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Tissue Tropism in Host 
Transcriptional Response to 
Members of the Bovine Respiratory 
Disease Complex
Susanta K. Behura1, Polyana C. Tizioto1,2, JaeWoo Kim1, Natalia V. Grupioni3, Christopher M. 
Seabury4, Robert D. Schnabel  1,5, Laurel J. Gershwin6, Alison L. Van Eenennaam  7, Rachel 
Toaff-Rosenstein7, Holly L. Neibergs8, Luciana C. A. Regitano  2 & Jeremy F. Taylor  1

Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is 
characterized by a complex infectious etiology that includes a variety of viral and bacterial pathogens. 
We examined the global changes in mRNA abundance in healthy lung and lung lesions and in the 
lymphoid tissues bronchial lymph node, retropharyngeal lymph node, nasopharyngeal lymph node and 
pharyngeal tonsil collected at the peak of clinical disease from beef cattle experimentally challenged 
with either bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea 
virus, Mannheimia haemolytica or Mycoplasma bovis. We identified signatures of tissue-specific 
transcriptional responses indicative of tropism in the coordination of host’s immune tissue responses 
to infection by viral or bacterial infections. Furthermore, our study shows that this tissue tropism 
in host transcriptional response to BRD pathogens results in the activation of different networks of 
response genes. The differential crosstalk among genes expressed in lymphoid tissues was predicted 
to be orchestrated by specific immune genes that act as ‘key players’ within expression networks. The 
results of this study serve as a basis for the development of innovative therapeutic strategies and for the 
selection of cattle with enhanced resistance to BRD.

Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is respon-
sible for 70–80% of morbidities and 40–50% of feedlot cattle mortalities in the United States1. BRD is a multi-
factorial disorder with a complex infectious etiology involving several viral and bacterial pathogens collectively 
referred to as the bovine respiratory disease complex (BRDC). Disease is frequently initiated by environmental 
stresses such as transportation to a feedlot, which can predispose susceptible calves to a primary infection, 
usually by a viral pathogen, which depresses the host immune system facilitating a secondary infection of 
the lower respiratory tract by bacteria2,3. Clinical diagnosis can vary according to the specific combination of 
causal pathogens but is usually based on the manifestation of lethargy or depression, reduced feed intake, fever, 
increased respiratory rate and dyspnea. Consequently, diagnosis is often made without the identification of 
disease etiology, leading to an incomplete diagnosis of undifferentiated bovine respiratory disease4. Treatment 
with broad-spectrum antibiotics requires the early recognition of disease to assist in the recovery of animals, 
although animal productivity is often extremely compromised in those that recover4. Many protection methods 
have now emerged, however, vaccines protect only about 75% of vaccinated animals and do not provide defense 
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in epidemics where the causal pathogens differ from those targeted by the vaccines4. Consequently, vaccines 
and antimicrobials have not been effective in decreasing BRD morbidity or mortality rates and BRD remains 
prevalent despite being widely studied5.

The exact pathogenic mechanisms by which bacteria and viruses cause BRD and the suite of factors that 
contribute to development of disease are not fully understood6. Pathogen infection triggers a dynamic cascade of 
immune response events that result in perturbed gene expression patterns7. RNA sequencing (RNA-Seq) allows 
the investigation of global gene expression changes and is repeatable, highly sensitive and strongly correlated 
with quantitative polymerase chain reaction experiments8. We have previously employed RNA-Seq to examine 
the bronchial lymph node transcriptomes of beef steers exposed to single agents of the BRDC9, however, the 
examination of diverse tissue transcriptomes can provide greater insights into the role of variation in transcript 
abundance as it relates to infectious disease susceptibility. Though, in general, infections by bacterial or viral 
pathogens in animals infect multiple types of cells and tissues, some may primarily infect a single tissue and facets 
of the immune response may be tissue specific10. Thus, the interaction of pathogen with host tissue niches is an 
important factor determining tissue tropism that reflects the ability of a given pathogen to infect a specific tissue 
and the level of host defense that a tissue can elicit towards the invading pathogen. In this study, we examined the 
mRNA expression changes in multiple lymphoid tissues as well as lung in beef cattle experimentally challenged 
individually with different bacterial or viral pathogens of the BRDC. The primary aim of this investigation was 
to examine how tissue cooperative transcriptional responses are modulated upon challenge by BRDC pathogens 
to produce a normal immune response to infection. Also of considerable interest was the identification of the 
genes that are the key drivers of the normal transcriptional response to infection, since mutations within these 
genes or the regulatory regions that control the expression of these genes have the potential to impair the immune 
response.

Results
Tissue gene expression profiles. The RNA-Seq experiments generated, on average, ~50 million reads per 
sample. The overall read alignment rate ranged from 84.8% to 94.1% and concordant pair mapping rate ranged 
from 74.2% to 93.1% (Supplementary Table 1). Transcript abundance differences between challenged and control 
animals were estimated for samples derived from lung lesion (LNGL) and four lymphoid tissues: bronchial lymph 
node (BLN), retropharyngeal lymph node (RLN), nasopharyngeal lymph node (NLN) and pharyngeal tonsil 
(PGT). For the lung, we also determined transcript abundance differences between LNGL and a nearby sample 
devoid of lesions collected from the lung (LNGH) of the same animal, with all tissue samples being collected at 
the peak of clinical signs. The gene expression changes in each tissue due to experimental challenge by individual 
pathogens (Bovine Respiratory Syncytial Virus, BRSV; Bovine Viral Diarrhea Virus, BVDV; Bovine herpesvirus 
1, BoHV-1; Mannheimia haemolytica, MANNHE; or Mycoplasma bovis, MYCO) revealed variation in transcrip-
tional profiles that were clustered into only 3 groups by both hierarchical clustering and principal component 
analysis (Fig. 1). The first two principal components captured 22.7% and 13.9% of the variance, respectively, 
in gene expression across all of the samples. The expression changes in BLN in response to challenge by the 
different BRDC pathogens clustered into a group that was distinct from other groups. Similarly, the gene expres-
sion changes identified in lung lesion samples relative to either unchallenged control animal lung samples or 
apparently healthy lung samples from the same animal (and therefore exposed to the same challenge pathogen) 

Figure 1. (A) Hierarchical cluster tree, and (B) Principal component analysis of gene expression changes across 
tissues and challenge pathogens. The cluster groups for each pathogen and tissue combination are indicated 
by colored lines below the branch nodes in the cladogram (lung, LNG includes contrasts between challenge 
and control groups and lesion and healthy lung tissue from the same animal) and are circled in the principal 
component plot.
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clustered into a second distinct group. Finally, gene expression changes in the RLN, NLN and PGT tissues clus-
tered into the third group (Fig. 1).

Differentially expressed genes in response to BRDC pathogens. The RNA-Seq data analysis revealed  
differential gene expression in different tissues between control and challenged animals, as well as between healthy 
lung and lung lesion samples from the same animals. The expression values along with significance (p-value and 
q-value) for the tests of differential expression are provided in the Supplementary Dataset. Different numbers of 
differentially expressed (DE) genes were identified for each of the tissue × pathogen combinations with fewer 
genes DE in the animals challenged with the bacterial pathogens than those challenged with viruses (p < 0.00001; 
Table 1). Across pathogens, the RLN had, on average, the fewest and BLN had the greatest number of DE genes. 
However, variation in the number of DE genes across pathogens was higher for RLN and NLN compared to the 
other tissues suggesting a greater specificity of pathogen response for these tissues. The number of DE genes dif-
fered across the tissue × pathogen combinations (p < 0.00001) with far more than the expected numbers of genes 
DE in BLN and LNGL in response to M. haemolytica, NLN and PGT in response to BVDV, and RLN in response 
to BRSV (Table 1). Table 2 shows the number of genes found to be DE in all 31 combinations of tissues ranging 
from a single tissue to all 5 analyzed tissues. Among the multi-tissue response genes, there were many more than 
the expected number of genes DE in both PGT and RLN in response to BRSV, in BLN, NLN and RLN in response 
to BoHV-1, in NLN and PGT in response to BVDV, in BLN and LNGL in response to M. haemolytica, and LNGL 
and NLN in response to M. bovis. The proportion of genes that were DE in two or more tissues was similar for all 
three viral pathogens (0.49–0.52) and both bacterial challenges (0.20–0.25). However, the proportion for bacterial 
challenges combined is less than half that of the combined viral challenges (2 × 2 contingency table; p < 0.00001), 
suggesting that gene expression in response to bacterial infections is largely tissue-specific.

The complexity of the relationships between DE genes among tissues is shown in Fig. 2B in a chord diagram. 
This map provides a graphical representation of the mutual information (a non-linear measure of dependency) 
of expression changes among genes across all tissue × pathogen combinations. Thus, Fig. 2B represents the extent 
of relationships between host transcriptional responses in different tissues that are due to the different pathogens. 
Among the DE genes identified in LNGL relative to LNGH, ~85% (2742 of 3211) were also found to be DE in 
the comparison of LNGL to the uninfected lungs of the control animals (Fig. 3A). In comparing lung lesion to 
healthy lung, we observed that the M. haemolytica challenge elicited a host transcriptome response that was the 
least related to the host transcriptional responses to the other pathogens (Fig. 3B). This may be due to the rela-
tively larger changes in gene expression that occurred in response to M. haemolytica than for the other pathogens. 
Furthermore, the correlations between gene expression changes between pairs of tissues within each pathogen 
challenge group again revealed the tissue specificity of immune response to the bacterial challenges relative to the 
viral challenges (Fig. 4). In particular, the sign of the correlation between gene expression responses between PGT 
and NLN appears to discriminate between bacterial and viral infections. This is consistent with the fact that the 
immune response in these two tissues failed to distinctly cluster across the challenge pathogens (Fig. 1).

The Ingenuity Pathway Analysis software indicated that the majority of the DE genes were involved in path-
ways related to antimicrobial response, mostly innate, but also adaptive. In the challenged animals we generally 
found the up-regulation of pathways for acute phase signaling, complement system, regulation of cytokine pro-
duction, interleukin and interferon signaling, granulocyte and agranulocyte adhesion and diapedesis, as well as 
the predominant down-regulation of a few lipid and cholesterol metabolism-related pathways such as peroxisome 
proliferator-activated receptor (PPAR) signaling, liver X receptor (LXR)/retinoid X receptor (RXR) activation and 
farnesoid X receptor (FXR)/RXR activation and antioxidant action of vitamin C. Likely downstream effects on 
cellular and organismal biology, such as the stimulation of lymphocyte activating factor IL1B, were also predicted 
from the expression data. We regularly predicted immunological, inflammatory and respiratory diseases as well 
as inflammatory responses. These findings suggest that we captured transcriptional variation within these tissues 
that were indicative of the organismal changes induced by infection.

BLN LNGL NLN PGT RLN Mean Std Dev

BRSV 3484 3129 1577 2472 4337 2999.8 1041.9

BVDV 3317 1580 4381 3945 1269 2898.4 1401.9

BoHV-1 4122 3117 3340 1838 2799 3043.2 832.1

MANNHE 2352 2195 196 530 616 1177.8 1014.0

MYCO 328 906 994 734 157 623.8 365.5

Mean 2720.6 2185.4 2097.6 1903.8 1835.6 2148.6 —

Std Dev 1480.1 969.8 1722.1 1391.9 1718.4 — 1390.3

Table 1. Numbers of differentially expressed genes for each tissue and pathogen combination*. *The 
differentially expressed genes were determined by comparing transcript abundance differences between 
challenged and control (unchallenged animals) for each pathogen and each tissue. Abbreviations used: 
bronchial lymph node (BLN), retropharyngeal lymph node (RLN), nasopharyngeal lymph node (NLN), 
pharyngeal tonsil (PGT) and lung lesion (LNGL). The pathogens: bovine respiratory syncytial virus (BRSV), 
Bovine herpesvirus 1 (BoHV-1), bovine viral diarrhea virus (BVDV), Mannheimia haemolytica (MANNHE) 
and Mycoplasma bovis (MYCO).
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Genes responsible for nonspecific defense mechanisms against all respiratory disease pathogens11 such as 
those encoding mucins, pattern recognition receptors (PPRs), host defense peptides (such as defensins, lac-
totransferrin and secretory leukoprotease inhibitor), and matrix metallopeptidase family members were con-
sistently found to be DE across all challenge groups and tissues as were genes with reactive oxygen and wound 
healing (coagulation factors, THBD and VWF) functions. Among the pathways most enriched for DE genes 
across all pathogens, we consistently observed the activation of acute phase response signaling. While for most 
pathogens Oncostatin M (OSM) and IL1 appeared to regulate the expression of acute phase proteins, TNFα was 
induced by the M. haemolytica challenge. We also observed an enrichment of DE genes in pathways related to IL8 
signaling, leukotriene, zymosterol, estrogen and cholesterol biosynthesis, eicosanoid signaling, hypercytokine-
mia and inhibition of matrix metalloproteases but the status of stimulation (up- or down-) could not always be 
predicted.

We hypothesized that in addition to a general immune response, pathogen-specific immune responses might 
be elucidated by sequencing the global RNA profiles of tissues collected at the peak of clinical disease12. We found 
many DE genes that were exclusive to each challenge group that were related to specific immune responses. 
While genes that were exclusively found to be DE between BRSV challenged and control animals, regardless of 
tissue, were involved in oxidative phosphorylation, mitochondrial dysfunction and hypoxia, the genes found to be 
exclusively DE in response to BoHV-1 infection were primarily involved in pathways involved in geranylgeranyl 
diphosphate biosynthesis via mevalonate, glutamate receptor signaling, mevalonate pathway, serotonin receptor 
and TGFβ signaling. The genes uniquely DE in response to BVDV challenge, were primarily related to the Ephrin 
receptors, which may function as entry receptors for BVDV. Pathways related to inhibition of viral replication 
such as Eukaryotic Initiation Factor 2 (EIF2) and Cell Cycle: G1/S Checkpoint Regulation, were also found to 

Tissues BRSV BoHV-1 BVDV MANNHE MYCO

BLN 924 1371 1244 1395 131

LNGL 1247 1247 606 1342 610

NLN 156 819 901 97 675

PGT 394 334 936 327 480

RLN 1187 279 66 249 59

BLN-LNGL 294 343 102 564 57

BLN-NLN 46 150 333 14 29

BLN-PGT 36 68 139 55 13

BLN-RLN 670 453 117 148 15

LNGL-NLN 65 244 101 19 89

LNGL-PGT 117 117 94 56 53

LNGL-RLN 248 62 8 59 11

NLN-PGT 102 184 1268 7 93

NLN-RLN 43 170 66 9 7

PGT-RLN 448 19 14 10 5

BLN-LNGL-NLN 27 93 37 9 15

BLN-LNGL-PGT 17 20 30 31 7

BLN-LNGL-RLN 312 181 29 80 9

BLN-NLN-PGT 27 52 406 3 11

BLN-NLN-RLN 86 417 189 10 7

BLN-PGT-RLN 189 63 31 14 8

LNGL-NLN-PGT 65 82 262 3 29

LNGL-NLN-RLN 14 78 28 4 3

LNGL-PGT-RLN 107 13 3 3 0

NLN-PGT-RLN 135 87 108 1 6

BLN-LNGL-NLN-PGT 19 14 84 1 5

BLN-LNGL-NLN-RLN 82 192 40 10 3

BLN-LNGL-PGT-RLN 106 27 12 10 2

BLN-NLN-PGT-RLN 301 354 414 5 9

LNGL-NLN-PGT-RLN 61 80 34 1 6

BLN-LNGL-NLN-PGT-RLN 348 324 110 3 7

Total DE Genes Across Tissues 7873 7937 7812 4539 2454

Table 2. Numbers of differentially expressed genes in common between tissues or specific to a single tissue. 
Footnote for abbreviations: bronchial lymph node (BLN), retropharyngeal lymph node (RLN), nasopharyngeal 
lymph node (NLN), pharyngeal tonsil (PGT) and lung lesion (LNGL). For LNGL the comparison is to lung 
samples from uninfected control individuals. The pathogens: bovine respiratory syncytial virus (BRSV), Bovine 
herpesvirus 1 (BoHV-1), bovine viral diarrhea virus (BVDV), Mannheimia haemolytica (MANNHE) and 
Mycoplasma bovis (MYCO).
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Figure 2. Numbers of differentially expressed genes in tissues. (A) Number of differentially expressed 
genes that respond to each pathogen challenge in a single tissue or in multiple tissues. (B) A chord diagram 
showing the inter-relationships of significant changes in gene expression among different tissues (BLN, LNGL, 
LNGH, NLN, PGT and RLN) to challenge by the different pathogens (1 = BRSV, 2 = BVDV, 3 = BoHV-1, 
4 = MANNHE and 5 = MYCO).

Figure 3. (A) Venn diagram indicates that about 44% of differentially expressed genes are in common across 
all pathogens in the LNGL versus Control and LNGL versus LNGH comparisons. (B) Pair-wise correlations 
between gene expression changes between LNGL versus LNGH relative to challenge pathogens.

Figure 4. Pair-wise correlations between gene expression changes between pairs of tissues in response to 
challenge by the different BRDC pathogens. Color codes are relative to the indicated correlation scale.
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be enriched for the genes that were uniquely DE in the BRSV challenged animals. Genes related to T-cell differ-
entiation and/or activation were induced by BVDV challenge. While immune responses to the viral challenges 
appear to be similar, involving Th1, Th2 and Th17 cells and the subsequent production of interferon, interleukins 
and immunoglobulins, immune responses to M. haemolytica and M. bovis appear to be primarily driven by Th2, 
with the subsequent production of IL1 in addition to TNFα for M. haemolytica. Whereas the interferons and 
their receptors appear to be major regulators of viral immune response, lipopolysaccharide, IL1β and TNF are the 
major regulators of responses activated by infection with M. haemolytica or M. bovis.

Signatures of tissue-specific gene expression. We next sought to understand how individual tissues 
respond to BRDC pathogens and whether they were associated with specific patterns of expression changes in 
response to challenge. To accomplish this, we first identified genes that were DE in a tissue-specific manner or 
that were ubiquitously DE in all five tissues (Table 2). Principal component analyses of the expression of genes 
DE in all tissues (marked as ‘ALL’) or specific tissues (marked using tissue abbreviations) are in Fig. 5A for each 
pathogen. The genes that were DE in all tissues tended to cluster differently for the different pathogens. We also 
conducted a principal component analysis of expression of DE genes between lung lesions and healthy lung tissue 
for each pathogen (Fig. 5B). These plots together show that gene expression patterns tend to cluster differently by 
host tissues and challenge pathogens. For example, infection by M. haemolytica induces more diverse transcrip-
tional changes in lung lesion relative to healthy lung than any of the other pathogens (Fig. 6).

In Fig. 7A, we show the relative proportions of genes that were DE between healthy lung and lung lesion for 
different combinations of BRDC pathogens. In particular, there were 1,256 genes DE in response to M. haemolyt-
ica but not in response to any of the other pathogens, 835 genes that were DE only in response to BVDV and 299 
genes were DE in response only to BRSV. As a proportion of the total number of DE genes for each pathogen, the 
proportion for M. haemolytica (69.4%) was greater than that for BVDV (64.4%, p < 0.003) or for BRSV (39.7%, 
p < 0.00001). This suggests that the host immunological response in lung was predominantly associated with 
gene expression in response to the M. haemolytica challenge. Moreover, following M. haemolytica challenge, 
the expression levels for the DE and non-DE genes shown in the principal component analysis differed more 
for M. haemolytica than for all of the other BRDC pathogens (Fig. 7B–F), a result that was also supported by the 
clustering shown in Fig. 6. These data further support that the host transcriptional response in lung lesion differs 
substantially for M. haemolytica relative to the other BRDC pathogens.

Tissue tropism is associated with differential gene networking. While individual tissues appear 
to possess different roles in mounting a host response to infection, an interaction between tissue transcriptional 
responses may be necessary to mount an appropriate immune response to a specific pathogen. Accordingly, we 
hypothesized that the correlation between gene expression changes between tissues could be used to predict a 
tissue cooperative host response. As the number of DE genes varied considerably between the challenge patho-
gens (see Table 1), we randomly sampled 1,000 genes from the set of all DE genes across all tissues for each path-
ogen and generated mutual information matrices for each pathogen. From the mutual information analysis, we 
observed a strong deviation in mean mutual information for the viral challenges (BRSV = 0.2344, BVDV = 0.1238 

Figure 5. (A) Principal component analysis of gene expression for genes differentially expressed in either 
a single tissue (identified by tissue code) or ubiquitously in all tissues (identified as ‘ALL’) for each challenge 
pathogen. (B) Principal component analysis of genes differentially expressed between LNGL and LNGH in 
response to individual pathogens. Color codes corresponding to pathogens are shown.
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and BoHV-1 = 0.1311) relative to the bacterial challenges (M. haemolytica = 0.0213 and M. bovis = 0.0204). This 
suggests that in response to the viral pathogens the different tissues have expression profiles that are mutually 
more informative to each other than are the tissue expression profiles in response to the bacterial challenges. 
Based on the weighted adjacency matrix generated from the pairwise mutual information data, the Maximum 
Relevance Minimum Redundancy expression networks (see Methods) revealed significantly different complexi-
ties for the viral and bacterial pathogen gene expression networks (Fig. 8).

Networks and gene ontology for response genes. We annotated the functions of the DE genes for which 
the host response was tissue-specific or tissue-agnostic. For each pathogen, these two gene sets were analyzed for the 
over-representation of gene ontology (GO) terms using DAVID software. The results indicated that genes that were 
DE in multiple tissues were more likely to play roles in immune response and host defense mechanisms than were 
the genes that were DE in a tissue-specific manner (Table 3). Genes that were DE in all five tissues had functions in 
TLR, complement and coagulation cascades, endocytosis, chemokine and cytokine signaling, leukocyte transen-
dothelial migration, cell adhesion and MAPK signaling. These events represent an orchestrated immune defense 
that occurs in all tissues to combat the infection. On the other hand, genes that were DE in a tissue-specific manner 
were more likely to be associated with GO terms such as extracellular region, contractile fiber part, myofibril, myo-
sin filament and others. These genes included specific complement receptors regulating proinflammatory immune 
responses that are likely related to microenvironment immune responses and appear to define the nature of tissue 
tropism. For example, CD70, a member of Tumor Necrosis Factor ligand superfamily, was exclusively DE in the 
comparison of LNGL to control lung, as were genes encoding mitogen-activated protein kinases such as MAP2K6, 
MAP2K3 and MAPK8. Moreover, surfactant genes encoding proteins secreted by type II alveolar macrophages that 
induce immune responses13 were also exclusively differentially regulated between LNGL and control lung.

The comparison of GO terms for the tissue-specific or tissue-agnostic DE genes in response to bacterial or 
viral challenges is shown in Supplementary Figure 1. This figure shows that tissue-specific or tissue-agnostic host 
transcriptional response GO terms tend not to overlap between the bacterial and viral challenges and when they 
were in common, tended to be for the bacterial pathogens.

Identification of key immune genes. We identified immune function-related genes by querying the 
DE genes to the innate immunity database InateDB (http://www.innatedb.com) for Bos taurus (Supplementary 
Table 2). The immune function related genes that were DE between lung lesion and apparently healthy lesion-free 
lung tissues are listed in Supplementary Table 3. The Maximum Relevance Minimum Redundancy network anal-
ysis of expression changes for these immune function-related genes revealed an extensive interaction between 
tissues in response to the challenges (e.g., for BoHV-1 shown in Supplementary Figure 2). Using degree centrality 
statistics to predict the key players within the gene expression networks, we predicted the top three key players 
among the immune function gene networks in response to each of the challenge pathogens (Table 4). The pre-
dicted key players have major roles in the defense against bacterial and viral infections. For example, BPIFA1 is 
expressed in the upper airways and nasopharyngeal regions in human and encodes an antimicrobial protein with 
antibacterial activity14. Several of the predicted key players are members of the C1Q ‘complement’ system gene 
family and are involved in host-pathogen interactions including respiratory tract inflammations15. APCS encodes 
amyloid P component, serum that is associated with laryngeal amyloidosis in humans16, and AKIRIN2 has been 
described as a ‘novel player’ in the transcriptional control of innate immunity17.

Figure 6. Hierarchical clustering of differentially expressed genes in lung lesion relative to healthy lung from 
the same individual following challenge with the different BRDC pathogens.

http://www.innatedb.com
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Pathway prediction of differentially expressed immunity genes. Finally, we sought to establish 
which pathways might be involved in host transcriptional responses to BRDC pathogens. The genes that were 
found to be responsive across tissues were tested to determine if any Bos taurus KEGG18 pathway was significantly 
over-represented by DE genes. We found that several disease-associated pathways, including those involved in 
host response to viral infections, were significantly associated with the genes that were consistently DE across 

Figure 7. Patterns of differential gene expression in lung lesion relative to healthy lung. (A) Venn diagram 
showing the proportions of DE genes that share a host response to the different pathogens. The legend within 
panel A shows pathogen abbreviations where ‘+’ means the genes were differentially expressed in response to 
the pathogen and ‘−’ means gene expression differences were not significant for the pathogen. (B–F) Principal 
component analyses of gene expression levels for differentially expressed (blue) and non-differentially expressed 
(red) genes in response to challenge by the different pathogens.

Figure 8. Lack of interaction among differentially expressed genes across tissues in response to experimental 
challenge by different BRDC pathogens. The nodes (genes) in each network are shown as blue dots and edges 
(interactions) are shown as grey lines. The pathogen abbreviations are shown above the gene networks corresponding 
to differentially expressed genes (across all tissues) in response to challenge by the individual pathogens.
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GO ID and Term No. DE genes p-value
Bonferroni 
corrected p-value DE set ID*

GO:0005576~extracellular region 10 3.99E-04 0.023645061 BRSV-S

GO:0005615~extracellular space 6 7.69E-04 0.045113825 BRSV-S

GO:0005576~extracellular region 21 1.54E-07 1.05E-05 BRSV-M

GO:0048584~positive regulation of response to stimulus 7 8.01E-05 0.041798131 BRSV-M

GO:0006952~defense response 11 1.16E-06 6.20E-04 BRSV-M

GO:0048584~positive regulation of response to stimulus 7 8.01E-05 0.041798131 BRSV-M

GO:0032020~ISG15-protein conjugation 4 9.77E-07 5.21E-04 BRSV-M

GO:0005882~intermediate filament 6 1.01E-04 0.004546977 BDVD-M

GO:0045111~intermediate filament cytoskeleton 6 1.01E-04 0.004546977 BDVD-M

GO:0030855~epithelial cell differentiation 6 9.65E-07 1.49E-04 BDVD-M

GO:0060429~epithelium development 6 2.16E-05 0.003321463 BDVD-M

GO:0006955~immune response 28 3.15E-17 3.34E-14 BoHV-1-M

GO:0006954~inflammatory response 19 1.51E-16 1.18E-13 BoHV-1-M

GO:0009611~response to wounding 22 9.21E-16 9.41E-13 BoHV-1-M

GO:0006952~defense response 24 9.54E-16 1.06E-12 BoHV-1-M

GO:0002526~acute inflammatory response 10 1.42E-09 1.50E-06 BoHV-1-M

GO:0006955~immune response 28 3.15E-17 3.34E-14 BoHV-1-M

GO:0005615~extracellular space 25 2.23E-15 2.60E-13 BoHV-1-M

GO:0005576~extracellular region 41 2.97E-15 3.51E-13 BoHV-1-M

GO:0005125~cytokine activity 16 1.60E-13 4.48E-11 BoHV-1-M

GO:0044421~extracellular region part 28 1.71E-13 2.00E-11 BoHV-1-M

GO:0005125~cytokine activity 16 1.60E-13 4.48E-11 BoHV-1-M

GO:0006935~chemotaxis 10 1.01E-08 1.07E-05 BoHV-1-M

GO:0042330~taxis 10 1.01E-08 1.07E-05 BoHV-1-M

GO:0042379~chemokine receptor binding 8 1.08E-07 3.01E-05 BoHV-1-M

GO:0008009~chemokine activity 8 1.08E-07 3.01E-05 BoHV-1-M

GO:0007626~locomotory behavior 10 2.72E-06 0.00287541 BoHV-1-M

GO:0007610~behavior 12 4.48E-06 0.00474088 BoHV-1-M

GO:0002526~acute inflammatory response 10 1.42E-09 1.50E-06 BoHV-1-M

GO:0006953~acute-phase response 6 8.72E-07 9.24E-04 BoHV-1-M

GO:0006935~chemotaxis 10 1.01E-08 1.07E-05 BoHV-1-M

GO:0042330~taxis 10 1.01E-08 1.07E-05 BoHV-1-M

GO:0007626~locomotory behavior 10 2.72E-06 0.00287541 BoHV-1-M

GO:0009617~response to bacterium 9 9.28E-06 0.009792847 BoHV-1-M

GO:0030017~sarcomere 7 1.05E-08 1.03E-06 MANNHE-S

GO:0044449~contractile fiber part 7 1.90E-08 1.88E-06 MANNHE-S

GO:0030016~myofibril 7 2.87E-08 2.84E-06 MANNHE-S

GO:0043292~contractile fiber 7 4.75E-08 4.71E-06 MANNHE-S

GO:0032982~myosin filament 3 2.48E-04 0.024300011 MANNHE-S

GO:0008092~cytoskeletal protein binding 7 4.23E-04 0.047922373 MANNHE-S

GO:0030017~sarcomere 9 3.04E-11 3.22E-09 MYCO-S

GO:0044449~contractile fiber part 9 6.90E-11 7.31E-09 MYCO-S

GO:0030016~myofibril 9 1.21E-10 1.28E-08 MYCO-S

GO:0043292~contractile fiber 9 2.41E-10 2.56E-08 MYCO-S

GO:0031674~I band 7 3.38E-09 3.58E-07 MYCO-S

GO:0030018~Z disc 6 1.32E-07 1.40E-05 MYCO-S

GO:0030016~myofibril 6 9.84E-07 8.26E-05 MYCO-M

GO:0043292~contractile fiber 6 1.49E-06 1.25E-04 MYCO-M

GO:0016459~myosin complex 5 3.91E-05 0.003277612 MYCO-M

GO:0032982~myosin filament 3 2.31E-04 0.01925287 MYCO-M

GO:0030017~sarcomere 4 5.20E-04 0.042770803 MYCO-M

GO:0005615~extracellular space 8 6.65E-05 0.00557453 MYCO-M

Table 3. GO terms associated with genes that were differentially expressed in single (S) or multiple (M) tissues. 
*DE set ID represents genes that were differentially expressed in response to a pathogen (BRSV, BVDV, BoHV-
1, MANNHE or MYCO) either in a single tissue (designated as –S) or in multiple tissues (designated as –M).
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all tissues (Table 5). We also observed the RIG-I-like receptor, NF-kappa B and NOD-like receptor signaling 
pathways to be significantly enriched for DE genes suggesting that these pathways play roles in a tissue cooper-
ative host response to infection. Phagosome and complement and coagulation cascades were also significantly 
enriched for DE genes further suggesting their roles in response to early infection events that may be indicative 
of infection spreading from one tissue to another. In lung tissues, we analyzed lesion-associated DE genes for 
KEGG pathway enrichment, and found that pathways such as the ECM-receptor interaction, focal adhesion, 
PI3K-Akt signaling pathway, along with other specific metabolic pathways were significantly enriched (Table 6). 
The greatest number of DE genes was associated with the PI3K-Akt pathway, and this pathway is upstream of 
important molecular cascades known to be associated with cell cycle, programmed cell death and p53 signaling 
(Fig. 9). In Fig. 9, we observe specific DE genes (shown in red text) such as PEPCK, CCND1, FASLG and MYB that 
are directly upstream of these events (cell cycle, apoptosis and p53 signaling). This suggests that these DE genes 
within the PI3K-Akt pathway may play important roles in eliciting downstream cascades in lung lesions.

Discussion
We performed a detailed analysis of tissue transcriptional responses to understand the involvement of lymphoid 
and lung tissues in the normal immune response to infection by BRDC pathogens at the peak of clinical signs 
of disease. Relative to spontaneous infections, the intranasal inoculations for viruses and intra-tracheal inocula-
tions for bacteria may have affected pathogen spreading and the localization and extent of the lesions as well as 
potentially the extent of lymphoid tissue involvement. While we cannot exclude this possibility, the respiratory 
viruses are known to be infective by the inhalation route and we considered the tracheal administration of the 
bacterial pathogens to best represent the normal mode of lung infection and using these routes of inoculation 
we successfully induced clinical signs and lung pathology in the beef steers following each of the single patho-
gen experimental challenges9. Consequently, we also expect that tissues analyzed produced appropriate genetic 
responses to each of the pathogens.

Pathogen Key players Centrality score

BRSV BPIFA1, C1QB, C1QBP 1.34

BVDV AKIRIN2, APCS, BPIFA1 1.84

BoHV-1 APCS, C1QA, C1QB 2.08

MANNHE C1QA, C1QB, C4BPA 2.85

MYCO BPIFA1, C9, CD14 0.56

Table 4. Predicted top 3 key players in the immune function gene networks in response to challenge by 
BRDC pathogens. Prediction was based on degree centrality estimation within each of the mutual information 
networks of differentially expressed immune function genes. The degree centrality score is a value that 
represents how well the model predicts the three genes to occupy the central nodes in the network.

KEGG Pathway
No. DE 
Genes Fold Enrichment p-value

bta05164:Influenza A 13 5.70 2.24E-06

bta05144:Malaria 7 9.72 7.03E-05

bta05168:Herpes simplex infection 11 4.39 1.73E-04

bta05160:Hepatitis C 9 5.13 3.25E-04

bta05134:Legionellosis 6 7.75 9.60E-04

bta05162:Measles 8 4.33 0.002279078

bta04622:RIG-I-like receptor signaling 6 5.99 0.003044239

bta05133:Pertussis 6 5.91 0.003222503

bta05132:Salmonella infection 6 5.32 0.005056302

bta05150:Staphylococcus aureus infection 5 6.43 0.007185489

bta04064:NF-kappa B signalin 6 4.85 0.007444893

bta05323:Rheumatoid arthritis 6 4.65 0.008894029

bta05161:Hepatitis B 7 3.59 0.012652915

bta04610:Complement and coagulation cascades 5 5.12 0.015668557

bta04145:Phagosome 7 3.20 0.021102066

bta05322:Systemic lupus erythematosus 7 2.98 0.028594761

bta04621:NOD-like receptor signaling 4 5.66 0.032465602

bta05152:Tuberculosis 7 2.84 0.034817614

Table 5. List of pathways predicted to be involved in tissue tropism of host gene expression changes in response 
to challenge by BRDC pathogens. Pathways are enriched for genes that were DE in all analyzed tissues.
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Respiratory epithelial cells can sense viral pathogens through diverse molecules such as TLR3, TLR7, TLR9, 
RIGI, MDA5 and NLRP3, leading to the activation of type I interferon and the induction of a range of antiviral 
mechanisms11,19,20. While we detected the up-regulation of IFNγ, we detected no type I interferon response in the 
animals challenged with BVDV. A recent study has shown that BVDV infection induces IFNγ secretion during 
acute phase signaling and that lymphoid tissues serve both as possible sources of IFNγ and as target organs for 
its effects21. Production of nitric oxide and reactive oxygen species were consistently predicted to be activated 
in the tissues of the BRSV challenged animals. The up-regulation of nitritic oxide and reactive oxygen species 
either reflects the induction of these species by the virus to facilitate replication22, or are hallmarks of oxidative 
stress and the induction of apoptosis23. We also detected the differential regulation of cytokine production by 
IL17A and IL17F which down-regulate IL10, IL6 and CCL3 in LNGL. Furthermore, we detected the suppression 
of leukocyte extravasation signaling in PGT and the up-regulation of thrombin signaling in all of the tissues. 
Non-cytopathic BVDV strains such as strain 890 used for inoculation in this study are known to suppress proin-
flammatory cytokines and co-stimulatory molecules24.

Pathway Count Fold Enrichment p-Value

bta04512:ECM-receptor interaction 31 2.87 6.86E-08

bta04510:Focal adhesion 50 1.94 4.51E-06

bta04151:PI3K-Akt signaling pathway 72 1.67 8.80E-06

bta00010:Glycolysis/Gluconeogenesis 21 2.69 4.20E-05

bta01130:Biosynthesis of antibiotics 42 1.64 0.001235618

bta01200:Carbon metabolism 21 1.55 0.044739966

bta05410:Hypertrophic cardiomyopathy (HCM) 20 2.02 0.003437553

bta05414:Dilated cardiomyopathy 21 1.97 0.003534447

bta05412:Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 17 1.99 0.008840512

bta00360:Phenylalanine metabolism 7 2.69 0.0373829

bta04925:Aldosterone synthesis and secretion 17 1.74 0.030708624

Table 6. Pathways associated with genes differentially expressed between lesion and healthy lung tissue.

Figure 9. KEGG (Kanehisa & Goto, 2000) PI3K-Akt signaling pathway (map04151) is enriched for genes 
differentially expressed between lesion and healthy lung tissue in cattle challenged with BRDC pathogens. The 
genes shown in red are differentially expressed and up-regulated in lung lesions relative to healthy lung tissue.
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The bovine tracheal antimicrobial peptide was found to be DE in all tissues except NLN. While this gene was 
predominantly up-regulated, it was found to be down-regulated in NLN for animals challenged with BoHV-1 
and M. haemolytica. However, pathogen produced toxins are known to have the ability to repress host defensin 
transcription as a mechanism to combat the host immune response25. Consistent with the role of reactive oxygen 
species in the first line of defense against pathogens, genes with functions involving reactive oxygen species were 
also found to be DE. Reactive oxygen species produced by phagocytes may help in the removal of pathogens that 
are resistant to antimicrobial peptides; however, potentially at the expense of tissue damage. We appear to have 
captured most of the events that caused lung tissue damage. The leukotriene biosynthesis, γ-glutamyl cycle and 
eicosanoid signaling pathways were inferred as being the most strongly induced pathways in the lung lesions of 
the BVDV challenged animals. Genes encoding γ-glutamyl transpeptidases, which are present in these pathways, 
are known to cleave leukotriene26 and examination of the genes induced in this pathway revealed that they were 
involved in converting leukotriene-D4 to leukotriene-E4. Leukotrienes C4, D4 and E4 are released from lung 
tissue exposed to allergens and are involved in immediate hypersensitivity reactions27. The leukotriene biosyn-
thesis pathway was also induced by M. haemolytica infection, however, ALOX5 was identified as the up-regulated 
gene responsible for the conversion of leukotriene A4 into other leukotrienes in the tissues of animals from this 
challenge group.

We previously analyzed pathogen-specific host responses in the bronchial lymph nodes of these steers9. 
Consistent with our current findings, the common pathways underlying response to several of the challenge 
organisms included pathways with major roles in innate immunity that are not tissue or pathogen-specific. 
However, we also identified several pathways that were enriched for DE genes in all analyzed tissues includ-
ing BLN, such as Toll-like receptor signaling, chemokine signaling and granulocyte adhesion and diapedesis, 
as well as conserved predicted upstream regulators including IL1B thus supporting their roles in the immune 
response to the pathogens of the BRDC. Despite the finding of common pathways enriched for DE genes across 
challenge pathogens, different genes appear to be responsible for pathway activation. Whether this result reflects 
tissue-specific activation of pathways or a lack of power of single tissue analyses with four biological replicates 
is not clear. The majority of the DE genes identified in the current study were associated with functions in com-
plement and coagulation cascades, endocytosis, chemokine and cytokine signaling, leukocyte transendothelial 
migration, cell adhesion and MAPK signaling. These events represent an orchestrated immune defense that 
occurs in all tissues to combat the infection. We observed numerous genes exclusively DE in the PGT that operate 
within pathways related to the ribosome and spliceosome as well as the post-transcriptional modification of RNA. 
In particular, we detected genes related to EIF2 signaling and the regulation of the eIF4 and p70S6K signaling 
pathways. Similarly, the genes that were exclusively DE in the RLN were related to transcriptional regulation path-
ways. While these responses to the viral infections were also observed in other tissues, an increase in the number 
of DE genes related to signaling functions was observed in both the PGT and RLN.

Besides identifying genes with expression changes in response to different BRDC pathogens, our study shows 
that the host response to respiratory diseases is modulated by the nature of cross-talk between response genes in 
different lymphoid tissues. The network of response genes is modulated by key immune function related genes 
that we predicted using ‘key player’ analysis. While key player analysis has previously been applied primarily to 
the study of social networks, our implementation in the analysis of gene expression networks provided a useful 
approach for characterizing the nature of immune function genes in BRD. Our results further show that tissue 
gene expression profiles in response to infection by BRDC pathogens can generally be clustered based on tissues 
rather than pathogens (Fig. 1) suggesting that different lymphoid tissues play signature roles in mounting the 
host’s response to respiratory infections. This is necessary to trigger appropriate host immunity to defend against 
pathogen infections where clinical manifestation varies depending on strain of virus, host, immunity and other 
factors28,29. We show in this work that tissue cooperative expression changes in genes differ significantly between 
viral and bacterial infections. This suggests that tissue tropism of the host’s transcriptional response is dependent 
upon the invading pathogen and may be dynamic to counter the evolution of pathogen virulence. Host-pathogen 
interactions are dependent upon the binding receptors of appropriate cells in the target tissues and tropism in 
host tissue gene expression may be a key determinant of how well a pathogen can successfully spread its infection 
from one tissue to another.

Materials and Methods
Animal ethics statement. This study was conducted under animal use protocol #16424 approved by the 
Institutional Animal Care and Use Committee of the University of California at Davis. The protocol adheres to 
the Federation of Animal Science Societies Guide for the Care and Use of Agricultural Animals in Research and 
Teaching.

Animal sampling and challenge. Crossbred steers were generated at the University of California 
Davis Sierra Field Station located in Brown’s Valley, California by mating Angus bulls to advanced generation 
Angus-Hereford crossbred dams. Blood from steers that had not been vaccinated against any pathogen from the 
BRDC was tested for antibodies against each bacterial and viral pathogen and those found to be seronegative, 
or to have the lowest titers against each of the challenge pathogens, were selected at 6–8 months of age for the 
challenge experiment that was conducted at the University of California Davis. The steers were provided water ad 
libitum while maintained in pens and a fed a 65% concentrate starter diet. Pathogen challenges were performed 
sequentially on pen-grouped animals under strict biosecurity protocols. A period between challenges with differ-
ent pathogens was used to prevent cross-infection12.

A pilot project was conducted during the summer of 2011 to determine the optimum pathogen doses to 
administer to the challenged animals and also the timing of clinical signs of peak infection to determine the 
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euthanasia end-point for each challenge group. In the optimized challenge experiment conducted in summer of 
2012, groups of N = 4 animals were individually challenged with BRSV, BVDV or BoHV-1 via a nebulizer or with 
M. haemolytica or M. bovis administered by an intratracheal tube inserted through the ventral nasal meatus until 
the end was approximately in the mid-trachea. Optimized pathogen doses per animal were: BRSV (1.6 × 105/
ml × 8.5 ml), BVDV (2.0 × 108/ml × 8.5 ml), BoHV-1 (1.0 × 107/ml × 8.5 ml), M. haemolytica (4.8 × 1011 CFU) 
and M. bovis (7.0 × 1010 CFU). Using a nebulizer, two of the control animals were aerosol administered with 
8.5 ml of tissue culture media while a second pair of controls were inoculated with 8.5 ml of phosphate buffered 
saline. The intratracheal inoculation of phosphate buffered saline was followed by sufficient air to remove all 
saline from the tube. The aerosol administration of tissue culture media was designed to mimic one of the mech-
anisms of viral exposure. Strains were previously reported12.

Clinical scores were recorded daily on each animal from 3 days prior to challenge until the day of euthanasia 
using an index that was a combination of observations. None of the animals required analgesic or anesthetic 
treatment except topical lidocaine, which was applied to the nasal passages prior to the insertion of the intratra-
cheal tube that was used to administer each challenge pathogen. Clinical signs peaked on days 7, 15, 6, 5, and 15 
post-challenge for BRSV, BVDV, BoHV-1, M. haemolytica, and M. bovis, respectively, at which point the steers 
from each group were euthanized. These were not considered to be humane end-points. A certified veterinary 
pathologist removed tissues for examination and the samples collected for transcriptome analysis were imme-
diately frozen in liquid nitrogen. Tissues remained frozen at −80 °C until RNA was isolated for analysis. One 
animal that was challenged with M. bovis was euthanized early and tissues were not collected. This left 23 animals 
from which samples of each tissue were harvested from control animals (N = 4) and those animals artificially 
challenged with BRSV (N = 4), BVDV (N = 4), BoHV-1 (N = 4), M. haemolytica (N = 4) and M. bovis (N = 3) 
and were analyzed by RNA-Seq.

RNA isolation and sequencing. RNA was extracted from a total of 50–100 mg of frozen tissue using 
RNeasy Plus Universal Mini Kits (Qiagen, Hilden, Germany). Briefly, 900 μl of QIAzol (similar to acidic buffered 
phenol) was added to the frozen tissue sample, which was immediately homogenized and incubated at room tem-
perature for 5 min for the dissociation of the nucleoprotein complex, and then 100 μl of genomic DNA eliminator 
solution and 180 μl of chloroform were added. Samples were centrifuged at 12000 g for 15 min at 4 °C and after 
transferring the aqueous layer to a fresh tube, 600 μl of 100% ethanol was added and mixed by pipette. The mix-
ture was transferred to an RNeasy spin column (based on silica-membrane technology) and centrifuged at 8000 g 
for 15 sec at room temperature and was then washed with 700 μl of Qiagen RWT buffer and 500 μl of Qiagen 
RPE buffer. The RNA was eluted with 100 μl RNase-free water and was placed at 4 °C. RNA purity and concen-
tration were evaluated using a NanoDrop 1000 v1.3.2 (Thermo Fisher Scientific, Waltham, MA) and Qubit 3.0 
Fluorometer (Thermo Fisher Scientific). The extent of RNA degradation was initially assessed by the electropho-
resis of 1 μg of RNA on a 1.0% agarose gel. Finally, RNA quality was assessed for each sample using a Fragment 
AnalyzerTM (Advanced Analytical Technologies, Inc, Ames, IA) with a standard sensitivity RNA analysis kit and 
we accepted samples with an RNA quality number of at least 8.0 for library construction.

A total of 10 μg of RNA from each tissue was processed using the TruSeq RNA Sample Preparation Kit 
(Illumina, San Diego, CA) to prepare samples for sequencing. Oligo dT magnetic beads were used to purify 
polyadenylated RNA from the total RNA which was then fragmented with divalent cations under elevated tem-
perature. First strand cDNA was synthesized using random hexamer primers and then the second strand was 
synthesized. The double-stranded cDNA was end-repaired and the 3′ ends adenylated. Finally, to produce the 
sequencing library, universal adapters were ligated to the cDNA fragments that were then amplified by solid 
phase polymerase chain reaction. Each library was evaluated using a Fragment Analyzer and equimolar amounts 
were used to create 7 library pools, which were each sequenced (2 × 50 bp) on a single lane of a HiSeq. 2000. We 
produced an average of 50,778,115 reads per sample.

Processing of sequence reads. Adapter sequences were trimmed from the sequence reads as previously 
described30.

Read alignment. Computation for this work was performed on the high performance computing infrastruc-
ture provided by Research Computing Support Services at the University of Missouri, Columbia MO. TopHat 
v2.0.631 was used to map the trimmed sequence reads to the NCBI Bos taurus virtual transcriptome build and the 
UMD3.1 reference assembly. TopHat first used Bowtie to align the sequence reads to the virtual transcriptome 
build. Reads that failed to map to the virtual transcriptome build were next mapped to the UMD3.1 reference 
assembly. Reads that mapped to UMD3.1 were converted to genomic mappings, spliced if required, and then 
merged with the transcriptome mapped reads. No more than 2 mismatches were allowed in the alignment of each 
read pair and the remaining TopHat parameters were left at default values.

Testing for differential expression. Cuffdiff32 was used to estimate transcript abundance levels as 
Fragments Per Kilobase of exon per Million fragments mapped for each gene in each challenge group and to test 
transcripts for differential expression against controls. The p-values for each performed test were transformed to 
q-values using the Benjamini-Hochberg correction33 to correct for multiple testing.

Cluster analysis, network inference and key player analysis. Expression data for all genes were 
subjected to hierarchical clustering among samples to generate a dendrogram. The Euclidean distance measure 
was used to calculate distance and data fitting was performed using the method of Ward34. The model-based 
cluster analysis was performed using the R ‘mclust’ package using a finite normal mixture modeling method34. 
The Bayesian Information Criterion, implemented in mclust, was chosen for model selection to cluster the genes 
based on their expression data Eigenvalue Decomposition Discriminant Analysis (EDDA) method35. To infer the 
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extent of interactions between genes within a cluster, network analysis was performed using ‘minet’36 based on 
mutual information values that were calculated using the Spearman correlation estimator. The square symmetric 
matrix containing all mutual information values for all genes was used to generate a weighted adjacency matrix by 
the ‘maximum relevance minimum redundancy’ method37. The adjacency matrix was then used to identify and 
plot the co-expression networks. Key genes in each network were predicted from degree centrality scores (that 
predict how central the genes are relative to the overall network structure) using a ‘key player’ analysis approach, 
a method used in analyzing social networks38.

Statistical tests. Chi-Square contingency table tests were performed using counts of numbers of DE genes 
for single and multi-tissue expression to examine associations between host tissue and BRDC pathogen. All of the 
principal component analyses and data visualization were performed using R. For the randomization test of DE 
genes in the network analysis, we selected a fixed number of genes (n = 1000) to create the expression networks. 
We repeated the process of sampling 1000 genes and calculating pairwise mutual information scores and used the 
average mutual information scores across replicates to perform Chi-Square tests to examine associations between 
pathogen and tissue combinations.

Annotation of differentially expressed genes. The Ingenuity Pathway Analysis software (http://www.
ingenuity.com) was used to understand the biological processes regulated by the DE genes. The gene ontology 
and KEGG pathway analyses of DE genes were performed using DAVID Bioinformatics Resources 6.8 (https://
david.ncifcrf.gov). Innate immune genes of cattle curated at InnateDB (http://www.innatedb.com) were used to 
identify immune function genes found to be DE in the RNA-Seq data. Pathway painting was performed using 
KEGG mapper (http://www.genome.jp/kegg/mapper.html).

Accession Codes. Sequence data have been submitted to the NCBI Sequence Read Archive under BioProject 
PRJNA272725. Supplementary Table 1 contains sample identification information for each of the experimentally 
challenged animals and tissues.
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