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Abstract

Mori-Zwanzig equation: Theory and Application

by

Yuanran Zhu

The Mori-Zwanzig (MZ) formulation is a technique from irreversible statistical

mechanics that allows the development of formally exact evolution equation for

the quantities of interest such as macroscopic observables in high-dimensional dy-

namical systems. Although being widely used in physics and applied mathematics

as a common tool of dimension reduction, the analytical properties of the equa-

tion are still unknown, which makes the quantification and approximation of the

MZ equation arduous tasks for the whole community. In this dissertation, we

address this problem from both theoretically and computational points of view.

For the first time, we study the MZ equation, especially the memory integral

term, using the theory of strongly continuous semigroups, thereby establish an

estimation theory for the memory effects which is based on solid mathematical

foundations. In particular, some recent results from the Hörmader analysis of hy-

poelliptic equations are applied to get exponentially decaying estimates of the MZ

memory kernel. We also develop a series expansion technique to approximate the

MZ equation, and provide associated combinatorial algorithms to calculate the

expansion coefficients from the first principle. The new approximation methods

are tested on various linear and nonlinear dynamical systems, with convergence

results obtained both theoretically and numerically. Further developments of the

Mori-Zwanzig formulation based on the mathematical framework provided in this

work can be expected, which can be used in more general dimension reduction

problems from physics and mathematics.
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Chapter 1

Introduction

Modern applied mathmatics often needs to address high dimensional (stochas-

tic) systems with complex dynamics. Despite the fact that the current compu-

tational power enables us to perform large-scale simulation of complex systems

such as turbulence, running simulations that fully account for the variability of

these physical models can be infeasible due to the curse of dimensionality. In

practice, however, it is often the case that only some local observables, such as

the low dimensional phase functions of a high-dimensional system are of interest.

This necessitates the development of theoretical and computational strategies to

construct effective models that describe the dynamics of these reduced-order quan-

tities. To this end, the Mori-Zwanzig (MZ) formuation, which was first established

in irreversible statistical mechanics [67, 108, 107], provides us a general framework

to derive the exact evolution equation of such quantities from the underlying high

dimensional systems. Once the exact evolution equation is built, then one can

avoid integrating the full (possibly high-dimensional) dynamical system and in-

stead solve directly for the quantities of interest, the whole computational cost

would be reduced significantly.

Technically speaking, the Mori-Zwanzig equation is a general framework which

1



is applicable to dimenison reduction problems in any spatial scales. In practice,

the dynamics of a general physical model can be written as the evolution equation

of the form

∂

∂t
etGu(0) = Gu(0), (1.1)

where etG is the evolution operator and G is the corresponding infinitesimal gen-

erator. In the microscopic scale, the generator G can be the Liouville operator L

and the resulting Liouville equation describes the dynamics of a system of a large

number of interacting particles. Through some systematic coarse-graining pro-

cesure such as the BBGKY hierarchy, we may get effective generators G which is

the Fokker-Planck operator corresponding to the dynamics of Brownian particles

in mesoscopic scales or the Boltzmann operator for the phase space distribution

function in macroscopic scales. Now matter which scale we are interested in, the

evolution equation of low-dimensional observables can be formally derived as an

operator equation, which is now known as the Mori-Zwanzig equation. The basic

idea is to use suitable projection operators P and Q = I−P to split the dynamics

of the original, high-dimensional system into the part for the relevant variables

(streaming term), irrelevant rest degree of freedom (fluctuation term) and the in-

teraction between these two (memory term). For kinetic equation (1.1) (Here we

assumed that the generator G is time independent), the MZ equation would be

like

∂

∂t
etGu(0) = etGPGu(0)︸ ︷︷ ︸

Streaming

+ etQGQQGu(0)︸ ︷︷ ︸
Fluctuation

+
∫ t

0
esGPGe(t−s)QGQQGu(0)ds︸ ︷︷ ︸

Memory

(1.2)

where QGQ is the infinitesimal generator of the orthogonal propagator etQGQ. As

an example, consider a large system of interacting particles, and suppose we are
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interested in studying the motion of one specific particle. By applying the MZ

formulation to the Liouville equation of the full particle system, it is possible

extract a formally exact MZ equation governing the position and the momentum

of the particle of interest. This is at the basis of microscopic physical theories of

Brownian motion [46].

Although exact, the Mori-Zwanzig equation (1.2) is a complicated operator

equation which involves the orthogonal dynamics etQGQ and a convoluted mem-

ory integral which encoded the interaction between the orthogonal dynamics and

the streaming term. These two terms, especially the memory integral, are ex-

tremely complicated. The approximation and quantification of them constitutes

the main theme of most research on the MZ equation. Over the years, many

techniques have been proposed to address this problem numerically. These tech-

niques can be grouped in two categories: i) data-driven methods; ii) methods

based on first-principles. Data-driven methods aim at recovering the MZ memory

integral/fluctuation term based on data, usually in the form of sample trajectories

of the full system. Typical examples are the NARMAX technique developed by

Lu et al. [61], the rational function approximation recently proposed by Lei et

al. [57] (see also [19]), and the conditional expectation technique developed by

Brennan and Venturi [11]. On the other hand, methods based on first principles

aim at approximating the MZ memory integral and fluctuation term based on the

structure of the nonlinear system (microscopic equations of motion), without using

any simulation data. The first effective method developed within this class is the

continued fraction expansion of Mori [67], which can be conveniently formulated

in terms of recurrence relations [56, 33]. Other methods based on first-principles

include perturbation methods [100, 96], mode coupling techniques, [81, 36], opti-

mal prediction methods [15, 18, 85], and various series expansion [87, 74, 73, 103].

3



First-principle calculation methods can effectively capture non-Markovian mem-

ory effects, e.g., in coarse-grained particle simulations [102, 41]. However, they

are often quite involved and they do not generalize well to systems with no scale

separation [35]. At the same time, data-driven methods can yield accurate results,

but they often require a large number of sample trajectories to faithfully capture

memory effects [11, 19, 57, 58, 59]. On the other hand, the theoretical study of

the MZ theory developed slowly since the establishment of the framework in 60s.

Although the MZ equation has been used in physics and applied math as prac-

tical computational tools for many years, rigorous theoretical studies of the MZ

equation are still rather lacking and only some prelimilary results were obtained

in this direction. An representative example is the well-posedness study done

by Kupferman, Givon and Hald. In [34], they extended the Friedrichs’ existence

proof for symmetric hyperbolic systems and got the existence and uniqueness of

the orthogonal dynamics for classical dynamical system under Mori’s projection

P . The lack of theoretical studies partially attributes to the complexity of the

orthogonal dynamics. Since the analytical properties of the propagator etQGQ are

barely known, any quantifications of the memory integral and fluctuation term

would be arduous tasks.

In this dissertation, we address this problem from both theoretical and numer-

ical points of view. For the theoretic part, we will use the analytical properties of

the kinetic equation (1.1) to derive estimates of strongly continuous semigroup etL

and etQGQ. The obtained semigroup estimations yield immediately the prior esti-

mate of the MZ memory integral, and the convergence analysis of frequently used

approximation schemes. The results will be presented for both classical dynamical

systems and stochastic systems driven by white noise. For the numerical parts, we

introduce a series expansion method to approximate the MZ equation. Its conver-
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gence for linear system can be obtained analytically with an accurate estimate of

the convergence rate. For general nonlinear systems, we propose a combinatorial

algorithm to calculate the expansion coefficients from the first principle.

The whole dissertation is organized as follows. In Chapter 1, we formally derive

the MZ equation for classical and stochastic dynamical systems. The derivation

of the MZ equation for the first case is explained rather clearly in many previous

studies such as [68, 15, 18, 85], Hence we will focus more on the analysis of the

projection operators that are frequently used in the literature. For stochastic dy-

namical system, we provide a self-consistent way to derive the MZ equation for

stochastic differential equations driven by white noise. In Section 2.3, an new MZ

equation, which is called as the effective MZ equation (EMZE) is proposed based

on the ensemble average of the original MZ equation for SDEs. Chapter 3 and

4 constitute the main theoretical studies we have done for the MZ equation. In

Chapter 3, we will focus on the analysis of deterministic systems. In particular,

the properties of Liouville operator L are used to derive estimates for MZ memory

integral and its various approximation schemes. In Chapter 4, we will show that

the generator G that appears in the MZ equation for SDEs is Kolmogorov operator

K. In addition, if K is proven to be hypoelliptic (see the definitions in Chapter

4). Then the exponentially decaying estimate can be obtained for semigroup e−tK,

e−tQKQ and the MZ memory kernel. Chapter 5 and 6 are devoted to the approxi-

mation of the MZ equation which constitutes the main body of numerical studies

of this dissertation. In Chapter 5, we develop new series expansions of the MZ

memory integral based on operator series of the orthogonal dynamics propagator.

We also develop exact MZ equations for the mean and the auto-correlation func-

tion of an observable of interest, and determine their analytical solution through

Laplace transforms. A thorough convergence analysis of the memory approxima-

5



tion methods is also given for linear systems. The new approximation scheme is

tested in various random wave propagation problems such as the one in an an-

nulus, Bethe lattice and random graphs with arbitrary topology. In Chapter 6,

we present a new method to compute the MZ memory integral and the flucuation

term from first principles for nonlinear systems with local polynomial interactions.

The method essentially is combinatorial which is tested in nonlinear wave propa-

gation problems. We also propose a stochastic modelling diagram which is based

on the MZ framework and bi-orthogonal series expansion theory. The main results

of this dissertation are summarized in Chapter 7.
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Chapter 2

Mori-Zwanzig formulation

In this section, we represent systematic ways to derive the Mori-Zwanzig equa-

tion of the reduced-order quantities for both classical and stochastic dynamical

systems. For the deterministic, classical system, the derivation of the MZ equation

is rather standard hence we will focus more on the properties of the projection

operator P and its relationship with the MZ equation. For the stochastic system,

we will concentrate on the analysis of system driven by white noise. In this case,

stochastic analysis has to be introduced in order to derive the MZ equation and

the effective MZ equation.

2.1 The Mori-Zwanzig equation for classical sys-

tem

Consider the nonlinear dynamical system

dx

dt
= F (x), x(0) = x0 (2.1)

7



evolving on a smooth manifold S. For simplicity, let us assume that S = Rn.

We will consider the dynamics of scalar-valued observables g : S → C, and for

concreteness, it will be desirable to identify structured spaces of such observable

functions. In [22], it was argued that C∗-algebras of observables such as L∞(S,C)

(the space of all measureable, essentially bounded functions on S) and C0(S,C)

(the space of all continuous functions on S, vanishing at infinity) make natural

choices. In what follows, we do not require the observables to comprise a C∗-

algebra, but we will want them to comprise a Banach space as the estimation

theorems of section 3.1 make extensive use of the norm of this space. Having

the structure of a Banach space of observables also gives greater context to the

meaning of the linear operators L, K, P , and Q to be defined hereafter.

The dynamics of any scalar-valued observable g(x) (quantity of interest) can

be expressed in terms of a semi-group K(t, s) of operators acting on the Banach

space of observables. This is the Koopman operator [53] which acts on the function

g as

g(x(t)) = [K(t, s)g] (x(s)), (2.2)

where

K(t, s) = e(t−s)L, Lg(x) = F (x) · ∇g(x). (2.3)

Rather than compute the Koopman operator applicable to all observables, it is

often more tractable to compute the evolution only of a (closed) subspace of

quantities of interest. This subspace can be described conveniently by means

of a projection operator P with the subspace as its image. Both P and the

complementary projection Q = I − P act on the space of observables. The

nature, mathematical properties and connections between P and the observable

g are discussed in detail in [22], and summarized in section 2.1.1. For now it

suffices to assume that P is a bounded linear operator, and that P2 = P . The
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MZ formalism describes the evolution of observables initially in the image of P .

Because the evolution of observables is governed by the semi-group K(t, s), we

seek an evolution equation for K(t, s)P . By using the definition of the Koopman

operator (2.3), and the well-known Dyson identity

etL = etQL +
∫ t

0
esLPLe(t−s)QLds

we obtain the operator equation

d

dt
etL = etLPL+ etQLQL+

∫ t

0
esLPLe(t−s)QLQLds. (2.4)

By applying this equation to an observable function u0, we obtain the well-known

MZ equation in phase space

∂

∂t
etLu0 = etLPLu0 + etQLQLu0 +

∫ t

0
esLPLe(t−s)QLQLu0ds. (2.5)

The three terms at the right hand side are called, respectively, streaming term,

fluctuation (or noise) term, and memory term. It is often more convenient (and

tractable) to compute the evolution of the observable u(t) within a closed linear

space, e.g., the image of the projection operator P . To this end, we apply such

projection to both sides of equation (2.5). This yields the evolution equation for

projected dynamics1

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
PesLPLe(t−s)QLQLu0ds. (2.6)

Depending on the choice of the projection operator, the MZ equation (2.6) can

yield evolution equations for different quantities. For example, if we use Chorin’s
1Note that the second term in (2.5), i.e., PetQLQLx0 = 0 vanishes since PQ = 0.
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projection [15, 16, 103, 95], then (2.6) is an evolution equation for the conditional

mean of u(t). Similarly, if we use Mori’s projection [104, 83], then (2.6) is an

evolution equation for the temporal auto-correlation function of u(t).

2.1.1 Projection Operators

In this section, we make a summary on the commonly used projection operators

P in the Mori-Zwanzig framework. To make our definition mathematically sound,

we begin by assuming that the Liouville operator (2.3) acts on observable functions

in a C∗-algebra A, for instance L∞(M,Σ, µ), whereM is a space such as RN , Σ

is a σ-algebra on M, and µ is a measure on Σ. Let σ ∈ A∗ be a positive linear

functional on A. We define the weighted pre-inner product

〈f, g〉σ = σ(f ∗g).

This can be used to define a Hilbert space H = L2(M, σ), which is the completion

of the quotient space

H′ = {f ∈ A : σ(f ∗f) <∞}/{f ∈ A : σ(f ∗f) = 0}

endowed with the inner product 〈·, ·〉σ. The L2 norm induced by the inner product

is denoted as ‖ · ‖σ. The positive linear functional σ is set to be induced by a

probability distribution σ̃ through

σ(u) =
∫
M
σ̃(ω)u(ω)dω,

where σ̃ is typically chosen to be the probability density of the initial condition

ρ0, or the equilibrium distribution ρeq in statistical physics. To conform to the lit-
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erature, we also use notation 〈·, ·〉ρ0 , 〈·, ·〉ρeq , 〈·, ·〉eq to represent the weighted inner

product corresponding to different probability measures σ̃(ω)dω. With the Hilbert

space determined, we now focus on the following two broad class of orthogonal

projections on H.

Infinite-Rank Projections

The first class of projection operators to consider in this setting are the condi-

tional expectations P such that P∗σ = σ. In this case, the properties of conditional

expectations (in particular that P [P(f)gP(h)] = P(f)P(g)P(h) [91]) and the fact

that P∗σ = σ imply that

〈Pf, g〉σ = σ[(Pf)∗g] = P∗(σ)[(Pf)∗g] = σ[P((Pf)∗g)] = σ[(Pf)∗(Pg)]

〈f,Pg〉σ = σ[f ∗Pg] = P∗(σ)[f ∗Pg] = σ[P(f ∗Pg)] = σ[(Pf ∗)(Pg)] = σ[(Pf)∗(Pg)]

so that

〈Pf, g〉σ = 〈f,Pg〉σ

for all f, g ∈ H. It follows that

〈Qf, g〉σ = 〈f, g〉σ − 〈Pf, g〉σ = 〈f, g〉σ − 〈f,Pg〉σ = 〈f,Qg〉σ.

Therefore both P and Q are self-adjoint (i.e. orthogonal) projections onto closed

subspaces of H, hence contractions ‖P‖σ ≤ 1, ‖Q‖σ ≤ 1. Chorin’s projection
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[18, 15] is one of this class, and is defined as

(
Pg
)
(x̂0) =

∫ +∞

−∞
g(x̂(t; x̂0, x̃0), x̃(t; x̂0, x̃0))ρ0(x̂0, x̃0)dx̃0∫ +∞

−∞
ρ0(x̂0, x̃0)dx̃0

= Eρ0 [g|x̂0]. (2.7)

Here x(t;x0) = (x̂(t; x̂0, x̃0), x̃(t; x̂0, x̃0)) is the flow map generated by (2.1) split

into resolved (x̂) and unresoved (x̃) variables, and g(x) = g(x̂, x̃) is the quantity

of interest. For Chorin’s projection, the positive functional σ defining the Hilbert

space H may be taken to be integration with respect to the probability measure

ρ0(x̂0, x̃0).

Clearly, if x0 is deterministic then ρ0(x̂0, x̃0) is a product of Dirac delta func-

tions. On the other hand, if x̂(0) and x̃(0) are statistically independent, i.e.

ρ0(x̂0, x̃0) = ρ̂0(x̂0)ρ̃0(x̃0), then the conditional expectation P simplifies to

(
Pu

)
(x̂0) =

∫ +∞

−∞
u(x̂(t; x̂0, x̃0), x̃(t; x̂0, x̃0))ρ̃0(x̃0)dx̃0. (2.8)

In the special case where u(x̂, x̃) = x̂(t; x̂0, x̃0) we have

(
Px̂

)
(x̂0) =

∫ +∞

−∞
x̂(t; x̂0, x̃0)ρ̃0(x̃0)dx̃0, (2.9)

i.e., the conditional expectation of the resolved variables x̂(t) given the initial

condition x̂0. This means that an integration of (2.9) with respect to ρ̂0(x̂0)

yields the mean of the resolved variables, i.e.,

Eρ0 [x̂(t)] =
∫ ∞
−∞

(
Px̂

)
(x̂0)ρ̂0(x̂0)dx̂0 =

∫ ∞
−∞

x̂(t, x0)ρ0(x0)dx0. (2.10)

Obviously, if the resolved variables x̂(t) evolve from a deterministic initial state x̂0

then the conditional expectation (2.9) represents the the average of the reduced-
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order flow map x̂(t; x̂0, x̃0) with respect to the PDF of x̃0, i.e., the flow map

PetLx̂(0) = X0(t; x̂0) =
∫ +∞

−∞
x̂(t; x̂0, x̃0)ρ̃0(x̃0)dx̃0. (2.11)

In this case, the MZ equation (2.6) is an exact (unclosed) evolution equation

(PDE) for the multivariate field X0(t, x̂0). In order to close such an equation, a

mean field approximation of the type Pf(x̂) = f(Px̂) was introduced by Chorin et

al. in [15, 18, 17], together with the assumption that the probability distribution

of x0 is invariant under the flow generated by (2.1).

Finite-Rank Projections

Another class of projections is defined by choosing a closed (typically finite-

dimensional) linear subspace V ⊂ H = L2(M, σ) and letting P be the orthogonal

projection onto V in the σ inner product. An example of such projection is Mori’s

projection [68], widely used in statistical physics. For finite-dimensional V , given

a linearly independent set {u1, ..., uM} ⊂ V that spans V , P can be defined by

first constructing the positive definite Gram matrix

Gij =
∫
M
ui(x)uj(x)ρ(x)dx. (2.12)

With Gij available, we define

Pf =
M∑
i,j=1

G−1
ij 〈ui(0), f〉ρuj(0), f ∈ H. (2.13)
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In classical statistical dynamics of Hamiltonian systems, a common choice for the

density ρ is the Boltzmann-Gibbs distribution

ρeq(x) = 1
Z
e−βH(x), (2.14)

whereH(x) = H(q,p) is the Hamiltonian of the system, x = (q,p) are generalized

coordinates/momenta, and Z is the partition function. For other systems, ρ can

be, e.g., the probability density function of the random initial state (see Eq.

(2.1)). Next, suppose that each observable ui(x) (i = 1, . . . ,M) belongs to the

linear space PH ∩ D(L), where PH = V and D(L) denotes the domain of the

Liouville operator L defined in (2.3). The MZ equation (2.5), with P defined in

(2.13), reduces to

du(t)
dt

= Ωu(t) +
∫ t

0
K(t− s)u(s)ds+ f(t), (2.15)

where2

Gij = 〈ui(0), uj(0)〉ρ (Gram matrix), (2.16a)

Ωij =
M∑
k=1

G−1
jk 〈uk(0),Lui(0)〉ρ (streaming matrix), (2.16b)

Kij(t) =
M∑
k=1

G−1
jk 〈uk(0),LetQLQLui(0)〉ρ (memory kernel), (2.16c)

f(t) = etQLQLu(0) (fluctuation term). (2.16d)

2Note that the ith component of the system (2.15) can be explicitly written as

dui(t)
dt

=
M∑
j=1

Ωijuj(t) +
M∑
j=1

∫ t

0
Kij(t− s)uj(s)ds+ fi(t).
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Equation (2.15) is often referred to as generalized Langevin equation (GLE) in

classical statistical physics and other disciplines [83]. By applying Mori’s projec-

tion to (2.15) we obtain the following linear (and closed) evolution equation for

the projected phase space function

d

dt
Pu(t) = ΩPu(t) +

∫ t

0
K(t− s)Pu(s) ds. (2.17)

Acting with the inner product 〈uj(0), ·〉ρ on both sides of equation (2.17), yields

the following exact equation for the temporal auto-correlation matrix Cij(t) =

〈uj(0), ui(t)〉ρ

d

dt
Cij(t) =

M∑
k=1

ΩikCkj(t) +
M∑
k=1

∫ t

0
Kik(t− s)Ckj(s)ds. (2.18)

Suppose that the system (2.1) is Hamiltonian, and that the random initial state x0

is distributed according to the Boltzmann-Gibbs distribution (2.14), i.e., ρ0 = ρeq.

In these assumptions, the Liouville operator L is skew-adjoint relative to the inner

product 〈〉eq =
∫
ρeqdpdq, i.e., we have

〈f,Lg〉eq = −〈Lf, g〉eq f, g ∈ L2(M, ρeq) ∩ D(L). (2.19)

This allows us to simplify the expression of the memory kernel (2.16c) as

Kij(t) =−
M∑
k=1

G−1
jk 〈QLuk(0), etQLQLui(0)〉eq,

=−
M∑
k=1

G−1
jk 〈fk(0), fi(t)〉eq, (2.20)

where fk(t) is the k-th component of the fluctuation term (2.16d). The identity

(2.20) is known as Kubo’s second fluctuation-dissipation theorem [54]. There are
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several advantages in using Mori’s projection (2.13) over other projection opera-

tors, e.g., Chorin’s projection [17]. For example, the MZ equation corresponding

to Mori’s projection is linear and closed, which allows us perform rigorous conver-

gence analysis [104, 103]. Secondly, the streaming matrix (2.16b) and the memory

kernel (2.16c) are exactly the same for both the projected and the unprojected

equations ,i.e., (2.17) and (2.15)). Thirdly, we have that the second-fluctuation

dissipation theorem (2.20) holds true, which allows us to express the MZ memory

kernel in a relatively simple form, i.e., in terms of averages of random forces.

2.2 Mori-Zwanzig equation for stochastic sys-

tem

In this section, we derive the MZ equation for stochastic systems. In particular,

we discuss the stochastic differential equations (SDEs) deriven by white noise.

In [22], Dominy and Venturi already developed a rather abstract Mori-Zwanzig

framework for N -dimensional stochastic dynamical systems using the language of

C∗ algebra. In this section, we formulated a MZ framework in a self-consistent

way without the usage of C∗ algebra. This part can be viewed as a generalization

of some previous MZ formulation for SDEs [29, 44]. To this end, let us consider a

d-dimensional stochastic differential equation evolving in a smooth manifoldM

d

dt
x(t) = F (x(t)) + σ(x(t))ξ(t), x(0) ∼ ρ0(x) (2.21)

where F (x(t)) : [0, T ] × Ω → Rd is a d-dimensional vector function, σ(x(t)) :

[0, T ] × Ω → Rd×m is a d ×m matrix function, the m-dimensional vector-valued

Gaussian white noise ξ(t) satisfies 〈ξi(t), ξj(s)〉 = δtsδij for 1 ≤ i, j ≤ d. x(0) is

the initial state of the system, which is characterized by a probability distribution
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ρ0(x). For system with deterministic initial condition, ρ0(x) = ∏N
i=1 δ(xi − xi(0)).

To derive the Mori-Zwanzig equation in a self-consistent and convenient way, here

we follow physicists’ notation [82] to write the SDE in terms of white noise ξ(t),

instead of the differential of the Wiener process dW(t). The strong solutions of

(2.21) for different initial positions may be pieced together to give a random pro-

cess {φt,s, t ≥ s ≥ 0} with values in Diff(M), the space of smooth diffeomorphisms.

The process {φt,s, t ≥ s ≥ 0} is called the stochastic flow of diffeomophisms asso-

ciated with (2.21) in sense of Kunita [55, 101]. Similar to the deterministic case,

we define a (stochastic) Koopman operator E(t, s) associated with the stochastic

flow {φt,s, t ≥ s ≥ 0} such that any phase space function u = u(x(t)) can be

expressed in terms of the operator acting on the space of observable, i.e.,

u(x(t)) = E(t, s)u(x(s)) = u • φt,s(x(s)), (2.22)

where • is the composition operator in the common sense. In physics, E(t, s) is

normally understood as the evolution operator for some dynamical process, which

can be formally written as

E(t, s) = −→T e
∫ t
s
Lω(τ)dτ ,

where −→T is the time ordering operator placing later operator to the right, Lω(τ)

is the (random) infinitesimal generator of the Koopman operator. The problem

has a dual construction in the space of probability density function. The proba-

bility density ρ(t) = ρ(u(x(t))) gives a full description of the statistical properties

of observable u(x(t)). The evolution operator for ρ(t) is given by the transfer
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(Perron-Frobenius) operator associated with the flow map, which is

ρ(t) =←−T e
∫ t
s
L∗ω(τ)dτρ(s) = E∗(t, s)u(x(s)). (2.23)

The Perron-Frobenius operator E∗(t, s) and its infinitesimal generator L∗ω(τ) are

the dual of the Koopman operator E(t, s) and its generator Lω(τ) in some suitable

function space. The duality between these two construction and their equivalence

in describing the dynamics of the system (2.21) are well summarized in [22]. From

a physical point of view, the formulation in the phase space can be interpreted

as the Schrödinger picture, while the dual construction in the probability func-

tion space can be interpreted as the Heisenberg picture. In this paper, we shall

concentrate on the Schrödinger picture, i.e. the phase space formulation (2.22).

When interpreted as the evolution operator in physical sense, the infinitesimal

generator Lω(τ) of the Koopman operator E(t, s) can be determined by Dyson’s

series expansion [77] and following the listed procedure. We first write the evolu-

tion operator E(t, 0) in (2.22) as a Dyson series

E(t, s) =
+∞∑
n=1
Dn(t, s), (2.24)

where

Dn(t, s) = −→T 1
n!

∫ t

s

∫ t

s
· · ·

∫ t

s
dt1dt2 · · · dtnLω(t1)Lω(t2) · · · Lω(tn).

Then the series expansion of the observable u(x(t))

u(x(t)) =
+∞∑
n=1
Dn(t, s)u(x(s)) (2.25)

should match the stochastic Taylor expansion (See [52], Chapter 5) of u(x(t)). By
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comparing term by term with the Taylor series, one can get the explicit expression

of Lω(τ). Specifically, if the SDE (2.21) is interpreted in the Itô sense, using the

Itô-Taylor expansion, one can get Lω(t) = LIω(t) which is explicitly given by

LIω(t) =
d∑

k=1
Fk

∂

∂xk0
+ 1

2

m∑
j=1

d∑
i,k=1

σi,jσk,j
∂2

∂xi0∂xk0
+

m∑
j=1

d∑
i=1

σi,j
∂

∂xi0
ξj(t),

where xk0 = xk(0), Fk = Fk(x(0)) and σij = σij(x(0)). The superscript I indicates

the Itô’s interpretation. Similarly, using the Stratonovich type Taylor expansion,

one can get that the infinitesimal generator under Stratonovich’s interpretation is

given by

LSω(t) =
d∑

k=1
Fk

∂

∂xk0
+

m∑
j=1

d∑
i=1

σi,j
∂

∂xi0
◦ ξj(t),

where ◦ξj(t) stands for the stochastic increment under Stratonovich interpretation

(Again, we used physicists’ notation ◦ξj(t) instead of ◦dWj(t)). With the specific

form of the stochastic generator Lω determined, we now follow the procedure

in [22] to derive the phase space Mori-Zwanzig equation. First, we introduce a

projection operator P . For now we assume that P is defined on some rather

general Banach space satisfying P2 = P . We also denote the complementary

operator Q = I − P , where I is the identity operator. By differentiating the

time-dependent Dyson’s identity

E(t, 0) = Y(t, 0) +
∫ t

0
E(s, 0)PLω(s)Y(t− s, 0)ds,

where Y(t, s) denotes the orthogonal evolution operator −→T e
∫ t
s
QLω(τ)dτ , we shall
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get

d

dt
E(t, 0) = E(t, 0)Lω(t) + Y(t, 0)QLω(t) +

∫ t

0
E(s, 0)PLω(s)Y(t, s)QLω(t)ds.

(2.26)

Applying the operator equation (2.26) into a general observable u(x(0)) in the

phase space yields the time-dependent MZ equation for the full dynamics

d

dt
u(x(t, ω)) = E(t, 0)PLω(t)u(x(0, ω)) + Y(t, 0)QLω(t)u(x(0, ω))

+
∫ t

0
E(s, 0)PLω(s)Y(t, s)QLω(t)u(x(0, ω))ds (2.27)

In practice, a projected version of the MZ equation is also frequently used. To get

this, we apply the projection operator P in two sides of the equation (2.27) and

get

d

dt
Pu(x(t, ω)) =PE(t, 0)PLω(t)u(x(0, ω))

+
∫ t

0
PE(s, 0)PLω(s)Y(t, s)QLω(t)u(x(0, ω))ds, (2.28)

where the projected fluctuating force PY(t, 0)QLω(t)u(x(0, ω)) vanished since

PQ = 0. The time dependent MZ equation in the dual space is given in [22],

which is not explicitly stated here. In the context of classical dynamical systems,

the MZ equation (2.27) and (2.28) describe, respectively, the evolution of a phase

space function (observable) u(x(t, ω)) and projected quantity Pu(x(t, ω)), where

the physical meaning of Pu(x(t, ω)) is associated with the projection operator P

that is used.

If the projection operator P is specified to be a Mori-type, finite rank projection

operator in some Hilbert space, one can get a matrix form, linear generalized
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Langevin equation (GLE) from the Mori-Zwanzig equation (2.27) and (2.28) [22].

2.3 Effective Mori-Zwanzig equation

The Mori-Zwanzig equation we derived in the previous subsection provided a

general framework to handle dimension reduction problems for stochastic systems.

However, it is hard to use directly because of the existence of the time depen-

dent, white noise term ξi(t) in the generator Lω(t) and QLω(t). Such stochastic

term exists essentially because the quantity of interest u(x(t)), as a function of

x(t) = x(t, ω), is a stochatic process determined by the SDE (2.21). As we men-

tioned before, the MZ equation (2.27) fully described the dynamics of the stochas-

tic process u(t). In practice, however, such full description is often not needed

since only some determnistic quantities of such stochastic process, such as the

moments and correlation functions, are of theoretical importance. For instance,

if u(x(t)) is proven to be a Gaussian process, knowing the first two moments is

already enough to fully characterize the process itself. Even for the non-Gaussian

processes, we will show in Chapter 6 that with the moment information, it is

enough to create a biorthogonal series that well-approximated the original pro-

cess. All these observations inspire us to derive an effective Mori-Zwanzig equation

(EMZE) that describes the evolution of such deterministic quantities themselves.

To this end, we first notice that for (2.21) the randomness introduced by the white

noise ξ(t) is often important for the first moment, this allow us to consider the

Markovian semigroupM(t, 0) (see details in [80]) defined as

M(t, 0)u(x(0)) := Eξ(t)[u(x(t))|x(0)], (2.29)
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where the Eξ(t)[·|x0] is the conditional average with respect to ξ(t) given the initial

condition x(0). To be noticed that the Markovian semigroupM(t, 0) only encoded

one-point information, which is the mean of the whole stochastic process under the

noise ξ(t). The standard stochastic analysis indicates that the infinitesimal gen-

erator of the Markovian semigroupM(t, 0) is given by the following Komogorov

(backward) operator [52]:

KI =
d∑

k=1
Fk(x) ∂

∂xk
+ 1

2

m∑
j=1

d∑
i,k=1

σi,jσk,j
∂

∂xi∂xk

KS =
d∑

k=1

Fk(x)− 1
2

m∑
j=1

σk,j
d∑
i=1

σi,j
∂

∂xi

 ∂

∂xk
,

where the superscript I and S indicates whether it is Itô or Stratonovich interpre-

tation. To be noticed that KI and KS are no longer time-dependent nor stochastic,

hence the Markovian semigroup can be written asM(t, 0) = etK where K can be

KI or KS. For physical quantities that can be represented as M(t, 0)x(0) or

the function of it, by introducing some suitable projection operator P and then

differentiating the Dyson’s idenity

etKu(0) = etQKu(0) +
∫ t

0
esKPKe(t−s)QKu(0)ds

we shall get the following effective Mori-Zwanzig equation (EMZE) and projected

EMZE:

∂

∂t
etKu(0) = etKPKu(0) + etQKQQKu(0) +

∫ t

0
esKPKe(t−s)QKQQKu(0)ds.

(2.30)
∂

∂t
PetKu(0) = PetKPKu(0) +

∫ t

0
PesKPKe(t−s)QKQQKu(0)ds. (2.31)
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The (projected) EMZE for the stochastic system are of the same form as the one

for classical dynamical systems, i.e. eqn (2.5) and (2.6). The only difference is that

the Liouville operator L for classical systems is now replaced by a Kolmogorov

operator K. Please note that we rewrite the orthogonal evolution operator etQK

as etQKQ when it appears in the memory integral and the fluctuation term. This

always can be done since etQK acts on QKu(0) and Q is a projection operator

satisfying Q2 = Q. As we will see in Section 4.1, evolution operator etQKQ is a

better starting point to do mathematical analysis. We can similarly derive a linear

generalized Langevin equation (GLE) based on EMZE. To this end, we consider

a Hilbert space H = L2(M, ρ), where ρ is some suitable Lebesgue measure. To

construct a Mori-type projection P , we first compute the positive-definite Gram

matrix Gij = 〈ui(0), uj(0)〉ρ, where phase space functions ui ∈ H, with initial

conditions in ui(0) ∈ D(P). With Gij available, we define the Mori’s projection

as

Pf =
M∑
i,j=1

G−1
ij 〈ui(0), f〉ρuj(0) ∀f ∈ H. (2.32)

The projection operator P defined an orthogonal projection onto a closed linear

subspace V = {ui(0)}Mi=1 ⊂ H. Using the definition (2.32) we can explicitly write

the system of EMZE for the phase space functions {u1(t), . . . , uM(t)} as

d

dt
u(t) = Ωu(t) +

∫ t

0
K(t− s)u(s)ds+ f(t), (2.33)

d

dt
Pu(t) = ΩPu(t) +

∫ t

0
K(t− s)Pu(s) ds. (2.34)
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where u(t) = [u1(t), . . . , uM(t)]T and

Gij = 〈ui(0), uj(0)〉ρ, (2.35a)

Ωij =
M∑
k=1

G−1
jk 〈uk(0),Kui(0)〉ρ (streaming matrix), (2.35b)

Kij(t) =
M∑
k=1

G−1
jk 〈uk(0),KetQKQQKui(0)〉ρ (memory kernel), (2.35c)

f(t) = etQKQQKu(0) (fluctuation term). (2.35d)

EMZE (2.33) and its projected form (2.34) are also referred as the generalized

Langevin equation (GLE) in statistical physics. A slight different part is that

K is no longer skew-adjoint, hence the memory kernel cannot be represented as

the inner product 〈f(t), f(0)〉ρ. Now we give examples of deterministic quanti-

ties that can be dealt with the EMZE/GLE. We first remark that very different

from classical system which is lack of ergodicity, the stochastic system (2.21) of-

ten can be proved to be ergodic when vector field F (x(t)) and diffusion matrix

σ(x(t)) satisfy some suitable regularity conditions. The ergodic state is well-

described by a probability distribution ρstat which is the unique, stationary solu-

tion to the Fokker-Planck (or Kolmogorov forward) equation corresponding to the

Markovian semigroupM(t, 0). Hence for the ergodic case, the semigroup action

M(t, 0)u(x(0)) describes the dynamics of the observable u(x) evolving from an

initial state ρ0 to the stationary state ρstat as t → ∞. In the following exam-

ples, we consider different initial conditions and discuss the physical meanings

of the quantities M(t, 0)u(x(0)) for each case. Please note that only the scalar

observables are considered while without the loss of generality.

Non-stationary mean When the initial condition u(x(0)) is deterministic and

u(x(0)) 6= Estat[u(x(0))], or u(x(0)) is random and ρ0(u(x(0))) 6= ρstat(u(x0)), one
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can derive an EMZE/GLE for the non-stationary mean M(t, 0)u(x(0)) since it

describes the non-equilibrium dynamics of u(x) evolving toward the stationary

state. We use the following notation to represent the mean function when the

initial is deterministic

〈u(x(t))〉 =M(t, 0)u(x(0)) = Eξ(t)[u(x(t))|x(0)],

where the conditional expectation is with respect to the probability density of the

white noise ξ(t) at time t given the initial condition x(0). The non-stationary mean

is an important quantity that is frequently used in physics. For example, in [29],

Español used the linear EMZE/GLE for the description of the near-equilibrium

dynamics of DPD collective observables. More recently, Hudson and Li [44] used

Zwanzig-type projection operator to derive the EMZE/GLE for the reaction co-

ordinate of a overdamped Langevin dynamical system. All these previous results

are restated and well-explained within the EMZ framework.

Stationary correlation function When the initial condition u(x(0)) is de-

terministic and u(x(0)) = Estat[u(x(0))], or u(x(0)) is random and ρ0(u(x(0))) =

ρstat(u(x(0))), the EMZE/GLE forM(t, 0)u(x(0)) describes the dynamics of u(x(t))

in the stationary state. The dynamics of the first case is trivial sinceM(t, 0)u(x(0))

for u(x(0)) = Estat[u(x(0))] equals constant. For the second case, a physically

meaningful quantity within the stationary process would be the correlation func-

tion. It is very known that [37] various transport coefficients of a dynamical

process can be deduced from the time correlation functions through Green-Kubo

formula. To derive the EMZE/GLE for it, we introduce the notation

〈〈(·)〉〉 := Ex(0)[Eξ(t)[(·)|x(0)]],
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where the first expectation is with respect to the initial condition x(0) ∼ ρ0.

Following [76, 82], we define the mean and time autocorrelation function for any

scalar observable u(t) = u(x(t)) of (2.21) as:

〈〈u(t)〉〉 := Ex(0)[Eξ(t)[u(t)|x(0)]] 〈〈u(t), u(s)〉〉 := Ex(0)[Eξ(t)[u(t)u(s)|x(0)]]

When the initial state of the system is the stationary state, i.e. ρ0 = ρstat,

equivalently we have

〈〈u(t)〉〉 = 〈〈u(0)〉〉 = Ex(0)[u(0)] (2.36)

〈〈u(t+ s), u(s)〉〉 = 〈〈u(t), u(0)〉〉 = Ex(0)[Eξ(t)[u(t)u(0)|x(0)]] (2.37)

where (2.36) (2.37) give the stationary mean and correlation function respectively.

By taking the time derivative of eqn (2.37), we obtain

d

dt
〈〈u(t), u(0)〉〉 = d

dt
Ex(0)[Eξ(t)[u(t)u(0)|x(0)]]

= d

dt
Ex(0)[Eξ(t)[u(t)|x(0)]u(0)]

=
〈
d

dt
M(t, 0)u(0), u(0)

〉
stat

where the second inequality holds since the white noise is not imposed when t = 0.

The inner product 〈·, ·〉stat is taken with respect to the stationary distribution ρstat.

If we introduce Mori-type projection operator P defined as

P(·) = 〈(·), u(0)〉stat
〈u(0), u(0)〉stat

u(0), (2.38)
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we obtain that

PM(t, 0)u(0) =
Ex(0)

[
Eξ(t)[u(t)|x(0)]u(0)

]
〈u(0), u(0)〉stat

u(0)

By taking the inner product 〈(·), u(0)〉stat in two hand side of eqn (2.34), we get

the following GLE for the correlation function C(t) = 〈〈u(t), u(0)〉〉:

d

dt
C(t) = ΩC(t)−

∫ t

0
K(t− s)C(s)ds. (2.39)

where Ω and K(t) is the same as (2.35b) with Gram matrix G equals to 1. In

principle, EMZE/GLE can be used to calculate the stationary autocorrelation

function for any stochastic system of the form (2.21) assuming the existence of

the unique, stationary state. Examples of such state are the Gibbs-type statistical

equilibrium ρeq ∝ e−βH which arises from the Langevin dynamics, overdamped

Langevin dynamics [12] and dissipative particle systems [29, 30], and the non-

equilibrium steady state (NESS) of some heat conduction model [24, 26]. Although

for the later case, the memory kernel (2.35c) cannot be determined using the first

principle method since the the explicit form of the NESS is unkown, the EMZ

equation (2.39) can still be used in a data-driven setting and method such as the

bi-orthogonal decomposition can be used to get the low-dimensional stochastic

models (see Section 6).

2.3.1 Application to Ornstein-Ulenbeck process

We give a simple example for which the Mori-type EMZE/GLE for the non-

stationary mean and stationary correlation function can be written explicitly. To

this end, we consider the Ornstein-Ulenbeck process which is defined by the Itô-
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type stochastic differential equation

d

dt
x = θ(µ− x) + σξ(t) (2.40)

where σ, µ, θ are all positive constant and ξ is the Gaussian white nosie satisfying

〈ξ(t), ξ(s)〉 = δ(t − s). Ornstein-Ulenbeck process is proven to be ergodic and

admits an stationary state given by the Gaussian distribution N (µ, σ2/2θ). The

formal solution of eqn (2.40) is given by

x(t) = x(0)e−θt + µ(1− e−θt) + σ
∫ t

0
e−θ(t−s)ξ(s)ds. (2.41)

We choose observable u(t) = x(t)− µ as quantity of interest, the formal solution

(2.41) enables us to get the analytic expression of the non-stationary mean and

time autocorrelation function:

〈x(t)− µ〉 = Eξ(t)[x(t)− µ|x(0)] = (x(0)− µ)e−θt (2.42)

〈x(t)− µ, x(s)− µ〉 = Eξ(t)[(x(t)− µ)(x(s)− µ)|x(0)] = σ2

2θ
(
e−θ|t−s| − e−θ(t+s)

)
(2.43)

and the stationary mean and time autocorrelation function:

〈〈x(t)− µ〉〉 = Ex(0)[Eξ(t)[x(t)− µ|x(0)]] = Ex(0)[x(0)e−θt − µe−θt] = 0

(2.44)

〈〈(x(t)− µ)(x(s)− µ)〉〉 = Ex(0)[Eξ(t)[(x(t)− µ)(x(s)− µ)|x(0)]] = σ2

2θe
−θ|t−s|

(2.45)

One can verify that 〈〈(x(t+ s)− µ)(x(s)− µ)〉〉 = 〈〈(x(t)− µ)(x(0)− µ)〉〉, hence

C(t) = σ2

2θ e
−θt.
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Non-stationary mean For observable u(t) = x(t) − µ, we define P as (2.38),

by some simple calculation, we get Ω = −θ, K(t) = 0 and f(t) = 0 in eqn (2.33).

Hence the EMZE/GLE for the non-stationary meanM(t) = 〈x(t)−µ〉 is explicitly

given by

d

dt
M(t) = −θM(t), (2.46)

with initial condition M(0) = x(0) − µ. Obviously, The solution of eqn (2.46)

gives analytic result (2.42).

Stationary correlation function For observable u(t) = x(t) − µ, we define

P as (2.38), by some simple calculation, we get Ω = −θ and K(t) = 0 in eqn

(2.39). Hence the EMZE/GLE for the stationary correlation function C(t) =

〈〈x(t)− µ, x(0)− µ〉〉 is explicitly given by

d

dt
C(t) = −θC(t) (2.47)

with initial condition C(0) = σ2/2θ. Obviously, eqn (2.47) gives analytic result

which agrees with (2.45).

2.4 Summary

In the first chapter, we introduced the Mori-Zwanzig equation and have shown

how it can be derived for classical and stochastic dynamical systems. We wish

to convey the following message to the reader : The Mori-Zwanzig theory is a

general framework which is applicable for any dynamical process as long as one

finds suitable descriptions to the flow and meanings to the projection operator.
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Chapter 3

Analysis of the MZE for classical

system

In this chapter, we will focus on the analysis of the MZE for classical dynam-

ical systems. As we mentioned in Chapter 1, the main difficulty to apply the MZ

framework in computation lies on the quantification of the memory integral. We

will start our discussion with the estimate of the semigroup etL and etLQ. From

which, we build rigorous estimates of the memory integral and provide conver-

gence analysis of different approximation models of the Mori-Zwanzig equation,

such as the short-memory approximation [84], the t-model [18], and hierarchical

methods [86]. In particular, we study the MZ equation corresponding to infinite-

rank projections (Section 2.1.1) and finite-rank projections (Section 2.1.1). Some

numerical experiments are performed to verify the theoretical findings we get in

this section. We will also show that similar analysis can be done for probability

density function space formulations of the MZ equation and the analysis is almost

the same. These two descriptions are connected by the same duality principle

that pairs the Koopman and Frobenious-Perron operators. The estimate of PDF

space MZ equation is listed as an appendix of this chapter.
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3.1 Analysis of the Memory Integral

In this section, we develop a thorough mathematical analysis of the MZ mem-

ory integral

∫ t

0
PesLPLe(t−s)QLQLu0ds =

∫ t

0
PesLPe(t−s)LQLQLu0ds. (3.1)

and its approximation. We begin by describing the behavior of the semigroup

norms ‖etL‖, ‖etQLQ‖, and ‖etLQ‖ as functions of time, for different choices of

projection P and different norms. As we will see, the analysis will give clear

computable bounds only in some circumstances, illustrating the difficulty of this

problem and the need for further development and insight.

3.1.1 Semigroup Estimates

For any Liouville operator L of the form (2.3) acting on A = L∞(M,Σ, µ) and

for any σ identified with an element of L1(M,Σ, µ), the functional L∗σ (assuming

σ lies in the domain of L∗) is absolutely continuous with respect to σ (essentially

because L acts locally) and the Radon-Nikodym derivative may be identified with

the negative of the divergence of the vector field F with respect to the measure

induced by σ, i.e.,

dL∗σ
dσ

= − divσ F, i.e., (L∗σ)(u) = −σ(u divσ F ), (3.2)

where

divσ F = ∇ · (σ̃(x)F (x))
σ̃(x) . (3.3)

When M = RN and σ has the form σ(u) =
∫
RN σ̃(x)u(x)dx, this can be shown

more directly using integration by parts. By assuming that σ̃(x) or Fi decays to
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0 at ∞, we have

L∗σ(u) = σ(Lu) =
∫
RN
σ̃

N∑
i=1

Fi
∂u

∂xi
dx (3.4a)

= −
∫
RN
u

N∑
i=1

∂

∂xi
(σ̃Fi)dx = −

∫
RN
u

[
1
σ̃

N∑
i=1

∂

∂xi
(σ̃Fi)

]
σ̃dx (3.4b)

= σ

(
u

[
− 1
σ̃

N∑
i=1

∂

∂xi
(σ̃Fi)

])
= σ (u [− divσ F ]) . (3.4c)

This leads to

divσ F = ∇ · (σ̃F )
σ̃

= 1
σ̃

N∑
i=1

∂

∂xi
(σ̃Fi) = ∇ · F + F · ∇ (ln σ̃) .

Therefore,

〈v,−u divσ F 〉σ = σ(−v∗u divσ F ) = (L∗σ)(v∗u)

= σ(L(v∗u)) = σ(L(v)∗u+ v∗L(u)) = 〈Lv, u〉σ + 〈v,Lu〉σ,

and the following are equivalent: i) L∗σ = 0 (i.e., σ is invariant); ii) divσ F = 0;

iii) L is skew-adjoint with respect to the σ inner product. More generally, on

H = L2(M, σ), we find that

L + L† = − divσ F

so that the numerical abscissa ω [89, 90] of L is given by

ω = sup
06=u∈H

Re〈u,Lu〉σ
〈u, u〉σ

= sup
06=u∈H

〈u, (L + L†)u〉σ
2〈u, u〉σ

(3.5)

= sup
06=u∈H

〈u,−u divσ F 〉σ
2〈u, u〉σ

= −1
2 inf

x
divσ F (x). (3.6)
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Using this numerical abscissa ω, we obtain the following L2
σ estimation of the

Koopman semigroup

‖etL‖L2
σ
≤ eωt (3.7)

and moreover, eωt is the smallest exponential function that bounds ‖etL‖σ [20].

When P and Q = I −P are orthogonal projections on L2(M, σ), we can observe

that the numerical abscissa of QLQ is bounded by that of L. In fact,

sup
06=u∈H

Re〈u,QLQu〉σ
〈u, u〉σ

= sup
06=u∈H

Re〈Qu,LQu〉σ
〈u, u〉σ

= sup
06=u∈ImQ

Re〈u,Lu〉σ
〈u, u〉σ

≤ sup
06=u∈H

Re〈u,Lu〉σ
〈u, u〉σ

= ω,

(see equation (3.5)) so that

‖etQLQ‖L2
σ
≤ eωt. (3.8)

It should be noticed that this bound for the orthogonal semigroup is not necessarily

tight. The tightness of the bound depends on the choice of projection P and comes

down to whether functions in the image of Q can be chosen localized to regions

where divσ F is close to its infimal value.

When estimating the MZ memory integral, we need to deal with the semigroup

etLQ. It turns out to be extremely difficult to prove strong continuity of such semi-

group in general, due to the unboundedness of LQ. It is shown in appendix 3.A

that, when PLQ is an unbounded operator, as is typical when P is a conditional

expectation, the semigroup etLQ can only be bounded as

‖etLQ‖σ ≤MQe
tωQ (3.9)
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for some MQ > 1, due to the fact that ‖etLQ‖σ has infinite slope at t = 0. More

work is needed to obtain satisfactory, computable values for MQ and ωQ, in the

case where P and Q are infinite-rank projections. It is also shown that, when

either PLQ or LP is bounded, for example when P is a finite-rank projection,

we can get computable semigroup bounds of the form

‖etLQ‖σ ≤ eωQt ≤ e
1
2

(√
ω2+‖PLQ‖2

σ+ω
)
t
, (3.10a)

‖etLQ‖σ ≤ eωQt ≤ e(ω+‖LP‖σ)t, (3.10b)

where ω = − inf divσ F if we use the L2
σ estimation of etL.

3.1.2 Memory Growth

We begin by seeking to bound the MZ memory integral (3.1) as a whole and

build our analysis from there. A key assumption of our analysis is that the semi-

group etLQ is strongly continuous1, i.e., the map t 7→ etLQg is continuous in the

norm topology on the space of observables for each fixed g [28]. However, as we

pointed out in section 3.1.1, it is a difficult task both to prove strong continuity

of etLQ and to obtain a computable upper bound for unbounded generators of the

form LQ, we leave this as an open problem and assume that there exist constants

MQ and ωQ such that ‖etLQ‖ ≤MQe
tωQ . Throughout this section, ‖ · ‖ denotes a

general Banach norm. We begin with the following simple estimate:

Theorem 3.1.1. (Memory growth) Let etL and etLQ be strongly continuous

semigroups with upper bounds ‖etL‖ ≤Metω and ‖etLQ‖ ≤MQe
tωQ. Then

∥∥∥∥∫ t

0
PesLPLe(t−s)QLQLu0ds

∥∥∥∥ ≤M0(t), (3.11)

1As is well known, etL (Koopman operator) is typically strongly continuous [28]. However,
no such result exists for etLQ.
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where

M0(t) =


C1te

tωQ , ω = ωQ

C1

ω − ωQ
[etω − etωQ ], ω 6= ωQ

(3.12)

and C1 = MMQ‖LQLu0‖ is a constant. Clearly, lim
t→0

M0(t) = 0.

Proof. We first rewrite the memory integral in the equivalent form

∫ t

0
PesLPLe(t−s)QLQLu0ds =

∫ t

0
PesLPe(t−s)LQLQLu0ds.

Since etL and etLQ are assumed to be strongly continuous semigroups, we have

the upper bounds ‖etL‖ ≤Metω, ‖etLQ‖ ≤MQe
tωQ . Therefore

∥∥∥∥∥
∫ t

0
PesLPe(t−s)LQLQLu0ds

∥∥∥∥∥ ≤
∫ t

0
‖esLPe(t−s)LQLQLu0‖ds

≤MMQ‖LQLu0‖
∫ t

0
es(ω−ωQ)ds

=


C1te

tωQ , ω = ωQ

C1

ω − ωQ
[etω − etωQ ], ω 6= ωQ

where C1 = MMQ‖P‖2‖LQLu0‖.

Theorem 3.1.1 provides an upper bound for the growth of the memory integral

based on the assumption that etL and etLQ are strongly continuous semigroups.

We emphasize that only for simple cases can such upper bounds can be computed

analytically (we will compute one of the cases later in section 3.2), because of the

fundamental difficulties in computing the upper bound of etLQ. However, it will

be shown later that, although the specific expression for M0(t) is unknown, the

form of it is already useful as it enables us to derive some verifiable theoretical
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predictions for general nonlinear systems.

3.1.3 Short Memory Approximation and the t-model

Theorem 3.1.1 can be employed to obtain upper bounds for well-known ap-

proximations of the memory integral. Let us begin with the t-model proposed in

[18]. This model relies on the approximation

∫ t

0
PesLPLe(t−s)QLQLu0ds ' tetLPLQLu0 (t-model). (3.13)

Theorem 3.1.2. (Memory approximation via the t-model [18]) Let etL

and etLQ be strongly continuous semigroups with upper bounds ‖etL‖ ≤Metω and

‖etLQ‖ ≤MQe
tωQ. Then

∥∥∥∥∥
∫ t

0
PesLPLe(t−s)LQLQLu0ds− tPetLLQLu0

∥∥∥∥∥ ≤M1(t),

where

M1(t) =


C1

(
etωQ − etω

ωQ − ω
+ tetω

MQ

)
ω 6= ωQ

C1
MQ + 1
MQ

tetω ω = ωQ

,

and C1 = MMQ‖P‖2‖LQLu0‖.
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Proof. By applying the triangle inequality, we obtain that

∥∥∥∥∫ t

0
PesLPe(t−s)LQLQLu0ds− tPetLPLQLu0

∥∥∥∥
≤
(∫ t

0
‖P‖

∥∥∥esL∥∥∥ ‖P‖ ∥∥∥e(t−s)LQ
∥∥∥ ds+ t‖P‖

∥∥∥etL∥∥∥ ‖P‖) ‖LQLu0‖

≤ ‖P‖2 ‖LQLu0‖
(
MMQ

∫ t

0
esωe(t−s)ωQds+ tMetω

)
= C1e

tω

(∫ t

0
es(ωQ−ω)ds+ t

MQ

)

=


C1

(
etωQ − etω

ωQ − ω
+ tetω

MQ

)
ω 6= ωQ

C1
MQ + 1
MQ

tetω ω = ωQ

where C1 = MMQ‖P‖2‖LQLu0‖.

Theorem 3.1.2 provides an upper bound for the error associated with the t-model.

The limit

lim
t→0

M1(t) = 0, (3.14)

guarantees the convergence of the t-model for short integration times. On the

other hand, depending on the semigroup constantsM , ω, MQ and ωQ (which may

be estimated numerically), the error of the t-model may remain small for longer

integration times (see the numerical results in section 3.2.2) Next, we study the

short-memory approximation proposed in [84]. The main idea is to replace the

integration interval [0, t] in (3.1) by a shorter time interval [t−∆t, t], i.e.

∫ t

0
PesLPLe(t−s)QLQLu0ds '

∫ t

t−∆t
PesLPLe(t−s)QLQLu0ds

(short-memory approximation),

where ∆t ∈ [0, t] identifies the effective memory length. The following result
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provides an upper bound to the error associated with the short-memory approxi-

mation.

Theorem 3.1.3. (Short memory approximation [84]) Let etL and etLQ be

strongly continuous semigroups with upper bounds ‖etL‖ ≤ Metω and ‖etLQ‖ ≤

MQe
tωQ. Then the following error estimate holds true

∥∥∥∥∥
∫ t

0
PesLPLe(t−s)QLQLu0ds−

∫ t

t−∆t
PesLPLe(t−s)QLQLu0ds

∥∥∥∥∥ ≤M2(t−∆t, t),

where

M2(∆t, t) =


C1(t−∆t)etωQ ω = ωQ

C1e
∆tωQ e

(t−∆t)ω − e(t−∆t)ωQ

ω − ωQ
ω 6= ωQ

and C1 = MMQ‖P‖2‖LQLu0‖.

We omit the proof due to its similarity to that of Theorem 3.1.1. Note that

lim
∆t→t

M2(∆t, t) = 0 for all finite t > 0.

3.1.4 Hierarchical Memory Approximation

An alternative way to approximate the memory integral (3.1) was proposed

by Stinis in [86]. The key idea is to repeatedly differentiate (3.1) with respect

to time, and establish a hierarchy of PDEs which can eventually be truncated or

approximated at some level to provide an approximation of the memory. In this

section, we derive this hierarchy of memory equations and perform a thorough

theoretical analysis to establish accuracy and convergence of the method. To this

38



end, let us first define

w0(t) =
∫ t

0
PesLPLe(t−s)QLQLu0ds (3.15)

to be the memory integral (3.1). We now assume that w0(t) is differentiable with

respect to time. For the hierarchical approach to the finite memory approximation

to be applicable, we must assume that w0(t) is differentiable with respect to time

as many times as needed. By differentiating w0(t) with respect to time we obtain

dw0(t)
dt

= PetLPLQLu0 + w1(t),

where

w1(t) =
∫ t

0
PesLPLe(t−s)QL(QL)2u0ds.

By iterating this procedure n times we obtain

dwn−1(t)
dt

= PetLPL(QL)n−1u0 + wn(t), (3.16)

where

wn(t) =
∫ t

0
PesLPLe(t−s)QL(QL)n+1u0ds. (3.17)
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The hierarchy of equations (3.16)-(3.17) is equivalent to the following infinite-

dimensional system of PDEs



dw0(t)
dt

= PetLPLQLu0 + w1(t)
dw1(t)
dt

= PetLPLQLQLu0 + w2(t)
...

dwn−1(t)
dt

= PetLPL(QL)nu0 + wn(t)
...

(3.18)

evolving from the initial condition wi(0) = 0, i = 1, 2, . . . (see equation (3.17)).

With such initial condition available, we can solve (3.18) with backward substitu-

tion, i.e., from the last equation to the first one, to obtain the following (exact)

Dyson series representation of the memory integral (3.15)

w0(t) =
∫ t

0
PesLPLQLu0ds+

∫ t

0

∫ τ1

0
PesLPLQLQLu0dsdτ1

+ · · ·+
∫ t

0

∫ τn−1

0
· · ·

∫ τ1

0
PesLPL(QL)nu0dsdτ1 . . . dτn−1 + . . . . (3.19)

So far no approximation was introduced, i.e., the infinite-dimensional system

(3.18) and the corresponding formal solution (3.19) are exact. To make progress

in developing a computational scheme to estimate the memory integral (3.15),

it is necessary to introduce approximations. The simplest of these rely on trun-

cating the hierarchy (3.18) after n equations, while simultaneously introducing

an approximation of the n-th order memory integral wn(t). We denote such an
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approximation as wenn (t). The truncated system takes the form



dwn0 (t)
dt

= PetLPLQLu0 + wn1 (t),

dwn1 (t)
dt

= PetLPLQLQLu0 + wn2 (t),
...

dwnn−1(t)
dt

= PetLPL(QL)nu0 + wenn (t).

(3.20)

The notation wnj (t) (j = 0, .., n − 1) emphasizes that the solution to (3.20) is, in

general, different from the solution to (3.18). The initial condition of the system

can be set as wni (0) = 0, for all i = 0, . . . , n− 1. By using backward substitution,

this yields the following formal solution

wn0 (t) =
∫ t

0
PesLPLQLu0ds+

∫ t

0

∫ τ1

0
PesLPLQLQLu0dsdτ1

+ · · ·+
∫ t

0

∫ τn−1

0
· · ·

∫ τ1

0
PesLPL(QL)nu0dsdτ1 . . . dτn−1

+
∫ t

0

∫ τn−1

0
· · ·

∫ τ1

0
wenn (s)dsdτ1 . . . dτn−1 (3.21)

representing an approximation of the memory integral (3.15). Note that, for a

given system, such approximation depends only on the number of equations n

in (3.20), and on the choice of approximation wenn (t). In the present paper, we

consider the following choices2

1. Approximation by truncation (H-model)

wenn (t) = 0. (3.22)
2The quantities tn and ∆tn appearing in (3.23) and (3.24) will be defined in Theorem 3.1.5

and Theorem 3.1.6, respectively.
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2. Type-I finite memory approximation

wenn (t) =
∫ t

max(0,t−∆tn)
PesLPLe(t−s)QL(QL)n+1u0ds. (3.23)

3. Type-II finite memory approximation

wenn (t) =
∫ t

min(t,tn)
PesLPLe(t−s)QL(QL)n+1u0ds. (3.24)

4. Ht-model

wenn (t) = tPetLPL(QL)n+1u0. (3.25)

The first approximation is a truncation of the hierarchy obtained by assuming

that wn(t) = 0. Such approximation was originally proposed by Stinis in [86], and

we shall call it the H-model. The Type-I finite memory approximation (FMA) is

obtained by applying the short memory approximation to the n-th order memory

integral wn(t). The Type-II finite memory approximation (FMA) is a modified

version of the Type-I, with a larger memory band. The Ht- model approximation

is based on replacing the n-th order memory integral wn(t) with a classical t-

model. Note that in this setting the classical t-model approximation proposed by

Chorin and Stinis [18] is equivalent to a zeroth-order Ht-model approximation.

Hereafter, we present a thorough mathematical analysis that aims at estimat-

ing the error ‖w0(t)− wn0 (t)‖, where w0(t) is full memory at time t (see (3.15) or

(3.19)), while wn0 (t) is the solution of the truncated hierarchy (3.20), with wenn (t)

given by (3.22), (3.23), (3.24) or (3.25). With such error estimates available,

we can infer whether the approximation of the full memory w0(t) with wn0 (t) is

accurate and, more importantly, if the algorithm to approximate the memory in-
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tegral converges. To the best of our knowledge, this is the first time a rigorous

convergence analysis is performed on various approximations of the MZ memory

integral. It turns out that the distance ‖w0(t)−wn0 (t)‖ can be controlled through

the construction of the hierarchy under some constraint on the initial condition.

The H-Model

Setting wenn (t) = 0 in (3.20) yields an approximation by truncation, which

we will refer to as the H-model (hierarchical model). Such model was originally

proposed by Stinis in [86]. Hereafter we provide error estimates and convergence

results for this model. In particular, we derive an upper bound for the error

‖w0(t) − wn0 (t)‖, and sufficient conditions for convergence of the reduced-order

dynamical system. Such conditions are problem dependent, i.e., they involve the

Liouvillian L, the initial condition u0, and the projection P .

Theorem 3.1.4. (Accuracy of the H-model) Let etL and etLQ be strongly

continuous semigroups with upper bounds ‖etL‖ ≤ Metω and ‖etLQ‖ ≤ MQe
tωQ,

and let T > 0 be a fixed integration time. For some fixed n, let

αj = ‖(LQ)j+1Lu0‖
‖(LQ)jLu0‖

, 1 ≤ j ≤ n. (3.26)

Then, for any 1 ≤ p ≤ n and all t ∈ [0, T ], we have

‖w0(t)− wp0(t)‖ ≤Mp
3 (t) ≤Mp

3 (T ),

where

Mp
3 (t) = C1A1A2

tp+1

(p+ 1)!

p∏
j=1

αj, C1 = ‖LQLu0‖MMQ,
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and

A1 = max
s∈[0,T ]

es(ω−ωQ) =


1 ω ≤ ωQ

eT (ω−ωQ) ω ≥ ωQ

A2 = max
s∈[0,T ]

esωQ =


1 ωQ ≤ 0

eTωQ ωQ ≥ 0
.

(3.27)

Proof. We begin with the expression for the difference between the memory term

w0 and its approximation wp0

w0(t)− wp0(t) =
∫ t

0

∫ τp

0
· · ·

∫ τ2

0

∫ τ1

0
PesLPe(τ1−s)LQ(LQ)n+1Lu0dsdτ1 · · · dτp.

(3.28)

Since etL and etLQ are strongly continuous semigroups we have ‖etL‖ ≤Meωt and

‖etLQ‖ ≤MQe
ωQt. By using Cauchy’s formula for repeated integration, we bound

the norm of the error (3.28) as

‖w0(t)− wp0(t)‖ ≤
∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
‖PesLPe(σ−s)LQ(LQ)p+1Lu0‖dsdσ

≤ ‖P‖2MMQ‖(LQ)p+1Lu0‖
∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
esωe(σ−s)ωQdsdσ

≤ C1

 p∏
j=1

αj

∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
esωe(σ−s)ωQdsdσ︸ ︷︷ ︸

fp(t,ω,ωQ)

= C1

 p∏
j=1

αj

 fp(t, ω, ωQ), (3.29)

where C1 = ‖P‖2‖LQLu0‖MMQ as before. The function fp(t, ω, ωQ), may be
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bounded from above as

fp(t, ω, ωQ) ≤ A1A2

∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
dsdσ

= A1A2
tp+1

(p+ 1)! .

Hence, we have

‖w0(t)− wp0(t)‖ ≤ C1A1A2

 p∏
j=1

αj

 tp+1

(p+ 1)! = Mp
3 (t).

Theorem 3.1.4 states that for a given dynamical system (represented by L)

and quantity of interest (represented by P) the error bound Mp
3 (t) is strongly

related to {αj} which is ultimately determined by the initial condition x0. It

turns out that by bounding {αj}, we can control Mp
3 (t), and therefore the overall

error ‖w0(t)− wp0(t)‖. The following corollaries discuss sufficient conditions such

that the error ‖w0(T )− wn0 (T )‖ decays as we increase the differentiation order n

for fixed time T > 0.

Corollary 3.1.4.1. (Uniform convergence of the H-model) If {αj} in The-

orem 3.1.4 satisfy

αj <
j + 1
T

, 1 ≤ j ≤ n, (3.30)

for any fixed time T > 0, then there exists a sequence of constants δ1 > δ2 > · · · >

δn such that

‖w0(T )− wp0(T )‖ ≤ δp 1 ≤ p ≤ n.
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Proof. Evaluating (3.29) at any fixed (finite) time T > 0 yields

‖w0(T )− wp0(T )‖ ≤ C2

 p∏
j=1

αi

 fp(T, ω, ωQ) ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)! ,

‖w0(T )− wp+1
0 (T )‖ ≤ C2

p+1∏
j=1

αj

 T p+2

(p+ 2)! ,

where C2 = C2(T ) = C1A1A2. If there exists δp ≥ 0 such that

‖w0(T )− wp0(T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)! ≤ δp,

then there exist a δp+1 such that

‖w0(T )− wp+1
0 (T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)!
αp+1T

p+ 2 ≤ δp+1 < δp,

since αp+1 < (p + 2)/T . Moreover, the condition αj < (j + 1)/T holds for all

1 ≤ j ≤ n. Therefore, we conclude that for any fixed time T > 0, there exists a

sequence of constants δ1 > δ2 > · · · > δn such that ‖w0(T )− wp0(T )‖ ≤ δp, where

1 ≤ p ≤ n.

Corollary 3.1.4.1 provides a sufficient condition for the error ‖w0(t) − wp0(t)‖ to

decrease monotonically as we increase p in (3.20). A stronger condition that yields

an asymptotically decaying error bound is given by the following Corollary.

Corollary 3.1.4.2. (Asymptotic convergence of the H-model) If αj in

Theorem 3.1.4 satisfies

αj < C, 1 ≤ j < +∞ (3.31)
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for some positive constant C, then for any fixed time T > 0, and arbitrary δ > 0,

there exists a constant 1 ≤ p < +∞ such that for all n > p,

‖w0(T )− wn0 (T )‖ ≤ δ.

Proof. By introducing the condition αj < C in the proof of Theorem 3.1.4 we

obtain

‖w0(T )− wp0(T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)! ≤ C2T
(CT )p

(p+ 1)! for all 1 < p < +∞.

The limit

lim
p→+∞

C2T
(CT )p

(p+ 1)! = 0

allows us to conclude that there exists a constant 1 < p < +∞ such that for all

n > p, ‖w0(T )− wn0 (T )‖ ≤ δ.

An interesting consequence of Corollary 3.1.4.2 is the existence of a convergence

barrier, i.e., a “hump” in the error plot ‖w0(T )−wp0(T )‖ versus p generated by the

H-model. While Corollary 3.1.4.2 only shows that behavior for an upper bound of

the error, not directly the error itself, the feature is often found in the actual errors

associated with numerical methods based on these ideas. The following Corollary

shows that the requirements on {αj} can be dropped (we still need αj < +∞) if

we consider relatively short integration times T .

Corollary 3.1.4.3. (Short-time convergence of the H-model) For any in-

teger n for which αj < ∞ for 1 ≤ j ≤ n, and any sequence of constants
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δ1 > δ2 > · · · > δn > 0, there exists a fixed time T > 0 such that

‖w0(T )− wp0(T )‖ ≤ δp

for 1 ≤ p ≤ n.

Proof. Since αj < +∞, we can choose C = max
1≤j≤n

αj. By following the same steps

we used in the proof of Theorem 3.1.4, we conclude that, for

T ≤ 1
C

min
1≤p≤n

[
C(p+ 1)!

C2
δp

] 1
p+1

,

the errors satisfy

‖w0(T )− wp0(T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)! ≤
C2

C

(CT )p+1

(p+ 1)! ≤ δp

as desired, for all 1 ≤ p ≤ n.

Corollary 3.1.4.1 and Corollary 3.1.4.2 provide sufficient conditions for the

error ‖w0(T ) − wn0 (T )‖ generated by the H-model to decay as we increase the

truncation order n. However, we still need to answer the important question

of whether the H-model actually provides accurate results for a given nonlinear

dynamics (L), quantity of intererest (P) and initial state x0. Corollary 3.1.4.3

provides a partial answer to this question by showing that, at least in the short

time period, condition (3.30) is always satisfied (assuming that {αj} are finite).

This guarantees the short-time convergence of the H-model for any reasonably

smooth nonlinear dynamical system and almost any observable. However, for

longer integration times T , convergence of the H-model for arbitrary nonlinear

dynamical systems cannot be established in general, which means that we need to
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proceed on a case-by-case basis by applying Theorem 3.1.4 or by checking whether

the hypotheses of Corollary 3.1.4.1 or Corollary 3.1.4.2 are satisfied3. On the other

hand, convergence of the H-model can be established for any finite integration

time in the case of linear dynamical systems, as we will show in Chapter 5.

Type-I Finite Memory Approximation (FMA)

The Type-I finite memory approximation is obtained by solving the system

(3.20) with wenn (t) given by (3.23). As before, we first derive an upper bound

for ‖w0(t) − wn0 (t)‖ and then discuss sufficient conditions for convergence. Such

conditions basically control the growth of an upper bound on ‖w0(t)− wn0 (t)‖.

Theorem 3.1.5. (Accuracy of the Type-I FMA) Let etL and etLQ be strongly

continuous semigroups and let T > 0 be a fixed integration time. If

αj = ‖(LQ)j+1Lu0‖
‖(LQ)jLu0‖

, 1 ≤ j ≤ n, (3.32)

then for each 1 ≤ p ≤ n and for ∆tp ≤ t ≤ T

‖w0(t)− wp0(t)‖ ≤Mp
4 (t),

where

Mp
4 (t) = C1A1A2

( p∏
i=1

αi

)
(t−∆tp)p+1

(p+ 1)! ,

and C1, A1, A2 are as in Theorem 3.1.4.
3The implementation of the H-model requires computing (LQ)nLx0 to high-order in n. This

is not straightforward in nonlinear dynamical systems. However, such terms can be easily and
effectively computed for linear dynamical systems. This yields a fast and practical memory
approximation scheme for linear systems.
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Proof. The error at the p-th level is of the form

wp(t)− wepp (t) =
∫ max(0,t−∆tp)

0
PesLPLe(t−s)QL(QL)p+1u0ds

and the error at the zeroth level is

w0(t)− wp0(t)

=
∫ t

0

∫ τp

0
· · ·

∫ τ2

0
[wn(τ1)− wepn (τ1)] dτ1 · · · dτp

=
∫ t

0

∫ τp

0
· · ·

∫ τ2

0

∫ max(0,τ1−∆tp)

0
PesLPe(τ1−s)LQ(LQ)p+1Lu0dsdτ1 · · · dτp

=
∫ t

∆tp

∫ τp

∆tp
· · ·

∫ τ2

∆tp

∫ τ1−∆tp

0
PesLPe(τ1−s)LQ(LQ)p+1Lu0dsdτ1 · · · dτp

=
∫ t

∆tp

∫ τp

∆tp
· · ·

∫ τ2−∆tp

0

∫ τ̃1

0
PesLPe(τ̃1+∆tp−s)LQ(LQ)p+1Lu0dsdτ̃1 · · · dτp

...

=
∫ max(0,t−∆tp)

0

∫ τ̃p

0
· · ·

∫ τ̃2

0

∫ τ̃1

0
PesLPe(τ̃1+∆tp−s)LQ(LQ)p+1Lu0dsdτ̃1 · · · dτ̃p.

The norm of this error may be bounded as

‖w0(t)− wp0(t)‖

≤
∫ max(0,t−∆tp)

0

∫ τ̃p

0
· · ·

∫ τ̃2

0

∫ τ̃1

0

∥∥∥PesLPe(τ̃1+∆tp−s)LQ(LQ)p+1Lu0

∥∥∥ dsdτ̃1 · · · dτ̃p

≤ C1

 p∏
j=1

αj

∫ max(0,t−∆tp)

0

∫ τ̃p

0
· · ·

∫ τ̃2

0

∫ τ̃1

0
es(ω−ωQ)e(τ̃1+∆tp)ωQdsdτ̃1 · · · dτ̃p

≤ C1

 p∏
j=1

αj

 fp(t,∆tp, ω, ωQ),

where

fp(t,∆tp, ω, ωQ) =
∫ max(0,t−∆tp)

0

∫ τ̃p

0
· · ·

∫ τ̃2

0

∫ τ̃1

0
es(ω−ωQ)e(τ̃1+∆tp)ωQdsdτ̃1 · · · dτ̃p.
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If we bound fp as

fp(t,∆tp, ω, ωQ) ≤ A1A2

∫ max(0,t−∆tp)

0

∫ τ̃p

0
· · ·

∫ τ̃2

0

∫ τ̃1

0
dsdτ̃1 · · · dτ̃p

=


0 0 ≤ t ≤ ∆tp

A1A2
(t−∆tp)p+1

(p+ 1)! t ≥ ∆tp

where A1, A2 are defined in (3.27), then we have that

‖w0(t)− wp0(t)‖ ≤ C1A1A2

 p∏
j=1

αj

 (t−∆tp)p+1

(p+ 1)! = Mp
4 (t).

We notice that if the effective memory band at each level decreases as we

increase the differentiation order p, then we can control the error ‖w0(t)−wn0 (t)‖.

The following corollary provides a sufficient condition that guarantees this sort of

control of the error.

Corollary 3.1.5.1. (Uniform convergence of the Type-I FMA) If αj in

Therorem 3.1.5 satisfy

αj < (j + 1)
 δj!
C1A1A2

(∏j−1
k=1 αk

)
− 1

j

1 ≤ j ≤ n (3.37)

then for any T > 0 and δ > 0, there exists an ordered sequence ∆tn < ∆tn−1 <

· · · < ∆t1 < T such that

‖w0(T )− wp0(T )‖ ≤ δ, 1 ≤ p ≤ n,
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and which satisfies

∆tp ≤ T −

 δ(p+ 1)!
C1A1A2

(∏p
j=1 αj

)
 1
p+1

. (3.38)

Proof. For 1 ≤ p ≤ n we set

‖w0(t)− wp0(t)‖ ≤ C1A1A2

 p∏
j=1

αj

 (t−∆tp)p+1

(p+ 1)! ≤ δ.

This yields the following requirement on ∆tp

∆tp ≥ T −

 δ(p+ 1)!
C1A1A2

(∏p
j=1 αj

)
 1
p+1

. (3.39)

Since hypothesis (3.37) holds, it is easy to check that the lower bound on each

∆tp satisfies

T −

 δ(p+ 1)!
C1A1A2

(∏p
j=1 αj

)
 1
p+1

< T −

 δp!
C1A1A2

(∏p−1
j=1 αj

)
 1
p

∆tp > ∆tp−1.

Therefore, by using the equality in (3.39) to define a sequence of ∆tn, we find

that it is a decreasing time sequence 0 < ∆tn < ∆tn−1 < · · · < ∆t1 < T such that

‖w0(T )− wn0 (T )‖ ≤ δ holds for all t ∈ [0, T ] and which satisfies (3.38).

Remark The sufficient condition provided in Corollary 3.1.5.1 guarantees uni-

form convergence of the Type-I finite memory approximation. If we replace con-

dition (3.37) with

αj < C, for all 1 ≤ j < +∞,
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where C is a positive constant (independent on T ), then we obtain asymptotic

convergence. In other words, for each δ > 0, there exists an integer p such that

for all n > p we have ‖w0(t)− wn0 (t)‖ < δ. This result is based on the limit

lim
p→+∞

δ(p+ 1)!
C1A1A2

(∏p
j=1 αj

) > lim
p→+∞

δ(p+ 1)!
C1A1A2Cp

= +∞

which guarantees the existence of an integer p for which the upper bound on ∆tp

is smaller or equal to zero. In such case, the Type I FMA degenerates to the

H-model, for which Corollary 3.1.4.2 holds.

Type-II Finite Memory Approximation

The Type-II finite memory approximation is obtained by solving the system

(3.20) with wenn (t) given in (3.24). We first derive an upper bound for ‖w0(t) −

wn0 (t)‖ and then discuss sufficient conditions for convergence.

Theorem 3.1.6. (Accuracy of the Type-II FMA) Let etL and etLQ be strongly

continuous semigroups with upper bounds ‖etL‖ ≤ Metω and ‖etLQ‖ ≤ MQe
tωQ.

If

αj = ‖(LQ)j+1Lu0‖
‖(LQ)jLu0‖

, 1 ≤ j ≤ n, (3.40)

then for 1 ≤ p ≤ n

‖w0(t)− wp0(t)‖ ≤Mp
5 (t),

where

Mp
5 (t) = C1

 p∏
j=1

αj

 fp(ωQ, t)h(ω − ωQ, tp),
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fp(ωQ, t) =
∫ t

0

(t− σ)p−1

(p− 1)! eσωQdσ, h(ω − ωQ, tp) =
∫ tp

0
es(ω−ωQ)ds,

and C1 = MMQ‖P‖2‖(LQ)p+1Lu0‖.

Proof. By following the same procedure as in the proof of the Theorem 3.1.4 we

obtain

w0(t)− wp0(t) =
∫ t

0

∫ τp

0
· · ·

∫ τ2

0

∫ min(τ1,tp)

0
PesLPe(τ1−s)LQ(LQ)p+1Lu0dsdτ1 · · · dτp.

By applying Cauchy’s formula for repeated integration, this expression may be

simplified to

w0(t)− wp0(t) =
∫ t

0

(t− σ)p−1

(p− 1)!

∫ min(σ,tp)

0
PesLPe(σ−s)LQ(LQ)p+1Lu0dsdσ.

Thus,

‖w0(t)− wp0(t)‖ ≤
∫ t

0

(t− σ)p−1

(p− 1)!

∫ min(σ,tp)

0

∥∥∥PesLPe(σ−s)LQ(LQ)p+1Lu0

∥∥∥ dsdσ
≤MMQ‖P‖2‖(LQ)p+1Lu0‖

∫ t

0

(t− σ)p−1

(p− 1)!

∫ tp

0
esωe(σ−s)ωQdsdσ

≤ C1

 p∏
j=1

αj

(∫ t

0

(t− σ)p−1

(p− 1)! eσωQdσ

)(∫ tp

0
es(ω−ωQ)ds

)

= C1

 p∏
j=1

αj

 fp(ωQ, t)h(ω − ωQ, tp) = Mp
5 (t),

where C1 = MMQ‖P‖2‖(LQ)p+1Lu0‖,

fp(ωQ, t) =
∫ t

0

(t− σ)p−1

(p− 1)! eσωQdσ =


tp

p! ωQ = 0

1
ωpQ

etωQ − p−1∑
k=0

(tωQ)k
k!

 ωQ 6= 0
(3.41)
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and

h(ω − ωQ, tp) :=
∫ tp

0
es(ω−ωQ)ds =


tp ω = ωQ

etp(ω−ωQ) − 1
ω − ωQ

ω 6= ωQ

are both strictly increasing functions of t and tp, respectively.

Corollary 3.1.6.1. (Uniform convergence of the Type-II FMA) If αj in

Theorem 3.1.6 satisfy

αj <
j

T
(ωQ = 0) or αj < ωQ

eTωQ −
j−2∑
k=0

(TωQ)k
k!

eTωQ −
j−1∑
k=0

(TωQ)k
k!

(ωQ 6= 0) (3.42)

for 1 ≤ j ≤ n, then for any arbitrarily small δ > 0, there exists an ordered

sequence 0 < t0 < t1 < · · · < tn ≤ T such that

‖w0(T )− wp0(T )‖ ≤ δ, 1 ≤ p ≤ n

and which satisfies

tj ≥



j!δ
C1
(∏j

i=1 αi
)
T j

ωQ = 0,

ωjQδ

C1
(∏j

i=1 αi
) [
eTωQ −∑j−1

k=0
(TωQ)k
k!

] ωQ 6= 0,

55



when ω = ωQ, and

tj ≥



1
ω

ln
1 + j!ωδ

C1
(∏j

i=1 αi
)
T j

 ωQ = 0,

1
ω − ωQ

ln
1 + (ω − ωQ)ωjQδ

C1
(∏j

i=1 αi
) [
eTωQ −∑j−1

k=0
(TωQ)k
k!

]
 ωQ 6= 0,

when ω 6= ωQ.

Proof. We now consider separately the two cases where ω = ωQ and where ω 6= ωQ.

If ω = ωQ, then

‖w0(t)− wp0(t)‖ ≤ C1

( p∏
i=1

αi

)∫ t

0

∫ τp

0
· · ·

∫ τ2

0

∫ tp

0
eτ1ωQes(ω−ωQ)dsdτ1 · · · dτp

= tpC1

( p∏
i=1

αi

)∫ t

0

∫ τp

0
· · ·

∫ τ2

0
eτ1ωQdτ1 · · · dτp

= tpC1

( p∏
i=1

αi

)
fp(ωQ, t),

where fp(ωQ, t) is defined in (3.41). To ensure that ‖w0(t) − wp0(t)‖ ≤ δ for all

0 ≤ t ≤ T , we can take

tpC1

( p∏
i=1

αi

)
fp(ωQ, T ) = max

t∈[0,T ]
tpC1

( p∏
i=1

αi

)
fp(ωQ, t) ≤ δ,

so that

tp ≤
δ

C1

( p∏
i=1

αi

)
fp(ωQ, T )

=



p!δ
C1 (∏p

i=1 αi)T p
ωQ = 0,

ωpQδ

C1 (∏p
i=1 αi)

[
eTωQ −∑p−1

k=0
(TωQ)k
k!

] ωQ 6= 0.
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On the other hand, if ω 6= ωQ then

‖w0(t)− wp0(t)‖ ≤ C1

( p∏
i=1

αi

)∫ t

0

∫ τp

0
· · ·

∫ τ2

0

∫ tp

0
eτ1ωQes(ω−ωQ)dsdτ1 · · · dτp

= etp(ω−ωQ) − 1
ω − ωQ

C1

( p∏
i=1

αi

)∫ t

0

∫ τp

0
· · ·

∫ τ2

0
eτ1ωQdτ1 · · · dτp

= etp(ω−ωQ) − 1
ω − ωQ

C1

( p∏
i=1

αi

)
fp(ωQ, t).

To ensure that ‖w0(t)− wp0(t)‖ ≤ δ for all 0 ≤ t ≤ T , we can take

etp(ω−ωQ) − 1
ω − ωQ

C1

( p∏
i=1

αi

)
fp(ωQ, T ) = max

t∈[0,T ]

etp(ω−ωQ) − 1
ω − ωQ

C1

( p∏
i=1

αi

)
fp(ωQ, t) ≤ δ.

Let us now consider the two cases ω > ωQ and ω < ωQ separately. When ω > ωQ,

we have

etp(ω−ωQ) ≤ 1 + (ω − ωQ)δ

C1

( p∏
i=1

αi

)
fp(ωQ, T )

,

and

tp ≤



1
ω

ln
[
1 + p!ωδ

C1 (∏p
i=1 αi)T p

]
ωQ = 0,

1
ω − ωQ

ln
1 + (ω − ωQ)ωpQδ

C1 (∏p
i=1 αi)

[
eTωQ −∑p−1

k=0
(TωQ)k
k!

]
 ωQ 6= 0.

On the other hand, when ω < ωQ, we have

1− e−tp(ωQ−ω)

ωQ − ω
C1

( p∏
i=1

αi

)
fp(ωQ, T ) = max

t∈[0,T ]

1− e−tp(ωQ−ω)

ωQ − ω
C1

( p∏
i=1

αi

)
fp(ωQ, t) ≤ δ,
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so that

e−tp(ωQ−ω) ≥ 1− (ωQ − ω)δ

C1

( p∏
i=1

αi

)
fp(ωQ, T )

i.e.,

−tp(ωQ − ω) ≥ ln
[
1− (ωQ − ω)δ

C1 (∏p
i=1 αi) fp(ωQ, T )

]
.

Hence,

tp ≤



1
ω

ln
[
1− p!(−ω)δ

C1 (∏p
i=1 αi)T p

]
ωQ = 0,

− 1
ωQ − ω

ln
1− (ωQ − ω)ωpQδ

C1 (∏p
i=1 αi)

[
eTωQ −∑p−1

k=0
(TωQ)k
k!

]
 ωQ 6= 0.

For all the four cases, if ωQ = 0 then we have condition αp < p/T , and the upper

bound of the time sequence satisfies:

p!δ
C1 (∏p

i=1 αi)T p
<

(p− 1)!δ
C1
(∏p−1

i=1 αi
)
T p−1

, p ≥ 2.

If ωQ 6= 0 then we have the condition

αp < ωQ

eTωQ − p−2∑
k=0

(TωQ)k
k!

eTωQ − p−1∑
k=0

(TωQ)k
k!

−1

and the upper bound of the time sequence satisfies

ωp−1
QeTωQ − p−2∑

k=0

(TωQ)k
k!

 p−1∏
i=1

αi

<
ωpQeTωQ − p−1∑

k=0

(TωQ)k
k!

 p∏
i=1

αi

, p ≥ 2.
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Therefore, there always exists a increasing time sequence 0 < t1 < · · · < tn such

that ‖w0(t)−wp0(t)‖ ≤ δ for all 0 ≤ t ≤ T . And since we have proved that this δ-

bound on the error holds for all tn upper bounded as in the two cases above, there

exists such an increasing time sequence 0 < t1 < · · · < tn with tn lower-bounded

by the same quantities. Indeed, because of the coarseness of the approximations

applied in the proof, there may exist such a time sequence with significantly larger

ti.

Remark If we replace (3.42) with the stronger condition


αj <

j

εT
, ωQ = 0

αj <
1
εT
, ωQ 6= 0

1 ≤ j <∞, (3.43)

where ε is some arbitrary constant satisfying ε > 1, then we have

lim
j→+∞

tj ≥ lim
j→+∞



j!δ
C1
(∏j

i=1 αi
)
T j
≥ δ

C1
εj = +∞ ωQ = 0,

ωjQδ

C1
(∏j

i=1 αi
) [
eTωQ −∑j−1

k=0
(TωQ)k
k!

] = +∞ ωQ 6= 0.

for ω = ωQ and

lim
j→+∞

tj ≥ lim
j→+∞


j

ω
ln
[
δ

C1
ωε

]
= +∞ ωQ = 0,

j

ω − ωQ
ln
[

(ω − ωQ)T j
C1o(T j)

]
= +∞ ωQ 6= 0.

Hence, there exists a j such that the upper bound for tj is greater than or equal to

T . For such case, the Type II FMA degenerates to the truncation approximation

(H-model), for which Corollary 3.1.4.2 grants us asymptotic convergence.
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Ht-model

The Ht-model is obtained by solving the system (3.20) with wenn (t) approx-

imated using Chorin’s t-model [18] (see equation (3.25)). Convergence analysis

can be performed by using the mathematical methods we employed for the proofs

of the H-model. Note that the classical t-model is equivalent to a zeroth-order

Ht-model.

Theorem 3.1.7. (Accuracy of the Ht-model) Let etL and etLQ be strongly

continuous semigroups with upper bounds ‖etL‖ ≤ Metω and ‖etLQ‖ ≤ MQe
tωQ,

and let T > 0 be a fixed integration time. For some fixed n, let

αj = ‖(LQ)j+1Lu0‖
‖(LQ)jLu0‖

, 1 ≤ j ≤ n. (3.44)

Then, for any 1 ≤ p ≤ n and all t ∈ [0, T ], we have

‖w0(t)− wp0(t)‖ ≤Mp
6 (t) ≤Mp

6 (T ),

where

Mp
6 (t) = C4

 p∏
j

αj

 tp+1

(p+ 1)! , C4 =
[
C1A1A2 + C1

MQA3

]
, A3 =


1 ω ≤ 0,

eTω ω > 0
,

and C1, A1, A2 are the same as before.

Proof. For p-th order Ht-model, the difference between the memory term w0 and

its approximation wp0 is

w0(t)− wp0(t) =
∫ t

0

∫ τp

0
· · ·

∫ τ2

0

∫ τ1

0
PesLPe(τ1−s)LQ(LQ)p+1Lu0ds

− τ1Peτ1LP(LQ)p+1Lu0dτ1 · · · dτp. (3.45)
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Using Cauchy’s formula for repeated integration, we can bound the norm of the

second term in (3.45) as

∥∥∥∥∥
∫ t

0

(t− σ)p−1

(p− 1)! σPeσLP(LQ)p+1Lx0dσ

∥∥∥∥∥ ≤
∫ t

0

(t− σ)p−1

(p− 1)! ‖σPe
σLP(LQ)p+1Lx0‖dσ

≤M‖P‖2‖(LQ)p+1Lu0‖
∫ t

0

(t− σ)p−1

(p− 1)! σeσωdσ︸ ︷︷ ︸
gp(t,ω)

= C1

MQ

 p∏
j=1

αj

 gp(t, ω), (3.46)

where C1 = ‖P‖2‖LQLu0‖MMQ as before. The function gp(t, ω), may be bounded

from above as

gp(t, ω) ≤ A3

∫ t

0

(t− σ)p−1

(p− 1)! σdσ = A3
tp+1

(p+ 1)! , A3 = max
s∈[0,T ]

esω =


1 ω ≤ 0

eTω ω > 0
.

By applying the triangle inequality to (3.45), and taking (4.16) into account, we

obtain

‖w0(t)− wp0(t)‖ ≤ C1A1A2

 p∏
j=1

αj

 tp+1

(p+ 1)! + C1

MQ
A3

 p∏
j=1

αj

 tp+1

(p+ 1)! = Mp
6 (t).

One can see that the upper boundsMp
6 (t) andMp

3 (t) (see Theorem 3.1.4) share

the same structure, the only difference being the constant out front. Hence by

changing C2 to C4, we can prove of a series of corollaries similar to 3.1.4.1, 3.1.4.2,

and 3.1.4.3. In summary, what holds for the H-model also holds for the Ht-model.

For the sake of brevity, we omit the statement and proofs of those corollaries.
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3.1.5 Some special dynamical Systems

Linear systems The upper bounds we obtained above are not easily com-

putable for general nonlinear systems and infinite-rank projections, e.g., Chorin’s

projection (2.7). However, if the dynamical system is linear, then such upper

bounds are explicitly computable and convergence of the H-model can be estab-

lished for linear phase space functions in any finite integration time T . To this

end, consider the linear system ẋ = Ax with random initial condition x(0) sampled

from the joint probability density function

ρ0(x0) = δ(x01 − x1(0))
N∏
j=2

ρ0j(x0j). (3.47)

In other words, the initial condition for the quantity of interest u(x) = x1(t) is set

to be deterministic, while all other variables x2, . . . , xN are zero-mean and statis-

tically independent at t = 04. Here we assume for simplicity that ρ0j (j = 2, .., N)

are i.i.d. standard normal distributions. Observe that the Liouville operator as-

sociated with the linear system ẋ = Ax is

L =
N∑
i=1

N∑
j=1

Aijxj
∂

∂xi
, (3.48)

where Aij are the entries of the matrix A. If we choose observable u = x1(t), then

Chorin’s projection operator (2.9) yields the evolution equation for the conditional

expectation E[x1(t)|x1(0)] , i.e., the conditional mean path (2.11), which can be
4These choices for ρ0 are merely for convenience in demonstrating important features. With

a more general choice of ρ0, it is convenient to represent L, P, and Q in terms of an orthonormal
basis for V with respect to the ρ0 inner product. Then, e.g., operator norms within the invariant
subspace reduce to matrix norms of the associated matrix.
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explicitly written as

d

dt
E[x1|x1(0)] = A11E[x1|x1(0)] + w0(t), (3.49)

where A11 = PLx1(0) is the first entry of the matrix A, w0 represents the memory

integral (3.15). Next, we explicitly compute the upper bounds for the memory

growth and the error in the H-model for this system. To this end, we first notice

that the domain of the Liouville operator can be restricted to the linear space

V = span{x1, . . . , xN}. (3.50)

In fact, V is invariant under L, P and Q, i.e., LV ⊆ V , PV ⊆ V and QV ⊆ V .

These operators have the following matrix representations

L ' AT '

 a11 bT

a MT
11

 , P '



1 0 · · · 0

0 0 · · · 0
... ... . . . ...

0 0 · · · 0


, Q '



0 0 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1


,

where M11 is the minor of the matrix of A obtained by removing the first column

and the first row, while

a = [A12 · · ·A1N ]T , bT = [A21 · · ·AN1]. (3.51)

Therefore,

LQ '

 0 bT

0 MT
11

 , L(QL)nx1(0) '

 bT
(
MT

11

)n−1
a(

MT
11

)n
a

 . (3.52)
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At this point, we set x01 = x1(0) and

q(t, x01, x̃0) =
∫ t

0
esLPLe(t−s)QLQLx01ds.

Since x̃0 = (x2(0), ..., xN(0)) is random, q(t, x01, x̃0) is a random variable. By

using Jensen’s inequality [E(X)]2 ≤ E[X2], we have the following L∞ estimate

‖(Pq)(t, x01)‖L∞ ≤ ‖q(t, x01, ·)‖L2
ρ0
. (3.53)

On the other hand, we have

‖etL‖L2
ρ0 (V ) ≤ ‖etL‖L2

ρ0
≤ etω, ω = −1

2 inf divρ0 F. (3.54)

For linear dynamical systems, both ‖ · ‖L2
ρ0 (V ) and ‖ · ‖L2

ρ0
upper bounds can be

used to estimate the norm of the semigroup etL. However, for the semigroup etLQ,

we can only obtain the explicit form of the ‖ · ‖L2
ρ0 (V ) bound, which is given by

the following perturbation theorem [28] (see also appendix 3.A):

‖etLQ‖L2
ρ0 (V ) ≤ etωQ (3.55)

where

ωQ = ω +

√√√√A2
11 +

N∑
i=2

A2
1i
〈x2

i (0)〉ρ0

x2
1(0) ≥ ω + ‖LP‖L2

ρ0 (V ). (3.56)

Memory growth It is straightforward at this point to compute the upper

bound of the memory growth we obtained in Theorem 3.1.1. Since ‖P‖L2
ρ0

=

‖Q‖L2
ρ0

= 1 (P and Q are orthogonal projections relative to ρ0), we have the
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following result

|w0(t)| ≤ ‖LQLx1(0)‖e
tω − etωQ
ω − ωQ

=
√

(bTa)2x2
1(0) +

∥∥∥Λxi+1(0)M
T
11a
∥∥∥2

2

etω − etωQ
ω − ωQ

,

(3.57)

where Λxi+1(0) is a N −1×N −1 diagonal matrix with Λii = 〈xi+1(0)〉ρ0 , and ‖ ·‖2

is the vector 2-norm.

Accuracy of the H-model We are interested in computing the upper bound

of the approximation error generated by the H-model (see section 3.1.4 - Theorem

3.1.4). By using the matrix representation of L, P and Q, the n-th order H-model

MZ equation (3.49) for linear system can be explicitly written as



d

dt
E[x1|x1(0)] = A11E[x1|x1(0)] + wn0 (t) (MZ equation),

dwnj (t)
dt

= bT (MT
11)jaTE[x1|x1(0)] + wnj+1(t), j = 0, 1, . . . , n− 1,

dwnn(t)
dt

= bT (MT
11)naTE[x1|x1(0)],

(3.58)

where M11, a and b are defined as before (see equation (3.51)). The upper bound

for the memory term approximation error is explicitly obtained as5

|w0(t)− wn0 (t)| ≤ A1A2‖L(QL)nx1(0)‖ tn+1

(n+ 1)!

= A1A2

√[
bT (MT

11)n a
]2
x2

1(0) +
∥∥∥Λxi+1(0) (MT

11)n+1
a
∥∥∥2

2

tn+1

(n+ 1)!
(3.59)

5The error bound for |w0(t)−wn0 (t)| used here is slightly different from the one we obtained
in Theorem 3.1.4. Instead of bounding the quotient αn = |L(QL)n+1u0‖/‖L(QL)nu0‖, here we
choose to bound ‖L(QL)nu0‖ directly, which yields the estimate (3.59).
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where A1, A2 are defined in (3.27), while ω and ωQ are given in (3.54) and (3.55),

respectively. Note that for each fixed integration time T , the upper bound (3.59)

goes to zero as we send n to infinity, i.e.,

lim
n→+∞

|w0(T )− wn0 (T )| = 0.

This means that the H-model converges for all linear dynamical systems with

observables in the linear space (3.50).

Hamiltonian Systems with Mori’s projection The semigroup estimates we

obtained in section 3.1.1 allow us to compute explicitly an a priori estimate of the

memory kernel in the Mori-Zwanzig equation if we employ finite-rank projections.

In this section we outline the procedure to obtain such estimate for Hamiltonian

dynamical systems. We begin by recalling that, in general, Hamiltonian systems

are necessarily divergence-free, i.e.,

divρeq(F ) = 0. (3.60)

Here, F (x) is the velocity field at the right hand side of (2.1), while ρeq = e−βH/Z

is the canonical Gibbs distribution6. By combining the estimate (3.7) with the

divergence-free constraint (3.60), we find that the Koopman semigroup of a Hamil-
6Equation (3.60) is obtained by noticing that

divρeq (F ) =eβH∇ ·
(
e−βHF

)
,

=eβH
N∑
i=1

(
∂

∂qi

[
e−βH

∂H
∂pi

]
− ∂

∂pi

[
e−βH

∂H
∂qi

])
,

=0.
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tonian dynamical system is a contraction in the L2
eq norm, i.e.,

∥∥∥etL∥∥∥
L2
eq

≤ 1. (3.61)

We recall that the GLE for the time autocorrelation function Cij(t) is given by

dCij
dt

=
M∑
k=1

ΩikCkj −
M∑
k=1

∫ t

0
Kik(t− s)Ckj(s)ds. (3.62)

If we employ a one-dimensional Mori’s basis, i.e., M = 1, then we obtain the

simplified equation

dC(t)
dt

= Ω1C(t)−
∫ t

0
K(t− s)C(s)ds. (3.63)

where C(t) = 〈u1(0), u1(t)〉eq. The main difficulty in solving the GLE (3.62)

(or (3.63)) lies in computing the memory kernels Kij(t) (or K(t) in the case of

(3.63)). Hereafter we prove that such memory kernels can be uniformly bounded

by a computable quantity that depends only on the initial condition. For the sake

of simplicity, we will focus on the one-dimensional GLE (3.63).

Theorem 3.1.8. The memory kernel K(t) in the one-dimensional GLE (3.62) is

uniformly bounded by ‖u̇1(0)‖2
ρeq/‖u1(0)‖2

ρeq , i.e.

|K(t)| ≤
‖u̇1(0)‖2

L2
ρeq

‖u1(0)‖2
L2
eq

∀t ≥ 0. (3.64)

Proof. From the second-fluctuation dissipation theorem, we get that the memory
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kernel K(t) satisfies

|K(t)| =
∣∣∣∣∣〈etQLQLu1(0),QLu1(0)〉eq

〈u1(0), u1(0)〉eq

∣∣∣∣∣
≤ ‖etQLQ‖L2

ρeq

‖Lu1(0)‖2
L2
ρeq

‖u1(0)‖2
L2
eq

= ‖etQLQ‖L2
ρeq

‖u̇1(0)‖2
L2
ρeq

‖u1(0)‖2
L2
eq

On the other hand, by using the numerical abscissa (3.5) and formula (3.8), we

see that the semigroup etQLQ is contractive, i.e. ‖etQLQ‖L2
ρeq
≤ 1. Since Q is an

orthogonal projection with respect to ρeq, we have ‖etQLQ‖L2
ρeq

= ‖QetQLQ‖L2
ρeq
≤

‖Q‖L2
ρeq
‖etQLQ‖L2

ρeq
≤ 1. This yields

|K(t)| ≤ ‖etQLQ‖L2
ρeq

‖u̇1(0)‖2
L2
ρeq

‖u1(0)‖2
L2
eq

≤
‖u̇1(0)‖2

L2
ρeq

‖u1(0)‖2
L2
eq

.

Theorem 3.1.8 provides an a priori and easily computable upper bound for the

memory kernel defining the dynamics of any quantity of interest u1 that is initially

in the Gibbs canonical ensemble ρeq = e−βH/Z. In section 3.2, we will calculate

the upper bound (3.64) analytically and compare it with the exact memory kernel

we obtain in prototype linear and nonlinear Hamiltonian systems.

Remark. We emphasized in section 3.1.1 that the semigroup estimate for etQLQ

is not necessarily tight. In the context of high-dimensional Hamiltonian systems

(e.g., molecular dynamics) it is often empirically assumed that the semigroup

etQLQ is dissipative, i.e. ‖etQLQ‖ ≤ etω0 , where ω0 < 0. In this case, the memory

kernel turns out to be uniformly bounded by an exponentially decaying function
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since

|K(t)| ≤ ‖etQLQ‖L2
ρeq

‖Lu1‖2
L2
ρeq

‖u1‖2
L2
eq

≤ etω0
‖u̇1‖2

L2
ρeq

‖u1‖2
L2
eq

.

3.2 Numerical Examples

In this section, we provide simple numerical examples of the MZ memory

approximation methods we discussed throughout the paper. Specifically, we study

Hamiltonian systems (linear and nonlinear) with finite-rank projections (Mori’s

projection), and non-Hamiltonian systems with infinite-rank projections (Chorin’s

projection). In both cases we demonstrate the accuracy of the a priori memory

estimation method we developed in 3.1.5. We also compute the solution to the

MZ equation for non-Hamiltonian systems with the t-model, the H-model and

the Ht-model.

3.2.1 Hamiltonian Dynamical Systems with Finite-Rank

Projections

In this section we consider dimension reduction in linear and nonlinear Hamil-

tonian dynamical systems with finite-rank projection. In particular, we consider

the Mori projection and study the MZ equation for the temporal auto-correlation

function of a scalar quantity of interest.

Harmonic Chains of Oscillators

Consider a one-dimensional chain of harmonic oscillators. This is a simple but

illustrative example of a linear Hamiltonian dynamical system which has been

widely studied in statistical mechanics, mostly in relation with the microscopic
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theory of Brownian motio [33]. The Hamiltonian of the system can be written as

H(p, q) = 1
2m

N∑
i=1

p2
i + k

2

N+1∑
i,j=0
i<j

(qi − qj)2, (3.65)

where qi and pi are, respectively, the displacement and momentum of the i-th

particle,m is the mass of the particles (assumed constant throughout the network),

and k is the elasticity constant that modulates the intensity of the quadratic

interactions. We set fixed boundary conditions at the endpoints of the chain, i.e.,

q0(t) = qN+1(t) = 0 and p0(t) = pN+1(t) = 0 (particles are numbered from left to

right) and m = k = 1. The Hamilton’s equations are

dqi
dt

= ∂H
∂pi

,
dpi
dt

= −∂H
∂qi

, (3.66)

which can be written in a matrix-vector form as

ṗ
q̇

 =

 0 kB − kD

I/m 0


p
q

 (3.67)

where B is the adjacency matrix of the chain and D is the degree matrix (see [8]).

Note that (5.86) is a linear dynamical system. We are interested in the velocity

auto-correlation function of a tagged oscillator, say the one at location j = 1.

Such auto-correlation function is defined as

Cp1(t) = 〈p1(0)p1(t)〉eq
〈p1(0)p1(0)〉eq

, (3.68)

where the average is with respect to the Gibbs canonical distribution ρeq =

e−βH/Z. It was shown in [33] that Cp1(t) can be obtained analytically by em-

ploying Lee’s continued fraction method . The result is the well-known J0 − J4
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solution

Cp1(t) = J0(2t)− J4(2t), (3.69)

where Ji(t) is the i-th Bessel function of the first kind. On the other hand, the

Mori-Zwanzig equation derived by the following Mori’s projection

P(·) = 〈(·), p1(0)〉eq
〈p1(0), p1(0)〉eq

p1(0) (3.70)

yields the following GLE for Cp1(t)

dCp1(t)
dt

= Ωp1Cp1(t)−
∫ t

0
K(s)Cp1(t− s)ds. (3.71)

Here,

Ωp1 = 〈Lp1(0), p1(0)〉eq
〈p1(0), p1(0)〉eq

= 0

since 〈pi(0), qj(0)〉eq = 0, while K(t) is the MZ memory kernel. For the J0 − J4

solution, it is possible to derive the memory kernel K(t) analytically. To this end,

we simply insert (3.69) into (3.71) and apply the Laplace transform

L [·](s) =
∫ ∞

0
(·)e−stdt

to obtain

K̂(s) = −s+ 1
Ĉ(s)

, (3.72)
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where Ĉ(s) = L [Cp1(t)] and K̂(s) = L [K(t)]. The inverse Laplace transform of

(3.72) can be computed analytically as

K(t) = J1(2t)
t

+ 1. (3.73)

With K(t) available, we can verify the memory estimated we derived in Theorem

3.1.8. To this end,

|K(t)| ≤
‖ṗ1(0)‖2

L2
ρeq

‖p1(0)‖2
L2
ρeq

=
‖q2(0)− 2q1(0)‖2

L2
ρeq

‖p1(0)‖2
L2
ρeq

= 2. (3.74)

Here we used the exact solution of the velocity auto-correlation function and

displacement auto-correlation function of the fixed-end harmonic chain given by

(see [33])

〈pi(0), pj(0)〉eq = kBT

π

∫ π

0
sin(ix) sin(jx)dx

〈qi(0), qj(0)〉eq = kBT

π

∫ π

0

sin(ix) sin(jx)
4 sin2(x/2) dx.

In Figure 5.5 we plot the absolute value of the memory kernel K(t) together with

the theoretical bound (3.74). It is seen that the upper bound we obtain in this

case is of the same order of magnitude as the memory kernel.

Hald System

In this section, we study the Hamiltonian system studied by Chorin et. al. in

[16, 18]. The Hamiltonian function is defined as

H(p, q) = 1
2(q2

1 + p2
1 + q2

2 + p2
2 + q2

1q
2
2), (3.75)
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Figure 3.1: Harmonic chain of oscillators. (a) Velocity auto-correlation function
Cp1(t) and (b) memory kernel K(t) of the corresponding MZ equation. It is seen
that our theoretical estimate (3.74) (dashed line) correctly bounds the MZ memory
kernel. Note that the upper bound we obtain is of the same order of magnitude
as the memory kernel.

while the corresponding Hamilton’s equations of motion are



q̇1 = p1

ṗ1 = −q1(1 + q2
2)

q̇2 = p2

ṗ2 = −q2(1 + q2
1)

(3.76)

We assume that the initial state is distributed according to canonical Gibbs dis-

tribution ρeq = e−H(p,q)/Z. The partition function Z is given by

Z = e1/4(2π)3/2K0

(1
4

)
, (3.77)

where K0(t) is the modified Bessel function of the second kind. We aim to study

the properties of the autocorrelation function of the first component q1, which is
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defined as

Cq1(t) = 〈q1(0), q1(t)〉eq
〈q1(0), q1(0)〉eq

.

Obviously, Cq1(0) = 1. The evolution equation for Cq1(t) is obtained by using the

MZ formulation with the Mori’s projection

P(·) = 〈(·), q1(0)〉eq
〈q1(0), q1(0)〉eq

q1(0). (3.78)

This yields the GLE

dCq1(t)
dt

= Ωq1Cq1(t)−
∫ t

0
K(s)Cq1(t− s)ds. (3.79)

The streaming term Ωq1Cq1(t) is again identically zero since

Ωq1 = 〈Lq1(0), q1(0)〉eq
〈q1(0), q1(0)〉eq

= 0.

Theorem 3.1.8 provides the following computable upper bound for the modulus

of K(t)

|K(t)| ≤
‖q̇1(0)‖2

L2
ρeq

‖q1(0)‖2
L2
ρeq

=
‖p1(0)‖2

L2
ρeq

‖q1(0)‖2
L2
ρeq

= e1/4K0 (1/4)√
πU (1/2, 0, 1/2)

≈ 1.39786, (3.80)

where U(a, b, y) is the confluent hypergeometric function of the second kind. In

Figure 3.2 we plot the correlation function Cq1(t) we obtain numerically with

Markov Chain Monte Carlo (MCMC), together with the memory kernel K(t) we
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Figure 3.2: Hald Hamiltonian system (3.76). (a) Autocorrelation function of
the displacement q1(t) and (b) memory kernel of the governing MZ equation.
Here Cq1(t) is computed by Markov chain Monte-Carlo (MCMC) while K(t) is
determined by inverting numerically the Laplace transform in (3.81) with the
Talbot algorithm. It is seen that the theoretical upper bound (3.80) (dashed line)
is of the same order of magnitude as the memory kernel.

computed numerically based on Cq1(t)7.

3.2.2 Non-Hamiltonian Systems with Infinite-Rank Pro-

jections

In this section we study the accuracy of the t-model, the H-model and the Ht

model in predicting scalar quantities of interest in non-Hamiltonian systems. In

particular, we consider the MZ formulation with Chorin’s projection operator. For
7The memory kernel K(t) plotted in Figure 3.2(b) is computed by inverting numerically the

Laplace transform of (3.79), i.e.,

K(t) = L −1
[
−s+ 1

Ĉ(s)

]
, (3.81)

where Ĉ(s) = L [Cq1(t)]. In practice, we replaced the numerical solution Cq1(t) within the time
interval [0, 20] with a high-order polynomial interpolant at Gauss-Chebyshev-Lobatto nodes (in
[0, 20]), computed Ĉ(s) analytically (Laplace transform of a polynomial), and then computed
the inverse Laplace transform (3.81) numerically with the Talbot algorithm [?].
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the particular case of linear dynamical systems we also compute the theoretical

upper bounds we obtained in Section 3.1.5 for the memory growth and the error

in the H-model, and compare such bounds with exact results.

Linear Dynamical Systems

We begin by considering a low-dimensional linear dynamical system ẋ = Ax

evolving from a random initial state with density ρ0(x) to verify the MZ memory

estimates we obtained in Section 3.1.5. For simplicity, we choose A to be negative

definite

A = eCBe−C , B =


−1

8 0 0

0 −2
3 0

0 0 −1
2

 , C =


0 1 0

−1 0 1

0 −1 0

 . (3.82)

In this case, the origin of the phase space is a stable node and it is easy to estimate∥∥∥etL∥∥∥
ρ0

8 We set x1(0) = 1 and x2(0), x3(0) independent standard normal random

variables. In this setting, the semigroup estimates (3.54) and (3.55) are explicit

‖etL‖ ≤ etω, ω = −1
2
−→
T (A) = 0.6458,

‖etLQ‖ ≤ etωQ , ωQ = ω +

√√√√A2
11 +

N∑
i=2

A2
1i

x2
1(0) = 1.1621.

8For general matrices A, it is more difficult to estimate ‖etL‖L2
ρ0
. However, since L is a

bounded linear operator in the subspace V where the quantity of interest lives, we can use the
norm ‖etL‖L2

ρ0 (V ), which is explicitly computable.
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Therefore, we obtain the following explicit upper bounds for the memory integral

and the error of the H-model (see equations (3.57) and (3.59))

|w0(t)| ≤ 0.1964
(
e1.1621t − e0.6458t

)
, (3.83)

|w0(t)− wn0 (t)| ≤ e1.1624t
√(

bT (MT
11)n a1

)2
x2

1(0) +
∥∥∥(MT

11)n+1
a
∥∥∥2

2

tn+1

(n+ 1)! . (3.84)

Next, we compare these error bounds with numerical results obtained by solving

numerically the H-model (3.58). For example, the second-order H-model reads



d

dt
E[x1(t)|x1(0)] = −0.4560E[x1(t)|x1(0)] + w2

0(t),

dw2
0(t)
dt

= 0.0586E[x1(t)|x1(0)] + w2
1(t),

dw2
1(t)
dt

= −0.0192E[x1(t)|x1(0)].

(3.85)

In Figure 3.3 we demonstrate convergence of the H-model to the benchmark

solution computed by Monte-Carlo simulation as we increase the H-model differ-

entiation order. In Figure 3.4 we plot the bound on the memory growth (equation

(3.83)) and the bound in the memory error (equation (3.84)) together with exact

results.

Remark The results we just obtained can be obviously extended to higher-

dimensional linear dynamical systems. In Figure 3.5 we plot the benchmark con-

ditional mean path we obtained through Monte Carlo simulation together with the

solution of the H-model (3.58) for the 100-dimensional linear dynamical system
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Figure 3.3: Convergence of the H-model for the linear dynamical system with
matrix (3.82). The benchmark solution is computed with Monte-Carlo (MC) sim-
ulation. Also, the zero-order H-model represents the Markovian approximation
to the MZ equation, i.e. the MZ equation without the memory term.

defined by the matrix (N = 100)

A =



−1 1 . . . (−1)N

1
... B

1


, (3.86)

where B = eCΛe−C and

Λ =



−1
8 0 · · · 0

0 −2
9

...
... . . . 0

0 · · · 0 −N−1
N+6


, C =



0 1 0

−1 0 . . .
. . . . . . 1

0 −1 0


.

It is seen that the H-model converges as we increase the differentiation order in

any finite time interval, in agreement with the theoretical prediction of section

3.1.5.
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Figure 3.4: Linear dynamical system with matrix (3.82). In (a) we plot the
memory term w0(t) we obtain from Monte Carlo simulation together with the es-
timated upper bound (3.83). In (b) and (c) we plot H-model approximation error
|w0(T )−wn0 (T )| together with the upper bound (3.84) for different differentiation
orders n and at different times t.
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Figure 3.5: Linear dynamical system with matrix A (3.86). Convergence of
the H-model to the conditional mean path solution E[x1(t)|x1(0)]. The initial
condition is set as x1(0) = 3, while {x2(0), . . . , x100(0)} are i.i.d. Normals.

Nonlinear Dynamical Systems

The hierarchical memory approximation method we discussed in section 3.1.4

can be applied to nonlinear dynamical systems in the form (2.1). As we will see, if

we employ the Ht-model then the nonlinearity introduces a closure problem that

needs to be addressed properly.
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Lorenz-63 System Consider the classical Lorenz-63 model



ẋ1 = σ(x2 − x1)

ẋ2 = x1(r − x3)− x2

ẋ3 = x1x2 − βx3

(3.87)

where σ = 10 and β = 8/3. The phase space Liouville operator for this ODE is

L = σ(x2 − x1) ∂

∂x1
+ (x1(r − x3)− x2) ∂

∂x2
+ (x1x2 − βx3) ∂

∂x3
.

We choose the resolved variables to be x̂ = {x1, x2} and aim at formally integrating

out x̃ = x3 by using the Mori-Zwanzig formalism. To this end, we set x3(0) ∼

N (0, 1) and consider the zeroth-order Ht-model (t-model)


dx1m

dt
= σ(x1m − x2m),

dx2m

dt
= −x2m + rx1m − tx2

1mx2m,

(3.88)

where x1m(t) = E[x1(t)|x1(0), x2(0)] and x2m(t) = E[x2(t)|x1(0), x2(0)] are condi-

tional mean paths. To obtain this system we introduced the following mean field

closure approximation

tPetLPLQLx2(0) =− tE[x1(t)2x2(t)|x1(0), x2(0)],

'− tE[x1(t)|x1(0), x2(0)]2E[x2(t)|x1(0), x2(0)],

=− tx2
1mx2m. (3.89)

Higher-order Ht-models can be derived based on (3.89). As is well known, if r < 1,

the fixed point (0, 0, 0) is a global attractor and exponentially stable. In this case,

the t-model (zeroth-order Ht-model) yields accurate prediction of the conditional
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Figure 3.6: Accuracy of the Ht model in representing the conditional mean path
in the Lorenz-63 system (3.87). It is seen that if r = 0.5 (first row), then the
zeroth-order Ht-model, i.e., the t-model, is accurate for long integration times.
On the other hand, if we consider the chaotic regime at r = 28 (second row) then
we see that the t-model and its high-order extension (Ht-model) are accurate only
for relatively short time.

mean path for long time (see Figure 3.6). On the other hand, if we consider the

chaotic regime at r = 28 then the t-model and its higher-order extension, i.e.,

the Ht-model, are accurate only for relatively short time. This is in agreement

with our theoretical predictions. In fact, different from linear systems where the

hierarchical representation of the memory integral can be proven to be convergent

for long time, in nonlinear systems the memory hierarchy is, in general, provably

convergent only in a short time period (Theorem 3.1.7 and Corollary 3.1.4.3). This

doesn’t mean that the H-model or the Ht-model are not accurate for nonlinear

systems. It just means that the accuracy depends on the system, the quantity of
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interest, and the initial condition.

Modified Lorenz-96 system. As an example of a high dimensional nonlinear

dynamical system, we consider the following modified Lorenz-96 system [47, 60]



ẋ1 = −x1 + x1x2 + F

ẋ2 = −x2 + x1x3 + F

...

ẋi = −xi + (xi+1 − xi−2)xi−1 + F

...

ẋN = xN − xN−2xN−1 + F

(3.90)

where F is constant. As is well known, depending on the values of N and F this

system can exhibit a wide range of behaviors [47]. Suppose we take the resolved

variables to be x̂ = {x1, x2}. Correspondingly, the unresolved ones, i.e., those we

aim at integrating through the MZ framework, are x̃ = {x3, . . . , xN}, which we

set to be independent standard normal random variables. By using the mean field

approximation (3.89), we obtain the following zeroth-order Ht-model (t-model) of

the modified Lorenz-96 system is (3.90)


ẋ1m = −x1m + x1mx2m + F,

ẋ2m = −x2m + F + t(x2
1mx2m − x1mF ).

(3.91)

In Figure 3.7 we study the accuracy of theHt-model in representing the conditional

mean path for with F = 5 andN = 100. It is seen that the theHt-model converges

only for short time (in agreement with the theoretical predictions) and it provides

results that are more accurate that the classical t-model.
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Figure 3.7: Accuracy of the Ht-model in representing the conditional mean path
in the Lorenz-96 system (3.87). Here we set F = 5 and N = 100. It is seen that
the Ht-model converges only for short time and provides results that are more
accurate that the classical t-model.

3.3 Summary

In this chapter, through a detailed study of the evolution operator etL and etLQ,

we deduce conditions for accuracy and convergence of different approximations of

the memory integral in the Mori-Zwanzig (MZ) equation. To the best of our

knowledge, this is the first time such rigorous analysis is presented. In particular,

we studied the short memory approximation, the t-model and various hierarchical

memory approximation techniques. We also derived useful upper bounds for the

MZ memory integral, which allowed us to estimate a priori the contribution of the

MZ memory to the dynamics. Such upper bounds are easily computable for sys-

tems with finite-rank projections – such as Mori’s projection. Furthermore, if the

system is Hamiltonian then the MZ memory bounds we obtained are tight. This

can be attributed to the fact that the Koopman operator of a Hamiltonian system

is always a contraction relative to the L2
ρeq norm weighted by the Gibbs canonical

distribution ρeq. In the more general case of dissipative systems, however, we

do not have any guarantee that the MZ memory bounds we obtained are tight.

Indeed, for dissipative systems the numerical abscissa in equation (3.5) (see also
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equations (3.10a)-(3.10b)) can be positive, yielding an exponential growth of the

memory bounds. In the presence of infinite-rank projections – such as Chorin’s

projection – we found that it is extremely difficult to obtain explicitly computable

upper bounds for the MZ memory or any of its approximations discussed in this

paper. The main difficulties are related the lack of an explicitly computable upper

bound for the operator semigroup etLQ, which involves the unbounded generator

LQ (see section 3.1.1 and appendix 3.A). To demonstrate the accuracy of the

approximation methods and error bounds we developed and discussed through-

out the paper, we provided numerical examples involving Hamiltonian dynamical

systems (linear and nonlinear), and more general dissipative nonlinear systems

evolving from random initial states. The results we obtained are found to be in

agreement with our theoretical predictions.

Appendix 3.A Semigroup Bounds via Function

Decomposition

In looking for the numerical abscissa [20] (i.e., the logarithmic norm) of LQ,

we seek to bound

sup
D(LQ)3x6=0

Re 〈x,LQx〉σ
〈x, x〉σ

.

Notice that, if PLQ = 0, then LQ = QLQ, so that we have the previously proven

bound

sup Re 〈x,QLQx〉σ
〈x, x〉σ

≤ −1
2 inf divσ F.
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In this section, we consider what happens when PLQ 6= 0. To that end, let us

note that x ∈ D(LQ) may be decomposed as

x = Qx+ αPLQx+ Py

where α ∈ C and Py is orthogonal to PLQx. In other words, we define Py as

Py = Px− 〈PLQx,Px〉σ
〈PLQx,PLQx〉σ

PLQx,

and define α as

α = 〈PLQx,Px〉σ
〈PLQx,PLQx〉σ

.

Then

Re 〈x,LQx〉σ
〈x, x〉σ

= Re 〈Qx+ αPLQx+ Py,LQx〉σ
〈x, x〉σ

,

= Re〈Qx,LQx〉σ + Re(α)‖PLQx‖2
σ

‖Qx‖2
σ + |α|2‖PLQx‖2

σ + ‖Py‖2
σ

,

≤ max
[
0, Re〈Qx,LQx〉σ + Re(α)‖PLQx‖2

σ

‖Qx‖2
σ + |α|2‖PLQx‖2

σ

]
.

Since we assume PLQ 6= 0, there exists x such that PLQx 6= 0 and then, for any

α such that

Re(α) ≥ Re〈Qx,LQx〉σ
‖PLQx‖2

σ

,

we have

Re〈Qx,LQx〉σ + Re(α)‖PLQx‖2
σ ≥ 0,
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so that, for PLQ 6= 0,

sup
D(LQ)3x 6=0

Re 〈x,LQx〉σ
〈x, x〉σ

= sup
D(LQ)3x6=0

Re〈Qx,LQx〉σ + Re(α)‖PLQx‖2
σ

‖Qx‖2
σ + |α|2‖PLQx‖2

σ

.

Now, fix any Qx ∈ D(L) 6= 0 and consider the expression

Re〈Qx,LQx〉σ + Re(α)‖PLQx‖2
σ

‖Qx‖2
σ + |α|2‖PLQx‖2

σ

= ξ + Re(α)β2

1 + |α|2β2

where

ξ = ξ(Qx) = Re 〈Qx,LQx〉σ
‖Qx‖2

σ

, β = β(Qx) = ‖PLQx‖σ
‖Qx‖σ

.

Then, for this fixed Qx,

ξ + Re(α)β2

1 + |α|2β2 ≤ max
a∈R

ξ + aβ2

1 + a2β2 .

Differentiating w.r.t. a and setting equal to zero, we find that the latter expression

is extremized when

0 = β2(1 + a2β2)− 2aβ2(ξ + aβ2),

i.e., when

β2a2 + 2ξa− 1 = 0, a = −ξ ±
√
ξ2 + β2

β2 .

Since β2 > 0, ξ + aβ2

1 + a2β2 is maximized at â = −ξ +
√
ξ2 + β2

β2 . Then

ξ + âβ2 =
√
ξ2 + β2, 1 + â2β2 = 2 (1− ξâ) = 2

(
ξ2 + β2 − ξ

√
ξ2 + β2

β2

)
,
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so that

max
a∈R

ξ + aβ2

1 + a2β2 = ξ + âβ2

1 + â2β2 = 1
2

β2
√
ξ2 + β2 − ξ

= 1
2

(√
ξ2 + β2 + ξ

)
.

Therefore,

sup
D(LQ)3x 6=0

Re 〈x,LQx〉σ
〈x, x〉σ

= sup
D(L)3(Qx)6=0

1
2

[√
ξ2(Qx) + β2(Qx) + ξ(Qx)

]
.

When PLQ is unbounded, which is the typical case when P is an infinite-rank

projection, such as most conditional expectations, there is unlikely to be a finite

numerical abscissa for LQ. In particular, notice that if divσ(F ) is a bounded

function (bounded both above and below), then ξ(Qx) is bounded for all Qx

while β(Qx) is unbounded, in which case

sup
D(LQ)3x6=0

Re 〈x,LQx〉σ
〈x, x〉σ

=∞.

It follows [89] that in these cases, ‖etLQ‖σ has infinite slope at t = 0, and therefore

there is no finite ω such that ‖etLQ‖σ ≤ eωt for all t ≥ 0 (see [20]). Assuming still

that LQ generates a strongly continuous semigroup, we must look to bound the

semigroup as ‖etLQ‖σ ≤Meωt, where

ω > ω0 = lim
t→∞

ln ‖etLQ‖σ
t

and

M ≥M(ω) = sup{‖etLQ‖σe−ωt : t ≥ 0}.
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On the other hand, if PLQ is a bounded operator, for example when P is a

finite-rank projection (e.g., Mori’s projection), there exists a finite value for the

numerical abscissa. Indeed, in this case, since ζ is bounded by ω = − inf divσ(F ),

the numerical abscissa of LQ may be bounded as

ωLQ = sup
D(LQ)3x 6=0

Re 〈x,LQx〉σ
〈x, x〉σ

≤ 1
2

[√
ω2 + ‖PLQ‖2

σ + ω
]
. (3.98)

Alternatively, in the case of finite rank P , the operator LQ may be thought of as a

bounded perturbation of L, i.e. LQ = L−LQ, and the numerical abscissa of LQ

can be bounded using the bounded perturbation theorem [28, III.1.3], obtaining

ωLQ ≤ ω + ‖LP‖σ. (3.99)

Either of these bounds for ωLQ can be used to bound the semigroup norm

‖etLQ‖σ ≤ eωLQt ≤ e
1
2

(√
ω2+‖PLQ‖2

σ+ω
)
t

‖etLQ‖σ ≤ eωLQt ≤ e(ω+‖LP‖σ)t.

Which of these two estimates gives the tighter bound will generally depend on

the values of ‖PLQ‖σ and ‖LP‖σ. It may be noted, however, that, when σ is

invariant, ω = 0 and L is skew-adjoint, so that

‖PLQ‖σ = ‖QL†P‖σ = ‖QLP‖σ ≤ ‖LP‖σ

and therefore the bound in (3.98) is half that of (3.99).
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Appendix 3.B Estimate of the MZE in PDF Space

It was shown in [22] that the Banach dual of (2.4) defines an evolution in

the probability density function space. Specifically, the joint probability density

function of the state vector u(t) that solves equation (2.1) is pushed forward by the

Frobenius-Perron operator F(t, 0) (Banach dual of the Koopman operator (2.3))

p(x, t) = F(t, s)p(x, s), F(t, s) = e(t−s)M, (3.101)

where

M(x)p(x, t) = −∇ · (F (x)p(x, t)). (3.102)

By introducing a projection P in the space of probability density functions9 and

its complement Q = I − P , it is easy to show that the projected density Pp

satisfies the MZ equation [96]

∂Pp(t)
∂t

= PMPp(t) + PetQMQp(0) +
∫ t

0
PMe(t−s)QMQMPp(s)ds. (3.103)

In the next sections we perform an analysis of different types of approximations

of the MZ memory integral

∫ t

0
PMe(t−s)QMQMPp(s)ds. (3.104)

The main objective of such analysis is to establish rigorous error bounds for widely

used approximation methods, and also propose new provably convergent approx-

imation schemes.
9With some abuse of notation we denote the projections P and Q in the PDF space with the

same letter we used for projections in the phase space.
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3.B.1 Analysis of the Memory Integral

In this section, we develop the analysis of the memory integral arising in the

PDF formulation of the MZ equation. The starting point is the definition (3.104).

As before, we begin with the following estimate of upper bound estimation of the

integral

Theorem 3.B.1. (Memory growth) Let etMQ and etM be strongly continuous

semigroups with upper bounds ‖etM‖ ≤ Metω and ‖etMQ‖ ≤ MQe
tωQ, and let

T > 0 be a fixed integration time. Then for any 0 ≤ t ≤ T we have

∥∥∥∥∥
∫ t

0
PMe(t−s)QMQMPp(s)ds

∥∥∥∥∥ ≤ N0(t),

where

N0(t) =


tC4, ωQ = 0;
C4

ωQ
(etωQ − 1), ωQ 6= 0;

and C4 = max
0≤s≤T

‖P‖‖MPMp(s)‖. Moreover, N(t) satisfies lim
t→0

N(t) = 0.

Proof. Consider

∥∥∥∥∥
∫ t

0
PMe(t−s)QMQMPp(s)ds

∥∥∥∥∥ =
∥∥∥∥∥
∫ t

0
Pe(t−s)MQMQMPp(s)ds

∥∥∥∥∥
≤ C4MQ

∫ t

0
e(t−s)ωQds

=


tC4, ωQ = 0
C4

ωQ
(etωQ − 1), ωQ 6= 0

where C4 = max
0≤s≤T

‖P‖‖MQMPp(s)‖.
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Theorem 3.B.2. (Memory approximation via the t-model) Let etMQ and

etM be strongly continuous semigroups with bounds ‖etM‖ ≤Metω and ‖etMQ‖ ≤

MQe
tωQ, and let T > 0 be a fixed integration time. If the function k(s, t) =

PMe(t−s)QMQMPp(s) (integrand of the memory term) is at least twice differen-

tiable respect to s for all t ≥ 0, then

∥∥∥∥∥
∫ t

0
PMe(t−s)QMQMPp(s)ds− tPMQMPp(t)

∥∥∥∥∥ ≤ N1(t)

where N1(t) is defined as

N1(t) =


t(MQ + 1)C4, ωQ = 0
C2MQ
ωQ

(etωQ − 1) + tC4, ωQ 6= 0

and C4 is as in Theorem 3.B.1.

Proof.

∥∥∥∥∥
∫ t

0
PMe(t−s)QMQMPp(s)ds− tPMQMPp(t)

∥∥∥∥∥
≤ C4MQ

∫ t

0
e(t−s)ωQds+ C4t

=


t(MQ + 1)C4, ωQ = 0
C4MQ
ωQ

(etωQ − 1) + tC4, ωQ 6= 0

91



3.B.2 Hierarchical Memory Approximation in PDF Space

The hierarchical memory approximation methods we discussed in section 3.1.4

can be also developed in the PDF space. To this end, let us first define

v0(t) =
∫ t

0
PMe(t−s)QMQMPp(s)ds. (3.105)

By repeatedly differentiating v0(t) with respect to time (assuming v0(t) smooth

enough) we obtain the hierarchy of equations

∂

∂t
vi−1(t) = PM(QM)iPp(t) + vi(t) i = 1, . . . , n

where,

vi(t) =
∫ t

0
PMe(t−s)QM(QM)i+1Pp(s)ds.

By following closely the discussion in section 3.1.4 we introduce the hierarchy of

memory equations



dvn0 (t)
dt

= PMQMPp(t) + vn1 (t)

dvn1 (t)
dt

= PM(QM)2Pp(t) + vn2 (t)
...

dvnn−1(t)
dt

= PM(QM)nPp(t) + venn (t)

(3.106)
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and approximate the last term in such hierarchy in different ways. Specifically,

we consider

venn (t) =
∫ t

t
PMe(t−s)QM(QM)n+1Pp(s)ds = 0 (H-model),

venn (t) =
∫ t

max(0,t−∆t)
PMe(t−s)QM(QM)n+1Pp(s)ds (Type I FMA),

venn (t) =
∫ t

min(t,tn)
PMe(t−s)QM(QM)n+1Pp(s)ds (Type II FMA),

venn (t) = tPM(QM)n+1Pp(t) (Ht-model).

Hereafter we establish the accuracy of the approximation schemes resulting from

the substitution of each venn (t) above into (3.106).

Theorem 3.B.3. (Accuracy of the H-model) Let etM and etMQ be strongly

continuous semigroups, T > 0 a fixed integration time, and

βi =
sup
s∈[0,T ]

‖(MQ)i+1MPp(s)‖

sup
s∈[0,T ]

‖(MQ)iMPp(s)‖
, 1 ≤ i ≤ n. (3.107)

Then for 1 ≤ q ≤ n we have

‖v0(t)− vq0(t)‖ ≤ N q
2 (t),

where

N q
2 (t) = A2C4

( q∏
i=1

βi

)
tq+1

(q + 1)! ,

A2 = max
s∈[0,T ]

esωQ, and C4 is as in Theorem 3.B.1.
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Proof. The error at the n-th level can be bounded as

‖v0(t)− vq0(t)‖ ≤
∫ t

0

∫ τq

0
· · ·

∫ τ2

0
‖PMe(τ1−s)QM(QM)p+1Pp(s)‖dsdτ1 . . . dτq

≤ A2C4

( q∏
i=1

βi

)
tq+1

(q + 1)! ,

where

A2 = max
s∈[0,T ]

esωQ =


1 ωQ ≤ 0

eTωQ ωQ ≥ 0
. (3.108)

Let

βi =
sup
s∈[0,T ]

‖(MQ)i+1MPp(s)‖

sup
s∈[0,T ]

‖(MQ)iMPp(s)‖
, (3.109)

under the assumption that these quantities are finite. Then we have

‖v0(t)− vq0(t)‖ ≤ A2C4

( q∏
i=1

βi

)
tq+1

(q + 1)! .

Corollary 3.B.3.1. (Uniform convergence of the H-model) If βi in Theo-

rem 3.B.3 satisfy

βi <
i+ 1
T

, 1 ≤ i ≤ n

for any fixed time T , then there exits a sequence δ1 > δ2 > · · · > δn such that

‖v0(T )− vq0(T )‖ ≤ δq,
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where 1 ≤ q ≤ n.

Corollary 3.B.3.2. (Asymptotic convergence of the H-model) If βi in

Theorem 3.B.3 satisfy

βi < C, 1 ≤ i < +∞

for some constant C, then for any fixed time T and arbitrary δ > 0, there exits

an integer q such that for all n > q,

‖v0(T )− vn0 (T )‖ ≤ δ.

The proofs of the Corollary 3.B.3.1 and 3.B.3.2 closely follow the proofs of Corol-

lary 3.1.4.1 and 3.1.4.2. Therefore we omit details here.

Theorem 3.B.4. (Accuracy of Type-I FMA) Let etM and etMQ be strongly

continuous semigroups, T > 0 a fixed integration time, and let

βi =
sup
s∈[0,T ]

‖(MQ)i+1MPp(s)‖

sup
s∈[0,T ]

‖(MQ)iMPp(s)‖
, 1 ≤ i ≤ n. (3.110)

Then for 1 ≤ q ≤ n

‖v0(t)− vq0(t)‖ ≤ N q
3 (t),

where

N q
3 (t) = A2C4

( q∏
i=1

βi

)
(t−∆tq)q+1

(q + 1)! ,

and C4 is as in Theorem 3.B.1.

Proof. The proof is very similar with the proof of Theorem 3.1.5. We begin with
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the estimate of v0(t)− vq0(t)

∫ max(0,t−∆tq)

0

∫ τ̃q

0
· · ·

∫ τ̃2

0

∫ τ̃1

0
Pe(τ̃1+∆tq−s)MQ(MQ)q+1MQp(s)dsdτ̃1 · · · dτ̃q,

=


0 0 ≤ t ≤ ∆tq∫ t−∆tq

0

∫ σ

0

(t−∆tq − σ)q−1

(q − 1)! Pe(σ+∆tq−s)MQ(MQ)q+2p(s)dsdσ t ≥ ∆tq.

This can be bounded by following the technique in the proof of Theorem 3.B.3.

This yields

‖v0(t)− vq0(t)‖ ≤


0 0 ≤ t ≤ ∆tq

A2C4

( q∏
i=1

βi

)
(t−∆tq)q+1

(q + 1)! t ≥ ∆tq
. (3.112a)

Corollary 3.B.4.1. (Uniform convergence of Type-I FMA) If βi in Theo-

rem 3.B.4 satisfy

βi < (i+ 1)
 δi!
C4A2

(∏i
k=1 βk

)
− 1

i

(3.113)

then for any δ > 0, there exists an ordered time sequence ∆tn < ∆tn−1 < · · · <

∆t1 < T such that

‖w0(T )− wq0(T )‖ ≤ δ, 1 ≤ q ≤ n

and which satisfies

∆tq ≤ T −
[

δ(q + 1)!
C4A2 (∏q

i=1 βi)

] 1
q+1

.
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The proof is very similar with the proof of Corollary 3.1.5.1 and therefore we omit

it.

Theorem 3.B.5. (Accuracy of Type-II FMA) Let etM and etMQ be strongly

continuous semigroups and T > 0 a fixed integration time. Set

βi =
sup
s∈[0,T ]

‖(MQ)i+1MPp(s)‖

sup
s∈[0,T ]

‖(MQ)iMPp(s)‖
, 1 ≤ i ≤ n. (3.114)

Then for 1 ≤ q ≤ n

‖v0(t)− vq0(t)‖ ≤ N q
4 (t),

where

N q
4 (t) = C4

ωQ

[
1− e−tqωQ

] ( q∏
i=1

βi

)
fq(ωQ, t),

fq(ωQ, t) is defined in (3.41) and C4 is as in Theorem 3.B.1.

Proof. The proof is very similar with the proof of Theorem 3.1.6. Hereafter we

provide the proof for the case when ωQ > 0. Other cases can be easily obtained

by using the same method. First of all, we have error estimation

‖v0(t)− vq0(t)‖ ≤
∫ t

0

∫ τq

0
· · ·

∫ τ2

0

∫ tq

0
‖PMe(τ1−s)QM(QM)q+1Pp(s)‖dsdτ1 · · · dτq

≤ C4

( q∏
i=1

βi

)∫ t

0

∫ τq

0
· · ·

∫ τ2

0

∫ tq

0
e(τ1−s)ωQdsdτ1 · · · dτq

= C4

ωQ

[
1− e−tqωQ

] ( q∏
i=1

βi

)
fq(ωQ, t),

where fq(ωQ, t) is as in (3.41).

97



Corollary 3.B.5.1. (Uniform convergence of Type-II FMA) If βi in The-

orem 3.B.5 satisfy


βi <

i

T
, ωQ = 0

βi < ωQ
eTωQ −∑i−2

k=0
(TωQ)k
k!

eTωQ −∑i−1
k=0

(TωQ)k
k!

, ωQ 6= 0

for all t ∈ [0, T ], then for arbitrarily small δ > 0 there exists an ordered time

sequence 0 < t0 < t1 < . . . tn < T such that

‖v0(T )− vq0(T )‖ ≤ δ, 1 ≤ q ≤ n

which satisfies

tq ≥
1
ωQ

ln
1− δωq+1

Q

C4 (∏q
i=1 βi)

[
eTωQ −∑q−1

k=0
(TωQ)k
k!

]
 .

Proof. To ensure that ‖v0(t) − vq0(t)‖ ≤ δ for all 0 ≤ t ≤ T , we can take (for

ωQ > 0)

C4

ωQ

[
1− e−tqωQ

] ( q∏
i=1

βi

)
fq(ωQ, T ) = max

t∈[0,T ]

C2

ωQ

[
1− e−tqωQ

] ( q∏
i=1

βi

)
fq(ωQ, t) ≤ δ.

Therefore

e−tqωQ ≥ 1− δωQ

C4

( q∏
i=1

βi

)
fq(ωQ, T )

i.e.,

tq ≤
1
ωQ

ln
1− δωq+1

Q

C4 (∏q
i=1 βi)

[
eTωQ −∑q−1

k=0
(TωQ)k
k!

]
 .
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Since for ωQ > 0, we have have condition

βi(t) < ωQ
eTωQ −∑i−2

k=0
(TωQ)k
k!

eTωQ −∑i−1
k=0

(TωQ)k
k!

.

Thus, there exists an ordered time sequence 0 < t1 < · · · < tn such that ‖v0(T )−

vn0 (T )‖ ≤ δ. As in Theorem 3.1.6, this δ-bound on the error holds for all tn

(with upper bound as above), which implies the existence of such an increasing

time sequence 0 < t1 < · · · < tn with tn bounded from below by the same

quantities.
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Chapter 4

Analysis of the MZE for

stochastic system

In this chapter, we focus on the analysis of the effective Mori-Zwanzig equation

(EMZE) derived in Section 2.3. Similar to the case for classical stochastic system,

the memory integral will be our main concentration since it encoded the inter-

action between the complicated orthogonal dynamics and the steaming term. In

Chapter 3, we have shown that the semigroup properties of the evolution operator

etL and etLQ are closely related with the convergence of series expansion of the

Mori-Zwanzig equation and upper bounds of the memory kernel. This inspired

us to apply the estimate of semigroup etK for EMZE to study the orthogonal

dynamics and the corresponding memory kernel. In mathematical physics, the

dynamical properties of etK happen to be an important research topic with spe-

cial emphasis on its convergence to equilibrium as t → ∞. In the past twenty

years, there are significant developments in this field. In particular, the study

of hypoellipticity and hypocoercivity [26, 24, 25, 38, 39, 98, 72] enables us to es-

tablish prior estimates on the rates of convergence for both linear and nonlinear

kinetic equations. In this chapter, we give a first attempt to use the developed
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analytic techniques for semigroup etK on the study of the Mori-Zwanzig equation.

In particular, we show that the classical hypoelliptic analysis mainly developed

by Eckmann & Hairer [26, 24, 25], Hèrau & Nier [39] and Nier & Helffer [38] can

be used to locate the spectrum of QKQ inside a cusp-like region of the complex

plane. Hence the analytic method used to deduce the exponential convergence to

equilibrium for Fokker-Planck equation can applied to get the exponential con-

vergence of the orthogonal dynamics and the MZ memory kernel. We will use the

Langevin dynamics as an example to derive the explicit convergence estimates.

4.1 Abstract analysis

In this section, we analyze the effective Mori-Zwanzig equation using Hör-

mander analysis established in a series of paper [26, 24, 25, 38, 39, 98, 72]. The

approach was mainly developed by Hérau and Nier [39], Eckmann and Hairer

[26, 24, 25], Helffer and Nier [38] in the study of linear hypoelliptic equation,

which can be seen as an extension of Kohn’s method for Hörmander operators.

The following notations are used in Section 4.1 and 4.2:

Notations

1. C and Cα are used to represent constants, where Cα refers to a specific con-

stant and C, when it appears in an inequality, always means some constant

such that the inequality holds.

2. 〈·, ·〉 is the inner product in flat Hilbert space L2(Rn). ‖ · ‖ denotes L2(Rn)

norm for function inputs and l2(Rn) norm for vector inputs.

3. The same notation is used to represent the closable operator and its closure

in some function space.
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4.1.1 Estimate of K

Following the same notation in [25, 106], we begin our discussion by reviewing

some of known results on the Kolmogorov operator K. In [25], Eckmann and

Hairer considered the following Hörmander-type operator

K =
m∑
i=1

X∗iXi +X0 + f. (4.1)

where Xi, 0 ≤ i ≤ m denotes the first order differential operator, X∗i is the

formal adjoint of Xi in L2, f is a function with at most polynomial growth.

It is shown in [26, 24, 25, 38, 39] that for many SDE (2.21), the generator of

the Markovian semigroup M(t, 0) can be written in the form (4.1). To derive

the spectral estimate for operator K with polynomially bounded coefficients, we

define the following class of functions and operators:

Definition 1 (Eckmann and Hairer [25]). For N ∈ R, we define the set PolN0 of

polynomially growing functions by

PolN0 =
{
f ∈ C∞(Rn)|∀α, sup

x∈Rn
(1 + ‖x‖)−N |∂αf(x)| ≤ Cα

}
,

where α denotes the multi-index of arbitrary order. Similarly, we define sets PolNk
of k−th order differential operators with elements written as

G = G0(x) +
n∑
j=1

k∑
i=1

Gi
j(x)∂ij, Gi

j(x) ∈ PolN0

It is easy to verify that if X ∈ PolNk and Y ∈ PolMl , then the commutator

[X, Y ] ∈ PolN+M
k+l−1. The following non-degenerate condition is needed to get the

hypoellipticity of K.
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Definition 2 (Eckmann and Hairer [25]). A family {Ai}mi=1 of vector fields in Rn

with Ai = ∑n
j=1Aij∂j is called non-degenerate if there exist constants N and C

such that for all x ∈ Rn and every v ∈ Rn one has bound

‖v‖2 ≤ C(1 + ‖x‖2)N
m∑
i=1
〈Ai(x), v〉2

with 〈Ai(x), v〉 = ∑n
j=1Ai,j(x)vj.

The Lie algebra generated by the vector field Xi fulfilling the non-degenerate

condition leads to the hypoellipticity of K.

Proposition 1 (Eckmann and Hairer [25]). If the vector field {Xi}mi=0 satisfies

1. The vector field Xj with j = 0, · · · ,m belong to PolN1 and the function f

belongs to PolN0 .

2. There exits a finite number M such that the family of vector fields consist-

ing of {Xi}mi=1, {[Xi, Xj]}mi,j=0, {[Xi, [Xj, Xk]]}mi,j,k=0 and so on up to the

commutators of rank M is non-degenerate.

then the corresponding operator and K = ∑m
i=1X

T
i Xi + X0 + f and ∂t + K are

hypoelliptic operator (see definition in [26, 43]).

Condition 1 and 2 are called the poly-Hörmander condition. The hypoelliptic-

ity of the operator ∂t+K guaranteed the smoothness of the transitional probability

density associated with the Markovian semigroupM(t, 0) [24]. Moreover, the de-

veloped Hörmander analysis enables us to get a rather detailed estimate for the

spectrum of K. Before we get into this part, we first review some properties of

the operator K. As a differential operator with C∞, tempered (i.e. with all its

derivatives polynomially bounded) coefficients, K and its formal adjoint K∗ are

well-defined operators with domain S (Rn), where S (Rn) is the Schwarz space
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which is dense in Lp(Rn), 1 ≤ p < ∞. On the other hand, K and K∗ are both

closable operator on S (Rn), hence we always make a formal calculus in Lp(Rn),

i.e. every estimate obtained in this section is supposed to hold in S (Rn). The

actual operator are the closure of the operators defined in S (Rn). We now intro-

duce a family of weighted Sobolev space Sα,β, with α, β ∈ R. Sα,β is defined on

the space of tempered distribution S ′(Rn) as

Sα,β = {u ∈ S ′(Rn)|ΛαΛ̄βu ∈ L2(Rn)}.

where operator Λ2 = 1 − ∑n
i=1 ∂i = 1 − ∆, Λ̄2 = 1 + ‖x‖2. For α ∈ R, Λα is

interpreted as some pseudo-differential operator (see its definition and properties

in [26, 25, 39]). Sα,β is equipped with the scalar product

〈f, g〉α,β = 〈ΛαΛ̄βf,ΛαΛ̄βg〉L2

and the corresponding Sobolev norm ‖ · ‖α,β. With the above definitions, Eck-

mann and Hairer [25] were enable to get the following important estimates on the

operator K

Theorem 4.1.1 (Eckmann and Hairer [25]). Let K ∈ PolN2 is of the form (4.1)

and satisfies the poly-Hörmander condition. Moreover, the closure of K is a

maximal-accretive operator in L2(Rn) and for every ε > 0, there exit constants

δ > 0 and C > 0 such that

‖u‖δ,δ ≤ C(‖u‖0,ε + ‖Ku‖) (4.2)

for every u ∈ S (Rn), Moreover, if there exist constants δ > 0 and C > 0 such
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that

‖u‖0,ε ≤ C(‖u‖+ ‖Kyu‖), (4.3)

then K has compact resolvent when considered as an operator acting on L2(Rn),

whose spectrum σ(K) (in L2(Rn)) is contained in the cusp (see Figure 4.1):

SK = {z ∈ C|Re z ≥ 0, | Im z| < (8C1)M/2(1 + Re z)M} (4.4)

for some positive constant C1 and integer M .

Theorem 4.1.1 was proved in [26] using a modified version of the standard

Hörmander’s analysis. In particular, the following estimate was used to get the

cusp shape of the spectrum:

1
4 |z + 1|2/M‖u‖2 ≤ C1([1 + Re z]2‖u‖2 + ‖(K − z)u‖2), ∀Re z ≥ 0 (4.5)

Estimate (4.5) is the key result of the whole analysis and its importance cannot

be overemphasized. For a specific K corresponding to the Langevin dynamics.

Hèrau, Nier and Helffer [39, 38] used (4.5) to get the exponential convergence of

the semigroup e−tK for any initial condition u0 ∈ L2(Rn). This can be done for

generally defined K (4.1) by following the exact same procedure in [39, 38]. We do

not claim any originality of the following theorem, but for the sake completeness,

we still list the details of proof here.

Theorem 4.1.2. We assume that K satisifies all the conditions listed in Theorem

4.1.1. If the spectrum of K in L2(Rn) satisfies

σ(K) ∩ iR = σdis(K) ∩ iR ⊂ {0}, (4.6)
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Figure 4.1: Cusp containing the spectrum of K and QKQ.

and the possible eigenvalue 0 has finite algebraic multiplicity, then for any 0 <

α < min(Reσ(K)/{0}), there exits a positive constant C = C(α) such that the

estimate

‖e−tKu0 − u0u0‖ ≤ Ce−αt‖u0‖ (4.7)

holds for all u0 ∈ L2(Rn) and for all t > 0, where u0 is the spectral projection on

the kernel of K.

Proof. First we note that for closed, maximal-accretive operator K with densely

defined domain, the Lumer-Philips indicates operator K generates a contraction

semigroup e−tK in L2(Rn). The Schwarz space S (Rn) is proven [25, 39] to be the

core of the closed operator K. Hence by a simple approximation argument, one

can show that the hypoelliptic estimate (4.5) holds for any u ∈ L2(Rn).

According to Theorem 4.1.1, K only has discrete spectrum hence σ(K) =

σdisk(K). (4.6) requires that for K in L2(Rn), there is no spectrum on iR except the

possible eigenvalue 0 which is isolated and with finite algebraic multiplicity. With
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this condition, according to Theorem 6.1 in [38], we can get a weakly convergent

(in the sense that 〈e−tKu0, φ〉 for u0 ∈ L2(Rn) and φ ∈ D(K∗)) Dunford integral

representation of the semigroup e−tK , which is given by

e−tKu0 − u0u0 = 1
2πi

∫
∂S′K

e−tz(z −K)−1u0dz, (4.8)

where ∂S ′K = γint ∪ γext (see Figure 4.1), (z − K)−1 is the resolvent operator of

K. This formula allows us to transfer the semigroup estimation problem into the

estimate of a complex integral. To proceed, we need get an upper bound for the

resolvent (z − K)−1. According to the definition of SK, for all z 6∈ SK, Re z ≥ 0,

we have |z + 1|2/M ≥ (8C1)(1 + Re z)2. Plugging this formula in (4.5), we get for

all u ∈ L2(Rn) that

1
4 |z + 1|2/M‖u‖2 ≤ C1( 1

8C1
|z + 1|2/M‖u‖2 + ‖(K − z)u‖2), ∀Re z ≥ 0, z 6∈ SK

1
8 |z + 1|2/M‖u‖2 ≤ C1‖(K − z)u‖2.

Hence we conclude that ‖(K−z)−1‖ ≤
√

8C1|z+1|−1/M . We now rewrite Dunford

integral (4.8) as

1
2πi

∫
∂S′K

e−tz(z −K)−1u0dz = 1
2πi

∫
γint

e−tz(z −K)−1u0dz

+ 1
2πi

∫
γext

e−tz(z −K)−1u0dz.

Since (K − z)−1 is a compact operator, for any 0 < α < min(Reσ(K)/{0}) there

exits a constant Cα > 0 such that ‖(K−α)u‖ ≥ Cα‖u‖. On the other hand, since
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K is a real operator, for all z = α + iν 6∈ σ(K), ν ∈ R, we have

‖(K − α + iν)u‖2 = ‖(K − α)u‖2 + ν2‖u‖2 ≥ (C2
α + ν2)‖u‖2

⇒ ‖(K − α + iν)−1u‖ ≤ 1√
C2
α + ν2

‖u‖. (4.9)

This indicates in γint the resolvent (K − z)−1 is uniformally bounded by 1/Cα.

Hence for the first term in the right hand side, we have

∥∥∥∥ 1
2πi

∫
γint

e−tz(z −K)−1u0dz
∥∥∥∥ ≤ Ce−αt‖u0‖. (4.10)

For the region γext, we have for z = x+ iy ∈ γext, | Im z| = (8C1)M/2(1 + Re z)M .

On the other hand, for z 6∈ SK, the resolvent is bounded by ‖(K − z)−1‖ ≤
√

8C1|z + 1|−1/M . With these two estimates, for both M = 1 and M ≥ 2, we can

get that the second integral can be bounded as

∥∥∥∥ 1
2πi

∫
γext

e−tz(z −K)−1u0dz
∥∥∥∥

≤ C‖u0‖
∫ +∞

(8C1)M/2(1+α)M
exp{−t[(8C1)− 1

2y
1
M − 1]}y− 1

M dy

= C‖u0‖
∫ +∞

α
e−th(h+ 1)M−2dh

≤ Ce−αt‖u0‖
[1
t

+ 1
t2

+ · · · 1
tM

]
, t > 0. (4.11)

On the other hand, since e−tK is a dissipative semigroup and u0 is a projection

operator into the kernel of K, ‖e−tKu0−u0u0‖ = ‖e−tK(u0−u0u0)‖ ≤ ‖u0−u0u0‖.

Combining with estimate (4.10) and (4.11), one can find a constant C = C(α)

such that

‖e−tKu0 − u0u0‖ ≤ Ce−αt‖u0‖. (4.12)
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Another direct consequence of the estimate (4.5) is the convergence of the

formal power series expansion of the semigroup e−tK. This is an important feature

for stochastic system with generator K. It is still unclear whether the same result

holds for classical systems [103].

Corollary 4.1.2.1. Assuming that K satisfies all the conditions listed in Theorem

4.1.2, then for any observable u = u(x(t)) with initial condition u0 ∈ L2(Rn), the

formal power series expansion of the semigroup

e−(t+s)Ku0 =
+∞∑
n=0

(−s)n
n! e−tKKnu0 (4.13)

converges in operator norm for any t > 0, s > t.

Proof. For closed linear operator K, using the resolvent equation (z − K)−1K =

z(z − K)−1 − I, Cauchy’s integral theorem and Dunford integral representation

(4.8), we get

e−tKKu0 − u0(Ku0) = 1
2πi

∫
∂S′K

e−tz(z −K)−1Ku0dz (4.14)

= 1
2πi

∫
∂S′K

ze−tz(z −K)−1u0dz, (4.15)

which holds for any t > 0. When z locates in γint, |z| ≤ (α2 + (8C1)M(1 +

α)2M)1/2, Combined with the uniform boundedness of the resolvent (4.9), we have

the estimate for the first integral

∥∥∥∥ 1
2πi

∫
γint

e−tzz(z −K)−1u0dz

∥∥∥∥ ≤ Ce−αt‖u0‖ (4.16)

For the second integral in γext, |z| =
√
x2 + y2 =

√
[(8C1)−1/2|y|1/M − 1]2 + y2. To

109



get the convergence estimate of the complex integral, we only need to consider the

case when y is large enough such that |y|2/M < |y|2. 1 This leads to |z| ≤ C|y|.

Plugging in this estimate in the second complex integral, we get

∥∥∥∥ 1
2πi

∫
γext

zne−tz(z −K)−1u0dz

∥∥∥∥
≤ C‖u0‖

∫ +∞

(8C1)M/2(1+α)M
exp{−t[(8C1)− 1

2y
1
M − 1]}y1− 1

M dy

≤ C‖u0‖
∫ +∞

α
e−th(h+ 1)2M−2dh

≤ Ce−αt‖u0‖
[1
t

+ 1
t2

+ · · · 1
t2M−1

]
= B(t), t > 0. (4.17)

Combining (4.16) and (4.17), we can get that the Dunford integral (4.14) is

bounded by B(t). Using triangle inequality, for any fixed t > 0, n ∈ N+, we

have

∥∥∥e− t
n
KKu0

∥∥∥− | u0 (Ku0)| ≤
∥∥∥e− t

n
KKu0 − u0(Ku0)

∥∥∥ ≤ B ( t
n

)
.

Using operator identity e−tKKn = (e−tK/nK)n we will get

‖e−tKKnu0‖ ≤
∥∥∥e− t

n
KKu0

∥∥∥n ≤ (B ( t
n

)
+ | u0 (Ku0)|

)n
.

According to the definition of B(t), one can verify that for any fixed t > 0,

lim
n→+∞

1
n!

(
B
(
t

n

)
+ | u0 (Ku0)|

)n
= 0. (4.18)

Using the limit (4.18) and the Lagrangian remainder representation (see e.g. Page

104 [28]) for the residual of the truncated power series, one can get (4.13) converges

in operator norm for any t > 0, s > t.
1Otherwise since |z| and the resolvent of K are uniformly bounded in any finite length segment

of γext, the second complex integral within this segment can be shown to be bounded as (4.16)
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4.1.2 Estimate of QKQ

In this section, we aim to get the hypoelliptic estimate of operator QKQ.

QKQ appears in the EMZE/GLE as the generator of the orthogonal propagator

e−tQKQ. In principle, projection operator P can be chosen in an arbitrary way

to derive the corresponding EMZE, we refer readers to [103, 16] for a detailed

exploration. Here we are mainly concerned with compact, self-adjoint projection

operator P in Hilbert space L2. Mori’s projection is one of the examples. With

such P , we can get the cusp shape spectral estimate of QKQ.

Theorem 4.1.3. Assuming that K satisfies all the conditions listed in Theorem

4.1.1, then for compact, self-adjoint projection operator P : L2(Rn)→ L2(Rn), the

operator QKQ has compact resolvent, whose spectrum is contained in the exact

same cusp-shape region

SQKQ = {z ∈ C|Re z ≥ 0, | Im z| < (8CQ)MQ/2(1 + Re z)MQ}

for some the positive constants CQ and integer MQ.

Proof. We first verify that when a closely defined operator K is maximal-accretive,

so doesQKQ. According to Lumer-Philips theorem [28], the adjoint of a maximal-

accretive operator is accretive, therefore

Re〈Kf, f〉 ≥ 0, ∀f ∈ D(K)

Re〈K∗f, f〉 ≥ 0, ∀f ∈ D(K∗).

On the other hand, When P is a self-adjoint operator in L2(Rn), Q = I − P is
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also a self-adjoint operator and we can get

Re〈QKQf, f〉 = Re〈KQf,Qf〉 ≥ 0, ∀f ∈ D(K)

Re〈(QKQ)∗f, f〉 = Re〈K∗Qf,Qf〉 ≥ 0, ∀f ∈ D(K∗).

Hence QKQ and its adjoint operator QK∗Q are both accretive. QKQ is also

a closable operator defined in D(K). This can be seen if we decompose QKQ

as QKQ = K − KP − PKQ. When K is closed (using the formal calculus we

mentioned before), QKQ is also a closed operator since KP and PKQ are both

bounded operator (this will be proved immediately) (see [48]). Using the Lumer-

Philips theorem again, we shall get that QKQ is also maximal-accertive, whose

closure generates a contraction semigroup e−tQKQ in L2(Rn).

For the second step, we verify that when K satisfies the hypoelliptic estimate

‖u‖δ,δ ≤ C(‖u‖+ ‖Ku‖), so does QKQ. i.e.

‖u‖δ,δ ≤ C(‖u‖+ ‖QKQu‖). (4.19)

Using triangle inequality, we have

‖u‖δ,δ ≤ C(‖u‖+ ‖Ku‖) ≤ C(‖u‖+ ‖KPu‖+ ‖QKQu‖+ ‖PKQu‖)

To get (4.19), it is sufficient to show that KP and PKQ are bounded operator

in L2(Rn). Since the compact, self-adjoint operator is necessarily finite rank [42],

P admits a canonical form (see [42]) P(·) = ∑n
i=1 λi〈(·), φi〉ϕi, where {φi}ni=1 and
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{ϕi}ni=1 are linearly independent vector set in L2(Rn). With this, we have

‖KPu‖ =
∥∥∥∥∥
n∑
i=1

λi〈u, φi〉Kϕi
∥∥∥∥∥ ≤

n∑
i=1
|λi|‖Kϕi‖‖φi‖‖u‖ ≤ C‖u‖

‖PKQu‖ =
∥∥∥∥∥
n∑
i=1

λi〈KQu, φi〉ϕi
∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

λi〈u,QK∗φi〉ϕi
∥∥∥∥∥

≤
n∑
i=1
|λi|‖QK∗φi‖‖ϕi‖‖u‖ ≤ C‖u‖

On the other hand, since QKQ is accretive which makes (QKQ + 1) invertible,

we have

‖u‖δ,δ ≤ C(‖u‖+ ‖QKQu‖) ≤
√

2C‖(QKQ+ 1)u‖

⇒‖(QKQ+ 1)−1u‖δ,δ ≤
√

2C‖u‖

This indicates the operator (QKQ+1)−1 is bounded operator from L2 to Sδ,δ. On

the other hand, since Sδ,δ is compactly embedded into L2 (Lemma 3.2 [25]). The

operator (QKQ+ 1)−1 is compact therefore QKQ has compact resolvent [48].

To prove that the discrete spectrum of QKQ is contained in the cusp-like

region SQKQ, we simply follows the procedure in [25]. For K ∈ PolN2 , one have

for α = max{2, N} the bound

‖(K + 1)u‖ ≤ C‖u‖δ,δ, ∀u ∈ Sn

then for all u ∈ Sn, we also have

‖(QKQ+ 1)u‖ ≤ ‖Q‖(‖Ku‖+ ‖KPu‖) + ‖u‖

≤ C(‖Ku‖+ ‖u‖) ≤
√

2C‖(K + 1)u‖ ≤ C‖u‖δ,δ

Recall that QKQ : D(QKQ) → L2(R2d) is a maximal accretive operator, by
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Lemma 4.5 in [25], one can find for every δ > 0 and integer MQ > 0 and a

constant C such that

〈u, [(QKQ+ 1)∗(QKQ+ 1)]1/MQ〉 ≤ C‖u‖2
δ,δ. (4.20)

Using the hypoelliptic estimate (4.20), (4.19), the Prop.B.1 in [38] and the triangle

inequality for z = Re z + i Im z, we get

1
2 |z + 1|2/MQ‖u‖2 ≤ C‖u‖2

δ,δ + ‖(QKQ− z)‖2

≤ CQ([1 + Re z]2‖u‖2 + ‖(QKQ− z)u‖2).

Together with the compactness of the resolvent of QKQ, this implies that every

z in the spectrum of QKQ satisfies inequality

1
4 | Im z|2/MQ‖u‖2 ≤ 1

4 |z + 1|2/MQ‖u‖2 ≤ CQ(1 + Re z)2‖u‖2,

therefore the spectrum of QKQ is contained in the exact same cusp-shape region

SQKQ. Moreover, for z 6∈ SQKQ, we have resolvent estimate

‖(QKQ− z)−1‖ ≤
√

8CQ|z + 1|−1/MQ . (4.21)

Remark. The central argument used to prove Theorem 4.1.3 is that when P

is compact, self-adjoint projection operator, the hypoelliptic estimate (4.2) holds

for QKQ since both KP and PKQ are bounded operators. We remark that such

approach does not apply to non-compact, self-adjoint projection operators simply

because they are infinite-rank. A typical example is the conditional expectation,
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also known as the Zwanzig type projection operator that frequently used in the

Mori-Zwanzig framework [103, 17, 18, 110], the analysis of QKQ corresponding

to infinite rank projection operator would be very different, and probably much

harder. We leave it as an open problem awaiting further investigations.

With the resolvent estimate (4.21) for QKQ, by following the exact same

procedure in the proof of Theorem 4.1.2 and Corollary 4.1.2.1, we shall get the

semigroup estimate for e−tQKQ and the convergence of its power series expansion.

Theorem 4.1.4. We assume that K satisfies all the conditions listed in Theorem

4.1.1. If the spectrum of QKQ in L2 satisfies

σ(QKQ) ∩ iR = σdis(QKQ) ∩ iR ⊂ {0}. (4.22)

with the possible the eigenvalue 0 has finite algebraic multiplicity. Then for any

0 < αQ < min(Reσ(QKQ)/{0}), there exits a positive constant C = C(αQ) such

that the estimate

‖e−tQKQu0 − uQ0 u0‖ ≤ Ce−αQt‖u0‖ (4.23)

holds for all u0 ∈ L2 and for all t > 0, where uQ0 is the spectral projection on the

kernel of QKQ.

Corollary 4.1.4.1. Assume that K satisfies all the conditions listed in Theorem

4.1.2. Then for any initial u0 ∈ L2(Rn), the power series expansion of the semi-

group

e−(t+s)QKQu0 =
+∞∑
n=0

(−s)n
n! e−tQKQ(QKQ)nu0 (4.24)
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converges in operator norm for any t > 0, s > t.

The convergence result for power series expansion of the semigroup e−tK and

e−tQKQ is rarely seen in common semigroup perturbation theory since it holds for

all t > 0 and does not depend on any small paramters such as the time and the

magnititude of nonlinearity. An immediate consequence of this result is that any

first-principle calculation method based on the power series expansion of the semi-

group is convergent when expansion order N → +∞. Hence the combinatorial

method that would be proposed in Chapter 6 can be proven to be convergent when

applied to stochastic system (2.21) as long as P and K satisfy the required con-

ditions. From estimate (4.23), immediately we deduce the exponentially decaying

of the EMZE/GLE memory kernel as claimed in the abstract.

Corollary 4.1.4.2. For any scalar observable function u = u(x(t)) with the initial

condition u(0) = u0, the memory kernel of the Mori-type EMZE/GLE exponen-

tially decays to constant 〈QK∗u0,uQ0 (Ku0)〉 with rate αQ, i.e. there exists positive

constants C such that

|K(t)− 〈QK∗u0,uQ0 (Ku0)〉| ≤ Ce−αQt. (4.25)

The same estimate holds for the entries of the memory matrix (2.35c) for vector

form EMZE/GLE.

Proof. It is sufficient to consider the one-dimensional GLE with a scalar memory

kernel K(t). According to the definition (2.35c), we have

|K(t)− 〈QK∗u0,uQ0 (Ku0)〉| = |〈u0,KetQKQQKu0〉 − 〈QK∗u0,uQ0 (Ku0)〉|

= |〈QK∗u0, e
tQKQKu0〉 − 〈QK∗u0,uQ0 (Ku0)〉| (4.26)
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Since uQ0 is an projection operator, uQ0 (Ku0 − uQ0 (Ku0)) = 0. Using estimate

(4.23),(4.26) and Cauchy-Schwartz inequality, we get

|K(t)− 〈QK∗u0,uQ0 (Ku0)〉| ≤ C‖QK∗u0‖‖Ku0 − uQ0 (Ku0)‖e−αQt. (4.27)

Using the formal expression of the memory matrix (2.35c), one can easily get that

similar results hold entry-wise for vector form EMZE/GLE.

4.2 Applications

All the results we obtained in Section 4.1 are based on pure functional anal-

ysis. In this section, we provide examples of operator K and QKQ arising from

Langevin dynamics, and then get the exact exponentially decaying estimate for

corresponding semigroups and the memory kernel. Specifically, we will focus our

discussion on how to determine the spectral projector uQ0 and the kernel of QKQ,

which turns out to be a more tricky question than the common case for operator

K.

4.2.1 Application to Langevin dynamics

The Langevin dynamics is a system of SDEs in R2d
p,q with the equation of

motion:


dq = 1

m
pdt

dp = −∇V (q)dt− γ

m
pdt+ σdWt,

(4.28)

where Wt is a d-dimensional Wiener process. The parameters γ and σ represent

the magnitude of the fluctuations and of the dissipation respectively, and are
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linked by the fluctuation-dissipation relation σ = (2γ/β)1/2, where β ∝ 1/T

is the thermodynamic parameter. The Langevin dynamics is frequently used

in statistical mechanics to model the mesoscopic scale dynamics of liquids and

gases. Another coarse-grained model, the overdamped Langevin equation, can be

obtained from the Langevin dynamics (4.28) by letting the mass m go to zero

and by setting γ = 1. Hence the analysis we are going to present holds for the

overdamped case in a natural way. For SDE (4.28), The position and momentum

{qt, pt} define a Markov processM(t, 0) with the generator

−K = p

m
· ∇q −∇qV (q) · ∇p + γ(− p

m
∇p + β−1∆p), (4.29)

where · denotes the vector product. For potential energy satisfying V (q) > 0 at

∞, the Langevin equation (4.28) admits an unique invariant distribution given by

the Gibbs form ρeq = e−βH(p,q)/Z with H(p, q) = 1
2m‖p‖

2 + V (q) and Z being the

partition function. To formulate the estimation problem in a suitable framework,

we introduce the standard unitary transformation U : L2(R2d) → L2(R2d, ρeq)

given by the formula

(Ug)(p, q) =
√
Ze

β
2Hg(p, q) (4.30)

where L2(ρeq) is weighted Hilbert space endowed with inner product 〈f, g〉eq =∫
fgρeqdpdq. The map U : L2(R2d) → L2(R2d, ρeq) introduces an isomorphism

between these two Hilbert spaces, and for any ũ ∈ L2(R2d), there is an unique

u ∈ L2(R2d, ρeq) such that ũ = (e−βH/2/
√
Z)u and

‖ũ‖L2 = ‖u‖L2
eq
. (4.31)
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By some simple calculation, one can verify that the transformed Kolmogorov-type

operator K̃ = U−1KU is explicitly given by

K̃ = − p

m
· ∇q +∇V (q) · ∇p + γ

β

(
−∂pi + β

2mpi

)
·
(
∂pi + β

2mpi

)
(4.32)

which can be written in the canonical form K̃ = ∑d
i=1X

∗
iXi −X0, with

X0 = p

m
· ∇q −∇V (q) · ∇p

Xi =
√
γ

β
(∂pi + β

2mpi)

X∗i =
√
γ

β
(−∂pi + β

2mpi) (4.33)

where X0 is skew-adjoint (Liouville) operator in L2(R2d) satisfying X∗0 = −X0.

X∗i and Xi can be interpreted as the creation and annihilation operator of a

quantum harmonic oscillator. Naturally the adjoint operator of K̃ is given by

K̃∗ = ∑d
i=1X

∗
iXi +X0. K̃ and its formal adjoint K̃∗ are proven [39, 38, 24] to be

accretive, closable operators, with maximally accretive closure in L2(Rn). We use

the same notation for the closure of K and K∗. The domain of the closed K, K∗

are given by

D(K) = {u ∈ L2(Rn),Ku ∈ L2(Rn)},

D(K∗) = {u ∈ L2(Rn),K∗u ∈ L2(Rn)}.

The projection operator P and Q used in the Mori-Zwanzig formulation can also

be similarly transformed into the operators on flat Hilbert space L2(R2d) as P̃

and Q̃. The relationship between L2(R2d), L2(R2d, ρeq) and the operators defined
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therein can be summarized in the following commutative diagram

L2(R2d) L2(R2d, ρeq)

L2(R2d) L2(R2d, ρeq)

P̃ , K̃, Q̃

U

U−1

P ,K,Q

(4.34)

The properties of operators defined in these two Hilbert spaces are almost the same

due to the unitarity of the transformation operator U . For instance, for compact,

self-adjoint projection operator P ,Q in L2(R2d, ρeq), their L2(R2d) correspondence

P̃ , Q̃ are also compact, self-adjoint projection operators.

We have seen that the transformed Kolmogorov operator K̃ is now defined in

L2(R2d) and can be written in the canonical form K̃∗ = ∑d
i=1X

∗
iXi +X0. To use

the analytical results in Section 4.1.1 and 4.1.2, one only need to verify for SDE

(4.28) whether {Xi}di=0 satisfies the poly-Hörmander condition and estimate (4.3).

This can be done by imposing some additional, normally rather weak assumptions

on the potential energy V (q), and then follow the steps in Prop. 3.7 [24] to get

(4.3). To focus more on the analyis of the operator QKQ we shall not follow

this routine since it requires the proof (4.3), instead we use the following results

obtained by Hérau, Nier and Helffer in [38, 39] which holds for Langevin dynamics

specifically. In accordance with [38], we assume V (q) satisfies the following weak

ellipticity hypothesis:

Hypothesis 1. The potential V (q) belongs to C∞(Rd) and satisfies:

1. ∀α ∈ Nd, |α| = 1, ∀q ∈ Rd, |∂αq V (q)| ≤ Cα
√

1 + ‖∇V (q)‖2 for some constant

Cα > 0.

2. ∃M,C ≥ 1, ∀q ∈ Rd, C−1〈q〉1/M ≤
√

1 + ‖∇V (q)‖2 ≤ C〈q〉M
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where we used the multi-index notation ∂αq and 〈q〉 = (1 + ‖q‖2)1/2.

Hypothesis 1 holds for any potential energy grows as V (q) ' ‖q‖M when

q → ∞. With this hypothesis, Helffer and Nier proved the following theorem in

[38]:

Proposition 2 (Helffer and Nier [38]). For Langevin dynamics (4.28) with po-

tential energy function V (q) satisfying Hypothesis 1, operator K̃ has compact re-

solvent, with the spectrum bounded by SK. In addition, there exists a positive

constant C = C(α) such that the estimate

‖e−tK̃u0 − ũ0ũ0‖ ≤ Ce−αt‖ũ0‖ (4.35)

holds for all ũ0 ∈ L2(R2d) and for all t > 0, where ũ0 is the orthogonal projection

onto the kernel of K̃ in L2(R2d), which is given by Ker(K̃) = Re−βH/2.

Proposition 2 can be rewritten in L2(R2d, ρeq). With the unitary transforma-

tion (4.30), naturally we get the L2(R2d, ρeq) equivalence of the estimate (4.35):

‖e−tKu0 − u0u0‖L2
eq

= ‖e−tK̃ũ0 − ũ0ũ0‖L2 ≤ Ce−αt‖ũ0‖L2 = Ce−αt‖u0‖L2
eq
.

(4.36)

u0 = Uũ0U−1 is the orthogonal projection onto linear subspace 1 with respect

to L2(R2d, ρeq) norm, which has the simple form u0(·) = E[(·)]. For Langevin

dynamics, it is possible to get a prior estimate on the convergence rate α by

building connections between the Kolmogorov operator and the Witten Laplacian.

In [39], Hèrau and Nier specifically discussed the asymptotics of α at the low

temperature (β → ∞) and the high temperature (β → 0) regime. Readers may

refer to [39, 38] for more details. Estimate (4.5) was proved for Langevin dynamics
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in [39] using a different method, from which one can get the convergence of the

power series expansion of e−(t+s)K for any t > 0, s > t.

Our next task is to get estimate of QKQ. For compact, self-adjoint projection

operator P , according to Theorem 4.1.3, the spectrum of Q̃K̃Q̃ is bounded by

SQ̃K̃Q̃. With Theorem 4.1.4, to get the exponential convergence estimate of e−tQ̃K̃Q̃

(or e−tQKQ), we need to verify that operator Q̃K̃Q̃ satisfies (4.22). But before that,

we need to determine the exact form of the spectral projection ũQ̃0 . This turns

out to be a tricky question for Q̃K̃Q̃. As we will see, the kernel of Q̃K̃Q̃ is multi-

dimensional and depends on the definition of P . We use the following Mori-type

projection operator P and its L2(R2d) correspondence P̃ = U−1PU as an example

to explicitly calculate the kernel of Q̃K̃Q̃

P(·) :=
N∑
i=1
〈(·), fi(q)〉eqfi(q) P̃(·) :=

N∑
i=1
〈(·), fi(q)〉eq/2fi(q)e−βH/2. (4.37)

Here we used the shorthand notation 〈·〉eq/2 =
∫
e−βH/2dpdq/Z. fj(q) is an arbi-

trary scalar function of the position q ∈ Rd. Moreover, we assume that {fj(q)}Nj=1

form an orthonormal basis of span{fj(q)} with respect to ρeq and 〈fj(q)〉eq = 0.

The assumption holds without loss of generality since when using EMZE/GLE to

study the dynamics of observable {fj(q)}Ni=1, it is equivalent to study the linearly

transformed {f̂j(q)}Ni=1 which satisfies aforementioned conditions. For operator

Q̃K̃K̃, we have the following facts:

Lemma 4.2.1. For Langevin dynamics (4.28) with potential energy function V (q)

satisfying Hypothesis 1, if we introduce a projection operator P̃ defined as (4.37),
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then

Ker(Q̃K̃Q̃) = Ker(K̃)⊕ Id(P̃) (4.38)

σ(Q̃K̃Q̃) ∩ iR = σdis(Q̃K̃Q̃) ∩ iR ⊂ {0}. (4.39)

where Id(P̃) is the finite dimensional linear space defined as Id(P̃) := {u ∈

L2(R2d)|P̃u = u}.

Proof. We first prove (4.38). For u ∈ Ker(Q̃K̃Q̃), Q̃K̃Q̃u = 0. u can only

be one of the following three cases: i) Q̃u = 0, ii) Q̃u 6= 0, K̃Q̃u = 0 and iii)

Q̃u 6= 0, K̃Q̃u 6= 0, Q̃K̃Q̃u = 0. Now we discuss these cases separately.

Case 1. When Q̃u = 0, immediately we have P̃u = u− Q̃u = u, this indicates

u ∈ Id(P̃).

Case 2. When Q̃u 6= 0, K̃Q̃u = 0, naturally we get Q̃u ∈ Ker(K̃). We first

prove Q̃u ∈ Ker(K̃)⇒ u ∈ Id(P̃)⊕Ker(K̃). Since P̃ is defined as (4.37), which

is an orthogonal, finite rank projection in L2(Rn), we have Id(P̃) = Ran(P̃) =

span{fi(q)e−βH/2}Ni=1. With these two facts, we may rewrite the suitable u as

u = P̃u+ Q̃u =
N∑
i=1

cifi(q)e−βH/2 + c′e−βH/2 ∈ Id(P̃)⊕Ker(K̃), ci, c
′ ∈ R

We now verify when u ∈ Id(P̃) ⊕ Ker(K̃), K̃Q̃u = 0, i.e. Q̃u ∈ Ker(K̃), Since

Id(P̃) = Ran(P̃), u admits the general form u = ∑N
i=1 cifi(q)e−βH/2 + c′e−βH/2,

ci, c
′ ∈ R, we have

Q̃u = u− P̃u = c′e−βH/2 − c′P̃e−βH/2 = c′e−βH/2 ∈ Ker(K̃)⇒ K̃Q̃u = 0.
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Case 3. When Q̃u 6= 0, K̃Q̃u 6= 0 and Q̃K̃Q̃u = 0. For u satisfies these

conditions, we have

〈Q̃K̃Q̃u, u〉 = 〈K̃Q̃u, Q̃u〉 = 0, Q̃u 6= 0, K̃Q̃u 6= 0. (4.40)

Now we set g = Q̃u. Equivalently we have for g that 〈K̃g, g〉 = 0, g 6= 0, K̃g 6= 0.

This indicates Re〈K̃g, g〉 = ∑d
i=1〈Xig,Xig〉 = 0, which requires g belonging to the

kernel space of all annihilation operators Xi, 1 ≤ i ≤ d. Therefore g must be of

the form g = µ(q)e− β
4m‖p‖

2 . On the other hand, since Q̃K̃Q̃u = Q̃K̃g = 0, we shall

get that P̃K̃g = K̃g. By plugging in the general form of g into this expression, we

obtain

K̃g = X0g =
d∑
i=1

pi

[
1
m
∂qiµ(q)− β

2mµ(q)∂qiV (q)
]
e−

β
4m‖p‖

2

=
d∑
i=1

[F (q)]ipie−
β

4m‖p‖
2 (4.41)

P̃K̃g =
N∑
i=1
〈K̃g, fi(q)〉eq/2fj(q)e−

β
2 V (q)e−

β
4m‖p‖

2 (4.42)

Since F (q) is a d-dimensional vector function of the position q, for projection

operator P̃ defined as (4.37), it is easy to get that equation (4.41)=(4.42) only

when K̃g = 0, which contradicts the assumption K̃Q̃u 6= 0. Hence we conclude

that there is no u such that Q̃K̃Q̃u = 0 while Q̃u 6= 0 and K̃Q̃u 6= 0.

Combining these three cases, we can get that the kernel of operator K̃Q̃K̃ is

given by finite dimensional linear space Ker(K̃)⊕ Id(P̃).

(4.39) claims that the only eigenvalue that operator Q̃K̃Q̃ has in iR is the

origin. i.e. for all u in real Hilbert space L2(R2d) satisfying Q̃K̃Q̃u = iλu for

λ ∈ R, we have λ = 0. To see this, we choose g = Q̃u, Q̃K̃Q̃u = iλu implies

Re〈Q̃K̃Q̃u, u〉 = Re〈K̃g, g〉 = 0, which again implies g = µ(q)e− β
4m‖p‖

2 . Since g
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is a real function and X0 a real operator, we have Im〈K̃g, g〉 = Im〈X0g, g〉 = 0.

Hence when Q̃K̃Q̃u = iλu for λ ∈ R, we must have λ = 0.

We use (4.37) as an example to show the kernel of QKQ is given by Ker(K)⊕

Id(P). In fact, for other Mori-type projection operators associated with observ-

ables different from {fj(q)}Ni=1, it is quite rare that the kernel of QKQ is not

Ker(K) ⊕ Id(P) simply because equation (4.41)=(4.42) in Case 3 mostly hold

only when K̃g = 0. Thus we can roughly claims that Lemma 4.2.1 are almost

always true for Mori-type projection operator. However, we must emphasize it

is possible to have (4.41)=(4.42) when K̃g 6= 0, such that dim(Ker(QKQ)) >

dim(Ker(K) ⊕ Id(P). This happens when P are projectors to pj. For instance,

if P , P̃ are defined as

P(·) = 〈(·), pj〉eqpj P̃(·) = 〈(·), pj〉eq/2pje−βH/2 (4.43)

Then for Case 3, we have

K̃g =
d∑
i=1

[F (q)]ipie−
β

4m‖p‖
2 (4.44)

P̃K̃g = 〈K̃g, pj〉eq/2pje−
β
2 V (q)e−

β
4m‖p‖

2 (4.45)

where g = Q̃u. Equation (4.44) = (4.45) when the following ODE system admits

a non-zero solution µ(q)


[F (q)]i = 0, i 6= j

[F (q)]j = 〈[F (q)]j, pj〉eq/2e−
β
2 V (q), i = j

(4.46)

(4.46) is composed of a system of linear ODEs and a linear integro-differential

equation. Hence for some suitable V (q), it admits non-zero solution µ(q). By
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solving another linear equation u = P̃u + g, one may get a non-zero u such that

Q̃K̃Q̃u = 0 while Q̃u 6= 0 and K̃Q̃u 6= 0. This special case needs to be taken care

of when discussing the behaviour of the memory kernel. Since dim(Ker(QKQ)) >

dim(Ker(K)⊕ Id(P), K(t) will no longer converge to E[Ku0]E[QK∗u0] as it usu-

ally does (see Corollary 4.2.1.1). With Lemma 4.2.1, we get the following expo-

nential convergence estimate for semigroup e−tQKQ.

Proposition 3. For Langevin dynamics (4.28) with potential energy function

V (q) satisfying Hypothesis 1, there exits a positive constant C = C(αQ) such

that the estimate

‖e−tQKQu0 − uQ0 u0‖L2
eq
≤ Ce−αQt‖u0‖L2

eq
(4.47)

holds for all u0 ∈ L2(R2d, ρeq) and for all t > 0. In (4.47), P is a finite rank

projection operator defined as (4.37), uQ0 is the orthogonal projection on linear

space Ker(K)⊕ Id(P), with the specific form

uQ0 (·) = u0(·) + P(·) (4.48)

unique up to isomorphism.

Proof. We still perform analysis on the flat Hilbert space L2(R2d). The L2(R2d)

equivalent of the estimate (4.23) is given by

‖e−tQKQu0 − uQ0 u0‖L2
eq

= ‖e−tQ̃K̃Q̃ũ0 − ũQ̃0 ũ0‖L2 ≤ Ce−αQt‖ũ0‖L2 = Ce−αt‖u0‖L2
eq

(4.49)

where ũQ̃0 = U−1uQ0 U . According to Proposition 2, The transformed Kolmogorov

operator K̃ is of the form (4.1), which has compact resolvent and cusp shape
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spectrum. Then by Theorem 4.1.3 (P̃ is a finite rank projection in L2(R2d)),

the operator Q̃K̃Q̃ has the same properties. Theorem 4.1.4 can be used to get

estimate (4.47) after we verify the following facts

1. The spectral projection appeared in Theorem 4.1.4 can be replaced by an

projection operator ũQ̃0 in L2(R2d), which projects any u ∈ L2(R2d) on linear

subspace Ker(Q̃K̃Q̃), i.e., Ran(ũQ̃0 ) = Ker(Q̃K̃Q̃) = Id(P̃)⊕Ker(K̃).

2. uQ0 is an orthogonal operator in L2(R2d, ρeq) and given by the form (4.48),

which is unique up to isomorphism.

Claim 1. We notice that for self-adjoint operator P̃ , Id(P̃) = Id(P̃∗). In [38],

Nier and Helffer already showed that Ker(K̃) = Ker(K̃∗) = Re−βH. Hence we

shall get

Ker(Q̃K̃Q̃) = Ker(Q̃K̃∗Q̃) = Ker(K̃)⊕ Id(P̃) (4.50)

We now consider the orthogonal decomposition of the Hilbert space L2(R2d)

L2(R2d) = Ker(Q̃K̃Q̃)
⊥
⊕Ker(Q̃K̃Q̃)⊥,

If we define a projection operator uQ̃0 such that Ran(uQ̃0 ) = Ker(Q̃K̃Q̃), then for

any u0 ∈ L2(R2d), we have the orthogonal decomposition

ũ0 = uQ̃0 ũ0 + (ũ0 − uQ̃0 ũ0), where uQ̃0 ũ0 ∈ Ker(Q̃K̃Q̃), ũ0 − uQ0 ũ0 ∈ Ker(Q̃K̃Q̃)⊥

We now verify that Q̃K̃Q̃ maps linear subspace Ker(Q̃K̃Q̃)⊥ into itself, i.e. for

any u ∈ Ker(Q̃K̃Q̃)⊥, Q̃K̃Q̃u ∈ Ker(Q̃K̃Q)⊥. For any w ∈ Ker(Q̃K̃Q̃), since
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Ker(Q̃K̃Q̃) = Ker(Q̃K̃∗Q̃), we have

〈Q̃K̃Q̃u,w〉 = 〈u, Q̃K̃∗Q̃w〉 = 0

When u ∈ Ker(Q̃K̃Q̃)⊥, Q̃K̃Q̃u 6= 0, hence we must have Q̃K̃Q̃u ∈ Ker(Q̃K̃Q̃)⊥.

In general, we can verify that the evolution operator Q̃K̃Q̃ and its adjoint Q̃K̃∗Q

can be decomposed as

Q̃K̃Q̃ = Q̃K̃Q̃
∣∣∣
Ker(Q̃K̃Q̃)

⊥
⊕ Q̃K̃Q̃

∣∣∣
Ker(Q̃K̃Q̃)⊥

Q̃K̃∗Q̃ = Q̃K̃∗Q̃
∣∣∣
Ker(Q̃K̃Q̃)

⊥
⊕ Q̃K̃∗Q̃

∣∣∣
Ker(Q̃K̃Q̃)⊥

Combined with the fact that ũQ̃0 is a projection operator therefore (ũQ̃0 )2 = ũQ̃0 ,

for initial condition ũ0 − uQ0 ũ0 ∈ Ker(Q̃K̃Q̃)⊥ we can deform the boundary of

Dunford integral from [−i∞,+i∞] to the S ′Q̃K̃Q̃ as we did in Theorem 4.1.2. This

leads to

etQ̃K̃Q̃ũ0 − ũQ̃0 ũ0 = etQ̃K̃Q̃(ũ0 − ũQ̃0 ũ0) = 1
2πi

∫
∂S′
Q̃K̃Q̃

e−tz(z − Q̃K̃Q̃)−1ũ0dz.

Following the exact same procedure in Theorem 4.1.2 and 4.1.3, we can get semi-

group estimate (4.47).

Claim 2. Equivalently, we prove ũQ̃0 is an orthogonal operator in L2(R2d) and

given by the form

ũQ̃0 (·) = ũ0(·) + P̃(·) = 〈·〉eq/2e−βH/2 +
N∑
i=1
〈(·), fi(q)〉eq/2fi(q)e−βH/2. (4.51)
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Since ũQ̃0 and its L2 adjoint operator [ũQ̃0 ]∗ are both projection operator, the

Hilbert space L2(R2d) can be decomposed as

L2(R2d) = Ker(ũQ̃0 )⊕Ran(ũQ̃0 ), L2(R2d) = Ker([ũQ̃0 ]∗)⊕Ran([ũQ̃0 ]∗)

It follows from (4.50) that Ran(ũQ̃0 ) = Ran([ũQ̃0 ]∗) = Ker(Q̃K̃Q̃). This also

implies Ker(ũQ̃0 ) = Ker([ũQ̃0 ]∗). Since for any u,w ∈ L2(R2d), w − ũQ̃0 w ∈

Ker(ũQ̃0 ), we have

〈ũQ̃0 u,w − ũ
Q̃
0 w〉 = 〈u, [ũQ̃0 ]∗(w − ũQ̃0 w)〉 = 0.

Therefore ũQ̃0 is an orthogonal operator. On the other hand, since Id(P̃) =

Ran(P̃) and P̃ itself is an orthogonal operator, the projection ũQ̃0 is therefore

given by the form (4.51) (unique up to isomorphism), which has adjoint given by

(4.48).

Using the same approach, we can prove that the power series expansion of the

orthogonal semigroup e−tQKQ converges in operator norm for any t > 0. On the

other hand, since the kernel of QKQ is determined, we can get an exact estimate

for the exponentially decaying memory kernel.

Corollary 4.2.1.1. For Langevin dynamics (4.28) with potential energy func-

tion V (q) satisfying Hypothesis 1, if we introduce a Mori-type projection oper-

ator P associated with scalar observable u = u(x(t)) such that Ker(QKQ) =

Ker(K) ⊕ Id(P), then the memory kernel of (2.35c) exponentially converges to

E[Ku0]E[QK∗u0] with rate αQ. i.e.

|K(t)− E[Ku0]E[QK∗u0]| ≤ Ce−αQt. (4.52)
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The same estimate holds for the entries of the memory matrix (2.35c) for vector

form EMZE/GLE.

Proof. With estimate (4.25) and definition (4.48), using the fact that PQ = 0 we

shall get the result.

Some open problems The mathematical framework we used to study the

EMZE was based on the Hörmander analysis of hypoelliptic operator K. We

believe the philosophy and methodology of revising the estimate of K, e−tK to get

similar results for QKQ, e−tQKQ is applicable to other stochastic systems. Beside

the theoretical extension in this direction, here we give some possible developments

of this work that are closely related with the Mori-Zwanzig theory itself.

1. Estimate of convergence rate αQ: The real part of the first non-zero eigen-

value of QKQ corresponds to the maximum convergence rate αQ of the

semigroup e−tQKQ and MZ memory kernel. For operator K, Hèrau and Nier

[39] already show that the convergence rate α is closely related with the

lowest positive eigenvalue of the corresponding Witten Laplacian. It would

be very meaningful if some connection can be built between α and αQ. For

instance, numerical simulations of classical Hamiltonian systems have shown

the memory kernel often converges faster than the dynamics which indicates

a relationship αQ < α. If such estimate can be verified by analysis, then

we would justify the utility of the MZ framework from a theoretic point of

view.

2. Analysis for Zwanzig-type projection operator: Zwanzig-type conditional

expectation is another frequenty used projection operator within the MZ

framework. However, an useful methodology for the systematic treatment

of Zwanzig -type MZ equation is lacking for a rather long time in the com-
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munity. Most theoretical results, including the well-posedness study in [34]

and what we obtained in [103] and this paper, focus on Mori-type MZ equa-

tion. As we mentioned before, for an infinite rank projection operator like

Zwanzig’s projection, one can not get useful estimates for QKQ simply by

revising the analytic results of the kinetic equation. New ideas are needed

in this direction.

3. (Effective) Mori-Zwanzig theory for SDE driven by fractional Brownian mo-

tion (FBM): In nonequilibrium statistical mechanics, fractional Brownian

motion was introduced to model complex dynamics with anomalous long-

time behavior [5, 21]. It would be interesting to see if one can use a similar

method as in Secion 2.2 and 2.3 to derive the MZ and effective MZ equation

for the FBM system.

4.2.2 Comparison with the classical dynamics

Combined with the conclusions we obtained in Chapter 3, we summarized the

analysis results of the Mori-Zwanzig equation for the classical and Langevin dy-

namics of a Hamiltonian system. We have found that the analytical properties of

the evolution operator for the full and the orthogonal dynamics are closely related

with the spectrum of the semigroup generator G, which exhibits different features

for linear and nonlinear dynamics. Generally speaking, the spectral properties

of the Liouville operator L make the classical dynamics harder to study both

theoretically and numerically. The generic continuity of the spectrum indicates

that the exponential convergence results do not hold for a general classical dy-

namical system. In fact, even for the linear case where the spectrum is discrete,

‖etL − u0‖eq does not converge to 0 exponentially. A typical example is the har-

monic oscillator chain model studied in [104, 33], the velocity correlation function
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Table 4.1: Spectrum of the generator G and the analytical properties of semi-
group e−tG, e−tQGQ. ∼ means the same as the previous column.

Name Classical dynamics Stochastic dymamics

Generator G Liouville operator L Kolmogorov operator K

System type Linear Nonlinear Linear Nonlinear

Spectrum of G σ(L) ∈ iR
discrete

σ(L) ∈ iR
continuous2 Cone,discrete Cusp,discrete

e−tG ‖e−tL‖eq ≤ 1 ∼ ‖e−tK − u0‖eq
≤ Ce−αt ∼

e−tQGQ ‖e−tQLQ‖eq ≤ 1 ∼ ‖e−tQKQ − uQ0 ‖eq
≤ Ce−αQt

∼

Memory Kernel |K(t)| ≤ C ∼
|K(t)−

〈QK∗u0,uQ0 (Ku0)〉|
≤ Ce−αQt

∼

Semigroup
Taylor expansion

Convergent
if u0 ∈ {xi0}di=1

Convergent
if t→ 0

Convergent
if t > 0, s > t

∼

of tagged oscillator is given by a first kind Bessel function J0(2t), which decays to

0 slower than any exponential function.

For the Langevin dynamics, the spectrum for Kolmogorov operator K is dis-

crete and bounded in a subset of the right half complex plane, which lead to

the ergodicity and exponential convergence of the Markovian semigroup. This

makes the Langevin dynamics an easier mathematical object to dealt with from

both theoretical and computational point of view. However, this also means that

it cannot be used to simulate systems which exhibit very clear non-exponential

decaying features, such as the supercooled liquid [81].

4.3 Summary

In this chapter, we provide a systematic way to study the orthogonal propaga-

tor etQKQ in the EMZE based on the established theory of Hörmander analysis for
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linear hypoelliptic equations. In particular, we proved that for suitable P and K,

the spectrum of operator QKQ locates within a cusp shape region in the complex

plane, and the analytic method used to deduce the exponential convergence to

equilibrium for Fokker-Planck equation can applied to get the exponential conver-

gence of the MZ memory kernel. On the other hand, the convergence of the power

series expansion we obtained for semigroup etK, etQKQ confirmed the convergence

of the combinatorial algorithm (for the first time) we introduced in [105] when it

is applied to stochastic system (2.21). The abstract theory is applied to Langevin

dynamics to get specific convergence results. Through these discussions, we wish

to convey the following messages:

1. The properties of the orthogonal propagator etQGQ and its generator QGQ

are closely related with the propagator etG for original dynamics and its

generator G. We believe other analytical results obtained for the general

kinetic equation (1.1) can be extended to get similar results for etQGQ, at

least for Mori’s projection operator.

2. Although formally simpler, the dynamical properties of the classical system

are more complicated than the stochastic system since the general ergodicity

for the first one is lacking. Corresponding, the analysis of the MZ equation

for the classical dynamics would be harder for the stochastic case due to the

spectrum differences of the generator G and QGQ.
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Chapter 5

Faber approximation of the MZE

In previous chapters, we introduced the Mori-Zwanzig equation for classical

and stochastic dynamical systems and used functional analysis to get some prior

estimations on the MZ memory integral. From this chaper, we turn to the study

of the MZ equation from a computational point of view. Generally speaking, com-

puting the solution to the MZ equation is a very challenging task that relies on

approximations and appropriate numerical schemes. One of the main difficulties

is the approximation of the memory integral (convolution term), which encodes

the effects of the so-called orthogonal dynamics in the observable of interest. The

orthogonal dynamics is essentially a high-dimensional flow that satisfies a com-

plex integro-differential equation. In statistical systems far from equilibrium, such

flow has the same order of magnitude and dynamical properties as the observable

of interest, i.e., there is no scale separation between the observable of interest

and the orthgonal dynamics. In these cases, the computation of the MZ memory

can be addressed only by problem-class-dependent approximations. In Chapter

3, we have introduced various approximations to the MZ memory integral such as

the t-model, Ht-model[15, 18, 85, 13] and th hierarchical perturbation methods

[87, 96]. In this chapter, we will propose a new approximation of the MZ equation
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based on global operator series expansions of the orthogonal dynamics propagator.

In particular, we study the Faber series, which yields asymptotically optimal ap-

proximations converging at least R-superlinearly with the polynomial order. The

advantages of expanding the orthogonal dynamics propagator in terms of glob-

ally defined operator series are similar to those we obtain when we approximate

a smooth function in terms of orthogonal polynomials rather than Taylor series.

As we will see, the proposed MZ memory approximation method based on global

operator series outperform in terms of accuracy and computational efficiency the

hierarchical memory approximation techniques discussed in Chapter 3 which are

based on Taylor-type expansions.

5.1 New Approximation of the MZ Memory In-

tegral

In this section, we develop new approximations of the Mori-Zwanzig memory

integral ∫ t

0
PesLPLe(t−s)QLQLu0ds (5.1)

based on series expansions of the orthogonal dynamics propagator etQL in the

form

etQL =
∞∑
n=0

an(t)Φn (QL) , (5.2)

where Φn are polynomial basis functions, and an(t) are temporal modes. Series

expansions in the form (5.2) can be rigorously defined in the context of matrix

theory [65, 66], i.e., for operators QL between finite-dimensional vector spaces.

The series expansion (5.2) needs to be handled with care if L is an unbounded

operator, e.g., the generator of the Koopman semigroup (2.3) (see [48], p. 481).
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In this case, etL should be properly defined as

etL = lim
q→∞

(
1− tL

q

)−q
.

In fact, (1− tL/q)−1 is the resolvent of L (modulus a constant factor), which

can be rigorously defined for both bounded and unbounded operators. Despite

theoretical issues associated with the existence of convergent series expansions of

semigroups generated by unbounded operators [28, 48], when it comes to comput-

ing we always need to use a finite dimensional Hilbert space H and consider the

approximated dynamics etQL : H → H within H. In this setting, etQL is truly a

matrix exponential, which can be expanded as in (5.2).

5.1.1 MZ-Dyson Expansion

Consider the classical Taylor series expansion of the orthogonal dynamics prop-

agator

etQL =
∞∑
n=0

tn

n! (QL)n. (5.3)

A substitution of this expansion into the MZ equation (2.6) yields

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
PesLPLe(t−s)QLQLu0ds,

= PetLPLu0 +
∫ t

0

∞∑
n=0

(t− s)n
n! PesLPL(QL)nQLu0︸ ︷︷ ︸

Cn(s)u0

ds,

= PetLPLu0 +
∫ t

0

[ ∞∑
n=0
Cn(s)(t− s)n

n!

]
︸ ︷︷ ︸

G(t−s,s)

u0ds,

= PetLPLu0 +
∫ t

0
G(t− s, s)u0ds, (5.4)
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where the memory operator1 G(t− s, s) is defined as

G(t− s, s) =
∞∑
n=0

(t− s)n
n! Cn(s), Cn(s) = PesLPL(QL)nQL, n ≥ 0. (5.5)

We shall call this series expansion of the MZ equation as MZ-Dyson expansion.

The reason for such definition is that (5.4) is equivalent to the H-model discussed

in Chapter 3, which in turn is equivalent to a Dyson series expansion in the form

∂

∂t
PetLu0 = PetLPLu0 + w0(t)

where

w0(t) =
∫ t

0
PesLPLQLx0ds+

∫ t

0

∫ τ1

0
PesLPLQLQLx0dsdτ1

+ ...+
∫ t

0

∫ τn−1

0
...
∫ τ1

0
PesLPL(QL)nx0dsdτ1...dτn−1 + ... . (5.6)

To prove such equivalence, we just need to prove that

∫ t

0

∫ τn−1

0
...
∫ τ

0
PesLPL(QL)ndsdτ1...dτn−1 =

∫ t

0

(t− s)n−1

(n− 1)! Pe
sLPL(QL)nQLds.

(5.7)

We proceed by induction. To this end, we first define

An(t) =
∫ t

0

∫ τn−1

0
...
∫ τ

0
PesLPL(QL)ndsdτ1...dτn−1

Bn(t) =
∫ t

0

(t− s)n−1

(n− 1)! Pe
sLPL(QL)nQLds. (5.8)

For n = 1 we have A1 = B1. For n ≥ 2 we have A′n(t) = An−1(t), B′n(t) = Bn−1(t)

and An(0) = Bn(0). Hence, by induction we conclude that An(t) = Bn(t), and
1Note that G(t− s, s) here is not a function but a linear operator.
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therefore the memory integral in (5.4), with G given in (5.5), is equivalent to a

Dyson series.

5.1.2 MZ-Faber Expansion

The Faber series of the orthogonal dynamics propagator etQL is an operator

series in the form (see Appendix 5.A)

etQL =
∞∑
j=0

aj(t)Fj(QL), (5.9)

where Fj is the j−th order Faber polynomial, and aj(t) are suitable temporal

modes defined hereafter. The series expansion (5.9) is asymptotically optimal, in

the sense that itsm-th order truncation uniformly approximates the best sequence

of operator polynomials converging to etQL asm→∞ [27]. A substitution of (5.9)

into (5.1) yields the following expansion of the MZ equation (2.6)

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
PesLPLe(t−s)QLQLu0ds,

= PetLPLu0 +
∫ t

0

∞∑
j=0

aj(t− s)PesLPLFj(QL)QLu0︸ ︷︷ ︸
Cj(s)u0

ds,

= PetLPLu0 +
∫ t

0
G(t− s, s)u0ds, (5.10)

where

G(t− s, s) =
∞∑
j=0

aj(t− s)Cj(s), (5.11)

and

aj(t− s) = 1
2πi

∫
|w|=R

e(t−s)ψ(w)

wj+1 dw, Cj(s) = PesLPLFj(QL)QL. (5.12)
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Here, ψ(w) is the conformal map at the basis of the Faber series (see Appendix

5.A). The coefficients of the Laurent expansion of ψ determine the recurrence

relation of the Faber polynomials. High-order Laurent series usually yield higher

convergence rates, but complicated recurrence relations (see equation (5.101)).

Moreover, the computation of the integrals in (5.12) can be quite cumbersome if

high-order Laurent series are employed. To avoid such drawbacks, in this paper

we choose the conformal map ψ(w) = w + c0 + c1/w. This yields the following

expression for the coefficients aj(t− s)

aj(t− s) = e(t−s)c0

(
√
−c1)j Jj

(
2(t− s)

√
−c1

)
, (5.13)

where Jj denotes the j−th Bessel function of the first kind. In Section 5.2 we

prove that the Faber expansion of the MZ memory integral converges for any

linear dynamical system and any finite integration time with rate that is at least

R-superlinear.

Remark The MZ-Dyson expansion we discussed in Section 5.1.1 is a subcase

of the Faber expansion. In fact, Faber polynomials Fj(QL) corresponding to the

conformal mapping ψ(w) = w are simply monomials (QL)j (see Appendix 5.A).

Moreover, the temporal modes (5.13) reduce to (t − s)j/j! if we set c0 = 0 and

take the limit c1 → 0.

5.1.3 Other Series Expansions of the MZ-Memory Integral

The operator exponential etQL (propagator of the orthogonal dynamics) can be

expanded relative to basis functions other than Faber polynomials [65, 66]. This

yields different approximations of the MZ memory integral and, correspondingly,

different expansions of the MZ equation. Hereafter we discuss two relevant cases.
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MZ-Lagrange Expansion

The MZ-lagrange expansion is based on the following semigroup expansion

etQL =
n∑
j=1

eλjt
n∏
k=1
k 6=j

(QL− λkI)
(λj − λk)

, (5.14)

where {λ1, ..., λn} = σ(QL) is the spectrum of the matrix representation of the

operator QL (eigenvalues counted with their multiplicity). Note that (5.14) is in

the form (5.2) with

aj(t) = eλjt, and Φj(QL) =
n∏
k=1
k 6=j

(QL− λkI)
(λj − λk)

. (5.15)

A substitution of (5.14) into the MZ equation yields the MZ-Lagrange expansion

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
G(t− s, s)u0ds, (5.16)

where

G(t−s, s) =
n∑
j=1

e(t−s)λjCj(s), and Cj(s) = PesLPL
n∏
k=1
k 6=j

(QL− λkI)
(λj − λk)

, j ≥ 1.

(5.17)

MZ-Newton Expansion

The MZ-Newton expansion is based on the following semigroup expansion

etQL = f1,1(t)I +
n∑
j=2

f1,j(t)
j−1∏
k=1

(QL− λkI), (5.18)
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where f1,j(t) is the divided difference defined recursively by

f1,j(t) =



eλ1t j = 1,
etλ1 − etλ2

λ1 − λ2
j = 2,

f1,j−1(t)− f2,j(t)
λ1 − λj

j ≥ 3.

(5.19)

A substitution of the Newton expansion (5.18) into the MZ equation yields the

following MZ-Newton expansion

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
G(t− s, s)u0ds, (5.20)

where

G(t− s, s) = C1(s)e(t−s)λ1 +
n∑
j=2
Cj(s)f1,j(t)

Cj(s) =


PesLPL j = 1

PesLPL
j−1∏
k=1

(QL− λkI)QL j ≥ 2
. (5.21)

In conclusion, for Mori-Zwanzig memory operator

G(t− s, s) =
∞∑
j=0

hj(t− s)Cj(s)

we summarized different series expansions and their corresponding representations

of the memory kernel in Table 5.1. All series expansion methods we considered

so far aim at representing the memory integral in the Mori-Zwazing equation for

the same phase space function. Therefore, such series should be related to each

other. Indeed, as shown in Table 5.1, they basically represent the same memory

operator G(t− s, s) relative to different bases. This also means that the series can
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Type Temporal bases hj(t) Operators Cj(s)

MZ-Dyson tj

j! PesLPL(QL)jQL

MZ-Faber etc0
Jj(2t

√
−c1)

(
√
−c1)j PesLPLFj(QL)QL

MZ-Lagrange etλj PesLPL
n∏
k=1
k 6=j

(QL− λkI)
(λj − λk)

MZ-Newton f1,j(t)


PesLPL j = 1

PesLPL
j−1∏
k=1

(QL− λkI)QL j ≥ 2

Table 5.1: Series expansions of the Mori-Zwanzig memory operator. Here Jj is
the jth Bessel function of the first kind, c0 and c1 are real numbers, f1,j(t) are
defined in (5.19), and λj are the eigenvalues of any matrix representation of QL.

have different convergence rate. For example, as we will demonstrate numerically

in Section 6.3 the MZ-Faber expansion converges much faster than the MZ-Dyson

series.

5.1.4 Generalized Langevin Equation

We have seen in Section 5.1 that expanding the orthogonal dynamics propaga-

tor etQL in an operator series in the form (5.2) yields the Mori-Zwanzig equation2

∂

∂t
PetLu0 = PetLPLu0 +

∞∑
j=0

∫ t

0
hj(t− s)Cj(s)u0ds, (5.22)

2We emphasize that if we also apply the semigroup expansion (5.9) on the noise term
etQLQLu0 of the full MZ equation, we end up with a stochastic differential equation. How-
ever, getting a convergence theorem for this SDE is challenging since almost inevitably, phe-
nomenological approximation to the noise term has to be introduced which contaminates the
MZ equation with uncontrollable error.
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where hj(t− s) are temporal modes, and Cj(s) are operators defined in Table 5.1.

For example, if we consider the MZ-Dyson expansion, we have

hj(t− s) = (t− s)j
j! , Cj(s) = PesLPL(QL)jQL. (5.23)

Equation (5.22) is the exact generalized Langevin equation (GLE) governing the

projected dynamics of a quantity of interest. Such equation has different forms

depending on the choice of the projection operator P . In particular, if we choose

Chorin’s projection, then (5.22) is an equation for the conditional expectation of

the quantity of interest. On the other hand, if we choose Mori’s projection, then

(5.22) becomes an equation for the autocorrelation function of the quantity of

interest.

Evolution Equation for the Conditional Expectation

If we consider Chorin’s projection (2.7), then (5.22) becomes an unclosed evo-

lution equation for the conditional expectation of the quantity of interest (see

Section 2.1.1). However, in the special case where the dynamical system (2.1)

is linear and the quantity of interest is u(x) = x1(t), it can be shown that the

evolution equation for the conditional expectation is closed. To this end, let us

first recall that if P is Chorin’s projection and u(x) = x1 then

PetLx1(0) = 〈x1(t)〉ρ0 =
∫
x1(t,x0)ρ0(x0)dx0.

In this case, (5.22) reduces to

d

dt
〈x1(t)〉ρ0 = a〈x1(t)〉ρ0 + b+

∫ t

0
g(t− s)〈x1(s)〉ρ0ds+

∫ t

0
f(t− s)ds, (5.24)
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where the constants a, b, the MZ memory kernel g(t−s), and the function f(t−s)

are defined by

PLx1(0) = ax1(0)+b, g(t−s) =
∞∑
j=0

gjhj(t−s), f(t−s) =
∞∑
j=0

fjhj(t−s).

(5.25)

The coefficients gj, fj and the temporal bases hj(t − s) appearing in the series

expansions above depend on the series expansion of the orthogonal dynamics

propagator etQL. Specifically, gj and fj are determined by the equation

Cj(s)x1(0) = gj〈x1(s)〉ρ0 + fj, (5.26)

while hj(t − s) and Cj(s) are defined in Table 5.1. To derive equation (5.26) we

used the identity PesLfj = fj. In the case of MZ-Dyson and MZ-Faber expansions

we explicitly obtain

PL(QL)jQLx1(0) = gDj x1(0) + fDj , PLFj(QL)QLx1(0) = gFj x1(0) + fFj ,

(5.27)

where the superscripts D and F stand for “Dyson” and “Faber”, respectively.

Evolution Equation for the Autocorrelation Function

If we choose the projection operator P to be Mori’s projection (3.70), then

equation (5.22) becomes a closed evolution equation for the autocorrelation func-

tion Cu(t) of the quantity of interest. Such equation has the form

dCu(t)
dt

= aCu(t) +
∫ t

0
g(t− s)Cu(s)ds, (5.28)

144



where a and g are defined as

PLu0 = au0, g(t− s) =
∞∑
j=0

gjhj(t− s). (5.29)

As before, the temporal modes hj and the coefficients gj in the expansion of the

MZ-memory kernel g(t− s) depend on the expansion of the orthogonal dynamics

propagator etQL. Specifically, in the case of MZ-Dyson and MZ-Faber expansions

we obtain, respectively,

PL(QL)jQLu0 = gDj u0, PLFj(QL)QLu0 = gFj u0. (5.30)

Analytical Solution to the Generalized Langevin Equation

The analytical solution to the MZ equations (5.24) and (5.28) can be computed

through Laplace transforms. To this end, let us first notice that both equations

are in the form of a Volterra equation

dy(t)
dt

= ay(t) + b+
∫ t

0
g(t− s)y(s)ds+

∫ t

0
f(t− s)ds. (5.31)

Applying the Laplace transform

L [·](s) =
∫ ∞

0
(·)e−stdt (5.32)

to both sides of (5.31) yields

sY (s)− y(0) = aY (s) + b

s
+ Y (s)G(s) + F (s)

s
, (5.33)

i.e.,

Y (s) = (F (s) + b)/s+ y(0)
s−G(s)− a , (5.34)
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where

Y (s) = L [y(t)], F (s) = L [f(t)], G(s) = L [g(t)]. (5.35)

Thus, the exact solution to the Volterra equation (5.31) can be written as

y(t) = L −1
[

(F (s) + b)/s+ y(0)
s−G(s)− a

]
. (5.36)

The Laplace transform of the memory kernel g(t), i.e., G(s), can be computed

analytically in many cases. For example, in the case of MZ-Dyson and MZ-Faber

expansions we obtain, respectively

G(s) =
∞∑
j=0

gDj
sj+1 (MZ-Dyson), (5.37)

G(s) =
∞∑
j=0

gFj
2j(
√
−c1)2j

(
√
s2 − 4c1 − s)j√
s2 − 4c1

(MZ-Faber). (5.38)

The coefficients gFj and gDj are explicitly defined in (5.27), or (5.30), depending on

whether we are interested in the mean or the correlation function of the quantity

of interest.

Remark The recurrence relation at the basis of the Faber polynomials (see

equation (5.101)) induces a recurrence relation in the Laplace transform G(s) of

the MZ memory kernel. Therefore, a connection between the MZ-Faber approx-

imation method we propose here and the method of recurrence relations of Lee

[67] can be established.
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Generalized Langevin Equation for nonlinear system

In the previous sections, we used Chorin’s projection and Mori’s projection to

derive the GLE for linear systems. In fact, similar series expansion of the GLE can

be derived for general nonlinear dynamical systems by using Mori’s projection. It

is not hard to verify that under Mori’s projection, PL(QL)iu0 ∈ {Aj}Nj=1, where

{Aj}Nj=1 is a finite dimensional linear subspace and Aj are phase variables. As a

consequence, for arbitrary j−th order operator polynomial Φj(QL), PLΦj(QL)u0

also lies in this linear space. Under this setting, if we choose u0 = Ak ∈ {Aj}Nj=1,

PesLPLΦi(QL)Ak admits a matrix representation M (Φi)a(s), where a(s) =

[A1(s), ..., AN(s)]T , Ak(s) = PesLAk. M (Φi) are N × N coefficient matrices for

different Φi. Furthermore, we have

PesLPLe(t−s)QLQLAk =
n∑
i=1

gi(t− s)PesLPLΦi(QL)Ak =
N∑
j=1

n∑
i=1

gi(t− s)M (i)
kj Aj(s)

where gj(t−s) can be any one of the temporal bases listed in Table 5.1, depending

on the types of different MZ-expansion. This leads to the following matrix form

GLE

d

dt
Ak(t) =

N∑
j=1

ΩjkAj(s) +
N∑
j=1

∫ t

0
Kkj(t− s)Aj(s)ds (5.39)

where PLAk = ∑N
j=1 ΩjkAj yields the streaming matrix Ω and the memory kernel

matrixK(t−s) is given by Kkj(t−s) = ∑n
i=1 gi(t−s)M

(i)
kj . To be noticed that, for

nonlinear dynamical systems calculating the coefficient matrixM (i)
kj analytically is

hard, especially for large i (the difficulty can be seen in Stinis’s series work [86, 85,

87]). They are different cumulants (moments) of the random initial condition x0 ∼

ρ0 [83], which can be computed in a data-driven setting [57, 6]. As we pointed out,

different series expansion of the orthogonal dynamics propagator have different
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convergence rates, and can yield different errors in the MZ memory approximation

for the same polynomial order n. From both theoretical and computational point

of view, the Faber series expansion is superior than the commonly used Taylor

series expansion. To see this, without loss of generality we consider the one-

dimensional GLE where the MZ memory kernel is only a scalar function. The

truncated Faber series

K(t) '
n∑
q=1

Mqe
tc0
Jq(2t

√
−c1)

(
√
−c1)q (5.40)

has the following merits in representing the MZ memory kernel:

1. According to the properties of the Bessel function, Faber series (5.40) is

uniformly bounded and converges to 0 as t → +∞ if modeling coefficient

c0 ≤ 0. This guarantees the numerical stability of the approximation scheme

and its long-time accuracy in describing the behavior of dynamical observ-

ables (such as time autocorrelation function) in ergodic systems. The Taylor

(Dyson) series expansion obviously has no such properties.

2. As we will see immediately, the Faber series expansion converges faster than

the Taylor series expansion.

3. Although formally more complicated, as we will show immediately once the

expansion coefficients of the Taylor series are determined form data driven

or first principle method, the expansion coefficient Mq of the Faber series

can be obtained exactly through some recurrence formula.

4. When compared with other formally exact memory approximation schemes

such as the Padé approximation used in [57] and the continued fraction

introduced by Mori and Lee [67, 56], Faber series approximation (5.40) is
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conducted in the temporal domain t instead of the Laplace transformed fre-

quency domain s. This avoids the compuation of inverse Laplace transform

which is numerically unstable.

Generally speaking, the orthogonal semigroup expansion theory provides a sys-

tematic way to derive different memory kernel approximation schemes. A lot of

phenomenlogical models of the memory kernel can be incorporated into the frame-

work. For instance, the trigonometric series used in [6] exactly is temporal modes

corresponding to MZ-Lagrange expansion.

5.2 Convergence Analysis

In this section, we develop a thorough convergence analysis of the MZ-Faber

expansion3 of the Mori-Zwanzig equation (2.6). The key theoretical results at the

basis of our analysis can be found in Chapter 3. Here we focus, in particular, on

high-dimensional linear systems in the form

ẋ(t) = Ax(t), x(0) = x0(ω), (5.41)

where x0(ω) is a random initial state. Our goal is to prove that the norm of the

approximation error

En(t) =
∫ t

0
PesLPLe(t−s)QLQLu0ds−

n∑
j=0

∫ t

0
aj(t− s)PesLPLFj(QL)QLu0ds︸ ︷︷ ︸

MZ-Faber series

=
∫ t

0

∞∑
j=n+1

aj(t− s)PesLPLFj(QL)QLu0ds (5.42)

3We recall that the MZ-Dyson series expansion is a subcase of the MZ-Faber expansion.
Therefore convergence of MZ-Faber implies convergence of MZ-Dyson.

149



decays as we increase the polynomial order n, for any fixed integration time t > 0,

i.e.,

lim
n→∞

‖En(t)‖ = 0.

Throughout this Section ‖·‖ denotes either an operator norm, a norm in a function

space or a standard norm in CN , depending on the context. The convergence proof

of MZ-Faber series clearly depends on the choice of the projection operator and

the phase space function u(x) (quantity of interest). In this Section, we consider

u(x(t)) = x1(t), (5.43)

and Chorin’s projection (2.7). Similar results can be obtained for Mori’s projec-

tion. We begin with the following

Lemma 5.2.1. Consider the linear dynamical system (5.41) and the phase space

function (5.43). If we set P to be Chorin’s projection (2.7) with arbitrary initial

distribution ρ0 (not necessarily i.i.d), Q = I −P, L = Ax ·∇ and pk an arbitrary

polynomial of degree k, then we have the following operator polynomial equality

PLpk(QL)QLx1(0) =
[
b · pk(MT

11)a
]
x1(0) +

[
pk(MT

11)MT
11a

]
· 〈x−1(0)〉ρ0 ,

where

x−1(0) = [x2(0), x3(0), . . . , xN(0)]T a = [A12, . . . , A1N ]T , b = [A21, . . . , AN1]T ,

and M11 is the matrix obtained from A by removing the first row and the first

column.
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Proof. By a direct calculation, it can be verified that

(QL)nx1(0) =
[(
MT

11

)n−1
a
]
· [x−1(0)− 〈x−1(0)〉ρ0 ] ,

L(QL)nx1(0) =
[
bT
(
MT

11

)n−1
a
]
x1(0) +

[(
MT

11

)n
a
]
· x−1(0),

PL(QL)nQLx1(0) =
[
bT
(
MT

11

)n
a
]
x1(0) +

[(
MT

11

)n
MT

11a
]
· 〈x−1(0)〉ρ0 . (5.44)

Note that each entry of the vector 〈x−1(0)〉ρ0 = [〈x2(0)〉ρ0 , ..., 〈xN(0)〉ρ0 ]T is 〈xi(0)〉ρ0 =

Pxi(0) (i = 2, ..., N). Thus, for any polynomial function in the form

pk(QL) =
k∑
j=0

βk(QL)j, (5.45)

we have

PLpk(QL)QLx1(0) =
k∑
j=0

βjPL(QL)jQLx1(0),

=
k∑
j=0

βj
([
bT
(
MT

11

)n
a
]
x1(0) +

[(
MT

11

)n
MT

11a
]
· 〈x−1(0)〉ρ0

)
,

=
[
b · pk

(
MT

11

)
a
]
x1(0) +

[
pk
(
MT

11

)
MT

11a
]
· 〈x−1(0)〉ρ0 .

This completes the proof of the Lemma.

To prove convergence of MZ-Faber series we need two more Lemmas involving

Faber polynomials in the complex plane (see Appendix 5.A).

Lemma 5.2.2. Let γ be the capacity of Ω ⊆ C. If Ω is symmetric with respect to

the real axis, then for any R > γ the conformal map (5.96) satisfies

ψ(R) ≤ ψ(γ) +R− γ2

R
.
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Proof. We first notice that

ψ(R) = ψ(γ) +
∫ R

γ
ψ′(t)dt.

By using Lemma 4.2 in [70], i.e.,

|ψ′(t)| ≤ 1 +
(
γ

|t|

)2

, |t| > γ

we have

ψ(R)− ψ(γ) ≤ |ψ(R)− ψ(γ)| =
∣∣∣∣∣
∫ R

γ
ψ′(t)dt

∣∣∣∣∣ ≤
∫ R

γ
|ψ′(t)|dt = R− γ2

R
,

which completes the proof.

Next, consider an arbitrary matrix A and define the field value of A as

FV (A) =
{
zHAz : z ∈ CN , zHz = 1

}
.

The field value of A is a subset of the complex plane. Also, denote the truncated

Faber series of the exponential matrix etA as

Pm(t) =
m∑
j=0

aj(t)Fj(A). (5.46)

With this notation, we have the following

Lemma 5.2.3. Let Ω ⊂ C be symmetric with respect to the real axis, convex and

with capacity γ. Consider an N ×N matrix A with spectrum σ(A), and an N ×1

vector v. If σ(A) ⊆ Ω and the field value FV (A) ⊆ Ω(q) for some q ≥ γ, then
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the approximation error

em(t− s)v = e(t−s)Av − P(m−1)(t− s)v t ≥ s

satisfies

‖em(t− s)v‖ ≤ C3e
(t−s)E

(
qet−s

m

)m−1

m ≥ 4q,

where

C3 = C3(v) = 8e‖v‖q
(

1 + 1
8q

)
and E = 1 + ψ(γ).

Proof. If q ≥ γ then we have, thanks to the convexity of Ω and the analyticity of

the exponential function,

‖em(t− s)v‖ ≤ 8‖v‖e
(

1 + 1
8q

)
m
(
q

m

)m
max
|z|∈Γ(m)

∣∣∣e(t−s)z
∣∣∣ m ≥ 4q (5.47)

(see Theorem 4.2 in [70]). On the other hand,

max
|z|∈Γ(m)

∣∣∣e(t−s)z
∣∣∣ = e(t−s)ψ(m) m ≥ 4q. (5.48)

By using Lemma 5.2.2 we have

ψ(m) ≤ ψ(γ) +m− γ2

m
≤ ψ(γ) +m, (5.49)

and therefore

e(t−s)ψ(m) ≤ e(t−s)(m−1)e(t−s)(1+ψ(γ)) m ≥ 4q ≥ γ. (5.50)
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Combining (5.47) , (5.48) and (5.50), we obtain

‖em(t− s)v‖ ≤ C3 exp((t− s)E)
(
qet−s

m

)m−1

, (5.51)

where

C3 = 8e‖v‖q
(

1 + 1
8q

)
and E = 1 + ψ(γ).

At this point, we we have all elements to prove the following

Theorem 5.2.4. (Convergence of the MZ-Faber Expansion) Consider the

linear dynamical system (5.41), the phase space function (5.43) and the projection

operator (2.7). The norm of the approximation error (5.42) satisfies4

‖En(t)‖ ≤ K
(

q

n+ 1

)n etβ − et(E+n)

β − E − n
t ≥ 0, n ≥ 4q, (5.52)

where n is the Faber polynomial order, while q, K, β and E are suitable constants

defined in the proof of the theorem.

Proof. We aim at finding an upper bound for

‖En(t)‖ =

∥∥∥∥∥∥
∫ t

0
PesL

∞∑
j=n+1

aj(t− s)PLFj(QL)QLx1(0)ds

∥∥∥∥∥∥ . (5.53)

To this end, we fist notice that quantity Fj(QL)QL is a (j+ 1)-th order operator
4It can be shown that the upper bound in (5.52) is always positive.
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polynomial in QL. Thus, we can apply Lemma 5.2.1 to obtain

PLFj(QL)QLx1(0) =
[
b · Fj(MT

11)a
]
x1(0) +

[
Fj(MT

11)MT
11a

]
· 〈x−1(0)〉ρ0 .

(5.54)

Let us now set

ηn(t− s) =

∥∥∥∥∥∥
∞∑

j=n+1
aj(t− s)PLFj(QL)QLx1(0)

∥∥∥∥∥∥ . (5.55)

By using (5.54) and the Cauchy-Schwartz inequality we have

ηn(t− s) ≤ C4

∥∥∥∥∥∥
∞∑

j=n+1
aj(t− s)Fj(MT

11)a

∥∥∥∥∥∥+ C5

∥∥∥∥∥∥
∞∑

j=n+1
aj(t− s)Fj(MT

11)MT
11a

∥∥∥∥∥∥ ,
(5.56)

where C4 = ‖bT‖|x1(0)|, C5 = ‖〈x−1(0)〉ρ0‖. The two sums in (5.56) represent

the error in the Faber approximation of the matrix exponential e(t−s)MT
11 . In fact,

e(n+1)(t− s) = e(t−s)MT
11 −

n∑
j=1

aj(t− s)Fj(MT
11) =

∞∑
j=n+1

aj(t− s)Fj(MT
11).

(5.57)

Combining (5.53), (5.55), (5.56) and (5.51) yields

‖En(t)‖ ≤
∫ t

0
ηn(t− s)

∥∥∥PesL∥∥∥ ds,
≤
∫ t

0

(
C4

∥∥∥e(n+1)(t− s)a
∥∥∥+ C5

∥∥∥e(n+1)(t− s)MT
11a

∥∥∥) ‖PesL‖ds,
≤
∫ t

0
Kesβe(t−s)(E+n)

(
q

n+ 1

)n
ds,

≤ K
(

q

n+ 1

)n etβ − et(E+n)

β − E − n
n ≥ 4q. (5.58)
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Here we used the semigroup estimation ‖esL‖ ≤ Wesβ. The constants in (5.58)

are

K = ‖P‖C6W, C6 = 2 max{C4C3, C5C
∗
3}, E = 1 + ψ(γ), (5.59)

where

C3 = 8e‖a‖q
(

1 + 1
8q

)
, C∗3 = 8e‖MT

11a‖q
(

1 + 1
8q

)
. (5.60)

It can be shown that the upper bound (5.58) is always positive, and goes to zero

as we send the Faber polynomial order n to infinity. This implies that

lim
n→∞

‖En(t)‖ = 0, (5.61)

i.e., the MZ-Faber expansion converges for any finite time t ≥ 0. This completes

the proof.

Next, we estimate the convergence rate of the MZ-Faber expansion. To this

end, let us define

R(t, n) = K
(

q

n+ 1

)n etβ − et(E+n)

β − E − n
, n ≥ 4q (5.62)

the be the upper bound (5.58). We have the following

Corollary 5.2.4.1. (Convergence Rate of the MZ-Faber Expansion) With

the same the notation of Theorem 5.2.4, the MZ-Faber expansion converges at least

R-superlinearly with the polynomial order, i.e.

lim
n→∞

R(t, n+ 1)
R(t, n) = 0 (5.63)

for any finite time t ≥ 0.
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Proof. By a direct calculation it is easy to verify that (5.63) holds true. In fact,

R(t, n+ 1)
R(t, n) = q

n+ 2

(
n+ 1
n+ 2

)n etβ − et(E+n+1)

etβ − et(n+E)
β − E − n

β − E − (n+ 1) (5.64)

Therefore5,

lim
n→+∞

R(t, n+ 1)
R(t, n) = lim

n→+∞

qet

n+ 2

(
n+ 1
n+ 2

)n
= 0, t <∞. (5.66)

By using asymptotic analysis we can show theoretically that also the MZ-

Dyson expansion converge R-superlinearly. To this end, let us define the MZ-

Dyson approximation error

En(t) =
∫ t

0
PesLPLe(t−s)QLQLu0ds−

n∑
j=0

∫ t

0
aj(t− s)PesLPL(QL)jQLu0ds︸ ︷︷ ︸

MZ-Dyson series

.

(5.67)

By following the same steps we used in the proof of Theorem 5.2.4, we can bound

the norm of (5.67) as

‖En(t)‖ ≤ F (t, n). (5.68)

where

F (t, n) = C
(At)n

(n+ 1)! A,C ≥ 0. (5.69)

Such upper bound plays the same role as R(t, n) in the MZ-Faber expansion of

En(t) (see Eqs. (5.58) and (5.62)). Taking the ratio between F (t, n + 1) and
5We recall that

lim
n→+∞

(
n+ 1
n+ 2

)n
= 1
e
. (5.65)
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F (t, n) we obtain

lim
n→∞

F (t, n+ 1)
F (t, n) = lim

n→∞

At

n+ 2 = 0. (5.70)

5.3 Numerical Examples

In this section, we demonstrate the accuracy and effectiveness of the MZ-Dyson

and MZ-Faber expansion methods we developed in this paper in applications to

prototype problems involving random wave propagation and harmonic chains of

oscillators interacting on a Bethe lattice.

5.3.1 Random Wave Propagation

Consider the following initial/boundary value problem for the wave equation

in an annulus with radii r1 = 1 and r2 = 11

∂2w

∂t2
= ∂2w

∂r2 + 1
r

∂w

∂r
+ 1
r2
∂2w

∂θ2 , (5.71)

where

w(t, r1, θ) = 0, w(t, r2, θ) = 0 w(0, r, θ) = w0(r, θ;ω), ∂w(0, r, θ)
∂t

= 0.

(5.72)

The field w(t, r, θ) represents the wave amplitude at time t, while w0(r, θ;ω) is

the wave field at initial time, which is set to be random. We seek the for an

approximation of the solution w(t, r, θ) in the form

wN(t, r, θ) =
N∑
n=1

ŵn(t)ψn(r, θ), (5.73)
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where ψn(r, θ) are standard trigonometric functions. The random wave field at

initial time is represented as

w0(r, θ;ω) =
M∑
n=1

ŵn(0)ψn(r, θ), M ≤ N, (5.74)

where ŵn(0) are i.i.d Gaussian random variables. We substitute (5.73) into (5.71)

and impose that the residual is orthogonal to the space spanned by the basis

{ψ1, ..., ψN} [40]. This yields the linear system

d2

dt2
ŵ(t) = Aŵ(t), (5.75)

where A is an N ×N matrix with entries

Amn =

∫ r2

r1

∫ 2π

0

(
∂2ψn
∂r2 + 1

r

∂ψn
∂r

+ 1
r2
∂2ψn
∂θ2

)
ψmdrdθ∫ r2

r1

∫ 2π

0
ψ2
mdrdθ

. (5.76)

We are interested in building a convergent reduced-order model for the wave am-

plitude at a specific point within the annulus, e.g., where we placed a sensor.

To this end, we transform the system (5.75) form the modal space to the nodal

space defined by an interpolant of at N collocation points. Such transformation

can be easily defined by evaluating (5.73) at a set of distinct collocation nodes

xn = (ri(n), θj(n)) (n = 1, ..., N) within the annulus. This yields

w(t) = Ψŵ(t), (5.77)
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wherew(t) = [w(t,x1), ..., w(t,xN)]T , while Ψ is theN×N transformation matrix

defined as

Ψ =



ψ1(x1) . . . ψN(x1)

... ...

ψ1(xN) . . . ψN(xN)


.

Differentiating (5.77) with respect to time we obtain

d

dt


w

ẇ

 =


0 I

ΨAΨ−1 0




w

ẇ

 = B


w

ẇ

 (5.78)

This system evolves from the random initial state

w(0) = Ψŵ(0), dw(0)
dt

= 0. (5.79)

For convenience, we still use w to represent vector [w, ẇ]T . In Figure 5.1 we plot

the mean solution of the random wave equation for initial conditions in the form

(5.74) with different number of modes.

Generalized Langevin Equation for the Mean Wave Amplitude We are

interested in building a convergent reduced-order model for the mean wave am-

plitude at a specific point within the annulus, e.g., where we would like to place a

sensor. Such a dynamical system can be constructed by using the Mori-Zwanzig

formulation and Chorin’s projection operator (2.7). In particular, let us define the

quantity of interest as u(w) = w1(t), i.e., the wave amplitude at the spatial point
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Figure 5.1: Mean solution of the random wave equation in the annulus. We
consider two random initial conditions in the form (5.74), with different number
of modes: M = 25 (first row), M = 50 (second row).

(r, θ) = (1.1, 0.1). The exact evolution equation for mean of w1(t) was derived in

Section 5.1.4, and it is rewritten hereafter for convenience

d

dt
〈w1(t)〉ρ0 = a〈w1(t)〉ρ0 + b+

∫ t

0
g(t− s)〈w1(s)〉ρ0ds+

∫ t

0
f(t− s)ds. (5.80)

We recall that

PLw1(0) =B11w1(0) + a · 〈w−1(0)〉ρ0

=aw1(0) + b,

and L = Bw · ∇. The memory kernel g(t − s) and the function f(t − s) can be

expanded by using in any of the operator series summarized in Table 5.1. For
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Figure 5.2: Dyson and Faber expansions of the Mori-Zwanzig memory kernel
g(t − s) in equation (5.81). Shown are results for different polynomial orders n.
It is seen that the MZ-Faber series converges faster that the MZ-Dyson series.

instance, if we employ MZ-Faber series we obtain

g(t− s) =
n∑
j=0

gFj e
tc0
Jj(2t

√
−c1)

(
√
−c1)j , f(t− s) =

n∑
j=0

fFj e
tc0
Jj(2t

√
−c1)

(
√
−c1)j . (5.81)

The coefficients gFj and fFj are explicitly obtained as

gFj = bTFj
(
MT

11

)
a, fFj =

[
Fj
(
MT

11

)
MT

11a
]
· 〈w−1(0)〉ρ0 , (5.82)

where

w−1(0) = [w2(0), w3(0), . . . , wN(0)]T ,a = [B12, . . . , B1N ]T , b = [B21, . . . , BN1]T ,

M11 is the matrix obtained fromB by removing the first row and the first column.

In Figure 5.2 we study convergence of MZ-Dyson and MZ-Faber series expansions

of the memory kernel. In Figure 5.3 we study the accuracy of the MZ-Dyson and

the MZ-Faber expansions in representing the mean wave solution as a function of
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Mean Wave Amplitude at (r, θ) = (1.1, 0.1)
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Figure 5.3: MZ-Dyson and MZ-Faber approximation errors of the mean wave
amplitude at (r, θ) = (1.1, 0.1) as a function of the polynomial order n. It is seen
that the MZ-Faber expansion converges faster than the MZ-Dyson series.

the polynomial order n. To this end, we solve (5.80) numerically a linear multi-

step (explicit) time integration scheme (3rd-order Adams-Bashforth) combined

with a trapezoidal rule to discretize the memory integral. As easily seen, that the

MZ-Faber expansion converges faster than the MZ-Dyson expansion.
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Figure 5.4: Bethe lattices with coordination numbers 2 (left), and 3 (right).

5.3.2 Harmonic Chains on the Bethe Lattice

Dynamics of harmonic chains on Bethe lattices is a simple but illustrative

Hamiltonian dynamical system that has been widely studied in statistical me-

chanics, mostly in relation to Brownian motion [4, 33]. A Bethe lattice is a con-

nected cycle-free graph in which each node interacts only with its neighbors. The

number of such neighbors, is a constant of the graph called coordination number.

This means that each node in the graph (with the exception of the leaf nodes) has

the same number of edges connecting it to its neighbors. In Figure 5.4 we show

two Bethe lattices with coordination numbers l = 2 and l = 3, respectively. The

Bethe graph is hierarchical and therefore it can be organized into shells, emanat-

ing from an arbitrary node. The number of nodes in the k-th shell is given by

Nk = l(l − 1)k−1,while the total number of nodes within S shells is

N = 1 +
S∑
k=1

Nk. (5.83)

164



Next, we consider a coupled system of N harmonic oscillators6 whose mutual

interactions are defined by the adjacency matrix B(l) of a Bethe graph with co-

ordination number l [8]. The Hamiltonian of such system can be written as

H(p, q) = 1
2m

N∑
i=1

p2
i + k

2l

N∑
i,j=1

B
(l)
ij (qi − qj)2, (5.84)

where qi and pi are, respectively, the displacement and momentum of the i−th par-

ticle, m is the mass of the particles (assumed constant throughout the network),

and k is the elasticity constant that modulates the intensity of the quadratic

interactions. We emphasize that the harmonic chain we consider here is one-

dimensional. The Bethe graph basically just sets the interaction among the dif-

ferent oscillators. The dynamics of the harmonic chain on the Bethe lattice is

governed by the Hamilton’s equations

dqi
dt

= ∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (5.85)

These equations can be written in a matrix-vector form as


ṗ

q̇

 =


0 kB(l) − kD(l)

I/m 0




p

q

 = C


p

q

 , (5.86)

where B(l) is the adjacency matrix of the graph and D(l) is the degree matrix.

Note that (5.86) is a linear dynamical system. The time evolution of any phase
6The number of oscillators cannot be set arbitrarily as it must satisfy the topological graph

constraints prescribed by (5.83).

165



space function u(q,p) (quantity of interest) satisfies

du

dt
={u,H},

where

{u,H} =
N∑
i=1

(
∂u

∂qi

∂H

∂pi
− ∂H

∂qi

∂u

∂pi

)
(5.87)

denotes the Poisson Bracket. A particular phase space function we consider here-

after is the velocity auto-correlation function of a tagged oscillator, say the one

at location j = 1 (see Figure 5.4). Such correlation function is defined as

Cp1(t) = 〈p1(t)p1(0)〉eq
〈p1(0)p1(0)〉eq

, (5.88)

where the average is an integral over the Gibbs canonical distribution ρeq ∝ e−βH .

Analytical Expressions for the Velocity Autocorrelation Function

The simple structure of harmonic chains on the Bethe lattice allows us to

determine analytical expressions for the velocity autocorrelation function (5.88),

e.g., [4, 50, 33].

Bethe Lattice with Coordination Number 2 Let us set l = 2. In this case,

the Bethe lattice is a a path graph, i.e., a one-dimensional chain of harmonic

oscillators where each oscillator interacts only with the one at the left and at

the right. We set fixed boundary conditions at the endpoint of the chain, i.e.,

q0(t) = qN+1(t) = 0 and p0(t) = pN+1(t) = 0 (particles are numbered from left

to right). In this setting, the velocity auto-correlation function of the particle

labeled with j = 1 can be obtained analytically by employing Lee’s continued

166



fraction method [33]. This yields the well-known J0 − J4 solution

Cp1(t) = J0(2ωt)− J4(2ωt), (5.89)

where Ji(t) is the i-th Bessel function of the first kind, and ω = k/m. Here we

choose k = m = 1. The Hamilton’s equations (5.86) for the inner oscillators (Here

we exclude the two oscillators at the endpoints of the harmonic chain, since their

dynamics is trivial) take the form


ṗ

q̇

 =


0 B(2) −D(2)

I 0




p

q

 , (5.90)

where B(2) andD(2) are the adjacency matrix and the degree matrix of the Bethe

lattice with l = 2 (see Figure 5.4). As an example, if we consider N = 5 oscillators

then B(2) and D(2) are given by

B(2) =



0 1 0

1 0 1

0 1 0


, D(2) =



2 0 0

0 2 0

0 0 2


. (5.91)

Bethe Lattice with Coordination Number 3 Bethe graphs with l = 3 can

be represented as planar graphs (see Figure 5.4). The velocity auto-correlation

function at the center node can be expressed analytically [50], in the limit of an
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Figure 5.5: Velocity auto-correlation functions (5.89) (left) and (5.92) (right)
of a tagged oscillator in an harmonic chain interacting on a Bethe lattice with
coordination number l = 2 and l = 3, respectively.

infinite number of oscillators (N →∞) as

Cp1(t) =
+∞∑

n=−∞
[Gn(t) +Hn(t)]J2n(bt) (5.92)

where

Gn(l) =
∞∑
k=0

gk(l)
b2k−2

1
2π

∫ π/2

a
dθ

cos2(θ)
sin2k(θ) cos(2nθ)

Hn(l) =
∞∑
k=0

hk(l)
b−2k−2

1
2π

∫ π/2

a
dθ

cos2(θ)
sin−2k(θ) cos(2nθ)

with gk(l) and hk(l) defined as

gk(l) = −
∞∑
j=k

(2j − 1)!!
[2j(2j − 1)j!]a

2jc2(k−j),

hk(l) = −
∞∑
j=k

(2j − 1)!!
[2j(2j − 1)j!]a

2(j−k)c−2j
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and a =
√

2− 1, b =
√

2 + 1 and c =
√

6. The Hamilton’s equations of motion in

this case are7 (k = m = 1)


ṗ

q̇

 =


0 B(3) −D(3)

I 0




p

q

 . (5.93)

where B(3),D(3) are the adjacency matrix and the degree matrix of the Bethe

lattice with l = 3 (see Figure 5.4). For example, if we label the oscillators as

in Figure 5.4, and assume that the Bethe lattice has only three shells, i.e., 10

oscillators (4 inner nodes, and 6 leaf nodes) then the adjacency matrix and the
7Here we implemented a free boundary condition at the outer shell of the chain.
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degree matrix are

B(3) =



0 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0

1 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0



D(3) =



3 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



.

Generalied Langevin Equation for the Velocity Autocorrelation Func-

tion

The evolution equation for the velocity autocorrelation function (5.88) was

obtained in Section 5.1.4 and it is hereafter rewritten for convenience

dCp1(t)
dt

= aCp1(t) +
∫ t

0
g(t− s)Cp1(s)ds. (5.94)
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Figure 5.6: Harmonic chains of oscillators. Dyson and Faber expansions of the
Mori-Zwanzig memory kernel g(t− s). Shown are results for different polynomial
orders n. It is seen that the MZ-Faber series converges faster that the MZ-Dyson
series.

The initial condition is Cpi(0) = 1. The MZ-Dyson and MZ-Faber series expan-

sions of the the memory kernel g(t− s) are given by

g(t− s) =
n∑
j=0

gDj
j! (t− s)j, g(t− s) =

n∑
j=0

gFj e
tc0
Jj(2t

√
−c1)

(
√
−c1)j

where

gDj = bT (MT
11)ja, gFj = bTFj

(
MT

11

)
a.

The definition of the matrixMT
11 and the vectors a, b is the same as before. Here

we used the fact that for any quadratic Hamiltonian we have 〈pi(0), qi(0)〉eq = 0

and 〈pi(0), pj(0)〉eq = 0 In Figure 5.6 we study convergence of the MZ-Dyson and

the MZ-Faber series expansion of the memory kernel in equation (5.28). As before,

the MZ-Faber series converges faster that the MZ-Dyson series. In Figure 5.7 and

Figure 5.8, we study the accuracy of the MZ-Dyson and the MZ-Faber expansions
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Figure 5.7: Accuracy of the MZ-Dyson and MZ-Faber expansions in representing
the velocity auto-correlation function of the tagged oscillator j = 2 in an harmonic
chain interacting on the Bethe lattice with coordination number 2. It is seen that
the MZ-Dyson and the MZ-Faber expansions yield accurate predictions as we
increase the polynomial order n. Moreover, the MZ-Faber expansion converges
faster than the MZ-Dyson expansion.

in representing the velocity auto-correlation functions (5.89) and (5.92) (see Figure

5.5). Specifically, in these simulations we considered a chain of N = 100 oscillators

for the case l = 2, and 8 shells of oscillators for the case l = 3, i.e., a total

number of N = 766 oscillators. The results in Figure 5.7 and Figure 5.8 show

that both the MZ-Dyson and the MZ-Faber expansions of the memory integral

yield accurate approximations of the velocity autocorrelation function, and that

convergence is uniform with the polynomial order. We emphasize that the new

expansion of the MZ memory integral we developed can be employed to calculate

phase space functions of harmonic oscillators on graphs with arbitrary topological

structure. The following example shows the effectiveness of the proposed technique

in calculating the velocity auto-correlation function of a tagged oscillator in a

network sampled from the ErdösâĂŞRényi random graph.
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Figure 5.8: Accuracy of the MZ-Dyson and MZ-Faber expansions in representing
the velocity auto-correlation function of the oscillator at the center of a Bethe
lattice with coordination number 3, 8 shells and N = 766 oscillators. It is seen
that the MZ-Dyson and the MZ-Faber expansion yield accurate predictions as we
increase the polynomial order n. Moreover, the MZ-Faber expansion converges
faster than the MZ-Dyson series.

Harmonic Chains on Graphs with Arbitrary Topology

In this section we consider an harmonic chain on a graph with arbitrary topol-

ogy. The Hamiltonian function is

H = 1
2m

N∑
i=1

p2
i + k

2

N∑
i,j=1
i<j

Jij(qi − qj)2, (5.95)

where Jij is here is assumed is to be a sample from the Erdös-Rényi random

adjacency matrix [9, 69]. In Figure 5.9 we study the accuracy of the MZ-Dyson

and MZ-Faber expansions in approximating the velocity auto-correlation function

of a tagged oscillator. In this case, no analytical solution is available and therefore

we compared our solution to an accurate Monte Carlo benchmark. The lack of

symmetry in each realization of the random network makes the velocity auto-

correlation function dependent on the particular oscillator we consider.
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Figure 5.9: Aaccuracy of the MZ-Dyson and MZ-Faber expansions in approxi-
mating the velocity auto-correlation function of one tagged oscillator on a network
obtained by sampling the Erdös-Rényi graph G(100, 0.1). The benchmark solution
is computed by Monte Carlo simulation.

5.4 Summary

In this chapter, we extended the series expansion method for matrix exponen-

tials to the evolution operator for the orthogonal dynamics etQL, and derived a

new family of expansions for the Mori-Zwanzig equation. For Mori type projection

operator, this yields series representation of the MZ memory kernel. Under the

framework, not only some new approximations, such as the Faber series represen-

tation, can be obtained, some known phenomenological models for the memory

kernel can also be derived from the first principle through the orthogonal dynam-

ics expansion. For linear system, we provide an accurate convergence estimate

for the Faber series expansion and proved that it converges to the exact result

R-superlinearly fast. The whole theory is then tested on the well-known random

wave propagation problem. We consider the linear wave on different geometries,

including the annulus, Bethe lattice and the Erdös-Rényi random graph. For all

these cases, the MZ-Faber expansion yields convergence results with a rate larger

than the commonly used MZ-Dyson (or Taylor) expansion.
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Appendix 5.A Faber Polynomials

In this appendix we briefly review the theory of Faber polynomials in the

complex plane. Such polynomial were introduced by Faber in [31] (see [88] for a

thorough review), and they play an important role in theory of univalent functions

and in the approximation of matrix functions [70]. To introduce Faber polynomi-

als, let

M = {Ω ⊂ C : Ω 6= {∅} is compact and C \ Ω is simply connected} ,

Given any set Ω ⊂M , by the Riemann mapping theorem there exits a conformal

surjection

ψ : Ĉ \ {w : |w| ≤ γ} → Ĉ \ Ω, ψ(∞) =∞, ψ′(∞) = 1, (5.96)

where Ĉ is the Riemann sphere. The constant γ is called capacity of Ω. The j−th

order Faber polynomial Fj(z) is defined to be the regular part of the Laurent

expansion of [ψ−1(z)]j at infinity, i.e.,

Fj(z) := zj +
j−1∑
k=0

βj,kz
k, j ≥ 0. (5.97)

Let Γ be the boundary of Ω. For R ≥ γ we define the equipotential curve Γ(R) as

Γ(R) := {z : ψ−1(z) = R}. (5.98)

We also denote as Ω(R) the closure of the interior of Γ(R). Obviously, if R = γ

then we have Ω(R) = Ω and Γ(R) = R. Any analytic function f(z) on Ω can be
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uniquely expanded in terms of Faber polynomials as

f(z) = lim
m→∞

fm(z) fm(z) =
m∑
j=0

aj(f)Fj(z), (5.99)

where the coefficients aj(f) are given be the complex integral

aj(f) = 1
2πi

∫
|w|=R

f (ψ(w))
wj+1 dw. (5.100)

It can be shown that Fj(z) satisfy the following recurrence relation

F0(z) = 1,

F1(z) = z − c0,

...

Fj(z) = (z − c0)Fj−1(z)− (c1Fj−2(z) + ...+ cj−1F0(z))− (j − 1)cj−1, j ≥ 2,

(5.101)

where c0, c1, ... are the coefficients of the Laurent series expansion of the mapping

ψ, i.e.,

ψ(w) = w + c0 + c1

w
+ c2

w2 + · · · , |w| > γ (5.102)

From a computational viewpoint, it is convenient to limit the number of terms in

the expansion (5.102). In this way, we can simplify the recurrence relation (5.101),

the calculation of (5.100) and therefore significantly speed up computations. In

this paper we consider the map

ψ(w) = w + c0 + c1

w
, (5.103)
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which transforms circles into ellipses. In this case, the coefficients (5.100) can be

obtained analytically by computing the integral

aj(t) = 1
2πi

∫
|w|=R

exp{t(w + c0 + c1/w)}
wj+1 dw,

= 1
(
√
−c1)j e

tc0Jj(2t
√
−c1), (5.104)

where Jj(x) is the Bessel function of the first kind. The number of terms in the

Laurent series expansion (5.102) should be selected so that the spectrum of the

operator QL lies entirely within the equipotential curve (5.98). In the numerical

examples we discuss in Section 6.3 such spectrum turns out to be relatively con-

centrated around the imaginary axis. Hence, the second-order truncation (5.103),

which defines an elliptical equipotential curve, guarantees fast convergence of the

Faber series expansion of the orthogonal dynamics propagator.

Appendix 5.B Faber Expansion of the Orthogo-

nal Dynamics Propagator

Given any matrix representation of the operator QL (generator of the orthogo-

nal dynamics) and a vector v, it is known that the sequence fm(QL)v (see equation

(5.99)) converges to f(QL)v for any analytic function f(z) defined on Ω, provided

the spectrum of QL is in Ω (see [?]). Moreover, by the properties of Faber polyno-

mials, it is known that the sequence fm(QL) approximates asymptotically f(QL)

on Ω, as well as the sequence of best uniform approximation polynomials. In

this sense, fm(QL) is said to be asymptotically optimal [27]. In particular, if we

consider the exponential function f(z) = etz and the conformal map (5.103), this

yields the following m-th order Faber approximation of the orthogonal dynamics
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semigroup

etQL '
m∑
j=0

1
(−c1)j/2 e

tc0Jj(2t
√
−c1)Fj(QL). (5.105)
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Chapter 6

MZE for system with local

interactions

The series expansion method of the orthogonal semigroup developed in Chap-

ter 5 has shown to be a practical computational tool which can be used in di-

mension reduction. However, due to the complexity of the memory integral, the

approximation is only valid for linear systems, which limits the applicability of

the method subsetentially. For nonlinear systems with no scale separation, most

effective methods are data-driven and the MZ equation is only used as an ansatz

in this situation. In this chapter, build upon the Faber operator series expansion

introduced in Chapter 5, we develop a new combinatorial algorithm that allows

us to compute the MZ memory kernel from the first principle, i.e. by using only

the structure of the microscopic equations of motion. In addition, we address the

full MZ equation (2.5) and develop a new data-driven stochastic process repre-

sentation method based on Karhunen-Loève (KL) series expansions, which allows

us to build simple models of the MZ fluctuation term in systems with invariant

measures, e.g., Hamiltonian systems or more general systems [10, 32]. The whole

chapter is organized as follows. In Section 6.1 we develop series expansion of the
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MZ memory kernel based on the Faber operator series. In particular, the sub-

section 6.1.1 is devoted to the description of an exact combinatorial algorithm

to compute the recurrence coefficients of the MZ memory kernel expansion. In

Section 6.2, we develop a new stochastic process representation method to build

stochastic reduced-order models for quantities of interest (macroscopic observ-

ables) in systems in statistical equilibrium. In Section 6.3 we demonstrate the

accuracy of the MZ memory calculation and the reduced-order stochastic model-

ing technique in applications to nonlinear random wave propagation described by

Hamiltonian partial differential equations. We also include a brief Appendix where

prove convergence of KL expansions in representing auto-correlation functions of

polynomial observables.

6.1 Calculation of the MZ memory kernel from

first principles

In this section we develop a new algorithm to calculate the MZ memory kernel

(2.16c) based on first-principles, i.e., based on the microscopic equations of motion

of the system (2.1). The algorithm we propose is built upon the combinatorial ap-

proach originally proposed by Amati, Meyer and Schilling in [1]. To illustrate the

main idea in a simple way, hereafter we study the case where the observable u(t)

is one-dimensional, i.e., we have only one phase space function u(t) = u(x(t,x0)).

In this setting, the series expansion of the memory kernel in eqn (5.39) reduces to

K(t) '
n∑
q=0

gq(t)Mq, where Mq = 〈u(0),LΦq(QL)QLu(0)〉ρ
〈u(0), u(0)〉ρ

. (6.1)
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Note that K(t) depends only on the set of parameters {M0, . . . ,Mn}, since the

temporal modes gq(t) are explicitly available given the polynomial set {Φ0, . . . ,Φn}

(see Table 5.1). We aim at determining {M0, . . . ,Mn} from first principles. For

one-dimensional phase space functions, Mori’s projection (2.32) reduces to

Pf = 〈f, u(0)〉ρ
〈u(0), u(0)〉ρ

u(0). (6.2)

At this point, it is convenient to introduce the following notation

µi = 〈L(QL)i−1u(0), u(0)〉ρ
〈u(0), u(0)〉ρ

, γi = 〈L
iu(0), u(0)〉ρ
〈u(0), u(0)〉ρ

. (6.3)

Each coefficient µi represents the rescaling of u(0) under the action of the operator

PL(QL)i−1, i.e. we have

µiu(0) = PL(QL)i−1u(0). (6.4)

Clearly, if we are given {µ1, . . . , µn+2} then we can easily compute Mq in (6.1),

and therefore the memory kernel K(t) for any given polynomial function Φq. For

example, if Φq(QL) = (QL)q then Mq = µq+2 (q = 0, . . . , n). On the other hand,

if {Φ0, . . . ,Φn} are Faber polynomials [104], then we can write each Φq as a linear

combination of monomials (QL)j (j = 0, . . . , q) and therefore represent Mq as

a linear combination of {µ1, . . . , µq+2}. Computing µi using the definition (6.3)

involves taking operator powers and averaging, which may be computationally

expensive. An alternative effective algorithm relies on the following recursive

formula [19, 83, 7]

µ1 = γ1, µ2 = γ2 − µ1γ1, · · · , µn = γn −
n−1∑
j=1

µn−jγj. (6.5)
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In practice, (6.5) shifts the problem of computing {µ1, . . . , µn} to the problem

of evaluating the coefficients {γ1, . . . , γn} defined in (6.3). This will be discussed

extensively in the subsequent Section 6.1.1. If the Liouville operator L is skew-

adjoint relative to the inner product
∫
ρ0dx, then all µj and γj corresponding to

odd indices are identically zero. This allows us to simplify the recursion (6.5) as

µ2j = γ2j −
j−1∑
k=1

µ2j−2kγ2k j = 1, 2, . . . . (6.6)

As a consequence, the streaming term (2.16b) in the MZ equation vanishes iden-

tically since Ω = µ1 = γ1 = 0. We recall that skew-adjoint Liouville operators

arise naturally, e.g., in Hamiltonian dynamical systems at statistical equilibrium.

6.1.1 Systems with polynomial nonlinearities

In this section, we address the problem of calculating the coefficients {γ1, . . . , γn}

defined in (6.3) and appearing in the recursion relation (6.5). With such coef-

ficients available, we can compute {µ1, . . . , µn} and therefore the MZ memory

kernel (6.1). The calculation we propose is based on first principles, mean-

ing that we do not rely on any assumption or model to evaluate the averages

γi = 〈Liu(0), u(0)〉ρ/〈u(0), u(0)〉ρ. Instead, we develop a combinatorial algorithm

that allows us to track all terms in Liu(0), hence representing γi exactly as a

superimposition of a finite, although possibly large, number of terms. The algo-

rithm we develop is built upon the combinatorial algorithm recently proposed by

Amati, Meyer and Schiling in [1]. To describe the algorithm, consider the nonlin-

ear dynamical system (2.1) and assume that F (x) is a multivariate polynomial in

the phase variables x. A simple example of such system is the Kraichnan-Orszag
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three-mode problem [71, 99, 11]

ẋ1 = x1x3, ẋ2 = −x2x3, ẋ3 = x2
2 − x2

1. (6.7)

Other examples are the semi-discrete form of the Navier-Stokes equations, or the

semi-discrete form of the nonlinear wave equation discussed in Section 6.3. The

key observation to compute γj for systems with polynomial nonlinearities is that

the action of the operator power Li on a polynomial observable u(x) yields a

polynomial function. For instance, consider u(x) = x3
1, and the Liouville operator

associated with the system (6.7)

L = x1x3
∂

∂x1
− x2x3

∂

∂x2
+ (x2

2 − x2
1) ∂

∂x3
. (6.8)

We have

Lx3
1 =3x3

1x3, (6.9)

L2x3
1 =9x3

1x
2
3 + 3x3

1x
2
2 − 3x5

1, (6.10)

L3x3
1 =27x3

1x
3
3 + 18x3

1x
2
2x3 − 18x5

1x3 + 27x3
1x

2
2x3 − 6x3

1x
2
2x3 − 15x5

1x3. (6.11)

Clearly, the number of terms in Lix3
1 can rapidly increase, if high-order powers

of L are considered. For higher-dimensional systems with non-local interactions,

i.e., for systems where each Fi(x) (i = 1, . . . , N) depends on all components of

x, this problem is serious, and requires multi-core computer-based combinatorics

to systematically track all terms in the expansion of Lixqj . Let us introduce the

following notation

Lnxqj =
∑

bi∈B(n)

a
(n)
bi
x
m

(i)
k1

k1 · · ·x
m

(i)
kr

kr
, (6.12)
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where {a(n)
bi
} are polynomial coefficients, and {m(i)

kj
} are polynomial exponents.

The set of indexes representing the relevant phase phase variables appearing in

Lnxqj , i.e., {k1, . . . , kr}, is collected in the index set K(n, j) = {k1, . . . , kr}, which

depends on n and j. For example, in (6.9)-(6.11) we have

K(1, 1) = {1, 3}, K(2, 1) = {1, 2, 3}, K(3, 1) = {1, 2, 3}. (6.13)

Of course, for low-dimensional dynamical systems, the simplest choice for the rel-

evant variables would be the complete set of variables {x1, · · · , xN}. However,

for high-dimensional systems with local interactions this choice could lead to un-

necessary computations. In fact, it can be shown that the variables appearing in

the polynomial Lnxqj are usually a (possibly small) subset of the phase variables

if the system has local interactions. The vector bi = [m(i)
k1 , · · · ,m

(i)
kr

], collects the

exponents of the i-th monomial appearing in the expansion (6.12). Similarly, a(n)
bi

is the coefficient multiplying i-th monomial in (6.12). For example, in (6.9) and

(6.10) we have, respectively,

b1 = [3, 1], a
(1)
b1 = 3,

b1 = [3, 0, 2], b2 = [3, 2, 0], b3 = [5, 0, 0], a
(2)
b1 = 9, a

(2)
b2 = 3, a

(2)
b3 = −3.

At this point, it is convenient to define the set of polynomial exponents B(n) =

{b1, b2, · · · }, the set polynomial coefficients A(n) = {a(2)
b1 , a

(2)
b2 , · · · }, and the com-

bined index set

I(n) = {A(n), B(n)}. (6.14)
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Clearly, I(n) identifies uniquely the polynomial (6.12), i.e., there is a one-to-one

correspondence between I(n) and Lnxqj . For example, in the case of (6.9)-(6.11)

we have

I(1) ={{3}︸︷︷︸
A(1)

, {[3, 0, 1]}︸ ︷︷ ︸
B(1)

}, (6.15)

I(2) ={{9, 3,−3}︸ ︷︷ ︸
A(2)

, {[3, 0, 2], [3, 2, 1], [5, 0, 0]}︸ ︷︷ ︸
B(2)

, (6.16)

I(3) ={{27, 18,−18, 27,−6,−15}︸ ︷︷ ︸
A(3)

, {[3, 0, 3], [3, 2, 1], [5, 0, 1], [3, 2, 1], [3, 2, 1], [5, 0, 1]}︸ ︷︷ ︸
B(3)

}.

(6.17)

If we apply L to (6.12) we obtain

Ln+1xqj =LLnxqj ,

=L
∑

bi∈B(n)

a
(n)
bi
x
m

(i)
k1

k1 · · · x
m

(i)
kr

kr
,

=
∑

bi∈B(n+1)

a
(n+1)
bi

x
m

(i)
k1

k1 · · ·x
m

(i)
kr

kr
. (6.18)

Clearly, if we can compute the mapping I(n) L−→ I(n+1), induced by the action

of the Liouville operator L to the polynomial (6.12) (represented by I(n)), then

we can compute the exact series expansion of Lnxqj for arbitrary n. With such

expansion available, we can immediately determine the coefficients γj in (6.3) by

averaging over the probability density ρ as

γn =
〈Lnxqj , x

q
j〉ρ

〈xqj , x
q
j〉ρ

=
∑

bi∈B(n)

a
(n)
bi

〈x
m

(i)
k1

k1 · · ·x
m

(i)
kr

kr
xqj〉ρ

〈xqj , x
q
j〉ρ

. (6.19)
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If the operator L is skew-adjoint in L2(M, ρ), i.e., if 〈Lf, g〉ρ = −〈f,Lg〉ρ, then

we have

γ2n =
〈L2nxqj , x

q
j〉ρ

〈xqj , x
q
j〉ρ

= (−1)n
∑

bi,bj∈B(n)

a
(n)
bj
a

(n)
bi

〈x
m

(i)
k1

+m(j)
k1

k1 · · ·xm
(i)
kr

+m(j)
kr

kr
〉ρ

〈xqj , x
q
j〉ρ

. (6.20)

Remark To guarantee numerical stability of the MZ-Faber expansion we often

need to scale the Liouville operator L by a parameter δ < 1 (see [104, 45]),

i.e., we need to compute the Faber operator polynomial series relative to δL.

Correspondingly, the generalized Langevin equation (2.17) is solved on a time

scale t/δ. In this setting, the coefficients (6.19) are also calculated relative to the

rescaled Liouville operator δL.

Remark Computing γj for linear systems reduces to a classical numerical linear

algebra problem, i.e., computing the Rayleigh quotient of a matrix power. To show

this, consider the N -dimensional linear system ẋ = Ax, evolving from the random

initial state x0 ∼ ρ0 (x0 column vector). Suppose we are interested in the first

component of the system, i.e., set the observable as u(t) = x1(t,x0). Define the

linear subspace V = span{x01, x02, · · · , x0N} ⊂ L2(M, ρ0). Clearly u(t) ∈ V for

all t ≥ 0 [103, 104]. This allows us to calculate γj as

γj = 〈
[
AT

]j
x0 · e1〉ρ0 , j = 1, . . . , n (6.21)

where e1 = [1, 0, . . . , 0]T .

186



Mapping the index set I(n)

In this section we describe the algorithm that allows us to compute the poly-

nomial Ln+1xqk given the polynomial Lnxqk and the Liouville operator L, i.e., the

mapping defined by equation (6.18). This is equivalent to develop a set of alge-

braic rules to transform the combined index set I(n) defined in (6.14) into I(n+1),

for arbitrary n. Once such rules are known, we can apply them recursively to

compute the polynomial sequence

xqj → Lx
q
j → L2xqj → L3xqj → · · · → Lnx

q
j

to any desired order. In this way, we can determine γn through (6.19) (or (6.20)),

µn through (6.5) (or (6.6)), and therefore the MZ memory kernel (6.1). Before

formulating the algorithm in full generality, it is useful to examine how it operates

in a concrete example. To this end, consider again the Kraichnan-Orszag system

(6.7), and the transformation between the polynomials (6.10) and (6.11) defined

by the action of the Liouville operator (6.8). We are interested in formulating such

transformation in terms of a set of algebraic operations mapping the index set I(2)

into I(3) (Eqs. (6.16)-(6.17)). We begin by decomposing the three-dimensional

Liouville operator (6.8) as

L = L1+L2+L3, where L1 = x1x3
∂

∂x1
, L2 = −x2x3

∂

∂x2
, L3 = (x2

2−x2
1) ∂

∂x3
.

(6.22)

The action of Li on any monomial generates a polynomial with Si terms. In the

present example, we have S1 = S2 = 1 and S3 = 2. Let us now consider the first

monomial in (6.10), i.e., 9x3
1x

2
3. Such monomial is represented by the first element

of A(2) and B(2) in (6.17). The corresponding combined set is {9, [3, 0, 2]}. At this

point, we apply the operators L1, L2 and L3 to the polynomial {9, [3, 0, 2]}. This
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yields

{9, [3, 0, 2]}︸ ︷︷ ︸
9x3

1x
2
3

L1−→ {27, [3, 0, 3]}︸ ︷︷ ︸
27x3

1x
3
3

, (6.23)

{9, [3, 0, 2]}︸ ︷︷ ︸
9x3

1x
2
3

L2−→ {0, [3,−1, 2]}︸ ︷︷ ︸
0

, (6.24)

{9, [3, 0, 2]}︸ ︷︷ ︸
9x3

1x
2
3

L3−→ {18, [3, 2, 1]}
⊎
{−18, [5, 0, 1]}︸ ︷︷ ︸

18x3
1x

2
2x3−18x5

1x3

= {{18,−18}, {[3, 2, 1], [5, 0, 1]}}.

(6.25)

The transformation associated with L3 generates the sum of two monomials,

namely 18x3
1x

2
2x3 − 18x5

1x3, which we represent as a union between two index

sets. Such union, here denoted as ⊎, is an ordered union that pushes to the left

polynomial coefficients and to the right polynomial exponents. Proceeding in a

similar manner for all other monomials in (6.10) and taking ordered unions of all

sets, yields the desired mapping I(2) → I(3). Let us now examine the action of a

more general Liouville operator

Lj = zxc1
1 · · ·x

cN
N

∂

∂xj
(6.26)

on the monomial axm1
1 · · ·xmNN represented by the index set {a, [m1, . . . ,mN ]}. We

have

{a, [m1, . . . ,mN ]} Lj−→ {zmja, [m1 + c1, . . . ,mj + cj − 1, . . . ,mN + cN ]}. (6.27)
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This defines two linear transformations: a scaling transformation in the space of

coefficients, and an addition in the space of exponents

a→ (zm1)a, [m1, . . . ,mN ]→ [m1, . . . ,mN ] + [c1, . . . , cj − 1, . . . , cN ]. (6.28)

In a vector notation, upon definition of b = [m1, . . . ,mN ], θj = [c1, . . . , cj −

1, . . . , cN ] and αj = zmj, we can write (6.28) in compact form as

a→ αja, b→ b+ θj. (6.29)

Let us know consider the general case where the Liouville operator is defined as

L(x) =
N∑
k=1
Lk(x) Lk(x) = Fk(x) ∂

∂xk
(6.30)

and Fk(x) is a polynomial involving Sk monomials in either all variables {x1, . . . , xN}

or a subset of them. The action of L on each monomial in (6.18) can be written

as

Lx
m

(i)
k1

k1 . . . x
m

(i)
kr

kr
=

∑
q∈K(n,j)

Lqx
m

(i)
k1

k1 . . . x
m

(i)
kr

kr
, (6.31)

where K(n, j) = {k1, . . . , kr} is the set of relevant variables at iteration n. The

polynomial (6.31) involves Sk1 +· · ·+Skr terms, each one of which can be explicitly

constructed by applying the linear transformation rules (6.29). In summary, we

have

I(n+1) =
⊎

q∈K(n,j)

#B(n)⊎
i=1

Sq⊎
s=1
{αqsa

(n)
bi
, bi + θqs}, (6.32)

where #B(n) denotes the number of elements in B(n). Note that both αss and θqs
depend on q ∈ K(n, j) (index set of relevant variables).
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Remark The recursive algorithm summarized by formula (6.32) is a modified

version of the algorithm originally proposed by Amati, Meyer and Schiling in [1].

The key idea is the same, i.e., to compute the expansion coefficients γn in (6.19)

using polynomial differentiation. However, there are a few differences between

our algorithm and the algorithm proposed in [1] which we emphasize hereafter.

In [1], the index set B(n) is pre-computed using the so-called spreading operators.

Essentially, for each n, the iterative scheme generates a new set of polynomial

coefficients A(n), which is subsequently matched with the corresponding indexes

in B(n). In our algorithm, the sets B(n) and A(n) are computed on-the-fly at each

step of the recursion. By doing so, we avoid calculating the spreading operators.

This, in turn, allows us to avoid using numerical tensors to store index sets, since in

our formulation there is no matching procedure between the polynomial exponents

and the polynomial coefficients. Another difference between the two algorithms

is that we utilized a rescaled Liouville operator δL (δ ∈ R) to enhance numerical

stability when computing the operator polynomials Φq(QL). The algorithm in

[1], on the other hand, is based on a Taylor series expansion of the operator

exponential etL, with unscaled Liouville operator1

An example: the Fermi-Pasta-Ulam model

Consider a one-dimensional chain of N anharmonic oscillators with Hamilto-

nian

H(p, q) =
N−1∑
j=0

p2
j

2m +
N−1∑
j=1

V (qj − qj−1). (6.33)

1In our recent work [104] (Section 3.1) we proved that a Taylor series of the orthogonal
dynamical propagation etQL yields an expansion of the MZ memory integral that resembles the
classical Dyson series in scattering theory.
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In (6.33) {qj, pj} are, respectively, the generalized coordinate and momentum of

the j-th oscillator, while V (qi−qi−1) is the potential energy between two adjacent

oscillators. Suppose that the oscillator chain is closed (periodic), i.e., that q0 = qN

and p0 = pN . Define the distance between two oscillators as rj = qj − qj−1. This

allows us to write the Hamilton’s equations of motion as


drj
dt

= 1
m

(pi − pi−1),

dpj
dt

= ∂V (rj+1)
∂rj+1

− ∂V (rj)
∂rj

.

The Liouville operator corresponding to this system is

L(p, r) =
N−1∑
i=1

[(
∂V (ri+1)
∂ri+1

− ∂V (ri)
∂ri

)
∂

∂pi
+ 1
m

(pi − pi−1) ∂
∂ri

]
.

Setting V (x) = αx2/2 + βx4/4 yields the well-known Fermi-Pasta-Ulam β-model

[63], which we study hereafter. To this end, suppose we are interested in the

distance between the oscillators j and j − 1, i.e., in the polynomial observable

u(p, r) = rj. The action of Ln on rj can be explicitly written as

Lnrj =
∑

bi∈B(n)

a
(n)
bi
r
m

(i)
k1

k1 · · · r
m

(i)
ku

ku
p
s

(i)
l1
l1 · · · p

s
(i)
lv
lv
, (6.34)

where {k1, . . . , ku} and {l1, . . . , lv} are the relevant degrees of freedom for the

polynomials of r and p, respectively, at iteration n. We can explicitly compute

the sets of such relevant degrees of freedom as

Kr(n, j) =
{
j −

⌊
n

2

⌋
, . . . , j +

⌊
n

2

⌋}
Lp(n, j) =

{
j −

⌊
n+ 1

2

⌋
, . . . , j +

⌊
n− 1

2

⌋}
,

(6.35)
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The action of the Liouville operator on each monomial appearing in (6.34) can be

written as

Lrm
(i)
ku

k1 r
m

(i)
ku

ku
p
s

(i)
l1
l1 · · · p

s
(i)
lv
lv

=
∑

v∈Kr(n,j)

∑
h∈Lp(n,j)

(Lrv + Lph)r
m

(i)
k1

k1 · · · r
m

(i)
ku

ku
p
s

(i)
l1
l1 · · · p

s
(i)
lv
lv
,

(6.36)

where

Lrv = 1
m

(pv − pv−1) ∂

∂rv
, and Lph =

[
α(rh+1 − rh) + β

(
r3
h+1 − r3

h

)] ∂

∂ph
.

(6.37)

By computing the action of Lrv and Lph on the monomial r
m

(i)
k1

k1 · · · r
m

(i)
ku

ku
p
s

(i)
l1
l1 · · ·

s
(i)
lv
lv

we obtain explicit linear maps of the form (6.29), involving the polynomial expo-

nents

bi = [m(i), s(i)], m(i) = [m(i)
k1 , . . . ,m

(i)
ku

], s(i) = [s(i)
l1 , . . . , s

(i)
lv

], (6.38)

and the polynomial coefficients a(n)
bi

. With such maps available, we can transform

the combined index set I(n) (representing Lnrj) to I(n+1) (representing Ln+1rj)

using (6.32). Specifically, we obtain

I(n+1) = I(n+1)
r

⊎
I(n+1)
p ,
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where

I(n+1)
r =

⊎
v∈Kr(n,j)

#B(n)⊎
i=1

1⊎
k=0

{
m(i)
v (−1)ka(n)

bi
, [m(i) − ev, s(i) + ev−k]

}
,

I(n+1)
p =

⊎
h∈Lp(n,j)

#B(n)⊎
i=1

1⊎
k=0

{
{s(i)

h (−1)k+1αa
(n)
bi
, s

(i)
h (−1)k+1βa

(n)
bi
},

{[m(i) + eh+k, s
(i) − eh], [m(i) + 3eh+k, s

(i) − eh]}
}
.

6.2 Stochastic low-dimensional modeling

In previous Sections we discussed an algorithm to approximate the memory

kernel in the MZ equation (2.33) or (2.17) based on the microscopic equations

of motion (first-principle calculation). In this Section we construct a statistical

model for fluctuation term f(t) appearing in (2.33), which will allow us to compute

statistical properties of the quantity of interest u(t) beyond two-point correlations.

A possible way to build such model is to expand (2.35d) in a finite-dimensional

series2 (see Eq. (5.2)) as

f(t) '
n∑
q=0

gq(t)Φq(QL)QLu(0), (6.39)

and evaluate the coefficients Φq(QL)QLu(0) using the combinatorial approach

discussed in Section 6.1.1. However, this may not be straightforward since the

operator Φq(QL)QLu(0) determines a high-dimensional random field. An alter-

native approach is to ignore the mathematical structure of f(t), i.e., equation

(2.16d) or the series expansions (6.39), and simply model f(t) as a stochastic

process. In doing so, we need to make sure that the statistical properties of the
2Note that f(t) is a random process obtained by mapping the random initial state u(0) =

u(x0) forward in time using the orthogonal dynamics propagator etQL(x0).
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reduced-order model, e.g., the equilibrium distribution, are consistent with the full

model. Such consistency conditions carry over a certain number of constraints on

the process f(t), which allow for its partial identification. As an example, con-

sider the following MZ model recently proposed by Lei et al. in [57] to study the

dynamics of a tagged particle in a large particle system



q̇ = p

m

ṗ = F (q) + d

ḋ = B0d−A0
p

m
+ f(t)

(6.40)

It was shown in [57] that if f(t) is Gaussian white noise with auto-correlation

function

〈f(t)f(t′)〉 = −β
(
B0A0 +A0B

T
0

)
δ(t− t′), (6.41)

then the equilibrium distribution of the particle system has the Boltzmann-Gibbs

form

ρ(p, q,d) ∝ exp
{
−β

( 1
2m |p|

2 + 1
2d

TA−1
0 d+ V (q)

)}
, (6.42)

V (q) being the inter-particle potential. However, modeling f(t) as a Gaussian

process does not provide satisfactory statistics in MZ equations built upon Mori’s

projection. In fact, equation (2.15) is linear and therefore the equilibrium distri-

bution of u(t) (assuming it exists) under Gaussian noise f(t) will be necessarily

Gaussian. In most applications, however, the equilibrium distribution of u(t) is

strongly non-Gaussian. To overcome this difficulty Chu and Li [19] recently de-

veloped a multiplicative Gaussian noise model that generalizes (2.15) in the sense

that it is not based on additive noise, and it allows for non-Gaussian responses.

In this section we propose a different stochastic modeling approach for f(t)
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based on bi-orthogonal representations random processes [93, 97, 92, 3, 2]. To

illustrate the method, we study the case where the observable u(t) is real valued

(one-dimensional) and square integrable. This allows us to develop the theory

in a clear and concise way. We also assume that the system is in statistical

equilibrium, i.e., that there exists an equilibrium distribution ρeq(x) (or more

generally an invariant measure) for the phase variables x(t,x0), and that x0 is

sampled from such distribution. The MZ equation (2.15) for one-dimensional

phase space functions u(t) = u(x(t,x0)) reduces to

du(t)
dt

= Ωu(t) +
∫ t

0
K(t− s)u(s)ds+ f(t), (6.43)

where

Ω = 〈u(0),Lu(0)〉eq
〈u(0), u(0)〉eq

, K(t) = 〈u(0),Lf(t)〉eq
〈u(0), u(0)〉eq

, f(t) = etQLQLu(0).

(6.44)

Since u(t) is assumed to be a second-order random process in the time interval

[0, T ], we can expand it in a truncated Karhunen-Loéve series

u(t) ' u+
K∑
k=1

√
λkξkek(t), t ∈ [0, T ] (6.45)

where u denotes the mean of u(t) relative to the equilibrium distribution3, {ξ1, . . . , ξK}

are uncorrelated random variables (〈ξiξj〉eq = δij), and {λk, ek(t)} (k = 1, . . . , K)

are, respectively, eigenvalues and eigenfunctions of the homogeneous Fredholm
3The mean of u(t) = u(x(t,x0)) is necessarily time-independent at statistical equilibrium. In

fact, at equilibrium we have that x0 ∼ ρeq implies that x(t) ∼ ρeq for all t ≥ 0. A statistically
stationary process however, may not be stationary in phase space. Indeed, x(t) evolves in time,
eventually in a chaotic way as it happens for systems with strange attractors and invariant
measures.
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integral equation of the second kind

∫ T

0
〈u(t)u(s)〉eqek(s)ds = λkek(t), t ∈ [0, T ]. (6.46)

We recall that for ergodic systems in statistical equilibrium the auto-correlation

function 〈u(t)u(s)〉eq decays to zero as |t− s| → ∞. Also, the integral operator at

the left hand side of (6.46) is positive-definite and compact [2]. The orthogonal

random variables ξk and the temporal modes ek(t) are related to each other by

the following dispersion relations [3, 93]

ξk = 1√
λk

∫ T

0
u(t)ek(t)dt, ek(t) = 〈u(t)ξk〉eq√

λk
k = 1, 2, . . . . (6.47)

Equation (6.47) suggests that if u(t) is a Gaussian random process (e.g., a Wiener

process) then {ξ1, . . . , ξK} are necessarily independent Gaussian random vari-

ables. On the other hand, if u(t) is non-Gaussian then the joint distribution

of {ξ1, . . . , ξK} is unknown, although it can be in principle computed by using the

transformation u(t)→ ξk (k = 1, .., K) defined in (6.47), given λk and ek(t).

An alternative approach to identify the PDF of {ξ1, . . . , ξK} relies on sam-

pling. In particular, as recently shown by Phoon et al. [78, 79], it is possible

to develop effective sampling algorithms for the KL expansion (6.45). Such al-

gorithms allow to sample the uncorrelated variables {ξ1, . . . , ξK} in a way that

makes the PDF of u(t) consistent with the equilibrium distribution, which can be

calculated by mapping x0 ∼ ρeq(x0) to u(x0). At this point, we have available

a consistent bi-orthogonal representation of the random process u(t) defined by

the series expansion (6.45). It is straightforward to see that such representation

yields a corresponding series expansion of the fluctuation term f(t) in (6.43). In

fact we have the following
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Proposition 4. For any bi-orthogonal series expansion (6.45) of the solution to

the MZ-equation (6.43), there exists a unique series expansion of the fluctuation

term f(t) of the form

f(t) = f +
K∑
k=1

√
λkξkhk(t). (6.48)

Proof. It is sufficient to prove the theorem for zero-mean processes. To this end,

we set u = 0 and f = 0 in (6.45) and (6.48). A substitution of (6.45) into (6.43)

yields, for all t ∈ [0, T ]

f(t) =
K∑
k=1

√
λkξk

(
dek(t)
dt

− Ωek(t)−
∫ t

0
K(t− s)ek(s)ds

)
. (6.49)

Define,

hk(t) = dek(t)
dt

− Ωek(t)−
∫ t

0
K(t− s)ek(s)ds. (6.50)

This equation does not allow us to compute hk explicitly quite yet. In fact, the MZ

memory kernel K(t−s) depends on f(t) (see Eq. (6.44)). However, a substitution

of (6.48) (with f = 0) into the analytical expression of K(t) yields

K(t) =
K∑

i,j=1

√
λiλjvijei(0)hj(t), where vij = 〈ξi,Lξj〉eq

〈u(0), u(0)〉eq
. (6.51)

To evaluate 〈ξi,Lξj〉eq we need to express {ξ1, . . . , ξK} as a function of x0 (recall

that L operates on functions of x0, see Eq. (2.3)), and then integrate over ρeq(x0).

This is easily achieved by using the dispersion relation (6.47). Specifically, we have

ξk(x0) = 1√
λk

∫ T

0
u(x(t,x0))ek(t)dt. (6.52)
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At this point, we substitute (6.51) into (6.50) to obtain

hk(t) = dek(t)
dt

− Ωek(t)−
K∑

i,j=1

√
λiλjvijei(0)

∫ t

0
hj(t− s)ek(s)ds. (6.53)

Given {e1(t), . . . , eK(t)}, Ω and vij, this equation can be solved uniquely for

{h1(t), . . . , hK(t)} by using Laplace transforms. Note that {h1(t), . . . , hK(t)} are

not necessarily orthogonal in L2([0, T ]).

Remark Proposition 4 establishes a one-to-one correspondence between the

noise process in the MZ equation (6.43) and the biorthogonal series expansion of

the solution. If the dynamical system (2.1) is Hamiltonian then the MZ steaming

term vanishes, and the MZ memory kernel can be written in terms the fluctuation

term as (see Eq. (2.20))

K(t) = 〈f(0), f(t)〉eq
〈u(0), u(0)〉eq

. (6.54)

A substitution of this expression into (6.43) yields, after projection onto ξk

dek(t)
dt

=
∫ t

0

K∑
j=1

λj [hj(0)hk′(t− s)] ek(s)ds+ hk(t). (6.55)

This equation establishes a one-to-one correspondence between the temporal modes

of the KL expansion (6.45) and the temporal modes of the fluctuation term (6.49).

In particular, given {e1(t), . . . , eK(t)}, we can determine {h1(t), . . . , hK(t)} di-

rectly by using Laplace transforms, without building the MZ memory kernel

(6.51).

The bi-orthogonal expansion of u(t) already gives an effective model for u(t) which

is computed from its time autocorrection function. The ratione behind the intro-

duction of the MZ-KL model (6.43) relies on an empirical fact that the fluctuation

force f(t) has faster time scales than u(t), therefore it is possible to use the short
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time autocorrelation function of u(t) to get effective models (6.49), (6.55) for f(t)

and K(t), and then get the longe time dynamics of u(t) through GLE equation

(6.43) [57]. The methodology we used is an application of the reverse thinking

of traditional approaches such as the ones used in [19, 57]. Instead of finding

suitable fluctuation force f(t) such that u(t) has the correct statistics, we directly

construct a model of u(t) which has the desired statistics and recover f(t) and

K(t) a posteriori. Hence within the reconstruction process, the second fluctuation

dissipation theorem holds automatically. The resulting GLE (6.43) has the same

explanatory power as (6.40).

Stochastic modeling from first principles By combining the MZ-KL model

with the combinatorial algorithm we proposed in Section 6.1, we propose the

following paradigm to build stochastic models for the observable u(t) at statistical

equilibrium from first principles. To this end,

1. Compute the solution to the MZ equation for the temporal correlation func-

tion of u(t) (see Eq. (3.62))

dC(t)
dt

= ΩC(t) +
∫ t

0
K(t− s)C(s)ds. (6.56)

The memory kernelK(t−s) can be expanded as in (6.1), and computed from

first-principles using the combinatorial approach we discussed in Section

6.1.1. Note that C(t) and K(t) in Eq (6.56) normally are computed within

some short-time scale.

2. Build the Karhunen-Loève expansion (6.45) by spectrally decomposing the

correlation function C(t) = 〈u(0)u(t)〉eq obtained at point 1. Recall that at

statistical equilibrium we have C(t − s) = 〈u(0)u(t − s)〉eq = 〈u(s)u(t)〉eq.

This yields eigenvalues {λj} and the eigenfunctions ej(t). The uncorrelated
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random variables ξk appearing in (6.45) can be sampled consistently with the

equilibrium distribution ρeq by using, e.g., the iterative algorithm recently

proposed by Phoon et al. [79, 78].

3. With {ξ1, . . . , ξK}, {e1(t), . . . , eK(t)} and {λ1, . . . , λK} available, we can

uniquely identify the noise process f(t) in the MZ equation (6.43). To this

end, we simply use Proposition 4, with the temporal modes hk(t) obtained

by solving equation (6.53) or (6.55) with the Laplace transform.

4. With K(t) and f(t) available, we may plug them in Eq (6.43) to get (long

time) dynamics of u(t).

The above paradiam can also be used in a pure data-driven setting, in the sense

that C(t) appeared in the first step can be replaced by simulated result obtained

from direct numerical simulation (for stochastic system Monte-Carlo simulation

may be used). Moreover, even when the analytic form of the equilibrium mea-

sure is unknown, the reconstruction algorithm proposed by Phoon et al. [79, 78]

still works for a data-driven, empirical probability density ρu which is consistent

with ρeq. This feature makes it a good modeling method for stochastic system in

unknown nonequilibrium steady state (NESS) such as the one appeared in heat

conduction model [26] and turbulence modeling [32]. After the stochastic model

for u(t) is built, one can use it to get any statistical quantities related to u(t). In

Section 6.3, we calculate time autocorrelation function of higher order moments

of u(t) to verify the accuracy of the stochastic model. Other statistical quantities

such as the one body intermediate scattering function (ISF) introduced in [1] can

be computed in a similar way. The results of this section can be generalized to

vector-valued phase space functions u(t) at statistical equilibrium. The starting

point is the KL expansion for multi-correlated stochastic processes we recently
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proposed in [14]. Such expansion is constructed based on cross-correlation infor-

mation4, and can be made consistent with the equilibrium distribution of u(t),

e.g., by using the sampling strategy proposed in [79, 78]. The correspondence be-

tween the KL expansions of u(t) and the vector-valued fluctuation term f(t) can

be established by following the same arguments we used in the proof of Proposition

4.

6.3 Applications to nonlinear systems with local

interactions

In this Section, we demonstrate the accuracy of the MZ memory calculation

method and the reduced-order stochastic modeling technique we discussed in Sec-

tion 6.1 and Section 6.2, respectively. To this end, we study nonlinear random

wave propagation described by Hamiltonian partial differential equations (PDEs).

To derive such PDEs consider the nonlinear functional

H([p], [u]) =
∫ 2π

0

[
p2

2 + α

2 u
2
x +G(p, ux, u)

]
dx, (6.57)

where u = u(x, t) represents the wave displacement, p = p(x, t) is the canonical

momentum (field variable conjugate to u(x, t)), ux = ∂u/∂x, and G(p, ux, u) is

the nonlinear interaction term. By taking functional derivatives of (6.57) with
4At statistical equilibrium the cross correlation functions are invariant under temporal shifts.

This means that 〈ui(s), uj(t)〉eq = 〈ui(0), uj(t − s)〉eq for all t ≥ s. Hence, the solution to the
projected MZ equation (3.62) is sufficient to compute the KL expansion of the multi-correlated
process u(t), e.g., using the series expansion method proposed in [14].
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respect to p and u (see, e.g., [94]) we obtain the Hamilton’s equations of motion


∂tu = δH(p, u)

δp(x, t) = p+ ∂pG(p, ux, u),

∂tp = −δH(p, u)
δu(x, t) = αuxx + ∂x∂uxG(p, ux, u)− ∂uG(p, ux, u).

(6.58)

The corresponding nonlinear wave equation is

utt = αuxx + ∂t∂pG(p, ux, u) + ∂x∂uxG(p, ux, u)− ∂uG(p, ux, u). (6.59)

This equation has been studied extensively in mathematical physics [51, 23, 49,

75], in particular in general relativity, statistical mechanics, and in the theory

of viscoelastic fluids. In Figure 6.1 and Figure 6.2, we plot a few sample nu-

merical solutions to (6.59) corresponding to different initial conditions and dif-

ferent nonlinear interaction term G(p, ux, u). These solutions are computed by

an accurate Fourier spectral method with N = 512 modes (periodic boundary

conditions in x ∈ [0, 2π]). Throughout this section, we assume that the ini-

tial state {u(x, 0), p(x, 0)} is random and distributed according to the functional

Boltzmann-Gibbs equilibrium distribution5

ρeq([p], [u]) = 1
Z(α, γ)e

−γH([p],[u]), where Z(α, γ) =
∫
e−γH(p,u)D[p(x)]D[u(x)].

(6.60)

We emphasize that ρeq([p], [u]) is invariant under the infinite-dimensional flow

generated by (6.59) with periodic boundary conditions, since the Hamiltonian

(6.57) is a constant of motion (conserved quantity) in this case.
5The partition function Z(α, γ) is defined as a functional integral over u(x) and p(x) (see,

e.g., [94]).
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Figure 6.1: Sample solutions of the nonlinear wave equation (6.59) with ini-
tial conditions u(x, 0) = e− sin(2x)(1 + cos(x)) (first row), u(x, 0) = e− sin(2x)(1 +
cos(5x))(second row), and u(x, 0) = e− sin(2x)(1 + cos(9x)) (third row). We set the
group velocity α to (2π/100)2 and consider different nonlinear interaction terms:
G = 0 (first column – linear waves), G = βu4

x/4 with β = (2π/100)4 (second col-
umn – nonlinear waves). It is seen that as the initial condition becomes rougher,
the nonlinear effects become more important.
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6.3.1 Case I: G(p,∇u, u) = 0

Setting the interaction term G(p, ux, u) in (6.57) and (6.59) equal to zero yields

the well-known linear wave equation

utt = αuxx. (6.61)

We discretize (6.61) in space using second-order finite differences on the (periodic)

grid xj = 2πj/N (j = 0, . . . , N). This yields the following linear dynamical system

duj
dt

= pj,
dpj
dt

= α

h2 (uj+1 − 2uj + uj−1), (6.62)

where uj(t) = u(xj, t), pj(t) = p(xj, t), and h = 2π/N is the mesh size. The Hamil-

ton’s function corresponding to the finite-difference scheme (6.62) is obtained by

discretizing the integral (6.57), e.g., with the rectangle rule. This yields

H1(p,u) =
N−1∑
j=0

h

2p
2
j + α1h

2

N−1∑
j=0

(uj+1 − uj)2, (6.63)

where we defined α1 = α/h2. The corresponding finite-dimensional Gibbs distri-

bution can be written as

ρeq(p,u) ∝ exp

−γ
N−1∑
j=0

1
2p

2
j + α1

2

N−1∑
j=0

(uj+1 − uj)2

 , (6.64)

Z1(α1, γ) being the partition function (normalization constant). Note that we

absorbed the scaling factor h in the parameter γ > 0. It is straightforward to verify

that the lattice Hamiltonian (6.63) is preserved if u0 = uN and p0 = pN (periodic

boundary conditions). This implies that the PDF (6.64) is invariant under the

flow generated by the linear ODE (6.62). Note that the lattice Hamiltonian (6.63)
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Figure 6.2: Snapshots of the solution shown in Figure 6.1.

coincides with the Hamiltonian of a one-dimensional chain of harmonic oscillators

with uniform mass m = 1 and spring constants k = α1. We set N = 100 and α =

(2π/100)2 in equation (6.62). In this way, the system (6.62) is 200-dimensional

and the modeling parameter α1 in (6.63)-(6.64) is equal to 1.

205



MZ memory kernel and auto-correlation functions The Hamiltonian sys-

tem (6.62) with periodic boundary conditions has many symmetries. In particular,

the statistical properties of wave displacement u(x, t) at any point xj are the same,

if the initial state is distributed according to (6.64). In addition, the PDF of the

wave momentum6 p(xj, t) and the wave displacement r(xj, t) = u(xj+1, t)−u(xj, t)

are both Gaussian (see Eq. (6.64)). Suppose we are interested in the temporal

auto-correlation function of the wave momentum p(xj, t) = pj, at an arbitrary

location xj, i.e.,

Cpj(t) = 〈pj(t), pj(0)〉eq, (6.65)

where 〈, 〉eq is an integral over the equilibrium distribution (6.64). Such correlation

function admits the analytical expression (see [33])

Cpj(t) = J0(2t), ∀γ > 0, (6.66)

where J0 is the zero-order Bessel function of the first kind. With Cpj(t) available,

we can solve the MZ equation

d

dt
Cpj(t) =

∫ t

0
K(t− s)Cpj(s)ds (6.67)

for the memory kernel K(t) by using Laplace transforms. This yields the exact

MZ kernel

K(t) = J1(2t)
t

, ∀γ > 0, (6.68)

where J1 is the first-order Bessel function of the first kind. In Figure 6.3, we

compare the exact memory kernel (6.68) and the correlation function (6.67) with

the results we obtained using the iterative algorithm discussed in Section 6.1.1.
6Note that for linear waves the wave momentum p(x, t) is equal to ∂u(x, t)/∂t (see Eq.

(6.58)).
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Figure 6.3: Linear wave equation (6.61). Temporal auto-correlation function
(6.65) of the momentum p(xj, t) = ∂u(xj, t)/∂t (any location xj) and MZ memory
kernel K(t). Shown are the analytical results (6.66)-(6.68), and the results we
obtained by using the recursive algorithm we discussed in Section 6.1.

Note that the system (6.62) is linear. Therefore, we can use the formula (6.21) to

compute the coefficients {γ1, . . . , γn+2} (n = 6). With such coefficients available,

we then compute {µ1, . . . , µn+2} using the recurrence relation (6.6), and the MZ

memory kernel (6.1). The linear wave is known to be an integrable system. For

which, the convergence of the MZ series expansion has been proved theoretically

in Chapter 5 since the dynamics of the etL and etQL is closed within a finite

dimensional Hilbert space. In Figure 6.3, we see clearly the convergence of MZ-

Faber expansion at the very order n.

Reduced-order stochastic modeling Suppose we are interested in building

a consistent reduced-order stochastic model for the wave momentum p(xj, t) =

∂u(xj, t)/∂t at statistical equilibrium. To this end, we employ the spectral expan-

sion technique we discussed in Section 6.2. The auto-correlation function of the

process p(t) = p(xj, t) (at any location xj), i.e., (6.65), is obtained by solving the

MZ equation (6.67) with the kernel computed using the combinatorial algorithm

described in Section 6.1.1. Following the first principle modeling paradigm we
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Figure 6.4: Linear wave equation (6.61). Temporal auto-correlation functions
(6.70) of the wave momentum.

proposed in Section 6.2, we expand p(t) as

p(t) '
K∑
k=1

√
λkξk(ω)ek(t), (6.69)

where (λk, ek(t)) are eigenvalues and eigenfunctions of (6.65). By enforcing con-

sistency of (6.69) with the equilibrium distribution (6.64) at each fixed time we

obtain that the random variables p(tj) are normally distributed with zero mean

and variance 1/γ, for all tj ∈ [0, 10]. In other words p(t) is a centered, stationary

Gaussian random process with correlation function (6.65). In Figure 6.4, we plot

the auto-correlation functions

Cp(t) = 〈pj(t), pj(0)〉eq, C2
p(t) = 〈p2

j(t), p2
j(0)〉eq, C4

p(t) = 〈p4
j(t), p4

j(0)〉eq.

(6.70)

Convergence of KL expansions representing high-order correlation functions such

as (6.70) is established in Appendix. In Figure 6.4, we see a convergence of the

KL representation to the exact result.
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6.3.2 Case II: G(p,∇u, u) = β
4u

4
x

In this section, we study the nonlinear wave equation (6.59) with interaction

term G(p, ux, u) = βu4
x/4, i.e.,

utt = αuxx + 3βu2
xuxx, α, β > 0. (6.71)

In Figure 6.1 and Figure 6.2 we plot sample solutions of (6.71) corresponding to

different initial conditions. It is clearly seen that the nonlinearity u2
xuxx breaks

the periodicity of traveling wave. This effect is more pronounced if the initial

condition is rougher in x, as u2
x and uxx are larger in this case, thereby increasing

magnitude of the nonlinear term in (6.71). As before, we discretize (6.71) and the

Hamiltonian (6.57) with finite differences on a periodic spatial grid (N points in

[0, 2π]). This yields

H2(p,u) =
N−1∑
j=0

hp2
j

2 +
N−1∑
j=0

hα1

2 (uj+1 − uj)2 +
N−1∑
j=0

hβ1

4 (uj+1 − uj)4, (6.72)

where uj(t) = u(xj, t) and pj(t) = ∂u(xj, t)/∂t represent the wave amplitude

and momentum at location xj = hj (j = 0, . . . , N , h = 2π/N), α1 = α/h2 and

β1 = β/h4. The discretized equilibrium distribution (6.60) then becomes

ρeq(p,u) ∝ exp

−γ
N−1∑
j=0

p2
j

2 +
N−1∑
j=0

α1

2 (uj+1 − uj)2 +
N−1∑
j=0

β1

4 (uj+1 − uj)4

 .
(6.73)

As before, we absorbed the factor h into the parameter γ. Note that the lattice

Hamiltonian (6.72) coincides with the Hamiltonian of the Fermi-Pasta-Ulam β-

model (6.33), with mj = 1. We emphasize that if a different scheme is used to

discretize the wave equation (6.71), then the lattice Hamiltonian (6.72) may not
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be a conserved quantity.

MZ memory term and auto-correlation functions We choose the wave

momentum pj(t) and the wave displacement rj(t) = uj+1(t)− uj(t) as quantities

of interest. Moreover, we set N = 100 and α = (2π/100)2. To study the effects

of the nonlinear interaction term, we consider different values of β = β1α
2, with

β1 ranging from 0.01 to 1. This corresponds to the FPU models with mild and

strong nonlinearities, respectively. Based on the structure of the Hamiltonian

(6.72) and the equilibrium distribution (6.73), we expect that the dynamics of

pj(t) and rj(t) will be different for different parameters β. To calculate the tem-

poral auto-correlation function of pj(t) and rj(t) at an arbitrary spatial point xj,

we solve the corresponding MZ equations. Such equations are of the form (6.67),

where the memory kernel K(t − s) is computed from first-principles (i.e., from

the microscopic equations of motion) using the algorithm we presented in Section

6.1.1. In Figure 6.5, we compare the temporal auto-correlation function we ob-

tained for the wave displacement rj(t) with results of Markov-Chain-Monte-Carlo

(MCMC) (106 sample paths) for FPU systems with mild nonlinearities (β1 = 0.01

and β1 = 0.1 ) at different temperatures (γ = 1 and γ = 40). It is seen that

the MZ-Faber approximation of the MZ memory kernel yields relatively accurate

results for FPU systems with mild nonlinearties at both low (γ = 40) and high

temperature (γ = 1) as we increase the polynomial order n.

Reduced-order stochastic modeling We employ the spectral approach of

Section 6.2 to build stochastic low-dimensional models of the wave momentum

pj(t) and wave displacement rj(t) = uj+1(t) − uj(t) at statistical equilibrium.

Since we assumed that we are at statistical equilibrium, the statistical properties

of the random processes representing pj(t) and rj(t) are time-independent. For
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Figure 6.5: Nonlinear wave equation (6.71). Temporal auto-correlation function
of the wave displacement rj(t) for different values of the nonlinear parameter
β1. We compare results we obtained by calculating the MZ memory from first
principles using n-th order Faber polynomials (Section 6.1.1) with results from
Markov-Chain-Monte-Carlo (106 sample paths). The thermodynamic parameter
γ is set to 1 (high-temperature) in the first row and to 40 (low-temperature) in
the second row.
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instance, by integrating (6.73) we obtain the following expression for the one-time

PDF of rj(t)

rj(t) ∼ e−γ( 1
2α1r2+ 1

4β1r4) ∀t ∈ [0, T ], ∀j = 0, . . . , N − 1. (6.74)

Clearly, rj(t) is a stationary non-Gaussian process. To sample the KL expansion

of rj(t) in a way that is consistent with the PDF (6.74) we used the algorithm

discussed in [78, 79]. It is straightforward to show that for all m ∈ N

E{r2m
j (t)} =

∫ +∞

−∞
r2me−γ( 1

2 r
2− 1

4 r
4)dr∫ +∞

−∞
e−γ( 1

2 r
2− 1

4 r
4)dr

=
√

2γ− 1
4−

m
2 Γ

(
1
2 +m

)
U
(

1
4 + m

2 ,
1
2 ,

γ
4

)
eγ/8K1/4

(
γ
8

) ,

where Γ(x) is the Gamma function, Kn(z) is the modified Bessel function of

the second kind and U(x, y, z) is Tricomi’s confluent hypergeometric function.

Therefore, for all positive γ and finite m we have that E{r2m
j (t)} <∞, i.e., rj(t)

is L2m process. This condition guarantees convergence of the KL expansion to

temporal correlation functions of order greater than two (see Appendix A). In

Figure 6.6 we plot the temporal auto-correlation function of various polynomial

observables of the nonlinear wave momentum and displacement at an arbitrary

spatial point xj. We compare results we obtained from Markov Chain Monte

Carlo simulation (dashed line), with the MZ-KL expansion method based the

first-principle memory calculation (continuous line). We also provide results we

obtained by using KL expansions with covariance kernel estimated from data

(dotted line).
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Figure 6.6: Nonlinear wave equaton (6.71). Temporal auto-correlation function
of polynomial observables pmj (t) (first row) rmj (t) (second row) with m = 1, 2, 4.
We compare results from Markov-Chain-Monte-Carlo simulation (MC), KL ex-
pansion based on the first-principle MZ memory kernel calculation (6.67) (KL-
FP), and KL expansion based on a data-driven estimate of the temporal auto-
correlation function (KL-DD). The parameter γ appearing in (6.73) is set to 40,
while α1 = β1 = 1.

6.3.3 Case III: G(p,∇u, u) = β
4u

4

In this section, we consider the nonlinear wave equation with the interaction

term G(p,∇u, u) = β
4 |u|

4. The Hamiltonian equation of motion for this system is

given by


∂tu = p

∂tp = α∆u− β|u|2u
(6.75)

The corresponding nonlinear wave equation is

utt = α∆u− β|u|2u. (6.76)
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Again, we assume that the nonlinear wave equation evolves from Gibbs initial

state e−γH(p,u)/Z(α, β, γ) with periodic BCs. The same finite difference scheme

can be introduced to approximate the wave equation and the corresponding Gibbs

measure. After some simple calculation, we shall get a lattice Hamiltonian system

with Hamiltonian

H3(p,u) =
N−1∑
j=0

hp2
j

2 +
N−1∑
j=1

hα1

2 (uj+1 − uj)2 +
N−1∑
j=0

hβ

4 u4
j (6.77)

where α1 = α/h2. The lattice Hamiltonian (6.77) gives the Landau-Ginsburg

model [75] with vanishing u2 term. The equilibrium Gibbs distribution ρeq be-

comes

ρeq ∝ exp

−γ
N−1∑
j=0

p2
j

2 +
N−1∑
j=1

α1

2 (uj+1 − uj)2 +
N−1∑
j=0

β

4u
4
j


N−1∏
j=0

dujdpj, (6.78)

Different from Case II where a non-canonical transformation can be introduced to

decouple the Gibbs distribution (6.73), there is no such non-canonical transforma-

tion for Gibbs measure (6.78). In fact, through the nonlinear interaction β
4u

4
j , uj

becomes dependent on all the other ui, i 6= j. This brings us numerical difficulties

when trying to use the first-principle method to get the expansion coefficients of

the GLE. To see this, we noticed that an accurate calculation of the expansion

coefficients µn requires the evaluation of n-point correlation

Mn = 〈umj1j1 , · · · , umjnjn 〉eq
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where j1, · · · , jn are relevant degree of freedom. For Gibbs measure (6.78), u0, · · · , uN−1

are dependent random variables with respect to joint distribution

ρu ∝ exp


N−1∑
j=1

α

2 (uj+1 − uj)2 +
N−1∑
j=0

β

4u
4
j


To accurately calculate the n-point correlation

Mn = 〈umj1j1 , · · · , umjnjn 〉eq = 〈umj1j1 , · · · , umjnjn 〉ρu

with respect to ρu is a hard task since there is no analytic expression for Mn and

any sampling method becomes inaccurate when n and N are large. Having said

that, it is still possible to use the first principle method to calculate γn for some

special cases. For instance, if β � 1 is relatively smaller when comparing to α, a

technique from perturbative quantum field theory can be used to evaluate n−th

order moments Mn through Wick’s theorem and Feymann diagram. We shall not

discuss the perturbation method in current paper.

Calculation of the correlation function For Hamiltonian system (6.77), we

choose the tagged particle momenta pj and its coordinate uj as quantities of

interest. We further specify h = L/N = 2π/100, α1 = (2π/100)2/h2 = 1 and β =

1. Considering the numerical difficulties in calculating GLE expansion coefficients

µn from the first principle, we choose to calculate the correlation function C(t)

by using data-driven method. i.e. the Monte-Carlo simulation. To sample from

the Gibbs distribution (6.78), we introduce the following overdamped Langevin
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dynamics [64, 12]:

dPj = −∂PjH3dτ +
√

2
β
dWPj(t)

dUj = −∂UjH3dτ +
√

2
β
dWUj(t), j = 0, 1, · · · , N − 1, (6.79)

where WPj(t) and WUj(t) are standard Wiener processes and periodic boundary

condition P0 = PN and U0 = UN is imposed. Here we use capital letter P and U

to represent stochastic process generated by the overdampled Langevin equation

(6.79). To solve (6.79) numerically, we use the following Euler-Maruyama finite

difference scheme:

P n+1
j = P n

j −∆t∂PjH3 +
√

2∆t
β
Gn
Pj

Un+1
j = Un

j −∆t∂UjH3 +
√

2∆t
β
Gn
Uj
, j = 0, 1, · · · , N − 1, (6.80)

where Gn
Pj

and Gn
Uj

are standard Gaussian random variables. ∆t = 0.005 is the

step size used in our simulation. We run the simulation for 106 steps and then

truncated the first 104 samples. i.e. we use the solution of (6.79) from t = 50 to

t = 5000. Samples from the equilibrium distribution are obtained by collecting

Pj(t) and Uj(t) every 10 steps for t ∈ [50, 5000].

Reduced-order modelling Now, we use the KL series to represent the dynam-

ics of the coordinate uj and momenta pj for a tagged particle j. The procedure

to build stochastic process representation of pj(t) is exactly the same as before

since P (t;ω) is a Gaussian process. For uj(t), however, the situation is slightly
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Figure 6.7: Empirical probability density function ρ̃u(x) and the cumulative
distribution function F̃u(x) for uj(t).

different. The exact form of the marginal distribution for uj is given by

ρuj(x) =
∫
ρu

N−1∏
i=0,i 6=j

duj ∝
∫ N−1∏

i=0,i 6=j
dui exp

{
N−1∑
i=1

α

2 (ui+1 − ui)2 +
N−1∑
i=0

β

4u
4
i

}

(6.81)

which cannot be explicitly calculated because of the dependence of uj and all the

rest degree of freedom {ui}i 6=j. Hence, in stead of calculating the multiple integral

(6.81), we use the emperical probability density ρ̃u(x) to replace the exact PDF

ρu(x) in Phoon’s algorithm. While ρ̃u(x) can be obtained by standard density

estimator from equilibrium samples generated by the overdamped Langevin equa-

tion. In Figure 6.7, we display the estimated probability density function (PDF)

ρ̃u(x) and the cumulative distribution function (CDF) F̃u(x). In Figure 6.8, we

compare the time autocorrelation function (6.70) generated by the Monte-Carlo

simulation and the truncated KL series. The KL approximation result for C2m
u (t)

is obtained through formula

C2m
u (t) ≈ 1

N

N∑
n=1

[(
K∑
k=1

√
λukRk(ω(n))euk(t)

)(
K∑
k=1

√
λukRk(ω(n))euk(0)

)]2m

(6.82)
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Figure 6.8: Time autocorrelation function of polynomial observable p2m
j (t) (first

row) and u2m
j (t) (second row) for nonlinear wave equation (6.76). The thermody-

namic parameter γ = 4.

6.4 Summary

In this chapter, we developed a new method to approximate the Mori-Zwanzig

(MZ) memory integral in generalized Langevin equations (GLEs) describing the

evolution of smooth observables in high-dimensional nonlinear systems with lo-

cal interactions. The new method is based on Faber operator series expansions

[104], and a formally exact combinatorial algorithm that allows us to compute the

expansion coefficients of the MZ memory from first principles, i.e., based on the

microscopic equations of motion. We also developed a new stochastic modeling

technique that employs Karhunen-Loève expansions to represent the MZ fluctua-

tion term (random noise) for systems in statistical equilibrium. We demonstrated
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the MZ memory calculation method and the MZ-KL stochastic modeling tech-

nique in applications to random wave propagation and prototype problems in

classical statistical mechanics such as the Fermi-Pasta-Ulam β-model. We found

that the proposed algorithms can accurately capture relaxation to statistical equi-

librium in systems with mild nonlinearities, and in strongly nonlinear systems at

high-temperature. At low temperature the Faber expansion of the MZ memory

kernel is granted to converge only on a time interval that depends on the system

and on the observable. In particular, Corollary 3.4.3 in [103] establishes short-time

convergence of the MZ-Faber memory approximation for a broad class of nonlinear

systems of the form (2.1). This implies that the MZ-Faber cumulant expansion

can exhibit short-time convergence, meaning that it produces first-principle results

that are accurate only for relatively short integration times.

We conclude by emphasizing that the mathematical techniques we presented

can be readily applied to more general systems with local interactions such as par-

ticle systems modeling the microscopic dynamics of solids and liquids [102, 58, 59].

This opens the possibility to build new approximation schemes for MZ equations

and derive new types of coarse-grained models where the MZ memory is con-

structed from first-principles and the fluctuation term is modeled stochastically.

Appendix 6.A Auto-correlation function of poly-

nomial observables

In this Appendix we prove that the temporal auto-correlation function of phase

space functions of the form un(t) = un(x(t,x0)), i.e.,

〈un(0), un(t)〉ρ n ∈ N (6.83)
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can be represented by replacing u(t) with the KL expansion (6.45), and then send-

ing K to infinity. This result allows us to compute the auto-correlation function

of un(t) based on the KL expansions of u(t).

Theorem A.1 Consider a zero-mean stationary stochastic process u(t), t ∈ [0, T ],

and assume that it has finite joint moments up to any desired order. Let

uK(t) =
K∑
k=1

√
λkξkek(t), (6.84)

be the truncated Karhunen-Loève expansion of u(t). Then

lim
K→∞

|〈un(0), un(t)〉ρ − 〈unK(0), unK(t)〉ρ| ∀n ∈ N, (6.85)

i.e., 〈unK(0), unK(t)〉ρ converges uniformly to 〈un(0), un(t)〉ρ as K →∞.

Proof. Let us define

δK(t) = |〈unK(t), unK(0)〉 − 〈un(t), u(0)〉|

= |〈unK(t), unK(0)〉 − 〈un(t), unK(0)〉+ 〈un(t), unK(0)〉 − 〈un(t), un(0)〉|

= |〈unK(t)− un(t), unK(0)〉+ 〈un(t), unK(0)− un(0)〉|

≤ |〈unK(t)− un(t), unK(0)〉|+ |〈un(t), unK(0)− un(0)〉| (6.86)

The first term at the right hand side is of the form

an − bn = (a− b)
n−1∑
i=0

aibn−1−i.
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By using the Cauchy-Schwarz inequality, we obtain

|〈unK(t)− un(t), unK(0)〉| =
∣∣∣∣∣〈(uK(t)− u(t))

n−1∑
i=0

uiK(t)un−1−i(t), unK(0)〉
∣∣∣∣∣

=
∣∣∣∣∣〈uK(t)− u(t), unK(0)

n−1∑
i=0

uiK(t)un−1−i(t)〉
∣∣∣∣∣

≤εK(t)
∥∥∥∥∥unK(0)

n−1∑
i=1

uiK(t)un−1−i(t)
∥∥∥∥∥
L2

,

where we defined εK(t) = ‖uK(t) − u(t)‖L2 . It is well-known that εK(t) → 0 as

K → ∞ (see, e.g., [62]). By using the generalized Hölder’s inequality ‖fg‖Lp ≤

‖f‖Lq‖g‖Lq , where 2p = q and the Minkowski inequality, we obtain

|〈unK(t)− un(t), unK(0)〉| ≤ εK(t)‖unK(0)‖L4

n−1∑
i=1
‖uiK(t)un−i−1(t)‖L4

≤ εK(t)‖unK(0)‖L4

n−1∑
i=1
‖uiK(t)‖L8‖un−i−1(t)‖L8 = C1εK(t),

(6.87)

where

C1 = ‖unK(0)‖L4

n−1∑
i=1
‖uiK(t)‖L8‖un−i−1(t)‖L8 <∞. (6.88)

Similarly, we have

|〈un(t), unK(0)− un(0)〉| ≤ εK(0)‖un(0)‖L4

n−1∑
i=1
‖uiK(0)‖L8‖un−i−1(0)‖L8 = C2εK(0).

(6.89)

By combining (6.86), (6.87) and (6.89), we obtain

lim
K→+∞

δK(t) ≤ lim
K→+∞

C1εK(t) + C2εK(0) = 0,

which proves the theorem.
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Appendix 6.B Sampling algorithm for non-Gaussian

processes

In [78, 79], Phoon et al proposed an iterative algorithm to generate samples

from a non-Gaussian stochastic process by using the KL expansion. In this sec-

tion, we will briefly review this algorithm and present simulation results for the

non-Gaussian process rj(t) appeared in Section 6.3.2. To this end, we consider

a centred stationary stochastic process w(x; θ) with the marginal distribution

w(xi; θ) ∼ ρw(x, ξ) and covariance function C(x, s), where ξ is the parameter set

that characterises the marginal distribution. The corresponding marginal cumula-

tive distribution function is denoted as FM(x) = FM(x, ξ). The stochastic process

w(x; θ) can be approximated by a truncated KL series

w(x; θ) '
K∑
k=1

√
λkwk(θ)ek(x)

Phoon’s algorithm generate samples for random vector w(θ) = [w1(θ), · · · , wK(θ)]

such that the empirical mariginal distribution w(xi, θn) = ∑K
k=1
√
λkwk(θn)ek(xi) ∼

ρ̃w(x, ξ) approximates ρw(x, ξ) for all xi. This is an easy task for Gaussian process

since the linear combination of Gaussian random variables is still Gaussian. For

non-Gaussian processes, the iterative Algorithm 1 is used to generate w(θ). In the

first step of Algorithm 1, we use numerical integration method to approximate the

eigenfunction ek(x) and eigenvalue λk of the KL series with the given covariance

function C(s, x). Specifically, we approximate the Fredholm integral equation as

follows:

∫
D
C(s, x)ek(x)dx ≈

∑
j

C(s, xj)ek(xj)ωj = λkek(s) (6.90)
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Algorithm 1: Iterative algorithms for sampling w(x; θ)
KL-decomposition: Using numerical integration method (see below) to
approximate ek(t) and λk of the KL expansion.;
Initialization: Generate N sample functions
w(1)(x; θn) = ∑K

k=1
√
λkw

(1)
k (θn)ek(x) from the non-Gaussian process, where

N is the sample number, index (1) is the iteration number, w(1)
k (θn) are

samples of i.i.d standard normal distribution;
for 1 ≤ m ≤M do

• Estimating the empirical cumulative marginal distribution function
F̃

(m)
M (y|x) = 1

N

∑N
n=1 I(w(m)(x; θn) ≤ y), where I is the indicator.

• Calculate transformed cumulative marginal distribution function as
η(k)(x; θn) = F−1

M F̃
(k)
M [w(m)(x; θn)].

• Estimate the next generation w(m+1)
k (θ) as

w
(m+1)
k (θn) = 1√

λk

∫
D{η(m)(x; θn)− [∑N

n η
(m)(x; θn)]/N}ek(x)dx.

• Standardize w(m+1)
k (θ) to unit variance.

end

where xj and ωj are the suitable choice of nodes and weights for numerical in-

tegration in domain D, which can be chosen accordingly for different integration

schemes. Since 〈ek, ek′〉 = δkk′ . In the grid points [x0, x1, · · · , xn], the above

integral equation can be written as the matrix equation

CΩek = λkek
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where

C =



C(x0, x0) C(x0, x1) . . . C(x0, xn)

C(x1, x0) C(x1, x1) . . . C(x1, xn)

. . .

C(xn, x0) C(x0, x0) . . . C(xn, xn)



Ω =



ω0 0 . . . 0

0 ω1 . . . 0

. . .

0 0 . . . ωn



and eTk = [ek(x0), · · · , ek(xn)]. By solving the eigenvalue problem CΩek = λkek,

one can get the approxmated eigenvalue λk and point-wise eigenfunction ek(x)

in [x0, · · · , xn]T . The orginal version of the sampling algorithm in [78, 79] used

a Latin Hypercube sampling technique to reduce the correlation between the it-

erated samples w(m+1)
k (θ). In the numerical experiments, we have noticed that

if the initial samples ω(1)
k (θn) are chosen from i.i.d standard normal distribution,

then the correlation between ω
(m+1)
k (θn) is already very small after several the

iterations. Therefore this step is skipped in our implementation to order to speed

up the sampling algorithm.
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Figure 6.9: KL approximation to a non-Gaussian process rj(t). In the first
row, we show the approximated eigenfunctions (the first three) and eigenvalues
for the Fredholm equation (6.90). In the second row, we show the convergence of
the sample marginal CDF F̃M(y|x), PDF ρ̃Q4(x) to the the exact marginal CDF
FM(x) and PDF ρQ4(x). The thermodynamic parameter γ = 1.
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Chapter 7

Conclusion

Since the first establishment in 60s, the Mori-Zwanzig framework has grad-

ually became a standard formalism of dimension reduction problems in high-

dimensional dynamical systems. Being an abstract and convoluted operator equa-

tion, the analysis and approximation of the MZ equation is a daunting task which

greatly restricts the development and application of this framework for a rather

long time. In this dissertation, we developed a thorough mathematical study on

the Mori-Zwanzig equation from both theoretical and numerical points of view.

After the introduction of the MZ equation in Chapter 3, we used two chapters (3

and 4) to analyze the semigroup etG, etQGQ and derive from it the prior estimates

of the MZ memory integral and the fluctuation force. In particular, we used the

Hörmander analysis established for linear hypoelliptic equation in the analysis

of the MZ memory integral, and obtained an accurate exponential decaying esti-

mate. As far as we know, this is the first estimate of the MZ memory kernel for

stochastic systems driven by white noise. For the computational part, In Chapter

5 we introduced new approximation method for the MZ equation which is based

on the orthogonal semigroup expansion theory. The series expansion methods can

be proven to be R-superlinearly convergent for linear dynamical systems. More-
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over, we also developed a combinatorial computation method which allows us to

approximate and solve the MZ equation for nonlinear system from the first prin-

ciple (Chapter 6). In conclusion, we provided new frameworks to analyze and

approximate the Mori-Zwanzig equation. Based on the presented work, further

development of the MZ formulation can be expected.
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