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GDoF of Interference Channel with Limited Cooperation

under Finite Precision CSIT

Junge Wang, Bofeng Yuan, Lexiang Huang and Syed A. Jafar

May 10, 2019

Abstract
The Generalized Degrees of Freedom (GDoF) of the two user interference channel

are characterized for all parameter regimes under the assumption of finite precision
channel state information at the transmitters (CSIT), when a limited amount of coop-
eration is allowed between the transmitters in the form of π DoF of shared messages.
In all cases, the number of over-the-air bits that each cooperation bit buys is shown to
be equal to either 0, 1, 1/2 or 1/3.
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1 Introduction

As distributed computing applications become increasingly practical there is renewed in-
terest in fundamental limits of cooperative communication in robust settings. Partially
overlapping message sets naturally arise as computing tasks are distributed with some re-
dundancy, e.g., to account for straggling nodes and adverse channel conditions [?]. Studies
of cellular communication with limited backhaul [1], unreliable cooperating links [2], and
variable delay constrained messages [3] lead to similar scenarios as well. An elementary
model for information theoretic analysis of such settings is an interference network with
a limited amount of shared messages between the transmitters. While the body of litera-
ture on information theoretic benefits of cooperative communication is too vast to survey
here (see [4]), it is notable that settings with limited cooperative capacities remain un-
derexplored, especially with finite precision CSIT. Most closely related to this work are
degrees of freedom (DoF) and generalized degrees of freedom (GDoF) studies in [5–11].
Connections to these prior works are explained in the remainder of this section.

Since exact capacity limits tend to be intractable, Generalized Degrees of Freedom
(GDoF) studies have emerged as an alternative path to progress for understanding the
fundamental limits of wireless networks. Robustness is enforced in GDoF studies by lim-
iting the channel state information at the transmitters (CSIT) to finite precision. Until
recently, a stumbling block for robust GDoF characterizations has been the difficulty of
obtaining tight converse bounds under finite precision CSIT (cf. Lapidoth-Shamai-Wigger
conjecture in [5] and the PN conjecture in [12]). However, the introduction of aligned
images bounds in [6] has made it possible to circumvent this challenge. Building upon this
opportunity, in this work we pursue the the GDoF of the interference channel under finite
precision CSIT with limited cooperation between the transmitters.

Perhaps the most powerful regime for cooperative communication is the strong inter-
ference regime, because the sharing of messages allows essentially a re-routing of messages
through stronger channels with potentially unbounded benefits. However, this regime turns
out to be also the most challenging regime for information theoretic GDoF characterizations
under finite precision CSIT. For example, in [7] the GDoF are characterized for the K user
broadcast channel obtained by full transmitter cooperation in a K user symmetric interfer-
ence channel with partial CSIT levels. Remarkably, while the GDoF are characterized for
the weak interference regime, the strong interference regime remains open. More recently,
the extremal GDoF benefits of transmitter cooperation under finite precision CSIT were
characterized in [8] for large interference networks. The benefits of cooperation are shown
to be substantial, but the extremal analysis is again limited to weak interference settings.
Evidently the strong interference regime poses some challenges. To gauge the difficulty of
robust GDoF characterizations in different parameter regimes with limited cooperation,
especially the strong interference regime, in this work we explore the 2-user setting.

The main result of this work is the exact GDoF characterization of the 2 user interfer-
ence channel under finite precision CSIT, when a limited amount of cooperation is allowed
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between the transmitters in the form of π DoF of shared messages. To place this work in
perspective, let us note that the GDoF region for the 2-user broadcast channel (where all
messages are shared) under finite-precision CSIT is found in [9], while the GDoF region of
2-user interference channel (where no messages are shared) under finite-precision CSIT is
the same as that under perfect CSIT [10]. This work bridges the gap between these two
extremes. Finally, let us recall that under perfect CSIT, Wang and Tse found in [11] that
each bit of cooperation buys either 0, 1 or 1/2 bit over-the-air. In this work, with finite
precision CSIT, for all parameter regimes we show that the number of over-the-air bits
that each bit of transmitter cooperation buys is either 0, 1, 1/2 or 1/3. Remarkably, the
1/3 factor shows up only in the strong interference regime. Indeed, while other regimes
turn out to be relatively straightforward, the central contribution of this work, i.e., its most
challenging aspect is the strong interference regime which requires the most sophisticated
converse and achievability arguments.

Notations: The notation (x)+ represents max(x, 0). Index set {1, 2, . . . , n} is repre-

sented as [n]. f(x) = o(g(x)) denotes that lim supx→∞
|f(x)|
|g(x)| = 0. Define bxc as the largest

integer that is smaller than or equal to x when x is nonnegative. x̄ is defined to be 1 if
x = 2, and 2 if x = 1.

2 Preliminaries

Definition 1 (Power Levels). Consider the integer valued random variables Xi over al-
phabet Xλi

Xλi , {0, 1, 2, · · · , P̄
λi − 1} (1)

where P̄ λi , b
√
P λic. We are primarily interested in limits as P → ∞, where P ∈ R+ is

denoted as power. The constant λi refers to the power level of Xi.
Definition 2. For any nonnegative real numbers X,λ1, λ2, define (X)λ1, (X)λ2λ1 as

(X)λ1 , X − P̄ λ1
⌊ X

P̄ λ1

⌋
(2)

(X)λ2λ1 ,
⌊(X)λ2
P̄ λ1

⌋
(3)

In other words, for any X ∈ Xλ1+λ2, (X)λ1 is the bottom λ1 power level of X, (X)λ1+λ2
λ1

retrieves the top λ2 levels of X.
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3 System Model

3.1 Interference Channel with Limited Cooperation

For GDoF studies, the 2-user interference channel with limited cooperation is described by
the following input-output relationship.

Y1(t) =
√
Pα11G11(t)X1(t) +

√
Pα12G12(t)X2(t) + Z1(t) (4)

Y2(t) =
√
Pα21G21(t)X1(t) +

√
Pα22G22(t)X2(t) + Z2(t) (5)

During the tth use of the channel, Yk(t) ∈ C is the symbol observed by user k.
√
P

is a nominal parameter that approaches infinity to define the GDoF limit. αki ∈ R+

is the coarse channel strength parameter between Transmitter i and Receiver k, and is
known to both transmitters and receivers. Gki(t) ∈ C are the corresponding channel
coefficient values, known perfectly to receivers but only available to transmitters with finite
precision. Recall that under finite precision CSIT [6], the transmitters are only aware of
the probability density functions of the channel coefficients, and it is assumed that all joint
and conditional probability density functions of channel coefficients exist and are bounded.

Xi(t) ∈ C is the symbol sent by Transmitter i and is normalized so it is subject to
unit transmit power constraint. Zk(t) ∼ NC(0, 1) is the zero mean unit variance additive
white Gaussian noise (AWGN) at Receiver k. Message Wii is the noncooperative message
that originates at Transmitter i and is intended for Receiver i, while message W0i is the
cooperative message that is also intended for Receiver i, but is known to both transmitters
through the limited conference link.

The definitions of probability of error, achievable rate tuples (R11, R22, R01, R02), code-
books and capacity region C are all in the usual Shannon-theoretic sense and will not be
repeated [13]. The GDoF region is defined as

D =

{
(d11, d22, d01, d02) :

∃((R11(P ), R22(P ), R01(P ), R02(P )) ∈ C(P )

s.t. d11 = lim
P→∞

R11(P )

log(P )
, d22 = lim

P→∞

R22(P )

log(P )
,

d01 = lim
P→∞

R01(P )

log(P )
, d02 = lim

P→∞

R02(P )

log(P )

}
(6)

Limited cooperation is modeled by the constraint,

d01 + d02 ≤ π, (7)

which may be interpreted as a half-duplex link between the transmitters, in which the
transmission is one way at any time and the rate of the conference link is upper bounded.
The sum-GDoF value for this channel, denoted DΣ,ICLC, is the maximum value of d11 +
d22 + d01 + d02. The encoding function of Transmitter i is Xi(t) = fi,t(Wii,W01,W02).
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3.2 Interference Channel

The interference channel corresponds to the setting with no cooperation, i.e., π = 0, so
there are are no cooperative messagesW01,W02. In [10], the GDoF region of the interference
channel is characterized under perfect CSIT. As noted in [14], for the 2-user interference
channel, GDoF under finite precision CSIT are the same as that under perfect CSIT. The
sum-GDoF value, denoted DΣ,IC is found to be,

DΣ,IC = min

(
max(α11 − α21, α12) + max(α22 − α12, α21),

max(α11, α12) + (α22 − α12)+,

max(α21, α22) + (α21 − α11)+,

α11 + α22

)
(8)

3.3 Broadcast Channel

The broadcast channel corresponds to unlimited cooperation, e.g., π → ∞, so that only
cooperative messages, W01,W02 are needed for the sum-GDoF characterization. The sum-
GDoF value, denoted DΣ,BC under finite-precision CSIT is found in [9] as,

DΣ,BC = min
(

max(α11, α12) + max(α21 − α11, α22 − α12)+,

max(α21, α22) + max(α11 − α21, α12 − α22)+
)

(9)

Note that unlike the interference channel, the broadcast channel suffers a loss in GDoF
due to finite precision CSIT as compared to perfect CSIT.

4 Results

Our main result appears in the following theorem.
Theorem 1. If max(α11, α22) ≥ min(α12, α21), then

DΣ,ICLC = min
(
DΣ,IC + π,DΣ,BC

)
. (10)

Otherwise, if max(α11, α22) < min(α12, α21), then we say the channel is in the strong
interference regime, and

DΣ,ICLC = min
(
DΣ,IC + π,

D2e + π

2
,
D3e + π

3
,DΣ,BC

)
(11)

where D2e = α12 + α21, and D3e = min(α21 − α22, α11) + 2 max(α21 − α11, α22) + α12 +
max(α12 − α22, α11).
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Corollary 1. Let π∗ denote the minimum cooperation GDoF needed to achieve the broad-
cast channel bound. If α22 < α11 < min(α12, α21), then π∗ > DΣ,BC −DΣ,IC, and its value
is given below

π∗ =


M − 2α11 α12, α21 ≤M,N ≤M + α11

2N − 4α11 − α22 α12, α21 ≤M,N ≥M + α11

α12 + 2α21 − 3α11 α12 ≥M,α21 ≤M
2α12 + α21 − 3α11 α12 ≤M,α21 ≥M
N + α22 − 2α11 α12 ≥M,α21 ≥M

(12)

where M = α11 +α22, N = α12 +α21. In all other parameter regimes, π∗ = DΣ,BC−DΣ,IC.

5 Proof of Converse (upperbound)

The bound DΣ,ICLC ≤ DΣ,BC is trivial because full cooperation cannot reduce GDoF. The
bound DΣ,ICLC ≤ DΣ,IC + π is also trivial because d11 + d22 ≤ DΣ,IC and d01 + d02 ≤ π
by assumption. These bounds hold in all regimes. Next we prove the bound DΣ,ICLC ≤
(D2e+π)/2 that holds in the regime max(α11, α22) ≤ min(α12, α21). For compact notation,
throughout this section we will suppress conditioning on all channel coefficients that is
assumed to be present in all entropies and mutual information terms. We will also suppress
o(log(P )) terms that are inconsequential for GDoF. Starting from Fano’s inequality,

nR11 + nR01 ≤ I(W11,W01;Y
[n]

1 ) (13)

≤ I(W11,W01;Y
[n]

1 |W02) (14)

≤ H(Y
[n]

1 |W02)−H(W22) (15)

≤ nmax(α11, α12) log(P )− nR22 (16)

≤ nα12 log(P )− nR22 (17)

where (15) holds because α12 ≥ α22, and (17) holds because in the strong interference
regime α12 ≥ α11. In the GDoF sense, (17) produces the bound d11 + d22 + d01 ≤ α12.
Similarly, we have the bound d11 + d22 + d02 ≤ α21, and adding these bounds along with
the bound (7) we obtain DΣ,ICLC ≤ (D2e + π)/2.

Finally, we prove the remaining bound for the strong interference regime, DΣ,ICLC ≤
(D3e + π)/3, for which we will need Aligned Images inequalities. Here we need the deter-
ministic model of [6] whose GDoF bound the GDoF of the original channel model from
above. Since this bound only works in the regime max(α11, α22) ≤ min(α12, α21), the
deterministic model can be simplified as:

Ȳ1(t) = b
√
Pα11−α21G11(t)X̄1(t)c+ bG12(t)X̄2(t)c (18)

Ȳ2(t) = bG21(t)X̄1(t)c+ b
√
Pα22−α12G22(t)X̄2(t)c (19)
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where X̄i(t) = X̄iR(t) + jX̄iI(t), i ∈ [2], and X̄1R, X̄1I ∈ {0, 1, 2, · · · , d
√
Pα21e}, while

X̄2R, X̄2I ∈ {0, 1, 2, · · · , d
√
Pα12e}.

Let us provide the proof for the case α12 ≥ α21, and the alternative setting of α12 ≤ α21

will follow similarly. For ease of notation, define

A =

{
(X̄

[n]
1 )α21

α22
α21 ≤ α11 + α22

(X̄
[n]
1 )α21

α21−α11
α21 ≥ α11 + α22

(20)

B =

{
(X̄

[n]
1 )α22

α21−α11
α21 ≤ α11 + α22

0 α21 ≥ α11 + α22
(21)

C = (X̄
[n]
2 )α12

α12−α22
(22)

X̄1

Bθ

Aη

X̄2

Cα22

α11

α22

α21

α12 Bθ

Aη

(X1)
α21
δ

C α22

X2

Ȳ1

Bθ

Aη

X1

C α22

(X2)
α12
γ

Ȳ2

Figure 1: Power level partitions A,B,C where η = α21−α22, θ = α11+α22−α21, δ = α21−α11, γ =
α12 − α22, X̄1 ∈ Xα21 , X̄2 ∈ Xα12 and α21 ≤ α11 + α22.

Figure 1 shows the definition under α21 ≤ α11 + α22, where the notation [n] is omitted
for simplicity. The case α21 ≥ α11+α22 can be shown similarly. Note that if α21 ≤ α11+α22,

then A represents the top α21 − α22 power levels of X̄
[n]
1 , and B represents the remaining

power level partition of X̄
[n]
1 that appears above the noise floor at Receiver 1. Otherwise

A represents the top α11 levels of X̄
[n]
1 and B is zero. The combination of A,B is the

partition of X̄
[n]
1 that is heard by Receiver 1 above the noise floor. Note that in both

case, A represents a partition of X̄
[n]
1 that is heard clearly above the signal due to X̄

[n]
2 at

Receiver 2, i.e.,

H(A | Ȳ [n]
2 ) = no(log(P )) (23)

C represents the top α22 power levels of X̄
[n]
2 , which is what Receiver 2 is able to hear
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from Transmitter 2. Note that the sum of power levels of A and C is always less than α12,
which is important when applying the sum-set inequality.

Because C is a function of W22,W01,W02,

H(C|W22,W02)

= I(C;W01|W22,W02) (24)

≤ I(A,C;W01 |W22,W02)

= I(A;W01|W22,W02) + I(C;W01|W22,W02, A) (25)

≤ I(A;W01|W22,W02) +H(C|W22,W02, A) (26)

Thus,

I(A;W01|W22,W02) ≥ H(C|W22,W02)−H(C|W22,W02, A) (27)

At the same time, we also have the following bound,

H(C|W22,W02)

≥ H(C|W02)−H(W22|W02) (28)

= I(C;W11,W01|W02) (29)

= I(C, Ȳ1
[n]

;W11,W01|W02)− I(Ȳ1
[n]

;W11,W01|C,W02) (30)

≥ I(Ȳ1
[n]

;W11,W01)−H(Ȳ1
[n]|C) (31)

≥ nR11 + nR01 −H(Ȳ1
[n]|C) (32)

Then from Fano’s inequality, we have

nR11 + nR01

≤ I(W11,W01; Ȳ1
[n]

) (33)

≤ H(Ȳ1
[n]

)−H(A,C|W11,W01) (34)

≤ H(Ȳ1
[n]

)−H(A|W11,W01)−H(C|W11,W01,W02) (35)

= H(Ȳ1
[n]

)−H(A|W11,W01)− nR22 (36)

= H(Ȳ1
[n]

)− I(A;W22,W02|W11,W01)− nR22 (37)

≤ H(Ȳ1
[n]

)− I(A;W22,W02)− nR22 (38)

where (34) is due to the sumset inequality (Theorem 1 in [15]). Rearranging the above
inequality we get

I(A;W22,W02) ≤ H(Ȳ1
[n]

)− n(R11 +R22 +R01) (39)

8



Next, applying Fano’s inequality at Receiver 2, we have

nR22 + nR02

≤ I(W22,W02; Ȳ2
[n]

) (40)

≤ I(W22,W02; Ȳ2
[n]
, A) (41)

= I(W22,W02;A) + I(W22,W02; Ȳ2
[n]|A) (42)

= I(W22,W02;A) +H(Ȳ2
[n]|A)−H(Ȳ2

[n]|A,W22,W02) (43)

= I(W22,W02;A) +H(Ȳ2
[n]|A)−H(Ȳ2

[n]|W22,W02)

+ I(Ȳ
[n]

2 ;A |W22,W02) (44)

≤ I(W22,W02;A) +H(Ȳ
[n]

2 |A)−H(A,C|W22,W02)

+ I(Ȳ
[n]

2 ;A |W22,W02) (45)

≤ I(W22,W02;A) +H(Ȳ2
[n]|A)−H(C|A,W22,W02) (46)

where in (45), we used sum-set inequality from Theorem 1 in [15]. Combining (39) and
(46),

H(C|A,W22,W02) ≤ H(Ȳ
[n]

1 ) +H(Ȳ
[n]

2 |A)

− n(R11 + 2R22 +R01 +R02) (47)

Combining (27), (32), (47), we have,

I(A;W01|W22,W02) ≥ n(2R11 + 2R22 + 2R01 +R02)

−H(Ȳ
[n]

1 |C)−H(Ȳ
[n]

1 )−H(Ȳ
[n]

2 |A) (48)

Additionally, using the same sum-set inequality to get

H(Ȳ
[n]

2 |W22,W02) ≥ H(A,B|W22,W02) (49)

Combining (49) with (44), and rearranging the terms we get

H(B|W22,W02, A) ≤ H(A) +H(Ȳ
[n]

2 |A)− n(R22 +R02)

−H(A|W22,W02) (50)

Message W11 can only be transmitted through A,B because it needs to be successfully
decoded by User 1. Therefore,

nR11 = H(A,B|W22,W02,W01) (51)

= H(A|W22,W02,W01) +H(B |W22,W02,W01, A) (52)

≤ H(A|W22,W02,W01) +H(B|W22,W02, A) (53)
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Combining (50) and (53), we get

I(A;W01|W02,W22) ≤

H(A) +H(Ȳ
[n]

2 |A)− n(R11 +R22 +R02). (54)

Because (54) and (48) are upper and lower bound on the same mutual information, com-
bining them we have

3n(R11 +R22) + 2n(R01 +R02) ≤

H(A) + 2H(Ȳ
[n]

2 |A) +H(Ȳ
[n]

1 ) +H(Ȳ
[n]

1 |C) (55)

The following bounds hold, with o(log(P )) terms omitted.

H(A) ≤ nmin(α21 − α22, α11) log(P ) (56)

H(Ȳ
[n]

2 |A) ≤ nmax(α21 − α11, α22) log(P ) (57)

H(Ȳ
[n]

1 ) ≤ nα12 log(P ) (58)

H(Ȳ
[n]

1 |C) ≤ nmax(α12 − α22, α11) log(P ) (59)

Thus, (55) yields the GDoF bound,

3d11 + 3d22 + 2d01 + 2d02 ≤ D3e (60)

Combining it with (7), we get the bound

DΣ,ICLC ≤
D3e + π

3
. (61)

Proceeding similarly, the same bound is obtained for α21 ≥ α12.

6 Proof of Achievability (lowerbound)

The achievability is relatively simpler for weak and mixed interference regimes, so those
cases are relegated to the full paper. Here we focus on the strong interference regime.
Without loss of generality, we will assume α11 ≥ α22.

6.1 Weak Interference Regime: α11 ≥ α12, α22 ≥ α21

Considering the weak interference regime firstly. In the regime α11 ≥ α12 ≥ α22 ≥ α21,
DΣ,IC = DΣ,BC = α11. And in the regime max(2α12 + α21, 2α21 + α12) ≥ α11 + α22,
DΣ,IC = DΣ,BC = min(α11 + α22 − α12, α11 + α22 − α21). So there is no cooperation
gain in both regimes. Next, we will consider the achievable scheme in three subcases in
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α11 ≥ α22 ≥ max(α12, α21), which means the strengths of direct links is always greater than
that of cross links. In the achievable scheme, the cooperative messages W01,W02 act as the
common message, which can be decoded by both users, so let us define W c

0 = (W01,W02).
In the weak interference regime, we assume π ≤ DΣ,BC − DΣ,IC. The achievability for
π ≥ DΣ,BC −DΣ,IC is the same as that for π = DΣ,BC −DΣ,IC, because the upperbound of
DΣ,BC is achieved without need for further cooperation.

Case 1: α11 ≥ α12 + α21, α22 ≥ α12 + α21

This is the TIN regime, in which treating interference as noise is shown in [16] to be optimal
even under finite precision CSIT [8]. In this regime, DΣ,IC = α11 + α22 − α12 − α21 and
DΣ,BC = min(α11 +α22−α12, α11 +α22−α21). The achievable scheme for this bound is as
follows: W11,W22 carry α11−α21, α22−α12 GDoF, respectively and they are encoded into
independent Gaussian codebooks X11, X22, with powers E|X11|2 = P−α21 ,E|X22|2 = P−α12

so they arrive at the noise floor at their undesired receivers. W c
0 carries π GDoF and it

is encoded to a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with power covariance matrix

Diag(1−P−α21 , 1−P−α12). The transmitted symbols are X1 = Xc
01 +X11, X2 = Xc

02 +X22.
Suppressing the time index for clarity, the received signals are:

Y1 =
√
Pα11G11(Xc

01 +X11) +
√
Pα12G12(Xc

02 +X22) + Z1

Y2 =
√
Pα21G21(Xc

01 +X11) +
√
Pα22G22(Xc

02 +X22) + Z2

For decoding Xc
0 at User 1, the desired signal power is ∼ Pα11 while the interference

power is ∼ Pα11−α21 , so that the SINR is ∼ Pα21 . Similarly, for decoding Xc
0 at User 2,

the desired signal power is ∼ Pα22 while the interference power is ∼ Pα22−α12 , so that the
SINR is ∼ Pα12 . Since Xc

0 carries π ≤ min(α12, α21) GDoF, it is successfully decoded by
both users. After decoding W c

0 , both receivers are able to reconstruct the codeword Xc
0 and

subtract its contribution from received signals. Then Receiver i decodes Xii for message
Wii, while treating the remaining signals as noise. For the decoding of W11 by User 1, the
desired signal power is ∼ Pα11−α21 while the interference power is ∼ P 0. Since W11 carries
only α11 − α21 GDoF, it is successfully decoded by User 1. Similarly, W22 is successfully
decoded by User 2.

Case 2: α11 ≥ α12 + α21, α22 ≤ α12 + α21

In this regime, DΣ,IC = α11, DΣ,BC = min(α11 + α22 − α12, α11 + α22 − α21). (1) If
α12 ≥ α21, W11 is split into the private message and common message W p

11 and W c
11,

which carry α11 − α21, α12 + α21 − α22 GDoF respectively. W22 carries α22 − α12 and
the cooperative message W c

0 carries π GDoF. Messages W p
11,W

c
11,W22 are encoded into

independent Gaussian codebooks Xp
11, X

c
11, X22, with powers E|Xp

11|2 = P−α21 ,E|Xc
11|2 =

1 − P−α21 − Pα22−α12−α21 ,E|X22|2 = P−α12 Message W c
0 is encoded to a vector Gaussian

codebook Xc
0 = (Xc

01, X
c
02) with power covariance matrix Diag(Pα22−α12−α21 , 1 − P−α12).

(2) If α12 ≤ α21, W p
11,W

c
11,W22 carry α11 − α21, 2α21 − α22, α22 − α21 GDoF respectively.
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Their codewords Xp
11, X

c
11, X22 have powers E|Xp

11|2 = P−α21 ,E|Xc
11|2 = 1 − P−α21 −

Pα21−α22 ,E|X22|2 = P−α21 . Message W c
0 carries π GDoF and is encoded to a vector Gaus-

sian codebook Xc
0 = (Xc

01, X
c
02) with power covariance matrix Diag(P 2α21−α22 , 1−P−α21).

The transmitted symbols are X1 = Xc
11+Xc

01+Xp
11, X2 = Xc

02+X22. When decoding, User
1 decodes W c

11 firstly while treating everything else as noise, then subtracts its contribution
from received signals. After this, it decodes Xc

0 for message W c
0 . After decoding, recon-

structing and subtracting the contribution of Xc
0, it can successfully decode W p

11. User 2
proceeds similarly by decoding Xc

0, X
c
11, X22 successively.

Case 3: α11 ≤ α12 + α21, α22 ≤ α12 + α21

In this regime, DΣ,IC = min(α12 +α21, α11 +α22−α12, α22 +α11−α21), DΣ,BC = min(α11 +
α22−α12, α11 +α22−α21). Only when 2α12 +α21 ≤ α11 +α22 and 2α21 +α12 ≤ α11 +α22,
there is a cooperation gain. We only discuss the order α12 ≥ α21 because the other
direction is similar. In the achievable scheme, noncooperative messages W1 and W2 are
both split, e.g., W11 = (W c

11,W
p
11), W22 = (W c

22,W
p
22). W c

11, W p
11, W c

22, W p
22 carry α12 +

α21−α22, α11−α21, α12 +α21−α11, α22−α12 GDoF respectively. W p
11,W

c
11,W

p
22,W

c
22 are

encoded into independent Gaussian codebooks Xp
11, X

c
11, X

p
22, X

c
22 with powers E|Xp

11|2 =
P−α21 ,E|Xc

11|2 = 1 − P−α21 − P−(α12+α21−α22),E|Xp
22|2 = P−α12 ,E|Xc

22|2 = 1 − P−α12 −
P−(α12+α21−α11). Message W c

0 carries π GDoF and is encoded to vector Gaussian codebook
Xc

0 = (Xc
01, X

c
02) with power covariance matrix Diag(P−(α12+α21−α22), P−(α12+α21−α11)).

The transmitted symbols are X1 = Xc
11 +Xc

01 +Xp
11, X2 = Xc

22 +Xc
02 +Xp

22. For decoding,
User 1 (resp. User 2) decodes Xc

11, X
c
0, X

c
22, X

p
11 (resp. Xc

22, X
c
0, X

c
11, X

p
22) while treating

others as noise and then subtracting their reconstructed codewords successively.

6.2 Mixed Interference Regime: α11 ≤ α12, α22 ≥ α21 or α11 ≥ α12, α22 ≤ α21

In the mixed interference regime with additional contraint α11 + α22 ≤ α12 + α21, there
exists three subcases where cooperation could provide a gain. Their achievability are shown
in the following. Here we also assume π ≤ DΣ,BC − DΣ,IC due to the same reason as the
weak interference regime.

Case 1: α21 ≤ α22 ≤ α11 ≤ α12

In this regime, User 1 is strictly stronger than User 2. DΣ,IC = α11 +α22−α12,DΣ,BC = α21.
W11,W22,W01 are carrying α11 − α21, α22, π GDoF respectively and they are encoded to
independent Gaussian codebooks X11, X22, X01 with powers E|X11|2 = P−α21 ,E|X22|2 =
1 − P−α22 ,E|X01|2 = P−α22 . X1 = X11, X2 = X22 + X01. User 1 decodes X22 for W22

firstly, while treating everything else as noise. The rate that is supported for this message

12



is:

= log
( Pα12 |G12|2(1− P−α22)

1 + Pα11 |G11|2P−α21 + Pα12 |G12|2P−α22

)
≥ α22 log(P ) + o(log(P )) (62)

which gives us the GDoF value d22 = α22. After decoding W22, Receiver 1 is able to
reconstruct the codeword X22 and subtract its contribution from the received signal and
then decodes the codeword X01 for its desired message W01, while treating the remaining
signal as noise. The rate is:

log
( Pα12 |G12|2P−α22

1 + Pα11 |G11|2P−α21

)
≥ (α12 + α21 − α11 − α22) log(P ) + o(log(P )) (63)

The GDoF value is α12 + α21 − α11 − α22. Since π is less than it, W01 can be successfully
decoded. After reconstructing and subtracting the contribution of codeword X01, User 1
decodes X11 for its desired message W11, while treating the remaining signal as noise. The
rate is

log
(Pα11 |G11|2P−α21

1

)
≥ (α11 − α21) log(P ) + o(log(P )) (64)

which gives us the GDoF value d11 = α11−α21, such that message W11 can be successfully
decoded. Receiver 2 is able to decode X22 by treating everything else as noise.

Case 2: α12 ≤ α22 ≤ α11 ≤ α21

In this regime, DΣ,IC = α11 + α22 − α12,DΣ,BC = α21. Messages W11,W22,W02 are carry-
ing α11, α22 − α12, π GDoF respectively. They are encoded to independent codewords
X11, X22, X02 with powers E|X11|2 = 1 − P−α11 ,E|X22|2 = P−α12 ,E|X02|2 = P−α11 .
X1 = X11 +X02, X2 = X22. This case is symmetric to α21 ≤ α22 ≤ α11 ≤ α12.

Case 3: α22 ≤ α12 ≤ α11 ≤ α21

In this regime, DΣ,IC = α11,DΣ,BC = α21. W11,W02 carry α11, π GDoF respectively. They
are encoded to codewords X11, X02 with powers E|X11|2 = 1 − P−α11 ,E|X02| = P−α11 .
X1 = X11 +X02. User 1 decodes X11 for its desired message W11, while treating everything
else as noise. User 2 decodes X11 firstly, then subtracts its contribution from the received
signal. After that, Receiver 2 can decode X02 for message W02.

13



6.3 Strong Interference Regime: max(α11, α22) ≤ min(α12, α21)

Even though we say the strong interference regime as max(α11, α22) ≤ min(α12, α21), a
more general setting is α22 ≤ α21, α11 ≤ α12. So here we cover the achievability for the
regime α22 ≤ α21 ≤ α11 ≤ α12, which is the gap between the general setting and our setting.
In this regime, DΣ,ICLC = min(DΣ,IC + π,DΣ,BC) = min(α11 + π, α12). The achievability
scheme is quite trivial: Message W11 carries α11 GDoF while W01 carries π GDoF for
π ≤ α12 − α11. It act as a multiple access channel to User 1, which can decode both W11

and W01.
Let us begin with an illustrative example where α11 = α22 = 2, α12 = 5, α21 = 3. For

this setting, DΣ,BC = 6 according to [9] and DΣ,IC = 3 according to [10]. Let us consider
how much cooperation is needed in this case to achieve DΣ,BC. The achievable scheme of [9]
summarized in Figure 2, requires π = 6 GDoF of cooperation, i.e., all messages must be
shared between the two transmitters. This is because in order to take advantage of the
strong interference links, the private messages of Users 1 and 2, are sent from opposing
transmitters, i.e., Transmitters 2 and 1, respectively. These are1 messages W p

01,W
p
02 in Fig.

2. The common messageW c
o that is decoded by both users is sent from both transmitters, so

it is shared as well. However, as shown in Theorem 1 in this paper, the sum-GDoF of limited

X1

W
p
021

Wc
02

X2

W
p
013

Wc
02

2

2

3

5

Wc
02

W
p
01 3

Wc
0 2

Y1

(X1)
3
1

X2

W
p
021

Wc
02

Wc
0 2

Y2

X1

(X2)
5
3

Figure 2: The scheme from [9] requires π = 6 GDoF of cooperation to achieve the broadcast channel
bound.

1In the description of the achievable scheme, we partition messages into sub-messages, and in labeling
these sub-messages we use subscripts to indicate transmitter cooperation, while the superscripts are asso-
ciated with the decodability of the message. Specifically, if the subscript contains a 0 then that part of the
message is shared between the two transmitters, otherwise it is not. Similarly, if the superscript is a p then
that part of the message is private, i.e., only decodable at its desired receiver, otherwise it is common, i.e.,
decodable by both receivers.
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cooperation interference channel for this example is DΣ,ICLC = min(3 + π, 8+π
2 , 13+π

3 , 6).
Therefore, π∗ = 5 is the minimum value of cooperative GDoF needed to achieve the BC
bound. The optimally efficient scheme is shown in Figure 3. The improvement in efficiency
come from the observation that part of the common message (in this case, W22) can be
transmitted from only one transmitter (in this case, Transmitter 2), and therefore requires
no cooperation.

The achievable scheme is as follows: Messages W01,W02 are split into the cooper-
ative common message W c

0 and the cooperative private messages W p
01,W

p
02. Messages

W22,W
c
0 ,W

p
01,W

p
02 carry 1, 1, 3, 1 GDoF respectively such that π = 5. W22,W

p
01,W

p
02

are encoded into independent Gaussian codebooks X22, X
p
01, X

p
02 respectively with pow-

ers E|X22|2 = 1 − P−1, E|Xp
01|2 = P−2, E|Xp

02|2 = P−2, Message W c
0 carries 1 GDoF

and is encoded to a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with power covariance

matrix Diag(1 − P−2, P−1 − P−2). The transmitted symbols are X1 = Xc
01 + Xp

02, X2 =
X22 +Xc

02 +Xp
01. Suppressing the time index for clarity, the received signals are:

Y1 =
√
P 2G11(Xc

01 +Xp
02) +

√
P 5G12(X22 +Xc

02 +Xp
01) + Z1

Y2 =
√
P 3G21(Xc

01 +Xp
02) +

√
P 2G22(X22 +Xc

02 +Xp
01) + Z2

When decoding, User 1 first decodes X22 for W22 while treating everything else as Gaussian
noise. Since X22 is received at power level ∼ P 5 while all other signals are received with
power levels ∼ P 4 or lower, the SINR for decoding W22 is ∼ P 1, which gives us the
GDoF value d22 = 1. After decoding W22, Receiver 1 is able to reconstruct codeword
X22 and subtract its contribution from the received signal. After this, Receiver 1 decodes
the codeword Xc

0 for message W c
0 , while treating the remaining signals as Gaussian noise.

Since the desired signal for this decoding is received with power level P 4 while all other
signals are received with power levels P 3 or less, the SINR for decoding W c

0 is P 1 which
gives GDoF value dc0 = 1. Then Receiver 1 subtracts the contribution of Xc

0 and decodes
message W p

01 while treating all other remaining signals as Gaussian noise. As evident from
Fig. 3, the SINR for this decoding is P 3 which gives us GDoF value dp01 = 3. Receiver 2
proceeds similarly by successively decoding W c

0 ,W22,W
p
02.

In general, there are 5 subcases in the strong interference regime, which cover all pos-
sibilities.

Case 1: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≥ 2α11 + α22

In this regime, the sum-GDoF, as characterized in (11), is:

DΣ,ICLC = min
(

min(α12, α21) + π,
α12 + α21 + π

2
,
α11 + α12 + α21 + α22 + π

3
, α12 + α21 − α11

)
(65)

If 2α11 + 2α22 − α12 − α21 ≤ π ≤ 2α12 + 2α21 − 4α11 − α22, the third bound is tight.
W11,W22,W

p
01,W

p
02 carry (2α21 − α12 + 2α11 − α22 − π)/3, (2α12 − α21 + 2α22 − α11 −

π)/3, (α11 + α22 + α12 − 2α21 + π)/3, (α11 + α22 + α21 − 2α12 + π)/3 GDoF respectively.
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Figure 3: The optimally efficient achievable scheme achieves the broadcast channel bound with only
π = 5 GDoF of cooperation.

They are encoded into independent Gaussian codebooks X11, X22, X
p
01, X

p
02 with powers

E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp
01|2 = P (α11+α22−2α12−2α21+π)/3,E|Xp

02|2 =
P (α11+α22−2α12−2α21+π)/3, where d11, d22 are the GDoFs of W11,W22 respectively. W c

0 car-
ries (α12 +α21−2α11−2α22 +π)/3 GDoF and it is encoded to a vector Gaussian codebook
Xc

0 = (Xc
01, X

c
02) with power covariance matrix Diag(P−d11−P (α11+α22−2α12−2α21+π)/3, P−d22−

P (α11+α22−2α12−2α21+π)/3). The transmitted symbols are X1 = X11 + Xc
01 + Xp

02, X1 =
X11 + Xc

02 + Xp
01. When decoding, User 1 decodes X22 for W22 while treating everything

else as noise. The desired power is ∼ Pα12 while the interference power is ∼ P−d22+α12 ,
so that the SINR is ∼ P d22 . Therefore W22 can be successfully decoded. After this, User
1 subtracts the contribution of reconstructed codeword X22 from received signals and de-
codes Xc

0 for W c
0 . The desired signal power is ∼ P−d22+α12 while the interference power

is ∼ Pα11 . Since W c
0 carries (α12 + α21 − 2α11 − 2α22 + π)/3 = −d22 + α12 − α11 GDoF,

it is successfully decoded by User 1. After subtracting the reconstructed codeword Xc
0,

User 1 decodes X11 for W11. The desired power for W11 is ∼ Pα11 while the interfer-
ence power is ∼ P (α11+α22+α12−2α21+π)/3, so that the SINR is P 2α21−α12+2α11−α22 . Hence
W11 can be successfully decoded. Finally, User 1 decodes Xp

01 for W p
01. The desired signal

power is ∼ P (α11+α22+α12−2α21+π)/3 while the interference power is ∼ P 0. Since W p
01 carries

(α11 +α22 +α12− 2α21 + π)/3 GDoF, it is successfully decoded. User 2 proceeds similarly
by successively decoding W11,W

c
0 ,W22,W

p
02. See Figure 4 for an illustration.
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Figure 4: Signal partition in the regime α12, α21 ≤ α11 + α22, α12 + α21 ≥ 2α11 + α22, where
δ = α21 − α11, γ = α12 − α22.

Case 2: α12 ≥ α11 + α22, α21 ≤ α11 + α22

In this regime, the sum-GDoF is

DΣ,ICLC = min(α21 + π,
2α12 + α21 + π

3
, α12 + α21 − α11) (66)

If α12−α21 ≤ π ≤ α12 + 2α21− 3α11, the second bound is tight. The achievable scheme is
as follows: W11,W22,W

p
01,W

p
02 are carrying (2α21 +α12− 3α22− π)/3, (3α22 +α12−α21−

π)/3, (2α12−2α21+π)/3, (α21−α12+π)/3 respectively. They are encoded into independent
Gaussian codebooks X11, X22, X

p
01, X

p
02 with powers E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 −

P−d22 ,E|Xp
01|2 = P−α22 , E|Xp

02|2 = P−(2α21+α12−π)/3. W c
0 carries (α21 − α12 + π)/3 GDoF

and is encoded into a vector Gaussian codebook with power covariance matrix Diag(P−d11−
P−(2α21+α12−π)/3, P−d22−P−α22). The transmitted symbols are X1 = X11+Xc

0 +Xp
02, X2 =

X22 + Xc
0 + Xp

01. When decoding, User 1 decoded W22,W
c
0 successively while treating

everything else as noise. After subtracting the reconstructed codeword X22, X
c
0, Receiver 1

jointly decodes W11 and W p
01 while treating the remaining signal as noise. User 2 proceeds

similarly.

Case 3: α12 ≤ α11 + α22, α21 ≥ α11 + α22

This is symmetric to α12 ≥ α11 + α22, α21 ≤ α11 + α22. Therefore the achievability is also
similar.
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Case 4: α12 ≥ α11 + α22, α21 ≥ α11 + α22

In this regime, we have

DΣ,ICLC = min
(
α11 + α22 + π,

2α12 + 2α21 − α11 − α22 + π

3
, α12 + α21 − α11

)
(67)

If α12 +α21− 2α11− 2α22 ≤ π ≤ α12 +α21 +α22− 2α11, the second bound in (67) is tight.
It is achieved as follows: W11,W22,W

p
01,W

p
02 carry (α12 + α21 − 2α22 + α11 − π)/3, (α12 +

α21−2α11 +α22−π)/3, (2α12 +π−α11−α22−α21)/3, (2α21 +π−α11−α22−α12)/3 GDoF
respectively and are encoded into independent Gaussian codewords X11, X22, X

p
01, X

p
02, X

c
0.

with powers E|X11|2 = 1−P−d11 ,E|X22|2 = 1−P−d22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 .
W c

0 carries (2α11 + 2α22 + π − α12 − α21)/3 GDoF and is encoded into a vector Gaussian
codebook Xc

0 with power covariance matrix Diag(P−d11 − P−α11 , P−d22 − P−α22). The
transmitted symbols are X1 = X11 + Xc

0 + Xp
02, X2 = X22 + X + Xc

0 + Xp
01. User 1

decodes W22,W
c
0 successively while treating everything else as noise. After subtracting

the contribution of X22, X
c
0, it jointly decodes W11 and W p

01 while treating the remaining
signals as noise. User 2 proceeds similarly. The receiver signal depiction for π = π∗ is
shown in Figure 5.

Wc
0

W11 W
p
01

Wc
0

Y1

(X1)α21
δ

X2

W02

Wc
0

W11

Wc
0

Y2

X1

(X2)α12
γ

Figure 5: Receiver’s signal depiction of α12, α21 ≥ α11 + α22, π = π∗, δ = α21 − α11, γ =
α12 − α22.

Case 5: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≤ 2α11 + α22

The sum-GDoF value in this case is characterized as:

DΣ,ICLC = min
(

min(α12, α21) + π,
α12 + α21 + π

2
, α12 + α21 − α11

)
(68)

We assume α12 ≥ α21. The other direction can be achieved similarly. If α12−α21 ≤ π ≤ N−
2α11. The second bound is tight and is achieved by the following: W11,W22,W01,W02 are
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encoded into independent Gaussian codewords X11, X22, X01, X02 with powers E|X11|2 =
1− P−(α12+α21−π)/2,E|X22|2 = 1− P−(α12+α21−π)/2,E|X01|2 = P−(α12+α21−π)/2,E|X02|2 =
P−(α12+α21−π)/2. X1 = X11 + X02, X2 = X22 + X01. In addition, W11,W22,W01,W02

carry (α21 + 2α11 − α12 − π)/2, α12 − α11, (α12 − α21 + π)/2, (α21 − α12 + π)/2 GDoF
respectively. User 1 decodes X22, X11, X01 successively, User 2 jointly decodes X11 and
X22 while treating everything else as noise, after this User 2 subtracts X11 and X22 and
decodes X02. The receiver signal depiction is shown in Figure 6.

W11

W01

W22

Y1

(X1)α21
δ

X2

W02

W11

W22

Y2

X1

(X2)α12
γ

Figure 6: Receiver’s signal depiction in the regime α12 ≤ α11 +α22, α21 ≤ α11 +α22, α12 +
α21 ≤ 2α11 + α22, π = π∗, δ = α21 − α11, γ = α12 − α22.

7 Conclusion

The aligned image sets approach of [6], and the sum-set inequalities of [15] are utilized
to characterize the sum-GDoF of two user interference channel with limited cooperation,
which bridges the gap between the interference channel and broadcast channel. The sum-
GDoF value are characterized for arbitrary parameter regimes.
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