAHs [130].

Apart from regulation of enzymes associated with PAH metabolism, the AhR also acts 

as a “master regulator” of numerous other genes that are linked with the process of 

carcinogenesis. Therefore, in addition to the regulation of formation of genotoxic PAH 

metabolites, activation of the AhR by PAHs can be associated with further non-genotoxic 

mechanisms of action of PAHs, including e.g.: perturbation of cell cycle progression, 

cell proliferation and programmed cell death [27], deregulation of action of hormones 

and/or their metabolism (including e.g. increased catabolism of steroid hormones) [131], as 

well as deregulation of numerous genes linked with cancer development [132]. Therefore, 

estimation of the AhR-activating relative potencies (REPs) (calculated relative to TCDD 

or to B[a]P as model AhR agonists) can provide an important information about toxicity/

carcinogenicity of PAHs and their mixtures that are associated with PM.
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A comprehensive evaluation of AhR REPs of individual PAHs, monomethylated and 

oxygenated PAHs has been carried out using rat hepatoma H4IIE cell line, stably transfected 

with a luciferase reporter gene under the control of dioxin-responsive enhancers designed 

as DR-CALUX assay [133]. REP values calculated relative to the TCDD-induced AhR 

activity, were developed for thirty abundant environmental PAHs [134], dibenzoanthracenes 

and benzochrysenes [106], and monomethylated chrysenes, benz[a]anthracenes and B[a]P 

[107–109]. Additional data have been developed also for other PAH compounds using 

either DR-CALUX or its variant, PAH-CALUX assays [135,136]. In general, AhR REP 

values expressed relative to TCDD ranging from 1 × 10−3 (for benzo [k]fluoranthene, 

dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene) to 1 × 10−8 for fluoranthene. Since 

various classes of AhR ligands may differentially activate human and rodent AhR, human 

AhR-inducing REPs have also been developed [137], using the gene reporter AZ-AhR cell 

line [138]. The order for REPs of individual PAHs in human cells largely corresponded with 

the available data from rodent-based DR-CALUX assay, although some differences up to 

one order of magnitude in REP values of PAHs between human and rodent cells have been 

observed. Higher REP values were found in human cells for some important AhR ligands 

among PAHs, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, 

while lower REP values have been determined for methyl-substituted PAHs. The same 

experimental models have also been used for estimation of AhR-mediated activities of 

PM extracts and chromatographic fractions (non-polar and polar) of these extracts. Taken 

together, the AhR-mediated activity of PAHs is an important parameter for hazard/risk 

assessment of both PM mixtures and individual environmental PAHs, as this mode of 

action is highly relevant for both genotoxic and non-genotoxic effects of PAHs, as well as 

PAH-containing mixtures, as further discussed below.

6. AhR - Reactive metabolites and genotoxicity

DNA damage, mutations and genomic instability is considered a universal hallmark of all 

cancers including lung cancer [139]. Exogenous DNA damage may arise from cellular 

exposure to radiation and environmental carcinogenic compounds including PAHs from 

combustion PM. As the AhR regulates the induction of phase I and phase II enzymes, AhR 

strongly influence the formation of DNA-reactive PAH-metabolites as well as the biological 

stability of the parent compounds which have implication for the duration of AhR signaling. 

However, most mutations in human tissues are of endogenous origin. DNA damage is 

naturally occurring due to chemical DNA instability (e.g. depurination). It can be induced by 

various cellular processes including somatic recombination, endogenous reactive chemicals 

(e.g. aldehydes and S-adenosylmethionine), ROS and products generated as a consequence 

of oxidative stress (e.g. lipid peroxides) [140,141]. Because of the low contribution of 

exogenous agents to the mutation rate of normal cells, initiation and mutations increasing 

DNA instability are expected to be chiefly due to endogenous causes [140]. In fact, oxidative 

DNA damage is often considered to be a driver of carcinogenesis [142]. Guanine is the 

most frequently oxidized base. Following oxidation, it will form 8-oxo-7, 8-dihydro-guanine 

(8-oxoG) [143]. Due to mispairing, such lesions may result in G:C to A:T transversions 

during replication, one of the most common mutagenic features seen in many cancers 

including lung [144].
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Like many other cancer types, lung cancers often have a high level of mutations in the 

tumor suppressor gene TP53. The TP53 gene provides instructions for making the tumor 

protein p53 (or p53). p53 is central in the maintenance of genomic stability, responding to 

DNA damage by promoting cell cycle arrest and repair, balancing transcriptional regulation 

of DNA repair genes and induction of apoptosis. Cells with non-functional p53 will thus 

accumulate more DNA damage and be more resistant to cell death. Furthermore, as the 

presence of TP53 mutations are found in preneoplastic lesions in the lung, it is hypothesized 

to be an early marker of lung cancer development [145].

Mutagenic and genotoxic effects of PM/EOM from combustion PM are well known 

[8,11,12]. A number of studies have shown that people exposed to combustion PM have 

increased levels of genotoxicity biomarkers including chromosome aberrations, micronuclei, 

DNA damage measured by 32P-postlabeling or the comet assay.

There are several approaches suggested for a rapid assessment of the carcinogenic potencies 

of combustion PM from various sources. These are most often based on in vitro assays 

for genotoxic/mutagenic activity of PM or EOM [22,24,146]. The mutagenic potency of 

EOM from a variety of combustion emissions in the Salmonella test have been found to 

span two orders of magnitude [24]. Chemical analysis combined with mutagenicity studies 

of fractionated EOM have shown that the mutagenicity is most likely due to just a few 

chemical classes out of which PAHs are often found to play a central role [8,9,11]. This 

hypothesis is further supported by studies of EOM in vitro which have revealed mutagenic 

pattern similar to that seen following exposure to PAHs [24,147], as discussed in the 

section below. A similar approach has been used to derive mutagenic potencies of PAHs 

based on mutation assay in human B-lymphoblastoid cells [148,149]. As an alternative to 

genotoxicity testing of PM, the levels of PAHs in organic extracts from combustion PM can 

be also combined with information of the specific carcinogenic or AhR potencies of PAHs 

based on in vivo and/or in vitro data [134,137,150]. Other carcinogenicity-linked endpoints 

have been also proposed to quantify relative carcinogenic potencies of PAHs [26,151] 

Carcinogenicity risk assessment of PAHs is often based on toxic equivalency factors (TEFs) 

expressed relative to B[a]P, based on meta-analysis of animal carcinogenicity studies, as 

proposed by Nisbet and LaGoy [150], which serve to derive carcinogenicity of mixtures of 

PAHs, where an individual PAH concentration is multiplied by its respective TEF [152 153]. 

Such approach may serve to identify principal contributors of carcinogenicity or specific 

toxic action of PAH mixtures, and it has suggested that cyclopenta[c,d]pyrene, in addition 

to B[a]P, could be a prominent contributor to the estimated mutagenicity of the PAHs found 

in combustion PM samples [154,155]. Similarly, dibenzo[a,l] pyrene and to a lesser extent 

benzo[b]fluoranthene were found to be the major contributors to mutagenic potency in 

extracts of DEP collected from an industrial forklift [56]. Regarding AhR REPs, specific 

patterns of PAH contributors to the AhR-mediated activity were identified in extracts of 

standard reference materials (SRM) of urban air PM (SRM 1649a), diesel exhaust particles 

(DEP) from heavy duty diesel engine (SRM 1650b) and DEP collected from an industrial 

forklift (SRM 2975) [56]. Here, the following major AhR-active compounds were identified: 

benzo[k]fluoranthene and to a lesser extent indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, 

dibenzo[a,h]anthracene in SRM1649a; benzo[k] fluoranthene, indenopyrene, chrysene, 

benzo[b]chrysene and benzo[j] fluoranthene in SRM1650b; chrysene, indenopyrene, 
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benzo[k]-, benzo [b]-, benzo[j]-, and dibenzo[b,k]-fluoranthene and 9-methylbenz[a] 

anthracene in SRM 2975. Generally, mutagenic, AhR-mediated and carcinogenic potencies 

of individual PAHs seem to be independent parameters. A number of non-priority PAHs 

such as cyclopenta[c,d]pyrene, benzo[j]fluoranthene, benzochrysenes and methylbenz[a] 

anthracenes belong among significant AhR agonists and/or genotoxic PAHs. For example, 

contribution of environmental six-ring PAHs with molecular weight 302 to overall AhR-

mediated activity of airborne PM and DEP is even comparable with the overall contribution 

of carcinogenic US EPA PAHs [156]. It is of note that potent carcinogens, such as B 

[a]P and 5-methylchrysene, may combine multiple types of toxic activities, including 

genotoxicity, AhR-mediated activity and tumor promotion activities (see section 9), and 

they occur at relatively high concentrations in polluted air.

A central role for PAHs-induced mutagenesis in human lung cancer is further substantiated 

by analyses of mutation spectra in various types of lung cancers. As most hotspot codons 

are also for the most part mutated in non-lung cancers, the location of mutations seems 

to be mutagen independent [157]. However, both the TP53 and KRAS mutations found in 

lung cancer of smokers are predominantly G:C to T:A (G to T) transversions, while other 

types of cancers are generally dominated by G:C to A:T (G to A) transitions including 

the TP53 mutations in lung cancers of never-smokers [6,81,157]. B[a]P is metabolically 

activated into BPDE which reacts with DNA predominantly at the N2-position of guanine to 

produce primarily N2 -guanine lesions e.g. B[a]P 7,8-diol-9,10-epoxide-N2-deoxyguanosine 

(BPDE-N2-dG) adduct. As tobacco as well as the ultimate reactive B[a]P metabolite 

BPDE most often form G to T transversions, some have argued that B[a]P could be 

the carcinogen responsible for these mutations [24,158]. Importantly, production of pro-

inflammatory mediators in target tissue that is associated with PM exposure may further 

increase production of genotoxic B[a]P metabolites, including BPDE [159,160].

Importantly, several other DNA lesions are also formed after tobacco/B[a]P exposure. 

Furthermore, there are studies that have failed to find significant differences in the spectrum 

of mutations between smokers and never-smokers although confirming the predominance of 

G to T transversions in lung cancer [161]. They proposed that spectra of TP53 mutations 

was due to an enhanced biological selection and that smoke exposure enhanced the 

effects of an endogenous mutagen. G to T transversions have also been suggested to be 

the predominant base substitution induced by PM from urban air [147] and smoky coal 

(Granville et al., 2003). Other PAHs, like the highly mutagenic cyclopenta[c,d]pyrene, 

induce similar types of mutations (guanine as well as adenine transversions) as observed 

for B[a]P [162]. Furthermore, this mutation pattern may not only be reflective of PAHs, but 

also aromatic amines [103,163]. G to T transversions are also formed via oxidative DNA 

damage, including PAH o-quinones under redox-cycling conditions [157].

Next-generation sequencing and computational analyses have revealed very complex high-

resolution mutational profiles in cancers including changes in single base substitutions, 

doublet base substitutions, small insertion/deletions, and copy number mutations in human 

cancers [164,165]. The complexity of the new data reflects the fact that the mutations are 

due to various endogenous factors as well as a huge number of environmental exposures, 

each of them resulting in a spectrum of DNA damage. Despite this complexity, there still 
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seems to be specific mutational signatures across the spectrum of human cancer types. Each 

mutational signature is hypothesized to correspond to specific mutagenic processes, thus 

considered to help further elucidating the etiology of cancer.

The large-scale analyses allowed to comprehensively evaluate mutational spectra in various 

lung cancer types [165,166] as well as those induced by cigarette smoke and individual 

components of cigarette smoke in experimental setting [87,164,166]. Such studies have 

confirmed the hypothesis suggesting a role for B[a]P-induced mutations in lung cancer from 

tobacco smokers [87,164]. More specifically, a study with human pluripotent stem cells 

exposed to various environmentally relevant chemicals and then clonally expanded suggests 

that the in vitro high-resolution mutational signatures from B[a]P, dibenzo[a, h]anthracene, 

5-methylchrysene, and dibenz[a,j]-acridine are similar [167]. Similarly, mutational profiles 

of lung epithelial cells exposed to individual tobacco smoke chemicals have confirmed and 

extended the previously characterized B[a]P mutational signatures [87]. Here, the mutational 

signatures arising from B[a]P and norharmane were both found to be similar to human lung 

cancer signatures attributed to tobacco smoking [87].

There is, however, no strong mutational signature seen in populations exposed to outdoor 

air pollution. As this may be due to a lower dose when compared to cigarette smoke as 

previously discussed in section 4, a central issue for lung cancer development is to explore 

the rate limiting steps in the development. Several approaches have been taken, as to look 

for sensitive endpoints for toxic responses. The low contribution of exogenous agents to 

the mutation rate of normal cells suggests that carcinogens including combustion PM at 

low doses primarily act via other pathways. Furthermore, B[a]P-induced gene mutations 

and/or chromosomal aberrations appear to be less sensitive endpoints than the initial DNA 

damage induced, as BPDE-dGs most often are efficiently eliminated by nucleotide excision 

repair [168]. However, the induced DNA damage will modulate the transcription of many 

genes which are predominantly involved in cell cycle regulation, apoptosis, and DNA 

repair [169,170]. In addition, B[a]P and other PAHs/PAHs-derivatives may modulate gene 

transcription via interactions with AhR [169], as it is further discussed in sections below.

The exception to this scenario might be a situation of sustained excessive exposure 

to carcinogenic agents. This seems to be the case in cigarette smokers and persons 

occupationally exposed to high levels of other combustion PM based on the change in 

mutation spectra induced, which suggest PAHs-induced mutations. It may be that the 

higher concentration of combustion PM/PAHs/B[a]P simply increases the relative mutagenic 

probability from B[a]P over that of endogenous sources for DNA damage; possibly partly 

as a result of impaired detoxication pathways and/or DNA repair mechanisms at higher 

concentrations [171].

7. Reactive metabolites - Cell death, inflammation and compensatory cell 

proliferation

PM2.5, DEP, and some compounds attached to such particles may elicit formation of reactive 

molecules including ROS and electrophilic compounds reacting with macromolecules in 

various lung epithelial cells. Depending on their nature and half-life, the reactive metabolite 
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will preferentially react with proteins or DNA giving rise to cell death, chromosomal 

aberrations or gene mutations [172,173]. Realizing that DNA damage from endogenous 

processes is probably far more prevalent than those resulting from exogenous agents 

[174,175], it becomes clear that processes changing the level of DNA damage by which cells 

will survive, enter S-phase or go into mitosis will increase the probability of accumulating 

gene mutation/chromosomal aberrations. Cell deaths may result in compensatory cell 

proliferation which is of great importance for fixation of DNA lesion, as well as an 

activation of ROS release in inflammatory cells which may further amplify epithelial 

tissue/DNA damage [176]. Accordingly, chronic tissue irritation with cell death is now 

regarded as an important part of lung cancer development. Importantly, the particles also 

contain compounds, including PAHs, which may change the level of DNA damage that the 

cell may tolerate and survive [177–179].

Silencing or mutation of TP53 tumor suppressor gene is considered the most prevalent 

oncogenic driver in lung cancer development. Genotoxic as well as various non-genotoxic 

mechanisms of p53 inactivation that are linked to PAHs have been reported. Repeated PM2.5 

exposure has recently been reported to inhibit p53 expression via promoter hypermethylation 

[180], but p53 activity may also be more directly reduced. For a long time, it has been 

known that several PAHs may have so-called “stealth properties” [181,182], as they are 

able to covalently bind to DNA without being detected by the cells defense system. More 

specifically, several of the electrophilic PAH metabolites bind to DNA without triggering 

a proper G1-arrest. An increase in p53 can be seen, but often this p53 seems to be 

transcriptionally inactive as it does not lead to increased levels of p21waf1/cip, which 

are responsible for cell cycle control, blocking the transition from phase G1 to phase 

S. Furthermore, some PAHs are found to reduce an activation of p53 by induction of 

mouse double minute 2 (mdm2) protein which is a major negative regulator of p53 

[183]. Reduced p53 nuclear translocation, stimulation of cell survival signals such as 

phosphorylation of Akt and Bad, and inhibition of DNA damage-induced apoptosis have 

been reported after exposure to certain PAH [177–179]. Cellular stress caused by DNA 

damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization 

of the E2F1 transcription factor. The activation of a subset of pro-apoptotic E2F1 target 

genes, including apoptotic peptidase activating factor 1 (APAF1/Apaf1) and tumor protein 

73 (TP73/p73) leading to apoptosis is attenuated by AhR-binding to E2F1 [184].

Importantly, B[a]P itself (as well as other PAHs) forms numerous metabolites with poorly 

characterized toxicological profiles, which might further modulate cellular responses to 

DNA damage [27]. Some of these PAHs have also been reported to have AhR-dependent 

activity linked to the regulation of cell proliferation, differentiation, senescence and 

programmed cell death [185]. The link between AhR-signaling and control of cell growth 

and proliferation is complex and may depend on cell phenotype as further discussed in 

section 9. Weak mitogenic activity which may also occur via increased intracellular calcium 

concentrations [Ca2+]i activation of EGFR and insulin receptor signaling, or estrogen 

receptors (ER) [186–188], elicited either by parent PAHs or their metabolites. Furthermore, 

an AhR-dependent disruption of contact inhibition induced by PAHs has been reported for 

a number of AhR-activating PAHs, probably linked to induction of JunD/cyclin A pathway 

[189].
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Chemicals interfering with the cellular defense system, giving anti-apoptotic or mitotic 

signaling, would change the balance between cell death, cell survival and cell proliferation 

following endogenous DNA damaging events. If not compensated with increased DNA 

repair, it is likely that the result would increase the probability of permanent genetic 

damage. This hypothesis is supported by the fact that low doses of combustion PM/PM2.5 

mostly result in cancers with “natural” mutations, in line with important roles also for the 

non-genotoxic properties of PAHs in lung cancer development.

8. Intracellular Ca2+-signaling, non-classical genomic and non-genomic 

AhR-pathways

While the classical or canonical genomic AhR-pathway leading to activation of 

CYP1A1/−1A2 and CYP1B1 through dimerization with Arnt is clearly essential for 

the formation of mutagenic metabolites and oxidative stress responses from PAHs in 

combustion PM, it cannot explain all effects observed from AhR ligands [190]. Non-

classical or non-canonical effects involve alternative genomic pathways where AhR interacts 

with other transcription factors, such as the estrogen receptors (ERs) or the RelA and 

RelB subunits of the nuclear factor-κB (NF-κB), and which regulates a number of other 

genes, independently of a canonical XRE/DRE (xenobiotic or dioxin response elements) 

binding [191–193]. In addition, AhR may also function as signaling molecule in the 

cytosol controlling activation of c-Src and calcium (Ca2+) signaling through the so-called 

non-genomic pathway [190,192]. These non-classical pathways enable regulation of several 

processes relevant for carcinogenesis and tumor development, including inflammation, cell-

to-cell communication, cell growth and proliferation, and cell migration which is discussed 

in more detail in the sections to follow (Fig. 1).

The NF-κB family of transcription factors are key regulators of inflammatory responses, 

including a number of cytokines, chemokines, and adhesion molecules which play central 

roles in cancer development [176,194]. Extensive crosstalk between AhR and NF-κB 

has been reported [195–197]. TCDD exposure and AhR overexpression increased NF-κB 

activity and IL-6 expression in lung cells [198]. TCDD also induced dimerization of 

AhR and RelB of the alternative NF-κB pathway and up-regulation of CXCL8 through 

a novel RelB/AhR response element (RelBAHRE) in macrophages and breast cancer cells 

[196,199]. Furthermore, B[a]P may induce CXCL8 expression in primary human lung 

macrophages through binding of AhR to consensus XRE sites in the CXCL8 promoter, 

and B[a]P administration increased pulmonary inflammation in mice [200]. AhR can also 

dimerize with the p65-submunit of NF-κB and activate κB-sites in the IL-6 and c-myc 

promoters [198,201]. However, AhR-deficient mice have been reported to display elevated 

NF-κB activity and inflammation in the lungs after inhalation of lipopolysaccharide (LPS), 

cigarette smoke, or crystalline silica [202,203]. AhR knockout has been also shown to 

increase inflammatory signaling in lung adenocarcinoma A549 cells [204]. Furthermore, 

AhR activation may suppress pulmonary inflammation induced by crystalline silica [203]. 

The receptor therefore seems to elicit both pro- and anti-inflammatory functions through 

enhancement and suppression of NF-κB activity in the lung and other tissues. A study in 

human bronchial BEAS-2B cells shows that this dual action may occur even within the 
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same cell type. Both constitutive and ligand-activated AhR elicited a weak to moderate 

pro-inflammatory signal increasing CXCL8 and CCL5 release but seemed to suppress p65 

activation and chemokine responses in combination with stronger activators of the classical 

NF-κB pathway, such as polyinosinic:polycytidylic acid (Poly I: C) or tumor necrosis factor 

(TNF)-α [205]. The interaction of AhR with members of the NF-kB family is an important 

aspect, as unresolved chronic inflammation is considered to be an important hallmark of 

cancer [194].

While non-activated AhR in its resting state is often depicted as “freely floating” in 

the cytosol, some studies suggest that at least a fraction of the AhR is anchored to 

the cell membrane, most likely in close connection with cholesterol rich regions such 

as the caveolae. AhR appears to bind directly to caveolin-1 (Cav1), and this binding is 

affected by exposure to AhR ligands [206,207]. A close connection between AhR and 

the cell membrane makes sense, as most AhR ligands are highly lipophilic and thereby 

distribute within the phospholipid bilayer, rather than dissolving into the aqueous cytosol 

[208,209]. Caveolae are believed to be central in the uptake of lipids and lipophilic 

compounds [210,211]. In line with this, polychlorinated biphenyls (PCBs) have been shown 

to accumulate in caveolae [212], suggesting that AhR is located at the regions where its 

ligand occur at the highest concentrations. This also places AhR in close contact with 

major cell signaling components, since a variety of different receptors and ion-channels 

cluster in cholesterol-rich micro domains. Studies in human microvascular endothelial 

cells suggest that pyrene and PAH-rich DEP-derived EOM trigger AhR-dependent Ca2+-

signaling, possibly through activation of transient receptor potential canonical (TRPC) 

channels [213,214]. This response occurred rapidly after approximately two min of 

exposure, preceding transcriptional regulation. Similarly, DEP-EOM and phenanthrene were 

reported to stimulate Ca2+-influx and membrane depolarization in airway sensory nerve 

fibers from guinea pigs through AhR-dependent activation of TRPA ion channels [215]. 

AhR-mediated Ca2+-signaling through the so-called non-genomic pathway seems to be a 

central step in the regulation of TCDD induced cyclooxygenase 2 (COX-2) activation, 

prostaglandin release and inflammation [190]. Dysregulation of Ca2+-signaling is frequent 

in many cancer types and has been linked to tumor progression. Furthermore, aberrant 

expression of TRP-channel such as TRPC and TRPM has been reported in lung cancer and 

other cancer types and has been linked to EMT, cell proliferation, invasion and promotion 

of cell survival and suppression of apoptosis [216,217]. Importantly, these effects have been 

described for pyrene and phenanthrene, PAHs that traditionally have been considered weak 

AhR activators due to limited effects on classical AhR:Arnt signaling [150]. Although the 

potential role of AhR-induced Ca2+-responses in lung cancer development remains to be 

clarified, this underscores that models developed to assess AhR REP based on XRE/DRE 

driven reporters may not account for the non-classical effects of AhR ligands.

It should also be considered that PAHs may further activate intracellular Ca2+-signaling not 

only through AhR-driven responses. Beta-adrenergic receptors (β-ARs) have been detected 

in cancer cells of the breast, prostate, and skin as well as in lung cancer [218,219]. 

Numerous studies have linked this receptor to a variety of cellular phenomena such as 

cell proliferation and motility, cell apoptosis resistance, EMT, metastasis, and angiogenesis. 

Some constituents of tobacco smoke (e.g. 4-methylnitrosamino-1-(3-pyridyl)-1-butanone, a 
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derivative of nicotine) are known agonists of β-ARs [220,221], and may regulate tumor 

cell proliferation and migration which are inhibited by beta-blockers (e.g. propranolol). 

Interestingly, β-AR, especially β2-AR, is also associated to the intracellular Ca2+ increase 

induced by B[a]P. Indeed, Mayati and coworkers demonstrated using an endothelial cell 

model that B[a]P induced intracellular calcium concentration through binding to β2-AR, and 

activation of G protein/adenylyl cyclase/cAMP/EPAC/phospholipase C pathway [222]. This 

effect was also inhibited by beta-blockers. Besides, β-AR pathway can modulate lung cancer 

cell resistance, and some works indicate that beta-blockers can slow down the onset of 

therapeutics resistance especially those associated or interacting with EGFR [223]. Although 

there is no consensus on the effects of betablocker treatment, it is interesting to note the role 

of β-ARs in lung cancer primarily have been linked to ADC- and EGFR-driven mutations, 

as reviewed elsewhere [219,224].

Another central part of AhR non-genomic signaling is the rapid c-Src-mediated activation of 

EGFR [225–227]. EGFR appears to regulate cytokine responses in DEP-exposed bronchial 

epithelial cells [228] and it may contribute to the AhR-induced inflammatory responses. 

The AhR-dependent activation of c-Src has also been found to be important in the 

TCDD-mediated regulation of COX-2 and prostaglandins [229]. COX-2 is known to be 

a key enzyme producing prostaglandins which may contribute to tumorigenesis including 

lung cancer [230–232]. Importantly, different ligands induce different responses upon 

AhR activation, also in the case of EGFR-mediated effects. A recent study revealed that 

in contrast to dioxin-like chemicals, the treatment of human epithelial cells with PAHs 

including B[a]P results in an auto-/paracrine activation of EGFR, which can be an important 

contributing factor in AhR-mediated tumor promotion [233]. AhR-induced activation of 

EGFR may also occur in concert with traditional genomic signaling and may induce cancer 

cell proliferation [116,234], and has also been reported to cause resistance towards EGFR 

tyrosin kinase inhibitor (EGFR-TKI) treatment of adenocarcinoma through Src-mediated 

non-genomic signaling [115]. Similar to AhR, EGFR may localize in the caveolae and 

interact with Cav1. Downregulation of Cav1 has been reported to enhance sensitivity 

towards EGFR-TKIs in lung adenocarcinoma cells (PC9) harboring EGFR mutations [235]. 

Both AhR overexpression and exposure to the AhR ligand PCB77 appear to increase 

Cav1 levels in caveolae [207,236]. Thus, the role of AhR in regulation EGFR activation 

and EGFR-TKI sensitivity, likely involves both c-Src and Cav1. As reviewed elsewhere, 

Cav1 has also been implicated in multiple stages of lung cancer development, including 

cell proliferation, migration, apoptosis and drug resistance [237]. Hence, the importance 

of AhR-Cav1 crosstalk likely extends beyond regulation of EGFR and warrants further 

studies into the role of non-genomic AhR signaling in ordered membrane microdomains for 

development of lung cancer. Collectively, these findings point towards a potential role of 

AhR in air pollution-mediated lung ADCs with EGFR driven mutations and lung cancer.

The pattern of AhR signaling with both genomic and non-genomic pathways and 

localization of at least a pool of cellular AhR at the caveolae interacting with Cav1, strongly 

resembles steroid receptor signaling pathways. Also, a pool of the estrogen, androgen, 

progesterone and glucocorticoid receptors (ER, AR, PR and GR) interact with Cav1 and 

signal through non-genomic pathways, in addition to their classical genomic pathways, in 

a pattern similar to AhR, involving both rapid c-Src and calcium responses. As reviewed 
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elsewhere, these non-genomic steroid receptors signaling pathways appear important in 

cancer development, especially in estrogen and androgen sensitive cancers such as breast 

and prostate cancers. [238,239]. Due to the many shared features, it seems reasonable to 

expect that crosstalk between AhR and ER/AR non-genomic signaling may occur. More 

specifically, the interactions between AhR and the genomic signaling of steroid receptors 

are well known and include interference with ER, AR, PR and GR, although the crosstalk 

with ER is by far the best described. AhR can interfere with ER signaling through several 

mechanisms including induction of CYP1A1/1B1 which can metabolize estrogen, thereby 

reducing intracellular estrogen concentrations and ER activation, AhR: Arnt-mediated 

suppression of transcriptional activity of ER (“squelching”), and direct interactions leading 

to AhR:ER dimerization. However, AhR may both suppress and induce ER-regulated genes 

[191]. As reported for AhR, there also seems to be a crosstalk between ER and EGFR 

signaling in lung ADC. ERα (but not ERβ) appears to be highly correlated with presence of 

EGFR mutations in lung ADCs of female never-smokers [240]. The EGFR driver mutations 

observed in air-pollution associated ADC in never-smokers, were also far more frequent in 

women [38] which also appear more likely to develop ADC than SCC and to have a higher 

risk of developing lung cancer from smoking, compared to men [32]. However, while these 

observations are compatible with the involvement of sex steroid hormones, the interaction 

between PAHs and ER in lung cancer development remains elusive, and AhR-ER crosstalk 

has so far not been explored in lung cells with EGFR driver mutations.

Besides the presence of AhR at the plasma membrane, previous works have also pointed 

to the existence of a pool of AhR located in mitochondria, with possible consequences 

in terms of the metabolic reprogramming involved in tumor development. Thus, AhR 

has been shown to interact with one sub-unit of the mitochondrial F0F1-ATPase, namely 

the ATP5a1, in several cell lines (hepatic cells, lymphoma cells) [241]. Interestingly, the 

authors demonstrated that upon activation of AhR by TCDD, the AHR:ATP5α1 interaction 

was disrupted and a mitochondrial hyperpolarization occurred in an AhR-dependent and 

transcription-independent manner. It is noteworthy that under such conditions, a decrease 

in ATP production was also observed, although not significant. This led the authors to 

propose a role in the regulation of mitochondrial metabolism for this so-called «mito-AhR» 

which was shown to be located in the inter-membrane space of the organelle in Hepa1c1c7 

cells [242]. Interestingly, Lagadic-Gossmann and coworkers previously showed in the 

epithelial hepatic cell line F258 that B[a]P was capable not only to induce a mitochondrial 

hyperpolarization [243], but also to trigger a glycolytic reprogramming [243], both being 

involved in survival signals supporting tumorigenesis [244]. Metabolic reprogramming is 

one of the hallmarks of development of lung cancer and other tumors [245,246] and 

recent data suggest that enhanced glycolysis may be central in PM2.5 induced NSCLC 

[247]. Intriguingly, DEP has also been reported to induce mitochondrial hyperpolarization in 

primary human T-cells [248] and PM2.5 has been reported to suppress mitochondrial-driven 

apoptosis through AhR dependent mechanisms [249]. Collectively this suggests that the role 

of the mitochondrial pool of AhR in lung cancer could be worth exploring. Furthermore, as 

cancer-related metabolic reprogramming can rely on changes in pH homeostasis [250] and 

as B[a]P is capable of eliciting changes in intracellular pH [251], it would also be interesting 

to test a role for such pH modifications. In line with this, note that calcineurin homologous 
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protein isoform 2 (CHP2) was described to support tumor survival in non-small cell lung 

cancer, via the sodium/hydrogen exchanger (Na+/H+ exchanger, NHE) isoform 1 [252], i.e. 

an important transmembrane pH regulator that we showed to be activated by carcinogenic 

PAHs, including B[a]P [253]. Another important player worth investigating in this network 

would be the ATPase inhibitory factor 1 (IF1), that is, the physiological inhibitor of the 

F0F1-ATPase. Indeed, the activity of this peptide is sensitive to pH variations and has been 

linked to metabolic reprogramming and tumorigenesis [252,254]. Its gene expression seems 

to be modulated upon PAH exposure via AhR as well as β2-AR [255,256]. With respect to 

that, a previous paper has found IF1 as a target for PM2.5, possibly related to immune and 

inflammatory responses in pulmonary fibrosis [257].

9. Cancer promotion including cell-to-cell communication, EGFR activity, 

extracellular vesicles and miRNA

9.1. Disturbance of cell-to-cell junctions and contact inhibition

Disruption of intercellular communication mediated via various types of cell-to-cell 

junctions, including gap junctions (GJs), adherens junctions (AJs) or tight junctions (TJs), 

and associated deregulation of cell adhesion are important mechanisms linked with cancer 

development and cancer promotion. The GJs, which connect neighboring cells allow 

continuous exchange of small molecules, and thus contribute the maintenance of tissue 

homeostasis, proliferation control and regulation of epithelial cell polarity, which makes 

them important players also in lung tumorigenesis [258,259]. It has been reported that 

connexins have tumor suppressive roles in lung tissue [260,261]. Overall, both connexin 

proteins themselves and GJs (which they form) play a major role in cancer development and 

progression [262].

The down-regulation of gap junctional intercellular communication (GJIC) that is facilitated 

by GJs via the action of tumor promoting compounds, can contribute to the removal of an 

initiated cell from the growth suppression of neighboring cells, and it may thus serve as 

a marker of tumor promotion [263–265]. A number of carcinogenic chemicals have been 

observed to down-regulate GJIC and/or connexin expression in cell models derived from 

various tissues, including the lungs. The shortlist of potential tumor promoters acting via 

GJIC inhibition also includes PAHs, in particular those with low molecular weight that 

are associated with PM, but primarily are present in gas phase of polluted air. Several 

low molecular weight PAHs (including both parent PAH compounds and methylated PAH 

derivatives) have been demonstrated to inhibit GJIC in rat liver cell lines [266–268]. This 

toxic mode of action of PAHs might be inversely related with their ability to activate the 

AhR as illustrated for methylated benz[a]anthracenes [107]. Down-regulation of GJIC has 

also been observed for complex mixtures of PAHs, including cigarette smoke, cigarette 

smoke condensate or extracts of DEP [269–271].

Although PAHs and their impact on GJIC have been studied mostly in the context of liver 

tissue, several studies have also addressed their impact on cell models derived from lung 

epithelium. Lung alveolar epithelial cells express several connexin species, proteins, which 

couple cells via formation of GJs [272]. In murine C10 lung cells, a non-tumorigenic type II 
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alveolar pneumocyte and progenitor cell type of lung adenocarcinoma, 1-methylanthracene, 

a well-known GJIC inhibitor, has been shown to block GJIC, activate ERK1/2 and to induce 

expression of pro-inflammatory regulators [273]. PAHs, such as fluoranthene and B[a]P may 

also interact to elicit genotoxic effects, GJIC inhibition and up-regulation of inflammatory 

mediators in this lung cell model [274]. In human bronchial epithelial HBE1 cells, low 

molecular weight PAHs have been reported to inhibit GJIC [275], again confirming that this 

mode of action is not limited to liver cells.

At present, most of the reported effects of PAHs on GJs and GJIC appear to be AhR-

independent. Nevertheless, inhibition of GJIC seems to be connected also with AhR-

regulated disruption of cell adhesion and cell proliferation control, which will be further 

outlined below. More-over, inflammation is known to modulate effects of PAHs on GJIC and 

related endpoints [276,277]. The exposure to PAHs is a part of complex effects of PM on 

lung tissue, which include induction of oxidative stress and inflammation. It is likely that a 

combination of these effects will lead to suppression of GJIC in alveolar and/or bronchial 

epithelium during PM exposure, thus contributing to promoting effects of PM and associated 

PAHs.

AhR activity has also been reported to contribute to alterations of AJs and cell adhesion 

[278,279]. Exposure to PAHs or their mixtures have been linked with down-regulation of 

E-cadherin, which is a principal constituent of AJs. The disruption of cell-to-cell junctions 

mediated by E-cadherin and their homeostatic functions may lead to deregulation of cell 

proliferation in target cells. Notably, AhR has been shown to play an active role in 

proliferation control in lung adenocarcinoma cells [280,281]. Furthermore, PAHs have been 

documented to exhibit tumor-promoting properties in cell transformation assay in vitro 
[282]. PAHs have been found to inhibit growth suppressive mechanisms such as contact 

inhibition, leading to an AhR-dependent enhanced cell proliferation [189,283]. In several 

liver cell models, activation of the AhR leads to disruption of contact inhibition, as well 

as to deregulation of proteins forming AJs and participating in intracellular signaling. 

PAHs acting as AhR ligands can alter cell proliferation control leading to disruption of 

contact inhibition and to down-regulate GJIC via enhanced Cx43 degradation in rat liver 

epithelial cells [284]. The AhR-mediated disruption of contact inhibition and increased 

cell proliferation are linked with disruption of Wnt/β-catenin signaling as well as down-

regulation of E-cadherin [285,286]. Together, these data suggest a connection between 

disruption of growth suppression via deregulation of contact inhibition and removal of cells 

from the growth suppression of neighboring cells, which is paralleled by GJIC inhibition and 

down-regulation of other types of cell-to-cell junctions.

In addition to their impact on GJs and AJs, PM or PAH exposure can also affect tight 

junction proteins and disrupt the integrity of lung TJs, which are important for formation 

of epithelial barrier, preventing access of inhaled material to sub-epithelial layers [287]. 

Inflammation, which plays a key role in the development of lung diseases, leads to 

deregulation of TJ functions and their constituents, which can be also associated with 

induction of EMT [288,289], as discussed further on. Disruption of lung TJs may contribute 

to increased susceptibility to lung diseases and promote inflammatory responses within 

lung tissue. PM components have been shown to disrupt TJs and deregulate expression 
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of TJ proteins within lung or bronchial epithelium [290]. Their effects could be linked to 

induction of pro-inflammatory cytokines, such as IL-6 and generation of oxidative stress 

[291]. Exposure to combustion particles may also result in disruption of epithelial barrier 

integrity, as evidenced e.g. for DEP exposure [292] or during exposure to wood smoke 

[293]. Regarding the effects of individual PAHs, B[a]P has been reported to disrupt barrier 

in endothelial cells, without directly affecting expression of TJ proteins [294]. These results 

again confirm that PAHs or their complex mixtures may affect multiple types of cell-to-cell 

junctions, and that at least some of these effects are dependent on the AhR activation.

Activation of the AhR has been reported to activate numerous signaling pathways that 

are associated with both the deregulation of inflammatory responses and simultaneous 

regulation of epithelial cell phenotype, including cell-to-cell junctions. Non-canonical 

genomic AhR-signaling involves crosstalk with several other transcription factors and 

signaling molecules independently of Arnt activation [193]. As previously discussed, AhR 

ligands may also act through non-genomic AhR-signaling where AhR functions as a 

signaling molecule in the cytosol, regulating c-Src non-receptor tyrosine kinase and Ca2+ 

signaling, and affecting ordered lipid domains within cell membranes [190,295], thus 

providing a direct link between cell junction protein complexes and membrane structure. 

Activation of c-Src, often linked also with an increased activity of MAP kinases, can indeed 

impact both structural and signaling functions of cell-to-cell junctions, including GJs, AJs 

or TJs, but it has been also implicated in TCDD-mediated upregulation of COX-2 [229], a 

key enzyme producing prostaglandins which may contribute to tumorigenesis including lung 

cancer [231,232]. As mentioned above, the study of Vogeley et al. [233] also revealed that 

the treatment with PAHs such as B[a]P results in an auto-/paracrine activation of EGFR, 

which could be another contributing factor in AhR-mediated tumor promotion.

9.2. EGFR-mediated tumor promotion

The receptor tyrosine kinase EGFR regulates the activity of pro-oncogenic pathways 

including the mitogen activated protein kinases (MAPKs) ERK1/2 and mammalian target 

of rapamycin (mTOR), which both promote cancer cell proliferation. Mutations such as the 

L858R mutations in exon 21, or deletions in exon 19 may lead to overactivation of the 

EGFR enhancing the stimulation of cell proliferation [296]. Furthermore, several studies 

suggest that AhR may regulate EGFR activation, through a non-genomic pathway involving 

c-Src [226,227,233,234]. Thus, modulation of the EGFR activity via PAHs and other AhR 

ligands could be a contributing factor to cancer cell proliferation and tumor promotion.

As previously discussed, ambient air PM2.5 appears to stimulate tumor promotion of 

cells harboring EGFR driver-mutations, such as the L858R mutation [38]. Several studies 

suggest that AhR could be involved in this process. Nuclear localization of AhR has been 

reported to be more common in lung cancer from women, non-smokers, adenocarcinoma 

and NSCLC patients with the EGFR exon 19 (E746–750A) deletion [114]. High AhR 

expression has also been reported from adenocarcinoma cell lines and in human ADC 

biopsies AhR immunostaining was higher than in normal bronchial tissue and SCC [297]. 

By contrast, AhR appears to suppress KRAS-driven lung tumor formation [117], which 

is more common in smokers than never-smokers [6]. As such, it appears that the role of 
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AhR in lung tumor promotion may be more restricted to ADC with EGFR driver-mutations. 

AhR may also strengthen the resistance towards EGFR tyrosine kinase inhibitor (EGFR-

TKI) in NSCLCs through non-genomic Src signaling [115,116]. Intriguingly, cancer cells 

appear to utilize this AhR-mediated pathway. Cancer-associated fibroblast (CAFs) have been 

reported to stimulate AhR-dependent proliferation and EGFR-TKI resistance in NSCLCs 

through production and release of the tryptophane metabolite and potent AhR ligand 

kynurenine [116]. The kynurenine-AhR axis is dysregulated in a number of cancers and 

has been associated not only with increased cell proliferation, but also immune evasion, neo-

angiogenesis, metastasis, and chemoresistance [298]. Moreover, kynurenine from tumor-

repopulating T-cells (TRCs) have been reported to drive AhR dependent upregulation of 

programmed cell death protein 1 (PD-1) in CD8+ T cells, with potential consequences for 

cancer immunotherapies [299]. PD-1 inhibits immune responses and promotes self-tolerance 

by modulating T-cell activity which may contribute to immune evasion [300]. This AhR-

kynurenine-PD-1 pathway may also be activated in air pollution induced lung cancer. 

PM2.5, cigarette smoke and B[a]P has been shown to induce PD-1 ligand (PD-L1) in 

lung epithelial cells and macrophages, and the therapeutic effects of anti-PD-L1 antibody 

treatment (pembrolizumab) appear to be limited to lung cancers with high AhR expression 

levels, in both patients and mouse models [38,301].

In extension of the above, Wang et al [302] recently reported that long-term PM2.5 exposure 

[90 days) induced persistent activation of EGFR, cell proliferation, anchorage-independent 

growth, and tumor growth (xenograft mouse model) in human adenocarcinoma NCI-H1975 

cells which harbors both the EGFR L858R and T790M mutations. Induction of proliferation 

and anchorage-independent growth was also observed in human lung cancer PC9 cells 

which carry a Glu746-Ala750 deletion mutation in exon 19 of the EGFR gene, while in 

human A549 lung cancer cells with KRAS-mutations but wild-type EGFR PM2.5 exposure 

only induced a transient EGFR activation and a nonsignificant increase in anchorage-

independent growth [302]. In H1975 cells, the exposure to PM2.5 induced approximately 

5-fold increase in colony formation ability, but in PC9 and A549 cells PM2.5 exposure 

caused a less than 2-fold increase [302]. These data suggest that PM2.5 stimulates EGFR 

activation and cell proliferation in a variety of lung cancer cell lines, but the responses 

were considerably enhanced in cells harboring both the L858R and T790M mutations [302], 

which both are common in ADC from never smokers [38].

PM2.5-exposure has also been shown to induce an AhR-dependent transcriptional activation 

of transmembrane serine protease 2 (TMPRSS2) and subsequent expression of the IL-1 

family member IL-18 that may promote cancer progression. AhR nuclear expression also 

correlated with TMPRSS2 and IL18 expression and cancer stage in human lung cancer 

tissue [302]. Although the link between the AhR-TMPRSS2-IL18 pathway and EGFR 

activation was not specifically explored, the study provides a potential link between AhR 

activation and ADC with EGFR driver mutations. On the other hand, AhR expression has 

been reported to suppress lung cancer metastasis after orthotopic implantation of human 

adenocarcinoma cell lines (H1975, A549 and H1299) in SCID CB.17 mice, suggesting that 

AhR suppresses lung carcinogenesis irrespective of the dominant oncogenic driver [303]. 

Low AhR expression levels were also associated with faster cancer progression and reduced 

survival in lung ADC patients [303]. A likely explanation for this apparent contradiction 
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could be thedifferences in effects of constitutive AhR activity versus PAH-induced AhR 

activation. There is a considerable diversity in AhR-regulated responses induced by different 

ligands [191], and the native AhR in unstimulated cells appears to affect the regulation of 

different gene clusters than those regulated upon ligand activation [304]. Importantly, while 

PAH exposure activated EGFR, this was not the case for dioxins, which underscores the 

variability in effects induced by different ligands [233].

Based on the above, we suggest that AhR may induce proliferation of lung cancer 

cells through mechanisms involving both non-genomic activation of EGFR, and genomic 

activation of NF-κB and its target genes such as TMPRSS2, leading to inflammatory 

responses regulated by members of the IL-1 cytokine family, such as IL-1β and IL-18. 

It seems that these effects may be enhanced in EGFR-driven adenocarcinoma, especially 

by the L858R mutation in exon 21, and that the involvement of AhR is restricted to 

PAH-mediated activation, since dioxins may not activate EGFR to a similar extent and 

unliganded constitutive AhR appears to suppress lung tumor progression independent of the 

driver mutation.

9.3. Extracellular vesicles and miRNA

Extracellular vesicles (EVs) are nanostructures produced by all cells, mediating cell-to-

cell communication by exchanging proteins, nucleic acids and lipids or organelles (e.g. 

mitochondria) [305–307]. They constitute a heterogeneous population including exosomes 

(Exo; less than 200 nm), microvesicles (MV; 100–1000 nm) and apoptotic bodies. EVs are 

detected in various biological fluids [308], and suggested to participate in the maintenance 

of cellular homeostasis and intercellular communication including immune responses, cell 

proliferation, tissue repair and angiogenesis. EVs contribute to inflammation by containing 

cytokines, accordingly EVs containing high concentrations of biologically active TNF-α 
produced by alveolar macrophages was detected in bronchoalveolar lavage fluids (BALFs) 

during lung injury [309,310]. Damaged epithelial cells may also produce EVs that recruited 

pro-inflammatory M1 macrophages [311]. These nanostructures are also suggested to 

contribute to the growth and worsening of cancers. EVs produced by lung cancer cells are 

reported to stimulate the production of the pro-angiogenic factor vascular endothelial growth 

factor (VEGF) and increase vascular permeability and extracellular matrix remodeling [312]. 

Furthermore, an increase in EVs containing cell death protein ligand-1 (PD-L1) suggested to 

be involved in tumor immune evasion observed in patients with non-small cell lung cancers, 

who were non-responders to treatment [313]. Notably, PD-L1 is known to be under the 

control of AhR [301].

An increasing amount of evidence suggests that environmental pollutants can modify 

the production of EVs, and that they are involved in the appearance or progression of 

diseases linked to environmental exposures including lung cancer [314]. Tobacco-smoke, 

PM2.5 and PAHs have been shown to trigger EV release from different lung cell types 

(macrophages, bronchial epithelial cells, endothelial cells, platelets) [315]. PAHs such 

as B[a]P, dibenz[a,h]anthracene, or benz[a]anthracene, have been shown to increase EVs 

production by endothelial cells [316]. However, until now only limited data exist concerning 

the role of AhR in EVs production and content, especially upon exposure to air pollutants 
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such as tobacco-smoke, PM2.5 or PAHs. Recently, it was demonstrated, using endothelial 

and hepatic cell models, that PAHs such as B[a]P may increase exosome production through 

AhR activation [316,317]. The inhibitory effect of naringenin (a flavonoid targeting AhR 

pathway) on EV production in BEAS-2B cells exposed to cigarette smoke extract could 

indicate a role for AhR also in lung epithelial cells [318]. Furthermore, pyrene, a weak 

agonist of canonical AhR signaling but potent inducer of AhR non-genomic Ca2+ signaling 

[214], increased exosome production using constitutive androstane receptor (CAR) pathway 

[317].

EVs may also contain miRNAs/ncRNA, a class of RNAs that regulate gene expression by 

interacting with their target mRNAs to induce their silencing, thereby influencing the cell 

response [319]. Via regulation of oncogenes or tumor suppressors, miRNAs can modulate 

tumor formation and contribute to lung cancer development [320–323]. Interestingly, 

several experimental and epidemiological studies report that exposure to various sources 

of combustion PM such as DEP, industrial/biomass combustion and cigarette smoking 

alter miRNA levels [324]. For example, DEP exposure in human lung cells upregulated 

miR-21 which has previously been identified as an ‘oncomir’ candidate by targeting cell 

proliferation and EMT through regulation of the PTEN/AKT signaling pathway [325]. 

Furthermore, loss of miR-29a is associated with cdc7 kinase accumulation and has been 

suggested as a mechanism to acquire resistance to cigarette smoke-induced DNA damage 

allowing the cells to proliferate [326].

The miRNAs have also been studied as biomarkers of interest in lung cancer [327] as 

diagnostic and/or prognostic tools [328,329]. More recently, EV-derived from biological 

fluids and their miRNAs have been proposed as a potential source of biomarkers for 

exposure and effects of environmental pollutants. Changes in extracellular miRNAs have 

been correlated to different sources of PM including DEP [330,331], traffic-related air 

pollution [332] and cigarette smoke [333–336]. Some miRNAs are commonly deregulated 

in lung cancers and as a result of exposure to air pollution, and they have been suggested as 

interesting biomarkers for the detection of sensitive human populations [337]. Furthermore, 

miRNAs following exposure to cigarette smoke are also suggested to contribute to a 

modification of the tumor microenvironment towards a pro-inflammatory response [338] 

and to be pro-angiogenic [339,340].

Finally, an increasing number of studies have shown that some miRNAs target AhR and vice 
versa, that AhR regulate miRNAs following oncogenic changes induced by PAHs [341,342]. 

In fact, AhR has been proposed as a key regulator in controlling miRNA levels in lung [343]. 

Accordingly, without activation, AhR suppressed the expression of the cancer-associated 

miR-96, whereas chronic cigarette smoke markedly increased its level by a mechanism 

independent of classic AhR activation by ligands [343]. Such ligand-independent regulation 

of miR-196a by AhR has been described by Hetch et al. [344] in lung fibroblasts controlling 

their apoptosis and potentially regulating the hallmarks of cancer as previously suggested 

[345]. By contrast, we and others recently reported the ligand-dependent AhR activation of 

miR-132 expression in blood cells [346,347]. This miRNA may possess pro- or anti-tumor 

functions depending on cancer [348]. Altogether, these elements reveal the interest and the 

complexity of miRNAs in air pollution-induced lung cancers and underline the need to 

Holme et al. Page 26

Biochem Pharmacol. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



further explore biological importance of the AhR in miRNA-induced processes, notably in 

link with EVs.

10. Role of PAHs and AhR in regulating the tumor microenvironment 

(TME)

10.1. Tumor microenvironment - Immune cells and stromal cells

Tumor cells are surrounded by non-malignant stromal cells which play a critical role for the 

survival, growth, progression, and metastasis of cancer cells. It is important to note that the 

development of metastasis is the cause of more than 90% of cancer mortality, and that the 

metastasis of tumor cells depends on the support of their microenvironment. Non-malignant 

stromal cells are a heterogeneous cell population forming the structure of the tumor 

microenvironment (TME) and include cancer associated fibroblasts (CAFs), endothelial 

cells, adipocytes and pericytes. Interestingly, a recent study showed that elevation of the 

protein fibroblast growth factor 2 (FGF-2) expression involves AhR signaling resulting 

in pericyte proliferation in the TME. Consequently, increased FGF-2 signaling and 

proliferation of pericytes leads to accumulation of tumor associated macrophages (TAMs) 

and metastasis [349].

Moreover, infiltrating adaptive and innate immune cells play a critical role in the TME 

and exert an anti- or pro-tumorigenic effect on the development of cancer. For instance, 

regulatory B cells producing IL-10 may contribute to immunosuppression in the tumor 

microenvironment. Regulatory B cells differentiation is promoted by the key tryptophan 

metabolite L-kynurenine (L-Kyn) in an indoleamine 2,3-dioxygenase (IDO) and AhR-

dependent mechanism [350]. In addition to B cells, recent studies have shown that AhR 

activation by TCDD leads to accumulation of tumor associated myeloid cells (TAMCs) 

including myeloid derived suppressor cells (MDSCs) or TAMs [351]. The importance of 

immunosuppressive TAMCs and the central role of the TME has been demonstrated for 

the progression and metastasis of various malignancies including lung and breast cancer 

[352,353].

Furthermore, recent reports have shown a critical role of AhR in the recruitment of MDSCs 

and TAMs in adipose tissue of TCDD-treated mice [354] and during the development 

of glioblastoma [355,356]. The AhR has been found to induce the expression of 

immunoregulatory enzymes and factors such as arginase 1 (Arg1], IDO, IL-10 and the S100 

calcium binding protein S100A9 which are important for the immunosuppressive function 

of TAMCs by creating a tumor-promoting microenvironment [357–360]. Additionally, 

cytokines, chemokines, and growth factors are soluble factors and important components 

of the TME since they regulate the recruitment and migration of immune cells as well 

as tumor cells [361]. The important role of IL-1β has also been demonstrated in AhR-

mediated (TCDD-induced) development of lymphoma [96]. These studies indicate that 

IL-1β signaling creates a tumor-promoting microenvironment contributing to tumor growth 

and metastasis as reported previously [362,363]. Additionally, numerous studies confirmed 

the AhR-dependent upregulation of IL-1β in macrophages and other cell types after 

treatment with PM, PAHs and TCDD [352,353].
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In summary, the literature supports the conclusion that activation of AhR generates a pro-

tumorigenic microenvironment that tumors evolve to escape the immune response, enabling 

progressive tumor growth and metastasis. Consequently, the AhR may play a critical role in 

the TME of various cancer types by modulating the recruitment and function of infiltrating 

immune cells. Because AhR can be regulated by small molecules, the AhR has been 

suggested to be an attractive target for the tumor microenvironment and immunotherapy 

to treat cancer [113,364,365].

10.2. Angiogenesis and tumor growth

Formation of new blood vessels, neo-angiogenesis, is an essential part of tumor development 

in lung cancer and other cancers [366]. Development of different AhR knockout mouse 

models in the 1990 s revealed that AhR deficiency caused cardiac hypertrophy, vascular 

abnormalities in multiple organs and altered blood pressure [367]. These studies pointed 

towards a central role of AhR in angiogenesis. The central role of AhR cardiovascular 

development and homeostasis has been extensively reviewed elsewhere [367–370] and will 

therefore not be discussed in detail here. Among the angiogenic factors affected by AhR 

activation is the vascular endothelial growth factor (VEGF), which is a key regulator of 

angiogenesis.

In vitro exposure of a coculture of eosinophilic (EoL-1) cells and human umbilical vein 

endothelial cells (HUVECs) to B[a]P, was reported to promote HUVEC growth through 

ERK1/2 mediated VEGF expression and release from the EoL-1 cells [371]. Similarly, 

benzyl butyl phtalate induced VEGF release, stimulation angiogenesis in vitro and in vivo 
through AhR non-genomic activation of ERK1/2 in hepatocarcinoma (Huh7) cells [372]. 

AhR has been reported to induce VEGF expression in HepG2 cells through activating 

transcription factor 4 (ATF4), which may be under regulation of the ERK172 pathway [373]. 

Thus, the angiogenic VEGF-signal appears to arise from activation of AhR in both immune 

cells and cancer cells, which in the case of lung cancer would be bronchial and alveolar 

epithelial cells. However, AhR knockdown has also been shown to impair angiogenesis and 

compromise tumor xenograft growth in mice, by a mechanism involving AhR-dependent 

VEGF activation in endothelial cells [374]. VEGF is also regulated by the hypoxia-inducible 

factor-α (HIF-1 α), a PAS family member [375]. Angiogenesis as well as upregulation 

of the expression of HIF-1 α, ARNT, and VEGF induced by ischemia are enhanced in 

AhR knockout mice [376]. Indeed, HIF-1 α and AhR crosstalk has been shown to impact 

both hypoxia-driven gene expression and AhR target genes, presumably via competition for 

their common dimerization partner, Arnt, as well as by additional mechanisms relevant e.g. 

for immune cell regulation [377]. Moreover, the role of AhR in VEGF and angiogenesis 

regulation could be significantly affected by metabolism of PAHs. In fish cell models, both 

benzo[k]fluoranthene and B[a]P have been shown to alter expression of hypoxia reporter 

gene, presumably via their metabolites [378]. Interestingly, in human lung adenocarcinoma 

A549 cells, B[a]P has been found to promote induction of HIF-1 α target genes, including 

VEGF and carbonic anhydrase IX (CA IX) [379]. Another study indicated that a metabolite 

of B[a]P, B[a]P-3,6-dione, can induce HIF-1 α degradation in A549 cells [380]. By contrast 

BPDE and dihydrodiol epoxide metabolite of chrysene have both been reported to stimulate 

VEGF induction independently of HIF-1 α [381]. Thus, effects of PAHs on HIF-1a-driven 
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angiogenesis in tumor cells could be regulated not only by their AhR activity but they could 

be directed also by a pattern of their metabolites being formed in target cells.

11. Role of PAHs and AhR in regulation of cancer cell stemness and 

metastasis

Acquisition of stem cell-like tumor phenotype (cancer stemness) and cancer stem cells are 

playing an important role in chemoresistance, tumor progression and metastasis. Cancer 

stem cells have been found to be multidrug-resistant (MDR) based on high expression 

of the multidrug transporter ATP-binding cassette super-family G member 2 (ABCG2) 

which is an efflux protein, also called the breast cancer resistance protein (BCRP) [382]. 

Interestingly, ABCG2 has been identified as a direct transcriptional target of AhR [383]. 

Consequently, the AhR has been implicated in cancer stemness serving as a sensor and 

molecular bridge between environmental exposure to PM and PAHs and an increased 

risk to develop metastases. In the lung, AhR has been shown to induce the expression 

of ABCG2 and other critical genes involved in cancer stemness [384] which has been 

found to be associated with an increase of stem population in osteosarcoma cells [385]. 

Further, the stabilization and activation of AhR has been associated with the expression 

of deubiquitinase UCHL3 promoting cancer stemness in non-small cell lung carcinoma 

[386]. The role of AhR in metastasis and cancer stemness seems to be rather complex and 

may involve various signaling pathways and cell types. Nonetheless, there is increasing 

evidence that chronic and sustained activation of AhR by environmental toxins (e.g. dioxins 

and PAHs) promotes carcinogenesis by supporting cancer stemness, chemoresistance and 

metastasis [364,387].

Atmospheric PM and associated pollutants have been also shown to alter EMT in lung 

epithelial and bronchial epithelial cell models. EMT plays a central role in various lung 

diseases, including pulmonary fibrosis and lung cancer. Effects of PM and other particles 

on EMT have been reviewed extensively in a recent work of Cochard and colleagues 

[388]. EMT is defined as a process by which cells lose their epithelial phenotype and 

acquire mesenchymal traits, which include increased ability to migrate and invade. As 

such, it plays a central role in cancer metastasis. This physiological process occurring 

during embryogenesis and organ development, which is usually defined by a loss of 

expression of E-cadherin and acquisition of expression of N-cadherin and vimentin, consists 

of numerous transition steps, which are only partially recapitulated in cancer cells [389–

391]. Nevertheless, already partially executed EMT program may drive cancer metastasis 

and affects plasticity of tumor cells [389].

Regarding the impact of PM (and PAHs) on EMT in pulmonary cells, numerous studies have 

been carried out in vitro during recent years, and the cellular models used included both 

bronchial and alveolar epithelial cell models. The treatments included ambient PM2.5, DEP, 

PM derived from biomass burning and a number of standard reference materials (SRM), 

in both particulate forms and applied as their organic extracts [388]. There is a significant 

variability in dosing regimens or exposure times, but in general, a wide spectrum of PMs, 

or their extracts, have been shown to cause EMT in cell models derived from respiratory 
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cells [388]. Studies using PM, DEP and/or individual PAHs as model PAH have indicated 

that these treatments may cause EMT-like phenotype in alveolar epithelial A549 or in human 

immortalized bronchial epithelial cells [281,392–395]. Their effects were mostly associated 

with the loss of E-cadherin expression and increased motility of target cells; nevertheless, 

the mechanisms underlying these effects remain only partially understood. Interestingly, 

a two-week exposure to B[a]P, but not TCDD, promoted mesenchymal-like phenotype 

in A549 cells. While TCDD increased the proliferative rate of A549 cells, exposure to 

B[a]P decreased cell proliferation and induced EMT-like phenotype, which was associated 

with enhanced cell migration, invasion, and altered cell morphology. These changes were 

mediated by the p21Cip1 -dependent delay in cell cycle progression [281]. Thus, activation of 

the AhR alone was not sufficient to elicit EMT in this cell model.

In human bronchial BEAS-2B cells, a short-term exposure to PM induced matrix 

metalloproteinase MMP1, extracellular matrix (ECM) remodeling genes, and several other 

genes related to EMT [392]. PM, cigarette smoke condensate and B[a]P have induced EMT 

in human bronchial epithelial cells (HBEC). However, twelve weeks of chronic exposure to 

these mixtures or to B[a]P were necessary to establish mesenchymal-like phenotype [396]. 

Deregulation of serpin family B member 2 (SERPINB2) expression is another mechanism 

that has been suggested to link EMT and PM exposure in human bronchial cells [397]. The 

upregulation of SERPINB2 via AhR-dependent mechanism [398] induced morphological 

alterations but it reduced cell migration after short-term exposure to PM2.5; in contrast, in 

transformed mesenchymal-like HBEC has been strongly SERPINB2 down-regulated. The 

overexpression of SERPINB2 in PM-exposed bronchial cells might be interpreted as an 

initial protective mechanism, helping to maintain the epithelial character of the cells [397].

Comparative HPLC-MS/MS analysis of parental HBEC-12KT and B [a]P-transformed 

HBEC-12KT-B1 (the cells with acquired mesenchymal-like phenotype) has revealed 

significant changes in sphingolipid (SL) and glycosphingolipid (GSL) profiles, favoring 

those SLs and GSLs which have been reported to act as positive modulators of EMT and 

other pro-carcinogenic processes [399]. Being both intracellular signaling molecules and 

important integral components of membrane lipid signaling domains, specific SLs and GSLs 

have been reported to be involved in cancer development, via playing multiple roles in 

promoting cancer cell growth and survival, as well as in EMT, cell migration and invasion 

[400–402]. Interestingly, exosomes isolated from mesenchymal-like HBEC-12KT-B1 cells 

contained similarly altered SL/GSL profiles indicating a possibility that exosomes derived 

from transformed mesenchymal-like cells might contribute to cancer progression also in 

recipient cells [399].

Taken together, multiple mechanisms leading to EMT in airway epithelial cells (both 

normal and cancer cells) have been reported after exposures to PM, DEP, their extracts 

or to individual PAHs. The AhR-dependent action of PAHs could also be modified by 

toxic effects of other PM components [388], leading to generation of oxidative stress, 

inflammatory responses or disruption of DNA integrity and cell proliferation. Together, 

these effects may lead to activation of transcription factors regulating EMT response. 

Overall, the mechanisms underlying induction of mesenchymal-like phenotype in lung 

epithelium will require further attention, as this mechanism may significantly contribute 
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to dissemination of lung cancer cells and formation of metastases. Another line of evidence 

supporting this comes from the experiments with cigarette smoke, which contains large 

quantities of PAHs and AhR ligands, and which has been documented to induce EMT in 

lung adenocarcinoma A549 cells [403]. The cigarette smoke extract-induced intracellular 

ROS increased expression of runt-related transcription factor 2 (RUNX-2) and galectin-3, 

a novel mechanism likely to contribute to EMT induction [403]. The effects of PAHs and 

their mixtures on EMT are mostly non-genotoxic. They might be relevant for normal cells 

of respiratory epithelium, during early stages of cell transformation, as well as during cancer 

progression, where they promote cancer cell dissemination.

12. Framework for development of adverse outcome pathways (AOPs) for 

air pollution induced lung cancer

Recently, an adverse outcome pathway (AOP) was proposed for breast-cancer related 

cell death, with AhR as the molecular initiating event (MIE), decreased apoptosis and 

increased motility, inflammation, and endothelial migration as cellular key events (KE) [29]. 

As discussed in the present review, AhR and PAHs appear to affect many of the same 

responses in the lungs and a corresponding AOP could likely be developed for lung cancer 

development from PM2.5 and combustion particles. However, the AOP for AhR-induced 

breast cancer, which was based on an artificial intelligence tool, provides limited molecular 

insight into the KEs induced by AhR activation in breast cancer cells [29]. By contrast, 

the recent studies on air pollution induced lung cancer discussed in this review provide a 

more detailed mapping of the molecular and cellular events contributing to adenocarcinoma 

development from ambient air PM2.5 exposure. Air pollution induced lung cancer in never-

smokers appear primarily to be due to promotion of AT2 cells harboring naturally acquired 

EGFR mutations. The collective evidence suggest that AhR plays a central role by regulating 

proinflammatory cytokines in various lung cells. Additional evidence for a central role of 

AhR in EGFR driven lung cancers from combustion particle exposure comes from the 

well-established link between AhR non-genomic signaling and activation of EGFR, and the 

observations that AhR nuclear translocation, a marker of AhR activation, is common in lung 

cancer from never-smokers. Based on this we suggest a framework for the role of AhR in 

lung cancer development from air pollution and other low concentrations of combustion 

PM, were AhR activation in macrophages and epithelial cells may represent the MIE 

leading release of IL-1 family cytokines such as IL-1 β and IL-18, and activation of EGFR 

which both contributes to induce proliferation of AT2 cells with EGFR driver mutations 

subsequently leading to tumor growth and lung ADC development (Fig. 2a). Although the 

role of AhR non-genomic signaling in EGFR activation is well established, it still remains 

unclear whether and how PM2.5 contribute to activation of EGFR with oncogenic mutations. 

Furthermore, additional AhR-regulated mechanisms clearly contribute to cancer progression 

through enhancing cell survival/suppression of apoptosis, altered tumor microenvironment, 

reduction of contact inhibition and increased angiogenesis (Fig. 2a). At higher combustion 

PM exposure doses, AhR-induced PAH metabolism and mutations in particular in TP53 

and KRAS, become more important (Fig. 2b). Additional effects of AhR activation on 

inflammation, tumor microenvironment, cell-to-cell communication, cell proliferation and 

survival, are likely to occur also in these cases. However, it should be noted that proliferation 
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and colony formation of lung cancer cells with KRAS mutations may be less affected by 

PM2.5 exposure than lung cancer cells harboring tEGFR mutations, and AhR has also 

been reported to suppress KRAS-driven NSCLC. It should also be considered that other 

combustion-derived mutagens not discussed in this review (e.g. aldehydes, nitrosamine, 

metals, and ultrafine-/nanoparticles as such) may contribute significantly to lung cancer 

development at high combustion PM exposure.

Conclusive evidence for the role of AhR and PAHs in many of these processes is still 

lacking. However, this suggested framework for AhR signaling in lung cancer may provide a 

guidance for future studies and development of AOPs for AhR in lung cancer from exposure 

to ambient air PM2.5 and combustion PM. For instance, there is a need to explore how AhR 

knockdown or pharmacological inhibition would affect PM2.5 induced tumor promotion 

in lung AT2 cells with EGFR driver mutations and to compare the impact of PM2.5 with 

high or low PAH content on these responses. It is, however, important to consider that 

the role of AhR in lung cancer development is highly complex and, as is often the case 

in AhR research, that contrasting findings have been reported. The key to understanding 

the apparent multifaceted role of AhR in tumor development may lie in the diversity of 

responses regulated by unliganded constitutively active AhR, and upon distinct modes of 

AhR activation being elicited by its different ligands. Activation of AhR by PAHs and 

other ligands does not merely function as an on–off switch for transcription of target genes. 

AhR rather appears to bind and regulate a large number of gene clusters in unstimulated 

cells, and ligand-dependent activation causes considerable qualitative shifts in the genes 

regulated by the receptor [304]. A similar ligand promiscuity has also been described for the 

non-genomic effects of AhR [214,233]. These qualitative shifts in signaling and responses 

could likely explain some of the apparent contradictory results reported from studies on AhR 

in lung cancer based on knockout or overexpression models versus those based on exposure 

to different AhR ligands. Moreover, AhR could play specific roles in different types of lung 

cancers, where some express high AhR levels and others do not, and some are induced by 

AhR, while others are suppressed by AhR activity. Clarifying the underlying mechanisms 

for this “Janus-faced” role of AhR in lung cancer will be important. Another central question 

relates to the dose–response (or concentration-effect) relationship between PM or PAH 

exposure and different responses regulated by the AhR. The wide range of cellular processes 

regulated by AhR are presumably activated at somewhat different dose levels. Identifying 

the most sensitive biological responses induced by AhR may provide important information 

on the main mechanisms driving lung cancer development at relatively low PM-exposure 

levels encountered in outdoor air. After all, activation of AhR appears to be among the 

most sensitive endpoints reported from in vitro exposure of lung cell models to PM or DEP 

[111,112].

13. Conclusion

After more than half a century of research originating from studies on PAH metabolism, 

our understanding of the role of AhR in cancer development has expanded dramatically. For 

lung cancer, as for many other cancer types, AhR has been implicated at all stages of tumor 

development including initiation, promotion, progression, invasion, and metastasis.
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We propose that lung cancer from smoking (and occupational and domestic exposure to 

high combustion PM levels) and lung cancer from air pollution (and secondhand smoke) 

in never-smokers represent the two ends of a dose–response continuum (Fig. 2a and b). 

In the case of lung adenocarcinomas (ADC) development in never-smokers from PM2.5 

exposure from air pollution, tumor promotion appears to be a key mechanism acting on 

lung cells with EGFR driver-mutations acquired naturally through ageing. PAHs from 

combustion PM are likely candidate components contributing to these responses, through 

AhR-mediated activation of IL-1 family cytokines such as IL-1β and IL-18 induced through 

genomic pathways, and possibly also through non-genomic activation of EGFR. Moreover, 

AhR signaling upregulates immune-regulatory factors and can generate a pro-tumorigenic 

microenvironment enabling tumor promotion as discussed in this review. For lung squamous 

cell carcinoma (SCC) development in the central airways induced by higher exposure levels 

of combustion PM from smoking, occupational exposure, or indoor coal combustion, the 

initiation step appears to be a key mechanism driven by mutagenic PAH-metabolites through 

the classical AhR:Arnt-CYP pathway, acting in combination with other combustion-derived 

mutagens. The tumor promoting effects of AhR may also be involved in SCC, but they 

might be less prominent here. Accordingly, AhR has been reported to suppress some 

lung cancers, including those with KRAS-driver mutations characteristic of PAH-induced 

genotoxicity and smoking.

Clarifying the role of AhR in lung cancer development associated with air pollution and 

combustion PM may provide tools for detecting vulnerable populations and give a deeper 

understanding of essential risk factors. Hopefully this will lead to more efficient measures to 

reduce exposure to the most harmful air pollutants which can help to intervene and mitigate 

the development of cancer, especially for people at higher risk through environmental 

exposure to air pollution.
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Abbreviations:

ATF4 Activating transcription factor 4

ADC adenocarcinomas

AJs adherens junctions

AT2 alveolar type 2

AOP adverse outcome pathway

ALK anaplastic lymphoma kinase
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AR androgen receptor

APAF1/Apaf1 apoptotic peptidase activating factor 1

Arg1 arginase 1

AhR aryl hydrocarbon receptor activities

REPs AhR-activating relative potencies

ARA9 or XAP2 AhR-interacting protein

Arnt AhR nuclear translocator

ABCG2 ATP-binding cassette super-family G member 2

β-ARs beta-adrenergic receptors

B[a]P benzo[a]pyrene

BPDE B[a]P-7,8-dihydrodiol-9,10-epoxide

BPDE-N2-Dg B[a]P 7,8-diol-9,10-epoxide-N2-deoxyguanosine

BRAF B-Raf proto-oncogene

BCRP breast cancer resistance protein

BALFs bronchoalveolar lavage fluids

CHP2 calcineurin homologous protein isoform 2

CA IX carbonic anhydrase IX

Cav1 caveolin-1

KE cellular key events

CHK2 checkpoint kinase-2

CXCL8 chemokine CXC-motif ligand 8

COPD chronic obstructive pulmonary disease

CAR constitutive androstane receptor

COX-2 cyclooxygenase 2

CYP cytochrome P450

DEP diesel exhaust particles

DREs dioxin response elements

DTT dithiothreitol

EC elemental carbon
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(EoL-1) cells eosinophilic

EGFR epidermal growth factor receptor

EGFR-TKI EGFR tyrosin kinase inhibitor

EMT epithelial-mesenchymal transition

EGFR TKI EGFR tyrosine kinase inhibitor

ER estrogen receptors

ERR1/2 extracellular regulated kinase

ECM extracellular matrix

EVs extracellular vesicles

EOM extractable organic material

FGF-2 fibroblast growth factor 2

GJs gap junctions

GJIC gap junctional intercellular communication

GBD Global Burden of Disease

GR glucocorticoid receptor

GST glutathione S-transferase

GSL glycosphingolipid

Hsp90 heat shock protein 90 dimer

MET hepatocyte growth factor receptor

HBEC3-KT human bronchial epithelial cells

BEAS-2B human bronchial epithelial cell

HER2 human epidermal growth factor receptor 2

HUVECs human umbilical vein endothelial cells

HIF-1a hypoxia-inducible factor-a

IDO indoleamine 2,3-dioxygenase

IL interleukin

LDH intracellular calcium concentrations [Ca2+]i lactate 

dehydrogenase

LKB-1 liver kinase B1
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L-Kyn L-kynurenine

mTOR mammalian target of rapamycin

MV microvesicles

MEK-1 mitogen activated protein/extracellular regulated kinase 

kinase

MAPK mitogen activated kinase

mdm2 mouse double minute 2

MDR multidrug-resistant

MDSCs myeloid derived suppressor cells

NQO1 NADPH:quinone oxidoreductase

nitro-PAHs nitrated PAHs

1-NP 1-nitropyrene

ncRNAs noncoding RNAs

miRNA microRNA

NSCLC non-small cell lung cancer

NF-kB nuclear factor-kB

OR odds ratio

OC organic carbon

8-oxoG 8-oxo-7,8-dihydro-guanine

oxy-PAHs oxygenated PAHs

PM particulate matter

EOM PM-extractable organic material

PTEN phosphatase with tensin homology

PAHs polycyclic aromatic hydrocarbons

PCBs polychlorinated biphenyls

Poly I:C polyinosinic:polycytidylic acid

PR progesterone receptor

PD-1 programmed cell death protein 1

PD-L1 PD-1 ligand
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WB-F344 rat liver epithelial cells

ROS reactive oxygen species

RET rearranged during transfection

RelBAHRE RelB/AhR response element

PM-EOM residual particles after the extractions

RUNX-2 runt-related transcription factor 2

SERPINB2 serpin family B member 2

SCLC small-cell lung cancer

NHE sodium hydrogen exchanger Na+/H+ exchanger

SL sphingolipid

p65 RelA and RelB, subunits of NF-kB

SRM standard reference material

cancer stemness stem cell-like tumor phenotype

SCC squamous cell carcinoma

SHS secondhand smoke

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEFs toxic equivalency factors

TJs tight junctions

TMPRSS2 transmembrane serine protease 2

TRPC transient receptor potential canonical

TAMs channels,tumor associated macrophages

TME tumor microenvironment

TNF tumor necrosis factor

TP53 -α,tumor protein 53

TP73/p73 tumor protein 73

TRCs tumor-repopulating T-cells

UGT tyrosine protein kinase c-Src,UDP-glucuronosyltransferase

VEGF vascular endothelial growth factor

KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
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WSP wood smoke particles

XRE/DRE xenobiotic or dioxin response elements
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Fig. 1. 
Overview of the main signaling pathways of AhR and the cancer-related responses regulated 

by these. AhR may induce effects through at least four different signaling modes. In the 

classical genomic pathway (1), inactive AhR resides in the cytosol bound to heat-shock 

protein 90 (HSP90), XAP2, and p23 proteins. Upon ligand activation, AhR translocates to 

the nucleus, dimerizes with its binding partner Arnt, and the AhR:Arnt dimer binds to dioxin 

response elements (DREs) in the regulatory region of target genes. The prototypical genes 

activated are the CYP1A1/−1B1 enzymes, which may metabolize PAHs into genotoxic 

metabolites. However, a number of genes express DRE sites and are affected by classical 

AhR signaling, including IL1B and other proinflammatory cytokines. AhR may also 

dimerize with other binding partners (X) such as NF-κB subunits through non-classical 

genomic signaling (2), activating alternative binding sites and regulate other genes including 

various immunomodulating factors. A subfraction of AhR appears to be localized in close 

connection interacting with caveolin-1 (Cav1) in caveolae, acting as a cytosolic signaling 

molecule in the so-called non-genomic pathway (3). Non-genomic AhR signaling regulates 

rapid activation of Ca2 + signaling from transient receptor potential (TRP) channels and 

intracellular stores, and Src-mediated activation of EGFR-RAS-ERK signaling which may 

regulate cell proliferation, cell survival, angiogenesis and immunomodulating responses. 

Importantly mutations in the KRAS (Ras) and EGFR genes are characteristic of lung 

cancers in smokers and never-smokers, respectively, underscoring the potential importance 

of the non-genomic pathway. Another subfraction of AhR has been localized in the inter-

membrane space of mitochondria, mitochondrial AhR (4), and may regulate mitochondrial 

polarization, metabolic reprogramming, glycolysis and apoptosis, which is also associated 

with lung cancer development.
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Fig. 2. A framework for development of Adverse Outcome Pathways (AOPs) for AhR in lung 
cancer from air pollution and combustion PM.
The figure presents a framework for development of AOPs for the link between AhR 

activation in different lung cell types and development of lung cancer after exposure of 

low levels of combustion PM and PAHs from outdoor air (A) and high-level exposures 

from smoking or occupational settings (B). At low-level exposure (A), AhR activation 

is primarily suggested to induce lung cancer by tumor promotion, through release of 

proinflammatory IL-1 family cytokines and nongenomic activation of EGFR. At high-level 

exposure (B) AhR induced CYP1 expression with subsequent PAH metabolism, formation 

of genotoxic metabolites and mutations in TP53 and KRAS is believed to be a central, 

early key events. AhR induced tumor promotion likely also affects cancer development 

in the high-level exposure scenario, but the role is less clear and suppressive effects of 

AhR on KRAS-driven cancers have been reported. It should be noted that some of MIE 

like VEGF release resulting in increased angiogenesis are first of importance in the later 

stage of cancer development; while key events like release of immunomodulating factors, 

DNA damage/mutations, increased cell survival, disrupted cell-to-cell-communication are of 

importance during a much longer period of cancer development than indicated in the figures. 

Well documented connections between AhR activation as the molecular initiating event, 
different key events, and the adverse outcome (lung cancer) are highlighted by solid lines on 
green background. Dotted lines represent connections that are indicated in the literature but 
where more uncertainty still exists.
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