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Abstract

A comprehension-based approach to learning assumes that
incoming information and background knowledge are integrated
to form a mental representation which is subsequently used to
incorporate new knowledge. We demonstrate that this approach
can indicate when people will learn from instructions.
Specifically, we show that a computational model based on the
construction-integration theory of comprehension (Kintsch,
1988) can explain and predict how individual users will
comprehend help prompts that guide their generation of
successful complex commands within an operating system.

Theoretical Background

Learning from problem solving episodes has previously
been examined by different traditions. Case-based planning
(e.g., Hammond, 1989) assumes that we acquire knowledge
by storing cases in memory which are, in general terms, the
specific plans for different problems. Search-based models
like SOAR learn by chunking the results of the search
process (Rosenbloom et al., 1991). The present research
builds upon a third emerging theory of learning, a
comprehension based approach, which uses an association
between problem descriptions (in this case incoming
instructions to produce a command) and background
knowledge to first activate relevant knowledge to construct a
coherent situation model. This mental representation is then
used to incorporate new knowledge (e.g., Schmalhofer &
Tschaitschian, 1993).

We hypothesize that a computational model based on the
construction-integration theory of comprehension (Kintsch,
1988) can explain and predict how individual users will
comprehend and learn from help instructions as they attempt
to generate complex computer commands. We are analyzing
learning in the context of a theory of comprehension that
has been used to explain story comprehension (Kintsch,
1988), algebra story problem comprehension (Kintsch,
1988), the solution of simple computing tasks (Mannes &
Kintsch, 1991), and the Tower of Hanoi task (Schmalhofer
& Tschaitschian, 1993). Thus, we are performing our
research in the context of a general architecture of cognition.

The main goal of this study is to determine if this
comprehension-based framework can be extended to account
for learning from technical instructions. Specifically, we
evaluate whether the comprehension strategies of UNICOM
(Doane, Kintsch, & Polson, 1989), a construction-
integration model containing knowledge of UNIX
commands, adequately account for the type of instructions
users find helpful to their command production performance.
We have detailed empirical data on learning to produce
complex, sequence-dependent commands in the UNIX
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operating system, a complex problem solving task. In
previous empirical studies (Doane, McNamara, Kintsch,
Polson, & Clawson, 1992), we asked users of varying
experience with the UNIX operating system to produce
complex UNIX commands, and then provided help prompts
when the commands they produced were erroneous. The help
prompts were designed to assist subjects with both
knowledge and processes that our previous research has
suggested are lacking in less expert users (Doane,
Pellegrino, & Klatzky, 1990). The results showed
significant differences in learning from instructions
(prompts) as a function of UNIX background knowledge.

In the present work, we extended our model to include
comprehension-based learning mechanisms in order to model
the individuals in the prompting study. In our modeling,
each subject's performance was analyzed to identify their
initial knowledge base, which represents the knowledge they
displayed without prompting. Using this knowledge base,
we then "give" the model the same prompts that the subject
was given when it executes an unsuccessful action plan, and
then run the model again so the incoming prompt
instructions can activate knowledge to attempt to solve the
problem again. In so doing, we extend this theory to
understanding how users learn from instructions to plan
complex actions, and we can provide a detailed analysis of
the match between modeled and actual performance.

UNICOM Construction/Integration Model

The construction-integration model is a cognitive
architecture that is based on a general theory of discourse
comprehension and that represents knowledge as associations
(Kintsch, 1988). In the context of the present research, using
UNIX refers to the comprehension of brief instructions to
produce legal UNIX commands and associating this
instruction with knowledge about UNIX in order to develop
an action plan. The focus of our analysis is not so much on
understanding the text per se, but on the way these
instructions activate the UNIX knowledge relevant to the
performance of the specified task.

The model activates knowledge in parallel through
activation and selection of contextually relevant knowledge.
It does not plan ahead; rather, the model reacts to the current
state of the world to guide knowledge activation and
selection in a step-by-step fashion. The instructional text
and the current state of the operating system serve as cues
for activation of the relevant knowledge and for organizing
this knowledge to produce an action sequence. The
symbolic/connectionist architecture of this model is similar
to that of ECHO (Thagard, 1989) and ACME (Holyoak &
Thagard, 1989): It uses symbolic rules to interrelate
knowledge to develop a situation model, and then spreads
activation throughout this representation using constraint
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satisfaction. This results in focused activation of knowledge
relevant to the current goal.

Classes of knowledge. The UNICOM model requires
that three classes of knowledge be available to simulate
command production. The first class, world knowledge,
represents the state of the world at the current moment.
Examples of world knowledge include knowledge of the
current task, what files exist on the current directory, what
directory you are in, and what system is in use (UNIX).

The next class of knowledge, general knowledge, refers to
facts about UNIX. To facilitate discussion of the UNICOM
knowledge base, we will start with the command "nroff -ms
ATT2>ATT1" as an example. This command formats the
contents of the file ATT2 using the utility nroff and the -ms
macro package, and then stores the results in the file ATT1.
There are four types of general knowledge required to produce
a composite command. The model must know: (a) command
syntax, (b) /O redirection syntax, (c) conceptual facts about
the redirection of input and output, and (d) conceptual facts
about command redirection.

An example of command syntax knowledge is knowing
the nroff command and the -ms flag. An example of /O
redirection syntax is knowing the ">" redirection symbol.
Examples of conceptual facts about the redirection of input
and output include the conceptual knowledge that redirection
of input and output can occur between commands. This is
separate from the syntax specific knowledge of 1/0
redirection symbols. (Some users appear to know that
redirection can occur, and not know the specific syntax.)
Finally, an example of a conceptual fact about command
redirection would be the knowledge that the output of nroff
can be redirected to a file.

Finally, the third class of knowledge, called plan
elements, are the "executable" forms of knowledge about
UNIX. Plan elements describe actions that can be taken in
the world, and they specify conditions under which actions
can be taken. Thus, users have condition-action rules that
they can consider and execute if conditions are correct. In the
model, plan elements have three parts. The first is the name
of the plan element. The second component contains the
preconditions that must be present either in the world or in
the general knowledge for the plan element to fire. For
example, if a file to be formatted does not exist in the world
knowledge, then a plan element that requires that file exist
will not be able to fire. Finally, there is an outcome
component of plan elements. These contain facts that will
be added to the world if the plan element fires. For example,
once a file is formatted, the world knowledge will change to
reflect the fact that the formatted contents of the file exist in
the world. World knowledge will also change when
incoming prompt instructions are introduced.

Model execution. Many plan elements may be selected
in sequence to form an entire action plan (described below).
The model operates in a cyclical fashion. The model fires the
most activated plan element whose preconditions are
satisfied in the world. When it fires, the outcome of the
selected plan element is added to the world. The selection of
the next plan element is determined by the modified contents
of the world. For plans to be selected for execution, they
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must be contextually relevant to the current task (as dictated
by the world knowledge) and the facts that allow them to fire
(preconditions) must exist in the knowledge base.

Research Goals of Prompting Study

The goal of the empirical prompting study was to determine
more precisely what users at different levels of expertise
know about UNIX, what information is lacking when users
produce erroneous commands, and what information (i.e.,
prompt contents) helps the users. The experiment used a
prompting paradigm to assess the knowledge and processes
of users at various levels of expertise. We assumed that
users have different amounts of the required four types of
knowledge and that displaying the prompts that help with
each type of knowledge will influence subsequent user
performance, if they lack this knowledge.

In the full study, twenty-two computer science and
electrical engineering majors received 21 composite
command production tasks. All subjects had received prior
instruction about redirecting standard input and output in
their coursework and had experience using redirection
symbols to complete coursework or other tasks using
UNIX. Novices had less than 1.25 years of experience with
UNIX; intermediates had between 1.25 and 3.0 years
experience with UNIX; and experts had greater than three
years experience with UNIX. We can only summarize the
procedure here - see Doane et al. (1992) for details.

All production tasks were performed on a computer. The
stimuli were task statements, a fixed directory of file names
and a series of help prompts, displayed when appropriate on
the screen, as well as three "error cards" presented by the
experimenter. Subjects typed their command or series of
commands on the keyboard to accomplish a given task and
then used the mouse to “click" on a display button to obtain
an evaluation of their answer. The task instructions described
actions that could best be accomplished by combining two
or three commands through the use of redirection (i.e.,
composite problems; see Table 1). Accompanying the task
statement was a fixed directory listing of all file names that
were used in the experiment.

For incorrect responses, there was a series of help prompts
designed to address specific types of deficits in the subjects’
UNIX knowledge. These prompts were displayed on the
screen one at a time in a fixed order regardless of the type of
error that the subject had made. The system simply parsed an
answer to determine if it contained the required syntax in the
requisite order and if it did not, then the system would
display the next prompt in the sequence.

There are seven different areas in which the help prompts
could assist the subjects, and these are best described by
referring to the example in Table 1. Prompt 1 parses the
task statement into relevant command concepts. Prompt 2
identifies actual command syntax (command syntax
knowledge). Prompt 3 explains concepts of redirection in an
abstract fashion, independent of syntax (conceptual I/O
redirection knowledge). Prompt 4 identifies the actual I/O
redirection symbols (I/O redirection syntax knowledge)
required for the problem. Prompts 5 and 7 remind the user of
the complete set of items that have already been identified in
previous prompts. Prompt 6 is the first prompt that



determines the order of commands and symbols for the user
(providing command redirection knowledge and help with
tracking intermediate results). This information is repeated
in Prompt 8. Finally, Prompt 9 gives the user the correct
production.

Modeling prompting performance. To develop
individual knowledge bases for simulation, we scored each
subject's answers to determine what knowledge they
displayed prior to instruction on that knowledge. For
example, if a subject used the command "nroff" before we
provided any information about the command, then their
initial knowledge base would receive credit for the command
syntax knowledge for nroff and the plan to produce nroff by
itself. If the subject tried to use nroff in the context of a
redirection symbol (e.g., "nroff -ms filename | lpr") then
they would be given credit for the command redirection
knowledge for nroff that its output could be redirected as
input to another command.

The subject's knowledge was entered into an initial
knowledge base, and the model was given the initial

problem statement in the "world" knowledge. The system
then went through a series of construction-integration cycles
to produce an action plan. If the model's plan was not correct
(regardless of the subject's actual performance), it was given
the text description of the first prompt, and the process
began again. If the next attempt was again unsuccessful,
then the text description for prompt 2 was added to the world
knowledge, and so on.

The text descriptions of the prompts influence the
activation of knowledge in the system. If they overlap
sufficiently with existing knowledge and are relevant to the
goal, then they will be able to provide preconditions to the
plan element that fires. If this takes place, the knowledge
given in the prompt that is used in a fired plan (correct or
not) is permanently added to the knowledge base. Only the
four most highly activated prompt propositions can remain
in the world knowledge during any one cycle. Thus, if an
incoming prompt was not highly associated with the
existing knowledge or the goal, it was dropped from the
knowledge base. Below we discuss the empirical and

Table 1. Example of task description and prompts for the problem nroff -ms ATT2>ATT1

Task Descrin

Format the text in ATT2 using the -ms macro package and
store the formatted version in ATT1

Prompts

Prompt 1. You will need to use the following
command

One that will format the contents of a file using
the -ms macro package

Prompt 2 You will need to use this command

nroff -ms  will format the contents
of a file using the -ms macro package

Prompt 3 You will need to use a special symbol

that redirects command output to a file

Prompt 5 You will need to use the arrow symbol
"2 "and the command nroff -ms

Prompt 6 You'll need to use an nroff -ms

on ATT2 (which will output the formatted
contents of ATT2), and you'll need to redirect

this output as input to ATT1

P — ws
Prompt 7 You will need to use exactly the

following command elements (though not

>, nroff -ms

necessarily in this order):

Prompt 8 You'll need to use the command
nroff -ms followed by the arrow symbol " 2"

Prompt 4 You will need to use the arrow symbol

"2 " that redirects output from a command to a file

Prompt9  The correct production is
nroff -ms ATT2>ATT1

Please enter this production now
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Figures 1(a) and 1(b). Mean percent correct productions for novice, intermediate, and expert subjects, and for the simulation

model of these subjects using UNICOM.

modeling results for the 6 subjects modeled (2 novices, 2
experts, 2 intermediates).

Results and Discussion

Scoring correct command productions. For the
empirical work, productions were scored as correct by the
computer if they matched the syntax of the idealized
command (spaces were not counted). Thus, a subject had to
produce the command that required the least number of
keystrokes (i.e., subjects could not substitute “sort
file1>temp; head temp>file2" for the command “sort filel
head>file2"). Productions produced by each model were
scored using the same rules of correctness. The problems
simulated in this paper are those requiring the greatest
percentage (60-100%) of new knowledge for solution, as
detailed in Doane et al. (1992). This subset of problems is
discussed in this paper.

Correct productions as a function of prompt.
Figures 1(a) and 1(b) show the cumulative percentage of
correct composite productions for the three subject groups
and modeled subject groups as a function of prompt. The
data are cumulative; subjects (and modeled subjects) who
correctly produced a problem at Prompt 4 were included as
correct data points at Prompts 5-9 as well. Thus, at Prompt
9, all of the subjects in each expertise group were at 100%
correct performance. Looking at the empirical results in
Figure 1(a), experts have the highest correct percentage
overall, followed by the less expert groups. Prompts have
differential influences on correcting performance for the three
expertise groups. For example, the change in percent correct
performance from Prompt 3 to Prompt 4 is zero for
intermediates and experts, suggesting that Prompt 4, which
gives I/O syntax information (see Table 1) provided little or
no new information to them. Conversely, the same change
between Prompts 3 and 4 for the novices is large,
suggesting that this prompt does provide them with
significant new information. Experts and intermediates
require fewer prompts in order to obtain perfect performance.
Novices, in contrast, only obtain perfect performance once
they are exposed to the final prompt which gives the exact
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command, Prompt 9. Looking at the modeling results in
Figure 1(b), we obtain the basic expertise effectl. For the
model, as for the subjects, Prompt 4 helps the novices but
not the intermediate group.

Scoring of kmowledge. Each of the problems given to
subjects and to the Learning-UNICOM model required a
certain amount of the four types of component knowledge
discussed earlier in the section describing the UNICOM
model. Answers for the present tasks were scored for the
percentage of each type of knowledge displayed by a subject
and by a model of the subject at each prompt level.

Knowledge analyses. Figures 2 (a-h) show the mean
knowledge scores for the three expertise groups after
prompts 0-9 for both the subjects and the modeled subjects.
The arrow markers specify which prompt first provided
information relevant to the knowledge type displayed in the
graph. For example, in Figure 2(a), Prompt 2 is the first
prompt that describes all of the command syntax knowledge
required to complete the task (see Table 1 for an example of
all prompt types described in this section), and the arrow
indicates knowledge displayed after presentation of Prompt
2. The change in the knowledge score for command syntax
between Prompts 1 and 2 indicates the effect of Prompt 2.
The component knowledge shown is higher than the percent
correct scores shown in Figure 1(a). This is because an
attempt can show high, but not perfect component
knowledge, and component knowledge must be perfect for an
attempt to be entered as correct in Figures 1(a) and 1(b).

The difference between percent correct performance and the
amount of knowledge displayed in an attempt can be
examined by comparing the knowledge scores shown in
Figures 2 (a-b) with the percent correct performance shown

1We chose to model two representative experts, and scored across
their performance, they displayed all of the requisite knowledge
without prompting. This led to 100% correct performance by the
model (see Figure 1(b)).
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Knowledge Type Knowledge Scores Changes in Knowledge Scores
Novice Intermediate Novice Intermediate

Command Syntax 99 74 82 44

/@ Redirection 98 .80 41 18

PO Syntax 97 81 80 .07

| B8inmand Red. .94 97 48 83

Table 2. R values for model fit with subject knowledge scores and changes in knowledge scores.

in Figures 1(a) and 1(b). Figure 2(a) suggests that for novice
and intermediate groups, presentation of Prompt 2 improves
command syntax knowledge, but only intermediates show
improvement in percent correct performance (see Figure
1(a)). The lack of change in percent correct performance for
the novice groups (see Figure 1(a)) suggests that for them,
the prompt is not sufficient to guarantee that subsequent
attempts will show perfect command syntax knowledge.
Figure 2(b) shows a similar pattern of improvement for
modeled novices and intermediates in response to the
command syntax prompt. The novice model shows the
greatest improvement in command syntax knowledge at
Prompt 2. The novice model also shows an increase in
correct performance (see Figure 1(b) at Prompt 2), which
differs from the subject performance. The remaining figures
(Figures 2(c-h)) can be examined in a similar fashion, where
the comparisons show that the model does a good job of
predicting what type of information is important to improve
the amount of knowledge displayed in an attempt for
novices, and slightly less so for intermediates.

To quantify the fit between the model and the subject data,
correlations were performed on the knowledge scores as a
function of prompt and on the change in knowledge scores
as a function of prompt. The change scores provide a more
stringent test of the fit between the model and the subject
data because it pinpoints the changes between prompts rather
than the general increase in knowledge. Table 2 shows the

resulting R2 values. Descriptively speaking, Table 2
suggests that the model does a good job of predicting the
pattern of improvement in percent correct performance,
showing the best fit with the novice data. The change scores
indicate that the model does a good job of predicting the
syntax-based knowledge for novices, and command
redirection knowledge for the intermediates The fit between
expert's performance and the model's predictions was not
calculated due to ceiling performance.

The analyses suggest that there is a good match between
what the model learns from instructions, and what the actual
subjects learn. The differences in what knowledge is relevant
as a function of expertise is consistent for the actual novice
and intermediate subjects, and their models.

General Discussion

We have shown that the construction-integration model can
be extended to account for learning from technical
instructions. Using this comprehension-based approach, we
are able to predict what prompt instructions users will apply
and learn as a function of their background knowledge. This
work has implications for computer-aided instruction and
intelligent tutoring. If we can specify what instructions will
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be effective based on the activation resulting from the
overlap between incoming instructions and background
knowledge, then we can design more effective instructional
systems.
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